



# 24 APR 1991

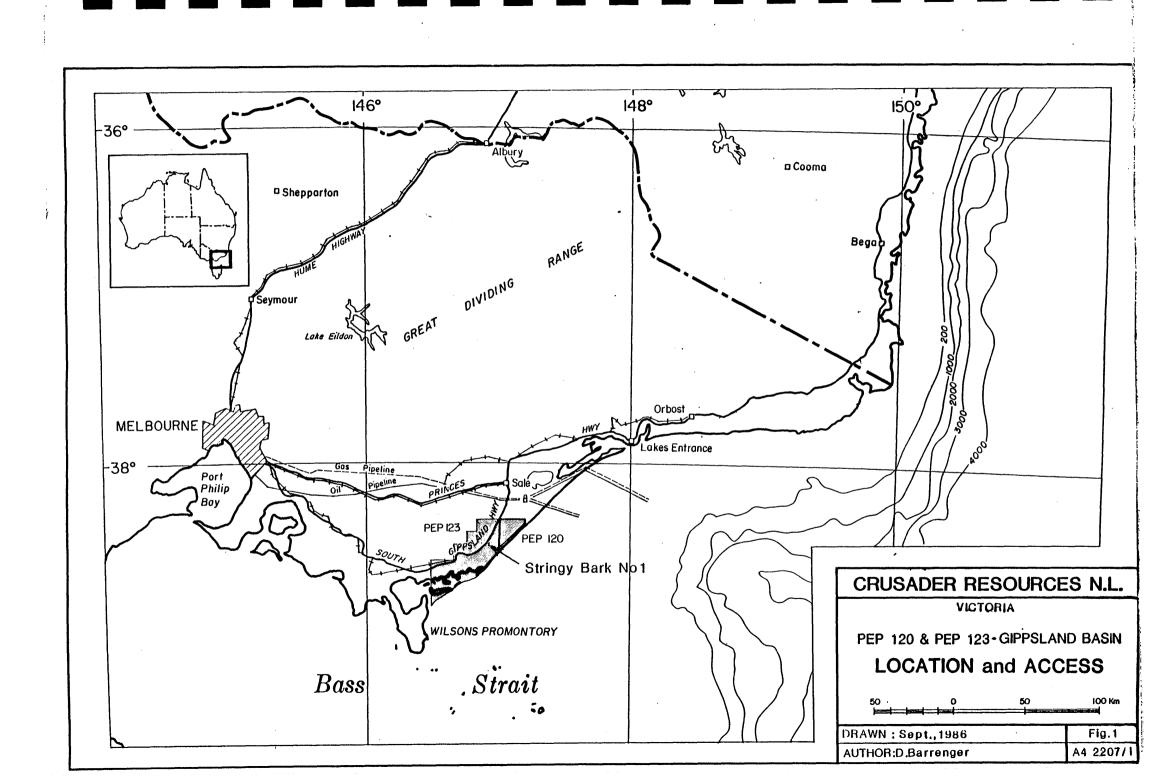
Rh

STRINGY BARK NO 1

PEP 123

WELL COMPLETION

REPORT


WCR STRINGY BARK-1 (W1041)



24 APR 1991 STRINGY BARK NO. 1

PEP 123

WELL COMPLETION REPORT



# CONTENTS

|    |                                 |                                                                                                                                                                              | PAGE                             |
|----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1. | ABSTRA                          | ACT                                                                                                                                                                          | 4                                |
| 2. | WELL I                          | DATA CARD                                                                                                                                                                    | 6                                |
| 3. | GENERA                          | AL DATA                                                                                                                                                                      | 8                                |
| 4. | ENGIN                           | EERING:                                                                                                                                                                      |                                  |
|    | 4.1<br>4.2<br>4.3               | Engineering Summary<br>Rig Data<br>Drilling Data                                                                                                                             | 9<br>10                          |
|    |                                 | (a) Hole Sizes and Depths (b) Casing and Cementing Record (c) Mud Summary (d) Water Supply (e) Formation Testing (f) Abandonment Data                                        | 10<br>11<br>11<br>11<br>12<br>12 |
| 5. | GEOLOG                          | GICAL DATA                                                                                                                                                                   |                                  |
|    | 5.1<br>5.2<br>5.3<br>5.4<br>5.5 | Geological Summary Reasons for Drilling Stratigraphy Descriptive Stratigraphy Formation Evaluation (a) Mud Logging (b) Wireline Logging (c) Velocity Survey (d) Temperatures | 13<br>14<br>16<br>16<br>19<br>19 |
|    | 5.6<br>5.7<br>5.8               | Reservoir Potential<br>Hydrocarbon Shows<br>Contributions to Geologic Concepts                                                                                               | 20<br>20<br>21                   |
| 6  | CONCLI                          | ISIONS                                                                                                                                                                       | วา                               |

|       | LIST OF FIGURE                                              | <u>5</u>          |     |
|-------|-------------------------------------------------------------|-------------------|-----|
|       |                                                             | Behing Pag        | īe  |
| 1.    | PEP 120 & PEP 123 Gippsland Basin                           | Location & Access | 1   |
| 2.    | Location Map Stringy Bark No. 1                             |                   | 5 - |
| 3.    | Time Depth Curve, Predicted vs Ac<br>Stringy Bark No. 1     | tual,             | 9   |
| 4.    | Stratigraphic Units - Gippsland B                           | asin 1            | .3  |
| 5.    | Line GCR 87B-107, Stringy Bark Pr                           | ospect 1          | 4   |
|       |                                                             |                   |     |
|       | LIST OF ENCLOSUR                                            | <u>ES</u>         |     |
| Encl  | closure 1: Stringy Bark Prospect, near Top Latrobe Group    |                   |     |
| Encl  | closure 2: Stringy Bark Prospect,<br>Top of Anomaly 1 - Tim | e Structure       |     |
| Encl  | closure 3: Stringy Bark No. 1 Com                           | posite Well Log   |     |
| ⁄Encl | closure 4: Stringy Bark No. 1 Mud                           | log               |     |
| Ænc1  | closure 5: Stringy Bark No. 1 Str                           | iplog             |     |
|       |                                                             |                   |     |
|       | APPENDICES                                                  |                   |     |
| 1.    | Daily Operations Reports                                    |                   |     |
| 2.    | Bit and Hydraulics Record                                   |                   |     |
| 3.    | Deviation Record                                            |                   |     |
| 4.    | Mud Record                                                  |                   |     |
| 5.    | Time Analysis                                               |                   |     |
| 6.    | Drill Stem Test Reports                                     |                   |     |
| 7.    | Description of Cuttings Samples                             |                   |     |
| 8.    | Wireline Log Evaluation                                     |                   |     |
| 9.    | Water Analysis                                              |                   |     |
| 10    | Well Velocity Survey                                        |                   |     |

11. Well Location Survey

### 1. ABSTRACT:

Stringy Bark No. 1 was drilled for Crusader Resources N.L. by Drillcorp Pty. Ltd. in PEP 123 Victoria, approximately 45 km south of the town of Sale and 5 km northeast of Woodside (Figure 1).

The closest wells to Stringy Bark No. 1 are Woodside South No. 1 (8 km to the south) and the stratigraphic well Woodside No. 12 (8 km to the east) (Figure 2).

No shows were recorded in either well. The only hydrocarbons recorded from nearby onshore wells were gas flows up to 100 MCFD from the Strzelecki Group at North Seaspray No. 1 immediately to the northeast of PEP 120 and minor oil recoveries reported from Woodside No. 2 and Sunday Island No. 1 to the southwest in PEP 123. The nearest accumulations offshore are the marginally economic Dolphin and Perch oilfields and the uneconomic Golden Beach gas field.

Drilling commenced on November 14 1990 and total depth of 1047 metres was reached on November 24 1990 in Cretaceous Age Strzelecki Group sediments. The rig was released on November 26 1990. (Figure 3)

The well was located on the Stringy Bark prospect, a small top Latrobe culmination on an east plunging anticline. The prospect shows four-way-dip closure and had potential for significant additional fault closure due to faulting to the west.

The primary target was a seismically defined barrier/bar sand at the top of the Latrobe Group. Sands of a barrier/bar were intersected by the well. Mapped areal closure of the prospect is about 0.75 square kilometres, with a maximum vertical closure of 20 metres. (Enclosure 1, Figure 4)

The sands at the top of the Latrobe Group are the reservoirs for the Dolphin and Perch oilfields and also for the Golden Beach gasfield and the giant Barracouta gasfield.

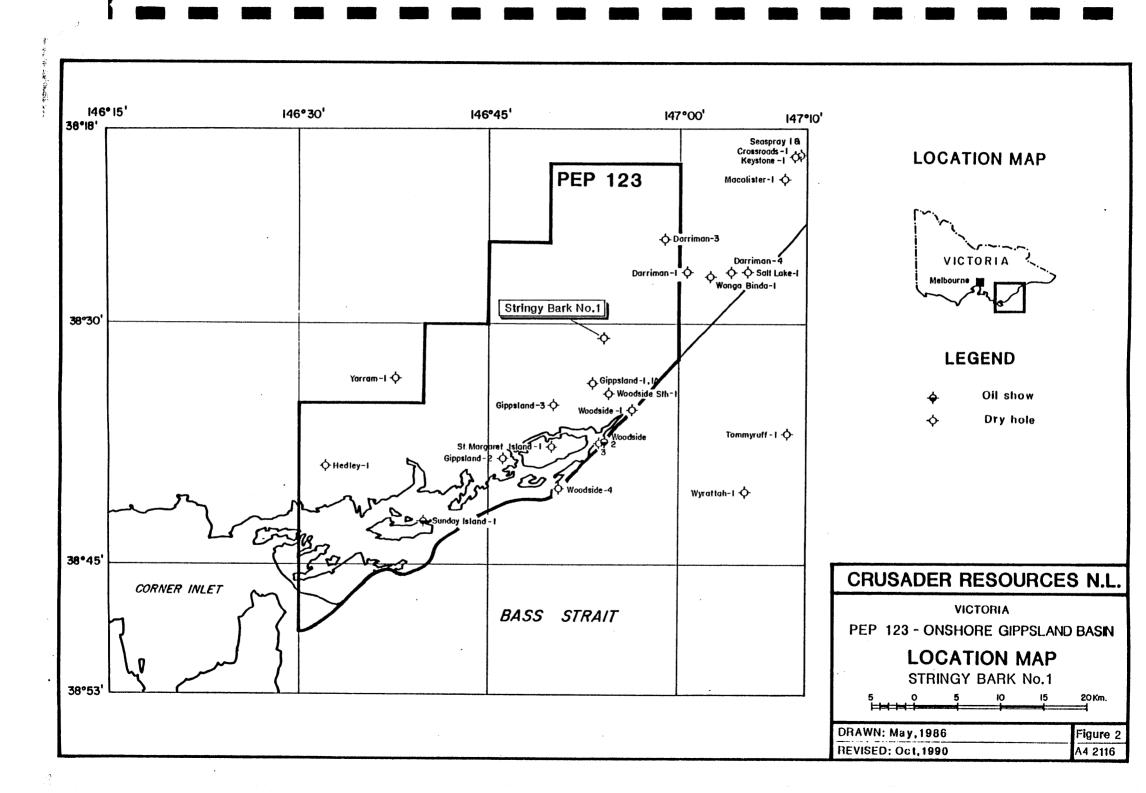
A secondary target was identified. A seismically defined anomaly was mapped at an intra Latrobe level (Enclosure 2, Figure 4) and showed four-way-dip closure. It appeared to be an erosional remnant of some feature, possibly a barrier/bar or volcanic flow. No evidence of either of these lithotypes was seen in the well and, although a thick coal is present at this level, the seismic anomaly remains unexplained.

Intra Latrobe oil accumulations are present at Tarwhine No. 1, Luderick No. 1 and the Barracouta field.

The section encountered was generally as predicted with the Latrobe Group sands being well developed and having good reservoir quality, however, no oil or gas shows were recorded from them (Enclosures 3, 4 & 5).

The Older Volcanics were encountered and found to be considerably thicker than prognosed. The well had to be deepened beyond its prognosed total depth of 870 metres. It was hoped that the Yarram Formation would be present beneath the Volcanics and that this might contain hydrocarbons. The Yarram was not present and the Strzelecki Group was encountered immediately underlying volcanics.

After penetrating four metres into the Top Latrobe Group sand a drill stem test was run even though no hydrocarbon shows were seen. There were several reasons for this:-


- .. It was felt that hydrocarbon shows could be difficult to see in the highly permeable sand.
- .. The very fresh artesian waters have high resistivities and electric logs may have trouble identifying hydrocarbons;
- .. Poor hole conditions were expected. The success of bottom hole tests is at least double that of straddle tests. (The well does show very poor hole conditions which lead to the cancellation of the density/neutron wireline logging run).

DST No. 1: 363-375m (366-378m logger) recovered 2.18 bbls mud; 1.18 bbls formation water. The small recovery is due to plugging of the tool's perforations by the calcareous claystones of the overlying marine section. This problem also occurred during the testing of Wonga Binda No. 1 two years previously.

After reaching total depth, wireline logs and a velocity survey were run.

The geological analysis, wireline logs and DST results indicate that all prospective sands are water saturated. The sonic log reads exceptionally high values for travel times through the sand sections. This is due to the completely unconsolidated nature of these sands.

Cement plugs were set across the top of the Older Volcanics, the casing shoe and at surface, and the well was abandoned.



# 2. <u>WELL CARD</u>: <u>STRINGY BARK NO. 1</u>

| LATITUDE:         | 38° 31' 02.31"S      | STATUS:           | P & A       |
|-------------------|----------------------|-------------------|-------------|
| LONGITUDE:        | 146° 54' 01.77"E     | OPERATOR:         | Crusader    |
| LINE/SP NO.:      | GCR87B-107/1496      | PARTNERS:         | OGMD, Omega |
| LEASE:            | PEP 123              | DRILLER:          | Drillcorp   |
| PRESENT LEASE:    | A/A                  | RIG:              | 23          |
| PRESENT OPERATOR: | A/A                  | ELEVATION (K.B.): | 39m         |
| SPUD:             | 14/11/90             | ELEVATION (G.L.): | 36m         |
| COMPLETION:       | 26/11/90             | TOTAL DEPTH:      | 1050m       |
| TARGET:           | Top Latrobe four way | DATA SOURCE:      | Drilling    |
|                   | dip closure          |                   |             |

### FORMATION TOPS.

| FORMATION TOPS:    | Depth (K.B.) (m) | <pre>Depth (S.S.)     (m)</pre> | Thickness (m) |
|--------------------|------------------|---------------------------------|---------------|
| Lakes Entrance Fm: |                  |                                 |               |
| Seacombe Marl Mbr. | 319.5            | -280.5                          | 47.0          |
| Giffard Mbr.       | 366.5            | -327.5                          | 7.0           |
| Latrobe Group:     |                  |                                 |               |
| Traralgon Fm.      | 373.5            | -334.5                          | 517.0         |
| Older Volcanics    | 890.5            | -851.5                          | 127.5         |
| Strzelecki Group   | 1018.0           | -979.0                          | 32.0+         |
|                    |                  |                                 |               |

### Engineering Data:

### DST and wireline tests:

DST #1: 363-375m, (366-378m logger) Top Latrobe Group. Tool opened with moderate blow (bottom of the bucket). Though it slowed the blow remained moderate until the tool was shut-in after 120 minutes. No pre-flow. The shut-in period was 60 minutes. Recovered 2.18 bbls mud and 1.18 bbls slightly muddy water. Blocking of perforation by claystone was evident.

### Hole and casing:

 $17\frac{1}{2}\text{"}$  hole to 10m. Hand dug and 16" conductor pipe set at 6m prior to rig on location

 $12\frac{1}{4}$ " hole to 173m, 9 5/8" casing set at 171m.

 $8\frac{1}{2}$ " hole to 1047m (T.D.) (driller).

# Mud properties:

 $12\frac{1}{4}$ " Hole. Type - gel and caustic - wt 9.0 ppg, vis 51-90 secs, Ph 10.0

 $8\frac{1}{2}$ " Hole. Type - low solid salt polymer - wt 9.1-9.5 ppg, vis 45 secs, Ph 9.0-10.5, Chlorides 5000-20,000 Mg/l.

## Plugs:

No. 1: 860-920m 131 sacks

No. 2: 161-221m 73 sacks + 2% Ca Cl. No. 3: Surface 20 sacks + welded cap. Wireline logs, BPB:
 DLL-MLL-Sonic-GR-CAL 170-1050m (GR to 12m)

Velocity survey, velocity data: 18 levels

Mud Logging, Halliburton:
 1:200 scale. Surface -1047m T.D. (driller)

Conventional cores:
 Nil.

Sidewall cores:
 Nil.

Hydrocarbon shows:
 Nil.

Hydrocarbon analyses:

Water analyses:

Nil.

DST No. 1 resistivity: 2.057 ohm metres, conductivity: 4860 micro siemens/cm chlorides: 148 mg/l

Measured temps:

39°C at 374m (DST No. 1) 47°C at 1050m 7 hours after circulation stopped.

Palynology/Palaeontology Nil.

### Remarks:

Located on a top Latrobe four-way-dip closure. A seismically interpreted barrier sand is present at top Latrobe and this was penetrated by the well. The sand is well developed with excellent reservoir quality. No gas or oil shows were recorded while drilling. A drill stem test was run immediately after penetrating the top of the Latrobe Group to test the uppermost sands. Formation water and mud were recovered. No hydrocarbon shows were recorded from this or any other zone. The well drilled through 127.5m of volcanics at the base of the Latrobe Group and into the Strzelecki Group. The Yarram Formation is, therefore, absent at this location. The hole is badly caved due to the unconsolidated nature of the formations. This contributed to the unrealistic readings as made by the sonic log.

### 3. **GENERAL DATA:**

Well Name: Stringy Bark No. 1

Name and address Crusader Resources N.L.

of Operator: 27th Level 12 Creek Street

BRISBANE QLD.

Crusader Resources N.L. Interests: 37.5%

Omega Oil Ltd. 37.5%

OGM Development Pty. Ltd. 25.0%

Petroleum Title: PEP 123, Victoria

38° 31' 02.32" South Location:

146° 54' 01.77" East

36 metres Elevations: Ground level:

Kelly bushing: 39 metres

Dates: Spudded: 14.11.90

> T.D. reached: 24.11.90 Rig released: 26.11.90

Total Depth: 1050 metres - wireline logger

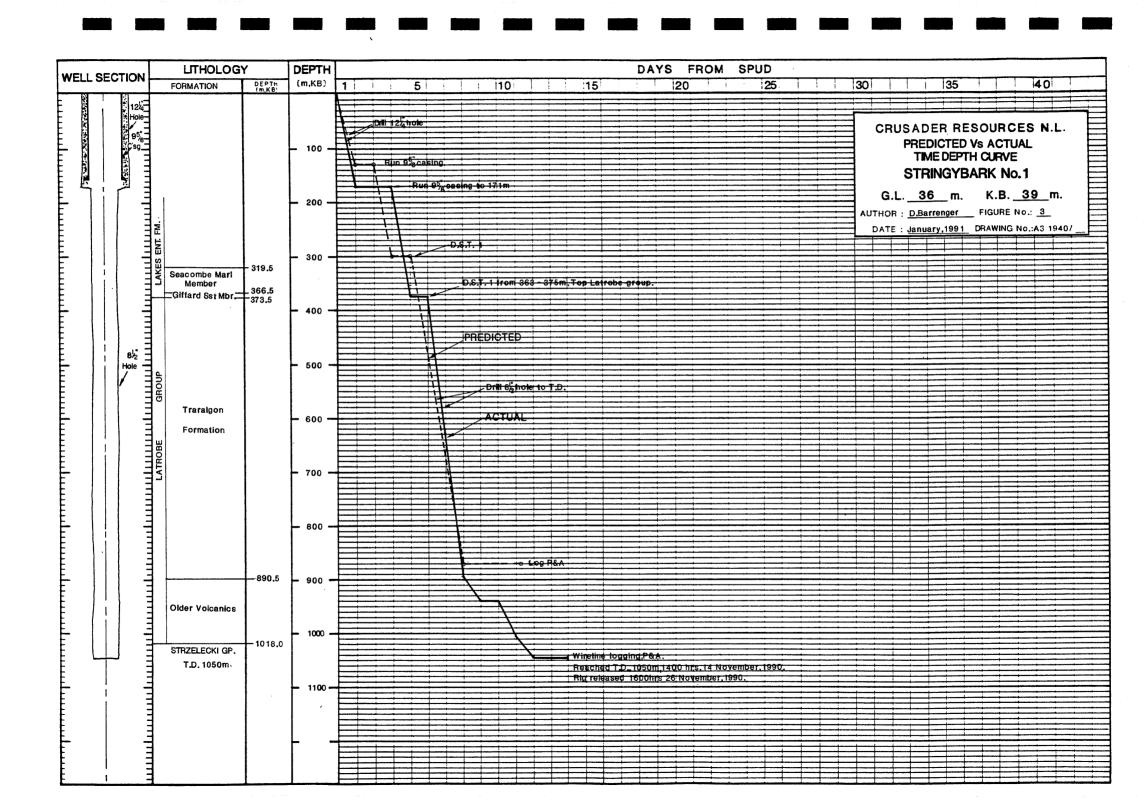
1047 metres - driller

Status: Plugged and abandoned.

### 4. ENGINEERING DATA:

# 4.1 Engineering Summary

Stringy Bark No. 1 spudded at 0900 hrs on November 14 1990 with fresh water-gel mud (Figure 3). Six metres of 16" conductor pipe had been precemented in  $17\frac{1}{2}$ " hole drilled to a depth of 10 metres.  $12\frac{1}{4}$ " Hole was drilled to 173m. Salt and polypac had been added to the mud system.


Fourteen joints of 9 5/8" casing (47 bbls, N80, R3) were run and cemented at 171m on 15.11.90. BOP's were installed and after repairing a leak, were tested from 250 to 1500 psi. The hydril was tested to 1000 psi.

Picked up  $8\frac{1}{2}$ " hole and continued drilling to 375m, top of Latrobe Group, at which point the bit was pulled to run a drillstem test.

A successful DST was run over the interval 363-357m. Plugging was evident from the shape of the chart, the small-fluid recovery, 2.18 bbls mud and 1.18 bbls formation water, and visual inspection of the tool showing claystone blocking many of the perforations.

Drilling of  $8\frac{1}{2}$ " hole continued to 644m where caving of the hole caused the drill string to become stuck. The pipe was pulled free and drilling continued to 970m before pulling out for a new bit. It was found that the hole had deviated at the top of the volcanics from 1° to 2.25°. This caused some problems when tripping. Continued drilling to 1047m, driller's total depth, reached at 1400 hrs on 24.11.90.

Wireline logs and a velocity survey were run. Three plugs were run and the well was abandoned. The rig was released at 1600 hrs on 26.11.90.



#### 4.2 Rig Data

Contractor: Drillcorp Ltd.

41 Buckingham Drive PERTH. W.A. 6065.

Rig: 24

Franks Cabot Explorer, Carrier Mounted Type:

Drawworks: Cabot Split Drawworks Drilling/Tripping

Drums

Model 1D58/150-2

2 Detroit Diesel GM6V-71N

Belt compound

Capacity: 5,000' - (1,600m)

Rotary Table: Gardner-Denver No. RT-18, 18" opening

Cabot 98' - 150' (30-46m) Derrick:

 $96 \times 150,000$  lb capacity

4 leg telescoping

Ideco MM450 Duplex  $7\frac{1}{4}$ " x 12" Mud Pumps:

Powered by 2 6-71GM

B.O.P.: Shaffer Type 'E' Double Gate,

10" x 3,000 psi

1) Annular Shaffer 10" x 3,000 psi 9" x 3,000 psi 2) Annular Regan

B.O.P. Koomey 80 Gallon, 8 Bottles, with 2 air

Control: Pumps

Tubulars 4,000' (1219m) x  $4\frac{1}{2}$ " pipe grade 'E'

Available: 16.60 lb/ft

Drill Collars:22 x  $6\frac{1}{4}$ , 2. 3/4" x 30',  $4\frac{1}{2}$ " XH conn.

#### 4.3 **Drilling Data**

### a) **Hole Size and Depths:**

17½" to 12¼" to Conductor hole: 10m from KB Surface hole: 171m from KB 8½" to 1,047m from KB Main hole:

# b) Casing & Cementing Record:

16" Conductor: Grade: (set prior to Depth:

Welded sheet 6m below ground

move in)

9 5/8" surface Weight:

471bs/ft

Grade: Thread: N 80 Butt

No Joints: 14

Accessories:Guide shoe, float

collar and centralizers

Shoe Depth: 171m

Cement: 313 sacks and

173 sacks with CaCl as a tail slurry

### c) Mud Summary:

The hole was spudded with a fresh water gel mud.

Salt was added from 48m to inhibit the clay formations. Polypac was used for viscosity. At 173m the mud weight was 9.3 ppg, chlorides 12,000 mg/l. This salt water biopolymer mud was used to total depth.

Upon drilling out the casing shoe the mud weight was  $8.5~\rm ppg$  with chlorides of  $15,000~\rm mg/l$ .

At 375m the mud weight was raised to 9.2 ppg and chlorides were 20,000 mg/l, due to tight hole on wiper tip.

At 644m the drill string became stuck when sand caved in above the bit. After pulling free the mud was conditioned by adding prehydrated bentonite.

By 846m chlorides had dropped to 10,000 mg/l.

By 935m mudweight was 9.4 ppg and chlorides 9,000 mg/l and dropping.

At total depth the mud weight was 9.5 ppg and chlorides were 5,000 mg/1.

## d) Water Supply:

Water was pumped from the local farmer's water bore onto the site.

## e) Formation Testing:

One drill stem test was run during the drilling of the well.

<u>DST No. 1:-</u>

Interval: 363-375m driller (366-378m

logger)

Date: 19.11.90 Tester: Halliburton

Formation: Top Latrobe Group

Type: Conventional off bottom Water Cushion: Nil

Times: Initial flow 2 hours

Initial closed 1 hour

Pressures: Initial hydrostatic -594.4 psi

First initial -322.2 psi Final flow -509.9 psi First closed in -526.8 psi Final hydrostatic -594.4 psi

Results: Tool opened with a strong blow,

decreasing to moderate

throughout.

Recovery: 2.18 bbls of mud

1.18 bbls of dirty formation

water.

# f) Abandonment Plugs:

Plug No. 1: 860-920 metres, 131 sacks across

base Latrobe Group/top

Volcanics.

Plug No. 2: 141-201 metres, tagged at 161

metres, 73 sacks + 2% CaCl

across casing shoe.

Plug No. 3: Surface, 20 sacks.

# 5. **GEOLOGICAL DATA**:

### 5.1 Geological Summary:

Stringy Bark No. 1 spudded on November 15 1990 into loose sands of the Quaternary cover/Boisdale Formation (Figure 5). At 80 metres coquina were intersected. These form the Jemmys Point Formation. Shells and some sands remained the dominant lithologies to the casing shoe depth. The top of the Tambo River Formation, if this Formation is even present, was not seen. Nor was the top of the Gippsland Limestone.

10 Metre cuttings samples were collected throughout the well.

After drilling the  $12\frac{1}{4}$ " hole to 173.0m, 9 5/8" surface casing was set at 171.0m and  $8\frac{1}{2}$ " hole was drilled to total depth.

Upon drilling out the casing shoe a completely new lithology was encountered. Crystalline limestones, believed to be from the Gippsland Limestone, were drilled. There were large amounts of cavings of shells and sands while drilling the  $12\frac{1}{4}$ " hole.

The Seacombe Marl Member of the Lakes Entrance Formation was encountered at 317.0m (driller) with a dramatic decrease in drilling rate (Enclosure 3) and a change in lithology from very calcareous claystones and crystalline limestones to 100% calcareous claystones. The carbonate content decreases towards the base of the Lakes Entrance and glauconite content increases.

The Giffard Sandstone member (believed to be the equivalent of the Gurnard Formation) was encountered at 370m (driller) and consists of 100% claystone with abundant fine pyrite and glauconite and some loose quartz grains.

The top of the Latrobe Group (Traralgon Formation) was intersected at 372m (driller) with a rapid increase in the rate of penetration and a change to coarse quartz sand. No coal was intersected at the very top of the Latrobe suggesting that the seismically mapped barrier sand is present at Stringy Bark No. 1. A drill stem test was run over the top of the Latrobe. The tool became partially plugged by claystones from the Lakes Entrance Formation and fluid recoveries were small - 2.18 bbls of mud; 1.81 bbls of slightly muddy formation water.

# STRATIGRAPHIC UNITS - GIPPSLAND BASIN

| MILLIONS OF<br>YEARS | PERIOD       | ЕРОСН       | AGE | SPORE-POLLEN<br>ASSEMBLAGE ZONES          | < LANDWARD PARALIC SEAWAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )>                                               | SEA LEVEL RISE FALL |
|----------------------|--------------|-------------|-----|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|
| MILL                 | J.           | E           |     | (AFTER PARTRIDGE 1976)                    | SEAS PRAY DEPRESSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                     |
| - 2<br>- 5·5         | E            |             |     | T.PLEISTOCENICUS M.LIPSIS C.BIFURACTUS    | HAUNTED HILL GRAVELS  BOISDALE FM.  JEMMY'S POINT FORMATION  TARRA RIVER FORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                     |
| - 14                 | MIOCENE      | L           |     | T. BELLUS                                 | TAMRO RIVER FORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,                                               | 5                   |
| -22-5 -              | OLIGOCENE MI | Ε           |     | P TUBERCULATUS                            | TOOLOONOOK  LAKE WELLINGTON FORMATION  GIPPSLAND LIMESTONE FORMATION  BODMAN COAL  FORMATION  CREEK FM. S MEASURES TO MEASURE T | SEASPRAY<br>GROUP                                |                     |
| 37 -                 | - G -        | L .         |     | U.N. ASPERUS                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                     |
|                      | EOCENE       | M<br>E      |     | M.N ASPERUS  L.N.ASPERUS  P. ASPEROPOLUS  | TRARALGON FORMATION  OLDER VOLCANICS  VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.5                                              |                     |
| - 54 -<br>- 65-      |              | L<br>M<br>Ē |     | L-U.M. DIVERSUS  U.M. BALMEI  L.L. BALMEI | YARRAM FORMATION  FLOUNDER  FM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LATROBE<br>GROUP                                 |                     |
| 0.5                  | PALAEOCENE   |             |     | T.LONGUS<br>T.LILIEI                      | BARRACOUTA FORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                     |
|                      | Α            | L           | S   | N. SENECTUS                               | NON DEPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GOLDEN BEACH<br>GROUP                            |                     |
|                      | S            |             | Т   | T. PACHYEXINUS P. MAWSONII                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OEN<br>GRO                                       |                     |
| -100-                | EOU          |             | С   | A. DIS TOCARINATUS P. PANNOSUS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0071                                             |                     |
|                      | CRETACEOUS   |             |     | C. PARADOXA C STRIATUS                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>                                     </del> |                     |
|                      | CF           | Ε           |     | G.HUGHESI                                 | STRZELECKI GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STRZELECKI<br>GROUP                              |                     |
| 130                  |              |             | М   | G. STYLOSUS                               | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STR                                              |                     |

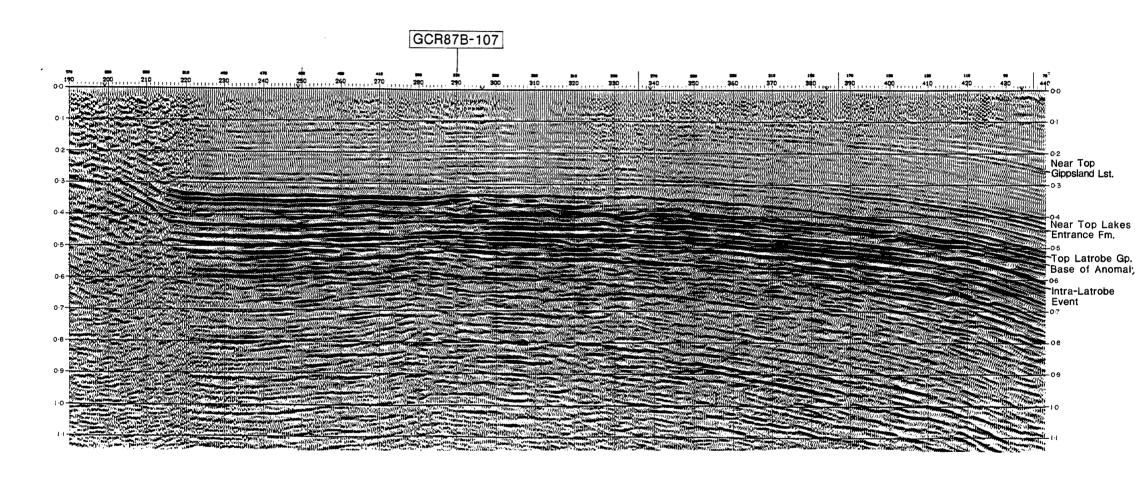
(Modified from THOMPSON and WALKER 1982)

A mix of sands, coals and claystones were drilled to 687m (driller). From there down coals became rare.

The Older Volcanics were intersected at 887m (driller) and consisted of fresh and weathered basalt. A drilling break occurred at 920m (driller) and a sample consisting of sand and gravel was collected. The wireline logs do not show any evidence of this sand. There were no shows, so drilling continued.

It was deemed necessary to drill through the Older Volcanics to investigate the hydrocarbon potential of the underlying strata. Permission was obtained to deepen the well beyond the prognosed 870m.

The Yarram Formation is not present below volcanics at this location. The Strzelecki Group was intersected at 1018m (logger) and consisted of volcanolithic sandstones and siltstones with poor reservoir quality and no shows. Total depth of 1050m (logger) was reached on December 15 1990, still in the Strzelecki Group.


Wireline logs and a velocity survey were run. Due to the very poor hole conditions no other logs were run. The sonic tool was adversely affected by the unconsolidated nature of sands and by poor hole conditions. Sonic travel time readings were often too high.

Sample monitoring and gas detection while drilling indicated there were no significant hydrocarbon accumulations in any of the sands penetrated and this was confirmed by the wireline logs and drill stem test results.

The well was plugged and abandoned and the rig released on December 16 1990.

# 5.2 Reasons for Drilling:

Stringy Bark No. 1 was drilled to test for hydrocarbons in a top Latrobe Group feature believed to be a buried barrier sand (Figure 4). The well location is just within the four-way-dip closure mapped at the top of the Latrobe Group level (Enclosure 1).



## **CRUSADER LIMITED**

VICTORIA - PEP 123

STRINGY BARK PROSPECT

LINE GCR89A-05
MIGRATED STACK

Nov,1989

Figure 5

A potential for increased reserves through stratigraphic trapping existed where fine grained lagoonal sediments deposited at the back of the barrier may have provided a westerly seal for the clean barrier sands. The overlying marine Lakes Entrance Formation is the seal in all other directions.

A secondary objective was identified. A seismically defined 'anomaly', Anomaly 1, was mapped at an intra Latrobe level (Enclosure 2) and shows four-way-dip closure. It appears to be an erosional remnant of some feature that may have been a barrier deposit. Seismic events immediately above the strong seismic reflector representing the top of the paleotopographic feature display onlap. The maximum thickness of the feature is 35m.

No significant accumulations of hydrocarbons have yet been discovered in the onshore Gippsland Basin but offshore from PEP 120 are several marginally economic oil and gas fields, Golden Beach, Whiptail, Tarwhine, Dolphin and Perch. The sands at the top of the Latrobe Group are the reservoirs for all these fields.

Onshore, gas flowed at up to 100,000 cubic feet per day from the Strzelecki Group in North Seaspray No. 1 but other wells in the area failed to encounter the reservoir sand suggesting a strong stratigraphic component in its distribution. In the south of the permit minor oil shows were reported from Sunday Island No. 1 and Woodside No. 2.

# 5.3 Stratigraphy:

(All Depths are in Metres)

| Age       | Group/Formation                                       | Тор КВ Т       | op MSL           | Thickness |
|-----------|-------------------------------------------------------|----------------|------------------|-----------|
| Pliocene  | Sale Group<br>Boisdale Ne                             | ar Surface     | + 36.0           | 75.0      |
| Pliocene  | Jemmys Point                                          | 78.0           | - 42.0           | ?         |
| Miocene   | <u>Seaspray Group</u><br>Tambo River                  | Not re         | cogn             | n i z e d |
| Miocene   | Gippsland Lst.                                        | ?152.0         | -113.0           | 167.5     |
| Oligocene | Lakes Entrance:<br>Seacombe Marl Mbr.<br>Giffard Mbr. | 319.5<br>366.5 | -280.5<br>-327.5 |           |
| Eocene    | <u>Latrobe Group</u><br>Traralgon                     | 373.5          | -334.5           | 517.0     |
| Paleocene | Older Volcanics                                       | 890.5          | -851.5           | 127.5     |
| Cretaceou | s <u>Strzelecki Group</u>                             | 1018.0         | -979.0           | 32.0+     |
|           | Total Depth                                           | 1050           |                  |           |

# 5.4 <u>Descriptive Stratigraphy</u>:

Boisdale Formation (Pliocene) Near Surface - 78.0m:

Sand, greyish yellow, multicoloured, iron-stained, quartz, coarse to very coarse, sub-angular to rounded, becoming well rounded with depth, 20% volcanolithics, grey clay matrix present towards the base of the formation, unconsolidated.

<u>Jemmy's Point Formation</u> (Pliocene) 78.0 - ?152.0m

This description applies to the interval between the base of the Boisdale Formation and the top of the Gippsland Limestone. It includes the Tambo River Formation if this is present at the Stringy Bark No. 1 location.

Sand and shells with downwards increasing shell content.

10% Sand clear, quartz, medium, grey clay matrix, loose.

90% Shells, gastropods, bivalves, bryzoa, coral, echinoids, mixed with the clay and sands, unconsolidated coquina.

Tambo River Formation (Miocene) Not recognized.

This formation may not be present in Stringy Bark No. 1 (see Jemmy's Point above).

Gippsland Limestone (Miocene) ?152.0 - 319.5m

The top of the Gippsland Limestone was intersected while drilling the  $12\frac{1}{4}$ " hole. The abundant shell cavings at that time 'masked' the top of the formation.

152.0 - 173.0m (12½" hole)
Shells and medium quartz sand as described above, however samples include abundant calcite crystals and abundant glauconite.

173.0 - 250m ( $8\frac{1}{2}$ " hole) Calcarenite, light brown to brown, fossiliferous, hard to occasionally soft where argillaceous, trace glauconite. Crystal size diminished and clay content increases with depth, trace to abundant glauconite.

250.0 - 319.5m

Dominantly argillaceous Calcilutite, dark grey to light grey, some fine to medium size crystals, grading to calcarenite, trace glauconite, trace black speck, very soft, sticky, dispersive.

Calcareous claystone, argillaceous, calcilutite grades downwards to claystone, dark to medium grey, soft, sticky.

<u>Lakes Entrance Formation</u> (Oligocene) 319.5 - 373.5m

Seacombe Marl Member 319.5 - 366.5m

Claystone (Marl), very calcareous, dark to medium grey, soft, sticky, good trace glauconite. As glauconite content increases with depth colour changes to greenish bluish grey.

Giffard Member 366.5-373.5m

Claystone, greenish bluish grey, soft, sticky, abundant glauconite and finely disseminated pyrite, rare loose quartz grains, coarse, well rounded.

Latrobe Group 373.5 - 1018.0m

Traralgon Formation (Eocene) 373.5 - 890.5m

373.5 - 607m Sand, Claystone and Coal

Sand, white to clear, coarse to very coarse, occasionally medium, occasionally pebbles, angular to sub-rounded, large grains rounded, loose, occasionally trace mica.

Claystone, dark brown, dispersive, silty to very silty, carbonaceous.

Coal, brown, blocky, soft to dispersive.

607 - 890.5m Sand and Claystone

Sand, white to clear, coarse to very coarse, occasionally medium, occasionally pebbles, angular to sub-rounded, large grains rounded, loose, occasionally trace mica.

Claystone, dark brown, dispersive, silty to very silty, carbonaceous.

Older Volcanics (Paleocene) 890.5 - 1018.0m

890.5 - 980.0m Basalt
Weathered, dark reddish-brown to dark reddishpurple, appears as soft sticky clay with occasional
firm chips. Becomes hard and crystalline with
depth. From 940m it becomes vari-coloured, often
dark grey and greenish. Between 922 - 924m fast
drilling was encountered. A sand/gravel was caught
at the surface. Yellowish brown quartz, coarse to
pebbly at base, sub-angular. This is not
identifiable on the wireline logs.

980 - 1003m Volcanics Dark bluish and greenish grey, increasingly siliceous, fine to medium crystalline, green and red minerals. Very even drilling rate from 980m.

1003 - 1010m ?Igneous Fast drilling encountered, very dark green, abundant loose, angular quartz, coarse crystalline. Possibly a vein or weathered surface.

1010 - 1018.0m Volcanics Dark bluish and greenish grey, increasingly siliceous, fine to medium crystalline, green and red minerals. Strzelecki Group (Cretaceous) 1018.0 - 1050.0m

Sandstone, Claystone and Siltstone

Sandstone, medium green grey, 60% quartz, clear, angular, 40% lithics, green grey, sub-angular to rounded. White to light grey clay matrix, ?trace feldspar, firm to friable and usually unconsolidated.

Siltstone, dark greenish grey, very argillaceous, soft to firm grades to claystone.

Claystone, dark brown, silty, moderately hard.

## 5.5 Formation Evaluation:

# (a) Mud Logging

Mudlogging services were provided by Halliburton Geodata. Basic rate of penetration, pit level, FID, total gas and FID chromatography services were provided as well as lagged sample collection, description and processing. Cuttings were collected at 10m intervals throughout the well. These were examined for oil and gas indications, described, air dried and split into one set of paper sample packets for the Department of Industry and Economic Planning and two sets of samplex trays retained by Crusader Resources N.L..

## (b) Wireline Logging

The following logs were run by BPB Instruments (Australia) Pty. Ltd. at total depth:

DLL-MLL-SONIC-GR-CAL 1050-170m (GR TO 12m) (Enclosure 3)

### (c) Velocity Survey

The velocity survey was run by Velocity Data Pty. Ltd. using BPB'S cable. 18 Levels were shot (Appendix 10 - Enclosure 3).

### (d) Temperatures

The following temperatures were recorded:
DST No. 1: 39°C at 374m
Wireline logs: 47°C at 1050m 7 hours after circulation stopped.

The wireline logging result gives an estimated extrapolated bottom hole temperature of 50°C. This is assuming the same rate of temperature rebound as Wonga Binda No. 1.

# 5.6 <u>Reservoir Potential</u>:

The wireline logs and samples indicated the sands of the Latrobe Group had good porosity and permeability with clean sands having only minor amounts of clay matrix and lithic fragments. The sands are so unconsolidated that the sonic log is unable to read true sonic values. (It is postulated that the energy level of sound waves is too low to be recorded by the  $1.5m\ (5')$  tool sensor).

Drilled sands of the Strzelecki Group had poor porosities and permeabilities and in general had a high proportion of lithic fragments, feldspar and clay matrix.

Samples from the upper Gippsland Limestone section and the Boisdale-Jemmy's Point-Tambo River section indicate very good reservoir quality but a lack of 'seals'. (See Appendix 8).

# 5.7 <u>Hydrocarbon Shows</u>:

No gas peaks or background gas were recorded while drilling.

Very minor trip gases only were recorded after pulling out for bits in the Older Volcanics. (Enclosure 4).

No indications of oil or fluorescence were observed from any lithology and no solvent cut was obtained from coals.

Wireline logs indicated all potential reservoir sands to be water saturated and a DST run at the top of the Latrobe Group recovered formation water.

### 5.8 <u>Contribution to Geologic Concepts</u>:

There is fair agreement between lithologically picked tops and those picked from the wireline logs. The Older Volcanics was considerably thicker than the predicted 40m. The Traralgon Formation thickness was as predicted and, along with the Older Volcanics, demonstrates a major thickening of the Latrobe Group from south to north in the vicinity of the Stringy Bark location.

The Lakes Entrance Formation is clearly defined by the drill rate and lithology at Stringy Bark No. 1 and this has enabled a re-evaluation of this formation top regionally. The Giffard Member (previously referred to as the Giffard Sandstone Member) was easily identified by its characteristic abundance of glauconite, fine pyrite and good trace of well-rounded, coarse quartz grains. This Member is not a sandstone unit.

The Traralgon Formation does not have coal at the very top of the Formation. Wonga Binda No. 1 is the only other well in the PEP 120/123 area lacking coal at the top of the formation. This confirms the seismic model of a sand buildup (barrier) at the Stringy Bark location.

The Older Volcanics are reddish and purplish brown, deeply weathered and have erratic drill rates in the upper section. At about 977m the drill rate becomes quite uniform and the Volcanics become greenish and distinctly more siliceous. Two intervals had exceptionally high drill rates. The first at around 922m appeared to be a local sedimentary feature. Both however may simply be coarse crystallinequartz-rich veins. They have no significance for petroleum exploration.

The Yarram Formation is absent this far south.

The Gippsland Limestone is coarse crystalline calcarenite at the top and becomes gradually finer crystalline and argillaceous calcitulite and calcareous claystone towards the base.

The pick of the top of Gippsland Limestone and the presence of the Tambo River Formation are uncertain.

# 6. CONCLUSIONS:

Stringy Bark No. 1 was located at a crestal position on a structure showing four-way-dip closure at all mapped horizons. The interpretation also predicted a sand build-up, perhaps of a barrier, at the top of the Latrobe and this is apparently confirmed by the drilling results. An intra Latrobe anomaly appeared to be an eroded remnant of some feature, perhaps a barrier sand or even a volcanic flow. No conclusions could be drawn from the drilling of the well other than that a sedimentary sequence was encountered.

It was thought that east to west migrating hydrocarbons would be caught by and channelled into the top Latrobe Stringy Bark No. 1 closure by the barrier complex, however, this was not the case.

This is an enclosure indicator page. The enclosure PE902059 is enclosed within the container PE902058 at this location in this document.

The enclosure PE902059 has the following characteristics:

ITEM\_BARCODE = PE902059
CONTAINER\_BARCODE = PE902058

NAME = Stringy Bark Prospect Time Structure

Map

BASIN = OTWAY

PERMIT =

TYPE = SEISMIC

SUBTYPE = HRZN\_CONTR\_MAP

DESCRIPTION = Stringy Bark Prospect Time Structure

Map

REMARKS =

DATE\_CREATED = 1/09/89 DATE\_RECEIVED = 24/04/91

 $W_NO = W1041$ 

WELL\_NAME = Stringy bark-1

CONTRACTOR = Crusader resources N.L
CLIENT\_OP\_CO = Crusader resources N.L

This is an enclosure indicator page. The enclosure PE902060 is enclosed within the container PE902058 at this location in this document.

The enclosure PE902060 has the following characteristics:

ITEM\_BARCODE = PE902060
CONTAINER\_BARCODE = PE902058

NAME = Stringy Bark Prospect Time Structure

Map

BASIN = OTWAY

PERMIT =

TYPE = SEISMIC

SUBTYPE = HRZN\_CONTR\_MAP

DESCRIPTION = Stringy Bark Prospect Time Structure

Map

REMARKS =

DATE\_CREATED = 1/09/89 DATE\_RECEIVED = 24/04/91

 $W_NO = W1041$ 

WELL\_NAME = Stringy bark-1

CONTRACTOR = Crusader resources N.L
CLIENT\_OP\_CO = Crusader resources N.L

This is an enclosure indicator page. The enclosure PE600857 is enclosed within the container PE902058 at this location in this document.

The enclosure PE600857 has the following characteristics:

ITEM\_BARCODE = PE600857
CONTAINER\_BARCODE = PE902058

NAME = Composite Well log

BASIN = OTWAY

PERMIT =

 $\mathtt{TYPE} = \mathtt{WELL}$ 

SUBTYPE = COMPOSITE\_LOG

DESCRIPTION = Composite Well log

REMARKS =

DATE\_CREATED = 26/11/90 DATE\_RECEIVED = 24/04/91

 $W_NO = W1041$ 

WELL\_NAME = Stringy bark-1

CONTRACTOR = Crusader resources N.L
CLIENT\_OP\_CO = Crusader resources N.L

This is an enclosure indicator page. The enclosure PE600858 is enclosed within the container PE902058 at this location in this document.

The enclosure PE600858 has the following characteristics:

ITEM\_BARCODE = PE600858
CONTAINER\_BARCODE = PE902058

NAME = Stringy Bark no 1 Mud Log

BASIN = OTWAY

PERMIT =

TYPE = WELL

SUBTYPE = MUD\_LOG

DESCRIPTION = Stringy Bark no 1 Mud Log

REMARKS =

DATE\_CREATED = 24/11/90 DATE\_RECEIVED = 24/04/91

 $W_NO = W1041$ 

WELL\_NAME = Stringy bark-1 CONTRACTOR = GEARHART PTY LTD

CLIENT\_OP\_CO = CRUSADER RESOURCES NL.

This is an enclosure indicator page. The enclosure PE600859 is enclosed within the container PE902058 at this location in this document.

CLIENT\_OP\_CO = Crusader resources N.L

(Inserted by DNRE - Vic Govt Mines Dept)

ITEM\_BARCODE = PE600859

CONTAINER\_BARCODE = PE902058

NAME = Wellsite Geological Striplog

BASIN = OTWAY

PERMIT =

TYPE = WELL

SUBTYPE = WELL\_LOG

DESCRIPTION = Wellsite Geological Striplog

REMARKS =

DATE\_CREATED = 25/11/90

DATE\_RECEIVED = 24/04/91

W\_NO = W1041

WELL\_NAME = Stringy bark-1

CONTRACTOR = Crusader resources N.L

The enclosure PE600859 has the following characteristics:

Daily Operations
Reports

# APPENDIX 1

DAILY OPERATIONS REPORTS

# CRUSADER RESOURCES N.L.

|     | DAILY DRILLING REPORT                       |                                |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               |                                         |                                          |       |     |       |         |     |         |          |        |      |       |         |
|-----|---------------------------------------------|--------------------------------|-------------|------|-----------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------|-----------------------------------------------|-----------------------------------------|------------------------------------------|-------|-----|-------|---------|-----|---------|----------|--------|------|-------|---------|
| DA. | STR<br>/ ;                                  | 3.                             | <i>[[</i> - | 90   | 2         | 1                                     | DRILLCORP 24 - DEPTH:  DEPTH: |                |                                                  |                                               |                                         |                                          |       |     |       | CASING: |     |         |          |        |      |       |         |
| Α   | TIME<br>STAR                                |                                |             |      | OPI<br>CO |                                       | OPERATIONS FROM 0700 - 0700 hrs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                  |                                               |                                         |                                          |       |     |       |         |     |         |          |        |      |       |         |
|     | 06                                          | ion More Tig outo new location |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               |                                         |                                          |       |     |       |         |     |         |          |        |      |       |         |
|     |                                             |                                |             |      | -         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rie            | <u> </u>                                         | P                                             | 9-                                      |                                          |       |     |       |         |     |         |          |        |      |       |         |
|     |                                             |                                | 23          | ن    | 0         | _ -                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rig            | <del>}                                    </del> | <u>,                                     </u> | Por                                     | J.                                       | Œ     |     | u.Ĉ   | لمدا    | 10  | <br>    | to       | dril   | ) .  | rate  | iole    |
|     | 2300 Of 30 Dell Rathole and Land down power |                                |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               |                                         |                                          |       |     | w & T |         |     |         |          |        |      |       |         |
|     | Ch30 0100 Install Plan line Pick new swice  |                                |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               |                                         |                                          |       |     |       |         |     |         |          |        |      |       |         |
|     | - 41                                        |                                | •           |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rodi           | Pind                                             |                                               | نمث                                     | _<br>a                                   | ecb.  | ناک | کد    |         |     | 2 n     |          | pose   | न १८ | k o   | ud      |
|     |                                             |                                |             |      | -         |                                       | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ielly          | 1                                                | 1C-2                                          | حــــــ                                 |                                          |       |     |       |         |     |         |          |        |      |       |         |
|     |                                             |                                |             |      | -         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               |                                         |                                          |       |     |       |         |     |         |          |        |      |       | ·       |
|     |                                             |                                |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               |                                         | _                                        |       |     |       |         |     |         | -        |        |      |       |         |
| В   | MUD                                         | WT.                            |             |      | VISC      | COSIT                                 | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | A.P                                              | .1.                                           | IONS                                    | Pi                                       | pm    | ٦   |       |         | 1A2 | ΝD      |          | SOLIDS |      | нтнр  |         |
|     | pp                                          | ,                              | MF.         | _    | PV        | YIELD                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GEL            | w.                                               | С                                             | a*+                                     | ĸ٩                                       | + cı. |     | мв    | E       | %   |         | pH<br>—— | *      | OIL  | W.L.  | REMARKS |
| С   | RUN<br>No.                                  | SER                            |             | SIZ  |           | TYPE                                  | Τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                  |                                               | В                                       | 0                                        | ттом  | H   | OLE   |         | 488 | SEI     | MBL,     | Y      | L    | I     |         |
|     |                                             |                                |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               |                                         |                                          |       |     |       |         |     |         |          |        | ,    |       |         |
|     |                                             |                                |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               |                                         |                                          |       |     |       |         |     |         |          |        |      |       |         |
|     | RUN<br>No.                                  | NC                             | OZZLE       | : I  | W.O.B.    | RPM.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VOL<br>gal/min | PRESS.<br>p.s.i.                                 |                                               | PTH ) OUT(                              | m)                                       | TO.   |     | hr.   | Т       | BI  |         | D        |        | RE   | MARKS |         |
|     |                                             |                                |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                          |       |     |       |         |     |         |          |        |      |       |         |
|     |                                             |                                |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               | _                                       | _,                                       |       |     |       |         | -   | -<br> - | _ -      |        |      |       |         |
| D   | INSTE                                       | 1T                             | DEF         |      | INS       | ITION<br>TRU-                         | INCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .IN.           | IMUTH                                            | т                                             | V D                                     |                                          | HORIZ |     |       |         |     |         |          | NATES  |      | DOG   | REMARKS |
|     | TYF                                         | 'E                             | SUR         | IVEY | ME        | NT                                    | N E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                                  |                                               |                                         | DISPLACEMENT N(+) / S(-) E(+) / W(-) LEG |       |     |       |         |     |         |          |        |      |       |         |
|     |                                             |                                |             |      |           | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _              |                                                  | ļ                                             |                                         |                                          |       |     |       |         |     |         |          |        |      |       |         |
| E   | RE                                          | ΜA                             | RKS         | s /  | LIT       | HOL                                   | .og                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y              |                                                  | 1                                             | M                                       |                                          |       |     |       | _       |     |         |          |        |      | A     | 1       |
|     |                                             |                                |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               |                                         |                                          |       |     |       |         |     |         |          |        |      |       |         |
|     |                                             |                                |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               |                                         |                                          |       |     |       |         |     |         |          |        |      |       |         |
|     |                                             |                                |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               |                                         |                                          |       |     |       |         |     |         |          |        |      |       |         |
|     |                                             |                                |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                               |                                         |                                          |       |     |       |         |     |         |          |        |      |       |         |
|     | L                                           |                                |             |      |           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  | •                                             |                                         |                                          |       |     |       |         |     |         |          |        |      |       |         |

|     |                                                    |             |             |                |                  |              |                                         |             | DAII                                               | _Y           | DRILL   | .ING               | REP           | O        | <b>3</b> T . |             |             |          |              |          |
|-----|----------------------------------------------------|-------------|-------------|----------------|------------------|--------------|-----------------------------------------|-------------|----------------------------------------------------|--------------|---------|--------------------|---------------|----------|--------------|-------------|-------------|----------|--------------|----------|
| WEI | L:                                                 | 1           | -           | ادر د          | . !              |              | RIG:                                    |             | ^ 1                                                | ,            | DEPTH:  | 1 "                |               | SU       | PERVIS       | OR:         |             | DAY      | S FROM S     | PUD:     |
| DAT | SIII                                               | 167<br>1 1  | 131         | 11x 16         |                  | —  a         | DEPTH:                                  | COKI        | يخر دا                                             | 4 -          | PROGRES | 17.3<br>is:        | <u>_m</u>     | GE       | OLOGIS       | NiC_        |             | DEF      | PTH LAST     | CASING:  |
|     |                                                    |             |             |                |                  |              |                                         | 1500        | 200                                                |              |         | 173                | <u></u>       | _        | 1.6          | RARR        | iNGEK       |          |              |          |
| Α   |                                                    | ALL<br>RTED | OCA<br>ELAI |                |                  |              |                                         |             |                                                    | _            | ERATIO  |                    |               |          |              |             | hrs.        |          |              |          |
|     |                                                    | 00          | ź           | ) <sub>V</sub> |                  |              | Ma                                      | ke_         | 19:                                                | sit          | Wole t  | d o                | <u>. P</u>    | ιοu      | clin         | ح           |             |          |              |          |
|     | _                                                  | 00<br>00    | £           | 5/             | 2                |              | 0                                       |             | 2 -                                                | bel.         | e of    | <u>د</u> ه<br>رکيا | /_ <u>}</u> r | <b>1</b> |              |             |             |          |              |          |
|     | 15                                                 | 3 <i>C</i>  | 4           | 12:13:         | 2                | -            | <u> برہ</u> ــ                          | 11.         | يعزلت                                              | ച_ന          | L       |                    |               |          |              |             |             |          |              |          |
|     | 20<br>20                                           | .00         | -           | 2.             | 14               | 2- -         | <del></del>                             | <u> </u>    | <u> </u>                                           | SOP          | 1       |                    |               |          |              |             |             | -        |              |          |
|     | 23                                                 | эс<br>30    | 1           | · ·            | 1 1              |              | r                                       | عن ا        | 12+                                                |              |         |                    |               |          |              |             |             |          |              |          |
|     | 00                                                 | 30          | _2          | ١٠٠            | 6                |              |                                         | vî (p       | <u>et 1</u>                                        | ·P.          | to.     | Suzi               | ece_          |          |              |             |             |          |              |          |
|     |                                                    | 30          |             | 12             | 10               | <del>`</del> | Q<br>Q                                  | 2000        | ع <b>7د</b><br>عرب                                 | <u>h</u>     | olo_af  | <u>:7</u>          | can           | •        |              |             |             |          |              |          |
|     | ี 2 5                                              | 20          | 2           |                | 6                |              | - 7                                     | 000         | H                                                  | 23           |         |                    |               |          |              |             | •           |          |              |          |
|     | c T                                                | 00          |             |                |                  | -            |                                         | ,           |                                                    | <del></del>  |         |                    |               |          |              | <del></del> |             |          |              |          |
|     |                                                    |             |             |                |                  |              |                                         |             |                                                    |              |         |                    |               |          |              |             |             |          |              |          |
|     |                                                    |             |             |                | -                | [_           |                                         |             |                                                    |              |         |                    |               |          |              |             |             |          |              |          |
|     |                                                    |             |             |                |                  |              |                                         |             | · - <del>- · · · · · · · · · · · · · · · · ·</del> |              |         |                    |               |          |              |             |             |          |              |          |
|     |                                                    |             |             |                |                  |              |                                         |             |                                                    |              |         |                    |               |          |              |             |             |          |              |          |
|     |                                                    |             |             |                |                  |              |                                         |             |                                                    |              |         |                    |               |          |              |             |             |          |              |          |
|     |                                                    |             |             |                |                  |              |                                         |             |                                                    |              |         |                    |               |          |              |             |             |          |              |          |
| _   | MUD WT. VISCOSITY A.P.I. IONS PPM SAND SOLIDS HTHP |             |             |                |                  |              |                                         |             |                                                    |              |         |                    |               |          |              |             |             |          |              |          |
| В   | MUC                                                |             | MF.         | Т              | <del></del>      | YIELD        | Y<br>T                                  | GEL         | A.P                                                |              | IONS F  |                    | — мв          | E        | SAND<br>%    | ρН          | SOLIDS<br>% | OIL      | HTHP<br>W.L. | REMARKS  |
|     | 9                                                  |             | <u>60</u>   |                | 2                | 16           |                                         | · 2         |                                                    |              | Zez K   | 120                |               | +        | 70           | 10          | 2           |          | W.L.         |          |
|     | RUN                                                | SER         | IAL         | SIZ            | <del></del>      | TYPE         | ·                                       | دعو         |                                                    |              |         | TTOM               |               |          | COE          |             |             | <u> </u> | <u> </u>     |          |
|     | No.                                                | No          | ).<br>      | INCH           | ES               | 1111         |                                         |             |                                                    |              | - BC    |                    |               |          | 1000         | WIDL I      | -           |          |              |          |
|     | 188                                                | EB.         | 1/1         | i2.            | 1 6              | 5136         | 5 5                                     | R:          |                                                    | BIT          | કુપાઉ   |                    | 15.           | 6        | 1 7          |             |             |          |              |          |
|     |                                                    |             |             |                | 7                |              |                                         |             |                                                    |              |         |                    |               |          |              |             |             |          |              |          |
|     | 51.11                                              | -           |             | 1              |                  |              |                                         | VOI         | 22500                                              | Di           | EPTH    | то                 | TAL           | _        | BIT          |             |             |          |              |          |
|     | RUN<br>No.                                         | NO          | )ZZLI       | Εİ             | W.O.B.<br>tonnes | RPM.         |                                         |             | PRESS.                                             |              | OUT(m   |                    | hr.           | T        | <del></del>  |             |             | RE       | MARKS        |          |
|     | 1                                                  | 2.          | طا          | - 1            |                  |              |                                         | <b>2</b> 60 |                                                    |              | 173     | 167                |               |          | 1            |             | <i>i</i> O  |          |              |          |
|     |                                                    | رن          |             |                | 8                | 100          | 10.1                                    | 300         | HOL                                                | -0-          | 175     | 1.0.7              | 1.0.2         | <u> </u> | 13           |             | I C' Ann    | Be       | Z Cinz       | section. |
|     |                                                    |             |             |                |                  |              |                                         |             | ļ                                                  |              | -       | ļ                  |               |          | 11-          |             |             |          |              |          |
| D   | INST                                               |             | DE          | PTH            |                  | ITION        |                                         | A7          | IMUTH                                              | $\top$       |         | HOBIZ              | ONTAL         | Т        | CO           | ORDI        | NATES       |          | DOG          |          |
|     | ME<br>TY                                           |             | l           | RVEY           |                  | TRU-<br>NT   | INCL                                    | .IN.        | V E                                                | ┨ 1          | V D     | l                  |               | $\vdash$ |              |             | E(+) /      | w (–)    | LEG          | REMARKS  |
|     | Tot                                                | 70          | 1,          | 8              |                  |              |                                         |             |                                                    | -            |         |                    |               | +"       | (,,,,        |             |             |          |              |          |
|     |                                                    |             | 12          | ٠.             |                  |              | لــــــــــــــــــــــــــــــــــــــ | <u> </u>    |                                                    |              |         |                    |               |          |              |             |             |          |              |          |
|     |                                                    |             | 17          | 0              | -                |              | C                                       |             |                                                    |              |         |                    |               | +        |              |             |             |          |              |          |
| Е   | D.                                                 | - M A       | BK.         | s /            |                  | HOL          | 0.6                                     |             |                                                    | 1            |         | <u> </u>           |               |          |              |             |             |          |              |          |
|     | - 11                                               | - 141 //    |             |                |                  |              |                                         | -           |                                                    |              |         |                    |               |          |              |             |             |          |              |          |
|     |                                                    | Sili        | 2 7 6       | 1 C R          | <br>E            | Γο           | 5                                       | 30 1        | n                                                  |              | 5.41    | v Ds               |               |          | 6.12         | 17.0        | v æ         | Do       | UNI          | To CLAYS |
|     |                                                    |             |             |                |                  |              |                                         |             |                                                    |              |         |                    |               |          |              |             |             |          |              |          |
|     |                                                    | <u>80</u>   | M           |                | _c               |              | 7                                       | 3 m         |                                                    |              | Fess    | 1611               | TERC          | <u> </u> | 5            | CLI         | 1457        | C .V.    | = <i>A</i>   | ~0       |
|     |                                                    |             |             |                |                  |              |                                         |             |                                                    |              | COG     | UIN                | 1,7.          |          |              |             |             |          |              |          |
|     |                                                    | ·T.         | OP          | 7              | FIF              | Ps.          | (کن                                     | ND          | ,                                                  | < T          | A       | PRI                | ) `\          |          | 80           | m           |             |          |              |          |
|     |                                                    |             | <u></u>     | `              |                  |              |                                         | · 4 4       |                                                    | <del>,</del> | /11     |                    |               |          | <u> </u>     |             |             |          |              |          |

|     |                                                       |            |          |          |              |               |              |                                       | DAII       | LY         | RILL              | ING         | REP     | OF         | RT                |               |             |                   |             |          |
|-----|-------------------------------------------------------|------------|----------|----------|--------------|---------------|--------------|---------------------------------------|------------|------------|-------------------|-------------|---------|------------|-------------------|---------------|-------------|-------------------|-------------|----------|
| WE  |                                                       | -          |          |          | _            |               | ig:          |                                       |            |            | DEPTH:            |             | _       |            | PERVI             |               |             |                   | YS FROM S   |          |
| DA. | 517.                                                  | in'G       | <b>!</b> | RA       | KK           | 1-14          | DEPTH:       | LCORF                                 | الكتر      | ξ          | PROGRES           | 17          | 3       | GE         | _ <i>G</i> .      | <b>/Y</b> //C | OT_         | DE                | PTH LAST    | CASING:  |
| 1   |                                                       |            | 1_       |          |              | `             |              | 500                                   |            |            |                   | 0           |         |            | ۵.                | BAL           | PRIN GE     | $R = \frac{C}{2}$ | 35          | 171m     |
|     | TIME                                                  | ALL        | OCA      | TIOI     | N OPI        | ER.           |              |                                       |            | OBS        | DATI              | ONC D       | POM     | 07         | 00.               | . 070         | 0 hrs.      |                   | <u> </u>    |          |
| 1   | STAR                                                  |            | ELA      |          |              |               | 0            |                                       |            |            |                   |             |         | -          |                   | 070           | 0 111 5.    |                   |             |          |
|     | r7                                                    | _          |          | 2        |              | 2             | _            | Guf                                   | <u> </u>   |            |                   | ucjoo       | ent     | •          |                   |               |             |                   | <del></del> |          |
|     | 10                                                    | 30_<br>20_ | =        | <b>5</b> | 1 2          | 2             | _K           | 10/0                                  | 9 3 ×      |            |                   | urtun       | O a     |            | F                 | •             | head        |                   |             |          |
| 1   | 12                                                    |            | í        | ربحت     | <del>*</del> |               | - Ci         | Fril                                  |            | 20         |                   | CCD.        |         |            |                   | 7             | AC          |                   |             |          |
|     | 12                                                    |            | ,        | 15       | 1 15         | 2             | H.           | ook .                                 | اح         | 100        |                   | CETT        |         |            |                   | init.         | 900         |                   | Fest.       |          |
|     | 13                                                    | <b>6</b> 6 |          |          | مد           | 2 <u>.</u>    | 8            | se fe                                 | ٠.         | _c:        | nent              | <u>na</u>   | ich.    | <u> </u>   |                   |               | - C.        |                   |             |          |
| l   | ļ                                                     |            |          |          |              | -             |              | 7                                     | _20<br>Les |            | shur.             | 3837        | Sec.    | 9          | <del>हें दे</del> | لديك          | eats        | louie<br>Vie      | 3 6g        | <u>u</u> |
|     | <b> </b>                                              |            |          |          | 1            | 一十            |              |                                       |            | 20<br>O sa | 7. Z.Z.V          | (Pr         | -2:10:X |            |                   | ] F. F.       | 7 3/10      | 1371              | 15 i        | 73 36    |
|     |                                                       |            |          |          |              |               |              |                                       | <u></u>    | H          | 2 i               | CaC         | Ĺ       |            |                   |               |             |                   | -0          |          |
| l   | <u> </u>                                              |            |          |          |              |               |              | •                                     | C          | ១៣៤១       | Fau               | # 29        | JiE1    | <b>7</b> ) | Le.               | Fore          | · Esc       | الحق ا            | mix         | nq -     |
|     | 173                                                   | <u> </u>   | 4        | 1        | 13           | - -           | <u>`</u>     | , 0                                   | <u> </u>   |            |                   |             |         |            |                   |               | <del></del> |                   |             | 7        |
|     |                                                       |            |          |          | _            |               | 5            | lack                                  | 193        | Lanc       | lina              | TF-         | e,      |            | ೯೮೧               | due           | ci          | Lou               | at i        | Landing  |
|     | <u> </u>                                              | . –        |          |          |              |               | jĒ           |                                       | MI         | aska       | 11 21             | Fode        | 2.7     | ho         | ad                |               | weld        | _orz              |             | 7        |
|     | 240                                                   | <b>x</b>   | _6       | 1        | 14           |               | 7            |                                       |            |            |                   |             |         |            |                   |               |             |                   |             |          |
|     | 070                                                   |            | 7        | V        |              | -             | ۲.           | To the                                | to         | 0.4        | 2016              |             | Q.      | -C         |                   | 6             |             |                   | . B.        | F , , ,  |
|     | L 76                                                  |            |          |          |              |               | 5,           | red                                   | halu       |            | 20 6              | asing       | Corr    | 0          | - Ori             | مل            | mud s       | Sign              | ماره        | tu'eco   |
|     |                                                       |            |          |          |              |               | <u> </u>     | Da.                                   | 25.        | b          | as t              | <u> </u>    | erq a   | 20         | c                 | _a_           | doub        | 10                | stud        | adapter  |
|     | différents has to d'organisse a double stud'adopter   |            |          |          |              |               |              |                                       |            |            |                   |             |         |            |                   |               |             |                   |             |          |
| -   | B MUD WT. VISCOSITY A.P.I. IONS PPM SAND SOLIDS HITHP |            |          |          |              |               |              |                                       |            |            |                   |             |         |            |                   |               |             |                   |             |          |
| P   | PPG                                                   |            | MF.      | Т        |              | YIELD         | <del>.</del> | GEL                                   | - \ w.     | <b> </b>   | <del></del>       | ·           | мв      | E          | %<br>%            | ' рн          |             | OIL               | W.L.        | REMARKS  |
| İ   |                                                       |            |          |          |              | TIELD         | -            | GEL                                   |            | L.   Co    | S1 K              | * ci.       |         | _          | <i>7</i> 6        | -             | *           | ļ                 | W.L.        |          |
| -   | S.                                                    | SER        | 40       | SIZ      | 7E           |               | <del></del>  | · · · · · · · · · · · · · · · · · · · | !          |            |                   | <u>l</u>    |         | ㅗ          |                   | Щ_            |             | <u> </u>          | 11          |          |
| C   | No.                                                   | No         |          | NOH      |              | TYPE          |              |                                       |            |            | BC                | NOTTO       | HOL     | ΕA         | SSE               | EMBL          | _Y          |                   |             |          |
|     |                                                       |            |          |          |              |               |              |                                       |            |            |                   |             |         |            |                   |               |             |                   |             |          |
|     |                                                       |            |          |          | -            |               | -            |                                       |            |            |                   |             |         |            |                   |               |             |                   |             |          |
|     |                                                       |            |          |          |              |               | -            |                                       |            |            |                   |             | ····    |            |                   |               |             |                   |             |          |
|     | RUN                                                   |            |          |          | W.O.B.       |               | PPOC         | VOL                                   | PRESS.     | DE         | PTH               | то          | TAL     |            | BIT               |               |             |                   |             |          |
|     | No.                                                   | NO         | OZZLI    | E        |              | RPM.          | 1            | gal/min                               |            | <b> </b>   | OUT(m             | <b>├</b> ── | hr.     | Т          | В                 | Б             |             | RE                | MARKS       |          |
|     |                                                       |            |          |          |              |               |              |                                       |            |            | 1001(111          | 1           |         | <u> </u>   | Ë                 | -             |             |                   |             |          |
| İ   |                                                       |            |          |          |              |               |              |                                       | ļ          |            | <b>-</b>          | <u> </u>    |         |            |                   | $\vdash$      | <del></del> |                   |             |          |
|     |                                                       |            |          |          |              |               |              |                                       |            |            |                   |             |         |            |                   |               |             |                   |             |          |
|     |                                                       |            |          | ·        |              |               |              |                                       |            | ļ          |                   | <u> </u>    |         | _          |                   |               |             |                   |             |          |
| D   | INSTR<br>MEN                                          |            | DE       | PTH      |              | ITION<br>TRU- | INCL         |                                       | IMUTH      | ] ,        | V D               | HORIZ       | ONTAL   | L          | C                 | OORE          | DINATES     | 1                 | DOG         | REMARKS  |
|     | TYP                                                   | E          | SUF      | RVEY     |              | NT            |              |                                       | 1 E        | '          | <b>V</b> <i>D</i> | DISPLA      | CEMEN.  | T N        | (+) /             | s(-)          | E(+) /      | W (-)             | LEG         | TEMATICO |
|     |                                                       |            |          |          |              |               |              |                                       |            |            |                   |             |         |            |                   |               |             |                   |             |          |
|     | ļ                                                     |            | ļ        |          |              |               |              |                                       |            | .          | _                 |             |         | ╄          |                   | un            |             |                   |             |          |
|     | <b></b>                                               |            | <u> </u> | -        | _            |               |              |                                       |            |            |                   |             |         | -          |                   |               |             |                   |             |          |
| F   | D.F.                                                  | 14.4       | <u> </u> | <u> </u> | <del></del>  | U 0 '         |              |                                       |            | 1          |                   | l           |         |            |                   |               |             |                   |             |          |
| E   | KE                                                    | IVI A      | пK       | ა /<br>— | LIT          | пОГ           | .UG          | 1                                     |            |            |                   |             |         |            |                   |               |             |                   |             | ·        |
|     | <u> </u>                                              |            | ···-     |          |              |               |              |                                       |            | <u></u>    |                   |             |         |            |                   |               |             |                   |             |          |
|     | l                                                     |            |          |          |              |               |              |                                       |            |            |                   |             |         |            |                   |               |             |                   |             |          |
|     |                                                       |            |          |          |              |               |              |                                       |            |            |                   |             |         |            |                   |               |             |                   |             |          |
|     | <u> </u>                                              |            |          |          |              |               |              |                                       |            |            |                   |             |         |            |                   |               |             |                   |             |          |
|     | <b>}</b>                                              |            |          |          |              |               |              |                                       |            | •          |                   |             |         |            |                   |               |             |                   |             |          |
|     |                                                       |            |          |          |              |               |              |                                       |            |            |                   |             |         |            |                   |               |             |                   |             |          |
|     |                                                       |            |          |          |              |               |              |                                       |            |            |                   |             |         |            |                   |               |             |                   |             |          |

|                                          | DAILY       | DRILLING REP | ORT          |                    |  |  |  |  |  |  |  |  |  |
|------------------------------------------|-------------|--------------|--------------|--------------------|--|--|--|--|--|--|--|--|--|
| WELL: DEPTH: SUPERVISOR: DAYS FROM SPUD: |             |              |              |                    |  |  |  |  |  |  |  |  |  |
| DATE:                                    | DRILLCORP24 | PROGRESS:    | G NICOT      | DEPTH LAST CASING: |  |  |  |  |  |  |  |  |  |
| 16-11-90                                 | 1500 m      | N!           | D. BARRINGER | <u>95</u> 171m     |  |  |  |  |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                         |        | TIME<br>start |   |     |          |      |                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|---|-----|----------|------|-----------------------------------------------------|
| 16.00   9    21   Wait on adaptor flange While waiting, pressure         test choke manifold, kelly cock, standpipe to 1500pg         and change out swivel.   21.30   5.5   14   Nipple up BOPs   22.00   .5   22   Change out upper kelly cock   22.30   .5   14   Fonction test BOPs |        |               | : |     |          |      | !                                                   |
|                                                                                                                                                                                                                                                                                         | 1 ←    |               |   |     | i        | 21   | Wait on adaptor flange   While waiting.pressure     |
| 21.30   5.5   14   Nipple up BOPs<br>22.00   .5   22   Change out upper kelly cock<br>22.30   .5   14   Fonction test BOPs                                                                                                                                                              |        |               | : |     |          | !    |                                                     |
| 22.30   .5/   14   Fonction test BOPs                                                                                                                                                                                                                                                   | <br>   | 21.30         | 1 | 5.5 | 5 ~      | 1 14 |                                                     |
|                                                                                                                                                                                                                                                                                         | 2      | 22.00         | i |     | 5 6      | 1 22 | ? : Change out upper kelly cock                     |
| 01.00   2.5   15   Make up cup tester and attempt to test.                                                                                                                                                                                                                              | ,<br>L | 22.30         | į | . = | 5 /      | 1 14 | Fonction test BOF's                                 |
|                                                                                                                                                                                                                                                                                         | O      | 00.1          | 1 | 2.5 | <u>ς</u> | 1 15 | ; ! Make up cup tester and attempt to test.         |
| 04.30   3.57   22   Repair BOPs                                                                                                                                                                                                                                                         | ्      | )4.30         | i | 3.5 | 5 ′      | 1 22 | ?   Repair BOPs                                     |
| 06.00   1.5   15   Pressure test pipe rams, hydril, HCRvalve 250 psi                                                                                                                                                                                                                    | C      | 06.00         | i | 1.5 | 5        | 1 15 | 7   Pressure test pipe rams,hydril,HCRvalve 250 psi |
| t tand 1500 psi.OK.                                                                                                                                                                                                                                                                     |        |               | 1 |     | ,        | i i  | land 1500 psi.OK.                                   |
| 07.00 : 1 / 15   Laid down cup tester, pick up kelly, test upper                                                                                                                                                                                                                        | C      | 7.00          | ļ | 1   |          | 1 15 | i   Laid down cup tester, pick up kelly,test upper  |
|                                                                                                                                                                                                                                                                                         | ¥      |               | ! |     |          | 1    | ikelly cock 2000osi.OK.                             |
|                                                                                                                                                                                                                                                                                         | )      |               | : |     |          | į    |                                                     |
|                                                                                                                                                                                                                                                                                         |        |               | 1 |     |          | 1    | •                                                   |
|                                                                                                                                                                                                                                                                                         |        |               |   |     |          | !    | :<br>! .                                            |
|                                                                                                                                                                                                                                                                                         |        |               | 1 |     |          | i    | i<br>!                                              |
|                                                                                                                                                                                                                                                                                         |        |               | 1 |     |          | į.   | i<br>J                                              |

| В | MUD                | WT.       |            | ,     | /ISC             | OSIT                | Υ    |         | A.P.          | .1. 1  | ONS I | pm              | $\Box$ . |      | s    | AND | Ι.  |    | SOLIDS |     | нтнр       | DEMARKS |
|---|--------------------|-----------|------------|-------|------------------|---------------------|------|---------|---------------|--------|-------|-----------------|----------|------|------|-----|-----|----|--------|-----|------------|---------|
|   | pp                 | i         | MF.        | PV    |                  | YIELD               |      | GEL     | W.L           | Ca     | + к   | + ci.           | - ] '    | MBE  |      | %   | pŀ  | 1  | *      | OIL | W.L.       | REMARKS |
|   | જ                  | 5         |            |       |                  |                     |      |         |               | 80     | 7     | 15              | 960      |      |      |     | 10  | 5  |        |     |            |         |
| С | RUN<br>No.         | SER<br>No |            | SIZE  | -                | TYPE                | _    |         |               |        | ВС    | NOTTO           | 1 HC     | DLE  | AS   | SSE | MBI | _Y |        |     | ·          |         |
|   |                    |           |            |       | -                |                     |      |         |               |        |       |                 |          |      |      |     |     |    |        |     |            |         |
|   | RUN                | NO        | DZZLE      |       | <b>О</b> .В.     | IRPM.               |      | l       | PRESS.        |        |       | +               | TAL      |      | _    | ВІТ |     |    |        | RF  | MARKS      |         |
|   | No.                |           |            | 10    | nnes             |                     | m/hr | gal/min | p.s.i.        | IN (m) | OUT(m | ) m             | hi       | r. ' | T    | В   | D   |    |        |     |            |         |
|   |                    |           |            |       |                  |                     |      |         |               |        |       |                 |          |      |      |     |     | -  |        |     |            |         |
| D | INSTI<br>MEI<br>TY | NT        | DEP<br>SUR | 117   | POS<br>INS<br>ME | ITION<br>TRU-<br>NT | INCL | .IN.    | :IMUTH<br>1 E | T١     | / D   | HORIZ<br>DISPLA |          | - 1  | N (- |     |     |    | ATES   |     | DOG<br>LEG | REMARKS |
|   |                    |           |            |       |                  |                     |      |         |               |        |       |                 |          |      |      |     |     |    |        |     |            |         |
|   |                    |           |            |       |                  |                     |      |         |               |        |       |                 |          |      |      |     |     |    |        |     |            |         |
| Ε | RE                 | MA        | RKS        | 3 / L | ITI              | HOL                 | .og  | Υ       |               |        |       |                 |          |      |      |     |     |    |        |     |            |         |
|   |                    |           |            |       |                  |                     |      |         |               |        |       |                 |          |      |      |     |     |    |        |     |            |         |
|   |                    |           |            |       |                  |                     |      |         |               |        |       |                 |          |      |      |     |     |    |        |     |            |         |
|   |                    |           |            |       |                  |                     |      |         |               |        |       |                 |          |      |      |     |     |    |        |     |            |         |
|   |                    | ······    |            |       |                  |                     |      |         |               |        |       |                 |          |      |      |     |     |    |        |     |            |         |

| Г   |                                         | ·        |                |             |             |                 |             |                  | DAI                                   | ΙΥ          | DR     |            | ING            | REP      | 20                                     | RT       |          |                | <del></del>                                      |             |             |
|-----|-----------------------------------------|----------|----------------|-------------|-------------|-----------------|-------------|------------------|---------------------------------------|-------------|--------|------------|----------------|----------|----------------------------------------|----------|----------|----------------|--------------------------------------------------|-------------|-------------|
| WEL |                                         |          |                |             |             |                 | RIG:        |                  |                                       |             | DEPT   |            |                | 1 1      | s                                      | UPERVIS  | -        |                | ı                                                | YS FROM     | SPUD:       |
| l   | SI                                      | RIN      | 64.            | BAG         | 2k          | $L _{\epsilon}$ | DRI         | ILL CO           | RP _                                  | 24.         | 200    | 2256       | 3 5 <u>5</u>   |          |                                        | <u>G</u> | Nec      | OT             | -   <sub>DE</sub>                                | PTH I AST   | CASING:     |
| DAT |                                         | 7.       | 11,_           | 90          | 2           | _ '             | PEPTH       | 150              | 00 m                                  | -           | PHU    |            | 182            | ) ~      | ľ                                      |          | BAR      | RINGE          | <b>Z</b> Z_                                      | 95          | 17/1        |
| A   |                                         |          | OCAT           |             |             |                 |             |                  | · · · · · · · · · · · · · · · · · · · |             | ED A   |            | ONS F          |          | ــــــــــــــــــــــــــــــــــــــ |          |          |                | <u></u>                                          |             | <u> </u>    |
|     | STAR                                    | TED      | ELAP           | SED         | COE         | E               |             |                  |                                       | UP          | ==-    | 111        | JN3 F          | HOW      |                                        | 700 -    | ====     | nrs.           |                                                  |             |             |
| 09  | <br>                                    | ,        | !<br>!         | 2 /         | _           | - 1             | 14          | -,<br>; R        | ig c                                  | lown        | te     | est        | ing            | line     | 25                                     | and      | riç      | g up           | flo                                              | w lir       | 10.         |
| 12  | 2.00                                    | ;        | i              | 3/          |             | 1               | 6           | l M              | ake                                   | up          | nev    | y E        | H.A            | .anc     | 1                                      | run      | in t     | nole.          | Tag                                              | ceme        | ent.        |
|     | 5.00                                    |          | :              | 3 0         |             | :               | 12<br>2     |                  |                                       |             |        |            | ./Sh<br>.e fr  |          |                                        |          |          |                | dit                                              | ionec       | i mud.      |
|     | 3.00<br>7.30                            |          | i<br>i         | 1.5         | 5 ~         | ;               | 8           | D                | rawc                                  | orks        | Œr     | ıo.<br>Igi | ne #           | 2 fa     | ai.                                    | led.     | Pull     | int            | o C                                              | sg to       | repair      |
| 21  | 30                                      | }        | į              | 2′          |             | !               | 2           |                  | rill                                  |             |        |            |                |          |                                        |          |          |                |                                                  |             |             |
|     | 2.00                                    |          | !              | 1 -         | 5 v         | 1               | 10          |                  | un s<br>rill                          |             |        |            | : 254          | m .      |                                        |          |          |                |                                                  |             |             |
|     | 5.00<br>5.30                            |          | į              | Ţ           | 5 ~         | i<br>- !        | 28          |                  |                                       |             |        |            | i.<br>ip ch    | ain.     |                                        |          |          |                |                                                  |             |             |
|     | ).30                                    |          |                |             |             |                 | 2           | : D              | rill                                  | . to        | 30     | )2n        | and            |          |                                        | ulat     | e sa     | ample          |                                                  |             |             |
| 01  | .00                                     | )        | t<br>f         | * 1         |             | 1               |             | ; D              |                                       |             |        |            |                |          |                                        |          |          |                |                                                  |             |             |
|     | 1.30<br>2.30                            |          | !              | 1 /         | 5 V         | 1               | 5           |                  | ircu<br>rill                          |             |        |            | ole.           |          |                                        |          |          |                |                                                  |             |             |
|     | 2.JU<br>5.OC                            |          | i              | 1. 2        |             | :               |             |                  |                                       |             |        |            | iple.          |          |                                        |          |          |                |                                                  |             |             |
|     | 3.30                                    |          | •              |             | 5 🗸         |                 |             | םו               |                                       |             |        |            |                |          |                                        |          |          |                |                                                  |             |             |
|     | 4.00                                    |          | i              |             | 5 ~         |                 |             | :   R            |                                       |             |        |            | pip∈           | lir      | 1 ∈                                    | n        |          |                |                                                  |             |             |
| Q / | 7.00                                    | )        | i              | 3           | ÷           | ì               |             | . į "L           | 'r 111                                | L [         | ه الله |            | ł =            |          |                                        |          |          |                |                                                  |             |             |
|     |                                         |          |                |             |             |                 |             |                  | T                                     | . 1         |        |            |                | <u> </u> | <del>- 1</del>                         |          |          | <b>T</b>       | 1                                                |             |             |
| В   | MUD                                     | F        | MF.            | PV          |             | OSIT'           | Y<br>T      |                  |                                       | `.'         |        | S p        | <del></del>    | мв       | E                                      | SAND     | рН       | SOLIDS         | OIL                                              | нтнр        | REMARKS     |
|     | <b></b>                                 |          | M≠.<br>1_14    | 8           |             | IELD            | 3           | GEL / 7          | w.                                    |             | 40     | K'         | + Ci           |          | _                                      | <u> </u> | 10.5     | *              | ļ                                                | W.L.        | Ocall put L |
| 긁   | RUN                                     | SERI     | _              | SIZE        | T           |                 |             |                  | 0                                     |             | 40     | <u>-</u>   |                |          |                                        | ,75      | <u> </u> | <del></del>    | <u> </u>                                         | 1           | c.e men     |
| С   | No.                                     | No       |                | NCHES       |             | TYPE            |             |                  |                                       |             |        | ВО         | MOTT           | HOLI     | Ε,                                     | ASSE     | MBLY     | <u></u>        |                                                  |             |             |
|     | 9                                       | .1       |                | <i>.</i>    | . -         |                 | _ -         | <u> </u>         |                                       |             |        |            |                |          | 1                                      |          |          | 1              |                                                  | . ,,        | /1          |
|     | 2_                                      | NGLL     | 457            | <u>ک</u> ۔۔ | 4           | 310             |             | — <b>ਨ</b> ।     | Γ                                     | <u> ۲</u> ٬ | رک     | 18         | -2             | x 6      | <b>-</b>                               | DC_      | . 8      | <del>≅</del> ≥ | TAE                                              | 16          | x6 LDC.     |
|     |                                         |          |                |             |             |                 |             |                  |                                       |             |        |            |                |          |                                        |          |          |                |                                                  |             |             |
|     | RUN                                     |          |                | w.          | О.В.        |                 | PROG        | VOL              | PRESS                                 | . D         | EPTH   |            | то             | ΓAL      |                                        | BIT      |          |                |                                                  |             |             |
|     | No.                                     | NC       | ZZLE           | 10          | nnes        | RPM.            | m/hr        | gal/min          | p.s.i.                                | IN (n       | ı) OU  | T(m)       | m              | hr.      | Т                                      | В        | D        |                | RE                                               | MARKS       |             |
| ı   |                                         |          |                | - 2         | 5           | <b>8</b> 0      | 201         |                  | 1                                     | T           | +      |            |                | (8)      |                                        | +-+      | 1/       | ) mn           | 100                                              | nnec        | tion        |
|     | 2                                       | 3,       | 41             |             |             | 100             |             | 220              | 500                                   | 173         |        | V          | 182            | 12       |                                        |          |          | Orill a        | uF                                               | CLM         | , ,         |
|     |                                         |          |                | _           |             |                 |             |                  | ļ                                     |             | -      |            |                |          |                                        | -        |          |                |                                                  | <del></del> |             |
| 긁   | INSTR                                   | 3U-      |                |             | POSI        | TION            |             | <del>-   .</del> | 71141 1711                            | +           |        | I          |                |          | $\top$                                 |          | OBS      | NATES          |                                                  |             |             |
| D   | MEN                                     | ١T       | DEP            | IH          | INST<br>MEN | RU-             | INC         | LIN.             | ZIMUTH                                | -           | v D    |            | HORIZ          |          | _                                      |          |          |                |                                                  | DOG         | REMARKS     |
|     | 111                                     | -        | JUH            | V = T       | IAIEI       | *'              | <b></b>     |                  | N E                                   | -           |        | _          | DISPLAC        | PEMEN.   | 11                                     | (+) /    | s(-)     | E(+) /         | W (-)                                            | LEG         |             |
|     | سو سهد                                  |          | 2"             | -           |             |                 | 1           | _                |                                       | -           |        |            |                |          | +                                      |          |          |                |                                                  |             | -           |
| ı   | TOTO                                    | <i>U</i> | ~ <del>.</del> | 14-         |             |                 | 4           | <b>r</b> - -     |                                       | 1-          |        |            |                |          | - -                                    |          |          |                |                                                  |             |             |
| _   | *************************************** |          |                |             |             |                 |             |                  |                                       |             |        |            |                |          |                                        |          |          |                |                                                  |             |             |
| Е   | RE                                      | МА       | RKS            | / L         | .ITF        | HOL             | OG          | iΥ               |                                       |             |        |            |                |          |                                        |          |          |                |                                                  |             |             |
|     |                                         | 7 3      | 3 -            | 37-         | 7.          | _ (             | r-if        | pelo             | end                                   | L.          | en     | es         | ton            | e        | -                                      | Congs    | toch     | ne.            | 7                                                | one         |             |
|     |                                         |          |                |             |             | #               | . /         | 0                | cco                                   | sse         | in     | عو         | lly            | 20       | F                                      | ? Al     | ich      | ene)           |                                                  | gila        | eorg        |
|     |                                         |          | · · · · · · ·  |             |             |                 |             |                  |                                       |             |        |            | J              |          |                                        |          | ···      |                |                                                  | <u> </u>    |             |
|     | 31                                      | 7 .      | - 3            | 55          |             |                 | V.          | eny              | Gal                                   |             | ــدف   | <u> </u>   | $\overline{c}$ | lous     | sl                                     | פייני    | (m       | our            | )                                                | sti.        | ihu         |
|     |                                         |          |                |             |             |                 |             | Ja               | 0 6 1                                 | <u> </u>    |        | <u> J</u>  |                | - 1      |                                        | - ~      |          |                | <del>/                                    </del> |             | J           |
|     |                                         |          |                |             |             |                 |             |                  |                                       |             |        |            |                |          |                                        | -        |          |                |                                                  |             |             |
|     |                                         |          |                |             |             |                 | <del></del> |                  |                                       |             |        |            |                |          |                                        |          |          |                |                                                  |             |             |

|                                         | DAILY                             | DRILLING REP            | ORT                                          |                                                |
|-----------------------------------------|-----------------------------------|-------------------------|----------------------------------------------|------------------------------------------------|
| WELL: STRINGY BARK I DATE: 18 - NOV. 90 | BRILL CORP 24<br>DEPTH:<br>1500 M | 375 m<br>PROGRESS: 20 m | SUPERVISOR:  GNICOT  GEOLOGIST:  D. BARRAGER | DAYS FROM SPUD:  5 DEPTH LAST CASING: 95/8 171 |
| A TIME ALLOCATION OPER.                 | ОР                                | PERATIONS FROM          | 0700 - 0700 hrs.                             |                                                |

|       |          | CATION : |    |        | OPERATIONS FROM 0700 - 0700hrs                   |
|-------|----------|----------|----|--------|--------------------------------------------------|
| 10.30 | i<br>i   | 3.5 /    | 2  | !!!!   | Drill from 355 to374m.Drilling break.Flow check. |
|       | i        | 1        |    | i      | drill to 315m.                                   |
| 11.00 | i        |          |    |        | Circulate sample.                                |
| 13.30 | i        | 2.5 4    | 6  | i      | Wiper trip to Csg shoe.Overpulled 10 to 200001bs |
|       | į        | ;<br>;   |    |        | from 365 to 320. RHI OK.                         |
| 14.30 | į        | 1 🗸      | 5  | į      | Circulate and increase mud Wt to 9.2ppg.         |
|       |          |          |    |        | FOOH.No drag.                                    |
| 18.30 | 1        |          |    |        | Make up DST tool #1.                             |
| 19.30 | •        |          |    |        | RIH to Csg shoe.                                 |
| 03.00 | i        |          |    |        | Wait on day light.                               |
| 03.30 | í        |          |    |        |                                                  |
| 04.30 | i<br>!   | 1        | 16 | i      | Hook up testing head and lines; test 1500psi     |
| 07.00 | <u> </u> | 2.5 %    | 16 | 4      | Performed DST#1.Conventinal off bottom.          |
|       | į        | :        |    | i      | Intervall 363-375m.                              |
|       | i<br>j   | į        |    | į<br>į |                                                  |
|       | ;        |          |    | i      |                                                  |
|       |          | !        |    |        | •                                                |

|   | 9.2 46 13           |             |       | v           | YIELD  |                     | GEL      | W.L     | Ca           | ++ K   | + ci. | МВ    | E              | %   | pΗ   | *      | OIL            | W.L. | REMARKS    |         |
|---|---------------------|-------------|-------|-------------|--------|---------------------|----------|---------|--------------|--------|-------|-------|----------------|-----|------|--------|----------------|------|------------|---------|
|   | 9.                  | 2           | 46    | 1           | 3      | 18                  | ē        | 3/6     | 6.           | 6 10   | 20    | 200   | 00 It          | 5   | • 75 | 10.5   | 2.5            |      |            |         |
| С | RUN<br>No.          | SER<br>No   |       | SIZE        |        | TYPE                |          |         |              |        | во    | TTOM  | HOL            | E A | ASSE | MBL)   | ′              |      |            |         |
|   | 2                   | NGU         | 4.57  | 8.          | 5 5    | 316                 | <b>3</b> | BIT     | . Bi         | TSU    | B.    | 2 x 6 | ۷ بُرُ         | ۲_  | 57   | AB.    | 16 ×           | 6%   | DC         |         |
|   | RUN                 |             | ·     | V           | V.O.B. |                     | PROG     | VOL     | PRESS.       | DEI    | РТН   | то    | TAL            |     | BIT  |        |                |      |            |         |
|   | No.                 | NC          | OZZLI |             | onnes  | RPM.                | m/hr     | gal/min | p.s.i.       | IN (m) | OUT(m | m     | hr.            | Т   | В    | D      |                | RE   | MARKS      |         |
|   | 2                   | 2 3 = 11 23 |       |             |        |                     | 15.5     | 220     | 600          | 173    | 375   | 202   | 16             | 1   | 1    | 2   ير | rage           | and  | each       | cone    |
|   |                     |             |       | -           |        | ļ                   |          |         |              |        | -     |       |                |     |      |        | التراف         | a F  | Tat 9      | Foce.   |
| D | INSTI<br>MEI<br>TYI | NT          | 1     | PTH<br>RVEY | INS    | ITION<br>TRU-<br>NT | INCL     | .IN     | IMUTH<br>I E | Τ'     | V D   |       | ONTAL<br>CEMEN | -   |      |        | NATES<br>E(+)/ |      | DOG<br>LEG | REMARKS |
|   |                     |             |       |             |        |                     |          |         |              |        | -     |       |                |     |      |        |                |      |            |         |
| E | RE                  | MA          | RK:   | s/          | LIT    | HOL                 | .og      | Υ       |              | j      |       |       |                |     |      |        |                |      |            |         |
|   |                     |             |       |             |        |                     |          |         |              |        |       |       |                |     |      |        |                |      |            |         |
|   |                     |             |       |             |        |                     |          |         |              | •      |       |       |                |     |      |        |                |      |            |         |
|   |                     |             |       |             |        |                     |          |         |              |        |       |       |                |     |      |        |                |      |            |         |
|   |                     |             |       |             |        |                     |          |         |              | •      |       |       |                |     |      |        |                |      |            |         |

|    |                                      |                            |                                         |                                         |              |                         |                    |                | DAIL                                   | _Y [                              | DRILL                               | ING                         | REP            | OF        | RT .             |                |                |       |              |         |
|----|--------------------------------------|----------------------------|-----------------------------------------|-----------------------------------------|--------------|-------------------------|--------------------|----------------|----------------------------------------|-----------------------------------|-------------------------------------|-----------------------------|----------------|-----------|------------------|----------------|----------------|-------|--------------|---------|
| DA | TE:                                  |                            | 16Y<br>1/ .                             |                                         | ARX<br>O     |                         | RIG:<br>DEPTH      | 150            | RP<br>Om                               | 24                                | PROGRES                             | 62<br>252                   | 7 m<br>3m      | GE        | PERVIS<br>OLOGIS | N/C            | COT<br>RINGEI  | DEF   | PTH LAST     |         |
| A  | TIME                                 |                            |                                         |                                         |              | 1                       |                    |                |                                        | OP                                | RATIO                               | ONS F                       | ROM            | 07        | 00 -             | 0700           | hrs.           |       |              |         |
| -  | TIM:                                 |                            |                                         |                                         |              |                         |                    |                | Of                                     | PERA                              | NOIT                                | S FR                        | OM O           | 70        | 0 -              | 070            | Ohrs           |       |              | -       |
|    | 07.3<br>10.0<br>12.0<br>14.3<br>16.0 | 00<br>00<br>30<br>00<br>30 | 1                                       | *************************************** | 1.5          | 5 / 1<br>5 / 1<br>5 / 1 | 16<br>6<br>16<br>2 |                | -00H<br>_aid<br>Make<br>Dril:<br>Run : | .Cha<br>dow<br>up<br>l fr<br>surv | in o<br>n DS<br>bit#<br>om 3<br>ev. | ut.<br>Ttoo<br>3 an<br>75 t | l.<br>d RI     | Н.        | ack:             | er l           | oose           | at    | 07.3         | 7.      |
|    | 23.3<br>24.6<br>07.6                 | 00                         | i                                       |                                         | 7<br>.5<br>7 | 5 - 1                   | 1(                 | ) ( )          | ∹un :                                  | surv                              | ) 528<br>'ey.<br>) 627              |                             |                |           |                  |                |                |       |              |         |
|    |                                      |                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                         |              | 1                       |                    | :              |                                        |                                   |                                     |                             |                |           |                  |                |                |       |              |         |
|    | <u></u>                              | ļ                          | -                                       |                                         |              | :<br>:                  |                    | :              |                                        |                                   |                                     |                             |                |           |                  |                |                |       |              |         |
| В  | MUD<br>ppg                           | 1                          | MF.                                     |                                         | VISC<br>PV   | YIELD                   | Y =                | GEL            | A.P<br>W.I                             | с                                 | 10NS 1                              | ·                           |                |           | SAND<br>%        | рН<br><u>9</u> | solids<br>%    | OIL   | HTHP<br>W.L. | REMARKS |
| С  |                                      | SER                        |                                         | SIZ                                     |              | TYPE                    |                    | ) / 0          |                                        |                                   | ~                                   | TTOM                        |                | E A       |                  |                |                |       | <u> </u>     | :       |
|    |                                      |                            | 803                                     |                                         |              | 19130                   | 6                  | BIT            | . Bi                                   | TS                                | เกษ                                 | 2                           | х <i>6</i> ;   | Dc        |                  | TAG            | 1. 16          | ×     | 540          | C       |
|    | RUN<br>No.                           | NC                         | DZZLE                                   | E                                       | W.O.B.       | RPM.                    |                    | VOL<br>gal/min | PRESS.<br>p.s.i.                       | <del></del>                       | PTH<br>OUT(m                        |                             | hr.            | Т         | ВІТ              | D              |                | RE    | MARKS        |         |
|    | 3                                    | 3×                         | - ()                                    |                                         | 0            | 80<br>100               |                    | 220            | 600                                    | 375                               | 1~                                  | 252                         | (7)<br>][      |           |                  | -              |                |       |              |         |
| D  | INSTE<br>MEN<br>TYP                  | IT                         | DEF<br>SUR                              | RVEY                                    | INS          | ITION<br>TRU-<br>NT     | INCL               | .IN. <b> </b>  | IMUTH                                  | т                                 | V D                                 |                             | ONTAL<br>CEMEN |           |                  | <del> </del>   | NATES<br>E(+)/ | w (—) | DOG<br>LEG   | REMARKS |
|    | Toto                                 | 0                          | 5.                                      |                                         |              |                         | 4                  | -<br>-<br>1    |                                        |                                   | -                                   |                             |                |           |                  |                |                |       |              |         |
| Ε  | RE                                   | МΑ                         | RKS                                     | S /                                     | LIT          | HOL                     | OG                 | Υ              |                                        |                                   |                                     |                             |                | -         |                  |                |                |       |              |         |
|    |                                      |                            |                                         |                                         | -05          |                         |                    | 00 9           |                                        | om                                |                                     |                             | oce            |           | ,                |                | _ 0            |       |              |         |
|    |                                      |                            |                                         | 5                                       | -6 c         | m                       |                    | 80 8           | <u> </u>                               | lou                               | 1 <sub>d</sub>                      | , 15                        | 20             | co.<br>Lo |                  | 7              | -08<br>58      | to    | and al       |         |
|    |                                      | 5 3 ·                      | S -<br>7 -                              |                                         | 537<br>562   | m                       |                    | /00            | ryst                                   | one                               | /sil                                | tston                       | ě (?           | V         | L'e              | oin            | نده)           |       |              |         |
|    |                                      |                            | 2 -                                     | •                                       | 60           | 5 m                     |                    | 50<br>80       | 3 c                                    | Long                              | id                                  | 20                          |                | o-oc      | l,               | 20             | 2 4            | ear   | nd           |         |
|    | <u> </u>                             |                            |                                         |                                         |              |                         |                    |                |                                        |                                   |                                     |                             |                |           |                  |                |                |       |              |         |

|                                         |                                                      |                  |       |                |                           |                      |                                         | DAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y D                                         | RILL                                               | ING                                   | REP                                 | ORT                             | •                    |                   |                                       |           |                 |                              |
|-----------------------------------------|------------------------------------------------------|------------------|-------|----------------|---------------------------|----------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|---------------------------------------|-------------------------------------|---------------------------------|----------------------|-------------------|---------------------------------------|-----------|-----------------|------------------------------|
|                                         | ST                                                   | 814              | £ 46  | 3ARV           | <#1                       | RIG:<br>DRI<br>DEPTH | LL C O F<br>1500                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74_ F                                       | PROGRES                                            | 89 <i>2</i><br>262                    | 5 m                                 | SUPER<br>GEOLO                  | . A                  | 11c               | OT<br>GER                             | DEF       | TH LAST         |                              |
|                                         |                                                      |                  |       |                | N I                       |                      |                                         | OPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RATI                                        | ONS                                                | FROM                                  | 070                                 | 00 -                            | 07                   | ooh               | rs                                    | _         |                 |                              |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3.30<br>7.00<br>7.30<br>0.30<br>1.30<br>2.30<br>2.00 |                  |       | .5 1 V 1 V 5 v | !                         | 52<br>5<br>2527      | l c:<br>l Ind<br>l be<br>l Dr:<br>l Tro | culation of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cult of the cu | ate to 6 lati se m nite to 6 e on to 7 rvic | to c<br>44m.<br>on.w<br>ud w<br>51m<br>con<br>17m. | ondi<br>Hole<br>Jork<br>Jgt a<br>circ | tior<br>cav<br>pipe<br>nd Y<br>ulat | n muc<br>/ing<br>/ielc<br>/ielc | in<br>gai<br>p<br>an | n c<br>oin<br>d r | ircul<br>t usi<br>eamin               | ati<br>ng | ion;p<br>salt   |                              |
| O:<br>O:                                | 3.00<br>4.00<br>4.30<br>7.00                         | )<br>)<br>)      |       | 1,5            |                           | 8<br>2<br>8          | Rep<br>Dr:<br>Rep<br>Dr:                | oair<br>ill '<br>pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kel<br>to 8<br>dru                          | ly c<br>49m.<br>m cl                               | ock.<br>utch                          | •                                   |                                 |                      | NEW AND STATES    |                                       |           |                 |                              |
| В                                       | PI                                                   | O WT.            | MF.   | PV             | YIELI                     | )                    | GEL.                                    | A.P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ca                                          |                                                    | + ci.                                 |                                     | %                               |                      | рН                | *                                     | OIL       | H T H P<br>W.L. | REMARKS                      |
| C                                       | RUN<br>No.                                           | لصتب             |       | SIZE<br>NCHES  | 14<br>TYP                 |                      | 4/7                                     | 7. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3   16                                      |                                                    | V <i>oo</i>                           |                                     |                                 |                      | و<br>BLY          | 3.5                                   |           |                 |                              |
|                                         | 3                                                    |                  |       |                | HPE                       | 3 G                  | <i>ا</i> ز ک                            | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IT SI                                       |                                                    | 2 × (                                 | , r v                               |                                 |                      | AB                | · · · · · · · · · · · · · · · · · · · | × é       | 3 24 - 3        | )c                           |
|                                         | RUN<br>No.                                           | No               | OZZLE | toni           | nes RPM                   | m/hr                 | VOL<br>gal/min                          | PRESS.<br>p.s.i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | OUT(m                                              |                                       | hr.                                 | T E                             |                      |                   |                                       | RE        | MARKS           |                              |
|                                         | 3                                                    | 3                | × []  | 14             |                           |                      | 220                                     | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>37</i> 5                                 | /N_                                                | 520                                   |                                     |                                 | +                    | -                 |                                       |           |                 |                              |
| D                                       | ME                                                   | BU~<br>NT<br>'PE | DEP   | 'IH   II       | OSITIOI<br>NSTRU-<br>MENT |                      | LIN.                                    | IMUTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T۱                                          | V D                                                | HORIZ<br>DISPLA                       | ONTAL                               | _                               |                      |                   | NATES<br>E(+)/W                       | (-)       | DOG<br>LEG      | REMARKS                      |
|                                         | Z                                                    | _                | No    | NE             |                           |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                    |                                       |                                     |                                 |                      |                   |                                       |           |                 | HOLE NOT<br>STABLE<br>ENOUGH |
| E                                       | R                                                    | ЕΜА              | RKS   | 3 / LI         | тно                       | LOG                  | Υ                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                    |                                       |                                     |                                 |                      |                   |                                       |           |                 |                              |
|                                         |                                                      |                  |       |                |                           |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                    |                                       |                                     |                                 |                      |                   |                                       |           |                 |                              |
|                                         |                                                      |                  |       |                |                           |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                    |                                       |                                     |                                 |                      |                   |                                       |           |                 |                              |
| l                                       |                                                      |                  |       |                |                           |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                           |                                                    |                                       |                                     |                                 |                      |                   |                                       |           |                 |                              |
|                                         | <u> </u>                                             |                  |       |                |                           |                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                    |                                       |                                     |                                 |                      |                   |                                       |           |                 |                              |

| Γ        |                                                                      |                                        |             |                                         |                |                     |                      |                   | DAIL                                                                       | Υ [                                      | RILL                                            | ING                                               | REP                                        | OF              | ₹T    |           |             |      |                  |         |
|----------|----------------------------------------------------------------------|----------------------------------------|-------------|-----------------------------------------|----------------|---------------------|----------------------|-------------------|----------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------------------|-----------------|-------|-----------|-------------|------|------------------|---------|
| WE<br>DA |                                                                      | .11.<br>3140                           | , Y .<br>9  | o<br>Bar                                | ?K.            |                     | IIG:<br>DRI<br>EPTH: |                   | RP &                                                                       | 24                                       | PROGRES                                         | 94<br>s: 45                                       |                                            | GE              | DLOGI | NI<br>ST: | COT         | DEP  | TH LAST          | 3       |
|          |                                                                      | E AL                                   |             |                                         |                |                     |                      |                   | OP                                                                         | ERA                                      | TIONS                                           | S FRC                                             | )M 07                                      | 700             | )     | 070       | Ohrs        |      |                  | •       |
| 1        | 12.3<br>14.3                                                         |                                        | :<br>:<br>: |                                         | .5             |                     | 2<br>6               | i T               | ight                                                                       | COL                                      |                                                 | ion;                                              |                                            |                 |       | <br>ip 5  | Stds        | .0v  | erpul            | led     |
|          | 15.3<br>16.0<br>19.0<br>20.0<br>21.3<br>23.0<br>24.0<br>25.3<br>06.3 | 00<br>00<br>00<br>00<br>00<br>00<br>00 |             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | .55 3          |                     | 2 8 2<br>5           | R R D C W D R D C | edai<br>IH t<br>eam<br>rill<br>ircu<br>ork<br>rill<br>epai<br>rill<br>ircu | r ro o 87 from to late tigh to r ro late | n 878<br>923n<br>∍ san<br>nt ho<br>927n<br>otar | / sha  m to n.Dri nples ole a n. / sha n.rot toms | 916<br>llir<br>it 92<br>ift.<br>ary<br>up. | ig<br>25m<br>sh | bre   |           | :.          | aga  | in.              | •       |
| В        | MUD                                                                  | -                                      | MF.         | P                                       |                | OSIT                | y<br>                | GEL               | A.P.                                                                       | ·-                                       | IONS (                                          | ·                                                 | мв                                         | ES              | AND   | рН        | SOLIDS<br>% | OIL  | HTHP<br>W.L.     | REMARKS |
| L        | 9.                                                                   | L <sub>1</sub>                         | 45          | SIZE                                    |                | 16                  |                      | 114               | 6                                                                          | 1                                        | 60                                              | 92                                                |                                            |                 | 1     | و         | 2.5         |      |                  |         |
| С        | No.                                                                  | No.                                    | $\dashv$    | NCHES                                   | 3              | TYPE                | +                    | BIT.              | . <u>e</u> n                                                               | r si                                     | -                                               | TTOM                                              |                                            |                 |       | · ·       |             | 6,   | - 6 <del>1</del> | D C-    |
|          | RUN<br>No.                                                           | NO                                     | ZZLE        | :                                       | /.O.B.         | RPM.                | m/hr                 | gal/min           |                                                                            | IN (m)                                   | PTH<br>OUT(m                                    | <del> </del>                                      | TAL                                        | T               | ВІТ   | D         |             | RE   | MARKS            |         |
|          | 3                                                                    | _3                                     | ×           | مُ                                      | 15<br>20<br>25 | 90<br>1∞            | 17. <b>\$</b> j      |                   | 750<br>950                                                                 | 375                                      |                                                 | 565                                               | 42.5                                       |                 |       |           |             |      |                  |         |
| D        | INSTI<br>MEI<br>TYI                                                  | NT                                     | DEP<br>SUR  |                                         |                | ITION<br>TRU-<br>NT | INCL                 | .IN.              | IMUTH                                                                      | Т                                        | V D                                             | ŀ                                                 | ONTAL<br>CEMEN                             | T N (           |       |           | E(+) / \    | w () | DOG<br>LEG       | REMARKS |
|          |                                                                      |                                        |             |                                         |                |                     |                      |                   |                                                                            |                                          |                                                 |                                                   |                                            |                 |       |           |             |      |                  |         |
| E        | RE                                                                   | MAF                                    | RKS         | 5 / I                                   | LIT            | HOL                 | .og                  | Υ                 |                                                                            | -                                        |                                                 |                                                   |                                            |                 | •     |           |             |      |                  |         |
|          |                                                                      |                                        |             |                                         |                |                     |                      |                   |                                                                            |                                          |                                                 |                                                   |                                            |                 |       |           |             |      |                  |         |
|          |                                                                      |                                        |             |                                         |                |                     |                      |                   |                                                                            |                                          |                                                 |                                                   |                                            |                 |       |           |             |      |                  |         |
|          |                                                                      |                                        |             |                                         |                |                     |                      |                   |                                                                            |                                          |                                                 |                                                   |                                            |                 |       |           |             |      |                  |         |
|          |                                                                      |                                        |             |                                         |                |                     |                      |                   |                                                                            |                                          |                                                 |                                                   |                                            |                 |       |           |             |      |                  |         |
|          | <b> </b>                                                             |                                        |             |                                         |                |                     |                      |                   |                                                                            |                                          |                                                 |                                                   |                                            |                 |       |           |             | ,    |                  |         |

| Γ             |              |                                         |                            |            |              |                           |                                                    |               | DAIL                           | Y D                                | RILL                                      | ING                                              | REP                                       | OR'                                | T                  |             |                |              |                       |              |
|---------------|--------------|-----------------------------------------|----------------------------|------------|--------------|---------------------------|----------------------------------------------------|---------------|--------------------------------|------------------------------------|-------------------------------------------|--------------------------------------------------|-------------------------------------------|------------------------------------|--------------------|-------------|----------------|--------------|-----------------------|--------------|
| l             |              | STR                                     |                            |            |              | k#l                       | RIG:<br>DEPTH                                      |               | 0RP 2                          | 4- P                               | ROGRES                                    | 9.44<br>4 °                                      |                                           | GEOL                               | N<br>LOGIST        | I Cc        | NGER           | DEF          | YS FROM S  PTH LAST C |              |
|               |              |                                         |                            |            | CATI<br>laps |                           | : OF                                               |               | OPI                            | ERAT                               | IONS                                      | S FRO                                            | -<br>IM 07                                | 700                                |                    | 0700        | hrs            |              |                       |              |
|               | 1 2 0 0 0    | 7.3<br>2.3<br>23.3<br>3.3<br>4.3<br>5.3 | (0<br>(0<br>(0<br>(0<br>(0 |            |              | V<br>V                    | <br>  8<br>  6<br>  8<br>  3<br>  10<br>  6<br>  2 |               | Wait<br>Run i<br>Ream<br>Run s | tigh on r n ho last urve anic ect. | t ho<br>otar<br>le v<br>9m<br>y at<br>887 | ole f<br>y sh<br>with<br>and<br>: 934<br>m).r    | rom<br>aft.<br>bit<br>circ<br>m.=<br>un s | 922<br>#4.<br>:ula<br>:ula<br>:ur\ | ate<br>1/4<br>/ey: | .Ful        | ll tc          | 88 :         |                       |              |
| D   ""00 " 1" |              |                                         |                            |            |              |                           |                                                    | A.P.<br>. W.L | ·                              | ONS a                              |                                           | мв                                               | Εĺ                                        | AND                                | рН                 | SOLIDS      | OIL            | HTHP<br>W.L. | REMARKS               |              |
| İ             | ŀ            |                                         | <u>'</u>                   | MF.        |              | YIEL                      |                                                    | GEL<br>/      | 18 6.1                         |                                    |                                           | + ci.=                                           | 1                                         |                                    | %<br>25            | ٠٩          | 3              |              | W.L.                  |              |
|               | 1            | RUN<br>No.                              | SERI                       | IAL        | SIZE         | TYF                       |                                                    |               | 70 100                         | 21.0                               |                                           | TTOM                                             |                                           |                                    |                    | MBLY        | <u> </u>       |              |                       |              |
|               |              |                                         |                            | +          | 85           |                           | 36                                                 | B             | IT. BI                         | T 511                              | ıВ.,                                      | 2×6                                              | 1 I                                       | ) <u> </u>                         | ح ح                | TAB         | 3_/6           | 5×6          | 4-DC                  |              |
|               |              | 4                                       |                            |            | 8支           | HPIE                      | 36                                                 | 1             |                                |                                    |                                           |                                                  | ······                                    |                                    |                    | · 1 · · · · |                |              |                       |              |
|               |              | RUN                                     | NC                         | OZZLE      | :            | 0.В.<br>R Р               | M                                                  | VOL<br>gal/r  |                                |                                    | TH                                        | <del> </del>                                     | TAL                                       |                                    | BIT                | _           |                | RE           | EMARKS                |              |
| 1             | ł            | No.                                     |                            |            |              | nes<br>5 9                | ,                                                  | <u> </u>      |                                |                                    | OUT(m                                     | <del>                                     </del> | hr.<br>(10)                               |                                    |                    | D           | -              |              |                       |              |
|               |              | 3                                       | 3:                         |            | _2           | 0                         | 15,0                                               | 25            | 0 950                          | 375                                | 940                                       | 565                                              | 473                                       | 5                                  | 3 -                | 1 -         |                |              |                       |              |
| L             |              | 4                                       | _ð.:<br>                   | x 11       |              | 5_10                      | σ. <u> </u>                                        | , u           |                                |                                    |                                           |                                                  | •                                         |                                    |                    |             |                |              |                       |              |
|               |              | INSTE<br>MEN<br>TYF                     | NT                         | DEF<br>SUR | ''"  :       | POSITIO<br>INSTRU<br>MENT | -   INC                                            | LIN.          | AZIMUTH<br>N E                 | T                                  | V D                                       | 1                                                | ONTAL<br>CEMENT                           | N (+                               |                    |             | NATES<br>E(+)/ |              | DOG<br>LEG            | REMARKS      |
|               |              | TOTO                                    |                            | 95         | 13           |                           | 2                                                  | 打             |                                |                                    |                                           |                                                  |                                           | -                                  | _ <del></del>      |             |                |              |                       | WIRE<br>LINE |
|               |              |                                         |                            | 85         | 30           |                           |                                                    |               |                                |                                    |                                           |                                                  |                                           |                                    |                    |             |                |              |                       |              |
| E             | <del> </del> | RE                                      | MA                         | RKS        | <br>3 / L    | ITHC                      | LOG                                                | Y             |                                | <u> </u>                           |                                           | <u> </u>                                         |                                           |                                    |                    |             |                |              | <u> </u>              |              |
| 1             | -            |                                         |                            |            |              |                           |                                                    |               |                                |                                    |                                           |                                                  |                                           |                                    |                    |             |                |              |                       |              |
|               |              |                                         |                            |            |              |                           |                                                    |               |                                |                                    |                                           |                                                  |                                           |                                    |                    |             |                |              |                       |              |
|               |              |                                         |                            |            |              |                           |                                                    |               |                                |                                    |                                           |                                                  |                                           |                                    |                    |             |                |              |                       |              |
|               |              |                                         |                            |            |              |                           |                                                    |               |                                |                                    |                                           |                                                  |                                           |                                    |                    |             |                |              |                       |              |
| 1             |              |                                         |                            |            |              |                           |                                                    |               |                                |                                    |                                           |                                                  |                                           |                                    |                    |             |                |              |                       |              |

| Γ   |                                      |                |            |      |                     |                     |                             |         | DAI                         | LY [                                   | DRILL                          | ING                    | REP                                   | 01  | RT .                                  |      |                                         |                                         |                                        |         |
|-----|--------------------------------------|----------------|------------|------|---------------------|---------------------|-----------------------------|---------|-----------------------------|----------------------------------------|--------------------------------|------------------------|---------------------------------------|-----|---------------------------------------|------|-----------------------------------------|-----------------------------------------|----------------------------------------|---------|
| DA1 | SI                                   |                | 167<br>11- | 9 C  | BARI<br>D           |                     | RIG:<br>DEPTH:              | 15 c    | RP<br>00_                   | 21.                                    | DEPTH:                         | 007<br>41              |                                       | GE  |                                       | N15  | OT<br>NGER                              | DEF                                     | THE LAST                               |         |
|     |                                      |                |            |      | TIO<br>pse          |                     | OP<br>COD                   |         | OF                          | PERA                                   | TIONS                          | 3 FRO                  | )M (0.                                | 700 | ) <b>–</b>                            | 070  | Ohrs                                    |                                         |                                        |         |
|     | 15.3<br>16.0<br>20.0<br>23.0<br>23.3 | 00<br>00<br>30 |            |      | 8.5<br>4 7<br>3 7.5 |                     | 2<br>10<br>6<br>6<br>3<br>2 |         | un s<br>OOH.<br>IH.,<br>eam | surv<br>vith<br>fro                    | om 94<br>∋y a†<br>bit<br>m 960 | ± 96(<br># 5.<br>)m to |                                       |     |                                       |      |                                         | *************************************** |                                        | ·       |
|     |                                      |                |            |      |                     |                     |                             |         |                             |                                        |                                |                        |                                       |     |                                       |      |                                         |                                         |                                        |         |
| В   | MUD                                  | 9              | MF.        |      | PV                  | COSIT               | Y                           | GEL     | A.F<br>W.                   | L. C                                   |                                | opm<br>Ci.             | мв                                    |     | SAND<br>%                             | рН   | SOLIDS<br>%                             | OIL                                     | HTHP<br>W.L.                           | REMARKS |
| _   | g.<br>RUN                            | SER            | 41         | SIZ  | 9                   | 14                  | 4                           | / 11    | 7                           |                                        | 40                             | 59                     |                                       |     | • 75                                  | 9.5  | , ,                                     |                                         |                                        |         |
| C   | No.                                  | No             | ).         | INCH | ES                  | TYPE                |                             |         |                             | ······································ | ВС                             | TTOM                   | HOL                                   | E / | ASSE                                  | MBLY | <b>′</b>                                |                                         |                                        |         |
|     | 14<br>5                              | BRI            | <u>163</u> | 8,   |                     | PI3<br>ATI          |                             | Bi.     | r B                         | 175                                    | ப்в -                          | 2 x t                  | ; D                                   | ۷.  | ST                                    | AB _ | . 16                                    | * 4                                     | 1 I                                    | . c.    |
|     |                                      |                |            |      |                     |                     | Д,                          | _       | T                           |                                        |                                | T                      |                                       | 1   |                                       |      |                                         |                                         |                                        |         |
|     | RUN<br>No.                           |                | OZZL       | Ε    | W.O.B.              | RPM                 | m/hr                        | gal/min | L                           | IN (m                                  | OUT(m                          | m                      | hr.                                   | Т   | $\perp$                               | D    |                                         | RE                                      | MARKS                                  |         |
|     | 4                                    |                | <i>∧.∤</i> |      | 1520                |                     |                             | _       | 200                         | 340                                    | 966                            | 26                     | 9                                     | 6   | 5                                     |      | *************************************** |                                         |                                        |         |
|     | 5_                                   | 1×1×           | 9.12.      |      | 20<br>25            | 70                  | 5.85                        | 240     | 900                         | 96                                     | 5                              | 41                     | 7                                     | _   |                                       |      |                                         |                                         |                                        |         |
| D   | INST<br>ME<br>TY                     | BU-<br>NT      | DE         | PTH  | INS                 | ITION<br>TRU-<br>NT | INCL                        | .IN.    | ZIMUTH                      | T                                      | V D                            |                        | ONTAL<br>CEMEN                        | -   |                                       |      | NATES<br>E(+) / V                       | v (—)                                   | DOG<br>LEG                             | REMARKS |
|     | 1610                                 | 0_             | 9.         | 60   |                     |                     | 2                           | •       |                             |                                        |                                |                        |                                       |     | · · · · · · · · · · · · · · · · · · · |      |                                         |                                         |                                        |         |
| Е   | RE                                   | МА             | RK         | s /  | LIT                 | HOL                 | .OG                         | <br>Y   |                             | 1                                      |                                | <u> </u>               |                                       |     |                                       |      |                                         |                                         |                                        |         |
|     |                                      |                |            |      |                     |                     |                             |         |                             |                                        |                                |                        | · · · · · · · · · · · · · · · · · · · |     |                                       |      |                                         |                                         |                                        |         |
|     |                                      |                |            |      |                     |                     |                             |         |                             |                                        |                                |                        |                                       |     |                                       |      |                                         |                                         |                                        |         |
|     |                                      |                |            |      |                     |                     |                             |         |                             |                                        |                                |                        |                                       |     |                                       |      |                                         |                                         |                                        |         |
|     |                                      |                |            |      |                     |                     |                             |         |                             | •                                      |                                |                        |                                       |     |                                       |      |                                         |                                         | ······································ |         |
|     |                                      |                |            |      |                     |                     |                             |         |                             |                                        |                                |                        | ·                                     |     |                                       |      | ·                                       |                                         |                                        |         |

|                       |                                                             |                |                                                           |                                       |                                     |         | DAII                                  | _Y [                                        | RILL            | ING                 | REP                   | OF             | RT        |            |             |       |                                       |         |
|-----------------------|-------------------------------------------------------------|----------------|-----------------------------------------------------------|---------------------------------------|-------------------------------------|---------|---------------------------------------|---------------------------------------------|-----------------|---------------------|-----------------------|----------------|-----------|------------|-------------|-------|---------------------------------------|---------|
| DA                    | STRINGS<br>SEE 24                                           | 3 BA           | RK  <br>199                                               |                                       |                                     | 11.col  | RP 2                                  |                                             | PROGRES         | 047<br>is: 40       | ការី<br>2             | GE             |           | NIC<br>ST: | ot<br>Inger | - DE  | PTH LAST                              | CASING: |
|                       | TIME ALI                                                    |                |                                                           |                                       | OP<br>ODD                           |         | OF                                    | ERAT                                        | IONS            | FRC                 | )M 07                 | 00             |           | 070        | Ohrs        |       |                                       | -       |
| 1<br>2<br>2<br>0<br>0 | 14.00<br>16.00<br>16.30<br>20.30<br>21.00<br>01.30<br>07.00 |                | 72 ・4 ・5 5 5 4 4 3 2 ・5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 2<br>5<br>10<br>6<br>11<br>11<br>11 | I R     | ircu<br>un s<br>OOH.<br>ig u<br>run : | late<br>urve<br>p <b>B</b> F<br># 1<br>onne | holy at B. DLS. | e cl<br>103<br>MRS. | CSS.                  | GR             | u         |            | ne to       | ru    | n cis                                 |         |
| В                     |                                                             | MF.            | PV                                                        | YIELD                                 |                                     | GEL     | A.P<br>W.I                            | Co                                          |                 | t ci.               |                       | Ε              | SAND<br>% | pН         | SOLIDS      | OIL   | HTHP<br>W.L.                          | REMARKS |
| C                     | RUN SERIA                                                   | L SI           | 10  <br>ZE                                                | TYPE                                  | 18                                  | 116     | 5   7.                                | 4 1 / 2                                     | 80 BO           | 50                  | od <u>अ</u><br>I HOLI |                | . 75      |            |             | l     | 11                                    |         |
| ľ                     | No. No.                                                     | INC            | HES                                                       |                                       | +                                   |         |                                       |                                             |                 | 1101                |                       |                |           | .IVIUL     | 1           |       |                                       |         |
|                       | 5 4845                                                      | 17 8           | 士                                                         | AT12                                  | 2                                   | BIT.    | : B17                                 | _รมเ                                        | 3 - 2           | 2 x 6               | <del>,</del> - <      | 5.7            | AB        | /          | 16 x        | 6 4   |                                       |         |
|                       | RUN                                                         | ZLE            | W.O.B.                                                    | RPM.                                  | PROG                                | VOL     | PRESS.                                | DE                                          | РТН             | то                  | TAL                   |                | ВІТ       |            |             |       | · · · · · · · · · · · · · · · · · · · |         |
|                       | No.                                                         |                | 10 <del>nne</del> s                                       | <u> </u>                              | m/hr                                | gal/min | p.s.i.                                | iN (m)                                      | OUT(m)          | m                   | hr.                   | Т              | В         | D          |             | RE    | EMARKS                                |         |
|                       |                                                             | U              | 20                                                        | 80                                    | 6                                   | 230     | 0001                                  | 366                                         | 1047            | 81                  | 13.5                  | $\overline{L}$ | 2         | I          |             |       |                                       |         |
|                       |                                                             | 12-            |                                                           |                                       |                                     |         |                                       |                                             |                 |                     |                       |                |           |            |             |       |                                       |         |
| D                     | INSTRU-<br>MENT<br>TYPE                                     | DEPTH<br>SURVE | INS                                                       | ITION<br>TRU-<br>NT                   | INCL                                | .IN.    | IMUTH                                 | т                                           | V D             |                     | ONTAL                 | N (            |           |            | NATES       | w (–) | DOG<br>LEG                            | REMARKS |
|                       | TOTEO                                                       | 035            |                                                           |                                       | 17                                  |         |                                       |                                             |                 |                     |                       |                |           |            | 4           |       |                                       |         |
|                       |                                                             |                | -                                                         |                                       |                                     | !  -    |                                       |                                             |                 |                     |                       | -              |           |            |             |       |                                       |         |
| Е                     | REMAR                                                       | KS/            | LIT                                                       | HOL                                   | OG                                  | Y       |                                       | <del></del>                                 |                 |                     |                       |                |           |            |             |       | <u> </u>                              |         |
|                       |                                                             |                |                                                           |                                       |                                     |         |                                       |                                             |                 |                     |                       |                |           |            |             |       |                                       |         |
|                       | •                                                           |                |                                                           |                                       |                                     |         |                                       |                                             |                 |                     |                       |                |           |            |             |       |                                       |         |
|                       |                                                             |                |                                                           | •                                     |                                     |         |                                       |                                             |                 |                     |                       |                |           |            |             |       |                                       |         |
|                       |                                                             |                |                                                           |                                       |                                     |         |                                       |                                             |                 |                     |                       |                |           |            |             |       |                                       |         |
|                       |                                                             |                |                                                           |                                       |                                     |         |                                       | <del></del>                                 |                 | ·                   | <del></del>           |                |           |            |             |       |                                       |         |

| Г |                        |              |                                         |           |                        |        |                | DAIL                    | Y D          | RILL        | ING          | REP        | OR                                    | T               |      |                                              |          |                    |            |                |
|---|------------------------|--------------|-----------------------------------------|-----------|------------------------|--------|----------------|-------------------------|--------------|-------------|--------------|------------|---------------------------------------|-----------------|------|----------------------------------------------|----------|--------------------|------------|----------------|
|   | STK                    | in/G         | y _BA<br>19                             | RK+       |                        |        |                | RP á                    | 1 -          | PROGRES     | =.10H        | 7          | GEO                                   |                 | IIC. | OT<br>RIN                                    | G ER     | DEP                | TH LAST    | ·              |
|   | TIME<br>star           | AL           | LOCA                                    | TIO       |                        | OP     |                |                         | ERAT         | IONS        | FRO          | M 07       |                                       |                 |      |                                              | _        |                    | Ŏ          |                |
|   | 09.0                   |              |                                         |           | : -                    | 11     | -  <br>  R     | un w:                   |              |             | # 2,         | CIS.       |                                       |                 | •    |                                              |          |                    |            |                |
|   | 09.3<br>11.3<br>12.0   | O            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 ~       | 5/1<br>5/1             | 6      | i R            | ig do<br>un ir<br>lean  | n ho         | le w        |              |            |                                       |                 |      | d si                                         | de       | way                | / .        |                |
|   | 12.3<br>14.3<br>16.0   | O            | !<br>!                                  | 2         |                        | 6<br>1 | R<br>  B       | IH 10<br>reak           | ) St<br>dow  | ds.<br>n Ke | 11y          | and        | kel                                   | .1y             | , cc |                                              |          | - <del>i-</del> i- | ne P&      | ^              |
|   | 17.3                   | 0            | !                                       | 1 :       | 5 1                    | 6      | i R            | progr<br>IH to          | amm<br>pe    | e.<br>rfor  | m pl         | ug #       | 1.5                                   | 720             |      |                                              |          |                    | ulate      | :              |
|   | 18.0<br>18.3<br>19.3   | O            | 1                                       |           | 5 1                    | 5      | C.             | ook :<br>ircul<br>pot : | late         | =           |              | lin        | ≘ .                                   |                 |      |                                              |          |                    |            | ,              |
|   | 20.0                   | O            | 1                                       |           | !                      |        | ; ;            | 5bbls<br>of 13          | s wa<br>Sisx | ter<br>"A"  | pref<br>clas | s;Yi       | <b>∌</b> 1c                           | 1 1             | .18  | 3 .                                          |          |                    |            | lurry<br>Stds. |
|   | 20.3<br>• <b>\$.</b> 8 | 0            |                                         | 4 /       | 54                     | 9<br>6 | I S            | lio c<br>OOH s          | dril<br>side | ling<br>way | lin          | ≘.         |                                       |                 |      |                                              |          |                    | iiCi e     | ₩ <b>.</b>     |
|   | 01.0<br>02.3           |              | :<br>:<br>:                             |           |                        |        | 1 5            | IH to<br>pot p<br>Sbbls | olug         | #2.         |              | -          |                                       |                 |      |                                              |          |                    | ( "A"      | class;         |
|   | 03.0<br>07.0           |              | !<br>!                                  |           |                        |        |                | Yield<br>ull 5<br>DC.   |              |             |              |            |                                       |                 |      |                                              | e S      | tds                | 5 a ·      |                |
| L |                        | Ī            | ·<br>                                   |           |                        |        |                |                         | т-           |             |              | <u> </u>   |                                       |                 | Ι    |                                              | <u>I</u> |                    | I          |                |
| С | RUN<br>No.             | SERI.<br>No. |                                         | ZE<br>HES | TYPE                   |        |                |                         |              | ВС          | TTOM         | HOLE       | E AS                                  | SSE             | MBI  | _Y                                           |          |                    |            |                |
|   |                        |              |                                         |           |                        |        |                | Lo                      | دهی          | NG          |              | \$         | 2.0                                   | <sub>2</sub> uc | A    | <u>.                                    </u> |          |                    |            |                |
|   |                        |              |                                         |           |                        |        |                |                         |              |             |              |            |                                       |                 |      | :                                            |          |                    |            |                |
|   | RUN<br>No.             | NO           | ZZLE                                    | W.O.E     | RPM                    | 1      | VOL<br>gal/min | PRESS.<br>p.s.i.        |              | OUT(m       | <del> </del> | TAL<br>hr. | т                                     | BIT<br>B        | D    |                                              |          | RE                 | MARKS      |                |
|   |                        |              |                                         |           |                        |        |                |                         |              |             |              |            |                                       | _               |      |                                              |          |                    |            |                |
|   | 上                      |              |                                         | <u> </u>  |                        |        |                |                         |              |             |              |            |                                       |                 |      |                                              |          |                    |            |                |
| D | INST<br>ME<br>TY       | NT           | DEPTH<br>SURVE                          | 1 INS     | SITION<br>STRU-<br>ENT | INCL   | LIN. 🕌         | ZIMUTH<br>N E           | т            | V D         |              | CEMENT     | N (H                                  |                 |      | DINAT                                        |          | (-)                | DOG<br>LEG | REMARKS        |
|   |                        |              |                                         |           |                        |        |                |                         |              |             |              | ·····      |                                       |                 |      |                                              |          |                    |            |                |
| - |                        |              |                                         | 丄         |                        |        |                |                         |              |             |              |            |                                       |                 |      |                                              |          |                    |            |                |
| E | RE                     | MAI          | RKS                                     | / LIT     | ΉΟΙ                    | .OG    | Υ              | <del></del>             |              | '           |              | V          |                                       |                 |      |                                              |          |                    |            |                |
| İ |                        |              |                                         |           |                        |        |                |                         |              |             |              |            |                                       |                 |      |                                              |          |                    |            |                |
| 1 |                        |              |                                         |           |                        |        |                |                         |              |             |              |            | · · · · · · · · · · · · · · · · · · · |                 |      |                                              |          |                    |            |                |
|   |                        |              |                                         |           |                        |        |                |                         |              |             |              |            |                                       |                 |      |                                              |          |                    |            |                |
|   |                        |              |                                         |           |                        |        |                |                         | •            |             |              |            |                                       |                 |      |                                              |          | <del></del>        |            |                |
| 1 |                        |              |                                         |           |                        |        |                |                         |              |             |              |            |                                       |                 |      |                                              |          |                    |            |                |

|     |            |                    |          |            |            |                      |                 |                | DAIL                                   | _Y [        | DRI      | LL  | ING              | REP        | 0   | RT              |                      |                |          |                    |         |
|-----|------------|--------------------|----------|------------|------------|----------------------|-----------------|----------------|----------------------------------------|-------------|----------|-----|------------------|------------|-----|-----------------|----------------------|----------------|----------|--------------------|---------|
| DA. | SZ         | RIN<br>96.         | GY.      | BF<br>9    | IRK,<br>D  |                      | ORIGE<br>DEPTHE |                | 00 m                                   | 24_         | PROG     |     | 04Z              | <i>T</i>   |     | JPERVI<br>EOLOG | SOR:<br>NICI<br>IST: | DT             | DEI      | YS FROM S  TH LAST |         |
|     |            |                    |          |            | TION       |                      |                 | 1              |                                        |             | rio      | NS  | FRO              | M 07       | 700 | ) -             | 0700                 | -<br>Dhrs      | •        | •                  |         |
|     | <br>98.:   | <br>30<br>00       |          |            | 1.5<br>7.5 | i                    | 6<br>1          | i .            | side<br>ear                            | yay<br>dowr | /.<br>7. | Sp  | ment ot t        | op c       | er  | nen :           | t plu                | ng.            | <br>61m  | . POOH             | going   |
|     |            |                    |          |            |            |                      |                 |                | I.V.T.                                 | <u>.</u>    |          |     | e 10             | מיציי איי  | •   | dân V           |                      |                |          |                    |         |
|     |            |                    |          |            |            |                      |                 |                |                                        |             |          |     |                  |            |     |                 |                      |                |          | <b>,</b>           |         |
| В   | 1          | D WT.              | MF.      | I          | PV         | YIELD                | Y<br>           | GEL            | A.P<br>W.                              | -           | ION:     | S p |                  | мв         | Ε   | SANC<br>%       | pH                   | SOLIDS<br>%    | OIL      | HTHP<br>W.L.       | REMARKS |
| C   | RUN        |                    | RIAL     | Siz        |            | TYPE                 | ╁┰              |                |                                        |             |          | BO  | TTOM             | HOI        |     | 4881            | -MRL                 | <del></del>    | <u> </u> | <u> </u>           |         |
| ľ   | No.        | N                  | 0.       | NC         | 1ES        |                      |                 |                |                                        |             |          |     | 170111           |            |     |                 |                      |                |          |                    |         |
|     |            |                    |          |            |            |                      |                 |                |                                        |             |          |     |                  |            |     |                 |                      |                |          |                    |         |
|     | RUN<br>No. | N                  | OZZL     | E          | W.O.B.     | IRPM.                | 1               | VOL<br>gal/min | PRESS.                                 | IN (m       | PTH      |     | TO <sup>-</sup>  | rAL<br>hr. | Т   | ВІТ             | D                    |                | RE       | MARKS              |         |
|     |            |                    |          |            |            |                      |                 |                |                                        |             |          |     | ·                |            | _   |                 |                      |                |          |                    |         |
|     |            | 1                  |          |            |            |                      |                 |                |                                        |             | -        |     |                  |            | _   | 1               |                      |                |          |                    |         |
| D   | М          | TRU-<br>ENT<br>YPE | 1        | PTH<br>RVE | INS        | SITION<br>TRU-<br>NT | INCL            | .IN.           | IMUTH                                  | 1           | V D      |     | HORIZ<br>DISPLAC |            | _   |                 |                      | NATES<br>E(+)/ |          | DOG<br>LEG         | REMARKS |
|     |            |                    | -        |            |            |                      |                 | _              | ······································ |             |          |     |                  |            | -   |                 |                      |                |          |                    |         |
|     |            |                    | _        |            |            |                      |                 |                |                                        | -           |          |     |                  |            | -   |                 |                      |                |          |                    |         |
| E   | R          | EMA                | RK       | s/         | LIT        | HOL                  | .OG             | Y              |                                        | -L          |          |     |                  |            |     |                 |                      |                |          |                    |         |
|     |            |                    |          |            |            |                      |                 |                |                                        |             |          |     |                  |            |     |                 |                      |                |          |                    |         |
|     |            |                    |          |            |            |                      |                 |                |                                        |             |          |     |                  |            |     |                 |                      |                |          |                    |         |
|     | _          |                    |          |            |            |                      |                 |                |                                        |             |          |     |                  |            |     |                 |                      |                |          |                    |         |
|     |            |                    |          |            |            |                      |                 |                |                                        |             |          |     |                  |            |     |                 |                      |                |          |                    |         |
|     | <b> </b>   |                    | <u> </u> |            |            |                      |                 |                |                                        |             |          |     |                  |            |     |                 |                      |                |          |                    |         |

Bit & Hydraulic Record APPENDIX 2

BIT AND HYDRAULICS RECORD

1. . .

| -        | COUN        |                                         |             |                | FIELD          |         |          | <del>~~</del> | STATE  |       |                                       | BECTION           |                    | TOWNS         | SHIP         | RANG           | ε                      | roc        | ATION   |           |                                         |      |                         |       |              | WELL NO.         |
|----------|-------------|-----------------------------------------|-------------|----------------|----------------|---------|----------|---------------|--------|-------|---------------------------------------|-------------------|--------------------|---------------|--------------|----------------|------------------------|------------|---------|-----------|-----------------------------------------|------|-------------------------|-------|--------------|------------------|
| _        |             |                                         | SLAND 1     | BASIN          |                | WIL     | DC       | CAT           | Vic    | TORI  | A                                     |                   |                    | YA            | CF. A        |                |                        |            | Ç       | TF        | S I NO                                  | ć٧   | B                       | AR    | .K           | 1                |
| 7        | CONTI       | DR                                      | ILL C OF    | P              |                |         | 2 RIG NO | O. OPERATO    | CRN:   | SADE  | R                                     | RES               | 901                | CES           |              | TOOLPU         | M 3                    | DE         | ۸/۸     | )         | 5                                       | SALE | SMAN                    | ı     |              |                  |
|          | 5PUD<br>14- | 11.190                                  | UNDER SURF. | UNDER INTER.   | SET S          | AND ST. |          | 1             | SM     | 500   | ာ                                     |                   | 5                  | ier<br>L<br>Z | ı            | NO. 2<br>CILAM | IEFER                  | M          | M4      | 50        | LINER                                   |      | PUMI                    | P POW | ER           | F/W G            |
| ō        | RILL        | 4-2                                     | ,           | TOOL<br>JOINTS | SIZ            | 42      | •        | X H           |        | 6     | · · · · · · · · · · · · · · · · · · · | D                 | RILL<br>OLLAI      | N             | UMBER        |                | 6 h                    |            | 2       | 3.<br>3.4 | · • • • • • • • • • • • • • • • • • • • | H4-  | 9                       | PH    | DRAWWO       | RKS POWER        |
|          | NO.         | SIZE                                    | MAKE        | TYPE           | JET<br>32ND IN | SERIA   | L.       | DEPTH<br>OUT  | m      | HOURS | / <b>Л</b><br>./нв                    | T                 | T                  | r             | VERT<br>DEV. | PUMP<br>PRESS  | PUMP<br>OPER-<br>ATION | S I        | P M     | WT.       | MUE<br>vis.                             |      | D                       |       | . COND.      | FORMAT<br>REMAR  |
| _        | 1           | 127                                     | REED        | 513 GJ         | 3×16           | EBI     | 41       | 17.3          | 167    | 13.5  | 12.3                                  | 13.5              | 2.8                | 100           |              | 4-00           | 5                      | 50         |         | 9.0       | 51.<br>90                               |      | 3                       | 31    | RR           | SANDSTO          |
| *        | 2           | 83                                      | REED        | 5316.          | 11×F.          | NGU4    | 57       | 375           | 202    |       |                                       |                   |                    | 90            | 14           | 600            |                        | <i>ት</i> ር |         |           | 1 -                                     | 6.6  |                         | J I   |              | LIMESIC          |
| -<br>-   | 3           | 83                                      | 1 - 1       | HPI3GI         | ł              | i       | - 1      | 940           | 565    | 47.5  | 12.0                                  | 77                | 15                 | 90            | 124          | 950            | Ŋ                      | 12         |         | _         |                                         | 6.8  | 11                      | 3.1   | ā.           | SAND             |
|          | H           | 83                                      | REED        | HP13GJ         | الع            | BRAI    | 63       | 966           | 26     | 9-5   |                                       |                   |                    |               | 1            | 800            | 5                      | 45         |         | 9:3       | 44                                      | 7    | 6                       | 5 7   | Ē            | Voice            |
| <u>.</u> | 5           | 8 ½                                     | Hīc         | ATJ 22         | 9,11,12        | A 845   | 17       | 1047          | 81     | 14.5  | <i>5</i> ·5                           | 101               | 25                 | 70°<br>75     | 14           | <i> 000</i>    | 5                      | 40         |         | 9.5       | 42                                      | 7.4  | j                       | 2 [   |              | VULCA<br>SAND 19 |
|          |             |                                         | ·           |                |                |         |          |               |        |       |                                       |                   |                    | 45.37         |              |                |                        |            |         |           |                                         |      |                         | +     |              |                  |
| _        |             |                                         |             |                |                |         |          |               |        | 14    |                                       | 1 su <sup>1</sup> | 1,2                |               |              | ·              |                        |            |         |           |                                         |      |                         |       |              |                  |
| 7        | *           | Bir                                     | Nº2         | CONIES         | To 44          | 460     | 10       | ONE           | 5-110  | - 1   |                                       | مراد څ            |                    | (ON.          |              | ` 00           | IEC                    | 4          | <u></u> |           | <u>,-</u> ,                             |      | $\left  \cdot \right $  | +     | <u> </u> .   |                  |
| _        |             |                                         |             |                | 0 87-11        | 160     |          | ONE           | 717700 | 71 10 |                                       | - //C             |                    |               |              | - 1111         | 125                    | 7          |         | 7)        | 7-7-1                                   | CE.  |                         |       |              |                  |
|          | -           |                                         |             |                |                | -       |          |               |        |       |                                       |                   |                    |               |              |                |                        |            |         |           |                                         |      | $\sqcup$                | +     | ļ            |                  |
|          |             |                                         |             |                |                |         |          |               |        |       |                                       | <br>              |                    |               |              |                |                        |            |         |           |                                         |      |                         | +     | <del> </del> |                  |
| _        |             |                                         |             |                |                |         |          |               |        |       |                                       |                   |                    |               |              |                |                        |            |         |           |                                         |      |                         | 丰     |              |                  |
| _        |             |                                         |             |                |                |         |          |               |        |       |                                       |                   |                    |               |              |                |                        |            |         |           |                                         |      |                         | +     |              |                  |
| _        |             |                                         |             |                |                |         |          |               |        |       |                                       |                   |                    |               |              |                |                        |            |         |           |                                         |      |                         |       |              |                  |
| _        | _           |                                         |             |                |                |         |          |               |        |       |                                       |                   |                    |               |              |                |                        |            |         |           |                                         |      |                         |       |              |                  |
|          |             | *************************************** |             |                |                |         | _        | <b>1</b> -    |        |       |                                       |                   |                    |               |              |                |                        |            |         |           |                                         |      | $\mid \rightarrow \mid$ | +     | -            |                  |
| _        | _           |                                         |             |                |                |         |          |               |        |       |                                       | <u> </u>          | $\left  - \right $ |               |              |                |                        |            |         |           |                                         |      | $\left  - \right $      | +     | -            |                  |
| _        |             |                                         |             |                |                |         |          |               |        |       |                                       |                   |                    |               |              |                |                        |            |         |           |                                         |      |                         |       |              |                  |

# Deviation Record

APPENDIX 3

**DEVIATION RECORD** 

#### STRINGY BARK NO. 1

### DEVIATION RECORD

| Depth (m) | Deviation from   |
|-----------|------------------|
|           | Vertical         |
|           |                  |
| 48        | 0°               |
| 120       | 1 <sub>4</sub> ° |
| 170       | 0 °              |
| 254       | <u>1</u> , °     |
| 384       | 1 <sub>4</sub> ° |
| 520       | 1 <sub>4</sub> ° |
| 880       | 1°               |
| 933       | 2½°              |
| 960       | 2°               |
| 1035      | 1½°              |
|           |                  |

Mud Record

APPENDIX 4

MUD RECORD

#### M-I Drilling Fluids Company

#### FIELD DATA COMMUNICATIONS COMPUTERIZED WELL RECAP

Loc Code :

Operator : CRUSADER RESOURCES Spud Date : 11/14/90
Well Name : STRINGY BARK -1 TD Date : 11/25/90

Field/Area : PEP 123

Description: WILDCAT DistEngr: BURKE P.
Location: VICTORIA SalesEngr: GALAO H.
Warehouse: WELSHPOOL SalesEngr:

nationalse: McLonrool Salesingr:

Contractor : DRILCORP Well ID : S0001

## Comments: A WILDCAT EXPLORATION WELL IN THE GIPPSLAND BASIN.

| ======                     | ====== |            | =====     | ======                    | ======       | =======================================              |       | .============                             | ===== | ======       |
|----------------------------|--------|------------|-----------|---------------------------|--------------|------------------------------------------------------|-------|-------------------------------------------|-------|--------------|
| Туре                       | in     | Depth<br>m | m         | in                        | MaxMW<br>ppg | Mud 1                                                | Mud 2 | Drilling Problem                          | •     | Cost         |
| FullSt<br>FullSt<br>OpHole | 13.375 | 12<br>171  | 12<br>171 | 20.000<br>12.250<br>8.500 | 8.6<br>9.2   | FW-GEL MUD<br>SW BIOPOLYMER MUD<br>SW BIOPOLYMER MUD | ·     | NO PROBLEMS<br>NO PROBLEMS<br>NO PROBLEMS | 1 2   | 1715<br>5910 |

Total Depth: 1047 m TVD: 1047 m Water Depth: m Drilling Days: 12 Total Mud Cost: 7625

|   | Drillin | •   | •      | • |        |       |     |               |              |      |     | ASSIST   | ANCE    | S0001 |
|---|---------|-----|--------|---|--------|-------|-----|---------------|--------------|------|-----|----------|---------|-------|
|   | Size    |     | CsgTVD |   | Bit    | MudWt |     | Daily<br>Cost | Calc<br>Cost | Diff | Day | Date     | TD      | TVD   |
|   |         |     |        |   | 12.250 | 8.7   | 200 | 719           | 720          | 1    | 1   | 11/14/90 |         |       |
| F | 13.375  | 12  | 12     |   | 12.250 | 9.2   | 202 | 878           | 879          | 1    | 2   | 11/15/90 | 173     | 173   |
| F | 9.625   | 171 | 171    |   | 8.500  |       | 202 |               | 117          | 117  | 3   | 11/16/90 | <br>171 | 171   |
| F | 9.625   | 171 | 171    |   | 8.500  | 8.5   | 202 | 265           | 265          | 0    | 4   | 11/17/90 | 171     | 171   |
| F | 9.625   | 171 | 171    |   | 8.500  | 8.8   | 202 | 1393          | 1393         | 0    | 5   | 11/18/90 | 330     | 330   |
| F | 9.625   | 171 | 171    |   | 8.500  | 9.2   | 233 | 383           | 661          | 278  | 6   | 11/19/90 | 375     | 375   |
| F | 9.625   | 171 | 171    |   | 8.500  | 9.1   | 233 | 536           | 567          | 31   | 7 . | 11/20/90 | 569     | 569   |
| F | 9.625   | 171 | 171    |   | 8.500  | 9.3   | 233 | 1422          | 1422         | 0    | 8   | 11/21/90 | 846     | 846   |
| F | 9.625   | 171 | 171    |   | 8.500  | 9.4   | 233 | 872           | 872          | 0    | 9 - | 11/22/90 | 935     | 935   |
| F | 9.625   | 171 | 171    |   | 8.500  | 9.4   | 233 |               | 0            | 0    |     | 11/23/90 |         | 943   |
| F | 9.625   | 171 | 171    |   | 8.500  | 9.4   | 233 | 573           | 573          | 0    | 11  | 11/24/90 | 984     | 984   |
| F | 9.625   | 171 | 171    |   | 8.500  | 9.5   | 233 | 98            | 157          | 59   | 12  | 11/25/90 | 1047    | 1047  |

ŧ

Operator : CRUSADER RESOURCES

Contractor : DRILCORP

Description : WILDCAT

Well: SO(

Well Name: STRINGY BARK -1 Field/Block : PEP 123 Location : VICTORIA \_\_\_\_\_\_\_

SUMMARY OF PRODUCT USAGE FOR INTERVAL FROM 11/14/90 - 11/16/90,

m - 171

| WATER-BASE PROD  | SIZE    | AMOUNT | UNIT COST | PROD COST |
|------------------|---------|--------|-----------|-----------|
| Calcium Chloride | 25KG SK | 6      | 19.49     | 116.94    |
| Caustic Soda     | 25KG SK | 3      | 24.75     | 74.25     |
| M-I GEL          | 25KG SK | 48     | 19.30     | 926.40    |
| POLYPAC          | 50# SK  | 5      | 98.50     | 492.50    |
| Sodium Chloride  | 50KG SK | 10     | 10.50     | 105.00    |

\*\*\* INTERVAL WATER-BASE MUD COST TOTAL =

1,715.09

\*\*\* TOTAL MUD COST FOR INTERVAL =

1,715.09

M-I Drilling Fluids Company FIELD DATA COMMUNICATIONS SYSTEM

01/01,

Operator : CRUSADER RESOURCES Contractor : DRILCORP Description: WILDCAT Well Name: STRINGY BARK -1 Field/Block : PEP 123 Location : VICTORIA BREAKDOWN OF COST BY PRODUCT GROUP 11/14/90 - 11/16/90, WATER BASE MUD PRODUCTS Cost % Total 105.00 SALT 6.1 ALKALINITY CONTROL ..... 74.25 4.3 POLYMERS 492.50 28.7 GEL 926.40 54.0 

M-I Drilling Fluids Company FIELD DATA COMMUNICATIONS SYSTEM 01/01,

------ PRODUCT SUMMARY ------

Operator : CRUSADER RESOURCES Contractor : DRILCORP Well Name: STRINGY BARK -1 Field/Block: PEP 123

Description: WILDCAT

Location : VICTORIA \_\_\_\_\_\_

SUMMARY OF PRODUCT USAGE FOR INTERVAL FROM 11/17/90 - 11/25/90, 171 m - 1047 m

| WATER-BASE PROD  | SIZE    | AMOUNT | UNIT COST | PROD COST |
|------------------|---------|--------|-----------|-----------|
|                  |         |        |           |           |
| Calcium Chloride | 25KG SK | 3      | 19.49     | 58.47     |
| Caustic Soda     | 25KG SK | 8      | 24.75     | 198.00    |
| Lime             | 25KG SK | 3      | 7.20      | 21.60     |
| M-I GEL          | 25KG SK | 37     | 19.30     | 714.10    |
| POLY SAL         | 25KG SK | 36     | 43.09     | 1551.24   |
| POLYPAC          | 50# SK  | 28     | 98.50     | 2758.00   |
| Sodium Chloride  | 50KG SK | 58     | 10.50     | 609.00    |

\*\*\* INTERVAL WATER-BASE MUD COST TOTAL = 5,910.41

\*\*\* TOTAL MUD COST FOR INTERVAL = 5,910.41

M-I Drilling Fluids Company FIELD DATA COMMUNICATIONS SYSTEM

\_\_\_\_\_\_\_

01/01

PRODUCT SUMMARY ------

Operator : CRUSADER RESOURCES Contractor : DRILCORP
Well Name : STRINGY BARK -1 Field/Block : PEP 123

Description : WILDCAT

Location: VICTORIA

BREAKDOWN OF COST BY PRODUCT GROUP 11/17/90 - 11/25/90, 171 m - 1047 m

#### WATER BASE MUD PRODUCTS

|                   |                                         | Cost     | % Total |
|-------------------|-----------------------------------------|----------|---------|
| SALT              | • • • • • • • • • • • • • • • • • • • • | 609.00   | 10.3    |
| ALKALINITY CONTRO | DL                                      | 198.00   | 3.4     |
| POLYMERS          | *************                           | 4,309.24 | 72.9    |
| GEL               | • • • • • • • • • • • • • • • • • • • • | 714.10   | 12.1    |
| MISCELLANEOUS     | • • • • • • • • • • • • • • • • • • • • | 80.07    | 1.4     |
|                   | 27.1. 2227                              |          |         |
| WATER BASE MUD TO | OTAL COST                               | 5.910.41 | 100.0   |

M-I Drilling Fluids Company FIELD DATA COMMUNICATIONS SYSTEM .

Operator : CRUSADER RESOURCES Contractor : DRILCORP

Description : WILDCAT

Well: SOC

Well Name: STRINGY BARK -1 Field/Block: PEP 123

Location : VICTORIA

SUMMARY OF PRODUCT USAGE FOR INTERVAL FROM 11/14/90 - 11/25/90,

m - 1047 m

and the second second

| WATER-BASE PROD  | SIZE    | AMOUNT | UNIT COST | PROD COST |
|------------------|---------|--------|-----------|-----------|
| Calcium Chloride | 25KG SK | 9      | 19.49     | 175.41    |
| Caustic Soda     | 25KG SK | 11     | 24.75     | 272.25    |
| Lime             | 25KG SK | 3      | 7.20      | 21.60     |
| M-I GEL          | 25KG SK | 85     | 19.30     | 1640.50   |
| POLY SAL         | 25KG SK | 36     | 43.09     | 1551.24   |
| POLYPAC          | 50# SK  | 33     | 98.50     | 3250.50   |
| Sodium Chloride  | 50KG SK | 68     | 10.50     | 714.00    |

\*\*\* INTERVAL WATER-BASE MUD COST TOTAL = 7,625.50

\*\*\* TOTAL MUD COST FOR INTERVAL =

7,625.50

M-I Drilling Fluids Company FIELD DATA COMMUNICATIONS SYSTEM 

01/01

ALKALINITY CONTROL ..... 272.25 3.6 POLYMERS 4,801.74 63.0 GEL 1,640.50 21.5 ...... MISCELLANEOUS 197.01 2.6 ••••• WATER BASE MUD TOTAL COST ..... 7,625.50 100.0

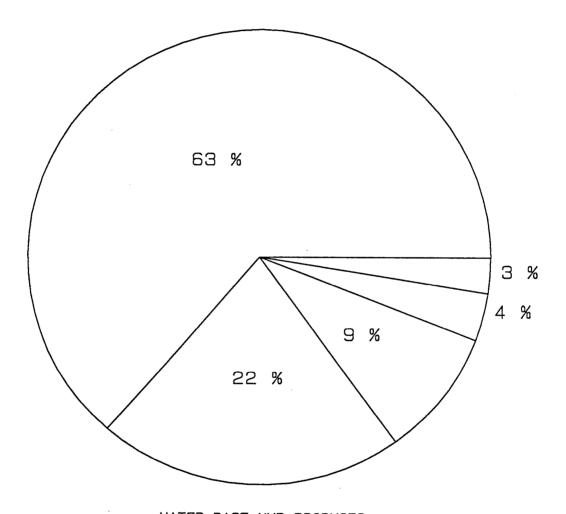
M-I Drilling Fluids Company FIELD DATA COMMUNICATIONS SYSTEM 01/01,

Operator : CRUSADER RESOURCES Contractor : DRILCORP Description : WILDCAT Well Name: STRINGY BARK -1 Field/Block : PEP 123 Location : VICTORIA BREAKDOWN OF PRODUCT USAGE BY GROUP 11/14/90 - 11/25/90, m - 1047 m ' WATER BASE MUD PRODUCT CATEGORY PRODUCTS USED SALT Sodium Chloride ALKALINITY CONTROL Caustic Soda POLYMERS POLY SAL POLYPAC GEL M-I GEL MISCELLANEOUS Calcium Chloride M-I Drilling Fluids Company FIELD DATA COMMUNICATIONS SYSTEM 01/01/80 



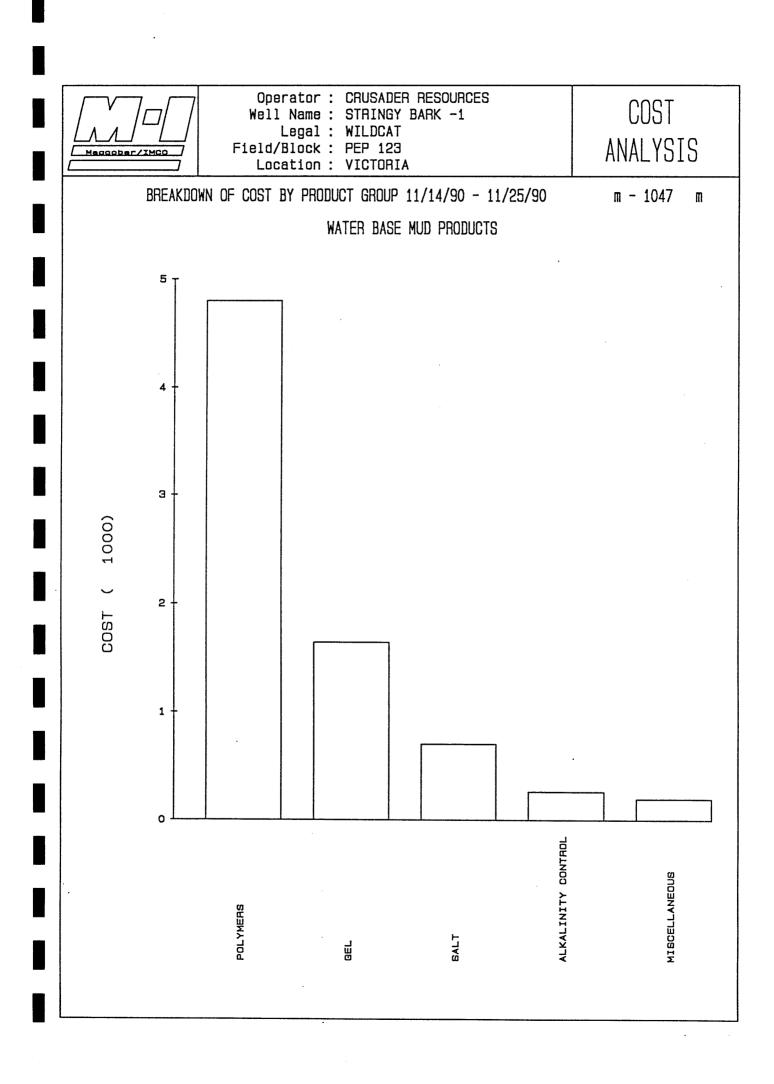
Operator: CRUSADER RESOURCES

Well Name : STRINGY BARK -1


Legal : WILDCAT Field/Block : PEP 123

Location : VICTORIA

COST ANALYSIS


BREAKDOWN OF COST BY PRODUCT GROUP 11/14/90 - 11/25/90

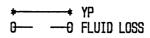
m - 1047 m

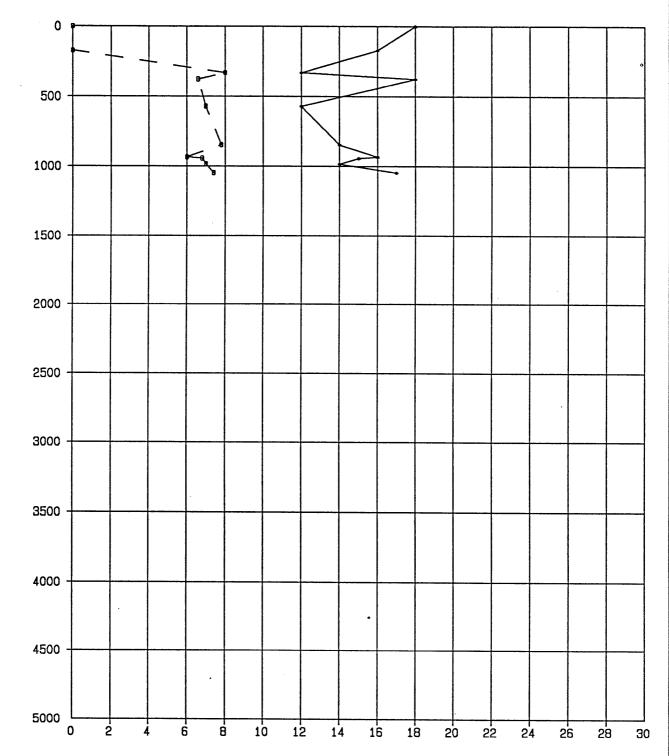


#### WATER BASE MUD PRODUCTS

| POLYMERS           | 63 | % |
|--------------------|----|---|
| GEL                | 22 | % |
| SALT               | 9  | % |
| ALKALINITY CONTROL | 4  | % |
| MISCELLANEOUS      | 3  | % |
|                    |    |   |



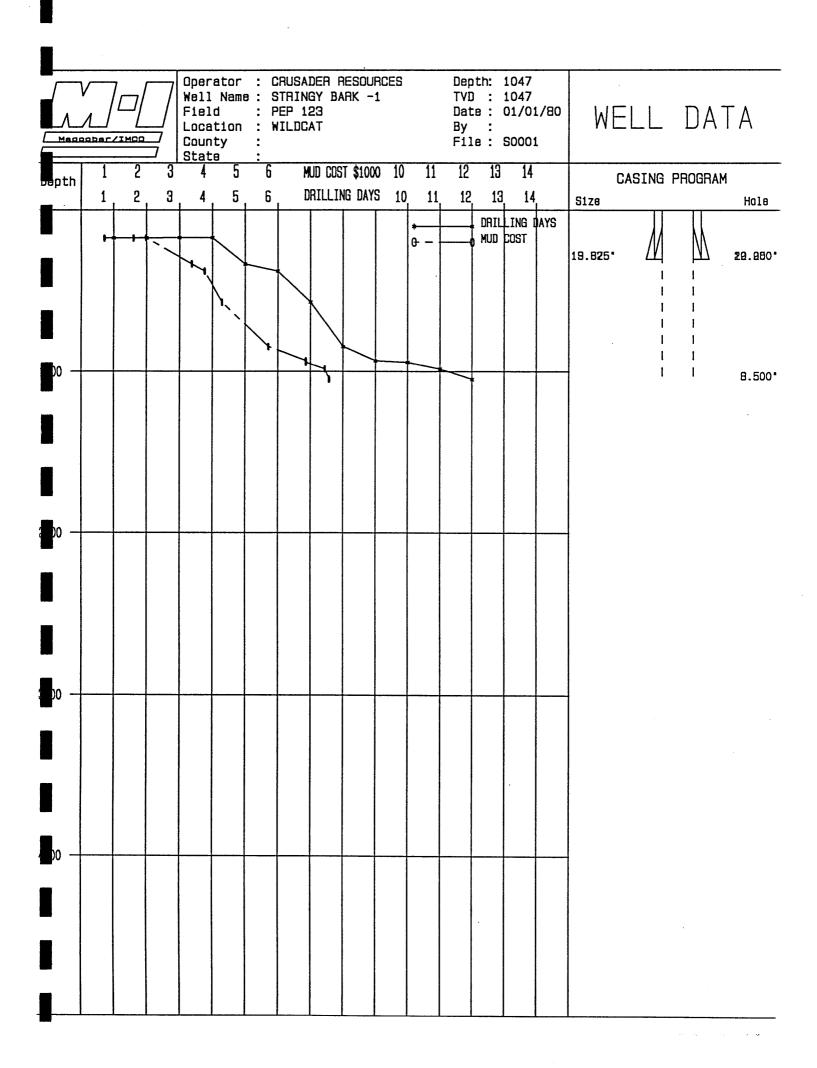


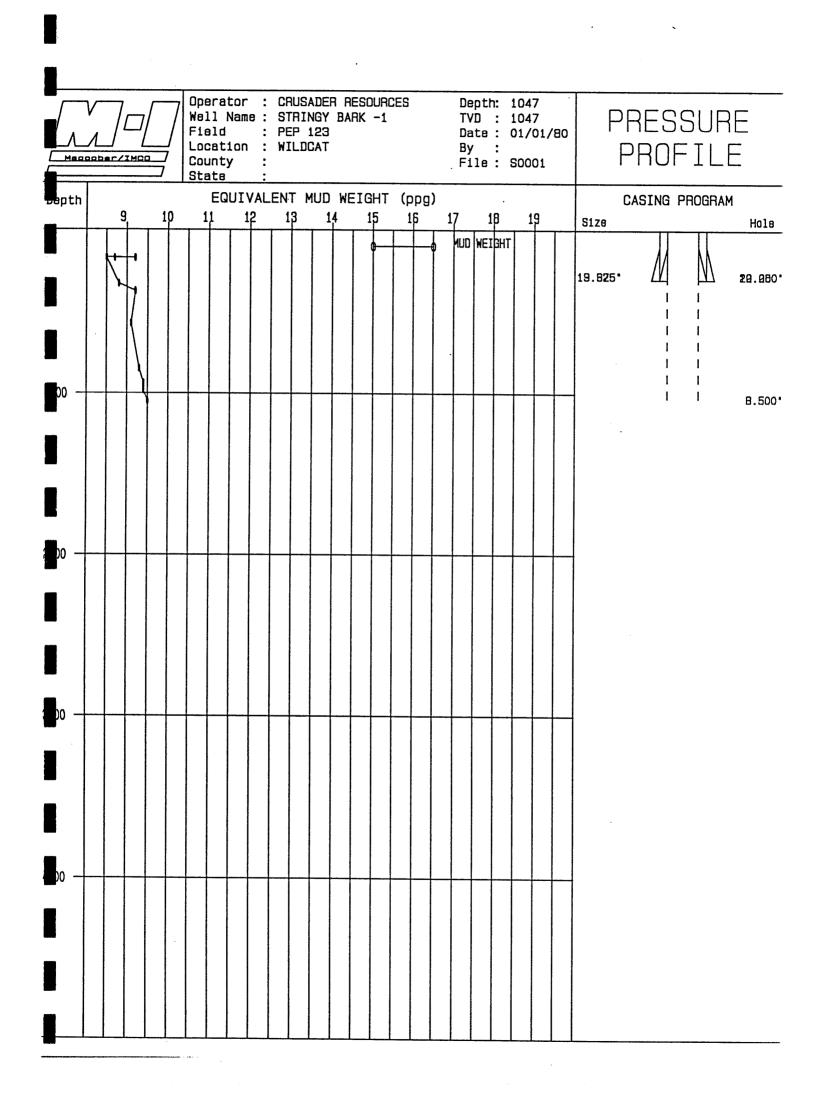


METERS

Operator: CRUSADER RESOURCES

Well Name : STRINGY BARK -1

Legal : WILDCAT Field/Block : PEP 123 County/State : VICTORIA DRILLING FLUID PARAMETERS




| Operator : CRUSADE    | R RESO      | -1             | Contrac<br>Field/A | tor : DRIL<br>rea : PEP               | CORP<br>123 |          | Des      | cription :<br>Location : | WILDCAT  |          |
|-----------------------|-------------|----------------|--------------------|---------------------------------------|-------------|----------|----------|--------------------------|----------|----------|
| ========<br>*Date     |             | 11/14/90       | 11/15/90           |                                       | 11/17/90    |          | 11/19/90 | 11/20/90                 | 11/21/90 | 11/22/90 |
| *Depth                | -m          | 0              | 173                | 171                                   | 171         | 330      | 375      | 569                      | 846      | 935      |
| Days Since Spud       |             | 1              | 2                  | 3                                     | 4           | 5        | 6        | 7                        | 8        | 9        |
| *RHEOLOGICAL PROPER   | TIES        | ##### <b>#</b> | 1220000            |                                       |             |          |          | =======                  | *******  | ======   |
| Mud Weight            | -ppg        | 8.7            | 9.2                | 0.0                                   | 8.5         | 8.8      | 9.2      | 9.1                      | 9.3      | 9.4      |
| Plastic Visc          | -cps        | 23             | 12                 | 0                                     | 0           | 8        | 13       | 12                       | 10       | 8        |
| Yield Point -1b/1     | 00ft2       | 18             | 16                 | 0                                     | 0           | 12       | 18       | 12                       | · 14     | · 16     |
| Zero Gel -1b/1        | 00ft2       | 2              | 2                  | 0                                     | 0           | 2        | 2        | 2                        | 2        | 3        |
| n-factor              |             | 0.6688         | 0.5475             | ***                                   | ***         | 0.5305   | 0.5343   | 0.6280                   | 0.5406   | 0.4657   |
| K -1b/100ft2-         | rpm²n       | 0.8598         | 1.1449             | ***                                   | ***         | 0.8732   | 1.3765   | 0.6119                   | 1.0078   | 1.4747   |
| *FLOW DATA            |             |                |                    |                                       |             |          |          |                          |          |          |
| Flow Rate             | -gpm        | 0              | 148                | 0                                     | 0           | 254      | 233      | 233                      | 217      | 222      |
| Min Flow Rate         | -gpm        | ***            | ***                | ***                                   | ***         | 193      | 134      | 173                      | 153      | 95       |
| Max Flow Rate         | -gpm        | ***            | 958                | ***                                   | ***         | 326      | 417      | 338                      | 350      | 366      |
| Pump Pressure         | -psi        | 0              | 200                | 0                                     | 0           | 500      | 800      | 650                      | 750      | 750      |
| Pump                  | -hhp        | ***            | 17                 | ***                                   | ***         | 74       | 109      | 88                       | 95       | 97       |
| *PRESSURE LOSSES      | •           |                |                    |                                       |             |          |          |                          |          |          |
| Drill String          | -psi        | ***            | 21                 | ***                                   | ***         | 53       | 56       | 70                       | 68       | 72       |
| Bit                   | -psi        | ***            | 50                 | ***                                   | ***         | 680      | 590      | 590                      | 520      | 550      |
| Annulus               | -psi        | ***            | 2                  | ***                                   | ***         | 16       | 24       | 23                       | 34       | 44       |
| Total System          | -psi        | ***            | 73                 | ***                                   | ***         | 749      | 670      | 683                      | 622      | 666      |
| *BIT HYDRAULICS       |             |                |                    |                                       |             |          |          |                          |          |          |
|                       | inch        | / /            | 16/16/16           | / /                                   | / /         | 11/11/11 | 11/11/11 | 11/11/11                 | 11/11/11 | 11/11/11 |
| •                     | inch        | , ,            | / /                | , ,                                   | , ,         | 1 1      | 1 1      | 1 1                      | / /      | / /      |
| Bit Pressure          |             | ***            | 27                 | ***                                   | ***         | 135      | 74       | 90                       | 69       | 73       |
| Bit                   | -hhp        | ***            | 5                  | ***                                   | ***         | 100      | 81       | 80                       | 66       | 71       |
|                       | ndex)       | ***            | 0.00               | ***                                   | ***         | 1.80     | 1.40     | 1.40                     | 1.20     | 1.30     |
| •                     | m/sec       | ***            | 24.6               | ***                                   | ***         | 89.2     | 81.8     | 81.8                     | 76.2     | 78.0     |
| Impact Force          | -1bs        | ***            | 57                 | ***                                   | ***         | 339      | 298      | 295                      | 261      | 276      |
| *DRILL COLLARS ANNU   |             |                |                    | · · · · · · · · · · · · · · · · · · · |             |          |          |                          |          |          |
|                       | m/min       | ***            | 10.0               | ***                                   | ***         | 57.2     | 52.4     | 52.4                     | 48.8     | 50.0     |
| •                     | m/min       | ***            | 64.5               | ***                                   | ***         | 73.4     | 93.8     | 76.0                     | 78.9     | 82.3     |
| *DRILL PIPE ANNULUS   |             |                |                    |                                       |             |          |          | ,,,,                     |          |          |
|                       | ,<br>·m/min | ***            | 8.0                | ***                                   | ***         | 34.4     | 31.6     | 31.6                     | 29.4     | 30.1     |
| •                     | m/min       | ***            | 59.2               | ***                                   | ***         | 61.8     | 77.3     | 60.9                     | 65.5     | 71.4     |
| *HOLE CLEANING        | ,           |                |                    |                                       |             |          |          |                          |          |          |
|                       | ·m/min      | ***            | 14.4               | ***                                   | ***         | 20.7     | 12.7     | 19.1                     | 16.4     | 11.8     |
| Rising Velocity -     |             | ***            | -6.5               | ***                                   | ***         | 13.7     | 18.9     | 12.5                     | 13.0     | 18.3     |
| Lifting Capacity      | -%          | ***            | ***                | ***                                   | ***         | 40       | 60       | 40                       | 44       | 61       |
| Cuttings Conc         | -%          | ***            | ***                | ***                                   | ***         | 1.60     | 1.16     | 1.40                     | 1.34     | 0.24     |
| •                     | -m/hr       | ***            | 5.0                | ***                                   | ***         | 10.0     | 10.0     | 8.0                      | 8.0      | 2.0      |
| *CASING SHOE PRESSU   | •           |                |                    |                                       |             | 10.0     | 10.0     |                          |          |          |
| ECD FRESSO            |             | ***            | 9.2                | ***                                   | ***         | 9.0      | 9.4      | 9.3                      | 9.5      | 9.6      |
| ECD+Cuttings          | -ppg        | ***            | ***                | ***                                   | ***         | 9.2      | 9.6      | 9.4                      | 9.6      | 9.6      |
| *TOTAL DEPTH PRESSU   | -ppg        |                |                    |                                       |             | 3.4      | J.U      | J.4                      | J. U     | J. U     |
| ECD ECD               |             | ***            | 9.3                | ***                                   | ***         | 9.1      | 9.6      | 9.3                      | 9.5      | 9.7      |
|                       | -ppg        | ***            | 9.3<br>***         | ***                                   | ***         | 9.1      | 9.0      | 9.5                      | 9.5      | 9.7      |
| ECD+Cuttings          | -ppg        | .5.4.6         | destrate           | 4.11.14                               |             | 9.3      | 9.7      | 7.5                      | 9.7      | 9.7      |
| *MUD VOLUMES          |             |                |                    |                                       |             |          |          |                          |          |          |
| Drill String          | -bb1        | ***            | 6                  | 5                                     | 5           | 14       | 16       | 26                       | 40       | 44       |
|                       | -bb]        | ***            | 64                 | 22                                    | 22          | 49       | 56       | 88                       | 134      | 149      |
| Annulus<br>Total Hole | -bbl        | ***            | 70                 | 27                                    | 27          | 63       | 72       | . 114                    | 174      | 193      |

\_\_\_\_\_\_\_

| Operator : CRUSADER RESOURCES                | Contractor : DRILCORP | Description: | WILDCAT  |          |
|----------------------------------------------|-----------------------|--------------|----------|----------|
| Nell Name : STRINGY BARK -1                  | Field/Area : PEP 123  | Location :   |          |          |
| ===================================<br>*Date |                       | 11/23/90     | 11/24/90 | 11/25/90 |
| *Depth -m                                    |                       | 943          | 984      | 1047     |
| *Days Since Spud                             |                       | 10           | 11       | 12       |
| *RHEOLOGICAL PROPERTIES                      |                       |              |          |          |
| Mud Weight -ppg                              |                       | 9.4          | 9.4      | 9.5      |
| Plastic Visc -cps                            |                       | 11           | 9        | 10       |
| Yield Point -lb/100ft2                       |                       | 15           | 14       | 17       |
| Zero Gel -1b/100ft2                          |                       | 3            | 3        | 4        |
| n-factor                                     |                       | 0.5639       | 0.5361   | 0.5208   |
| K -1b/100ft2-rpm <sup>2</sup> n              |                       | 0.9223       | 0.9401   | 1.1791   |
| *FLOW DATA                                   |                       |              |          |          |
| Flow Rate -gpm                               |                       | 222          | 233      | 238      |
| Min Flow Rate -gpm                           |                       | 108          | 111      | 82       |
| Max Flow Rate -gpm                           |                       | 366          | 344      | 384      |
| Pump Pressure -psi                           |                       | 750          | 900      | 1000     |
| Pump -hhp                                    |                       | 97           | 122      | 139      |
| *PRESSURE LOSSES                             |                       | 80           | 83       | 91       |
| Drill String -psi                            |                       | 550          | 670      | 700      |
| Bit -psi Annulus -psi                        |                       | 42           | 41       | 54       |
|                                              |                       | 672          | 794      | 845      |
| Total System -psi *BIT HYDRAULICS            |                       |              | 737      | 04.      |
| Nozzles -1/32 inch                           |                       | 11/11/11     | 9/11/12  | 9/11/12  |
| Nozzles -1/32 inch                           |                       | / /          | / /      | / /      |
| Bit Pressure %                               |                       | 73           | 74       | 70       |
| Bit -hhp                                     |                       | 71           | 91       | 98       |
| Bit HSI (Index)                              |                       | 1.30         | 1.60     | 1.70     |
| Jet Velocity -m/sec                          |                       | 78.0         | 85.9     | 87.7     |
| Impact Force -lbs                            |                       | 276          | 319      | 337      |
| *DRILL COLLARS ANNULUS                       |                       |              |          |          |
| Velocity -m/min                              |                       | 50.0         | 52.4     | 53.6     |
| Critical Vel -m/min                          |                       | 82.3         | 77.5     | 86.4     |
| *DRILL PIPE ANNULUS                          |                       |              |          |          |
| Velocity -m/min                              |                       | 30.1         | 31.6     | 32.3     |
| Critical Vel -m/min                          |                       | 68.7         | 65.8     | 74.0     |
| *HOLE CLEANING                               |                       |              |          |          |
| Slip Velocity -m/min                         |                       | 13.5         | 14.5     | 9.5      |
| Rising Velocity -m/min                       |                       | 16.6         | 17.0     | 22.7     |
| Lifting Capacity -%                          |                       | 55           | 54       | 71       |
| Cuttings Conc -%                             |                       | 0.26         | 0.13     | 0.29     |
| Penetration Rate -m/hr                       |                       | 2.0          | 1.0      | 3.0      |
| *CASING SHOE PRESSURES                       |                       |              |          |          |
| ECD -ppg                                     |                       | 9.6          | 9.6      | 9.7      |
| ECD+Cuttings -ppg                            |                       | 9.6          | 9.6      | 9.8      |
| *TOTAL DEPTH PRESSURES                       |                       |              |          |          |
| ECD -ppg                                     |                       | 9.7          | 9.6      | 9.8      |
| ECD+Cuttings -ppg                            |                       | 9.7          | 9.7      | 9.8      |
| *MUD VOLUMES                                 |                       |              |          |          |
| Drill String -bbl                            |                       | 45           | 47       | 50       |
| Annulus -bbl                                 |                       | 150          | 157      | 168      |
| Total Hole -bbl                              |                       | 195          | 204      | 218      |
|                                              |                       |              |          |          |





Operator : CRUSADER RESOURCES Page : 1 - 1 Well Name : STRINGY BARK -1 Csq MD (m) O.D.(in)

Report Date: 01/01/80 API Well No: - -Contractor: DRILCORP 12 13.375 Descript : WILDCAT 171 9.625 Warehouse : WELSHPOOL Dist Engr : BURKE P.

Location : VICTORIA Spud Date : 11/14/90 Sales Engr: GALAO H.

Well No : S0001

| =======        |            | ====== |                    |                              |                 | =======       | Mud         | =====<br>Туре | =====<br>: Wate | ======<br>r Base |            | ****** | ====== | ===== | ====: | .222555       |            | =========     |        |
|----------------|------------|--------|--------------------|------------------------------|-----------------|---------------|-------------|---------------|-----------------|------------------|------------|--------|--------|-------|-------|---------------|------------|---------------|--------|
| Date<br>(1990) | Depth<br>m |        |                    | YP Gels<br>lb/100ft2 10s/10m |                 | HTHP          | %           | Water<br>%    | %               | Sand<br>%        | MBT<br>ppb | рΗ     |        | Pf    |       | Chlor<br>mg/L | Ca<br>mg/L | Cost<br>Daily | Cumu 1 |
| 11/14          | _          | 8.7    | 90 23<br>SPUD      | 18 3 13<br>: Prepare to sp   | NC              | -             | 2           | 98            | 0               | 0                | 30.0       | 10     | 0.8    | 0.8   |       | 2000          | 60         | 719           | 719    |
| 11/15<br>TVD:  | 173<br>173 | 9.2    | 90 12<br>CIRCULATI | 16 6 20<br>ING:              | NC              | -             | 2           | 98            | -               | 1                | 16.0       | 10     | 0.4    | 0.4   | .6    | 12000         | 80         | 878           | 1598   |
| 11/16<br>TVD:  | 171<br>171 | -      | BOP'S              |                              | -               | -             | -           | -             | -               | -                | <b></b>    |        | -      | -     | -     | -             | -          |               |        |
| 11/17<br>TVD:  | 171<br>171 | 8.5    | BOP'S              |                              | <u>-</u>        |               | -           | -             | -               | -                | -          | 10.5   | -      | -     | ~     | 15000         | 80         | 265           | 1980   |
| 11/18<br>TVD:  | 330<br>330 | 8.8    | 44 8<br>DRILLING   | 12 3 7 : RIH with bit.       | 8<br>Drill flo  | -<br>at colla | 1<br>r, cmt | 99<br>, shoe  | -<br>. Dril     |                  | 7.5<br>I.  | 10.5   | 1.8    | 1.8   | 1.3   | 12000         | 140        | 1393          | 3373   |
| 11/19<br>TVD:  | 375<br>375 | 9.2    | 46 13<br>DST       | 18 3 6<br>: Drill ahead to   |                 | -<br>per trip |             | 97.5          | -               | .75              | 10.0       | 10.5   | 1.7    | 1.7   | .18   | 20000         | 120        | 383           | 3757   |
| 11/20<br>TVD:  | 569<br>569 | 9.1    | 42 12<br>DRILLING  | 12 3 6<br>: Run open DST #   |                 |               |             | 96.5<br>ead.  | -               | 2                | 4.0        | 9      | 0.5    | 0.5   | .15   | 14000         | 180        | 536           | 4293   |
| 11/21<br>TVD:  | 846<br>846 | 9.3    | 45 10<br>DRILLING  | 14 4 7 : Drill ahead.        | 7.8             | -             | 3.5         | 96.5          | -               | 2.5              | 10.0       | 9.0    | 0.3    | 0.3   | .03   | 10000         | 160        | 1422          | 5715   |
| 11/22<br>TVD:  | 935<br>935 | 9.4    | 45 8<br>DRILLING   | 16 4 14<br>:                 | .6              | -             | 2.5         | 97.5          | -               | 1                | 12.0       | 9.0    | 0.4    | 0.4   | .35   | 9000          | 160        | 872           | 6864   |
| 11/23<br>TVD:  | 943<br>943 | 9.4    | 48 11<br>DRILLING  | 15 5 18<br>: Drill ahead.    | 6.8<br>POOH for | -<br>rig repa | 3<br>irs at | 97<br>943m.   | -               | 1.25             | 10.0       | 9      | 0.3    | 0.3   | .15   | 7500          | 160        |               | 6864   |

Operator : CRUSADER RESOURCES Well Name : STRINGY BARK -1

Page : 1 - 2 Report Date: 01/01/80

#### Daily Mud Additions

| ====== |       |         |       | M-I GEL |         | POLYPAC                                 |       | Sodium  | ======================================= |
|--------|-------|---------|-------|---------|---------|-----------------------------------------|-------|---------|-----------------------------------------|
| Date   | Depth | Chlorde | Soda  | M-1 GEE | Lille   | PULTPAG                                 |       | Chlorde |                                         |
| (1990) | •     |         |       | 25KG SK | 25KG SK | 50# SK                                  |       |         |                                         |
|        |       |         |       |         |         |                                         |       |         | ======================================= |
| 11/14  | -     | •••     | 1     | 36      | •••     | •••                                     | •••   | •••     |                                         |
|        |       |         |       |         |         |                                         |       |         |                                         |
| 11/15  | 173   | •••     | 2     | 12      | • • •   | 5                                       | •••   | 10      |                                         |
|        |       |         |       |         |         |                                         |       |         |                                         |
| 11/16  | 171   | 6       | •••   | • • •   | •••     |                                         | •••   |         |                                         |
|        |       |         |       |         |         |                                         |       |         |                                         |
| 11/17  | 171   |         | 1     | 7       | 3       | •••                                     | •••   | 8       |                                         |
|        |       |         |       |         |         |                                         |       |         |                                         |
| 11/18  | 330   |         |       |         |         | 11                                      | 5     | 9       |                                         |
| 11/10  | 550   | •••     | •••   | • • •   | •••     | • • • • • • • • • • • • • • • • • • • • | 3     | 3       |                                         |
|        |       |         |       |         |         | _                                       |       |         |                                         |
| 11/19  | 375   | •••     | •••   | • • •   | •••     | 5                                       | • • • | 16      |                                         |
|        |       |         |       |         |         |                                         |       |         |                                         |
| 11/20  | 569   | •••     | 1     | •••     | •••     | 3                                       | 5     | 3       |                                         |
|        |       |         |       |         |         |                                         |       |         |                                         |
| 11/21  | 846   |         | 2     | 18      |         | 5                                       | 7     | 22      |                                         |
|        |       |         |       |         |         |                                         |       |         |                                         |
| 11/22  | 935   |         | 1     | 12      |         | 1                                       | 12    | • • •   |                                         |
|        |       |         | ·     |         | •       | ·                                       | 7-    |         |                                         |
| 11/02  | 042   |         |       |         |         |                                         |       |         |                                         |
| 11/23  | 943   | • • •   | • • • | •••     | • • •   | •••                                     | • • • | •••     |                                         |

Operator : CRUSADER RESOURCES Well Name : STRINGY BARK -1

Contractor: DRILCORP Descript : WILDCAT

Page : 2 - 1
Report Date: 01/01/80
API Well No: - -

Warehouse : WELSHPOOL

|                |            |           |                    |                   |               |    |     |      | Mu       | d Type     | : Wat    | er Base   |            |     |     |     |     |               |            | -             |        |
|----------------|------------|-----------|--------------------|-------------------|---------------|----|-----|------|----------|------------|----------|-----------|------------|-----|-----|-----|-----|---------------|------------|---------------|--------|
| Date<br>(1990) | Depth<br>m | Wt<br>PPg | FV PV<br>s/qt 80 F | YP<br>- 1b/100ft2 | Ge1s<br>10s/1 |    | API | HTHP | So1<br>% | Water<br>% | 0i1<br>% | Sand<br>% | MBT<br>ppb | рН  | Pm  | Pf  | Mf  | Chlor<br>mg/L | Ca<br>mg/L | Cost<br>Daily | Cumu 1 |
| 11/24<br>TVD:  | 984        | 9.4       | 44 9<br>DRILLING   | • •               | 4             | 11 | 7   |      | 3.5      | 96.5       | -        | .75       | 9.0        | 9.5 | 0.4 | 0.4 | .25 | 5900          | 140        | 573           | 7437   |
| 11/25          | 1047       | 9.5       | 42 10              |                   | -             | 16 | 7.4 |      |          | 95.5       | -        | .75       | 9.0        | 9.5 | 0.4 | 0.4 | .25 | 5000          | 180        | 98            | 7567   |

Operator : CRUSADER RESOURCES Well Name : STRINGY BARK -1

Page : 2 - 2 Report Date: 01/01/80

Daily Mud Additions

Calcium Caustic POLYPAC POLY
Date Depth Chlorde Soda SAL
(1990) 25KG SK 25KG SK 50# SK 25KG SK

11/25 1047 3 ... 1 ...

3

11/24

```
Date: 11/14/90
                                                                                  Deoth:
M-I Drilling Fluids Company
FIELD DATA COMMUNICATIONS SYSTEM
                                          Well No.: S0001
                                                                  Spud: 11/14/90 Activity: SPUD
______
                                                             _______
Operator : CRUSADER RESOURCES
                               Contractor : DRILCORP
                                                                       Description: WILDCAT
                                   Field/Area: PEP 123
Well Name: STRINGY BARK -1
                                                                        Location : VICTORIA
Bit : 12.250 "
                                              CASING
                                                                               MUD VOLUME (bb1)
                                     Casing OD: " Liner OD:
Jets: / / / / 32nd"
                                                                                   Hole Volume :
                   **
                                     Casing ID:
                                                     " Liner ID:
                                                                       **
Drill Pipe 1 OD:
                           O m
                                                                                    Pits Volume:
Drill Pipe 2 OD:
                                                     m Liner TD:
                            m
                                     Casing TD:
                                                                       m
                                                                            Circulating Volume: 85
Drill Collar OD:
                                     Casing TVD:
                                                     m Liner TVD:
                                                                             Mud : FW SPUD MUD
                             m
 MUD PROPERTIES :
                                          CIRCULATION DATA
                                                                              SOLIDS ANALYSIS
                    : PIT 24:00 1/2 Flow Rate
                                                                  3 NaCl %
                                                                             : 0.1 D-So1 %
Sample From
                                                 (gpm):
Flow Line Temp
                   : 60 ^{2}F \frac{1}{2} DP Annular Vel (m/min) :
                                                                  \frac{1}{2} NaCl (ppb): 1.1 D-Sol (ppb):-6.8
                                 \frac{1}{2} DC Annular Vel (m/min):
                                                                  ½ KC1 % : 0.0 Wt Mt1 % :N/A
Depth/TVD
                (m ):
                                                                                    Wt Mtl (ppb) :N/A
Mud Weight
               (ppg): 8.7
                                 \frac{1}{3} DP Critical Vel(m/min):
                                                                 \frac{1}{2} KC1 (ppb): 0.0
                                                                 ½ LGS % : 2.6
               (s/qt): 90 @ 60 ^{2}F_{\frac{1}{2}} DC Critical Vel(m/min):
Funnel Vis
                                                                                    Avg SG : 2.60
Plastic Vis (cps) : 23 @ 60 {}^{2}F_{\frac{1}{2}}^{\frac{1}{2}} Circ. Pressure (psi) : YP/0s Gel (lb/100ft2) : 18 / 2 \frac{1}{2} Bottoms Up (min) :
                                                                  ½ LGS (ppb):23.9
                                                                                     Chem (ppb): 0.0
                                                                  \frac{1}{2} Bent % : 3.4
                                                                                             :-0.202
                                                                                     I/R
10s/10m Gel (1b/100ft2): 3 / 13 \frac{1}{2} Total Circ Time (min):
                                                                  ½ Bent (ppb) :30.8
API F Loss (cc/30 min): NC
                              <sup>2</sup>F <sup>1</sup>/<sub>2</sub> PRODUCTS USED LAST 24 HOURS
                                                               ½ SOLIDS EQUIPMENT Size
HTHP F Loss (cc/30 min):
Cake API/HTHP (32nd"): 2
                               ½ M-I GEL 25KG SK 36
                                                                        Shaker #1: B100
Solids
               (%vol): 2
                                 1 Caustic Soda
                                                    25KG SK 1
                                                                         Shaker #2:
                                                                  1/2
                                                                                    S80
0il/Water
                         /98
               (\%vo1):0
                                                                        Shaker #3:
                                                                         Shaker #4:
Sand
               (%vol):0
               (ppb): 30.0
                                                                       Mud Cleaner:
pn : 10 @ 60 {}^{2}F_{\frac{1}{2}}^{\frac{2}{2}}
Alkal. Mud (Pm) : 0.8 \frac{1}{2}
                                                                        Centrifuge:
                                                                         Desander:
Alkal. Filtrate (Pf/Mf): .55 / 1.0
                                                                         Desilter:
Chlorides (mg/1): 2000
                                                                   1/2
                                                                         Degasser:
Hardness Ca
                    : 60
                                                                    MUD VOLUME ACCT (bb1)
                                                                       Oil Added:
                                                                       Water Added:
                                                                        Mud Built:
                                                                                      115
                    : 0.669
n-Factor
                                                                      Mud Received:
k-Factor (1b/100ft2-rpm): 0.85977
                                                                      Mud Disposed:
REMARKS :
Prepare to spud in.
The Drilcorp rig #24 was moved onto location at Woodside and rigged up.
The spud mud was mixed and the rathole drilled and the well was spudded at
04:00 hours on the 14th November 1990.
About 30 barrels of spud mud was lost on the surface when drilling the
rathole.
                             Warehouse: WELSHPOOL
                                                     Daily Cost : 719 Cumul Cost : 719
M-I Sales Engineer: GALAO.H
```

```
M-I Drilling Fluids Company
                                                                 Date: 11/15/90 Depth: 173 m
FIELD DATA COMMUNICATIONS SYSTEM
                                         Well No. : S0001
                                                                 Spud: 11/14/90 Activity: CIRCULATING
Operator : CRUSADER RESOURCES
                              Contractor : DRILCORP
                                                                      Description: WILDCAT
Well Name: STRINGY BARK -1
                                   Field/Area: PEP 123
                                                                        Location: VICTORIA
Bit: 12.250 "
                                               CASTNG
                                                                              MUD VOLUME (bb1)
Jets:16/16/16/ / / 32nd"
                                    Casing OD: 13.375" Liner OD:
                                                                                  Hole Volume: 70
Drill Pipe 1 OD : 4.500 "
                                    Casing ID: 12.618" Liner ID:
                          34 m
                                                                                  Pits Volume: 111
Drill Pipe 2 OD:
                                    Casing TD: 12 m Liner TD:
                                                                            Circulating Volume: 181
                           m
                                                                      m
Drill Collar OD: 6.250 " 139 m
                                                                             Mud : FW-GEL MUD
                                    Casing TVD: 12
                                                   m Liner TVD:
                                                                      m
 MUD PROPERTIES :
                                          CIRCULATION DATA
                                                                            SOLTOS ANALYSTS
Sample From
                   : PIT 01:00 1 Flow Rate
                                                          148
                                                                 1 NaCl %
                                                                            : 0.6 D-Sol %
                                                (gpm):
                   : 70 °F
                                \frac{1}{2} DP Annular Vel (m/min):
Flow Line Temp
                                                          8.5
                                                                 ½ NaCl (ppb): 6.5 D-Sol (ppb):38.2
               (m): 173 /173 \frac{1}{2} DC Annular Vel (m/min):
Depth/TVD
                                                         10.0
                                                                1/2 KC1 % : 0.0 Wt Mt1 % : N/A
                                                         60.0
              (ppg): 9.2
                                DP Critical Vel(m/min):
                                                                 \frac{1}{2} KCl (ppb): 0.0
                                                                                   Wt Mt1 (ppb) :N/A
Mud Weight
              (s/qt): 90 @ 60 ^{2}F_{\frac{1}{2}} DC Critical Vel(m/min):
Funnel Vis
                                                          64.5
                                                                 ½ LGS % : 5.7
                                                                                   Avg SG : 2.60
               (cps): 12 @ 60 {}^{2}F_{\frac{1}{2}}^{1} Circ. Pressure (psi):
Plastic Vis
                                                           200
                                                                 \frac{1}{2} LGS (ppb) :51.9
                                                                                   Chem (ppb): 2.0
YP/0s Gel (lb/100ft2): 16 / 2 \frac{1}{2} Bottoms Up (min):
                                                           18.2
                                                                 ½ Bent % : 1.3
                                                                                   I/R
                                                                                             :2.121
10s/10m Gel (lb/100ft2): 6
                         / 20 \frac{1}{2} Total Circ Time (min):
                                                                 \frac{1}{2} Bent (ppb) :11.8
                                                          51.4
API F Loss (cc/30 min) : NC
                              ^{2}F \frac{1}{2} PRODUCTS USED LAST 24 HOURS
HTHP F Loss (cc/30 min):
                                                                 1 SOLIDS EQUIPMENT Size
Cake API/HTHP (32nd"): 3
                                ½ M-I GEL 25KG SK 12
                                                                      Shaker #1: B100
Solids
              (%vol) : 2
                                1 Caustic Soda
                                                   25KG SK 2
                                                                       Shaker #2:
                                                                                  S80
                                Sodium Chloride 50KG SK 10
0il/Water
              (%vol):
                         /98
                                                                       Shaker #3:
                                                                 1/2
                                                   50# SK 5
Sand
              (%vol):1

→ POLYPAC

                                                                       Shaker #4:
MBT
               (ppb): 16.0
                                                                     Mud Cleaner:
                 : 10 @ 60 °F ½
                                                                      Centrifuge:
Alkal. Mud (Pm)
                   : 0.4
                                                                        Desander:
Alkal. Filtrate (Pf/Mf): .3 / .6
                                                                        Desilter:
              (mg/1): 12000
Chlorides
                                                                        Degasser:
Hardness Ca
                    : 80
                                                                 ᅕ
                                                                     MUD VOLUME ACCT (bb1)
                                                                      Oil Added:
                                                                     Water Added:
                                                                       Mud Built:
                    : 0.547
n-Factor
                                                                    Mud Received:
k-Factor (1b/100ft2-rpm): 1.14493
                                                                  Mud Disposed:
REMARKS :
The 12 1/4" hole was drilled to 48 meters and a deviation survey was taken
which showed 0 degrees deviation.
Salt was added to inhibit the clay formation encountered from this depth and
Polypac was used for viscosity.
```

M-I Sales Engineer: GALAO.H Warehouse: WELSHPOOL

Daily Cost : 878 Cumul Cost : 1598

| =======================================                                                                                                                                                                                                         | ===== WATER BASE MUD REPORT ======                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| M-I Drilling Fluids Company FIELD DATA COMMUNICATIONS SYSTEM                                                                                                                                                                                    | <br>Well No. : S0001                                                                                                                                                                             | Date: 11/16/90 Depth: 171 m<br>Spud: 11/14/90 Activity: BOP'S                                                                             |
| Operator : CRUSADER RESOURCES Well Name : STRINGY BARK -1                                                                                                                                                                                       | Contractor: DRILCORP Field/Area: PEP 123                                                                                                                                                         | Description : WILDCAT Location : VICTORIA                                                                                                 |
| Bit: 8.500 "  Jets: / / / / 32nd"  Drill Pipe 1 OD: 4.500 " 32 m                                                                                                                                                                                | CASING  Casing OD: 9.625" Liner OD:  Casing ID: 8.681 " Liner ID:                                                                                                                                |                                                                                                                                           |
| Drill Pipe 2 0D : " m Drill Collar 0D : 6.250 " 139 m                                                                                                                                                                                           | Casing TD: 171 m Liner TD:<br>Casing TVD: 171 m Liner TVD:                                                                                                                                       | m Circulating Volume:                                                                                                                     |
| Mud Weight (ppg): $\frac{1}{2}$<br>Funnel Vis (s/qt): @ 60 °F $\frac{1}{2}$<br>Plastic Vis (cps): @ 60 °F $\frac{1}{2}$<br>YP/0s Gel (1b/100ft2): / $\frac{1}{2}$<br>10s/10m Gel (1b/100ft2): / $\frac{1}{2}$                                   | CIRCULATION DATA Flow Rate (gpm): DP Annular Vel (m/min): DC Annular Vel (m/min): DP Critical Vel(m/min): DC Critical Vel(m/min): Circ. Pressure (psi): Bottoms Up (min): Total Circ Time (min): | SOLIDS ANALYSIS  1                                                                                                                        |
| API F Loss (cc/30 min):  HTHP F Loss (cc/30 min):  @ *F \frac{1}{2}  Cake API/HTHP (32nd"):  Solids (%vol):  0il/Water (%vol):  / \$\frac{1}{2}  Sand (%vol):  MBT (ppb):  pH :  Alkal. Mud (Pm) :  Alkal. Filtrate (Pf/Mf):  Chlorides (mg/l): | PRODUCTS USED LAST 24 HOURS Calcium Chloride 25KG SK 6                                                                                                                                           | SOLIDS EQUIPMENT Size Hours  Shaker #1: B100  Shaker #2: S80 Shaker #3: Shaker #4: Mud Cleaner: Centrifuge: Desander: Desilter: Degasser: |
| Hardness Ca : ½ : ½ : ½ : ½ : ½ : ½ : ½ : ½ : /² : /² /                                                                                                                                                                                         |                                                                                                                                                                                                  | MUD VOLUME ACCT (bbl)  1 Oil Added: 1 Water Added: 1 Mud Built: 1 Mud Received: 1 Mud Disposed:                                           |
| REMARKS :                                                                                                                                                                                                                                       |                                                                                                                                                                                                  | ½ Mud Disposed:                                                                                                                           |
| The hole was circulated clean and the 9 The mud was conditioned by reducing the casing. The BOP's were then nippled up.                                                                                                                         | •                                                                                                                                                                                                | •                                                                                                                                         |
|                                                                                                                                                                                                                                                 | *******************************                                                                                                                                                                  | *******************************                                                                                                           |

.

```
Date: 11/17/90 Depth: 171 m
M-I Drilling Fluids Company
                                       - -
                                                            Spud: 11/14/90 Activity: BOP'S
FIELD DATA COMMUNICATIONS SYSTEM
                                       Well No.: S0001
                                                                    Contractor : DRILCORP
Operator : CRUSADER RESOURCES
                                                                  Description: WILDCAT
Well Name: STRINGY BARK -1
                                Field/Area: PEP 123
                                                                   Location : VICTORIA
Bit: 8.500 "
                                           CASING
                                                                          MUD VOLUME (bb1)
Jets: / / / / 32nd"
                                 Casing OD: 9.625" Liner OD:
                                                                              Hole Volume: 27
                                  Casing ID: 8.681 " Liner ID:
                                                                  11
Drill Pipe 1 0D : 4.500 "
                        32 m
                                                                              Pits Volume : -27
Drill Pipe 2 OD:
                                  Casing TD: 171 m Liner TD:
                                                                      Circulating Volume:
                                                                  m
                                                               m
Drill Collar OD : 6.250 " 139 m
                                  Casing TVD: 171 m Liner TVD:
                                                                        Mud : FW-GEL MUD
 MUD PROPERTIES :
                                       CIRCULATION DATA
                                                                        SOLIDS ANALYSIS
Sample From : PIT 23:00 \frac{1}{2} Flow Rate Flow Line Temp : ^{2}F \frac{1}{2} DP Annular
                                            (gpm) :
                              DP Annular Vel (m/min):
Depth/TVD (m): 171 /171 \frac{1}{2} DC Annular Vel (m/min): Mud Weight (ppg): 8.5 \frac{1}{2} DP Critical Vel(m/min):
                              DP Critical Vel(m/min):
           (s/qt):
Funnel Vis
                              \frac{1}{2} DC Critical Vel(m/min):
Plastic Vis (cps):

YP/0s Gel (1b/100ft2): /

10s/10m Gel (1b/100ft2): /
                              \frac{1}{2} Circ. Pressure (psi): \frac{1}{2} Bottoms Up (min):
                             \frac{1}{2} Total Circ Time (min):
API F Loss (cc/30 min):
HTHP F Loss (cc/30 min): @ {}^2F_{\frac{1}{2}} PRODUCTS USED LAST 24 HOURS \frac{1}{2} SOLIDS EQUIPMENT Size Hours
Cake API/HTHP (32nd"):
                      ½ M-I GEL 25KG SK 7
                                                              1 Shaker #1: B100
                              ½ Caustic Soda
                                                25KG SK 1
Solids
         (%vol):
                                                                   Shaker #2:
                                                                             S80
                              ½ Sodium Chloride 50KG SK 8
                                                                  Shaker #3:
0il/Water
             (%vol):
             (%vol):
                              1 Lime
                                               25KG SK 3
Sand
                                                                  Shaker #4:
             (ppb):
                                                                Mud Cleaner:
              : 10.5@ 60 °F ½
ρН
                                                                 Centrifuge:
Alkal. Mud (Pm)
                                                                  Desander:
                  :
Alkal. Filtrate (Pf/Mf):
                                                                   Desilter:
Chlorides (mg/l): 15000
                                                                   Degasser:
Hardness Ca
                  : 80
                                                              MUD VOLUME ACCT (bb1)
                                                                  Oil Added:
                                                                 Water Added:
                                                                  Mud Built:
                                                                                100
n-Factor
                                                                Mud Received:
k-Factor (1b/100ft2-rpm):
                                                              Mud Disposed:
REMARKS:
Work on BOP's.
The BOP's were nippled up and tested. During this time 100 barrels of brine
------
M-I Sales Engineer : GALAO.H
                            Warehouse: WELSHPOOL
                                                       Daily Cost : 265 Cumul Cost : 1980
```

| M-I Drilling Fluids Company<br>FIELD DATA COMMUNICATIONS SYSTEM                            | <br>Well No. : S0001                                               | Date: 11/18/90<br>Spud: 11/14/90 Act |                   |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|-------------------|
| Operator : CRUSADER RESOURCES Well Name : STRINGY BARK -1                                  | Contractor : DRILCORP<br>Field/Area : PEP 123                      | Description : N                      | VILDCAT           |
| Bit: 8.500 "                                                                               | CASING                                                             | MUD \                                | /OLUME (bbl)      |
| Jets:11/11/11/ / / 32nd"                                                                   | Casing OD: 9.625" Liner OD:                                        | 11                                   | Hole Volume: 63   |
| Drill Pipe 1 OD : 4.500 " 193 m                                                            | Casing ID: 8.681 " Liner ID:                                       | 11                                   | Pits Volume: 129  |
| Drill Pipe 2 OD: " m                                                                       | Casing TD: 171 m Liner TD:                                         | m Circula                            | ating Volume: 192 |
| Drill Collar OD : 6.250 " 137 m                                                            | Casing TVD: 171 m Liner TVD:                                       | m Mud:                               | FW-GEL MUD        |
| MUD PROPERTIES :                                                                           | CIRCULATION DATA                                                   | SOLIDS                               | ANALYSIS          |
| Sample From : FL 21:00 $\frac{1}{2}$                                                       | Flow Rate (gpm): 254                                               | ½ NaC1 % : 0.6                       | D-So1 % : 1.7     |
| Flow Line Temp : 80 $^{2}$ F $\frac{1}{2}$                                                 | DP Annular Vel (m/min): 36.5                                       | $\frac{1}{2}$ NaCl (ppb): 6.7        | D-So1 (ppb):15.6  |
| Depth/TVD (m): 330 /330 $\frac{1}{2}$                                                      | DC Annular Vel (m/min): 57.2                                       | $\frac{1}{2}$ KC1 % : 0.0            | Wt Mtl % :N/A     |
| Mud Weight (ppg): 8.8 $\frac{1}{2}$                                                        | DP Critical Vel(m/min): 62.5                                       | $\frac{1}{2}$ KC1 (ppb): 0.0         | Wt Mtl (ppb) :N/A |
| Funnel Vis (s/qt): 44 @ 80 $^{2}F^{\frac{1}{2}}$                                           | DC Critical Vel(m/min): 73.4                                       | 1 LGS % : 2.7                        | Avg SG : 2.60     |
| Plastic Vis (cps): 8 @ 80 $^{2}F_{\frac{1}{2}}^{\frac{1}{2}}$                              | Circ. Pressure (psi): 500                                          | $\frac{1}{2}$ LGS (ppb) :24.4        | Chem (ppb): 3.0   |
| YP/0s Ge1 (1b/100ft2): 12 / 2 $\frac{1}{2}$                                                | Bottoms Up (min): 8.1                                              | ½ Bent % : 0.6                       | I/R :1.85         |
| 10s/10m Ge1 (1b/100ft2): 3 /7 $\frac{1}{2}$                                                | Total Circ Time (min): 31.7                                        | ½ Bent (ppb): 5.8                    |                   |
| API F Loss (cc/30 min) : 8                                                                 |                                                                    | 1 2                                  |                   |
| HTHP F Loss (cc/30 min): @ ${}^2F\frac{1}{2}$                                              | PRODUCTS USED LAST 24 HOURS                                        | SOLIDS EQUIPMENT                     | Size Hours        |
| Cake API/HTHP (32nd"): 2                                                                   | Sodium Chloride 50KG SK 9                                          | 1 Shaker #1:                         | S40 14            |
| Solids $(\%\text{vol}):1$ $\frac{1}{2}$                                                    | POLY SAL 25KG SK 5                                                 | 5 Shaker #2:                         | S60 14            |
| 0il/Water (%vol): /99 ½ Sand (%vol): .75 ½                                                 | POLYPAC 50# SK 11                                                  | 첫 Shaker #3:<br>첫 Shaker #4:         |                   |
| MBT (ppb): 7.5 ½                                                                           |                                                                    | Mud Cleaner:                         |                   |
| pH : 10.5@ 60 °F \frac{1}{3}                                                               |                                                                    | Centrifuge:                          |                   |
| Alkal. Mud (Pm) : 1.8 1/3                                                                  |                                                                    | Desander:                            | 14                |
| Alkal. Filtrate (Pf/Mf): .8 / 1.3 ½                                                        |                                                                    | Desilter:                            | 14                |
| Chlorides $(mg/1)$ : 12000 $\frac{1}{2}$                                                   |                                                                    | Degasser:                            | • •               |
| Hardness Ca : 140 $\frac{1}{2}$                                                            |                                                                    | 1                                    |                   |
| : 1/2                                                                                      |                                                                    | MUD VOLUME ACCT                      | (bb1)             |
| : 1/2                                                                                      |                                                                    | 1 Oil Added:                         |                   |
| : 1/2                                                                                      |                                                                    | Water Added:                         | 72                |
| : 1/2                                                                                      | •                                                                  | ⅓ Mud Built:                         |                   |
| n-Factor : $0.531$ $\frac{1}{2}$                                                           |                                                                    | 1/2 Mud Received:                    |                   |
| k-Factor (1b/100ft2-rpm): $0.87322$                                                        |                                                                    | Mud Disposed:                        |                   |
| (15) 1001 02 1 par): 0:07022 2                                                             |                                                                    |                                      |                   |
|                                                                                            | •                                                                  |                                      |                   |
| REMARKS :                                                                                  | hoe Drill shood                                                    |                                      |                   |
| REMARKS : RIH with bit. Drill float collar, cmt, s                                         |                                                                    |                                      |                   |
| REMARKS: RIH with bit. Drill float collar, cmt, s After the BOP's were successfully tested | the S31G bit was run into the hole                                 |                                      |                   |
| REMARKS : RIH with bit. Drill float collar, cmt, s                                         | the S31G bit was run into the hole at collar, cement and shoe were |                                      |                   |

M-I Sales Engineer: GALAO.H Warehouse: WELSHPOOL Daily Cost: 1393 Cumul Cost: 3373

Continue and account of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the co

```
M-I Drilling Fluids Company
                                                                Date: 11/19/90
                                                                                 Depth: 375 m
                                         - -
FIELD DATA COMMUNICATIONS SYSTEM
                                         Well No.: S0001
                                                                Spud: 11/14/90 Activity: DST
Contractor : DRILCORP
Operator : CRUSADER RESOURCES
                                                                    Description: WILDCAT
                                  Field/Area: PEP 123
                                                                      Location : VICTORIA
Well Name: STRINGY BARK -1
Bit: 8.500 "
                                             CASING
                                                                            MUD VOLUME (bb1)
Jets:11/11/11/ / / 32nd"
                                   Casing OD: 9.625" Liner OD:
                                                                                 Hole Volume: 72
                                   Casing ID: 8.681 " Liner ID:
Drill Pipe 1 OD : 4.500 "
                                                                     11
                         238 m
                                                                                  Pits Volume: 114
Drill Pipe 2 0D:
                                    Casing TD: 171 m Liner TD:
                                                                           Circulating Volume: 186
                                                                     m
Drill Collar OD : 6.250 " 137 m
                                    Casing TVD: 171 m Liner TVD:
                                                                           Mud : SW BIOPOLYMER MUD
                                                                     m
                                         CIRCULATION DATA
 MUD PROPERTIES :
                                                                           SOLIDS ANALYSIS
                  : FL 14:45 ½ Flow Rate
                                                          233
                                                               ⅓ NaCl %
                                                                           : 0.9 D-So1 %
Sample From
                                                (gpm):
                  : 80 °F
                                                          33.5
                                                                ½ NaCl (ppb):10.9
Flow Line Temp

DP Annular Vel (m/min):

                                                                                  D-So1 (ppb):38.2
                                                                ½ KC1 % : 0.0
                (m): 375 /375 \frac{1}{2} DC Annular Vel (m/min):
                                                         52.4
                                                                                  Wt Mt] % :N/A
Depth/TVD
                                                          78.3
Mud Weight
              (ppg): 9.2
                               DP Critical Vel(m/min):
                                                                \frac{1}{2} KC1 (ppb): 0.0
                                                                                  Wt Mtl (ppb) :N/A
              (s/qt): 46 @ 80 ^{2}F \frac{1}{2} DC Critical Vel(m/min):
Funnel Vis
                                                          93.8
                                                                ½ LGS % : 5.2
                                                                                  Avg SG
Plastic Vis (cps): 13 @ 80 ^{3}F_{\frac{1}{2}}^{\frac{1}{2}} Circ. Pressure (psi): YP/Os Gel (lb/100ft2): 18 / 2 \frac{1}{2} Bottoms Up (min):
                                                                \frac{1}{2} LGS (ppb) :47.0
                                                         800
                                                                                  Chem (ppb): 3.0
                                                          10.1
                                                                ½ Bent % : 0.6
                                                                                  I/R
10s/10m Gel (lb/100ft2): 3 / 6
                               \frac{1}{2} Total Circ Time (min): 33.5
                                                               \frac{1}{2} Bent (ppb) : 5.8
API F Loss (cc/30 min): 6.6
                             ²F ½
                                                                1 SOLIDS EQUIPMENT Size
HTHP F Loss (cc/30 min): @
                                   PRODUCTS USED LAST 24 HOURS
                                                                                           Hours
Cake API/HTHP (32nd"): 2
                               ½ Sodium Chloride 50KG SK 16
                                                                      Shaker #1:
                                                                                 S40
                                                                                           10
                                                                ᇂ
                                                  50# SK 5
Solids
              (%vol): 2.5
                                POLYPAC
                                                                      Shaker #2:
                                                                                  S60
                                                                                           10
              (\%vol): /97.5 \frac{1}{2}
0il/Water
                                                                      Shaker #3:
              (%vol): .75
                                                                      Shaker #4:
Sand
MBT
               (ppb): 10.0
                                                                     Mud Cleaner:
                : 10.5@ 80 °F ½
: 1.7 ½
                                                                      Centrifuge:
Alkal. Mud (Pm)
                                                                                           10
                                                                       Desander:
Alkal. Filtrate (Pf/Mf): .1 / .18
                                                                                           10
                                                                       Desilter:
Chlorides
             (mg/1): 20000
                                                                       Degasser:
Hardness Ca
                    : 120
                                                                    MUD VOLUME ACCT (bb1)
                                                                      Oil Added:
                                                                    Water Added:
                                                                                   10
                                                                     Mud Built:
n-Factor
                    : 0.534
                                                                    Mud Received:
k-Factor (1b/100ft2-rpm): 1.37652
                                                                    Mud Disposed:
Drill ahead to 375m. Wiper trip. DST.
At 375 meters it was decided to run a DST. The mud weight was raised to 9.2
ppg because of tight hole experienced on a wiper trip.
M-I Sales Engineer: GALAO.H Warehouse: WELSHPOOL
                                                          Daily Cost
                                                                    :
                                                                          383
                                                                                Cumul Cost : 3757
```

-----------

```
------ WATER BASE MUD REPORT -------- Day :
                                                                   Date: 11/20/90 Depth: 569 m
M-I Drilling Fluids Company
                                          _ _ .
FIELD DATA COMMUNICATIONS SYSTEM
                                           Well No.: S0001
                                                                  Spud: 11/14/90 Activity: DRILLING
______
Operator : CRUSADER RESOURCES Contractor : DRILCORP
                                                                       Description: WILDCAT
                                   Field/Area : PEP 123
Well Name: STRINGY BARK -1
                                                                         Location: VICTORIA
Bit: 8.500 "
                                                CASING
                                                                                MUD VOLUME (bb1)
Jets:11/11/11/ / / 32nd"
                                     Casing OD: 9.625" Liner OD:
                                                                                     Hole Volume: 114
Drill Pipe 1 0D : 4.500 "
                          432 m
                                     Casing ID: 8.681 " Liner ID:
                                                                        11
                                                                                     Pits Volume: 153
                   11
Drill Pipe 2 OD:
                                   Casing TD: 171 m Liner TD:
                                                                            Circulating Volume: 267
                                                                      m
Drill Collar OD : 6.250 " 137 m
                                    Casing TVD: 171 m_ Liner TVD:
                                                                              Mud : SW BIOPOLYMER MUD
 MUD PROPERTIES :
                                           CIRCULATION DATA
                                                                               SOLIDS ANALYSIS
                                                                 1 NaC1 %
                    : FL 03:00 \frac{1}{2} Flow Rate
Sample From
                                                  (gpm) :
                                                            233
                                                                              : 0.7
                                                                                     D-So1 %
                                                                                                 : 4.5
                                                           33.5
                   : 80 °F
Flow Line Temp
                                 \frac{1}{2} DP Annular Vel (m/min):
                                                                   1 NaCl (ppb): 7.7
                                                                                     D-Sol (ppb):41.4
                                                          52.4
                (m): 569 /569 \frac{1}{2} DC Annular Vel (m/min):
Depth/TVD
                                                                   1 KC1 % : 0.0 Wt Mt1 % :N/A
                                 \frac{1}{2} DP Critical Vel(m/min): 61.8 \frac{1}{2} KCl (ppb): 0.0 Wt Mtl (ppb): N/A
Mud Weight
               (ppg): 9.1
              (s/qt): 42 @ 80 ^{2}F_{\frac{1}{2}} DC Critical Vel(m/min):
Funnel Vis
                                                          76.0 \frac{1}{2} LGS % : 4.8 Avg SG : 2.60
               (cps): 12 @ 80 {}^{2}F_{\frac{1}{2}} Circ. Pressure (psi):
                                                          650
                                                                  ½ LGS (ppb) :43.8 Chem (ppb) : 3.0
                                                                  (ppb):43.8

1/2 Bent % :-0.1

1/2 Bent (pph)
Plastic Vis
YP/0s Gel (lb/100ft2): 12 / 2 \frac{1}{2} Bottoms Up (min): 10s/10m Gel (lb/100ft2): 3 / 6 \frac{1}{2} Total Circ Time (min):
                                                            15.9
                                                                                      I/R
                                                          48.1
API F Loss (cc/30 min): 7.0
                                 \ -----
HTHP F Loss (cc/30 min): @ ^{2}F \frac{1}{2}
                                     PRODUCTS USED LAST 24 HOURS
                                                                   3 SOLIDS EQUIPMENT Size
                                                                                              Hours
              (%vol): 3.5
Cake API/HTHP (32nd"): 2
                               ½ Caustic Soda 25KG SK 1
                                                                         Shaker #1:
                                                                                     S40
                                                                                              10
                                 Sodium Chloride
Solids
                                                   50KG SK 3
                                                                         Shaker #2:
                                                                                     $60
                                                                                               10
0il/Water
              (%vol): /96.5 \frac{1}{2} POLY SAL 25KG SK 5
                                                                         Shaker #3:
                            POLYPAC
Sand
              (\%vol): 2
                                                    50# SK 3
                                                                         Shaker #4:
MBT
               (ppb): 4.0
                                                                       Mud Cleaner:
                : 9 @ 80 <sup>2</sup>F ½
: 0.5 ½
На
                                                                        Centrifuge:
Alkal. Mud (Pm)
                                                                          Desander:
                                                                                               10
Alkal. Filtrate (Pf/Mf): .1 / .15
                                                                          Desilter:
                                                                                               10
Chlorides
              (mg/1): 14000
                                                                          Degasser:
Hardness Ca
                    : 180
                                                                       MUD VOLUME ACCT (bb1)
                                                                        Oil Added:
                                                                       Water Added:
                                                                         Mud Built:
                     : 0.628
                                                                       Mud Received:
k-Factor (1b/100ft2-rpm): 0.61195
                                                                       Mud Disposed:
REMARKS :
Run open DST #1 at 375m. RIH drill ahead.
The open DST # 1 was run successfully and the DST tool was pulled out of the
```

The open DST # 1 was run successfully and the DST tool was pulled out of the hole. A new bit was picked up and run in the hole to drill ahead. Polypac was used to increase the viscosity and reduce the filtrate. At this stage no Gel was able to be prehydrated because there was only one mud pit which was the active system.

M-I Sales Engineer: GALAO.H Warehouse: WELSHPOOL Daily Cost: 536 Cumul Cost: 4293

```
M-I Drilling Fluids Company
                                                              Date: 11/21/90
                                                                               Depth: 846 m
FIELD DATA COMMUNICATIONS SYSTEM
                                        Well No.: S0001
                                                              Spud: 11/14/90 Activity: DRILLING
_______
Operator : CRUSADER RESOURCES Contractor : DRILCORP
                                                                  Description : WILDCAT
Well Name: STRINGY BARK -1
                                 Field/Area : PEP 123
                                                                     Location: VICTORIA
Bit: 8.500 "
                                            CASING
                                                                          MUD VOLUME (bb1)
Jets:11/11/11/ / / 32nd"
                                   Casing OD: 9.625" Liner OD:
                                                                               Hole Volume: 174
Drill Pipe 1 OD : 4.500 "
                                   Casing ID: 8.681 " Liner ID:
                        709 m
                                                                               Pits Volume:
Drill Pipe 2 OD:
                  11
                                   Casing TD: 171 m Liner TD:
                                                                         Circulating Volume: 265
                         m
                                                                   m
Drill Collar OD : 6.250 " 137 m
                                   Casing TVD: 171 m Liner TVD:
                                                                         Mud : SW BIOPOLYMER MUD
 MUD PROPERTIES :
                                        CIRCULATION DATA
                                                                         SOLIDS ANALYSIS
                                                             1 NaCl %
                   : FL 03:00 \frac{1}{2} Flow Rate
Sample From
                                              (gpm):
                                                      217
                                                                       : 0.5 D-So1 %
                                                                                          : 5.8
Flow Line Temp
                   : 90 °F
                               DP Annular Vel (m/min):
                                                       31.2
                                                              \frac{1}{2} NaCl (ppb) : 5.4
                                                                               D-So1 (ppb):52.9
                             DC Annular Vel (m/min):
               (m): 846 /846
Depth/TVD
                                                       48.8
                                                              \frac{1}{2} KC1 % : 0.0
                                                                                Wt Mt1 % :N/A
                                                             ½ KC1 (ppb): 0.0
                               DP Critical Vel(m/min):
                                                       66.3
Mud Weight
              (ppg): 9.3
                                                                                Wt Mtl (ppb):N/A
             (s/qt): 45 @ 80 ^{2}F_{\frac{1}{2}} DC Critical Vel(m/min):
Funnel Vis
                                                        78.9
                                                              \frac{1}{2} LGS % : 6.6 Avg SG : 2.60
              (cps): 10 @ 80 {}^{2}F_{\frac{1}{2}} Circ. Pressure (psi):
Plastic Vis
                                                        750
                                                             \frac{1}{2} LGS (ppb):60.1 Chem (ppb): 3.0
YP/0s Gel (lb/100ft2): 14 / 2 \frac{1}{2} Bottoms Up (min):
                                                      25.9
                                                              ½ Bent % : 0.5 I/R
                               \frac{1}{2} Total Circ Time (min):
10s/10m Gel (lb/100ft2): 4 / 7
                                                      51.3
                                                              1 Bent (ppb): 4.1
API F Loss (cc/30 min): 7.8
                               1 -----
                            ²F 1/2
                                  PRODUCTS USED LAST 24 HOURS
HTHP F Loss (cc/30 min): @
                                                                 SOLIDS EQUIPMENT Size
                                                                                        Hours
Cake API/HTHP (32nd"): 2
                               ½ M-I GEL 25KG SK 18
                                                                   Shaker #1: S40
                                                                                        23
                                               25KG SK 2
Solids
             (%vol) : 3.5
                               1 Caustic Soda
                                                                    Shaker #2:
                                                                               S60
                                                                                        23
Oil/Water
             (%vol): \sqrt{96.5} \frac{1}{2} Sodium Chloride 50KG SK 22
                                                               붓
                                                                   Shaker #3:
             (%vol): 2.5
                          1 POLY SAL
Sand
                                         25KG SK 7
                                                                    Shaker #4:
MBT
              (ppb): 10.0
                               POLYPAC
                                                50# SK 5
                                                                  Mud Cleaner:
                : 9.0 @ 80 °F ½
: 0.3 ½
ρН
                                                                   Centrifuge:
Alkal. Mud (Pm)
                                                                     Desander:
                                                                                        23
Alkal. Filtrate (Pf/Mf): .01 / .03
                                                                     Desilter:
                                                                                        23
Chlorides
             (mg/1): 10000
                                                                     Degasser:
Hardness Ca
                   : 160
                                                                  MUD VOLUME ACCT (bb1)
                                                                   Oil Added:
                                                                  Water Added:
                                                                   Mud Built:
                                                                                150
                   : 0.541
                                                                  Mud Received:
k-Factor (1b/100ft2-rpm): 1.00779
                                                                  Mud Disposed:
REMARKS:
The mud weight was maintained at 9.2 ppg with salt additions. At 644 meters a
very loose sand was encountered and the drill string became stuck.
The pipe was worked free and the mud was conditioned by adding prehydrated
bentonite which could now be mixed in a separate tank.
```

Warehouse: WELSHPOOL

Daily Cost : 1422

Cumul Cost : 5715

M-I Sales Engineer: GALAO.H

```
----- WATER BASE MUD REPORT -------- Day: 9 ------ Day: 9 ------
                                                             Date: 11/22/90 Depth: 935 m
M-I Drilling Fluids Company
                                       Well No.: S0001
FIELD DATA COMMUNICATIONS SYSTEM
                                                             Spud: 11/14/90 Activity: DRILLING
______
Operator : CRUSADER RESOURCES Contractor : DRILCORP
                                                                Description: WILDCAT
Well Name: STRINGY BARK -1
                                 Field/Area : PEP 123
                                                                   Location : VICTORIA
Bit: 8.500 "
                                           CASING
                                                                          MUD VOLUME (bb1)
Jets:11/11/11/ / / 32nd"
                                  Casing OD: 9.625" Liner OD:
                                                                              Hole Volume: 193
Drill Pipe 1 OD : 4.500 "
                                  Casing ID: 8.681 " Liner ID:
                                                                              Pits Volume: 113
                        798 m
                  11
                                  Casing TD: 171 m Liner TD:
                                                                      Circulating Volume: 306
Drill Pipe 2 OD:
                         m
                                                                   m
Drill Collar OD: 6.250 " 137 m
                                  Casing TVD: 171 m Liner TVD:
                                                                        Mud : SW BIOPOLYMER MUD
                                                                 m
                                       CIRCULATION DATA
 MUD PROPERTIES :
                                                                         SOLIDS ANALYSIS
                 : FL 04:25 ½ Flow Rate (gpm): 222 ½ NaCl %
                                                                       : 0.4 D-Sol %
Sample From
                                                                                        : 6.4
                             \frac{1}{2} DP Annular Vel (m/min): 31.9 \frac{1}{2} DC Annular Vel (m/min): 50.0 \frac{1}{2} DP Critical Vel(m/min): 72.1
                 : 80 °F
                                                              1 NaCl (ppb): 4.8
                                                                               D-So1 (ppb):58.5
Flow Line Temp
               (m): 935 /935
                                                              ½ KC1 % : 0.0
                                                                               Wt Mt1 % :N/A
Depth/TVD
                                                              ½ KCl (ppb): 0.0 Wt Mtl (ppb): N/A
Mud Weight
              (ppg): 9.4
              (s/qt): 45 @ 80 ^{2}F \frac{1}{2} DC Critical Vel(m/min):
Funnel Vis
                                                       82.3
                                                              ½ LGS % : 7.4 Avg SG : 2.60
              (cps): 8 @ 80 {}^{2}F_{\frac{1}{2}} Circ. Pressure (psi): 750
                                                             \frac{1}{3} LGS (ppb):67.5 Chem (ppb): 3.5
Plastic Vis
YP/0s Gel (1b/100ft2): 16 / 3 \frac{1}{2} Bottoms Up (min):
                                                       28.2
                                                             ½ Bent % : 0.6 I/R
10s/10m Gel (1b/100ft2): 4 / 14 \frac{1}{2} Total Circ Time (min): 57.9
                                                             ½ Bent (ppb): 5.5
\frac{1}{2} SOLIDS EQUIPMENT Size Hours
                                                                   Shaker #1: S40
                                                                                       23
                                                                    Shaker #2:
                                                                              S60
                                                                                        23
              (%vo1): /97.5 \frac{1}{2} POLY SAL
                                              25KG SK 12
0il/Water
                                                                    Shaker #3:
Sand
              (%vol) : 1
                              POLYPAC
                                                50# SK 1
                                                                    Shaker #4:
MRT
              (ppb): 12.0
                                                                  Mud Cleaner:
              : 9.0 @ 80 °F ½
ρН
                                                                  Centrifuge:
Alkal. Mud (Pm)
                   : 0.4
                                                                     Desander:
                                                                                        23
Alkal. Filtrate (Pf/Mf): .1 / .35
                                                                    Desilter:
                                                                                        23
Chlorides (mg/1): 9000
                                                                   Degasser:
Hardness Ca
                  : 160
                                                              MUD VOLUME ACCT (bb1)
                                                                   Oil Added:
                                                                  Water Added:
                                                              냨
                                                                   Mud Built:
                   : 0.466
n-Factor
                                                                 Mud Received:
k-Factor (1b/100ft2-rpm): 1.47474
                                                              4 Mud Disposed:
REMARKS :
At 849 meters drilling stopped for rig repairs. After the repairs were
completed, drilling recommenced to 935 meters.
M-I Sales Engineer: GALAO.H Warehouse: WELSHPOOL
                                                 Daily Cost : 872 Cumul Cost : 6864
```

```
=========================== Day : 10 =======
M-I Drilling Fluids Company
                                                                   Date: 11/23/90
                                                                                  Depth: 943 m
                                          - -
FIELD DATA COMMUNICATIONS SYSTEM
                                          Well No.: S0001
                                                                  Spud: 11/14/90 Activity: DRILLING
Operator : CRUSADER RESOURCES Contractor : DRILCORP
                                                                       Description : WILDCAT
Well Name: STRINGY BARK -1
                                   Field/Area: PEP 123
                                                                         Location: VICTORIA
Bit: 8.500 "
                                              CASING
                                                                              MUD VOLUME (bb1)
                                     Casing OD: 9.625" Liner OD:
Jets:11/11/11/ / / 32nd"
                                                                                    Hole Volume: 195
Drill Pipe 1 0D : 4.500 "
                                     Casing ID: 8.681 " Liner ID:
                                                                        11
                         806 m
                                                                                     Pits Volume: 57
                                                                             Circulating Volume: 252
Drill Pipe 2 OD: "
                                     Casing TD: 171 m Liner TD:
                          m
                                                                        m
Drill Collar OD : 6.250 " 137 m
                                     Casing TVD: 171 m Liner TVD:
                                                                              Mud : SW BIOPOLYMER MUD
                                                                       m
                                          CIRCULATION DATA
 MUD PROPERTIES :
                                                                              SOLIDS ANALYSIS
                  : FL 04:30 \frac{1}{2} Flow Rate (gpm):
: 80 ^2F \frac{1}{2} DP Annular Vel (m/min):
                                                            222 🖠 NaCl 🛪
                                                                              : 0.3 D-So1 %
Sample From
                                                            31.9
                                                                   \frac{1}{2} NaC1 (ppb): 4.0 D-So1 (ppb):62.9
Flow Line Temp
Depth/TVD
                                                          50.0
               (m): 943 /943 \frac{1}{2} DC Annular Vel (m/min):
                                                                   \frac{1}{2} KC1 % : 0.0
                                                                                     Wt Mt1 % :N/A
                                                                  \frac{1}{2} KCl (ppb): 0.0
Mud Weight
               (ppg): 9.4
                                \frac{1}{2} DP Critical Vel(m/min):
                                                            69.5
                                                                                     Wt Mtl (ppb) :N/A
                                                                 עטקא): 0.0
12 LGS % : 7.5
13 LGS /
               (s/qt): 48 @ 80 °F \frac{1}{2} DC Critical Vel(m/min):
                                                            82.3
Funnel Vis
                                                                                     Avg SG : 2.60
               (cps): 11 @ 80 {}^{2}F_{\frac{1}{2}}^{1} Circ. Pressure (psi):
                                                                   \frac{1}{2} LGS (ppb) :68.5
Plastic Vis
                                                            750
                                                                                     Chem (ppb): 2.5
YP/0s Gel (1b/100ft2): 15 / 3 \frac{1}{2} Bottoms Up (min):
                                                            28.4
                                                                   ½ Bent % : 0.3
                                                                                     I/R
                                                                                             :5.596
10s/10m Gel (1b/100ft2) : 5 / 18 \frac{1}{2} Total Circ Time (min) :
                                                          47.7
                                                                   } Bent (ppb) : 3.0
API F Loss (cc/30 min): 6.8
HTHP F Loss (cc/30 min): @ ^{2}F \frac{1}{2}
                                                                   3 SOLIDS EQUIPMENT Size
                                     PRODUCTS USED LAST 24 HOURS
                                                                                              Hours
Cake API/HTHP (32nd"): 2
                                                                         Shaker #1: B80/S40
                                                                                              6
Solids
              (\%vol):3
                                                                         Shaker #2:
                                                                                     S60/S30
                                                                                              6
0il/Water
                         /97
                                                                         Shaker #3:
               (%vol):
              (%vol) : 1.25
                                                                         Shaker #4:
Sand
MBT
               (ppb): 10.0
                                                                   ł
                                                                       Mud Cleaner:
pH : 9 @ 80 ^{2}F \frac{1}{2} Alkal. Mud (Pm) : 0.3 \frac{1}{2}
                                                                        Centrifuge:
                                                                                              6
                                                                          Desander:
Alkal. Filtrate (Pf/Mf): .05 / .15
                                                                          Desilter:
Chlorides (mg/1): 7500
                                                                          Degasser:
Hardness Ca
                    : 160
                                                                      MUD VOLUME ACCT (bb1)
                                                                        Oil Added:
                                                                       Water Added:
                                                                        Mud Built:
                    : 0.564
                                                                      Mud Received:
n-Factor
k-Factor (1b/100ft2-rpm): 0.92231
                                                                      Mud Disposed:
REMARKS:
 Drill ahead. POOH for rig repairs at 943m.
More rig repairs were necessary at 943 meters when the rotary table failed and
there was a delay in getting spare parts.
A new bit was run in the hole and reamed to bottom.
M-I Sales Engineer: GALAO.H Warehouse: WELSHPOOL
                                                            Daily Cost : 0 Cumul Cost : 6864
```

|                                                                     | ===== WATER BASE MUD REPORT ======         | ====== Day: 11 ======                                            |
|---------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------|
| M-I Drilling Fluids Company<br>FIELD DATA COMMUNICATIONS SYSTEM     | <br>Well No. : S0001                       | Date: 11/24/90 Depth: 984 m<br>Spud: 11/14/90 Activity: DRILLING |
| Operator : CRUSADER RESOURCES Well Name : STRINGY BARK -1           | Contractor : DRILCORP Field/Area : PEP 123 | Description : WILDCAT Location : VICTORIA                        |
| Bit: 8.500 "                                                        | CASING                                     | MUD VOLUME (bb1)                                                 |
| Jets:9 /11/12/ / / 32nd"                                            | Casing OD: 9.625" Liner OD:                | : " Hole Volume : 204                                            |
| Drill Pipe 1 0D : 4.500 " 847 m                                     | Casing ID: 8.681 " Liner ID:               | : " Pits Volume : 56                                             |
| Drill Pipe 2 OD: " m                                                | Casing TD: 171 m Liner TD:                 | m Circulating Volume: 260                                        |
| Drill Collar OD : 6.250 " 137 m                                     | Casing TVD: 171 m Liner TVD:               | m Mud : SW BIOPOLYMER MUD                                        |
| MUD PROPERTIES :                                                    | CIRCULATION DATA                           | SOLIDS ANALYSIS                                                  |
| Sample From : FL 03:00 $\frac{1}{2}$                                | Flow Rate (gpm): 233                       | $\frac{1}{2}$ NaCl % : 0.3 D-Sol % : 7.1                         |
| Flow Line Temp : $80^{-2}$ F $\frac{1}{2}$                          | DP Annular Vel (m/min): 33.5               | 1 NaCl (ppb): 3.1 D-Sol (ppb):64.6                               |
| Depth/TVD (m): 984 /984 $\frac{1}{2}$                               | DC Annular Vel (m/min): 52.4               | 1 KC1 % : 0.0 Wt Mt1 % :N/A                                      |
| Mud Weight (ppg): 9.4 $\frac{1}{2}$                                 | DP Critical Vel(m/min): 66.6               | 1/2 KCl (ppb): 0.0 Wt Mtl (ppb):N/A                              |
| Funnel Vis $(s/qt): 44 @ 80 ^{2}F_{\frac{1}{2}}$                    | DC Critical Vel(m/min): 77.5               | $\frac{1}{2}$ LGS % : 7.6 Avg SG : 2.60                          |
| Plastic Vis (cps): 9 @ 80 ${}^{2}F_{\frac{1}{2}}^{\frac{1}{2}}$     | · · · · · · · · · · · · · · · · · · ·      | $\frac{1}{2}$ LGS (ppb):69.4 Chem (ppb): 3.0                     |
| YP/0s Gel (lb/100ft2): 14 / 3 $\frac{1}{3}$                         | Bottoms Up (min): 28.3                     | 3 Bent % : 0.2 I/R :6.381                                        |
| 10s/10m Gel (1b/100ft2): 4 / 11 $\frac{1}{2}$                       | Total Circ Time (min): 46.9                | 1 Bent (ppb): 1.8                                                |
| API F Loss (cc/30 min): 7 $\frac{1}{2}$                             |                                            |                                                                  |
| HTHP F Loss (cc/30 min): @ ${}^{2}F_{\frac{1}{2}}$                  | PRODUCTS USED LAST 24 HOURS                | 1 SOLIDS EQUIPMENT Size Hours                                    |
| Cake API/HTHP (32nd"): 2 $\frac{1}{2}$                              | Caustic Soda 25KG SK 3                     | 1 Shaker #1: B80/S40 9                                           |
| Solids ( $7vol$ ): 3.5 $\frac{1}{2}$                                | POLY SAL 25KG SK 7                         | 1 Shaker #2: S60/S30 9                                           |
| Oil/Water (%vol): $/96.5 \frac{1}{2}$                               | POLYPAC 50# SK 2                           | 1 Shaker #3:                                                     |
| Sand (%vol): .75 $\frac{1}{2}$                                      |                                            | 1 Shaker #4:                                                     |
| MBT (ppb): 9.0 $\frac{1}{2}$                                        |                                            | Mud Cleaner:                                                     |
| pH : 9.5 @ 80 <sup>2</sup> F ½                                      |                                            | Centrifuge:                                                      |
| Alkal. Mud (Pm) : 0.4 $\frac{1}{2}$                                 |                                            | Desander: 9                                                      |
| Alkal. Filtrate (Pf/Mf): .02 / .25                                  |                                            | Desilter: 9                                                      |
| Chlorides (mg/1): 5900 $\frac{1}{2}$                                |                                            | Degasser:                                                        |
| Hardness Ca : 140 $\frac{1}{2}$                                     |                                            | 1                                                                |
| : 1                                                                 |                                            | MUD VOLUME ACCT (bb1)                                            |
| : 1                                                                 |                                            | $\frac{1}{2}$ Oil Added:                                         |
| : 1                                                                 |                                            | Water Added: 10                                                  |
| : 1/2                                                               |                                            | 1 Mud Built:                                                     |
| n-Factor : $0.536$                                                  |                                            | Mud Received:                                                    |
| k-Factor (1b/100ft2-rpm): 0.94007 ½                                 |                                            | ½ Mud Disposed:                                                  |
| REMARKS :<br>Drill ahead.<br>Another survey was taken at 984 meters |                                            |                                                                  |
| M-I Sales Engineer : GALAO.H War                                    | ehouse: WELSHPOOL Daily (                  |                                                                  |

```
Date: 11/25/90 Depth: 1047 m
M-I Drilling Fluids Company
                                          _ _
FIELD DATA COMMUNICATIONS SYSTEM
                                          Well No.: S0001
                                                                 Spud: 11/14/90 Activity: LOGGING
______
                                                           Operator : CRUSADER RESOURCES
                              Contractor : DRILCORP
                                                                      Description: WILDCAT
Well Name: STRINGY BARK -1
                                   Field/Area: PEP 123
                                                                       Location : VICTORIA
Bit: 8.500 "
                                              CASING
                                                                              MUD VOLUME (bb1)
Jets:9 /11/12/ / / 32nd"
                                    Casing OD: 9.625" Liner OD:
                                                                                   Hole Volume: 218
                                    Casing ID: 8.681 " Liner ID:
                                                                       11
Drill Pipe 1 OD : 4.500 "
                         910 m
                                                                                   Pits Volume: 52
                                                                          Circulating Volume: 270
Drill Pipe 2 OD:
                            m
                                     Casing TD: 171 m Liner TD:
                                                                       m
Drill Collar OD : 6.250 " 137 m
                                     Casing TVD: 171 m Liner TVD:
                                                                             Mud : SW BIOPOLYMER MUD
 MUD PROPERTIES :
                                          CIRCULATION DATA
                                                                             SOLIDS ANALYSIS
                  : FL 16:00 ½ Flow Rate (gpm): 238 ½ NaCl % : 0.2 D-Sol % : 8.0 : 80 °F ½ DP Annular Vel (m/min): 34.2 ½ NaCl (ppb): 2.6 D-Sol (ppb): 72.9
Sample From
Flow Line Temp
              (m): 1047 / 1047 \frac{1}{2} DC Annular Vel (m/min): 53.6
Depth/TVD
                                                                1 KC1 % : 0.0 Wt Mt1 % :N/A
                                                                ½ KC1 (ppb): 0.0
                                                         74.8
              (ppg): 9.5
Mud Weight
                                DP Critical Vel(m/min):
                                                                                    Wt Mtl (ppb) :N/A
                                                                ½ LGS % : 8.4
½ LGS (ppb) : 76.8
                                                         86.4
              (s/qt): 42 @ 80 ^{2}F_{\frac{1}{2}} DC Critical Vel(m/min):
Funnel Vis
                                                                                    Avg SG : 2.60
Plastic Vis (cps): 10 @ 80 {}^{2}F_{\frac{1}{2}} Circ. Pressure (psi): YP/0s Gel (lb/100ft2): 17 / 4 \frac{1}{2} Bottoms Up (min): 10s/10m Gel (lb/100ft2): 8 / 16 \frac{1}{2} Total Circ Time (min):
                                                           1000
                                                                                    Chem (ppb): 3.0
                                                         29.6
                                                                  \frac{1}{2} Bent % : 0.1
                                                                                    I/R
                                                         47.6
                                                                  1 Bent (ppb): 0.9
API F Loss (cc/30 min): 7.4
HTHP F Loss (cc/30 min): @ 2F 1 PRODUCTS USED LAST 24 HOURS
                                                                  1 SOLIDS EQUIPMENT Size
                                                                                             Hours
Cake API/HTHP (32nd"): 2
                                ½ POLYPAC 50# SK 1
                                                                        Shaker #1: B80/S40
Solids
              (%vol): 4.5
                                 1 Calcium Chloride 25KG SK 3
                                                                        Shaker #2:
                                                                                   S60/S30
              (7vo1): /95.5 \frac{1}{2}
0il/Water
                                                                        Shaker #3:
              (%vol): .75
Sand
                                                                        Shaker #4:
               (ppb): 9.0
MBT
                                                                      Mud Cleaner:
pH : 9.5 @ 80 ^{2}F \frac{1}{2} Alkal. Mud (Pm) : 0.4 \frac{1}{2}
                                                                       Centrifuge:
                                                                  ł
                                                                         Desander:
                                                                                             12
Alkal. Filtrate (Pf/Mf): .02 / .25
                                                                         Desilter:
                                                                                             7
Chlorides
           (mg/1):5000
                                                                         Degasser:
Hardness Ca
                    : 180
                                                                     MUD VOLUME ACCT (bb1)
                                                                      Oil Added:
                                                                      Water Added:
                                                                                     10
                                                                       Mud Built:
                    : 0.521
n-Factor
                                                                     Mud Received:
k-Factor (1b/100ft2-rpm): 1.17913
                                                                  Mud Disposed:
REMARKS :
TD at 1047 meters. Log. Plug and abandon.
The Total depth was reached at 1047 meters when the logging program commenced.
After the logging was finished it was decided to plug and abandon Stringy Bark
M-I Sales Engineer: GALAO.H Warehouse: WELSHPOOL
                                                           Daily Cost: 98 Cumul Cost: 7567
```

Time Analysis

APPENDIX 5

TIME ANALYSIS

#### STRINGY BARK NO. 1

#### TIME ANALYSIS

| Time Analysis                    | Time<br>(hours) | Time<br>(%) |
|----------------------------------|-----------------|-------------|
| Drilling                         | 106.0           | 36.0        |
| Conditioning mud and circulating | 12.5            | 4.2         |
| Trips (excluding P & A)          | 43.5            | 14.7        |
| Wait on parts                    | 20.0            | 6.8         |
| Rig repairs & service            | 8.5             | 2.9         |
| Drill stem testing               | 15.0            | 5.1         |
| Deviation surveys                | 5.0             | 1.7         |
| Wireline logging                 | 12.5            | 4.2         |
| Run and cement casing            | 17.0            | 5.8         |
| Nipple up and test BOP'S         | 24.0            | 8.1         |
| Plug and abandon                 | 31.0            | 10.5        |
|                                  | 295.0           | 100.0       |

Drill Stem Test Reports APPENDIX 6

DRILL STEM TEST REPORTS

## FORMATION TEST REPORT



# HALLIBURTON RESERVOIR SERVICES



A Halliburton Company

Customer: CRUSADER OIL NL

Well Description: STRINGY BARK #1 Field Name: GIPPSLAND BASIN

TEST NO: DST #1

TEST DATE: 19-NOV-90

**TICKET NO: 000381** 

### HALLIBURTON SERVICES

REPORT TICKET NO: 000381 BT-GAUGE TICKET NO: 000381

DATE: 19-11-90

HALLIBURTON CAMP: ADELAIDE

TESTER: T.Burke

WITNESS:

DRILLING CONTRACTOR: DRILLCORP LEGAL LOCATION: 38 31' 2.33"S 146 54' 1.76"E

OPERATOR: CRUSADER OIL NL LEASE NAME: STRINGY BARK

WELL NO: 1 TEST NO: 1

TESTED INTERVAL: 1191.00 - 1227.00 ft

FIELD AREA: GIPPSLAND BASIN

COUNTY/LSD:

STATE/PROVINCE: VICTORIA

COUNTRY: AUSTRALIA

NOTICE: THIS REPORT IS BASED ON SOUND ENGINEERING PRACTICES, BUT BECAUSE OF VARIABLE WELL CONDITIONS AND OTHER INFORMATION WHICH MUST BE RELIED UPON HALLIBURTON MAKES NO WARRANTY, EXPRESS OR IMPLIED AS TO THE ACCURACY OF THE DATA OR OF ANY CALCULATIONS OR OPINIONS EXPRESSED HEREIN. YOU AGREE THAT HALLIBURTON SHALL NOT BE LIABLE FOR ANY LOSS OR DAMAGE, WHETHER DUE TO NEGLIGENCE OR OTHERWISE ARISING OUT OF OR IN CONNECTION WITH SUCH DATA, CALCULATIONS OR OPINIONS.

#### TABLE OF CONTENTS

| SECTION 1: TEST SUMMARY & INFORMATION                                                                                                                    |                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Summary of Test Results Test Period Summary Pressure vs. Time Plot Test and Formation Data Rate History Table Tool String Configuration Operator Job Log | 1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6 |
| SECTION 2: ANALYSIS                                                                                                                                      |                                        |
| Plots                                                                                                                                                    | 2.1                                    |
| SECTION 3: MECHANICAL GAUGE DATA                                                                                                                         |                                        |
| Gauge No. 8008 Gauge No. 8822 Gauge No. 7885                                                                                                             | 3.1<br>3.2<br>3.3                      |

Date: 19-11-90 Ticket No: 000381 Page No: 1.1

#### SUMMARY OF TEST

Lease Owner: CRUSADER OIL NL Lease Name: STRINGY BARK

Well No.: 1 Test No.: 1

County/LSD: State/Province: VICTORIA

Country: AUSTRALIA

Formation Tested: LATROBE GROUP

Hole Temp: 102.00 F

Total Depth: 1230.00 ft

Net Pay: 9.80 ft

Gross Tested Interval: 1191.00 - 1227.00 ft

Perforated Interval (ft):

#### **RECOVERY:**

2.18bbl. MUD

1.18bbl. FORMATION WATER

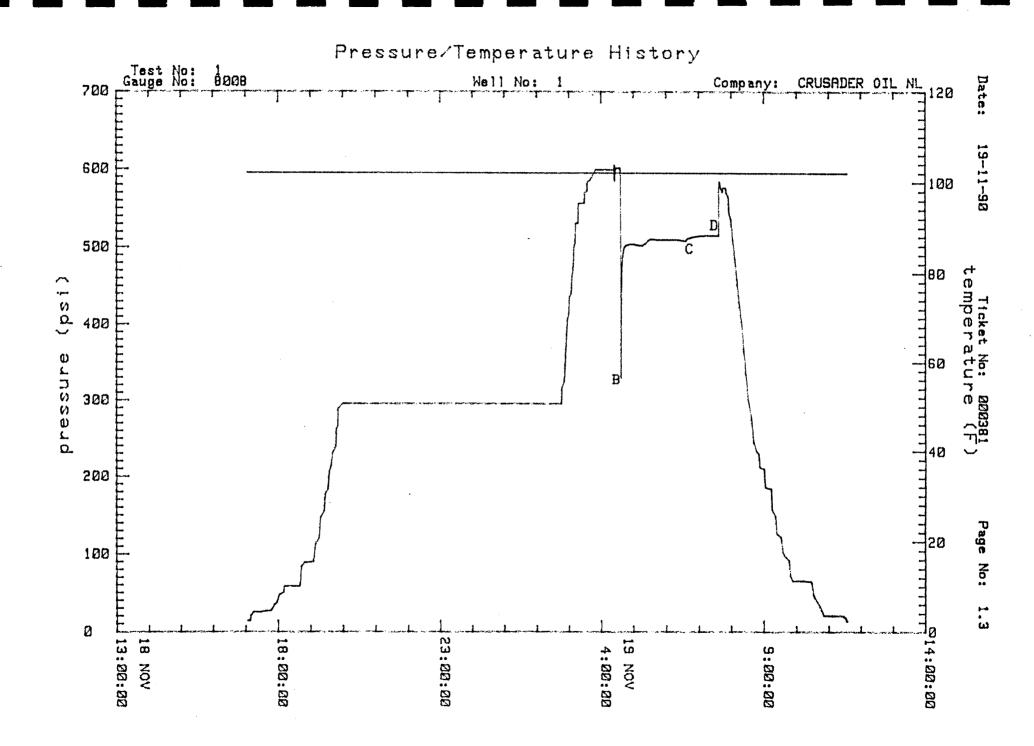
#### **REMARKS:**

ALL DOWNHOLE PRESSURES ARE IN ABSOLUTE

PSIA.

PLUGGING OF LOWER TOOL STRING WAS

EVIDENT DURING FLOW PERIOD.


Date: 19-11-90 Ticket No: 000381 Page No: 1.2

#### TEST PERIOD SUMMARY

Gauge No.: 8008 Depth: 1227.00 ft Blanked off: Yes Hour of clock: 24

| ID | PERIOD | DESCRIPTION         | PRESSURE (psi) | DURATION (min) |
|----|--------|---------------------|----------------|----------------|
| A  |        | Initial Hydrostatic | 599.49         |                |
| В  | 1      | Start Draw-down     | 328.97         |                |
| C  |        | End Draw-down       | 507.82         | 119.71         |
| С  | 2      | Start Build-up      | 507.82         |                |
| D  |        | End Build-up        | 515.78         | 60.11          |
| E  |        | Final Hydrostatic   | 575.93         |                |
|    |        |                     |                |                |

NOTE: for Pressure vs. Time Plot, see next page.



Date: 19-11-90 Ticket No: 000381 Page No: 1.4

#### TEST AND FORMATION DATA

Formation Tested: LATROBE GROUP

All Depths Measured From: KELLY BUSHINGS

Elevation: 0.00 ft Total Depth: 1230.00 ft

Net Pay: 9.80 ft
Hole or Casing Size: 8.500 in

Gross Tested Interval: 1191.00 - 1227.00 ft

Perforated Interval (ft):

#### HOLE FLUID HOLE TEMPERATURE

Type: DRILLING FLUID Depth: 1227.00 ft Weight: 9.20 lb/gal Estimated: 95.00 F Viscosity: 46 seconds Actual: 102.00 F

#### HYDROCARBON PROPERTIES CUSHION DATA

Oil Gravity (API): 0.0 @ 60 F TYPE AMOUNT WEIGHT

Gas/Oil ratio (ScF/STB): 0.0 NIL

Gas Gravity (SG): 0.75

#### FLUID PROPERTIES FOR RECOVERED MUD AND WATER

| RESISTIV | ITY              | CHLORIDES         | SG                                      | PH                                      |
|----------|------------------|-------------------|-----------------------------------------|-----------------------------------------|
| @        | F                | PPM               |                                         |                                         |
| @        | F                | PPM               |                                         |                                         |
| <b>@</b> | F                | PPM               |                                         |                                         |
| @        | F                | PPM               |                                         |                                         |
| @        | F                | PPM               |                                         |                                         |
| @        | F                | PPM               |                                         |                                         |
|          | ୍<br>ଡ<br>ଡ<br>ଡ | @ F<br>@ F<br>@ F | @ F PPM @ F PPM @ F PPM @ F PPM @ F PPM | @ F PPM @ F PPM @ F PPM @ F PPM @ F PPM |

#### SAMPLER DATA

Surface Pressure: 0 psi
Volume of Gas: 0 ft3
Volume of Oil: 0 cc
Volume of Water: 0 cc
Volume of Mud: 0 cc
Total Liquids: 0 cc

#### **REMARKS:**

ALL DOWNHOLE PRESSURES ARE IN ABSOLUTE PSIA.

PLUGGING OF LOWER TOOL STRING WAS EVIDENT DURING FLOW PERIOD.

Date: 19-11-90

Ticket No: 000381 Page No: 1.5

#### RATE HISTORY TABLE

|   | Period<br>No | Test<br>Type | j | Prod Rate q(j)<br>(bbl/d) | Duration<br>(hrs) | Cum. Time t(j)<br>(hrs) |
|---|--------------|--------------|---|---------------------------|-------------------|-------------------------|
| • |              |              |   |                           |                   |                         |
|   |              |              | 0 | 0.0                       | 0.00              | 0.00                    |
|   | 1            | DD           | 1 | 3.4                       | 1.99              | 1.99                    |
|   | 2            | BU           | 2 | 0.0                       | 1.01              | 3.00                    |

Date: 19-11-90

Ticket no: 000381

Page no: 1.6.1

#### TEST STRING CONFIGURATION

|                          | 0.D.<br>(in) | I.D.<br>(in) | LENGTH<br>(ft) | DEPTH<br>(ft) |
|--------------------------|--------------|--------------|----------------|---------------|
| DRILL PIPE               | 4.500        | 3.860        | 730.010        |               |
| DRILL COLLARS            | 6.000        | 2.620        | 329.560        |               |
| PUMP OUT REVERSING SUB   | 6.000        | 3.800        | 1.000          |               |
| DRILL COLLARS            | 6.000        | 2.628        | 60.070         |               |
| IMPACT REVERSING SUB     | 6.000        | 3.000        | 1.000          |               |
| DRILL COLLARS            | 6.000        | 2.620        | 38.180         |               |
| BAR CATCHER SUB          | 6.000        | 1.120        | 1.000          |               |
| AP RUNNING CRSE          | 5.000        | 2.250        | 4.140          | 1154.00       |
| CROSSOVER                | 5.800        | 2.200        | 1.222          |               |
| BURL CIP VALVE           | 5.000        | 0.870        | 4.878          |               |
| SRMPLE CHAMBER           | 5.000        | 2.500        | 4.870          |               |
| DRAIN VALVE              | 5.000        | 2.200        | 8.868          |               |
| HYDROSPRING TESTER       | 5.000        | 0.750        | 5.310          | 1174.00       |
| AP RUNNING CASE          | 5.000        | 2.258        | 4.140          | 1175.00       |
| JAR                      | 5.000        | 1.750        | 5.000          |               |
| VR SAFETY JOINT          | 5.000        | 1.000        | 2.780          |               |
| OPEN HOLE PACKER         | 6.000        | 1.530        | 5.850          | 1191.00       |
| ANCHOR PIPE SAFETY JOINT | 5.000        | 1.500        | 4.300          |               |
| PERFORATED TRIL PIPE     | 5.000        | 2.370        | 30.000         |               |
| BLANKED-OFF RUNNING CRSE | 5.000        | 2.440        | 4.060          | 1227.00       |
| TOTAL DEPTH              |              |              |                | 1230.00       |

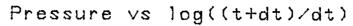
Date: 19-11-90

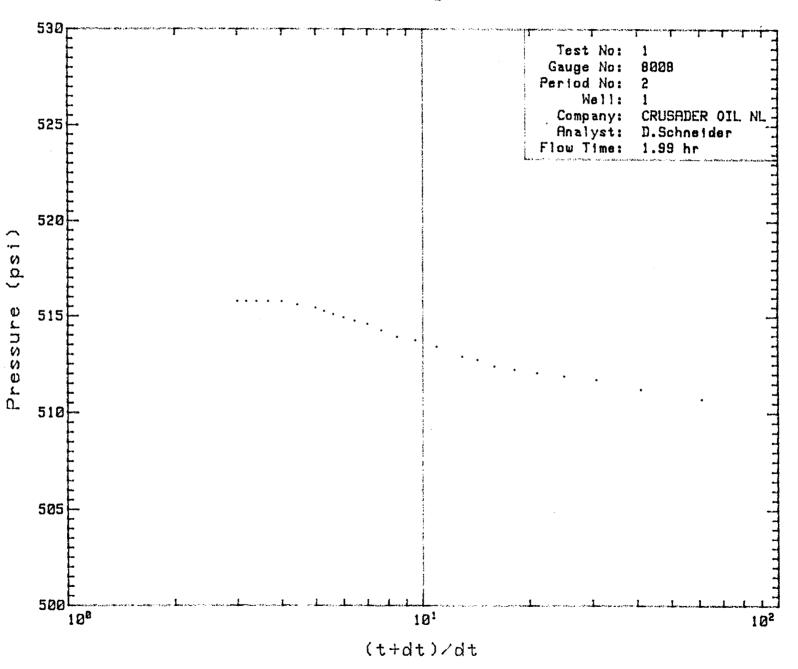
Ticket No: 000381

LIQUID

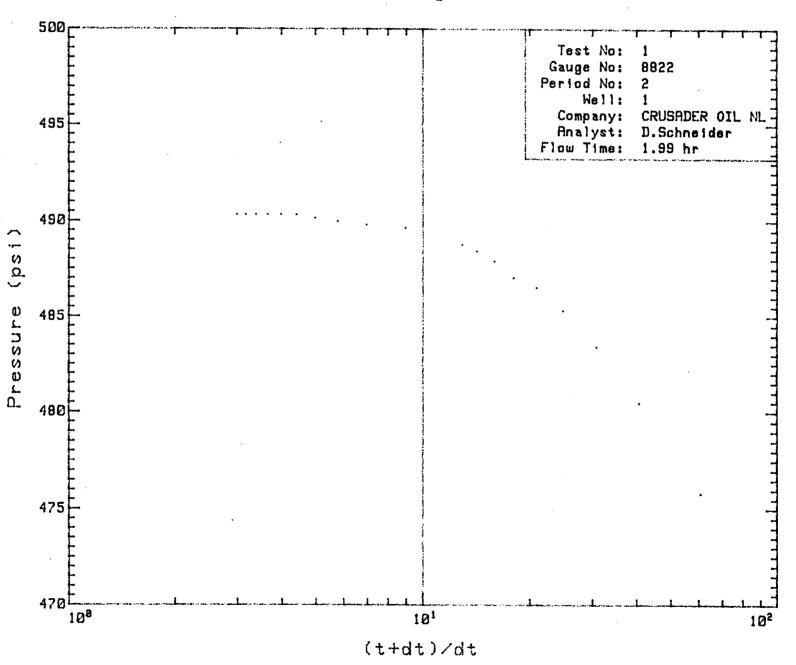
Page No: 1.7.1

Test No: 1


#### OPERATOR JOB LOG


GAS

Type of Flow Measuring Device: .5"CER. CHOKE


CHOKE SURFACE

| TIME<br>HH:MM:SS                                                                                                                |       | PRESSURE<br>(psi) |  | REMARKS                                                                                                                                                                    |  |
|---------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3-NOV-90<br>17:35:00<br>17:35:00<br>18:15:00                                                                                    |       |                   |  | SURFACE PRESSURE = PSIG MAKE UP TOOLS TOOLS MADE UP, RUN IN HOLE WAIT IN CASING                                                                                            |  |
| 18:15:00<br>-NOV-90<br>04:31:00<br>04:37:00<br>04:38:00<br>05:00:00<br>06:37:00<br>07:37:00<br>07:37:00<br>10:30:00<br>11:45:00 | 32/64 |                   |  | SET PACKER, 300001b. OPEN TOOL, STRONG BLOW BLOW DECREASING SLIGHTLY MODERATE BLOW CLOSE TOOL FOR CIP OPEN BYPASS, PULL FREE, PULL OUT OF HOLE TOOL AT TABLE TOOL LAID OUT |  |





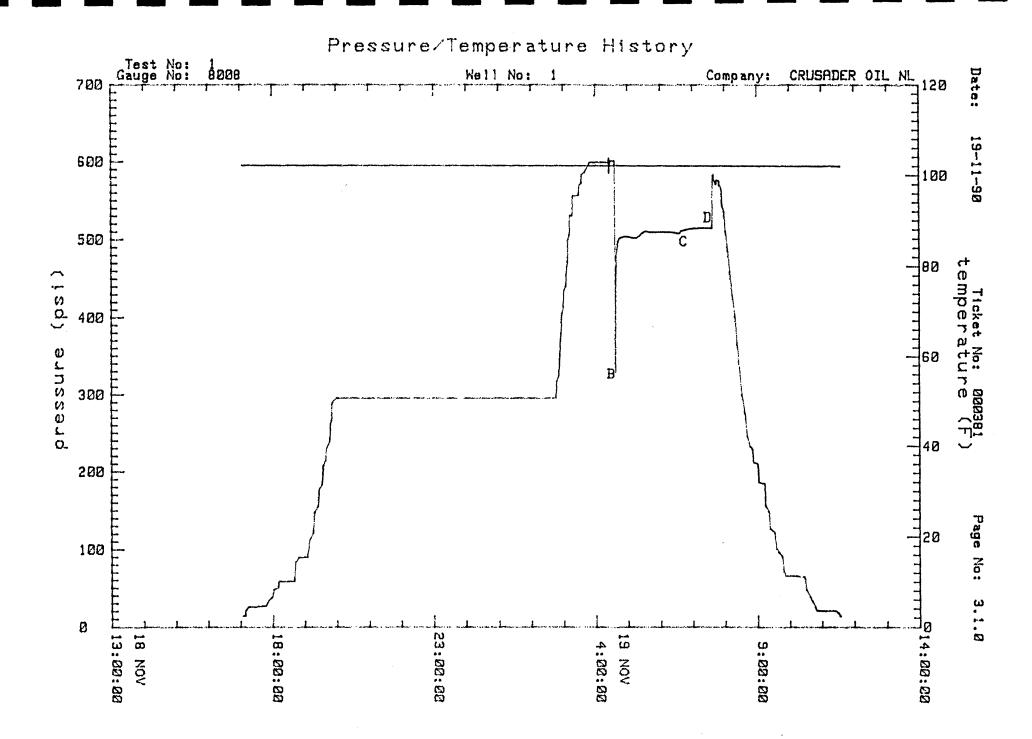
Ticket No:



Ticket No:

186000

Page No:


Date: 19-11-90 Ticket No: 000381 Page No: 3.1

#### TEST PERIOD SUMMARY

Gauge No.: 8008 Depth: 1227.00 ft Blanked off: Yes Hour of clock: 24

| ID | PERIOD | DESCRIPTION         | PRESSURE (psi) | DURATION (min) |
|----|--------|---------------------|----------------|----------------|
| A  |        | Initial Hydrostatic | 599.49         |                |
| В  | 1      | Start Draw-down     | 328.97         |                |
| С  |        | End Draw-down       | 507.82         | 119.71         |
| С  | 2      | Start Build-up      | 507.82         |                |
| D  |        | End Build-up        | 515.78         | 60.11          |
| E  |        | Final Hydrostatic   | 575.93         |                |

NOTE: for Pressure vs. Time Plot, see next page.



PRESSURE VS TIME

MECHANICAL gauge no.: 8008 Gauge Depth: 1227.00 ft

24 Hour: Clock no.:

| TIM<br>HH:MM        |            | D TIME (min) | PRESSURE (psi)     | TEMP<br>(F)    | COMMENTS                   |
|---------------------|------------|--------------|--------------------|----------------|----------------------------|
|                     |            |              |                    |                |                            |
| 18-NOV-9            | 0          |              | Data Prin          | t Freque       | ency: 1                    |
| <b>17:04:</b>       |            |              | 13.688             | 102.0          |                            |
| 17:08:              |            |              | 13.688             |                |                            |
| 17:09:              | 46         |              | 20.622             | 102.0          |                            |
| 17:14:              | 42         |              | 25.020             | 102.0          |                            |
| 17:27:              | 49         |              | 25.189             | 102.0          |                            |
| <b>17:35:</b>       |            |              |                    |                | SURFACE PRESSURE = PSIG    |
| 17:35:              |            |              |                    |                | MAKE UP TOOLS              |
| 17:39:              |            |              | 26.711             | 102.0          |                            |
| 17:47:              |            |              | 27.219             | 102.0          |                            |
| 17:53:              |            |              | 34.830             | 102.0          |                            |
| 17:57:              |            |              | 37.198             | 102.0          |                            |
| 18:02:              |            |              | 47.855             | 102.0          |                            |
| 18:10:<br>18:11:    |            |              | 50.561<br>58.343   | 102.0<br>102.0 |                            |
| 18:15:              |            |              | 30.343             | 102.0          | TOOLS MADE UP, RUN IN HOLE |
| 18:15:              |            |              |                    |                | WAIT IN CASING             |
| 18:29:              |            |              | 58.343             | 102.0          | WALL IN CADING             |
| 18:40:              |            |              | 58.343             | 102.0          |                            |
| 18:43:              |            |              | 83.718             | 102.0          |                            |
| 18:49:              |            |              | 89.301             | 102.0          |                            |
| <b>18:59:</b>       | 58         | ,            | 90.147             | 102.0          |                            |
| 19:05:              | 27         |              | 90.655             | 102.0          |                            |
| 19:09:              | 25         |              | 112.649            | 102.0          |                            |
| 19:15:              |            |              | 120.263            | 102.0          |                            |
| 19:18:              |            |              | 147.337            | 102.0          |                            |
| <b>19:25:</b>       |            |              | 154.952            | 102.0          | •                          |
| 19:27:2             |            |              | 177.967            | 102.0          |                            |
| 19:33:0             |            |              | 183.383            | 102.0          |                            |
| 19:35:3<br>19:38:4  |            | •            | 207.416<br>213.509 | 102.0<br>102.0 |                            |
| 19:38:4             |            |              | 230.436            | 102.0          |                            |
| 19:47:              |            |              | 238.899            | 102.0          |                            |
| 19:48:              |            |              | 262.768            | 102.0          |                            |
| _ 19:50:5           |            |              | 265.984            | 102.0          |                            |
| 19:51:2             |            |              | 289.008            | 102.0          |                            |
| 19:59:5             | 54         |              | 295.611            | 102.0          |                            |
| 20:29:5             |            |              | 295.611            | 102.0          |                            |
| 20:59:              |            |              | 295.611            | 102.0          |                            |
| 21:29:5             |            |              | 295.611            | 102.0          |                            |
| 21:59:5             |            |              | 295.611            | 102.0          |                            |
| 22:29:5             |            |              | 295.611            | 102.0          |                            |
| 22:59:5             |            |              | 295.611            | 102.0          |                            |
| 23:29:5             |            |              | 295.611            | 102.0          |                            |
| 23:59:5<br>9-NOV-90 |            |              | 295.611            | 102.0          |                            |
| 00:29:5             |            |              | 295.611            | 102.0          |                            |
| 00.27.              | <i>-</i> 1 |              | 277.011            | 102.0          |                            |

PRESSURE VS TIME

MECHANICAL gauge no.: 8008 Gauge Depth: 1227.00 ft

Clock no.: Hour: 24

| TIME<br>HH:MM:SS         | D TIME<br>(min) | PRESSURE<br>(psi) | TEMP<br>(F)                 | COMMENTS                      |
|--------------------------|-----------------|-------------------|-----------------------------|-------------------------------|
|                          |                 |                   | ~~~~~~                      |                               |
| 19-NOV-90                |                 | Data Prin         | t Fremier                   | ncy: 1                        |
| 00:59:52                 |                 | 295.611           | 102.0                       | icy. I                        |
| 01:29:53                 |                 | 295.611           | 102.0                       |                               |
| 01:29:53                 |                 | 295.611           | 102.0                       |                               |
| 02:29:52                 |                 | 295.611           | 102.0                       |                               |
| 02:29:52                 |                 | 295.611           | 102.0                       |                               |
| 02:47:30                 |                 | 317.452           | 102.0                       |                               |
| 02:51:35                 |                 | 324.225           | 102.0                       |                               |
| 02:51:55                 |                 | 356.736           | 102.0                       |                               |
| 02:54:02                 |                 | 381.122           | 102.0                       |                               |
| 02:57:29                 |                 | 405.341           | 102.0                       |                               |
| 03:00:15                 |                 | 414.317           | 102.0                       |                               |
| 03:00:13                 |                 | 435.320           | 102.0                       |                               |
| 03:04:49                 |                 | 440.570           | 102.0                       |                               |
| _ 03:04:43               |                 | 465.301           | 102.0                       |                               |
| 03:08:16                 |                 | 471.908           | 102.0                       |                               |
| 03:00:10                 |                 | 500.368           | 102.0                       |                               |
| 03:11:54                 |                 | 505.450           | 102.0                       |                               |
| 03:11:34                 |                 | 531.541           | 102.0                       |                               |
| 03:17:01                 |                 | 531.033           | 102.0                       | ·                             |
| 03:17:32                 |                 | 556.448           | 102.0                       |                               |
| 03:17:52                 |                 | 557.295           | 102.0                       |                               |
| 03:29:32                 |                 | 570.343           | 102.0                       |                               |
| 03:33:53                 |                 | 572.206           | 102.0                       |                               |
| _ 03:34:35               |                 | 584.576           | 102.0                       |                               |
| 03:39:53                 |                 | 586.101           | 102.0                       |                               |
| 03:48:11                 |                 | 596.438           | 102.0                       |                               |
| 03:49:53                 |                 | 599.488           | 102.0                       |                               |
| 03:59:52                 |                 | 599.488           | 102.0                       |                               |
| 04:09:52                 |                 | 599.488           | 102.0                       |                               |
| 04:19:53                 |                 | 599.488           | 102.0                       |                               |
| <b>04:13:33 04:24:06</b> |                 | 599.488           | 102.0                       |                               |
| 04:24:55                 |                 | 599.488           | 102.0                       |                               |
| 04:25:19                 |                 | 604.911           | 102.0                       |                               |
| _ 04:25:44               |                 | 585.424           | 102.0                       |                               |
| 04:26:06                 |                 | 603.556           | 102.0                       |                               |
| 04:26:31                 |                 | 597.116           | 102.0                       |                               |
| 04:27:17                 |                 | 599.658           |                             |                               |
| 04:29:09                 |                 | • 601.353         | 102.0                       |                               |
| 04:31:00                 |                 |                   |                             | SET PACKER, 300001b.          |
| 04:34:13                 |                 | 601.691           | 102.0                       | <b>522</b> 21151211, 55555211 |
| <b>04:35:24</b>          |                 | 601.861           | 102.0                       |                               |
| 04:37:00                 |                 |                   | <del>-</del> - <del>-</del> | OPEN TOOL, STRONG BLOW        |
|                          |                 | *** Star          | t of Peri                   |                               |
| 04:37:00                 | 0.00            | 328.966           | 102.0                       |                               |
| 04:38:00                 |                 |                   |                             | BLOW DECREASING SLIGHTLY      |
| 04:38:00                 | 1.00            | 450.395           | 102.0                       |                               |
|                          |                 |                   |                             |                               |

PRESSURE VS TIME

MECHANICAL gauge no.: 8008 Clock no.: Gauge Depth: 1227.00 ft 24

Hour:

| TIME<br>HH:MM:SS     | D TIME<br>(min) | PRESSURE<br>(psi)  | TEMP<br>(F)    | COMMENTS           |
|----------------------|-----------------|--------------------|----------------|--------------------|
|                      |                 |                    |                |                    |
| 19-NOV-90            |                 | Data Prin          | ıt Freque      | ency: 1            |
| <b>04:39:00</b>      | 2.00            | 476.820            | 102.0          |                    |
| 04:40:00             | 3.00            | 487.662            | 102.0          |                    |
| 04:41:00             | 4.00            | 492.575            | 102.0          |                    |
| 04:42:00             | 5.00            | 496.471            | 102.0          |                    |
| 04:43:00             | 6.00            | 499.182            | 102.0          |                    |
| 04:44:00             | 7.00            | 500.707            | 102.0          |                    |
| 04:45:01             | 8.02            | 501.554            | 102.0          |                    |
| <b>04:46:01</b>      | 9.02            | 501.893            | 102.0          |                    |
| 04:47:01             | 10.02           | 502.740            | 102.0          |                    |
| 04:49:01             | 12.02           | 503.079            | 102.0          |                    |
| 04:51:01             | 14.02           | 503.417            | 102.0          |                    |
| 04:53:01             | 16.02           | 504.095            | 102.0          |                    |
| 04:55:01             | 18.02           | 504.264            | 102.0          |                    |
| _ 04:57:01           | 20.02           | 504.095            | 102.0          |                    |
| 04:59:01             | 22.02           | 504.095            | 102.0          |                    |
| <b>05:00:00</b>      |                 |                    |                | MODERATE BLOW      |
| 05:01:01             | 24.01           | 503.926            | 102.0          |                    |
| 05:03:01             | 26.01           | 503.587            | 102.0          |                    |
| 05:05:01             | 28.01           | 503.248            | 102.0          |                    |
| 05:07:01             | 30.01           | 502.909            | 102.0          |                    |
| 05:12:00             | 35.01           | 502.401            | 102.0          |                    |
| 05:17:00             | 40.00           | 502.570            | 102.0          |                    |
| 05:22:00             | 45.00           | 504.773            | 102.0          |                    |
| 05:27:00             | 50.00           | 508.500            | 102.0          |                    |
| 05:32:01             | 55.02           | 510.702            | 102.0          |                    |
| <b>5</b> 05:37:01    | 60.02           | 510.363            | 102.0          |                    |
| 05:42:01             | 65.02           | 509.855            | 102.0          |                    |
| 05:47:01<br>05:52:01 | 70.01<br>75.01  | 510.025<br>510.194 | 102.0<br>102.0 |                    |
| 05:57:00             | 80.01           | 510.194            | 102.0          |                    |
| <b>—</b> 06:02:00    | 85.00           | 510.194            | 102.0          |                    |
| 06:07:00             | 90.00           | 510.025            | 102.0          | *                  |
| 06:12:00             | 95.00           | 509.855            | 102.0          |                    |
|                      | 100.02          | 509.855            | 102.0          |                    |
| 06:22:01             | 105.02          | 509.516            | 102.0          |                    |
| 06:27:01             | 110.02          | 509.178            | 102.0          |                    |
| 06:32:01             | 115.01          | 508.669            | 102.0          |                    |
| <b>■</b> 06:36:42    | 119.71          | 507.822            | 102.0          |                    |
| 06:37:00             |                 |                    |                | CLOSE TOOL FOR CIP |
|                      |                 | *** End            | of Perio       | od 1 ***           |
|                      |                 |                    |                | iod 2 ***          |
| 06:37:42             | 1.00            | 510.025            | 102.0          |                    |
| 06:38:42             | 2.00            | 510.702            | 102.0          |                    |
| 06:39:42             | 3.00            | 511.211            | 102.0          |                    |
| 06:40:44             | 4.03            | 511.719            | 102.0          |                    |
| <b>6:41:42</b>       | 5.00            | 511.888            | 102.0          |                    |

PRESSURE VS TIME

MECHANICAL gauge no.: 8008 Gauge Depth: 1227.00 ft

Clock no.: Hour: 24

|            | TIME<br>HH:MM:SS     | D TIME (min)   | PRESSURE<br>(psi)  | TEMP<br>(F)    | COMMENTS                |
|------------|----------------------|----------------|--------------------|----------------|-------------------------|
|            |                      |                |                    |                |                         |
| <b>-</b> 1 | .9 <b>-</b> NOV-90   |                | Data Prin          | it Frequ       | ency: 1                 |
| _          | 06:42:42             | 6.00           | 512.058            | 102.0          | •                       |
|            | 06:43:42             | 7.00           | 512.227            | 102.0          |                         |
|            | 06:44:44             | 8.02           | 512.396            | 102.0          |                         |
|            | 06:45:44             | 9.02           | 512.735            | 102.0          |                         |
|            | 06:46:44             | 10.02          | 512.905            | 102.0          | ·                       |
|            | 06:48:44             | 12.02          | 513.413            | 102.0          |                         |
|            | 06:50:44             | 14.02          | 513.752            | 102.0          |                         |
|            | 06:52:44             | 16.02          | 513.921            | 102.0          |                         |
|            | 06:54:44             | 18.02          | 514.260            | 102.0          |                         |
|            | 06:56:43             | 20.02          | 514.599            | 102.0          |                         |
|            | 06:58:43             | 22.02          | 514.768            | 102.0          |                         |
|            | 07:00:43             | 24.01          | 514.938            | 102.0          |                         |
| _          | 07:02:43             | 26.01          | 515.107            | 102.0          |                         |
| _          | 07:04:43             | 28.01          | 515.277            | 102.0          |                         |
|            | 07:06:43             | 30.01          | 515.446            | 102.0          |                         |
|            | 07:11:43             | 35.01          | 515.615            | 102.0          |                         |
| _          | 07:16:43<br>07:21:42 | 40.00<br>45.00 | 515.785<br>515.785 | 102.0<br>102.0 |                         |
|            | 07:21:42             | 50.00          | 515.785            | 102.0          |                         |
|            | 07:31:44             | 55.02          | 515.785            | 102.0          |                         |
|            | 07:31:44             | 60.02          | 515.785            | 102.0          |                         |
|            | 07:36:49             | 60.11          | 515.785            | 102.0          |                         |
|            | 07:37:00             | 00.77          | 0101.00            | 20210          | OPEN BYPASS, PULL FREE, |
|            | 07:37:00             |                |                    |                | PULL OUT OF HOLE        |
|            |                      | •              | *** End            | of Per         | iod 2 ***               |
|            | 07:37:18             |                | 576.273            | 102.0          |                         |
|            | 07:38:04             |                | 581.357            | 102.0          |                         |
|            | 07:38:49             |                | 584.068            | 102.0          |                         |
|            | 07:39:58             |                | 578.984            | 102.0          |                         |
| _          | 07:40:47             |                | 576.104            | 102.0          |                         |
| _          | 07:41:31             |                | 575.934            | 102.0          |                         |
|            | 07:42:31             |                | 575.426            | 102.0          |                         |
| -          | 07:44:22             |                | 571.529            | 102.0          |                         |
| _          | 07:45:56             |                | 576.951            | 102.0          |                         |
|            | 07:50:05             |                | 576.273            | 102.0          |                         |
| -          | 07:50:56             |                | 570.343            | 102.0          |                         |
| _          | 07:54:36<br>07:56:07 |                | 565.598            | 102.0<br>102.0 |                         |
|            | 07:59:39             |                | 543.402<br>536.285 | 102.0          |                         |
|            | 08:02:14             |                | 511.380            | 102.0          |                         |
| _          | 08:06:15             |                | 486.307            | 102.0          |                         |
|            | 08:09:59             |                | 459.034            | 102.0          |                         |
|            | 08:14:17             |                | 430.069            | 102.0          |                         |
|            | 08:19:04             |                | 403.139            | 102.0          |                         |
|            | 08:23:13             |                | 366.389            | 102.0          |                         |
|            | 08:27:05             |                | 334.723            | 102.0          |                         |
|            |                      |                |                    |                |                         |

PRESSURE VS TIME

MECHANICAL gauge no.: 8008 Gauge Depth: 1227.00 ft

COMMENTS

Clock no.: Hour: 24

TIME D TIME PRESSURE TEMP

| HH:MM:SS        | (min) | (psi)     | (F)       |         |       |
|-----------------|-------|-----------|-----------|---------|-------|
|                 |       |           |           |         |       |
| 19-NOV-90       |       | Data Prin | t Frequen | cy: 1   |       |
| _ 08:31:27      |       | 300.352   | 102.0     |         |       |
| 08:37:14        |       | 276.649   | 102.0     |         |       |
| 08:41:05        |       | 246.347   | 102.0     |         |       |
| 08:46:30        |       | 232.805   | 102.0     |         |       |
| 08:51:13        |       | 229.589   | 102.0     |         |       |
| 08:52:44        |       | 211.647   | 102.0     |         |       |
| 09:01:09        |       | 209.955   | 102.0     |         |       |
| 09:03:02        |       | 185.921   | 102.0     |         |       |
| 09:14:12        |       | 184.060   | 102.0     |         |       |
| 09:16:01        |       | 156.136   | 102.0     |         |       |
| <b>09:21:52</b> |       | 149.537   | 102.0     |         |       |
| 09:24:01        |       | 126.524   | 102.0     |         |       |
| <b>09:31:57</b> |       | 122.632   | 102.0     |         |       |
| _ 09:35:30      |       | 101.821   | 102.0     |         |       |
| 09:40:06        |       | 96.745    | 102.0     |         |       |
| 09:46:29        |       | 92.516    | 102.0     |         |       |
| 09:49:16        |       | 72.383    | 102.0     |         |       |
| <b>09:52:53</b> |       | 65.955    | 102.0     |         |       |
| 10:07:54        |       | 65.786    | 102.0     |         |       |
| 10:13:14        |       | 65.617    | 102.0     |         |       |
| <b>10:28:31</b> |       | 64.602    | 102.0     |         |       |
| 10:30:00        |       |           |           | TOOL AT | TABLE |
| <b>10:31:58</b> |       | 48.024    | 102.0     |         |       |
| 10:38:24        |       | 38.890    | 102.0     |         |       |
| 10:42:43        |       | 33.646    | 102.0     |         |       |
| 10:48:00        |       | 26.035    | 102.0     |         |       |
| 10:50:29        |       | 21.299    | 102.0     |         |       |
| 10:53:05        |       | 20.791    | 102.0     |         |       |
| 10:59:48        |       | 20.453    | 102.0     |         |       |
| 11:06:33        |       | 20.453    | 102.0     |         |       |
| 11:19:49        |       | 20.453    | 102.0     |         |       |
| 11:27:42        |       | 19.946    | 102.0     |         |       |
| <b>11:28:31</b> |       | 18.423    | 102.0     |         |       |

18.085 102.0

16.394 102.0

14.702 102.0 13.857 102.0

13.688 102.0

13.688 102.0

TOOL LAID OUT

11:30:54

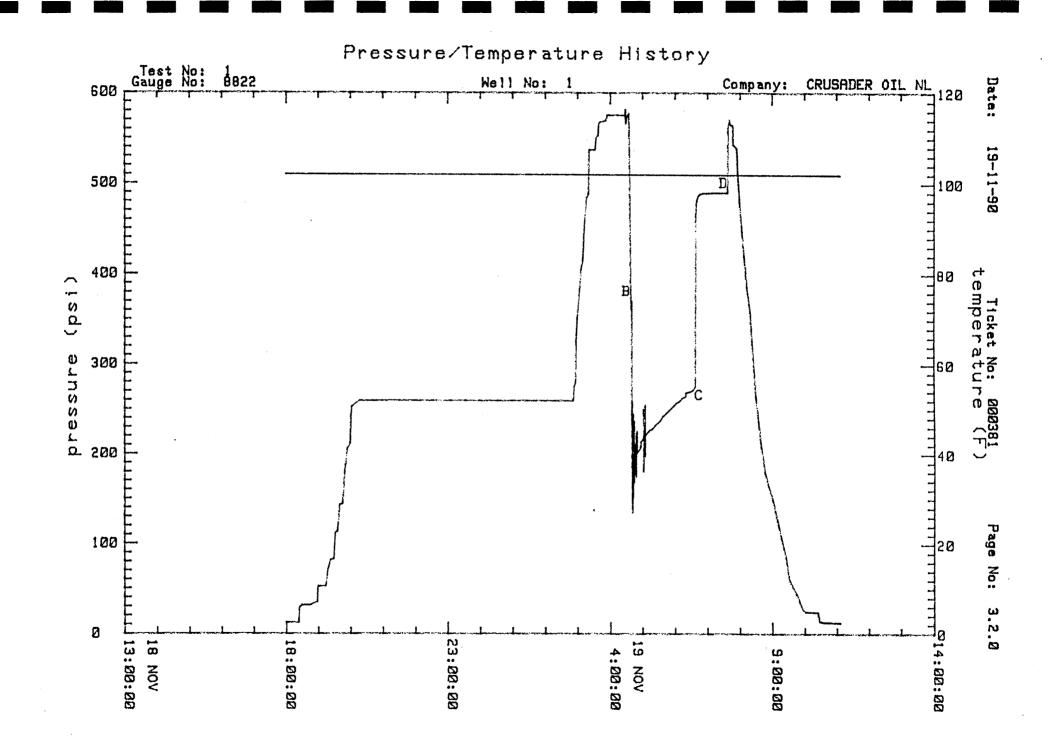
11:32:12 11:33:01

11:33:20

11:34:09

11:45:00

11:34:21


## TEST PERIOD SUMMARY

Gauge No.: 8822 Depth: 1175.00 ft Blanked off: No

Hour of clock: 24

| ID | PERIOD | DESCRIPTION         | PRESSURE (psi) | DURATION (min) |
|----|--------|---------------------|----------------|----------------|
| A  |        | Initial Hydrostatic | 575.36         |                |
| В  | 1      | Start Draw-down     | 383.55         |                |
| С  |        | End Draw-down       | 275.00         | 119.61         |
| С  | 2      | Start Build-up      | 275.00         |                |
| D  |        | End Build-up        | 490.35         | 60.48          |
| E  |        | Final Hydrostatic   | 566.90         |                |

NOTE: for Pressure vs. Time Plot, see next page.



PRESSURE VS TIME

Gauge Depth: 1175.00 ft 24 MECHANICAL gauge no.: 8822

Clock no.: Hour:

TIME D TIME PRESSURE TEMP HH:MM:SS (min) (psi) (F) COMMENTS

| 18-NOV-90            | Data Prin | t Freque | ncy: 1                     |
|----------------------|-----------|----------|----------------------------|
| 17:35:00             |           |          | SURFACE PRESSURE = PSIG    |
| 17:35:00<br>17:59:01 |           |          | MAKE UP TOOLS              |
| 17:59:01             | 11.763    | 102.0    |                            |
| 18:15:00             |           |          | TOOLS MADE UP, RUN IN HOLE |
| 18:15:00             |           |          | WAIT IN CASING             |
| 18:15:00<br>18:22:49 | 11.763    | 102.0    |                            |
| 18:23:46             | 28.677    | 102.0    |                            |
| 18:29:50             | 31.118    | 102.0    |                            |
| 18:44:01<br>18:57:31 | 31.118    | 102.0    |                            |
| 18:57:31             | 34.779    | 102.0    |                            |
| 18:58:53             | 52.208    | 102.0    |                            |
| 19:13:26             | 52.208    | 102.0    |                            |
| 19:13:26<br>19:17:28 | 71.549    | 102.0    |                            |
| 19:22:17             | 81.652    | 102.0    |                            |
| 19:28:38             | 83.045    | 102.0    |                            |
| 19:28:38             | 112.298   | 102.0    |                            |
| 19:35:39             | 113.343   | 102.0    |                            |
| <b>19:40:</b> 05     | 143.276   | 102.0    |                            |
| 19:44:51             | 143.972   | 102.0    |                            |
| 19:48:48             | 178.757   | 102.0    |                            |
| 19:53:36             | 205.700   | 102.0    |                            |
| 19:59:08             | 211.435   | 102.0    |                            |
| 19:59:08<br>20:00:30 | 242.357   | 102.0    |                            |
| 20:01:58             | 252.603   | 102.0    |                            |
| 20:15:35             | 259.375   | 102.0    |                            |
| 20:15:35             | 259.548   | 102.0    |                            |
| 21:00:14             | 259.722   | 102.0    |                            |
| _ 21:29:07           | 259.722   | 102.0    |                            |
| 21:57:54             | 259.722   | 102.0    |                            |
| 22:29:55             | 259.722   | 102.0    |                            |
| 23:02:48             | 259.722   | 102.0    |                            |
| 23:31:25             | 259.722   | 102.0    |                            |
| 23:31:25<br>23:59:10 | 259.722   | 102.0    |                            |
| 19-NOV-90            |           |          |                            |
| 00:29:41             | 259.722   | 102.0    |                            |
| 00:29:41             | 259.722   | 102.0    |                            |
| 01:27:25             | 259.722   | 102.0    |                            |
| 01:54:35             | 259.722   | 102.0    |                            |
| 02:17:37             | 259.722   | 102.0    |                            |
| 02:37:07             | 259.722   | 102.0    |                            |
| 02:51:02             | 259.722   | 102.0    |                            |
| 02:52:43             | 275.519   | 102.0    |                            |
| 02:55:44             | 279.164   | 102.0    |                            |
| 02:56:21             | 321.497   | 102.0    |                            |
| 02:58:45             | 349.933   | 102.0    |                            |
| 03:02:37             | 381.127   | 102.0    |                            |
|                      |           |          |                            |

PRESSURE VS TIME

MECHANICAL gauge no.: 8822 Gauge Depth: 1175.00 ft Clock no.: Hour: 24

TIME D TIME PRESSURE TEMP COMMENTS
HH:MM:SS (min) (psi) (F)

| 19-NOV-90            |              | Data Prin          | nt Frequenc    | y: 1                     |
|----------------------|--------------|--------------------|----------------|--------------------------|
| _ 03:06:27           |              | 407.975            | 102.0          |                          |
| 03:08:54             |              | 413.516            | 102.0          |                          |
| 03:12:00             |              | 454.366            | 102.0          |                          |
| 03:15:57             |              | 484.120            | 102.0          |                          |
| 03:19:51<br>03:21:05 | ,            | 487.579            | 102.0          |                          |
| 03:21:05             |              | 537.190            | 102.0          |                          |
| 03:32:35             |              | 537.363            | 102.0          |                          |
| 03:33:50             |              | 551.703            | 102.0          |                          |
| 03:33:50<br>03:37:57 |              | 552.912            | 102.0          |                          |
| 03:39:00             |              | 567.593            | 102.0          |                          |
| _ 03:47:50           |              | 568.802            | 102.0          |                          |
| 03:52:39             |              | 569.838            | 102.0          |                          |
| 03:53:18             |              | 572.947            | 102.0          |                          |
| 03:54:41             |              | 575.364            | 102.0          |                          |
| 04:13:12<br>04:24:35 |              | 575.364            | 102.0          |                          |
| 04:24:35             |              | 575.364            | 102.0          |                          |
| 04:26:38             |              | 575.364            | 102.0          |                          |
| 04:27:23             |              | 575.364            | 102.0          |                          |
| 04:27:23<br>04:27:57 |              | 581.580            |                |                          |
| 04:28:42             |              | 566.212            |                |                          |
| <b>04:30:28</b>      |              | 573.465            |                |                          |
| 04:30:28             |              |                    |                | SET PACKER, 300001b.     |
| 04.54.04             |              | 577.264            |                |                          |
| _ 04:37:00           |              |                    |                | OPEN TOOL, STRONG BLOW   |
| 04:37:00             |              |                    | t of Perio     | d 1 ***                  |
|                      | 0.00         | 383.552            |                |                          |
| 04:38:00             |              |                    |                | BLOW DECREASING SLIGHTLY |
| 04:38:01             | 1.02         | 361.546            | 102.0          |                          |
| 04:38:53             | 1.88         | 370.731            | 102.0          |                          |
| 04:39:11             | 2.18         | 246.525            | 102.0          |                          |
| 04:39:36             | 2.60         | 241.663            | 102.0          |                          |
| 04:39:39             | 2.66         | 184.668            | 102.0          |                          |
| 04:40:14             | 3.23         | 258.854            | 102.0          |                          |
| 04:40:15             |              | 140.318            |                |                          |
| 04:40:40             | 3.67         | 240.968            | 102.0          |                          |
| 04:41:02             | 4.03         | 134.402            | 102.0          |                          |
| 04:41:04             | 4.06         | 188.145            | 102.0          |                          |
| 04:41:40             | 4.66         | 184.842            | 102.0          |                          |
| 04:41:52             | 4.87         | 183.103            | 102.0          |                          |
| 04:41:56             | 4.93         | 150.756            | 102.0          |                          |
| 04:42:05             | 5.08         | 244.962            | 102.0          |                          |
| 04:42:14             | 5.23         | 184.668            | 102.0          |                          |
| 04:42:33             | 5.56         | 183.799            | 102.0<br>102.0 |                          |
| 04:42:35<br>04:42:39 | 5.58<br>5.64 | 193.708            |                |                          |
| 04:42:39             | 5.64<br>5.82 | 176.322<br>182.234 | 102.0<br>102.0 |                          |
| <b>■</b> UT•74•43    | J.02         | 102.234            | 102.0          |                          |

PRESSURE VS TIME

Gauge Depth: 1175.00 ft 24 MECHANICAL gauge no.: 8822

Clock no.: Hour:

| TIME<br>HH:MM:SS     | D TIME (min)   | PRESSURE<br>(psi)  | TEMP<br>(F)    |          | COMMENTS |
|----------------------|----------------|--------------------|----------------|----------|----------|
|                      |                |                    |                |          |          |
| 19-NOV-90            |                | Data Prin          | t Frequer      | cy: 1    |          |
| 04:43:40             | 6.66           | 182.408            | 102.0          |          |          |
| 04:43:45             | 6.75           | 236.973            | 102.0          |          |          |
| 04:43:54             | 6.90           | 167.976            | 102.0          |          |          |
| 04:44:01             | 7.02           | 183.103            | 102.0          |          |          |
| 04:45:02             | 8.03           | 186.059            | 102.0          |          |          |
| 04:45:15             | 8.24           | 210.914            | 102.0          |          |          |
| 04:45:20             | 8.33           | 186.928            | 102.0          |          |          |
| 04:45:52             | 8.87           | 189.014            | 102.0          |          |          |
| 04:45:58             | 8.96           | 204.136            | 102.0          |          |          |
| 04:46:03             | 9.05           | 178.061            | 102.0          |          |          |
| 04:46:12             | 9.20           | 183.799            | 102.0          |          |          |
| 04:46:37             | 9.62           | 187.102            | 102.0          |          |          |
| 04:46:55             | 9.92           | 192.665            | 102.0          |          |          |
| 04:47:24             | 10.39          | 222.381            | 102.0          |          |          |
| 04:47:33             | 10.54          | 174.236            | 102.0          |          |          |
| 04:47:38             | 10.63          | 200.660            | 102.0          |          |          |
| 04:48:50             | 11.83          | 200.834            | 102.0          |          |          |
| <b>04:48:59</b>      | 11.98          | 225.508            | 102.0          |          |          |
| 04:49:06             | 12.10          | 202.398            | 102.0          |          |          |
| 04:51:00             | 14.01          | 202.572            | 102.0          |          |          |
| 04:53:00             | 16.01          | 203.788            | 102.0          |          |          |
| 04:55:01             | 18.01          | 206.222            | 102.0          |          |          |
| 04:56:12             | 19.20          | 207.959            | 102.0          |          |          |
| 04:56:19             | 19.32          | 213.520            | 102.0          |          |          |
| 04:57:01             | 20.01          | 214.041            | 102.0          |          |          |
| 04:59:01             | 22.01          | 215.779            | 102.0          |          | DT 011   |
| 05:00:00             | 0.4.02         | 010 005            | 100 0          | MODERATE | BLOW     |
| 05:01:01             | 24.01          | 218.385            | 102.0          |          |          |
| 05:01:11             | 24.19          | 250.346            | 102.0          |          |          |
| 05:01:22             | 24.37          | 179.974            | 102.0          |          |          |
| 05:01:35             | 24.58          | 223.076            | 102.0          |          |          |
| 05:03:53             | 26.88          | 223.250            | 102.0          |          |          |
| 05:04:00             | 27.00          | 254.513            |                |          |          |
| 05:04:05             | 27.09          | 196.662            | 102.0          |          |          |
| 05:04:12<br>05:05:01 | 27.21          |                    | 102.0          |          |          |
|                      | 28.01          | 221.513            | 102.0          |          |          |
| 05:07:01             | 30.01          | 222.729            | 102.0          |          |          |
| 05:09:01             | 32.02          | 224.119            | 102.0          |          |          |
| 05:11:01             | 34.02          | 225.335            | 102.0          |          |          |
| 05:13:01             | 36.02          | 226.725            | 102.0<br>102.0 |          |          |
| 05:15:01             | 38.02          | 227.419<br>227.941 |                |          | •        |
| 05:17:01<br>05:22:00 | 40.02          |                    | 102.0          |          |          |
| 05:22:00<br>05:27:00 | 45.01<br>50.00 | 231.762            | 102.0<br>102.0 |          |          |
| ■ 05:32:01           | 55.01          | 234.541<br>237.321 | 102.0          |          |          |
| 05:37:00             | 60.00          | 242.184            | 102.0          |          |          |
| 05.37.00             | 80.00          | 242.104            | 102.0          |          |          |

PRESSURE VS TIME

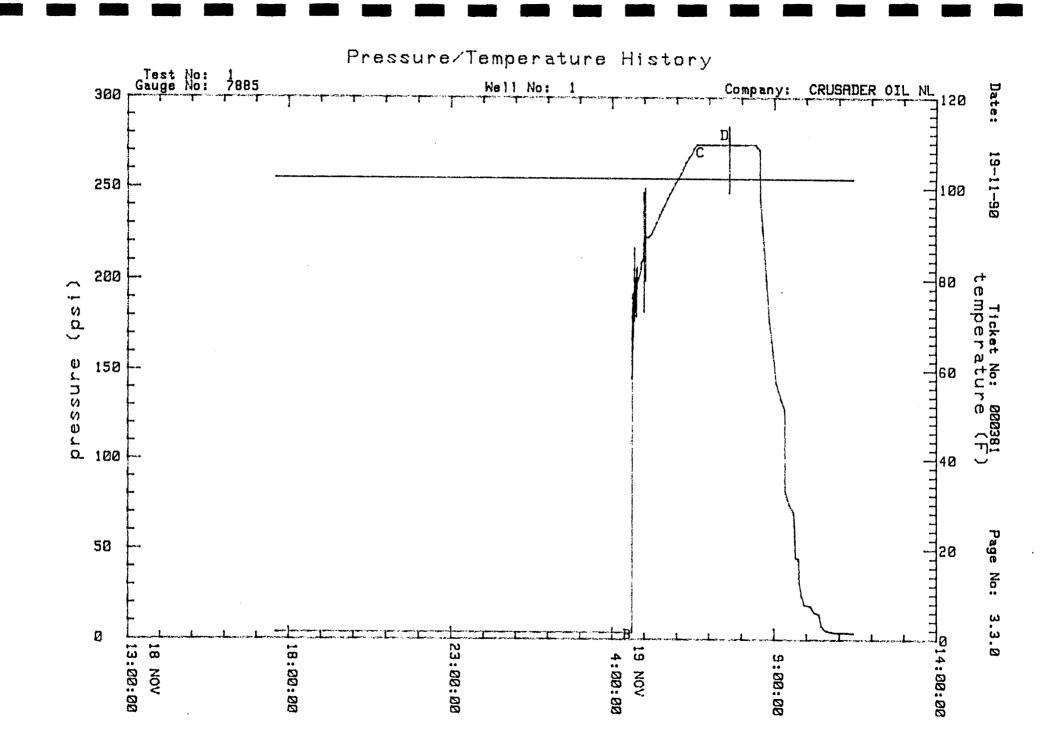
|            |                 |                | PRE                | ESSURE VS 1    | TIME ·       |           |         |    |
|------------|-----------------|----------------|--------------------|----------------|--------------|-----------|---------|----|
|            | HANICAL ck no.: | gauge no.      | : 8822             | Hour:          | Gauge<br>24  | Depth:    | 1175.00 | ft |
|            | TIME            | D TIME         | PRESSURE           | TEMP           | COM          | MENTS     |         |    |
|            | :MM:SS          | (min)          | (psi)              | (F)            |              |           |         |    |
|            |                 |                |                    |                |              |           |         |    |
| 19-NO      | V-90            |                | Data Prin          | t Frequenc     | :y: 1        |           |         |    |
|            | 42:01           | 65.02          | 245.136            | 102.0          | •            |           |         |    |
|            | 47:00           | 70.00          | 247.915            | 102.0          |              |           |         |    |
| 05:        | 52:01           | 75.02          | 250.867            | 102.0          |              |           |         |    |
| 05:        | 57:01           | 80.01          | 253.819            | 102.0          |              |           |         |    |
|            | 02:00           | 85.00          | 257.118            | 102.0          |              |           |         |    |
|            | 07:01           | 90.01          | 258.854            | 102.0          |              |           |         |    |
|            | 12:00           | 95.00          | 262.153            | 102.0          |              |           |         |    |
|            | 17:01           | 100.02         | 263.889            | 102.0          |              |           |         |    |
|            | 19:23           | 102.38         | 264.930            | 102.0          |              |           |         |    |
|            | 19:35           | 102.59         | 268.750            | 102.0          |              |           |         |    |
|            | 22:00           | 105.01         | 268.750            | 102.0          |              |           |         |    |
|            | 27:00           | 110.00         | 269.791            | 102.0          |              |           |         |    |
| _          | 32:01           | 115.01         | 271.180            | 102.0<br>102.0 |              |           |         |    |
|            | 36:37<br>37:00  | 119.61         | 274.999            |                | CLOSE TOOL F | OP CTP    |         |    |
|            | 37.00           |                | *** End            | of Period      |              | OR CIP    |         |    |
|            |                 |                |                    | t of Perio     |              |           |         |    |
| 06:        | 37:38           | 1.02           | 466.650            | 102.0          | ~ -          |           |         |    |
|            | 38:37           | 2.00           | 475.818            | 102.0          |              |           |         |    |
|            | 39:38           | 3.02           | 480.488            | 102.0          |              |           |         |    |
|            | 40:37           | 4.00           | 483.428            | 102.0          |              |           |         |    |
| <b>06:</b> | 41:38           | 5.02           | 485.331            | 102.0          |              |           |         |    |
| 06:        | 42:37           | 6.00           | 486.541            | 102.0          |              |           |         |    |
| 06:        | 43:38           | 7.02           | 487.060            | 102.0          |              |           |         |    |
|            | 44:37           | 8.00           | 487.925            | 102.0          |              |           |         |    |
|            | 45:38           | 9.02           | 488.444            | 102.0          |              |           |         |    |
|            | 46:37           | 10.00          | 488.789            | 102.0          |              |           |         |    |
|            | 51:38           | 15.02          | 489.654            | 102.0          |              |           |         |    |
|            | 56:37           | 20.01          | 489.827            | 102.0          |              |           |         |    |
|            | 01:37           | 25.00          | 490.000            | 102.0          |              |           |         |    |
|            | 06:38           | 30.01          | 490.173            | 102.0          |              |           |         |    |
|            | 11:37<br>16:38  | 35.00<br>40.02 | 490.346<br>490.346 | 102.0<br>102.0 |              |           |         |    |
|            | 21:39           | 45.04          | 490.346            | 102.0          |              |           |         |    |
|            | 26:38           | 50.02          | 490.346            | 102.0          |              |           |         |    |
|            | 31:37           | 55.01          | 490.346            | 102.0          |              |           |         |    |
|            | 36:37           | 60.00          | 490.346            | 102.0          |              |           |         |    |
|            | 37:00           |                |                    |                | OPEN BYPASS, | PULL FREI | Ε,      |    |
|            | 37:00           |                |                    |                | PULL OUT OF  |           | -,      |    |
|            | 37:05           | 60.48          | 490.346            | 102.0          |              |           |         |    |
| _ ^-       | 27.50           |                |                    | of Period      | 2 ***        |           |         |    |
|            | 37:50           |                | 557.576            | 102.0          |              |           |         |    |
|            | 38:19           |                | 565.866<br>570.011 | 102.0          |              |           |         |    |
|            | 10:28<br>11:02  |                | 570.011<br>566.212 | 102.0<br>102.0 |              |           |         |    |
|            | 11:02<br>11:41  |                | 566.902            | 102.0          |              |           |         |    |
|            |                 |                | 200.702            | 102.0          |              |           |         |    |

PRESSURE VS TIME

MECHANICAL gauge no.: 8822 Gauge Depth: 1175.00 ft 24

Clock no.: Hour:

| H           | TIME<br>H:MM:SS  | D TIME (min) | PRESSURE<br>(psi)  | TEMP<br>(F)    |        | COMMENTS |  |
|-------------|------------------|--------------|--------------------|----------------|--------|----------|--|
|             |                  |              | _                  |                |        |          |  |
|             | OV-90            |              | Data Prin          | _              | cy: 1  | •        |  |
|             | :42:39           |              | 565.175            | 102.0          |        |          |  |
|             | :46:37           |              | 564.484            | 102.0          |        |          |  |
|             | :47:27           |              | 542.892            | 102.0          |        | •        |  |
|             | :54:03           |              | 539.264            | 102.0          |        |          |  |
|             | :55:45           |              | 510.748            | 102.0          |        |          |  |
|             | :59:11           |              | 479.796            | 102.0          |        |          |  |
|             | :03:26           |              | 448.310            | 102.0          |        |          |  |
|             | :07:15           |              | 420.269            | 102.0          |        |          |  |
|             | :12:07           |              | 386.498            | 102.0          |        |          |  |
|             | :18:15           |              | 358.773            | 102.0          |        |          |  |
|             | :22:06           |              | 326.180            | 102.0          |        |          |  |
|             | :25:52           |              | 293.395            | 102.0          |        |          |  |
|             | :29:28<br>:34:13 |              | 265.451            | 102.0          |        |          |  |
|             | 39:22            |              | 237.147            | 102.0          |        |          |  |
|             | 45:41            |              | 208.133<br>180.148 | 102.0<br>102.0 |        |          |  |
|             | :52:35           |              | 165.715            | 102.0          |        |          |  |
|             | :01:24           |              | 148.843            | 102.0          |        |          |  |
|             | :09:21           |              | 126.571            | 102.0          |        |          |  |
|             | :16:56           |              | 106.379            | 102.0          |        |          |  |
|             | 24:51            |              | 85.658             | 102.0          |        |          |  |
|             | 31:37            |              | 59.876             | 102.0          |        |          |  |
|             | 38:05            |              | 51.685             | 102.0          |        |          |  |
|             | 44:57            |              | 44.191             | 102.0          |        |          |  |
|             | 51:09            |              | 34.256             | 102.0          |        |          |  |
|             | 56:28            |              | 26.062             | 102.0          |        |          |  |
|             | 01:15            |              | 24.144             | 102.0          |        |          |  |
|             | 09:10            |              | 23.795             | 102.0          |        |          |  |
|             | 25:00            |              | 23.272             | 102.0          |        |          |  |
|             | 27:28            |              | 13.681             | 102.0          |        |          |  |
| 10:         | 30:00            |              |                    |                | TOOL A | T TABLE  |  |
| 10:         | 30:08            |              | 13.158             | 102.0          |        |          |  |
| 10:         | 33:18            |              | 12.984             | 102.0          |        |          |  |
| 10:         | 34:26            |              | 12.461             | 102.0          |        |          |  |
| <b>1</b> 0: | 36:30            |              | 12.461             | 102.0          |        |          |  |
| 10:         | 42:21            |              | 12.461             | 102.0          |        |          |  |
|             | 54:03            |              | 11.937             | 102.0          |        |          |  |
|             | 01:20            |              | 11.763             | 102.0          |        |          |  |
|             | 05:49            |              | 11.763             | 102.0          |        |          |  |
| 11:         | 45:00            |              |                    |                | TOOL L | AID OUT  |  |
|             |                  |              |                    |                |        |          |  |


### TEST PERIOD SUMMARY

Gauge No.: 7885 Depth: 1154.00 ft Blanked off: No

Hour of clock: 24

| ID | PERIOD | DESCRIPTION         | PRESSURE (psi) | DURATION | (min) |
|----|--------|---------------------|----------------|----------|-------|
| A  |        | Initial Hydrostatic | 575.36         |          |       |
| В  | 1      | Start Draw-down     | 3.44           | •        |       |
| С  |        | End Draw-down       | 273.98         | 119.52   |       |
| С  | 2      | Start Build-up      | 273.98         |          |       |
| D  |        | End Build-up        | 273.98         | 60.39    |       |
| E  |        | Final Hydrostatic   | 566.90         |          |       |

NOTE: for Pressure vs. Time Plot, see next page.



### PRESSURE VS TIME

MECHANICAL gauge no.: 7885 Gauge Depth: 1154.00 ft

Clock no.: Hour: 24

| TIME<br>HH:MM:SS                  | D TIME (min) | PRESSURE<br>(psi) | TEMP<br>(F)    | COMMENTS                   |
|-----------------------------------|--------------|-------------------|----------------|----------------------------|
|                                   |              |                   |                |                            |
| <b>18-NOV-90</b>                  |              | Data Prin         | it Freque      |                            |
| 17:35:00                          |              |                   |                | SURFACE PRESSURE = PSIG    |
| 17:35:00                          |              | 2 427             | 100 0          | MAKE UP TOOLS              |
| <b>17:35:56</b>                   |              | 3.437             |                |                            |
| 18:05:55                          |              | 3.437             | 102.0          | MOOLG MADE IID DIN TH HOLE |
| 18:15:00                          |              |                   |                | TOOLS MADE UP, RUN IN HOLE |
| 18:15:00                          |              | 2 427             | 102.0          | WAIT IN CASING             |
| 18:35:56                          |              | 3.437             | 102.0          |                            |
| 19:05:55                          |              | 3.437             | 102.0          |                            |
| 19:35:56                          |              | 3.437<br>3.437    | 102.0<br>102.0 |                            |
| 20:05:55<br>20:35:56              |              | 3.437             | 102.0          |                            |
| 20:35:56                          |              | 3.437             | 102.0          |                            |
| 21:05:55                          |              | 3.437             | 102.0          |                            |
| 22:05:55                          |              | 3.437             | 102.0          |                            |
| <b>22:</b> 05:55 <b>22:</b> 35:56 |              | 3.437             |                |                            |
| 23:05:55                          |              | 3.437             |                |                            |
| 23:35:56                          |              | 3.437             | 102.0          |                            |
| 19-NOV-90                         |              | 3.437             | 102.0          |                            |
| 00:05:55                          |              | 3.437             | 102.0          |                            |
| 00:35:56                          |              | 3.437             | 102.0          |                            |
| 01:05:55                          |              | 3.437             | 102.0          |                            |
|                                   |              | 3.437             | 102.0          |                            |
| 01:35:56<br>02:05:55              |              | 3.437             | 102.0          |                            |
| 02:35:56                          |              | 3.437             | 102.0          |                            |
| <b>03:05:55</b>                   |              | 3.437             |                |                            |
| 03:35:56                          |              | 3.437             |                |                            |
| 04:05:55                          |              | 3.437             | 102.0          |                            |
| _ 04:31:00                        |              |                   |                | SET PACKER, 300001b.       |
| 04:35:56                          |              | 3.437             | 102.0          |                            |
| 04:37:00                          |              | 01.0.             | 20210          | OPEN TOOL, STRONG BLOW     |
|                                   |              | *** Star          | t of Per       | iod 1 ***                  |
| 04:37:00                          | 0.00         | 3.437             |                |                            |
| 04:37:12                          | 0.21         | 184.731           | 102.0          |                            |
| 04:37:20                          | 0.33         | 145.247           | 102.0          |                            |
| 04-05-00                          | 0.48         | 191.779           | 102.0          |                            |
| 04:37:36                          | 0.59         | 160.586           | 102.0          |                            |
| 04:38:00                          |              |                   |                | BLOW DECREASING SLIGHTLY   |
| _ 04:38:06                        | 1.10         | 161.996           | 102.0          |                            |
| 04:38:13                          | 1.22         | 169.223           | 102.0          |                            |
| 04:39:09                          | 2.14         | 176.449           | 102.0          |                            |
| 04:39:10                          | 2.17         | 192.836           | 102.0          |                            |
| 04:39:14<br>04:39:17              | 2.23         | 168.518           | 102.0          |                            |
| 04:39:17                          | 2.29         | 171.162           | 102.0          |                            |
| 04:39:19                          | 2.32         | 186.493           | 102.0          |                            |
| 04:39:32                          | 2.53         | 177.507           | 102.0          |                            |
| 04:40:34                          | 3.57         | 178.035           | 102.0          |                            |

PRESSURE VS TIME

Gauge Depth: 1154.00 ft MECHANICAL gauge no.: 7885 Clock no.:

Hour:

|    | TIME<br>HH:MM:SS | D TIME<br>(min) | PRESSURE<br>(psi) | TEMP<br>(F) |          | COMMENTS |
|----|------------------|-----------------|-------------------|-------------|----------|----------|
|    |                  |                 |                   |             |          |          |
| 19 | -NOV-90          |                 |                   | t Frequen   | cy: 1    |          |
|    | 04:40:50         | 3.84            | 180.502           | 102.0       |          |          |
|    | 04:40:56         | 3.93            | 217.141           | 102.0       |          |          |
|    | 04:41:06         | 4.11            | 177.330           | 102.0       |          |          |
|    | 04:41:15         | 4.25            | 181.383           | 102.0       |          |          |
|    | 04:41:31         | 4.52            | 201.115           | 102.0       |          |          |
|    | 04:41:40         | 4.67            | 182.264           | 102.0       |          |          |
| _  | 04:42:09         | 5.15            | 184.555           | 102.0       |          |          |
| _  | 04:42:23         | 5.38            | 198.825           | 102.0       |          |          |
|    | 04:42:30         | 5.50            | 185.612           | 102.0       |          |          |
|    | 04:42:52         | 5.86            | 183.145           | 102.0       |          |          |
|    | 04:43:01         | 6.01            | 200,586           | 102.0       |          |          |
|    | 04:43:15         | 6.25            | 190.369           | 102.0       |          |          |
|    | 04:44:24         | 7.41            | 192.483           | 102.0       |          |          |
|    | 04:44:46         | 7.76            | 205.694           | 102.0       |          |          |
|    | 04:44:51         | 7.85            | 179.621           | 102.0       |          |          |
|    | 04:45:04         | 8.06            | 195.654           | 102.0       |          |          |
| -  | 04:45:52         | 8.86            | 195.126           | 102.0       |          |          |
|    | 04:46:04         | 9.07            | 206.751           | .102.0      |          |          |
|    | 04:46:12         | 9.19            | 199.177           | 102.0       |          |          |
|    | 04:47:00         | 10.00           | 199.177           | 102.0       |          |          |
|    | 04:49:01         | 12.02           | 200.586           | 102.0       | •        |          |
|    | 04:51:01         | 14.01           | 202.876           | 102.0       |          |          |
|    | 04:53:00         | 16.00           | 205.518           | 102.0       |          |          |
|    | 04:53:16         | 16.27           | 205.870           | 102.0       |          |          |
|    | 04:53:20         | 16.33           | 209.040           | 102.0       |          |          |
|    | 04:53:47         | 16.78           | 209.040           | 102.0       |          |          |
| -  | 04:55:00         | 18.00           | 209.921           | 102.0       |          | •        |
| _  | 04:57:01         | 20.02           | 211.682           | 102.0       |          |          |
|    | 04:58:20         | 21.33           | 213.091           | 102.0       |          |          |
|    | 04:58:27         | 21.45           | 247.769           | 102.0       |          |          |
| (  | 04:58:32         | 21.54           | 182.264           | 102.0       |          |          |
|    | 04:58:39         | 21.66           | 220.134           | 102.0       |          |          |
|    | 04:59:22         | 22.37           | 219.430           | 102.0       |          |          |
|    | 05:00:00         |                 |                   |             | MODERATE | BLOW     |
|    | 05:00:28         | 23.47           | 218.021           | 102.0       |          |          |
|    | 05:01:00         | 24.01           | 219.606           | 102.0       |          |          |
| _  | 05:01:13         | 24.21           | 249.881           | 102.0       |          |          |
| _  | 05:01:20         | 24.33           | 199.177           | 102.0       |          |          |
|    | 05:01:24         | 24.39           | 225.064           | 102.0       |          |          |
|    | 05:02:01         | 25.02           | 223.127           | 102.0       |          |          |
|    | 05:07:01         | 30.01           | 222.599           | 102.0       |          |          |
| -  | 05:12:01         | 35.01           | 224.360           | 102.0       |          |          |
| _  | 05:17:01         | 40.01           | 227.352           | 102.0       |          |          |
|    | 05:22:00         | 45.01           | 230.697           | 102.0       |          |          |
| _  | 05:27:00         | 50.00           | 234.394           | 102.0       |          |          |
|    | 05:32:00         | 55.00           | 237.386           | 102.0       |          |          |

PRESSURE VS TIME

MECHANICAL gauge no.: 7885

Clock no.:

TIME D TIME PRESSURE TEMP

Gauge Depth: 1154.00 ft
24

COMMENTS

| TIME                 | D TIME           | PRESSURE  | TEMP    | COMMENTS                |
|----------------------|------------------|-----------|---------|-------------------------|
| HH:MM:SS             | (min)            | (psi)     | (F)     |                         |
|                      |                  |           |         |                         |
| 19-NOV-90            |                  | Data Prin | t Fremi | ency: 1                 |
| 05:37:00             | 60.00            | 240.554   | 102.0   | ency. I                 |
|                      | 65.00            | 243.546   | 102.0   |                         |
| 05:42:00             | 70.00            | 246.537   | 102.0   |                         |
| 05:47:00<br>05:52:01 | 75.02            | 249.177   | 102.0   |                         |
| ■ 05:57:01           | 80.02            | 252.168   | 102.0   |                         |
|                      | 85.02            | 255.159   | 102.0   | ·                       |
| 06:02:01             | 90.01            | 257.447   | 102.0   |                         |
| 06:07:01             | 95.01            | 260.613   | 102.0   |                         |
| 06:12:01             | 100.01           | 263.956   | 102.0   |                         |
| 06:17:01             |                  | 266.419   | 102.0   |                         |
| 06:22:00             | 105.01<br>110.00 | 268.705   | 102.0   |                         |
| 06:27:00             |                  | 271.695   | 102.0   |                         |
| 06:32:00             | 115.00           | 271.093   | 102.0   |                         |
| 06:36:31             | 119.52           | 213.902   | 102.0   | CLOSE TOOL FOR CIP      |
| 06:37:00             |                  | *** Fnd   | of Per  | iod 1 ***               |
|                      |                  |           |         | riod 2 ***              |
| 06.27.22             | 1.01             | 273.982   | 102.0   |                         |
| 06:37:32<br>06:41:31 | 5.00             | 273.982   | 102.0   |                         |
| 06:41:31             | 10.00            | 273.982   | 102.0   |                         |
| 06:56:33             | 20.02            | 273.982   | 102.0   |                         |
| _ 07:06:32           | 30.01            | 273.982   | 102.0   |                         |
| 07:16:32             | 40.01            | 273.982   | 102.0   |                         |
| 07:26:32             | 50.00            | 273.982   | 102.0   |                         |
| 07:36:31             | 60.00            | 273.982   | 102.0   |                         |
| ■ 07:36:55           | 60.39            | 273.982   | 102.0   |                         |
| 07:30:33             | 00.33            | 273.302   | 102.0   | OPEN BYPASS, PULL FREE, |
| 07:37:00             |                  |           |         | PULL OUT OF HOLE        |
|                      |                  | *** End   | of Per  | iod 2 ***               |
| 07:37:02             |                  | 284.182   | 102.0   | 104 2                   |
| 07:37:02             |                  | 247.241   | 102.0   |                         |
| _ 07:37:21           |                  | 279.785   | 102.0   |                         |
| 07:37:21             |                  | 276.444   | 102.0   |                         |
| 07:37:54             |                  | 273.982   | 102.0   |                         |
| 07:49:06             |                  | 273.982   | 102.0   |                         |
| ■ 08:06:32           |                  | 273.982   | 102.0   |                         |
| 08:26:32             |                  | 273.982   | 102.0   |                         |
| 08:29:11             |                  | 272.575   | 102.0   |                         |
| 08:23:11             |                  | 271.520   | 102.0   |                         |
| 08:34:16             |                  | 243.722   | 102.0   |                         |
| 08:38:36             |                  | 227.881   | 102.0   |                         |
| _ 08:45:38           |                  | 200.234   | 102.0   |                         |
| 08:50:52             |                  | 177.330   | 102.0   |                         |
| 08:57:28             |                  | 161.820   | 102.0   |                         |
| 09:03:50             |                  | 142.602   | 102.0   |                         |
| <b>a</b> 09:12:08    |                  | 134.312   | 102.0   |                         |
|                      |                  | 128.315   | 102.0   | •                       |
| 09:19:29             |                  | 120.313   | 102.0   |                         |

PRESSURE VS TIME

MECHANICAL gauge no.: 7885 Gauge Depth: 1154.00 ft

COMMENTS

Clock no.: Hour: 24

D TIME PRESSURE

TIME

HH:MM:SS (min) (psi) (F)

19-NOV-90 Data Print Frequency: 1
09:20:19 82.075 102.0

TEMP

09:27:56 75.189 102.0 09:36:24 70.067 102.0 09:39:35 45.158 102.0 09:45:32 44.981 102.0 32.080 09:46:33 102.0 09:50:55 24.478 102.0 09:55:34 19.351 102.0 10:07:15 18.644 102.0 10:14:24 15.108 102.0 10:23:17 14.224 102.0 7.327 10:26:50 102.0 TOOL AT TABLE 10:30:00 10:35:27 5.028 102.0 10:44:46 4.321 102.0 3.790 10:51:33 102.0 11:02:37 3.790 102.0 11:15:26 3.790 102.0 11:24:45 3.437 102.0 11:26:07 3.437 102.0 11:45:00 TOOL LAID OUT

CRUSADIA STRINGY BARX #1 D.S.T. #1 19-11-90
- BTM BT# 8008 2444 CLOCK 30075 D 1227 FF

CRUSHOCA, STRINGY BARK #1 057 #1 19-11-90
HID 37 # 2322 RAMA CLOCK # 32076 @ 1175 PT

TOR 27 # 1885 24 WA CLOCK 32063 @ 1154 BT

Description of Cuttings Samples APPENDIX 7

DESCRIPTION OF CUTTINGS SAMPLES

# STRINGY BARK NO. 1

# CUTTINGS DESCRIPTIONS

| DEPTH (M)                               | LITHOLOGY                                                                                                                                                                             |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20- 60                                  | Sand, greyish yellow, multicoloured, oxidised, ironstained, quartz, coarse to very coarse, sub-angular to occ. rounded grading down to rounded and well rounded, 20% volcanoclithics. |
| 60- 70                                  | Sand, generally $A/A$ except grey, suspect grey clay matrix in bottom section of the sands.                                                                                           |
| 70- 80                                  | Sand and clay. Sand medium and occasionally coarse (cavings). Generally A/A. Clay dispersive dark grey completely mixed with sand. Noncalcareous, trace coaly grains.                 |
| 80- 90                                  | Sand, very fossiliferous and minor grey clay. 20% Sand, grey, coarse, well-rounded quartz grains. 50% Medium sand with grey clay matrix, minor coal grains. 30% Fossil shells.        |
| 90- 100                                 | A/A increasing shell content.                                                                                                                                                         |
| 100- 110                                | 90% Shells, no coarse sand grains.<br>10% Medium sand with grey clay matrix.                                                                                                          |
| 110- 120                                | A/A                                                                                                                                                                                   |
| 120- 130                                | Shells with greyish brown sand/clay matrix fine-medium, quartz, angular.                                                                                                              |
| 130- 140                                | A/A                                                                                                                                                                                   |
| 140- 150                                | A/A 5% Coal grains, sand medium.                                                                                                                                                      |
| 150- 160                                | ${\tt A}/{\tt A}$ Medium quartz sands and calcite crystals, abundant glacuonite.                                                                                                      |
| 160- 173                                | Dominantly shells with lesser quartz sand and very little clay.                                                                                                                       |
|                                         | Shells include gastropods, bivalves, bryzoa, coral, echinoids.                                                                                                                        |
| Casing 171m $12\frac{1}{4}$ " hole 173m |                                                                                                                                                                                       |
| 173- 180                                | Crystalline limestone, light brown to brown calcarenite, fossiliferous, hard to occ. soft where argillaceous, trace glauconite.                                                       |

| DEP   | TH (m) | LITHOLOGY                                                                                                                                                                                                               |
|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 180-  | 190    | A/A 40% Argillaceous limestone medium grey, very soft, dispersive clay.                                                                                                                                                 |
| 190-  | 200    | A/A                                                                                                                                                                                                                     |
| 200-  | 210    | A/A 10% Argillaceous limestone only.                                                                                                                                                                                    |
| 210-  | 220    | A/A                                                                                                                                                                                                                     |
| 220-  | 225    | Limestone calcarenite, dark grey-light grey, brown grey,                                                                                                                                                                |
| Wiper | Trip   | hard to occasionally soft where argillaceous medium to coarse crystalline, abundant impurities such as glauconite and a black mineral (possibly coal fragments) good trace-abundant fossils.                            |
| 225-  | 230    | A/A                                                                                                                                                                                                                     |
| 230-  | 240    | A/A                                                                                                                                                                                                                     |
| 240-  | 250    | A/A                                                                                                                                                                                                                     |
| 250-  | 260    | A/A becoming finer crystalline and more impure in part.                                                                                                                                                                 |
| Note: |        | Marls/calc. claystones washed from above samples.                                                                                                                                                                       |
| 260-  | 270    | Limestone from calcilutite to calcarenite. Dominantly argillaceous calcilutite, dark grey to light grey, with fine to medium size calcite crystals, trace glauconite, very soft, sticky, dispersive, trace black specs. |
| 270-  | 280    | 70% Dominantly very calcareous claystone/argillaceous limestone A/A. 30% limestone A/A.                                                                                                                                 |
| 280-  | 290    | A/A                                                                                                                                                                                                                     |
| 290-  | 300    | A/A                                                                                                                                                                                                                     |
| 300-  | 310    | Increasingly argillaceous.                                                                                                                                                                                              |
| 310-  | 320    | Very calcareous claystone (marl), dark to medium grey, soft, sticky.                                                                                                                                                    |
| 320-  | 330    | A/A                                                                                                                                                                                                                     |
| 330-  | 340    | A/A                                                                                                                                                                                                                     |
| 340-  | 350    | A/A ·                                                                                                                                                                                                                   |
| 350-  | 360    | A/A. Becoming greenish to bluish in colour, as glauconite content increases.                                                                                                                                            |
| 360-  | 370    | A/A. Increasingly dark green-grey as glauconite increases.                                                                                                                                                              |

| DEPTH (m) | LITHOLOGY                                                                                                                                                                                               |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                                                                         |
| 370- 371  | A/A.                                                                                                                                                                                                    |
| 371- 372  | 100% Claystone, very dark grey, bluish, very soft, slightly calcareous to calcareous, abundant, finely disseminated pyrite and glauconite, rare loose quartz grain.                                     |
| 372- 373  | 60% loose quartz <u>sand</u> , clear to frosty, coarse grained, subrounded to rounded. 40% Claystone A/A.                                                                                               |
| 373- 375  | 100% Loose quartz <u>sand</u> , clear, light grey, pink, coarsevery coarse occasional pebbles. Good trace glauconite and pyrite (sometimes as large grains). No shows.                                  |
| DST NO. 1 |                                                                                                                                                                                                         |
| 375- 380  | 95% Loose quartz <u>sand</u> coarse to very coarse, occasionally medium, occasional pebbles, angular to subrounded, large grains more rounded. No show. 5% Brown coal, very dark brown soft to friable. |
| 380- '390 | 100% <u>sand</u> A/A. Trace clay/claystone, brown to dark brown, dispersive no solid grains, silty to very silty, carbonaceous specks.                                                                  |
| 390- 400  | 90% Sand A/A<br>5% Brown coal<br>5% Clay.                                                                                                                                                               |
| 400- 410  | 50% Sand A/A. 50% Clay A/A.                                                                                                                                                                             |
| 410- 420  | 10% Sand A/A. 30% Brown coal A/A blocky. 60% Clay A/A Often consolidated, soft.                                                                                                                         |
| 420- 430  | 80% Clay/claystone, darker, not silty, organic rich 20% Sand A/A Trace coal A/A.                                                                                                                        |
| 430- 440  | 50% Sand A/A. 50% Clay/claystone A/A                                                                                                                                                                    |
| 440- 450  | 80% Clay/claystone A/A 10% Sand 10% Claystone, very dark brown to very dark grey, slightly silty, organic rich (lignitic). Often consolidated, soft to dispersive.                                      |
| 450- 460  | 90% Clay/claystone grading to lignite 10% Sand (cavings).                                                                                                                                               |

| DEPTH (m) | LITHOLOGY                                                                                                                                                                                                                                              |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 460- 470  | 50% Clay/claystone A/A                                                                                                                                                                                                                                 |
|           | 50% Sand, A/A.                                                                                                                                                                                                                                         |
| 470- 480  | 90% Sand, A/A<br>10% Clay/claystone A/A.                                                                                                                                                                                                               |
| 480- 490  | 100% Sand A/A<br>Clay cavings, very dispersive.                                                                                                                                                                                                        |
| 490- 500  | 100% Sand A/A.                                                                                                                                                                                                                                         |
| 500- 510  | 50% Sand A/A 50% Clay/claystone, medium dark grey, very silty, very soft and sticky, trace carb. specks.                                                                                                                                               |
| 510- 520  | 100% Quartz sands, very coarse to pebbly, unconsolidated.                                                                                                                                                                                              |
| 520- 530  | A/A                                                                                                                                                                                                                                                    |
| 530- 535  | A/A                                                                                                                                                                                                                                                    |
| 535- 536  | Siltstone & sand cavings, trace green cuttings. 80% Siltstone, light brown, quartz, very argillaceous, dispersive to unconsolidated, trace green lithics, trace mica and coal (both possibly cavings). 20% Sand A/A.                                   |
| 536- 537  | 50% Siltstone A/A 50% Claystone (? volcanics), bluish green, firm abundant dark grains, occasional siliceous crystal - probably quartz, calcareous.                                                                                                    |
| 537- 540  | 100% Quartz sand, light brown to yellowish, coarse to very coarse, occ. pebbles, subangular, stained by dark brown ferruginous mineral, trace mica. Possibly contains a matrix of dark brown quartz silt and clay. Excellent visual porosity. No show. |
| 540- 550  | 100% Sand A/A. Coarse to pebbly.                                                                                                                                                                                                                       |
| 550- 560  | A/A Becoming cleaner, light grey, clear.                                                                                                                                                                                                               |
| 560- 570  | 40% Clay/claystone A/A dispersive, trace pyrite. 20% Earthy coal/lignite A/A. 40% Sand A/A (cavings).                                                                                                                                                  |
| 570 590   | 70% Clay/claystone, A/A, silty.<br>20% Earthy coal, A/A.<br>10% Sand, A/A.                                                                                                                                                                             |

| DEPTH (m)                 | LITHOLOGY                                                                                                                                           |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                                                                                                                                     |
| 580- 590                  | 70% Sand, light grey, quartz, clear-frosted, unconsol., coarse, occ. very coarse, trace mica. 30% Clay/claystone, A/A.                              |
| 590-600                   | 80% Sand A/A, coarse - very coarse, A/A, trace mica, excellent visual porosity. 20% Clay/claystone, A/A.                                            |
| 600- 610                  | 80% Sand A/A. 20% Clay/claystone, medium grey, dispersive, very silty (as above but distinct lack of coals causing brown colouration of claystone). |
| 610- 620                  | 100% Sand A/A, very pebbly.                                                                                                                         |
| 20.11.90<br>627m 0700 hrs |                                                                                                                                                     |
| 620- 630                  | 100% Sand, very coarse. Trace coal cavings.                                                                                                         |
| 630- 640                  | 70% Sand A/A 30% Coal, dark brown, soft, slight degree of fisility.                                                                                 |
| 640- 650                  | 80% Sand, 20% Coal.<br>(Note hole problems so have changed strip log. Expected clay in this sample.)                                                |
| 650- 660                  | A/A, Clay washing out of sample, completely dispersive.                                                                                             |
| 660- 670                  | A/A.                                                                                                                                                |
| 670- 680                  | A/A.                                                                                                                                                |
| 680- 690                  | 100% Sand                                                                                                                                           |
| 690- 700                  | 100% Sand                                                                                                                                           |
| 700- 710                  | 100% Sand                                                                                                                                           |
| 710- 720                  | 100% Sand, slightly dirty (clay)                                                                                                                    |
| 730- 740                  | 100% Sand                                                                                                                                           |
| 740- 750                  | 100% Sand, slightly dirty (clay)                                                                                                                    |
| 750- 760                  | 100% Sand                                                                                                                                           |
| 760- 770                  | 100% Sand, slightly dirty (clay)                                                                                                                    |
| 770- 780                  | 100% Sand                                                                                                                                           |

| DEPTH (m)    | LITHOLOGY                                                                                                                                                                                                                        |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 780- 790     | A/A                                                                                                                                                                                                                              |
| 790- 800     | A/A                                                                                                                                                                                                                              |
| 800- 810     | A/A (cleaner sample)                                                                                                                                                                                                             |
| 810- 820     | A/A                                                                                                                                                                                                                              |
| 820- 830     | A/A, Trace coal                                                                                                                                                                                                                  |
| 830- 840     | A/A                                                                                                                                                                                                                              |
| 840- 850     | A/A (slightly dirty), Trace coal. ROP's indicate clay/claystone beds are present and that sands probably have a clay matrix. These disperse into the mud system.                                                                 |
| 850- 860     | A/A                                                                                                                                                                                                                              |
| 860- 870     | A/A                                                                                                                                                                                                                              |
| 870- 880     | A/A. Trace of white quartz grains, angular, look like quartz from vein fillings.                                                                                                                                                 |
| 880- 890     | 80% Sand A/A<br>20% Basalt, weathered, dark red brown, appears as soft<br>sticky clay in mud and sometimes as firm chips.                                                                                                        |
| 890- 900     | Basalt, A/A, includes good trace greenish blue claystone that looks very similar to that at $530m$ .                                                                                                                             |
| 900- 910     | Basalt A/A, some hard grains.                                                                                                                                                                                                    |
| 910- 920     | Basalt A/A.                                                                                                                                                                                                                      |
| 920- 922     | 100% Sand/gravel, light yellowish brown, quartz, coarse to pebbly, dominantly pebbles at base, angular - sub-angular, good trace, large yellow quartz grains that appear to be from vein fillings. Excellent porosity. No shows. |
| 922- 930     | 100% Basalt, weathered at top, generally as clay, becoming increasingly fresh, dark red brown to dark reddish purple, hard, often crystalline (possibly pyroclastic).                                                            |
| 930- 940     | 100% Basalt, fresh, very dark grey, hard, often finely crystalline.                                                                                                                                                              |
| New Bit 940m | Trip Gas 0.1 units, $C_1$ 68 (91%), $C_2$ 6 (8%), $C_3$ 1 (1%).                                                                                                                                                                  |
| 940- 950     | 100% Basalt, fresh, varicoloured, very dark grey and often greenish, dark red brown and lighter shades of these colours, hard to very hard, visually crystalline. Rock chips are very small due to hardness.                     |

## STRINGY BARK NO. 1 - CUTTINGS DESCRIPTIONS

| DEPTH (m)                | LITHOLOGY                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 950- 960                 | A/A                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| 960- 966<br>Trip for Bit | A/A. Trip gas 966 0.1 units $C_1$ 23 ppm $C_2$ 5 ppm                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| 966- 970                 | A/A                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| 970- 980                 | Hard drilling to 975m. 50% fresh basalt 50% weathered to clays, grey green, reddish brown and brownish purple, very soft to firm, grading to hard.                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| 980- 990                 | Very even drilling rate. Change to (?) volcanics, very dark bluish and greenish grey, occ. very dark reddish brown (cavings), fine to medium crystalline, green and red minerals, appears increasingly siliceous.                                                                                                                                                                                          |  |  |  |  |  |  |  |
| 990-1000                 | A/A                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| 1000-1010                | A/A. Fast drilling possibly due to vein (? igneous) siliceous rock. Medium to coarse crystalline, very dark green, translucent, siliceous, abundant quartz as loose grains (possibly as a quartz sand) frosted to clear, coarse, angular.                                                                                                                                                                  |  |  |  |  |  |  |  |
| 1010-1020                | Volcanics. Very dark green, translucent, fine to medium crystalline, siliceous, moderately hard to hard. Abundant loose quartz grains and lithics.                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| 1020-1030                | 80% Sandstone, medium green grey, 60% quartz, clear, 40% lithics, green and grey, angular quartz, subangular to rounded lithics, other varicoloured grains probably including feldspars, white to light grey clay matrix, firm to friable, dominantly unconsolidated. Very poor visual porosity and probably fair porosity if unconsolidated. No show.  20% Claystone, dark brown, silty, moderately hard. |  |  |  |  |  |  |  |
| 1030-1040                | A/A.                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| 1040-1047                | 50% Sandstone A/A. 30% Siltstone, dark greenish grey, very argillaceous, very soft-firm. 20% Clay/claystone, A/A, very soft to moderately hard.                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| 1047m T.D.               |                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |

Wireline Log Evaluation

APPENDIX 8

WIRELINE LOG EVALUATION

# STRINGY BARK NO. 1 LATROBE GROUP QUICK LOOK LOG ANALYSIS

#### GENERAL DATA

Matrix density = 2.65 g/cc Fluid density = 1.0 g/cc

m = 2

n = 2

A = 1

GR Min 10 GR Max 180 R shale 60 Sonic shale 155

SP + 34 millivolts at 387m.

Measured temperatures: 39°C (102°F) at 374m  $47^{\circ}\text{C}$  (117°F) at 1050m

extrapolated BHT 51°C (124°F)

The States of the Special

Rmf 0.79 ohm.m at 19.2°C (67°F) = 0.54 ohm.m at 102°F

#### Resistivity of Water

Rw SSP = 1.54 ohm.m at 102°F

Measured Rw = 2.057 ohm.m at  $25^{\circ}$ C  $(77^{\circ}$ F) - DST No. 1 = 1.58 ohm.m.at  $102^{\circ}$ F

Also  $Rw = \frac{Rmf}{Rxo} \times Ro$ 

At  $412m = 0.54 \times 17$ 

= 2.3 ohm.m at 102°F

At 443m = 1.2 ohm.m at 102°FAt 463m = 1.54 ohm.m at 102°FAt 470m = 1.2 ohm.m at 102°F

#### **Porosity**

The sonic tool is unable to read true values in the unconsolidated and largely uncompacted formations of the Latrobe Group. It is suggested that energy levels are just enough to trigger the 3' sensor on the sonic tool and not enough to trigger the 5' sensor.

Porosities were determined in the clean sands from the resistivity logs. The assumption here is that Sw = 100% in these sands.

Porosity = 
$$\sqrt{\frac{RW}{RT}}$$

#### Water Saturation Calculation

An Rw of 1.54 ohm.m at 102°F was used. In clean sands this gives saturation of water as 100%. In those sands with higher gamma-ray the Sw is less that 100%. The reason for this is lithological. Higher resistivities only occur where the gamma-ray log indicates an increase in clay content. They are associated with large shifts in the sonic log indicating a much more compact sediment.

The shale resistivity as measured from the logs cannot compensate for the clay effect in the sands. This is due to a difference in the clay types from those of sands to those of shales and to a high carbonaceous content of sands having clay matrix.

#### **Hole Conditions**

The hole is in very poor condition. The very 'soft' nature of the sediments is the main cause for extensive caving of the borehole wall. The density-Neutron log was programmed but then abandoned on the basis of these hole conditions.

| S %                            |     | 117  | 70   | 122  | 100  | 100  | 100  | 100             | 62   | 89   | 81   | 84   |
|--------------------------------|-----|------|------|------|------|------|------|-----------------|------|------|------|------|
| Porosity<br>%                  |     | 20   | 20   | 20   | 30** | 29** | 28** | 28**            | 20   | 20   | 20   | 20   |
| Vclay ]                        | ,   | 19   | 20   | 14   | ⊣    | 2    | -    | <del>, -1</del> | 16   | 15   | 15   | 18   |
| 4                              |     | 200  | 170  | 165  | 185  | 180  | 190  | 183             | 157  | 160  | 140  | 115  |
| RW<br>(ohm.m)                  |     | 1.54 | 1.54 | 1.53 | 1.53 | 1.51 | 1.50 | 1.49            | 1.42 | 1.41 | 1.36 | 1.35 |
| Temp.<br>(°F)                  |     | 102  | 102  | 103  | 103  | 104  | 105  | 106             | 111  | 112  | 116  | 117  |
| GR<br>(API)                    | (   | 4.7  | 45   | 33   | 12   | 13   | 11   | 12              | 37   | 35   | 35   | 40   |
| RT<br>(ohm.m)                  | C C | 70   | 55   | 20   | 17   | 18   | 20   | 20              | 70   | 09   | 40   | 40   |
| MSFL<br>(ohm.m)                |     | !    | 2.5  | 2.2  | 4    | &    | 7    | 6               | 4    | m    | 9    | 4    |
| Depth MSFL RT (metres) (ohm.m) | , E | 375  | 382  | 394  | 412  | 443  | 463  | 470             | 809  | 683  | 819  | 835  |
| Level.                         |     |      | 7    | က    | 4    | 2    | 9    | 7               | 8    | 6    | 10   | 11   |

\* 20% Porosiites and Estimates

<sup>\*\*</sup> Determined from Rw and Rt in water saturated clean sands

Water Analysis

APPENDIX 9

WATER ANALYSIS

# Australian Laboratory Services PTY 12 Brisbane Head Office and Laboratory 32 Shand Street, Stafford, O. 4053 Phone: (07) 352 5577. Fax: (07) 352 5109.

CONSULTING ANALYTICAL CHEMISTS

# LABORATORY REPORT

Perth Laboratory
Lot 197 Victoria Road, Malaga, W.A. 6062.
Phone: (09) 249 2988. Fax: (09) 249 2942.

Townsville Laboratory 21 Bombala Street, Garbutt, Q. 4814 Phone: (077) 79 9155. Fax: (077) 799 729.

Charters Towers Laboratory 18 Drew Street, Charters Towers, Phone: (077) 87 4155. Fax (077) 8

Bendigo Laboratory 127A Victoria Street, Eaglehawk, Phone: (054) 46 1390, Fax: (054)

Orange Laboratory 10 Leewood Drive, Orange, N.S.V Phone: (063) 631 722. Fax: (063)

CRUSADER LIMITED

<u>dress: G P O BOX 703</u> BRISBANE

QLD

MR D BARRENGER

der No.

3 1.0.309 936 029

Page

ENVIRONMENTAL Batch Number: 280 0

Sub-batch: No. of Samples: 1

Date Received: 20/12

| Sample Type: | TER   | 99 | E T | Date Completed: | 17/0 |
|--------------|-------|----|-----|-----------------|------|
|              | 7 7 7 |    |     |                 |      |

| _ | Hethod  | Method Analysis description  EA-005 pH Value |            | Units 7.30 |       |   |
|---|---------|----------------------------------------------|------------|------------|-------|---|
|   | EA005   |                                              |            |            |       |   |
|   | EA-010  | Conductivit                                  | y @ 25°C   | uS/cm      | 4860  |   |
|   | ED-005  | Calcium                                      | <b>,</b> • | ng/L       | 114   | • |
|   | ED-010  | Magnesium                                    |            | ng/L       | 30.4  | - |
|   | ED-015  | Sodium                                       |            | ng/L       | 988   |   |
|   | ED-020  | Potassium                                    |            | ng/L       | 25.0  |   |
|   | EB-037  | Alkalinity                                   | (as CaCOO) | ag/L       | 516   |   |
|   | ED-041  | Sulphate                                     |            | ng/L       | 47.4  |   |
|   | ED-046  | Chloride                                     |            | ng/L       | 148   |   |
|   | EG-005F | Cadmium                                      | - Filtered | ng/L       | <0.01 |   |
|   | EG-005F | Cobalt                                       | - Filtered | ng/L       | <0.01 |   |
|   | EG-005F | Copper                                       | - Filtered | ing/L      | <0.01 |   |
|   | EG-005F | Iron                                         | - Filtered | ng/L       | 0.24  |   |
|   | EG-005F | Manganese                                    | - Filtered | ng/L       | 0.12  |   |
|   | EG-005F | Lead                                         | - Filtered | ng/L       | <0.01 |   |
|   | EG-005F | Zinc                                         | - Filtered | ng/L       | <0.01 |   |

SAMPLES AS RECEIVED

mments:



This Capthann, is the altered by the National Association of Tosting Automotes, Automala. The rests remoted herein have their performed in a conductive with its terms of registration. This Document shall not be reproduced except in full.

Signatory:

Well Velocity Survey

APPENDIX 10

WELL VELOCITY SURVEY

# **Velocity Data**



WELL VELOCITY SURVEY

STRINGY BARK #1

PEP 123

VICTORIA

for

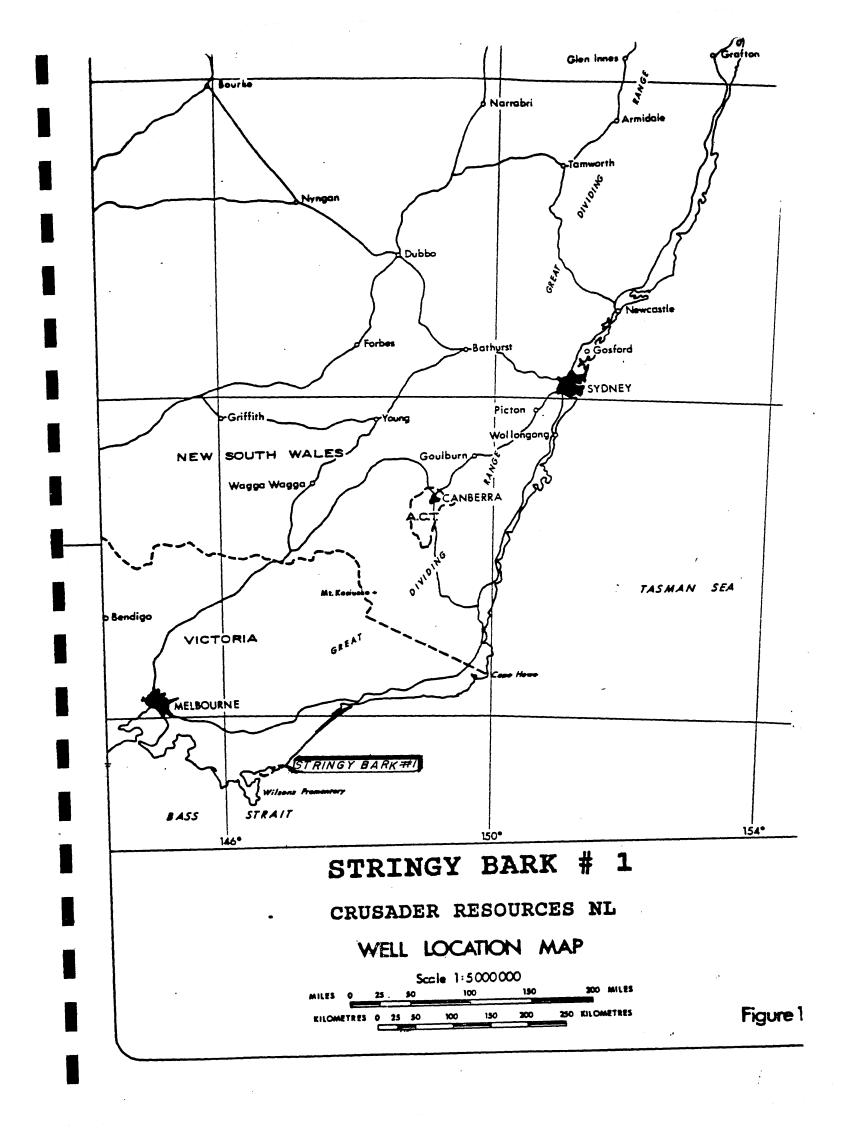
CRUSADER RESOURCES N/L

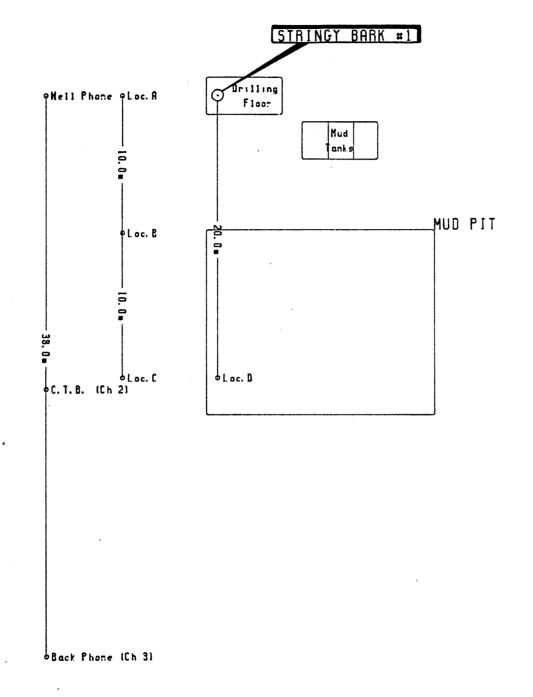
recorded by

VELOCITY DATA PTY. LTD.

processed by




**Integrated Seismic Technologies** 


Brisbane, Australia

January 25, 1991

# CONTENTS

| SUMMARY                        | • • •   | • • •                | • • •                    | 1           |
|--------------------------------|---------|----------------------|--------------------------|-------------|
| GENERAL INFORMAT               | 'ION    | • • •                | • • •                    | 1           |
| EQUIPMENT                      | • • •   | • • •                | • • •                    | 2 .         |
| RECORDING                      | • • •   | • • •                | •••                      | 3           |
| PROCESSING                     |         |                      |                          |             |
| Elevation Dat                  | a       | •••                  | •••                      | 3           |
| Recorded Data                  |         | • • •                | • • •                    | 4           |
| Correction fo<br>Delay and Sho |         |                      | •••                      | 4           |
| Correction to                  | Datum   | • • •                | • • •                    | 4           |
| Calibration o                  | f Sonic | Log                  |                          |             |
| Method                         |         | • • •                | • • •                    | 5           |
| Results                        |         | • • •                | • • •                    | 5           |
| Trace Playout                  | s       | •••                  | • • •                    | 6           |
| FIGURES                        |         |                      |                          |             |
| Figure 1                       |         | Well loc             | ation map                |             |
| Figure 2                       |         | Shot loc             | ation sketo              | eh          |
| Figure 3                       |         | Time-dep             | th and velo              | city curves |
| Figure 4                       |         | Trace pl             | ayouts                   |             |
| Tables                         |         |                      |                          |             |
| Table 1                        |         | Time-dep             | th values                |             |
| Enclosures                     |         |                      |                          |             |
| 1.                             |         | Calculat             | ion Sheets               |             |
| 2.                             |         | Trace Di<br>First Ar | splay and<br>rival Plots |             |





# STRINGY BARK #1

CRUSADER
SHOT POINT LOCATION SKETCH



Figure 2

#### SUMMARY

Velocity Data Pty Ltd conducted a velocity survey for Crusader Resources N.L. in the Stringy Bark No1 well, PEP\_123, Gippsland Basin, Victoria, Australia. The date of the survey was the 25<sup>th</sup> November 1990.

The results of the survey, which are considered to be reliable, have been used to calibrate the sonic log.

Explosives were used as an energy source with shots being fired in the mud pit in the majority of instances.

## GENERAL INFORMATION

Name of Well : Stringy Bark #1

Location (Figure 1) : PEP 123, Gippsland Basin

Coordinates : Latitude 038 31 02.31

: Longitude 146 54 01.77

Seismic Reference : Line GCR87B-107/SP 1496

Date of Survey : November 25<sup>th</sup>, 1990.

Wireline Logging : BPB Unit V1030

Weather : Fine

Operational Base : Brisbane

Operator : N.Delfos

Shooter : J.Brown

Client Representative : Mr D Barrenger

# **EQUIPMENT**

. . . . .

## Downhole Tool

Veldata Camlock 100 (90 mm)

#### Sensors:

6 HSI 4.5 Hz 215 ohm, high temperature (300 degrees F) detectors connected in series parallel. Frequency response 8-300 Hz within 3 dB.

# Preamplifier:

48 dB fixed gain. Frequency response 5-200 Hz within 3 dB.

# Reference Geophone

Mark Products L1 4.5 Hz

# Recording Instrument

VDLS 11/10 software controlled digital recording system utilising SIE OPA-10 floating point amplifiers for digital recording and SIE OPA-4 amplifiers for analog presentation. The system includes a DEC LSI-11 CPU, twin cassette tape unit and printer.

#### RECORDING

Energy Source : Explosive, AN-60

Shot Location : Mud pit

Charge Size : 0.5/1 (125grm) sticks

Average Shot Depth : 1.2 metres

Average Shot Offset : 20.0 metres

Recording Geometry : Figure 2

Shots were recorded on digital cassette tape. Printouts of the shots used are included with this report. (Enclosure 2)

The sample rate was 1 ms with 0.5 ms sampling over a 200ms window encompassing the first arrivals. The scale of the graphic display varies with signal strength and is noted on each playout.

The times were picked from the printouts using the numerical value of the signal strength. (Enclosure 2)

#### PROCESSING

#### Elevation Data

Elevation of KB : 39.0m above sea level

Elevation of Ground : 36.0m above sea level

Elevation of Seismic Datum : 0.0m above sea level

Depth Surveyed : 1049.0m below KB

Total Depth : 1050.0m below KB

Depth of Casing : 170.0m below KB

Sonic Log Interval : 12.0 to 1050.0m below KB

#### PROCESSING

#### Recorded Data

Number of Shots Used : 23

Number of Levels Recorded : 18

Data Quality : Fair

Noise Level : Low

## Correction for Instrument Delay and Shot Offset

The 'corrected' times shown on the calculation sheet have been obtained by:

- (i) Subtraction of the instrument delay (4msec) from the recorded arrival times
- (ii) geometric correction for non-verticality of ray paths resulting from shot offset.
- (iii) shot static correction to correct for the depth of shot below ground level at the well head using a correction velocity of 600 metres/sec
- (iv) readdition of the instrument delay (4msec).

# Correction to Datum

The datum chosen was 0.0 metres ASL that is 39.0 metres below ground. This level was not shot during the survey and for the calculations a value of 42.8 msecs was interpolated for the effective datum correction using the check shot levels that were taken near to datum. This value includes an instrumentation delay.

#### **PROCESSING**

## Calibration of Sonic Log - Method

Sonic times were adjusted to checkshot times using polynomial derived least squares fit correction of the sonic transient times.

These differences arise as the sonic tool measures the local velocity characteristics of the formation with a high frequency signal, whereas the downhole geophone records the bulk velocity character using a signal of significantly lower frequency.

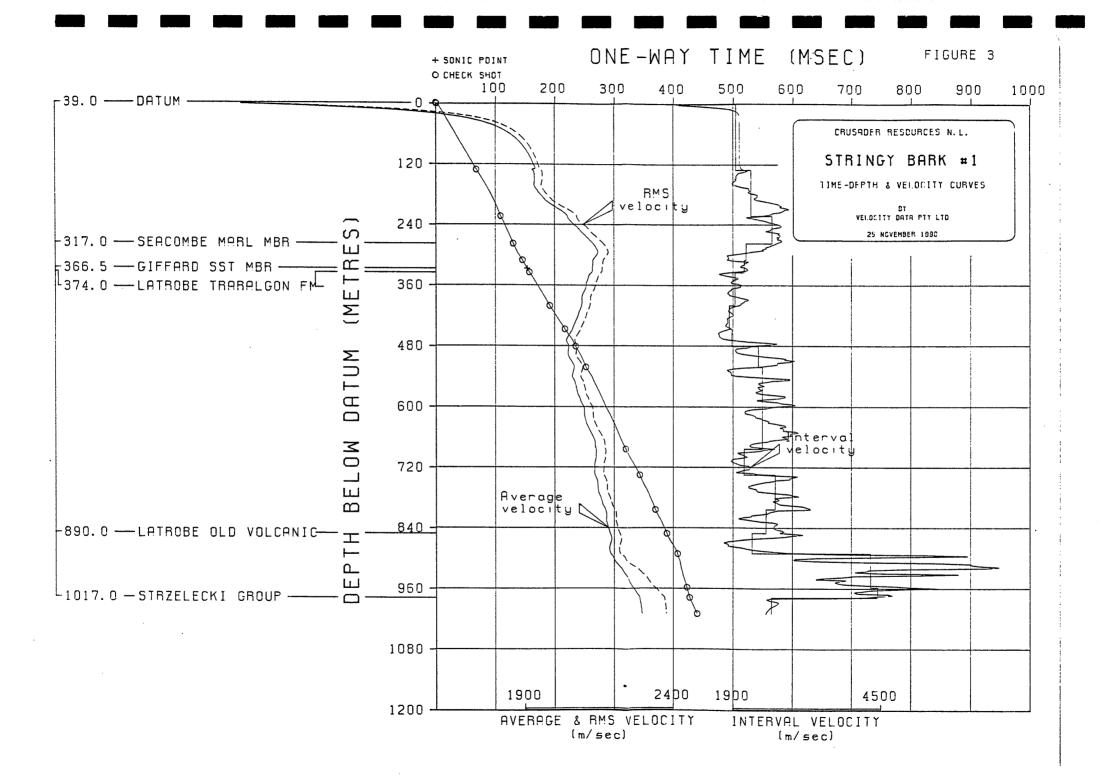
# Calibration of Sonic Log - Results (Enclosure 1)

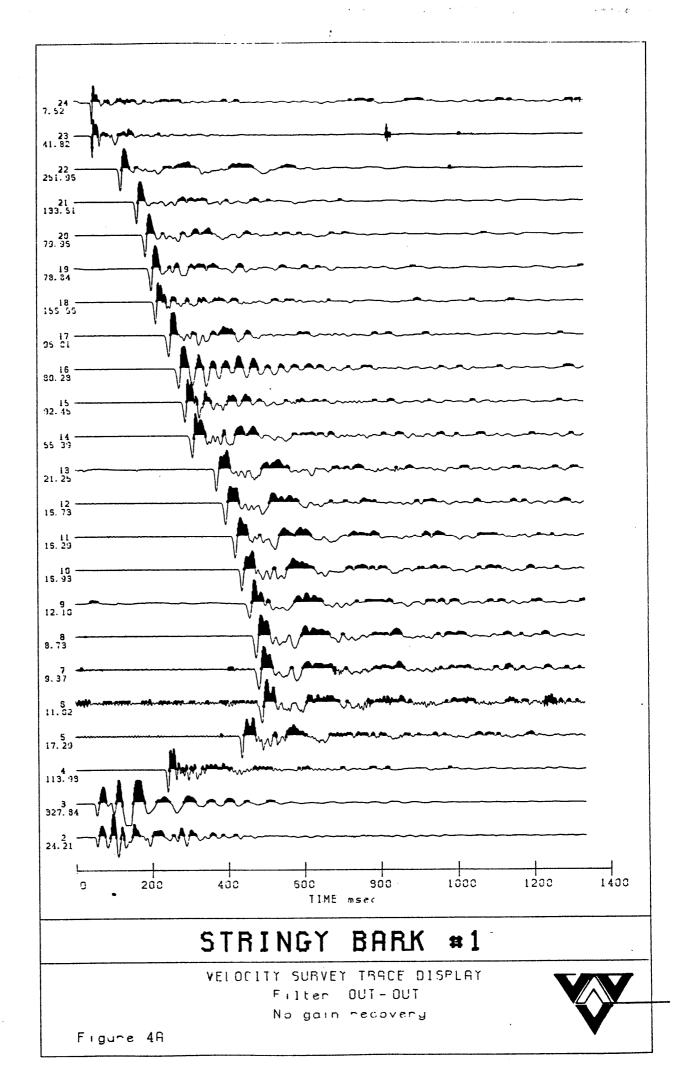
The discrepancies between shot and sonic interval velocities were abnormally high, however the condition of the hole was very poor with large areas of washout and in as much a poor tie was to be expected. The sonic log was not modified and the check shot results used as reference. The highest drift figure was 126.83 sec and the cumulative sonic drift over the logged portion of the well amounted to 39.7msecs. The bulk of this error was found to be between 520 and 720 metres below KB an area of large cycle skipping of the laterlog caliper.

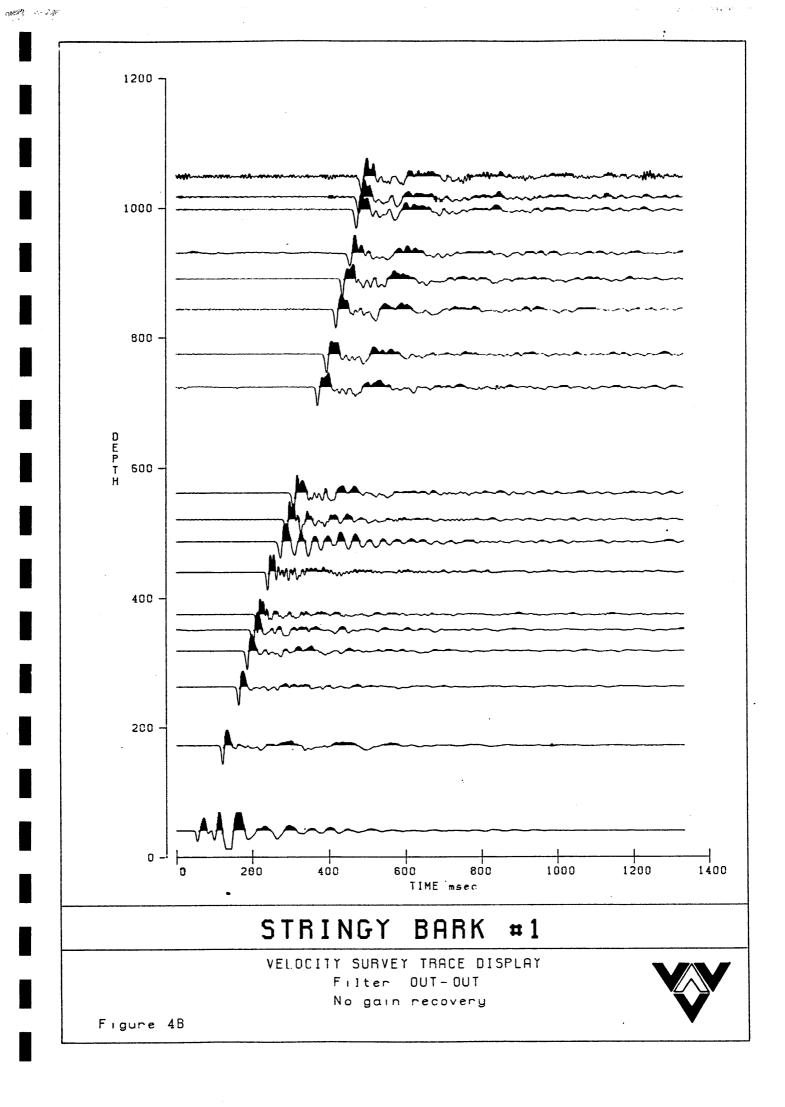
#### **PROCESSING**

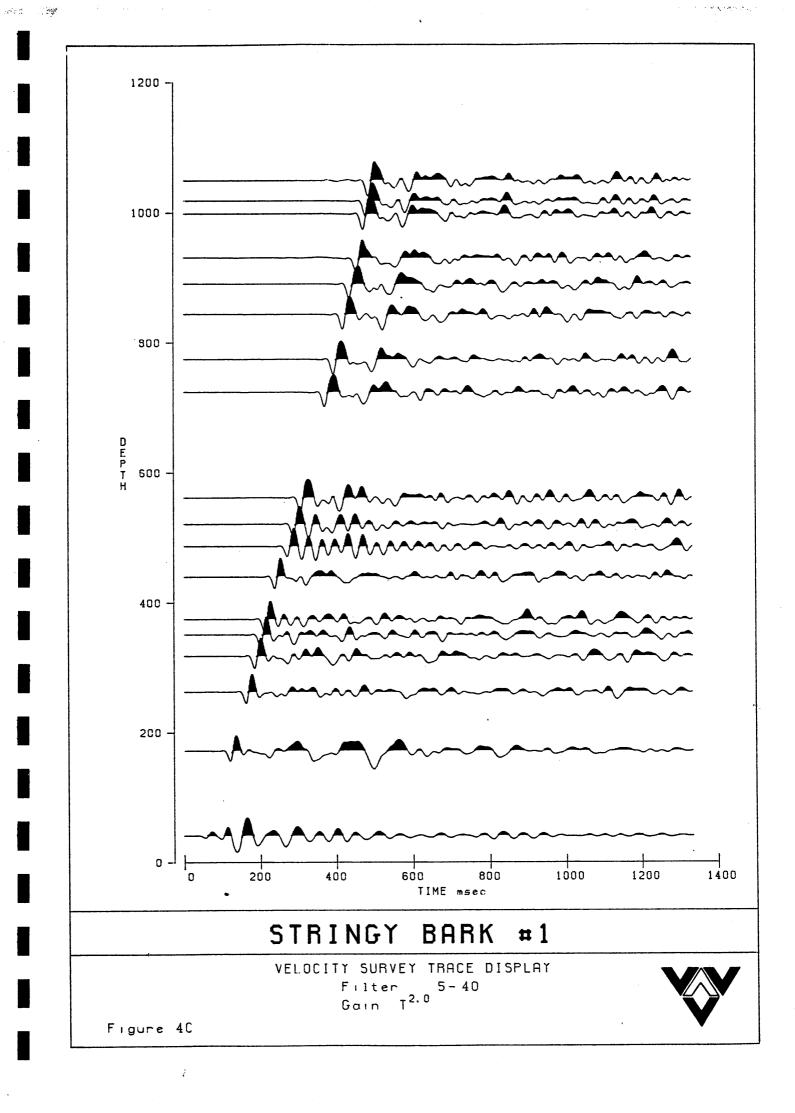
Trace Playouts (Figure 4)

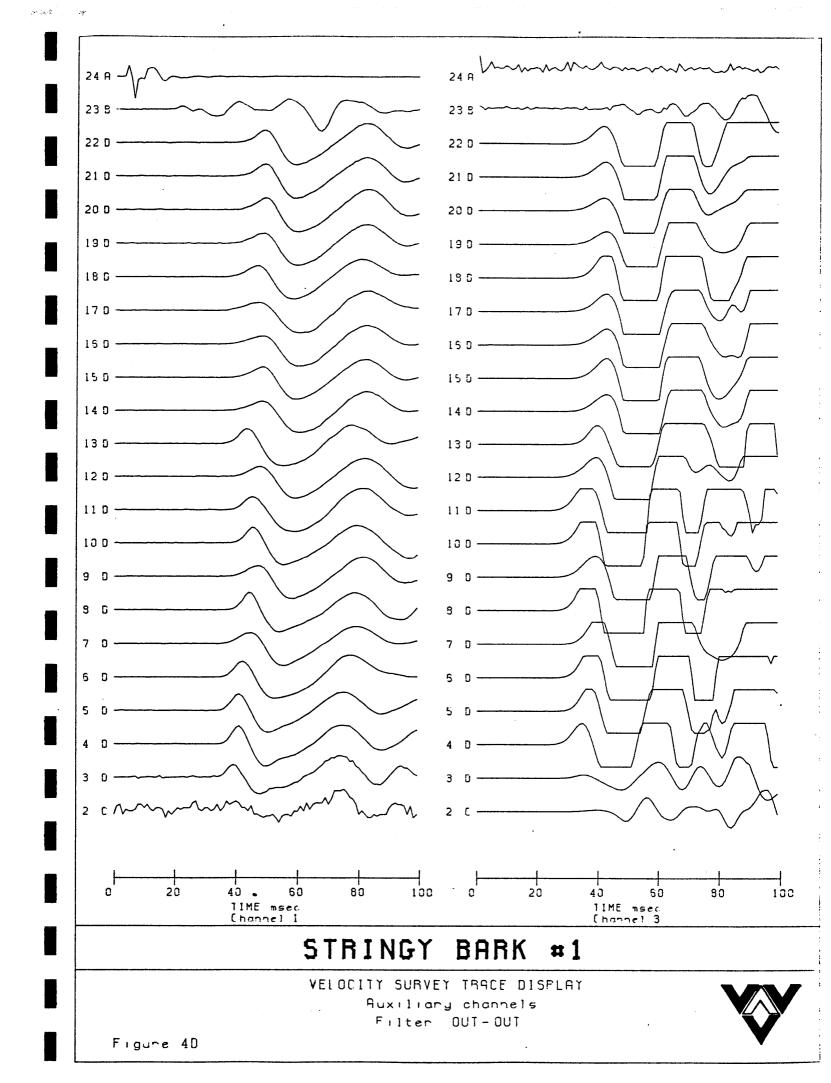
Figure 4A is a plot of all traces used. No filter or gain recovery has been applied.


Figure 4B is a plot to scale in depth and time of selected traces. No filter or gain recovery has been applied.


Figure 4C is a plot to scale in depth and time of selected traces with a  $5~\mathrm{Hz}$  -  $40~\mathrm{Hz}$  filter and a gain recovery function of  $t^2$  applied.


Figure 4D is a plot of selected surface traces. No filter or gain recovery has been applied.


Geoffrey Bell


Geophysical Analyst.











#### Time-Depth curve values TABLE 1. Page 1.

Well: STRINGY BARK #1 Client: CRUSADER RESOURCES N.L.
Survey units: METRES Datum: 0.0
Calibrated sonic interval velocities used from 132.0 to 1010.0

|   | Datum | One-way      | VE!  | LOCIT | IES  | Datum | One-way | VEI  | LOCIT | IES      |
|---|-------|--------------|------|-------|------|-------|---------|------|-------|----------|
|   | Depth | time(ms)     |      |       |      | Depth |         |      |       | Interval |
|   |       |              |      |       |      |       |         |      |       |          |
| - | 2.0   | 2.1          | 956  | 956   |      | 82.0  | 43.4    | 1890 | 1911  |          |
|   | 4.0   | 3.8          | 1066 | 1073  |      | 84.0  | 44.4    | 1893 | 1914  |          |
|   | 6.0   | 5.1          | 1168 | 1185  |      | 86.0  | 45.4    | 1896 | 1916  |          |
|   | 8.0   | 6.4          | 1258 | 1284  |      | 88.0  | 46.4    | 1898 | 1918  |          |
|   | 10.0  | 7.5          | 1336 | 1370  | 1775 | 90.0  | 47.4    | 1901 | 1920  | 2016     |
|   | 12.0  | 8.6          | 1403 | 1441  |      | 92.0  | 48.3    | 1903 | 1922  | 2016     |
|   | 14.0  | 9.6          | 1459 | 1501  | 1927 | 94.0  | 49.3    | 1905 | 1924  | 2016     |
|   | 16.0  | 10.6         | 1508 | 1552  | 1963 | 96.0  | 50.3    | 1908 | 1926  | 2016     |
| - | 18.0  | 11.6         | 1549 | 1594  | 1985 | 98.0  | 51.3    | 1910 | 1928  | 2016     |
|   | 20.0  | 12.6         | 1585 | 1630  | 1998 | 100.0 | 52.3    | 1912 | 1930  | 2016     |
|   | 22.0  | 13.6         | 1615 | 1660  | 2005 | 102.0 | 53.3    | 1914 | 1931  | 2016     |
|   | 24.0  | 14.6         | 1642 | 1686  | 2010 | 104.0 | 54.3    | 1915 | 1933  | 2016     |
|   | 26.0  | 15.6         | 1666 | 1709  | 2012 | 106.0 | 55.3    | 1917 | 1934  | 2016     |
|   | 28.0  | 16.6         | 1687 | 1729  | 2014 | 108.0 | 56.3    | 1919 | 1936  | 2016     |
| _ | 30.0  | 17.6         | 1705 | 1746  | 2015 | 110.0 | 57.3    | 1921 | 1937  | 2016     |
|   | 32.0  | 18.6         | 1722 | 1761  | 2015 | 112.0 | 58.3    | 1922 | 1939  | 2017     |
|   | 34.0  | 19.6         | 1737 | 1775  |      | 114.0 | 59.3    | 1924 | 1940  |          |
|   | 36.0  | 20.6         | 1750 | 1788  |      | 116.0 | 60.2    | 1925 | 1941  |          |
|   | 38.0  | 21.6         | 1762 | 1799  |      | 118.0 | 61.2    | 1927 | 1942  |          |
|   | 40.0  | 22.6         | 1774 | 1809  |      | 120.0 | 62.2    | 1928 | 1944  |          |
| _ | 42.0  | 23.5         | 1784 | 1818  | 2016 | 122.0 | 63.2    | 1930 | 1945  | 2021     |
|   | 44.0  | 24.5         | 1793 | 1826  |      | 124.0 | 64.2    | 1931 | 1946  |          |
| - | 46.0  | 25.5         | 1802 | 1834  |      | 126.0 | 65.2    | 1933 | 1948  |          |
| _ | 48.0  | 26.5         | 1810 | 1841  |      | 128.0 | 66.2    | 1934 | 1949  |          |
|   | 50.0  | 27.5         | 1817 | 1848  |      | 130.0 | 67.1    | 1936 | 1951  |          |
|   | 52.0  | 28.5         | 1824 | 1854  | 2016 | 132.0 | 66.9    | 1974 | 1950  | 2088     |
|   | 54.0  | 20.5<br>29.5 | 1831 | 1860  |      | 134.0 | 67.8    | 1976 | 1952  |          |
|   | 56.0  | 30.5         | 1837 | 1865  |      | 136.0 | 68.9    | 1973 | 1950  |          |
|   | 58.0  | 31.5         | 1842 | 1870  |      | 138.0 | 70.1    | 1970 | 1948  |          |
|   | 60.0  | 32.5         | 1848 | 1875  |      | 140.0 | 71.1    | 1968 | 1946  |          |
|   | 62.0  | 33.5         | 1853 | 1879  | 2016 | 142.0 | 72.3    | 1965 | 1944  | 1767     |
|   | 64.0  | 34.5         | 1857 | 1883  |      | 144.0 | 73.3    | 1964 | 1943  |          |
|   | 66.0  | 35.4         | 1862 | 1887  |      | 146.0 | 74.5    | 1960 | 1940  |          |
|   | 68.0  | 36.4         | 1866 | 1891  |      | 148.0 | 75.6    | 1957 | 1937  |          |
|   | 70.0  | 37.4         | 1870 | 1894  |      | 150.0 | 76.7    | 1956 | 1936  |          |
|   |       |              |      |       |      |       |         |      |       |          |
|   | 72.0  | 38.4         | 1874 | 1897  |      | 152.0 | 77.8    | 1954 | 1935  |          |
|   | 74.0  | 39.4         | 1877 | 1900  |      | 154.0 | 78.9    | 1952 | 1932  |          |
|   | 76.0  | 40.4         | 1881 | 1903  |      | 156.0 | 80.0    | 1949 | 1930  |          |
|   | 78.0  | 41.4         | 1884 | 1906  |      | 158.0 | 81.3    | 1945 | 1926  |          |
| - | 80.0  | 42.4         | 1887 | 1909  | 2016 | 160.0 | 82.4    | 1942 | 1924  | . 1758   |

# TABLE 1.

# Time-Depth curve values

Page 2.

Survey units : METRES
Calibrated coming Survey units : METRES Datum : 0.0
Calibrated sonic interval velocities used from 132.0 to 1010.0

Client : CRUSADER RESOURCES N.L.

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

|   | Datum<br>Depth          | One-way<br>time(ms)  |                      |                      |                      | Datum<br>Depth          | One-way<br>time(ms)     |                      |                      |                      |
|---|-------------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------------------|----------------------|----------------------|----------------------|
|   | 162.0<br>164.0<br>166.0 | 83.6<br>84.6<br>85.6 | 1939<br>1938<br>1938 | 1921<br>1921<br>1921 | 1704<br>1897<br>1946 | 242.0<br>244.0<br>246.0 | 117.9<br>118.5<br>119.2 | 2053<br>2059<br>2064 | 2056<br>2064<br>2070 | 3004<br>3236<br>2959 |
|   | 168.0<br>170.0          | 86.7<br>87.7         | 1937<br>1938         | 1921<br>1922         | 1878<br>2032         | 248.0<br>250.0          | 119.8<br>120.6          | 2070<br>2073         | 2078<br>2081         | 3187<br>2611         |
| _ | 172.0<br>174.0          | 88.6<br>89.6         | 1941<br>1942         | 1925<br>1926         | 2230<br>1976         | 252.0<br>254.0          | 121.4<br>122.0          | 2076<br>2082         | 2085<br>2092         | 2600<br>3154         |
|   | 176.0                   | 90.6                 | 1942                 | 1926                 | 1921                 | 256.0                   | 122.7                   | 2086                 | 2072                 | 2690                 |
| j | 178.0                   | 91.6                 | 1943                 | 1927                 | 2063                 | 258.0                   | 123.4                   | 2090                 | 2101                 | 2826                 |
| ı | 180.0                   | 92.6                 | 1943                 | 1928                 | 1962                 | 260.0                   | 124.0                   | 2096                 | 2107                 | 3317                 |
|   | 182.0                   | 93.5                 | 1946                 | 1931                 | 2277                 | 262.0                   | 124.7                   | 2102                 | 2116                 | 3287                 |
| _ | 184.0                   | 94.4                 | 1950                 | 1935                 | 2308                 | 264.0                   | 125.4                   | 2106                 | 2121                 | 2829                 |
|   | 186.0                   | 95.3                 | 1951                 | 1937                 | 2107                 | 266.0                   | 126.1                   | 2110                 | 2125                 | 2840                 |
|   | 188.0                   | 96.3                 | 1951                 | 1937                 | 1969                 | 268.0                   | 126.8                   | 2114                 | 2130                 | 2836                 |
|   | 190.0                   | 97.3                 | 1954                 | 1940                 | 2188                 | 270.0                   | 127.4                   | 2119                 | 2137                 | 3224                 |
|   | 192.0                   | 98.3                 | 1954                 | 1940                 | 2014                 | 272.0                   | 128.0                   | 2125                 | 2144                 | 3376                 |
|   | 194.0                   | 99.2                 | 1956                 | 1943                 | 2188                 | 274.0                   | 128.7                   | 2129                 | 2149                 | 2846                 |
| _ | 196.0                   | 100.0                | 1960                 | 1948                 | 2444                 | 276.0                   | 129.3                   | 2134                 | 2155                 | 3128                 |
|   | 198.0                   | 100.8                | 1964                 | 1952                 | 2473                 | 278.0                   | 130.0                   | 2138                 | 2160                 | 2979                 |
|   | 200.0                   | 101.6                | 1969                 | 1958                 | 2573                 | 280.0                   | 130.6                   | 2143                 | 2165                 | 3104                 |
|   | 202.0                   | 102.4                | 1972                 | 1961                 | 2347                 | 282.0                   | 131.4                   | 2146                 | 2168                 | 2521                 |
|   | 204.0                   | 103.2                | 1977                 | 1966                 | 2541                 | 284.0                   | 132.1                   | 2149                 | 2172                 | 2897                 |
|   | 206.0                   | 104.0                | 1982                 | 1972                 | 2675                 | 286.0                   | 132.9                   | 2151                 | 2174                 | 2438                 |
|   | 208.0                   | 104.7                | 1986                 | 1978                 | 2650                 | 288.0                   | 133.6                   | 2156                 | 2179                 | 3090                 |
|   | 210.0                   | 105.6                | 1989                 | 1981                 | 2343                 | 290.0                   | 134.4                   | 2158                 | 2182                 | 2605                 |
| • | 212.0<br>214.0          | 106.2                | 1996                 | 1990                 | 3109                 | 292.0                   | 135.1                   | 2161                 | 2184                 | 2564                 |
|   | 214.0                   | 107.0<br>107.8       | 2000<br>2003         | 1994<br>1998         | 2513<br>2449         | 294.0                   | 135.9                   | 2163                 | 2187                 | 2596                 |
|   | 218.0                   | 108.7                | 2003                 | 2002                 | 2449<br>2390         | 296.0                   | 136.7                   | 2166                 | 2189                 | 2624                 |
| _ | 220.0                   | 109.5                |                      | 2002                 |                      | 298.0                   | 137.6                   | 2166                 | 2189                 | 2166                 |
|   |                         |                      | 2010                 | 2003                 | 2451                 | 300.0                   | 138.7                   | 2164                 | 2187                 | 1882                 |
| _ | 222.0                   | 110.4                | 2011                 | 2007                 | 2180                 | 302.0                   | 139.6                   | 2163                 | 2186                 | 2096                 |
|   | 224.0                   | 111.3                | 2013                 | 2009                 | 2274                 | 304.0                   | 140.8                   | 2160                 | 2183                 | 1759                 |
|   | 226.0                   | 112.1                | 2016                 | 2012                 | 2362                 | 306.0                   | 141.7                   | 2159                 | 2182                 | 2043                 |
|   | 228.0                   | 113.0                | 2019                 | 2015                 | 2397                 | 308.0                   | 142.7                   | 2159                 | 2182                 | 2148                 |
| I | 230.0                   | 113.7                | 2023                 | 2021                 | 2742                 | 310.0                   | 143.6                   | 2158                 | 2181                 | 2035                 |
|   | 232.0                   | 114.4                | 2028                 | 2026                 | 2741                 | 312.0                   | 144.7                   | 2157                 | 2180                 | 1947                 |
|   | 234.0                   | 115.2                | 2031                 | 2030                 | 2575                 | 314.0                   | 145.9                   | 2152                 | 2175                 | 1606                 |
| 1 | 236.0                   | 115.9                | 2037                 | 2037                 | 2991                 | 316.0                   | 146.9                   | 2150                 | 2174                 | 1940                 |
|   | 238.0                   | 116.6                | 2041                 | 2042                 | 2753                 | 318.0                   | 148.0                   | 2149                 | 2172                 | 1928                 |
| - | 240.0                   | 117.2                | 2047                 | 2049                 | 3073                 | 320.0                   | 149.1                   | 2147                 | 2170                 | 1868                 |
|   |                         |                      |                      |                      |                      |                         |                         |                      |                      |                      |

# TABLE 1. Time-Depth curve values

Page 3.

Well: STRINGY BARK #1 Client: CRUSADER RESOURCES N.L.
Survey units: METRES Datum: 0.0
Calibrated sonic interval velocities used from 132.0 to 1010.0

|   | Datum | One-way  | VEI     | LOCITI | ES      | Datum          | One-way                                 |                  |       | IES      |
|---|-------|----------|---------|--------|---------|----------------|-----------------------------------------|------------------|-------|----------|
|   | Depth | time(ms) | Average | RMS I  | nterval | Depth          | time(ms)                                | Average          | RMS : | Interval |
| _ | 322.0 | 150.2    | 2143    | 2167   | 1685    | 402.0          | 192.4                                   | 2089             | 2112  | 1996     |
|   | 324.0 | 151.5    | 2139    | 2163   | 1604    | 404.0          | 193.5                                   | 2088             | 2111  | 1850     |
|   | 326.0 | 152.6    | 2136    | 2160   | 1793    | 406.0          | 194.6                                   | 2087             | 2110  | 1849     |
|   | 328.0 | 153.6    | 2136    | 2160   | 2096    | 408.0          | 195.6                                   | 2086             | 2108  |          |
|   | 330.0 | 154.6    | 2135    | 2159   | 1977    | 410.0          | 196.7                                   | 2084             | 2107  |          |
|   | 770 0 | 4        | 0470    | 015/   | 4       | 4400           | 400000000000000000000000000000000000000 | ~~~~             |       | 40.50    |
|   | 332.0 | 155.7    | 2132    | 2156   | 1757    | 412.0          | 197.8                                   | 2083             | 2106  |          |
|   | 334.0 | 156.9    | 2129    | 2153   | 1746    | 414.0          | 198.9                                   | 2082             | 2104  |          |
|   | 336.0 | 158.1    | 2125    | 2149   | 1561    | 416.0          | 199.9                                   | 2081             | 2103  |          |
|   | 338.0 | 159.4    | 2120    | 2145   | 1538    | 418.0          | 200.9                                   | 2080             | 2103  |          |
|   | 340.0 | 160.7    | 2116    | 2141   | 1614    | 420.0          | 201.9                                   | 2080             | 2103  | 2001     |
|   | 342.0 | 161.7    | 2115    | 2140   | 1971    | 422.0          | 203.0                                   | 2079             | 2102  | 1881     |
|   | 344.0 | 162.7    | 2114    | 2139   | 1964    | 424.0          | 204.1                                   | 2078             | 2100  | 1837     |
|   | 346.0 | 163.7    | 2113    | 2138   | 1967    | 426.0          | 205.2                                   | 2076             | 2099  | 1814     |
|   | 348.0 | 164.7    | 2112    | 2137   | 1980    | 428.0          | 206.3                                   | 2075             | 2097  | 1805     |
| _ | 350.0 | 165.7    | 2112    | 2137   | 2028    | 430.0          | 207.4                                   | 2074             | 2096  | 1855     |
|   | 352.0 | 166.8    | 2110    | 2135   | 1847    | 432.0          | 208.4                                   | 2073             | 2095  | 1867     |
|   | 354.0 | 168.0    | 2107    | 2132   | 1700    | 434.0          | 209.5                                   | 2071             | 2094  | 1834     |
|   | 356.0 | 169.0    | 2107    | 2131   | 1982    | 436.0          | 210.6                                   | 2070             | 2074  | 1811     |
|   | 358.0 | 170.1    | 2107    | 2129   | 1786    | 438.0<br>438.0 | 210.6                                   | 2070<br>2069     | 2092  | 1840     |
|   |       |          |         |        |         |                |                                         |                  |       |          |
|   | 360.0 | 171.0    | 2105    | 2130   | 2281    | 440.0          | 212.8                                   | 2068             | 2090  | 1810     |
|   | 362.0 | 171.9    | 2106    | 2131   | 2242    | 442.0          | 213.9                                   | 2066             | 2088  | 1779     |
|   | 364.0 | 172.9    | 2105    | 2129   | 1936    | 444.0          | 215.1                                   | 2064             | 2087  | 1749     |
|   | 366.0 | 174.0    | 2104    | 2128   | 1888    | 446.0          | 216.1                                   | 2064             | 2086  | 1988     |
| • | 368.0 | 175.0    | 2102    | 2127   | 1854    | 448.0          | 217.1                                   | 2064             | 2086  | 2038     |
|   | 370.0 | 176.1    | 2101    | 2125   | 1850    | 450.0          | 218.1                                   | 2063             | 2085  | 1929     |
|   | 372.0 | 177.2    | 2099    | 2123   | 1829    | 452.0          | 219.2                                   | 2062             | 2084  | 1803     |
|   | 374.0 | 178.3    | 2097    | 2121   | 1804    | 454.0          | 220.3                                   | 2060             | 2082  | 1782     |
|   | 376.0 | 179.5    | 2095    | 2119   | 1751    | 456.0          | 221.5                                   | 2059             | 2081  | 1794     |
|   | 378.0 | 180.6    | 2093    | 2117   | 1796    | 458.0          | 222.6                                   | 2058             | 2080  | 1781     |
|   | 380.0 | 181.7    | 2091    | 2116   | 1802    | 460.0          | 223.7                                   | 2056             | 2078  | 1807     |
|   |       | 1011/    |         |        |         |                | olim dim 'm' # F                        | dia 'a' 'a' 'aa' |       | 1007     |
|   | 382.0 | 182.7    | 2090    | 2115   | 1930    | 462.0          | 224.7                                   | 2056             | 2078  | 1893     |
|   | 384.0 | 183.8    | 2089    | 2113   | 1888    | 464.0          | 225.9                                   | 2054             | 2076  | 1763     |
|   | 386.0 | 184.7    | 2090    | 2114   | 2139    | 466.0          | 226.9                                   | 2053             | 2075  | 1883     |
| _ | 388.0 | 185.6    | 2090    | 2114   | 2204    | 468.0          | 228.0                                   | 2052             | 2074  | 1834     |
|   | 390.0 | 186.6    | 2091    | 2114   | 2183    | 470.0          | 229.0                                   | 2053             | 2074  | 2128     |
|   | 392.0 | 187.5    | 2091    | 2115   | 2192    | 472.0          | 229.8                                   | 2054             | 2075  | 2333     |
|   | 394.0 | 188.5    | 2090    | 2114   | 1972    | 474.0          | 230.5                                   | 2056             | 2078  | 2844     |
|   | 396.0 | 189.5    | 2090    | 2113   | 1986    | 476.0          | 231.2                                   | 2059             | 2082  | 3121     |
|   | 398.0 | 170.4    | 2090    | 2113   | 2104    | 478.0          | 231.8                                   | 2062             | 2086  | 3191     |
|   | 400.0 | 191.4    | 2090    | 2113   | 2040    | 480.0          | 232.4                                   | 2065             | 2090  | 3341     |
|   |       |          |         |        |         |                |                                         |                  | -     |          |

TABLE 1.

---

# Time-Depth curve values

Page 5.

Well: STRINGY BARK #1 Client: CRUSADER RESOURCES N.L.
Survey units: METRES Datum: 0.0
Calibrated sonic interval velocities used from 132.0 to 1010.0

| 1 | Datum          | One-way              | VEL             | _OCITI     | ES                    | Datum           | One-way  | VEI          | _00171 | :ES             |
|---|----------------|----------------------|-----------------|------------|-----------------------|-----------------|----------|--------------|--------|-----------------|
|   | Depth          | time(ms)             |                 |            |                       | Depth           | time(ms) |              |        |                 |
|   | •              |                      | _               |            |                       | ·               |          |              |        |                 |
|   | 642.0          | 304.4                | 2109            | 2140       | 3152                  | 722.0           | 338.2    | 2135         | 2168   | 2705            |
|   | 644.0          | 305.3                | 2109            | 2141       | 2258                  | 724.0           | 339.1    | 2135         | 2168   | 2153            |
|   | 646.0          | 306.1                | 2110            | 2142       | 2508                  | 726.0           | 340.1    | 2135         | 2168   | 2087            |
|   | 648.0          | 306.7                | 2113            | 2145       | 3195                  | 728.0           | 341.0    | 2135         | 2168   | 2128            |
|   | 650 <b>.</b> 0 | 307.4                | 2115            | 2147       | 3086                  | 730.0           | 341.9    | 2135         | 2168   | 2238            |
|   |                |                      |                 |            |                       |                 |          | •            |        |                 |
|   | 652.0          | 308.1                | 2116            | 2149       | 2762                  | 732.0           | 342.8    | 2135         | 2168   | 2262            |
|   | 654.0          | 308.7                | 2118            | 2151       | 3107                  | 734.0           | 343.6    | 2136         | 2169   | 2500            |
|   | 656.0          | 309.5                | 2120            | 2153       | 2723                  | 736.0           | 344.2    | 2138         | 2172   | 3278            |
| - | 658.0          | 310.2                | 2121            | 2154       | 2755                  | 738.0           | 345.1    | 2139         | 2172   | 2276            |
| 1 | 660.0          | 310.9                | 2123            | 2156       | 2834                  | 740.0           | 345.7    | 2141         | 2174   | 3303            |
|   | 662.0          | 311.6                | 2125            | 2158       | 3080                  | 742.0           | 346.3    | 2143         | 2177   | 3392            |
| _ | 664.0          | 312.5                | 2125            | 2158       | 2204                  | 744.0           | 347.0    | 2144         | 2178   | 2645            |
|   | 666.0          | 313.1                | 2127            | 2161       | 3107                  | 746.0           | 347.9    | 2145         | 2179   | 2395            |
|   | 668.0          | 313.8                | 2129            | 2163       | 2879                  | 748.0           | 348.7    | 2145         | 2179   | 2432            |
|   | 670.0          | 314.7                | 2129            | 2163       | 2234                  | 750.0           | 349.6    | 2146         | 2180   | 2293            |
| _ | 01010          | ~                    | / خ. ۱ ک        | # 1 W      |                       | /               | O47.0    | 2140         | 2100   | ب ر شید         |
|   | 672.0          | 315.6                | 2129            | 2163       | 2173                  | 752.0           | 350.3    | 2147         | 2181   | 2629            |
| J | 674.0          | 316.5                | 2129            | 2163       | 2179                  | 754.0           | 351.3    | 2146         | 2180   | 2103            |
|   | 676.0          | 317.4                | 2130            | 2163       | 2329                  | 756.0           | 352.3    | 2146         | 2180   | 1957            |
| • | 678.0          | 318.4                | 2129            | 2163       | 2004                  | 758.0           | 353.3    | 2146         | 2180   | 2081            |
|   | 680.0          | 319.4                | 2129            | 2163       | 2096                  | 760.0           | 354.2    | 2146         | 2180   | 2183            |
|   | m.m.n. a.n.    | w                    | the strate ?    |            |                       |                 |          | des de -F -w |        |                 |
|   | 682.0          | 320.3                | 2129            | 2163       | 2109                  | 762.0           | 355.1    | 2146         | 2179   | 2097            |
|   | 684.0          | 321.1                | 2130            | 2164       | 2671                  | 764.0           | 356.1    | 2146         | 2179   | 2079            |
|   | 686.0          | 321.6                | 2133            | 2167       | 3395                  | 766.0           | 356.9    | 2146         | 2180   | 2451            |
| _ | 688.0          | 322.3                | 2134            | 2169       | 2891                  | 768.0           | 357.8    | 2147         | 2180   | 2303            |
|   | 690.0          | 323.3                | 2134            | 2168       | 2048                  | 770.0           | 358.7    | 2147         | 2180   | 2136            |
| • |                |                      |                 |            |                       |                 |          |              |        |                 |
|   | 692.0          | 324.3                | 2134            | 2168       | 1990                  | 772.0           | 359.6    | 2147         | 2180   | 2234            |
|   | 694.0          | 325.3                | 2133            | 2167       | 1969                  | 774.0           | 360.2    | 2149         | 2182   | 3274            |
| • | 696.0          | 326.3                | 2133            | 2167       | 2054                  | 776.0           | 360.7    | 2151         | 2186   | 3870            |
|   | 698.0          | 327.0                | 2135            | 2169       | 3005                  | 778.0           | 361.5    | 2152         | 2187   | 2738            |
| 1 | 700.0          | 327.9                | 2135            | 2169       | 2221                  | 780.0           | 362.3    | 2153         | 2188   | 2368            |
|   |                |                      |                 |            |                       | ند. نند نخرونیت |          | ~            |        | , and , and , a |
|   | 702.0          | 328.8                | 2135            | 2169       | 2136                  | 782.0           | 363.0    | 2154         | 2189   | 2791            |
|   | 704.0          | 329.8                | 2135            | 2169       | 2053                  | 784.0           | 363.9    | 2154         | 2189   | 2220            |
|   | 706.0          | 330.8                | 2134            | 2168       | 1884                  | 786.0           | 364.6    | 2156         | 2191   | 2924            |
| - | 708.0          | 331.9                | 2133            | 2167       | 1889                  | 788.0           | 365.3    | 2157         | 2192   | 2895            |
| 1 | 710.0          | 332.9                | 2133            | 2167       | 2059                  | 790.0           | 366.2    | 2157         | 2192   | 2277            |
|   | 712.0          | 333.8                | 2133            | 2166       | 2082                  | 792.0           | 367.1    | 2158         | 2192   | 2218            |
|   | 714.0          | 334.8                | 2133            | 2166       | 2083                  | 794.0           | 367.8    | 2159         | 2194   | 2818            |
|   | 716.0          | 335.7                | 2133            | 2166       | 2167                  | 796.0           | 368.5    | 2160         | 2195   | 2985            |
| i | 718.0          | 336.7                | 2133            | 2166       | 2118                  | 798.0           | 369.1    | 2162         | 2197   | 3026            |
| • | 720.0          | 337.4                | 2134            | 2167       | 2548                  | 800.0           | 369.8    | 2164         | 2199   | 3137            |
|   | / au '2' a '2' | and any A. H. galler | Aire A. 7.0 PMP | / اساند شد | alian rand broke rand | www.a.w         | /*       | a            | ±//    | المناهد المناهد |

# Time-Depth curve values

and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t

Page 6.

Well : STRINGY BARK #1 Well : STRINGY BARK #1
Survey units : METRES Client : CRUSADER RESOURCES N.L. Datum : 0.0

Calibrated sonic interval velocities used from 132.0 to 1010.0

|   | Datum | One-way  | VE           | LOCITIE                | <b>ES</b>      | Datum' | One-way           | VEI           | _OCIT    | IES          |
|---|-------|----------|--------------|------------------------|----------------|--------|-------------------|---------------|----------|--------------|
|   | Depth | time(ms) | Average      | RMS I                  | nterval        | Depth  | time(ms)          |               |          |              |
|   | 802.0 | 370.4    | 2165         | 2201                   | 3030           | 882.0  | 401.6             | 2196          | 2238     | 2125         |
|   | 804.0 | 371.0    | 2167         | 2203                   | 3285           | 884.0  | 402.2             | 2198          | 2240     |              |
|   | 806.0 | 371.7    | 2169         | 2205                   | 3101           | 886.0  | 403.0             | 2199          | 2240     |              |
| _ | 808.0 | 372.3    | 2170         | 2207                   | 3166           | 888.0  | 404.0             | 2198          | 2240     |              |
|   | 810.0 | 372.9    | 2172         | 2209                   | 3231           | 890.0  | 404.8             | 2199          | 2240     | 2570         |
|   |       |          |              |                        |                | 0,0.0  | +04.0             |               | 2240     | 2370         |
|   | 812.0 | 373.7    | 2173         | 2210                   | 2605           | 892.0  | 405.2             | 2201          | 2244     | 4350         |
|   | 814.0 | 374.3    | 2175         | 2212                   | 3090           | 894.0  | 405.6             | 2204          | 2250     | 5972         |
|   | 816.0 | 375.0    | 2176         | 2213                   | 2874           | 896.0  | 405.9             | 2207          | 2255     | 5537         |
|   | 818.0 | 375.8    | 2176         | 2214                   | 2460           | 898.0  | 406.2             | 2210          | 2260     | 6089         |
|   | 820.0 | 376.8    | 2176         | 2214                   | 2196           | 900.0  | 406.9             | 2212          | 2262     | 3265         |
|   | 000 A |          | ~            | 0045                   | ~~·            |        | 31 .st. 1100 .au. |               |          |              |
| • | 822.0 | 377.5    | 2178         | 2215                   | 2762           | 902.0  | 407.9             | 2211          | 2261     | 1850         |
| _ | 824.0 | 378.4    | 2177         | 2215                   | 2113           | 904.0  | 409.0             | 2210          | 2260     | 1858         |
|   | 826.0 | 379.2    | 2178         | 2216                   | 2627           | 906.0  | 409.6             | 2212          | 2262     | 3247         |
|   | 828.0 | 379.8    | 2180         | 2218                   | 3177           | 908.0  | 410.0             | 2215          | 2267     |              |
| _ | 830.0 | 380.5    | 2181         | 2219                   | 3036           | 910.0  | 410.4             | 2218          | 2272     | 5254         |
|   | 832.0 | 381.1    | 2183         | 2221                   | 3383           | 912.0  | 410.8             | 2220          | 2276     | 4703         |
|   | 834.0 | 381.7    | 2185         | 2223                   | 3165           | 914.0  | 411.2             | 2223          | 2280     | 5146         |
|   | 836.0 | 382.3    | 2187         | 2225                   | 3181           | 916.0  | 411.5             | 2226          | 2285     | 5553         |
|   | 838.0 | 383.0    | 2188         | 2227                   | 2982           | 918.0  | 411.9             | 2229          | 2290     | 5654         |
|   | 840.0 | 383.7    | 2189         | 2228                   | 3020           | 920.0  | 412.3             | 2232          | 2295     | 5707         |
| _ | 842.0 | 384.3    | 2191         | 2230                   | 7150           | 000 0  |                   | ~~~           |          |              |
|   | 844.0 | 384.9    | 2171         | 2232                   | 3159           | 922.0  | 412.6             | 2235          | 2300     | 5740         |
| • | 846.0 | 385.5    | 2173         | 2234                   | 3226           | 924.0  | 413.1             | 2237          | 2303     | 4102         |
|   | 848.0 | 386.1    | 2174         | 2234                   | 3247           | 926.0  | 414.1             | 2236          | 2302     | 2063         |
|   | 850.0 | 386.7    | 2176<br>2198 | 2239                   | 3261           | 928.0  | 414.5             | 2239          | 2305     | 4049         |
|   | 000.0 | 000.7    | 2170         | 2237                   | 3631           | 930.0  | 414.9             | 2242          | 2310     | 5743         |
|   | 852.0 | 387.3    | 2200         | 2241                   | 3130           | 932.0  | 415.4             | 2244          | 2313     | 4095         |
|   | 854.0 | 388.0    | 2201         | 2242                   | 2853           | 934.0  | 415.7             | 2247          | 2318     | 5732         |
|   | 856.0 | 388.6    | 2203         | 2244                   | 3279           | 936.0  | 416.1             | 2249          | 2323     | 5545         |
|   | 858.0 | 389.3    | 2204         | 2246                   | 3127           | 938.0  | 417.0             | 2249          | 2323     | 2179         |
|   | 860.0 | 390.1    | 2205         | 2246                   | 2559           | 940.0  | 417.9             | 2250          | 2323     | 2389         |
|   | 862.0 | 390.9    | 2205         | 2247                   | 2364           | 942.0  | 418.4             | 2252          | 2325     | 3929         |
|   | 864.0 | 391.9    | 2204         | 2246                   | 1936           | 944.0  | 419.0             | 2253          | 2327     | 3727<br>3213 |
|   | 866.0 | 393.0    | 2204         | 2245                   | 1977           | 946.0  | 419.5             | 2255          | 2329     | 3213<br>3832 |
|   | 868.0 | 394.0    | 2203         | 2244                   | 1885           | 948.0  | 420.2             | 2256          | 2331     | 3083         |
|   | 870.0 | 395.2    | 2202         | 2243                   | 1761           | 950.0  | 421.0             | 2257          | 2331     |              |
| ł |       |          |              | come anno :: "I" "Ann" | ete e "ent ele | ,00.0  |                   | ∕ اس. سند سند | الالالات | 2434         |
| ĺ | 872.0 | 396.5    | 2199         | 2241                   | 1534           | 952.0  | 421.5             | 2258          | 2333     | 3621         |
| - | 874.0 | 397.6    | 2198         | 2240                   | 1807           | 954.0  | 422.0             | 2261          | 2336     | 3788         |
|   | 876.0 | 398.4    | 2199         | 2240                   | 2330           | 956.0  | 422.5             | 2263          | 2339     | 4117         |
|   | 878.0 | 399.5    | 2198         | 2239                   | 1840           | 958.0  | 423.0             | 2265          | 2342     | 4355         |
|   | 880.0 | 400.7    | 2196         | 2238                   | 1716           | 960.0  | 423.4             | 2267          | 2345     | 4397         |
|   |       |          |              |                        |                |        |                   |               |          | · ·          |

TABLE 1.

# Time-Depth curve values

Page 7.

Well : STRINGY BARK #1 Survey units : METRES

Client : CRUSADER RESOURCES N.L.

Datum : 0.0

Calibrated sonic interval velocities used from 132.0 to 1010.0

| 1 | Datum | One-way  | VELOCITIES |      | Datum    | One-way | -wayVELOCITIES- |         | IES  |          |
|---|-------|----------|------------|------|----------|---------|-----------------|---------|------|----------|
|   | Depth | time(ms) | Average    | RMS  | Interval | Depth   | time(ms)        | Average | RMS  | Interval |
|   | 962.0 | 423.9    | 2269       | 2348 | 4374     | 986.0   | 431.1           | 2287    | 2369 | 3421     |
|   | 964.0 | 424.3    | 2272       | 2351 | 4470     | 988.0   | 431.7           | 2289    | 2371 | 3483     |
| • | 966.0 | 425.2    | 2272       | 2351 | 2205     | 990.0   | 432.3           | 2290    | 2373 | 3410     |
|   | 968.0 | 425.8    | 2273       | 2353 | 3319     | 992.0   | 432.8           | 2292    | 2374 | 3410     |
|   | 970.0 | 426.4    | 2275       | 2355 | 3664     | 994.0   | 433.4           | 2293    | 2376 | 3382     |
| ŀ | 972.0 | 426.9    | 2277       | 2357 | 3593     | 996.0   | 434.0           | 2295    | 2378 | 3282     |
|   | 974.0 | 427.5    | 2279       | 2359 | 3821     | 998.0   | 434.7           | 2296    | 2379 | 3230     |
| İ | 976.0 | 428.0    | 2281       | 2362 | 3965     | 1000.0  | 435.3           | 2297    | 2380 | 3225     |
|   | 978.0 | 428.5    | 2282       | 2364 | 3480     | 1002.0  | 435.9           | 2299    | 2382 | 3196     |
| 1 | 980.0 | 429.3    | 2283       | 2364 | 2807     | 1004.0  | 436.5           | 2300    | 2383 | 3178     |
|   | 982.0 | 429.9    | 2284       | 2366 | 3015     | 1006.0  | 437.2           | 2301    | 2384 | 3160     |
|   | 984.0 | 430.5    | 2286       | 2367 | 3403     | 1008.0  | 437.8           | 2302    | 2386 | 3142     |

WELL SURVEY CALCULATIONS

Survey date : 25-NOV-90

Survey units : METRES

Times in milliseconds.

Company : CRUSADER RESOURCES N.L.

Well: STRINGY BARK #1

0.0 Ground : 36.0 Kelly: Elevations : Datum : Shot data : Location Elevation Offset 36.0 2.0

36.0 10.0 В C 36.0 20.0 35.0 20.0 Ð

Latitude : 038 31 02.31 Longitude : 146 54 01.77

39.0

Rig identification : DRILLCORP #23

Energy source : AN60

Logger: BPB #V1030

for shot statics: 600 Instrument delay: 4.0 ms

Near surface velocity

#### SHOT CALCULATIONS

| Shot   | Geophone            | deoth | Shot   | Shot  | <b>&lt;</b> |         | - TIMES |               | Check shot | interval | (         | <i>'elocitie'</i> | 5           |
|--------|---------------------|-------|--------|-------|-------------|---------|---------|---------------|------------|----------|-----------|-------------------|-------------|
| No     | Kelly               |       | Lacn   |       | Record      | - Corr. |         | - Below datum |            | - Time   | Average - | RMS               | Interval    |
| DATUM  |                     |       |        |       |             |         |         |               |            |          |           |                   |             |
|        | 39.0                | 0.0   |        |       |             |         | 42.8    | 0.0           | 1.0        | 1.1      |           |                   | 909.1       |
| 2      | 40.0                | 1.0   | С      | 0.7   | 50.0        | 45.5    |         |               | 1.0        | ***      |           |                   | , , , , , , |
| 3      | 40.0                | 1.0   | D      | 1.2   | 44.0        | 42.3    |         |               |            |          |           |                   |             |
| 23     | 40.0                | 1.0   | В      | 0.7   | 45.0        | 44.7    |         |               |            |          |           |                   |             |
| 24     | 40.0                | 1.0   | Α      | 0.7   | 42.0        | 43.1    | 43.9    | 1.1           |            |          | 909.1     | 909.1             |             |
|        |                     |       |        |       |             |         |         |               | 131.0      | 67.0     |           |                   | 1955.2      |
| 22     | 171.0               | 132.0 | α      | 1.2   | 108.0       | 110.9   | 110.9   | 68.1          |            |          | 1938.3    | 1942.8            |             |
|        | .,                  |       | _      |       |             |         |         |               | 91.5       | 41.3     |           |                   | 2215.5      |
| 21     | 262.5               | 223.5 | ם      | 1.2   | 149.0       | 152.2   | 152.2   | 109.4         |            |          | 2043.0    | 2050.0            |             |
| 21     | 20210               |       | _      |       |             |         |         |               | 54.5       | 21.1     |           |                   | 2582.9      |
| CEACU  | MBE MARL M          | BR    |        |       |             |         |         |               |            |          |           |                   |             |
| 20     | 317.0               | 278.0 | ם      | 1.2   | 170.0       | 173.3   | 173.3   | 130.5         |            |          | 2130.3    | 2145.2            |             |
| 20     | 017.0               | 2,010 | ~      |       |             |         |         |               | 33.0       | 15.6     |           |                   | 2115.4      |
| 19     | 350.0               | 311.0 | α      | 1.2   | 185.5       | 188.9   | 188.9   | 146.1         |            |          | 2128.7    | 2142.0            |             |
| 17     | 330.0               | 311.0 |        | ***   | 100.0       | 10017   |         |               | 24.0       | 11.5     |           |                   | 2087.0      |
| ) ATRO | BE TRARALG          | ON EM |        |       |             |         |         |               |            |          |           |                   |             |
| 18     | 374.0               | 335.0 | ם      | 1.2   | 197-0       | 200.4   | 200.4   | 157.6         |            |          | 2125.6    | 2138.0            |             |
| 19     | 3/4.0               | 333.0 |        | 1 . 2 | 1,,,,       | 20014   | 200.4   |               | 66.0       | 34.3     |           |                   | 1924.2      |
|        | 440.0               | 401.0 | D      | 1.2   | 232.0       | 235.4   |         |               |            |          |           |                   |             |
| 4      | 440.0               | 401.0 | מ      | 1.2   |             | 233.9   | 234.7   | 191.9         |            |          | 2089.6    | 2101.4            |             |
| 17     | 440.0               | 401.0 | b      | 1.2   | 200.0       | 200.7   | 20417   |               | 46.0       | 25.2     |           |                   | 1825.4      |
|        | 404.0               | 447.0 | D      | 1.2   | 256.5       | 259.9   | 259.9   | 217.1         | 4010       |          | 2059.0    | 2071.3            |             |
| 16     | 486.0               | 447.0 | U      | 1.2   | 256.5       | 237.7   | 24/1/   | 2.17.1        | 34.0       | 18.1     |           |                   | 1878.5      |
|        | E00 0               | 481.0 | α      | 1.2   | 274 5       | 278.0   | 278.0   | 235.2         |            |          | 2045.1    | 2057.1            |             |
| 15     | 520.0               | 461.0 | ע      | 1.2   | 2/4.0       | 2/0.0   | 2/0.0   | 20012         | 41.0       | 17.5     |           |                   | 2342.9      |
| 4.0    | =/+ 0               | 522.0 | מ      | 1.2   | 202.0       | 295.5   | 295.5   | 252.7         | 71.0       | 27.00    | 2065.7    | 2078.1            |             |
| 14     | 561.0               | 522.0 | D      | 1     | 272.0       | 270.0   | 2/3.3   | 4             | 162.0      | 67.0     |           |                   | 2417.9      |
|        | 707 0               | 684.0 | a      | 1.2   | 750 A       | 362.5   | 362.5   | 319.7         | 10210      | 0, 10    | 2139.5    | 2153.8            |             |
| 13     | 723.0               | 684.0 | ע      | 1.2   | 337.0       | 302.3   | 302.3   | 317.7         | 51.0       | 24.5     | 2107.0    |                   | 2081.6      |
|        | 774 0               | 775 0 | α      | 1.2   | 707 E       | 387.0   | 387.0   | 344.2         | 01.0       | 24.0     | 2135.4    | 2148.7            |             |
| 12     | 774.0               | 735.0 | ע      | 1.4   | 303.3       | 367.0   | 367.0   | J44.2         | 69.0       | 26.1     | 2.00.4    |                   | 2643.7      |
|        | 0.47                | 004.0 | а      | 1.2   | 400 5       | 413.1   | 413.1   | 370.3         | 07.0       | 20.1     | 2171.2    | 2187.3            | 204017      |
| 11     | 843.0               | 804.0 | ע      | 1.2   | 407.3       | 415.1   | 413.1   | 370.3         | 47.0       | 19.0     | 22/12     |                   | 2473.7      |
|        | ימר מו זימי         | CONTC |        |       |             |         |         |               |            |          |           |                   | - · · - · · |
|        | BE OLD VOL<br>890.0 | 851.0 | 171    | 1.2   | 428.0       | 431.6   |         |               |            |          |           |                   |             |
| 5      | 890.0               | 851.0 | a<br>a | 1.2   |             | 432.6   | 432.1   | 389.3         |            |          | 2186.0    | 2202.1            |             |
| 10     | 570.0               | 931.0 | ע      | 1     | 427.0       |         | 702 a 1 | JU / 1 U      |            |          |           |                   |             |
|        |                     |       |        |       |             |         |         |               |            |          |           |                   |             |

## WELL SURVEY CALCULATIONS

Company : CRUSADER RESOURCES N.L.

Well : STRINGY BARK #1

D

Elevations: Datum: 0.0 Ground: 36.0 Kelly:
Shot data: Location Elevation Offset

A 36.0 2.0
B 36.0 10.0
C 36.0 20.0

35.0

20.0

Latitude : 038 31 02.31 Longitude : 146 54 01.77

39.0

Rig identification : DRILLCORP #23

Energy source : AN60

Logger: BPB #V1030

Near surface velocity

for shot statics: 600
Instrument delay: 4.0 ms

Survey date : 25-NOV-90 Survey units : METRES Times in milliseconds.

Page 2

#### SHOT CALCULATIONS

| Shot<br>No | Geophone<br>Kelly | <b></b> | Shot<br>Locn | Shot<br>Depth |       |       |       | ><br>- Below datum | Check shot<br>Distance |      |        | Velocities<br>RMS | •      |
|------------|-------------------|---------|--------------|---------------|-------|-------|-------|--------------------|------------------------|------|--------|-------------------|--------|
| 10         | 890.0             | 851.0   | מ            | 1.2           | 429.0 | 432.6 | 432.1 | 389.3              |                        |      | 2186.0 | 2202.1            |        |
| 9          | 930.0             | 891.0   | α            | 1.2           | 446.5 | 450 1 | 450.1 | 407.3              | 40.0                   | 18.0 | 2187.6 | 2007 0            | 2222.2 |
| ŕ          |                   | 0/110   |              | ***           | 440.0 | 400.1 | 450.1 | 407.3              | 67.0                   | 15.5 | 2107.0 | 2203.0            | 4322.6 |
| 8          | 997.0             | 958.0   | D            | 1.2           | 462.0 | 465.6 | 465.6 | 422.8              |                        |      | 2265.8 | 2315.2            | 4022.0 |
| 07075      | EDICE ODDI        | _       |              |               |       |       |       |                    | 20.0                   | 4.5  |        |                   | 4444.4 |
| SIRZE      | _ECKI GROU        |         |              |               |       |       |       |                    |                        |      |        |                   |        |
| 7          | 1017.0            | 978.0   | D            | 1.2           | 466.5 | 470.1 | 470.1 | 427.3              | 70.0                   | =    | 2288.8 | 2347.8            |        |
| 6          | 1049.0            | 1010.0  | מ            | 1.2           | 479.0 | 482.6 | 482.6 | 439.8              | 32.0                   | 12.5 | 2296.5 | 2354.0            | 2560.0 |

#### WELL SURVEY CALCULATIONS Page 3

Company : CRUSADER RESOURCES N.L.

Well : STRINGY BARK #1

Latitude : 038 31 02.31 Longitude : 145 54 01.77

Survey date : 25-NOV-90 Survey units : METRES

Elevations : Datum : 0.0 Ground :

36.0 Kelly : 39.0 Times in milliseconds.

#### SONIC DRIFT

|                         |                                                                          |       | ے<br>ن                                                                                             | DATE DE                |                                                                                                                |                    |         |                     |                          |
|-------------------------|--------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------|--------------------|---------|---------------------|--------------------------|
| · ·                     | ne depth<br>Datum                                                        |       | hot times<br>Below datum                                                                           | Check shot<br>Distance |                                                                                                                | Sonic<br>Int. time |         | sonic drift<br>msec | Cumulative<br>drift msec |
| DATUM                   | inga maliri maga mining pendap aringsa unang maliri karika menili kidali |       | والم طالقة والآن والذي هناك هناك والآن والآن والآن والآن والآن والآن والآن والآن والآن والآن والآن |                        | - Taris (1904) 1904 (1904) (1904) (1904) (1904) (1904) (1904) (1904) (1904) (1904) (1904) (1904) (1904) (1904) |                    |         |                     |                          |
| 39.0                    | 0.0                                                                      | 42.8  | 0.0                                                                                                | 1.0                    | 1.1                                                                                                            |                    |         |                     |                          |
| 40.0                    | 1.0                                                                      | 43.9  | 1.1                                                                                                |                        |                                                                                                                |                    |         |                     |                          |
| 171.0                   | 132.0                                                                    | 110.9 | 68.1                                                                                               | 131.0                  | 67.0                                                                                                           |                    |         |                     |                          |
| 262.5                   | 223.5                                                                    | 152.2 | 109.4                                                                                              | 91.5                   | 41.3                                                                                                           | 46.7               | -59.02  | -5.4                | -5.4                     |
|                         |                                                                          |       |                                                                                                    | 54.5                   | 21.1                                                                                                           | 20.9               | 3.67    | 0.2                 | -5.2                     |
| SEACOMBE MARL<br>317.0  | MBR<br>278.0                                                             | 173.3 | 130.5                                                                                              |                        |                                                                                                                |                    |         |                     |                          |
|                         |                                                                          |       |                                                                                                    | 33.0                   | 15.6                                                                                                           | 15.6               | 0.00    | 0.0                 | -5.2                     |
| 350.0                   | 311.0                                                                    | 188.9 | 146.1                                                                                              | 24.0                   | 11.5                                                                                                           | 14.5               | -125.00 | -3.0                | -8.2                     |
| LATROBE TRARA           |                                                                          |       |                                                                                                    |                        |                                                                                                                |                    |         |                     |                          |
| 374.0                   | 335.0                                                                    | 200.4 | 157.6                                                                                              | 66.0                   | 34.3                                                                                                           | 37.9               | -54.55  | -3.6                | -11.8                    |
| 440.0                   | 401.0                                                                    | 234.7 | 191.9                                                                                              |                        |                                                                                                                | 07.7               | E4 7E   | -2.5                | -14.3                    |
| 486.0                   | 447.0                                                                    | 259.9 | 217.1                                                                                              | 46.0                   | 25.2                                                                                                           | 27.7               | -54.35  | -2.5                |                          |
| 520.0                   | 481.0                                                                    | 278.0 | 235.2                                                                                              | 34.0                   | 18.1                                                                                                           | 18.7               | -17.65  | -0.6                | -14.9                    |
|                         |                                                                          |       |                                                                                                    | 41.0                   | 17.5                                                                                                           | 22.7               | -126.83 | -5.2                | -20.1                    |
| 561.0                   | 522.0                                                                    | 295.5 | 252.7                                                                                              | 162.0                  | 67.0                                                                                                           | 81.6               | -90.12  | -14.6               | -34.7                    |
| 723.0                   | 684.0                                                                    | 362.5 | 319.7                                                                                              |                        |                                                                                                                |                    |         |                     |                          |
| 774.0                   | 735.0                                                                    | 387.0 | 344.2                                                                                              | 51.0                   | 24.5                                                                                                           | 26 <b>.6</b>       | -41.18  | -2.1                | -36.8                    |
| 843.0                   | 804.0                                                                    | 413.1 | 370.3                                                                                              | 69.0                   | 26.1                                                                                                           | 31.5               | -78.26  | -5.4                | -42.2                    |
| 043.0                   | 504.0                                                                    | 41311 | 370.3                                                                                              | 47.0                   | 19.0                                                                                                           | 17.9               | 23.40   | 1.1                 | -41.1                    |
| LATROBE OLD V           | DLCANIC                                                                  |       |                                                                                                    |                        |                                                                                                                |                    |         |                     |                          |
| 890.0                   | 851.0                                                                    | 432.1 | 389.3                                                                                              | 40.0                   | 18.0                                                                                                           | 19.0               | -25.00  | -1.0                | -42.1                    |
| 930.0                   | 891.0                                                                    | 450.1 | 407.3                                                                                              |                        |                                                                                                                |                    |         | -1.9                | -44.0                    |
| 997.0                   | 958.0                                                                    | 465.6 | 422.8                                                                                              | 67.0                   | 15.5                                                                                                           | 17.4               | -28.36  |                     |                          |
|                         | a                                                                        |       |                                                                                                    | 20.0                   | 4.5                                                                                                            | 4.7                | -10.00  | -0.2                | -44.2                    |
| STRZELECKI GR<br>1017.0 | 978.0                                                                    | 470.1 | 427.3                                                                                              |                        |                                                                                                                |                    |         |                     |                          |
| 1049.0                  | 1010.0                                                                   | 482.6 | 439.8                                                                                              | 32.0                   | 12.5                                                                                                           | 8.0                | 140.62  | 4.5                 | -39.7                    |
| 1047.0                  | *****                                                                    |       | / · ·                                                                                              |                        |                                                                                                                |                    |         |                     |                          |

#### WELL SURVEY CALCULATIONS Page 4

Company : CRUSADER RESOURCES N.L.

Well : STRINGY BARK #1

Elevations : Datum : 0.0 Ground : 36.0 Kelly:

Longitude : 146 54 01.77 39.0

Latitude : 038 31 02.31

Survey date : 25-NOV-90 Survey units : METRES Times in milliseconds.

# SONIC CALIBRATION

|         |                    | e depth<br>Datum | Interval<br>Distance |      | sonic times<br>Cumulative | Adjusted<br>Interval | sonic times<br>Calibrated | Average | Velocities | Interva   |
|---------|--------------------|------------------|----------------------|------|---------------------------|----------------------|---------------------------|---------|------------|-----------|
|         |                    |                  |                      |      |                           |                      |                           | nverage |            | 111661.49 |
| DATUM   | 39.0               | 0.0              |                      |      |                           |                      |                           |         |            |           |
|         |                    |                  | 1.0                  |      |                           |                      |                           |         |            | 909.      |
| •       | 40.0               | 1.0              | 131.0                |      |                           |                      |                           | 909.1   | 909.1      | 1955.     |
|         | 171.0              | 132.0            | 91.5                 | 46.7 |                           | 41.3                 |                           | 1938.3  | 1942.8     |           |
|         | 262.5              | 223.5            |                      |      | 46.7                      |                      | 109.4                     | 2043.0  | 2050.0     | 2215.     |
| EACOME  | BE MARL M          | 20               | 54.5                 | 20.9 |                           | 21.1                 |                           |         |            | 2582.     |
| IEMCOME | 317.0              | 278.0            |                      |      | 67.6                      |                      | 470 =                     | 0470 7  |            |           |
|         | 350.0              | 311.0            | 33.0                 | 15.6 |                           | 15.6                 | 130.5                     | 2130.3  | 2145.2     | 2115.     |
|         |                    |                  | 16.5                 | 10.0 | 83.2                      | 7.9                  | 146.1                     | 2128.7  | 2142.0     | 2078.     |
| TLLHKD  | ) SST MBR<br>366.5 | 327.5            |                      |      |                           |                      |                           |         |            |           |
|         | 300.3              | 327.3            | 7.5                  | 4.5  | 93.2                      | <b>.</b> ,           | 154.0                     | 2126.1  | 2138.8     |           |
| ATROBE  | TRARALG            | ON FM            | 7.3                  | 4.5  |                           | 3.6                  |                           |         |            | 2105.     |
|         | 374.0              | 335.0            |                      |      | 97.7                      |                      | 157.6                     | 2125.6  | 2170 0     |           |
|         |                    |                  | 66.0                 | 37.9 | //•/                      | 34.3                 | 137.6                     | 2125.6  | 2138.0     | 1924.     |
|         | 440.0              | 401.0            |                      |      | 135.6                     | 04.0                 | 191.9                     | 2089.6  | 2101.4     | 17.24.    |
|         |                    |                  | 46.0                 | 27.7 |                           | 25.2                 |                           | 200710  | 210114     | 1825.     |
|         | 486.0              | 447.0            |                      |      | 163.3                     |                      | 217.1                     | 2059.0  | 2071.3     |           |
|         |                    |                  | 34.0                 | 18.7 |                           | 18.1                 |                           |         |            | 1878.     |
|         | 520.0              | 481.0            | 44 0                 | ~~ ~ | 182.0                     |                      | 235.2                     | 2045.1  | 2057.1     |           |
|         | 561.0              | 522.0            | 41.0                 | 22.7 |                           | 17.5                 |                           |         |            | 2342.     |
|         | 351.0              | 322.0            | 162.0                | 81.6 | 204.7                     | 47.0                 | 252.7                     | 2065.7  | 2078.1     |           |
|         | 723.0              | 684.0            | 162.0                | 01.0 | 286.3                     | 67.0                 | 319.7                     | 0170 5  | 0457.0     | 2417.     |
|         |                    |                  | 51.0                 | 26.6 | 200.5                     | 24.5                 | 317.7                     | 2139.5  | 2153.8     | 2001      |
|         | 774.0              | 735.0            |                      |      | 312.9                     | 24.0                 | 344.2                     | 2135.4  | 2148.7     | 2081.     |
|         |                    |                  | 69.0                 | 31.5 |                           | 26.1                 |                           | 2100.4  | 2140.7     | 2643.     |
|         | 843.0              | 804.0            |                      |      | 344.4                     |                      | 370.3                     | 2171.2  | 2187.3     | 2040.     |
|         |                    |                  | 47.0                 | 17.9 |                           | 17.0                 |                           |         |            | 2473.     |
| _ATROBE | OLD VOL            |                  |                      |      |                           |                      |                           |         |            |           |
|         | 890.0              | 851.0            | 40.0                 | 40.0 | 362.3                     |                      | 389.3                     | 2186.0  | 2202.1     |           |
|         | 930.0              | 891.0            | 40.0                 | 19.0 | 704 7                     | 18.0                 | 40= =                     |         |            | 2222.     |
|         | 750.0              | 071.0            | 67.0                 | 17.4 | 381.3                     | 15.5                 | 407.3                     | 2187.6  | 2203.0     |           |
|         | 997.0              | 958.0            | o/ .o .              | 17.4 | 398.7                     | 13.3                 | 422.8                     | 22/5 0  | 0745 0     | 4322.     |
|         |                    |                  | 20.0                 | 4.7  | 5/51/                     | 4.5                  | 444.0                     | 2265.8  | 2315.2     | 4444.     |
| STRZELE | CKI GROU           |                  | _ · · ·              | 7.,  |                           | 7.0                  |                           |         |            | 4444.     |
|         | 1017.0             | 978.0            |                      |      | 403.4                     |                      | 427.3                     | 2288.8  | 2347.8     |           |
|         |                    |                  | 32.0                 | 8.0  |                           | 12.5                 | • •                       |         | ±∪→/ •∪    | 2560.     |
|         | 1049.0             | 1010.0           |                      |      | 411.4                     |                      | 439.8                     | 2296.5  | 2354.0     |           |



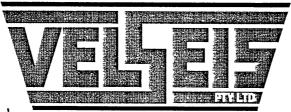


SYNTHETIC SEISMOGRAMS

STINGY BARK #1

PEP 123

VICTORIA


for

CRUSADER RESOURCES N.L.

recorded by

VELOCITY DATA PTY. LTD.

processed by



CRUSADER OIL N.L.
LISRARY W/F
SHELF NO:
DATE: 7 8 MAR 199

**Integrated Seismic Technologies** 

Brisbane, Australia

February 18, 1991

# **CONTENTS**

| SUMMARY .           | • •      | • • •     | • • •       | : |
|---------------------|----------|-----------|-------------|---|
| GENERAL INFORMATION | ON       | • • •     | •••         | 1 |
| CHECKSHOT DATA .    | • •      | • • •     | • • •       | 2 |
| SONIC DATA .        | • •      | • • •     | • • •       | 2 |
| DENSITY DATA .      | • •      | • • •     | • • •       | 2 |
| CALIBRATION OF SO   | NIC LOG  |           |             |   |
| Method              |          | • • •     | • • •       | 3 |
| Results             |          | • • •     | • • •       | 3 |
| CALIBRATION OF DE   | NSITY DA | TA        | •••         | 4 |
| REFLECTION COEFFIC  | CIENT GE | NERATION  | •••         | 4 |
| MULTIPLES .         | • •      | • • •     | • • •       |   |
| WAVELETS .          | • •      | • • •     | • • •       |   |
| SEISMOGRAM DISPLA   | YS       | • • •     | •••         | 4 |
| Tables              |          |           |             |   |
| Table 1             |          | Time-dept | h values    |   |
| Enclosures          |          |           |             |   |
| 1.                  |          | Synthetic | seismograms | 5 |
| 2.                  |          | Calculati | on Sheet    |   |

#### SUMMARY

Synthetic seismograms have been produced for the Stringy Bark No1 well, PEP 123, Gippsland Basin, Victoria for Crusader Resources N.L.

These seismograms have been computed using a combination of check shot and sonic data. Velocity Data Pty Ltd acquired the check shot data and BPB Instruments provided the other wireline services.

The sonic data was calibrated using the check shot information. Reflection coefficients were derived from combinations of calibrated sonic data and then convolved with the specified wavelets to produce the synthetic seismograms. A number of trials were run before establishing the most appropriate wavelet.

#### GENERAL INFORMATION

Name of Well : Stringy Bark #1

Location : PEP123, Gippsland Basin

Coordinates : Latitude 038 31 02.31

: Longitude 146 54 01.77

Velocity Survey : Velocity Data Pty Ltd

Wireline Logging : BPB Instruments V1030

Elevation of KB : 39.0m above sea level

Elevation of Ground : 36.0m above sea level

Elevation of Seismic Datum : 0.0m above sea level

Casing depth : 170.0m below KB

Total Depth of well : 1050.0m below KB

the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

#### CHECK SHOT DATA

Recorded by : Velocity Data Pty Ltd

Date : November 25th 1990

Energy Source : Explosive, AN-60

Shot Location : Mud pit

Charge Size : 0.5/1 (125 grm) sticks

Average Shot Depth : 1.2 metres

Average Shot Offset : 20 metres

Number of shots used : 23

Number of levels recorded : 18

#### SONIC DATA

Recorded by : BPB Instruments

Date : November 24th 1990

Top logged interval : 12.0m below KB

Bottom logged interval : 1050.0m below KB

Logging units : microseconds/feet

### DENSITY DATA

Density data was not recorded during the survey and is therefore not used in the generation of the synthetic seismogram.

#### CALIBRATION OF SONIC LOG

#### Method

The sonic log was extended to 1600 metres below KB in order to get full wavelet response at the end of the sonic. The log was edited out above 169 metres in order to eliminate casing effects.

Sonic times were adjusted to checkshot times using a least squares polynomial fit for the sonic transit times. This method being chosen over a linear correction as the latter tends to introduce fictitious interfaces at areas of high drift correction.

Differences arise as the sonic tool measures the local velocity characteristics of the formation with a high frequency signal, whereas the downhole geophone records the bulk velocity character using a signal of significantly lower frequency.

#### Results

The discrepancies between shot and sonic interval velocities were abnormally high, however the condition of the hole was very poor with large areas of washout and in as much a poor tie was to be expected. The sonic log was not modified and the check shot results used as reference. The highest drift figure was 126.83  $\mu{\rm sec}$  and the cumulative sonic drift over the logged portion of the well amounted to 39.7 msecs. The bulk of this error was found to be between 520 and 720 metres below KB an area of large cycle skipping of the laterlog caliper.

### CALIBRATION OF DENSITY DATA

Density data was not recorded and as such not used to generate the synthetic seismogram.

# REFLECTION COEFFIGIENT GENERATION

Reflection soefficients were generated from sonic data as noted on the display.

## MULTIPLES

Only the primary response of the reflection coefficient series has been generated.

# WAVELETS

A variety of wavelets were tried before the most suitable was chosen. A total of two are presented:
1) Bandpass 25-90Hz Zero Phase Reverse Polarity

2) Bandpass 25-90Hz Zero Phase Reverse Polarity

# SEISMOGRAM DISPLAYS

The final displays show the contributing logs in schematic form with time scale. The seismogram is displayed for each wavelet against two way time below the check shot datum. Trace amplitudes are normalized against their maxima. The subdatum two way time of 134.0 msecs for the start of the sonic was taken from the checkshot results.

No seismic section was received and the initial trials were FAXED for approval.

Troy Peters Geophysical Analyst.

#### PE600860

This is an enclosure indicator page.

The enclosure PE600860 is enclosed within the container PE902058 at this location in this document.

The enclosure PE600860 has the following characteristics:

ITEM\_BARCODE = PE600860
CONTAINER\_BARCODE = PE902058

NAME = Synthetic Seismogram

BASIN = OTWAY

PERMIT =

TYPE = WELL

SUBTYPE = SYNTH\_SEISMOGRAM

DESCRIPTION = Synthetic Seismogram

REMARKS =

DATE\_CREATED = 25/11/90 DATE\_RECEIVED = 24/04/91

 $W_NO = W1041$ 

WELL\_NAME = Stringy bark-1

CONTRACTOR = Crusader resources N.L
CLIENT\_OP\_CO = Crusader resources N.L

(Inserted by DNRE - Vic Govt Mines Dept)

Well Location Survey

APPENDIX 11

WELL LOCATION SURVEY

#### PE907040

This is an enclosure indicator page.

The enclosure PE907040 is enclosed within the container PE902058 at this location in this document.

The enclosure PE907040 has the following characteristics:

ITEM\_BARCODE = PE907040

CONTAINER\_BARCODE = PE902058

NAME = Detailed Plan Map

BASIN = GIPPSLAND

PERMIT = PEP/123

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Detailed Plan Map (enclosure from WCR)

for Stringy Bark-1

REMARKS =

 $DATE\_CREATED = 11/10/90$ 

DATE\_RECEIVED =

 $W_NO = W1041$ 

WELL\_NAME = STRINGY BARK-1

CONTRACTOR = KLUG CONSULTANTS AND JACKSON PTY LTD

CLIENT\_OP\_CO = CRUSADER OIL NL

(Inserted by DNRE - Vic Govt Mines Dept)