W8/9



# ATTACHMENT TO WCR VOL 2 LUDERICK-1 (W 819)



ESSO AUSTRALIA LTD.

0 6 SEP 1983 ES WELL REPORT

LUDERICK NO. 1

OIL and GAS DIVISION

# CORE LABORATORIES AUSTRALIA (QLD.) LTD.



1st August 1983

Mr. S Twartz
Esso Australia Ltd.
(Geology Department)
Esso House
127 Kent Street
Sydney
N.S.W. 2001

Dear Mr. Twartz,

Please find enclosed the original well report plus five (5) copies for the well LUDERICK NO. 1. If you have any enquiries, please do not hesitate to contact us.

Yours very truly CORE LABORATORIES AUSTRALIA (QLD) LTD.

T. Charles

M. MOWATT
Unit Supervisor
FL 802

ARC:pc

#### INDEX

- 1. INTRODUCTION
- 2. RIG SPECIFICATIONS
- 3. WELL INFORMATION, PROGRESS AND HISTORY
- 4. LITHOLOGY AND CORE-O-GRAPHS
- 5. EXTENDED SERVICE PACKAGE :
  - A. INTRODUCTION
  - B. EQUIPMENT
  - C. MONITORING EQUIPMENT
- 6. ESP PLOT DESCRIPTIONS AND CONCLUSIONS
- 7. B.H.T. ESTIMATION
- 8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT
- 9. GAS ANALYSES :
  - A. COMPOSITION GRAPHICS
  - B. SIDEWALL CORES
- 10. CORELAB DATA SHEETS :
  - A. BIT RECORDS
  - B. MUD DATA
  - C. R.F.T. DATA

#### COMPUTER DATA LISTINGS :

BIT RECORD AND INITIALIZATION DATA HYDRAULIC ANALYSES DATA LIST A DATA LIST B . . . . . . DATA LIST C DATA LIST D

# APPENDED PLOTS :

DRILL DATA PLOT TEMPERATURE PLOT PRESSURE PLOT GEOPLOT GRAPHOLOG

#### INTRODUCTION

LUDERICK NO. 1 was drilled by ESSO AUSTRALIA LTD. in the Bass Strait, Australia.

#### Well co-ordinates were:

Latitude : 38° 26' 20.61" S Longitude : 147° 42' 57.85" E

The well was drilled by South Seas Drilling Company's semi-submersible rig "Southern Cross", and monitored by Core Laboratories Intermediate Extended Service Field Laboratory 802.

LUDERICK NO. 1 was spudded on 4th June 1983 and reached a total depth of 3021m on 24th June 1983, a total drilling time of 21 days. The main objective of the well was to evaluate the hydrocarbon potential of a large areal intra-Latrobe anticlinal closure that lies to the northwest of the Bream field.

#### Elevations were:

| Kelly | bushings to | mean sea | level | 21m |
|-------|-------------|----------|-------|-----|
| Water | depth       |          |       | 53m |
| Kellv | bushings to | mean sea | bed   | 74m |

All depths used in this report and accompanying logs refer to depth below rotary kelly bushings (RKB).

Core Laboratories personnel involved in the logging of LUDERICK NO. 1 were as follows:

TONY CHARLES Pressure Engineer GAVIN MUNN Pressure Engineer PAUL DENTON Well Logger RUSSELL MARTIN Well Logger BRYAN PAULET Well Logger ALAN BOCK Sample Catcher ERIC DIESPOSTI Sample Catcher TROY GROTH Sample Catcher GARY KILLEN Sample Catcher

2. RIG SPECIFICATIONS

|                               | RIG INFORMATION SHEET                                                                    |
|-------------------------------|------------------------------------------------------------------------------------------|
|                               | PANY ESSO AUSTRALIA LTD.                                                                 |
|                               | LUDERICK No. 1                                                                           |
|                               |                                                                                          |
| OWNER                         | SOUTH SEAS DRILLING COMPANY                                                              |
| NAME AND NUMBER               | SOUTHERN CROSS ( NO 107 )                                                                |
| TYPE DERRICK, DRILL FLOOR     | SEMI-SUBMERSIBLE , TWIN HULLED.                                                          |
| & SUBSTRUCTURE                | DERRICK: LEE C MOORE, 152° HIGH X 40° AT BASE.  LOAD CAPACITY OF 1 000 000 lbs           |
|                               | LUAD CAPACITY OF 1 DUD DUD IDS                                                           |
|                               |                                                                                          |
| DRAWWORKS                     | DILWELL E-2000 DRIVEN BY 2 GE 752 ELECTRIC MOTORS.                                       |
| •                             |                                                                                          |
|                               |                                                                                          |
|                               | LEE C MOODE 224ED C CADACTEV FOR SUCCESSION                                              |
| CROWN BLOCK                   | LEE C MOORE 27458 C. CAPACITY 500 SHORT TONS.                                            |
| TRAVELING BLOCK SWIVEL        | OILWELL PC 425                                                                           |
| ELEVATORS                     | BYRON JACKSON MODEL GG CAPACITY 350 TON                                                  |
| KELLY & KELLY SPINNER         | DRILLCO 54"x 50' HEX KELLY                                                               |
| ROTARY TABLE                  | OILWELL A 37½ SINGLE ELECTRIC MOTOR                                                      |
| ROTARY SLIPS                  | VARCO DCS-L                                                                              |
| MUD PUMPS                     | TWO DILWELL A 1700PT. RATED AT 1600HP                                                    |
| =                             | TWO DIEWELL A TOUPT. RAILD AT IDDUMP                                                     |
|                               | FOUR MUD TANKS HAVING A TOTAL CAPACITY OF 1200 BBL, AND ONE PILL                         |
|                               | TANK HAVING A CAPACITY OF 105 BBL.                                                       |
| MUD SYSTEM                    | TWO MUD HOPPERS POWERED BY 2 MISSION 6x8" CENTRIFUGAL BY TWO 100                         |
|                               | HP ELECTRIC MOTORS.                                                                      |
|                               | DESANDER : 1 DEMCO 4 CONE 12" MODEL NO 124                                               |
|                               | DESILTER: 1 DEMCD 4"-16H 16 CONE                                                         |
|                               | DEGASSER: 1 SWACD MODEL Nº 36                                                            |
|                               | SHALE SHAKERS : 2 BRANDT DUAL UNIT TANDEM - GHI DUAL UNIT.                               |
| BLOW OUT PREVENTORS           | THREE SHAFFER L.W.S. 1834" - 10 000 psi                                                  |
|                               | TWO HYDRIL G.L. 183" - 5000 psi                                                          |
|                               |                                                                                          |
|                               | FOUR VALV CON ACCUMULATORS. 2" - 10 000ps                                                |
| WELL CONTROL EQUIP.           | CHOKES:2 C.I.W. ABJ H2 2 1/16" - 10 000 psi.1 SWACO SUPER CHOKE                          |
| TUBULAR DRILLING<br>EQUIPMENT | DC: $6\frac{2}{3}$ " x 2 13/16" (4" IF TJ)                                               |
|                               | 8" x 2 13/16" (6 5/8" H9D TJ)                                                            |
|                               | 9 <sup>3</sup> " × 3" (7 5/8" H90 YJ)                                                    |
|                               | HWDP: 5" 501b/ft GRADE G ( $6\frac{1}{2}$ " DD $4\frac{1}{2}$ " IF TJ)                   |
|                               | DP : 5" 1921b/ft GRADE G&E(6 3/8" DD 42" IF TJ)                                          |
| CEMENTING UNIT                | HALLIBURTON HT-400 UNIT                                                                  |
| MONITORING                    | MARTIN DECKER : MUD VOLUME TOTALIZER                                                     |
| EQUIPMENT                     | . 6 CHANNEL DRILLING RECORDER                                                            |
|                               | 4 PRESSURE GAUGES                                                                        |
|                               | FLOWSHOW INDICATOR                                                                       |
| POWER SUPPLY                  | 2 EMD MD 18 DIESEL ENGINES RATED AT 1950 HP EACH                                         |
|                               | 1 EMD MD 12 DIESEL ENGINE RATED AT 1500 HP                                               |
| DIRECTIONAL EQUIP.            | Re .                                                                                     |
| MISCELLANEOUS (E.G. RISE      | R, COMPENSATION SYSTEM, PIPE RACKER, DP EQUIPMENT) ELESCOPIC 21" ID. PLUS FLOW DIVERTOR. |
| CACTAC DOWER TOWER            | ELESCUPIC 21" ID. PLUS FLOW D'IVERTOR.                                                   |
| CHOIND PUWER TUNGS            | ECKEL 13 3/8"(20 000 ft 1bs),20" (35 000 ft 1bs)                                         |
| CILL BOCK LANKS: 3x1          | 57Ucu ft.RISER TENSIONER:6WESTERN GFAR.50°STROKE RO DODING                               |
| HOD DOCK IMMK2:3X1            | 570cu ft.GUIDE LINE TENSIONERS : 4 WESTERN GEAR 16 000 165,40'STROKE                     |
|                               |                                                                                          |

3. WELL INFORMATION, PROGRESS AND HISTORY

|                    |                              |                |                             |                          |          |          | 14/51        | LUNEODM          | ATION      | CHEET        |
|--------------------|------------------------------|----------------|-----------------------------|--------------------------|----------|----------|--------------|------------------|------------|--------------|
|                    |                              |                |                             |                          |          |          | WEL          | L INFORM         | ATION      | SHEET        |
|                    | . <b>AB</b> con              | IPANY          | ESSO AUS                    |                          | LTD.     |          |              |                  |            |              |
|                    | WEL                          | . L            | LUDERICK                    | NO. 1                    |          |          |              |                  | Sheet N    | lo. <u>l</u> |
| WELL<br>NAME       | LUDERICK NO. 1               |                |                             |                          |          |          |              |                  |            |              |
| OPERATOR           | ESSO AUSTRALIA LTD.          |                |                             |                          |          |          |              |                  |            |              |
| PARTNERS           | В.Н.Р.                       |                |                             |                          |          |          |              |                  |            |              |
| RIG                | OWNER                        |                | SOUTH SEAS DRILLING COMPANY |                          |          |          |              |                  |            |              |
|                    | NAME OR N                    |                | SOUTHERN CROSS              |                          |          |          |              |                  |            |              |
|                    | TYPE                         |                | SEMI-SUBMERSIBLE            |                          |          |          |              |                  |            |              |
| LOCATION           | LATITUDE (                   |                | 38 <sup>0</sup> 26'         |                          | <u>S</u> | +        | UDE (Y)      | 147° 42'         |            | E            |
|                    | FIELD                        |                | GIPPSLAN                    |                          |          | AREA     | -            | BASS STR         |            |              |
|                    | COUNTY                       |                | AUSTRALI                    |                          |          | STATE    | <del> </del> | VICTORIA         |            |              |
|                    | COUNTRY                      |                | AUSTRALI<br>EXPLORAT        |                          |          |          |              |                  |            |              |
| DATUM              | DESCRIPTIO                   |                |                             | ION                      |          | DKB to   | Ground Leve  | 1                |            |              |
| POINTS             | Ground Eleva<br>Mean Water [ |                | <del>-</del><br>53М         |                          |          | +        | Water Level  | 21M              |            |              |
| DATES              | SPUD                         |                | 33M<br>4TH JUNE             | 1083                     |          | TOTAL    |              | 24TH JUN         | E 1983     |              |
| HOLE               | Depth From                   | <del>, ,</del> | Bit Size"                   | No. of Bits              | No. c    |          | Date From    | Date To          | Cased      | Logged       |
| SIZES              | 74                           | 209            | 26                          | 1                        | 140.0    | -        | 4/6/83       | 4/6/83           | YES        | NO           |
|                    | 209                          | 806            | 17½                         | 1                        |          |          | 5/6/83       | 6/6/83           | YES        | YES          |
|                    | 806                          | 3021           | 12½                         | 7                        |          | _        | 8/6/83       | 24/6/83          | NO         | YES          |
|                    |                              | 3021           | 1 4                         | <u> </u>                 |          |          | 0/0/00       | 12.7.07.00       |            | 1 2 2 2      |
|                    |                              |                |                             |                          |          |          |              |                  |            |              |
|                    |                              |                |                             |                          |          |          |              |                  |            |              |
|                    |                              |                |                             |                          |          |          |              |                  |            |              |
|                    |                              |                |                             |                          |          |          |              |                  |            |              |
| DRILLING           | Depth From                   | Depth To       | Weights                     |                          | Type     |          |              |                  |            |              |
| FLUID              | 74                           | 209            | 8.6 T                       | 0 8.6                    | SEAW     | ATER     |              |                  |            |              |
| 1                  | 209                          | 806            |                             | 0 9.0                    |          | ATER G   |              |                  |            |              |
|                    | 806                          | 3021           | +                           | 0 9.2                    | SEAW     | ATER G   | EL           |                  |            |              |
|                    |                              |                | <del></del>                 | 0                        |          |          |              |                  |            |              |
|                    |                              |                |                             | 0                        |          |          |              |                  |            |              |
|                    |                              |                | <del></del>                 | 0                        |          |          |              |                  |            |              |
|                    | ļ                            | ļ              | <del></del>                 | 0                        | •        |          |              |                  |            |              |
| WIRELINE           | Depth From                   | Depth To       | Hole Size"                  |                          | Logs     | Run      |              |                  |            |              |
| LOGGING            | 806                          | 194            | 17½                         | 7/6/8:                   |          | C-CAL-   | CR           |                  |            |              |
|                    | 2469                         | 792            | 124                         | 15/6/8                   |          | L-MSFL   |              |                  |            |              |
|                    | 2468                         | 789            | 124                         | 16/6/8                   |          |          |              |                  |            |              |
|                    | _                            | _              | 121/4                       | 16/6/8                   |          | T 1      | <u> </u>     |                  |            |              |
|                    | -                            | _              | 124                         | 17/6/8                   |          |          | T 2, 3, 4    |                  |            |              |
| İ                  | _                            | _              | 121/4                       | 18/6/83                  |          | RFT 5, 6 |              |                  |            |              |
|                    | 1700                         | 2400           | 124                         | 24/6/8                   |          |          |              |                  |            |              |
| DIGES              | <u> </u>                     |                | OD "                        | ID "                     | 101-     | G1       | Thursday     | Data Bira        | ement Stag | 00 Fuses     |
| RISER,<br>CASING & | Depth From                   | Depth To       |                             |                          | Weight   | Grade    | +            |                  | ement Stag | E XCESS      |
| LINER              | 0                            | 74             | 22                          | 21<br>19, <sup>124</sup> | Q/, /,   | X52      | JV BOX       | ISER<br>5/6/83 E | C101 1     | ==           |
| 1                  | 74<br>194                    | 194<br>792     | 20<br>13-3/8                |                          |          | K55      | BUTT         |                  | C101 1     |              |
|                    | 1 27                         | 172            | 13-3/0                      | 12.013                   | J-1-J    | LUJ      | 1011         | , , 0, 05        | 0101 1     | +            |
|                    |                              |                |                             |                          |          | <u> </u> |              |                  |            |              |
| 1                  |                              |                | <b>†</b>                    |                          |          |          |              |                  |            |              |
| 1                  |                              |                |                             |                          |          |          |              |                  |            |              |
|                    |                              |                |                             |                          |          |          |              |                  |            |              |

| M | $\mathcal{M}$ |     |
|---|---------------|-----|
|   | IK)           | MAR |
| W |               |     |

COMPANY ESSO AUSTRALIA LTD.
WELL LUDERICK NO. 1

WELL INFORMATION SHEET (SUPPLEMENTARY)

Sheet No. 2

# WIRELINE LOGGING (continued)

|              | INE LOGGING (continued) |                                       |                                        |                                        |  |  |  |  |  |
|--------------|-------------------------|---------------------------------------|----------------------------------------|----------------------------------------|--|--|--|--|--|
| Depth        | Depth                   | Hole                                  | Date                                   | Toga mun                               |  |  |  |  |  |
| from         | to                      | size                                  | run                                    | Logs run                               |  |  |  |  |  |
| 3018         | 2400                    | 124                                   | 24/6/83                                | DLL-MSFL-GR                            |  |  |  |  |  |
| 3019         | 1800                    | 124                                   | 24/6/83                                | LDL-CNLG-GR                            |  |  |  |  |  |
| 3019<br>3018 | 789                     | $\frac{12\frac{1}{4}}{12\frac{1}{4}}$ | 24/6/83                                | BHC-CAL-GR                             |  |  |  |  |  |
| 3018         | 1700                    | 12½                                   | 25/6/83                                | HDT                                    |  |  |  |  |  |
| -            | _                       | 12½                                   | 25/6/83<br>25/6/83                     | WST (19 LEVELS) RFT NO. 7              |  |  |  |  |  |
| _            | _                       | 12½<br>12¼                            | 25/6/83                                | RFT NO. 7                              |  |  |  |  |  |
| _            | _                       | 12½                                   | 26/6/83                                | CST'S 1, 2, 3 (153 SHOT, 137 RECOVERED |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
| -            |                         |                                       |                                        |                                        |  |  |  |  |  |
| ļ            |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       | •                                      |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              | -                       |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              | _                       |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |
|              |                         |                                       | ······································ |                                        |  |  |  |  |  |
|              |                         |                                       |                                        |                                        |  |  |  |  |  |



#### WELL HISTORY

3rd June 1983. On tow to location, arriving at 05:30 hours

Latitude : 38° 26' 20.61" S Longitude : 147° 42' 57.85" E

Ran all anchors and set the temporary guide base, BHA was made up and RIH to spud.

4th June 1983. RIH, the well was spudded at 00:30 hours and 26" hole was drilled from 74m (mudline) to 103m (Bit No. 1 was a rerun HTC OSC 3AJ  $(17\frac{1}{2}")$  and it was run with a 26" hole-opener). The hole opener became stuck at 103m and pulling up to 500 kips failed to free it. With the riser tensioner rigged up to hold drill pipe, the kelly was backed out and jars rigged up. Rotating the fish with 35-40 kips ft/1b of torque the jars were tripped with 100 kips and the fish was freed. Pulling the hole opener to the TGB and inspecting with TV camera it was found to be OK. RIH to 85m and washing and reaming to 103 several times, continued. Drilled to 209m, circulating 50 bbls hi-vis mud every 2 joints. The hole was displaced with 350 bbls of hi-vis mud and POOH to the TGB a survey was recovered  $(\frac{1}{2}^{0})$ . RIH to 209m (no fill) the hole was circulated again with 350 bbls of hi-vis mud. POOH, 20" surface casing was then run (casing shoe at 194m) followed by the cement stinger.

5th June 1983. Cemented the 20" casing. The riser and stack were run and the diverter, hose reels and flowline rigged up. RIH with Bit No. 2 ( $17\frac{1}{2}$ " HTC OSC 3AJ). Cement was tagged at 183m and new hole drilled from 209m to 363m. Maximum gas was 2/5/3 units from 280m and BG remained at 1-2 units. New formation was drilled from 20:00 hours onwards at ROP'S of mainly 170 to 230m/hr. Cement was drilled at 20-30m/hr.

6th June 1983. Drilling 17½" hole continued from 363m to 806m and maximum gas was 10.9/25/6.7 units at 550m. Background gas was 5-9 units and T.D. for the 13-3/8" casing (806m) was reached at 15:38 hours. Drill rates varied from 30-100m/hr. After circulating out, a survey was dropped (3/4 when recovered) and POOH commenced. POOH, tight hole was experienced in the first 5 stands (130 kips overpull). Picking up the kelly and circulating (Gas 0.2/7.5/2.3 units) to wash the hole at 668m, POOH continued to the 20" casing shoe. RIH and washing through tight spots at 608m and 749m, 3m of fill were found on bottom (WTG was 0.2/8.6/6.9 units). Pumping a 40 bbls hi-vis slug and POOH to run Schlumberger logs, no drag was found.

7th June 1983. Schlumberger were rigged up; and ran 1 log, a BHC/CAL/GR (806m-194m). RIH for a wiper trip, no fill was found and circulating B/U, WTG was 0.4/3.9/0.1 units. POOH, then ran and cemented the 13-3/8" casing. POOH with the casing ring tool. The stack was tested and the wear bushing re-run. (Casing shoe was set at 792m.)

8th June 1983. Making up a new BHA ( $12\frac{1}{4}$ " HTC X3A was Bit No. 3) and RIH, cement was tagged at 758m and drilled from 758m-792m, and the rat hole cleaned out to 806m. Drilling 6m of new formation to 812m a pressure integrity test (PIT) was conducted

after circulating B/U. The PIT gave leak off at 16.8 ppg max EMW. New hole was then drilled in the Gippsland Limestone formation from 812m to 1282m. Trip gas was 0.1/2.2/1.8 units and maximum gas for the day was 7.5/9.3/6.9 units at 974m over background levels of 2-7 units. ROP'S were consistently high at 40-70m/hr.

9th June 1983. Continued drilling  $12\frac{1}{4}$ " hole from 1282m to 1751m where it was decided to pull the bit due to low ROP. (25-30m/hr decreased to 10m/hr). Circulated B/U dropped a survey amd POOH. The survey indicated a deviation of  $1\frac{1}{2}$  and BCO was 4-6-I. Maximum drag experienced in POOH was 10 Kips. Changed the bit ( $12\frac{1}{4}$ " HTC J11); added a junk sub to the BHA; RIH and washed through tight spots at 1634m and 1690m. Reaming from 1732m to 1751m, no fill was found. Drilling  $12\frac{1}{4}$ " hole then continued to 1755m with trip gas being 1.1/57/8 units and maximum gas for the day was 6.7/7.8/5.4 units at 1340m over a background of 2-5 units. Bit No. 3 made 945m of hole, a record for the Southern Cross.

10th June 1983. Drilled  $12\frac{1}{4}$ " hole to 1837m, having circulated drill breaks out from: 1808m (14 units); 1819m (114 units); 1830m (150 units) and 1837m (118 units). As a significant hydrocarbon show was obtained from 1837m, it was decided to cut a core. (BG was 3-4 units for the drilled interval.) Core No. 1 was cut from 1837.9m-1847.5m (recovered 100%, all sandstone). A plastic liner was used for coring operations.

# 11th June 1983. Cut Cores 2 and 3 as follows:

No. 2 1847.5m-1856.5m; 94.4% recovery, all sandstone. No. 3 1856.5m-1861.6m; 96.1% recovery, predominantly shale/mudstone with thin interbeds of sandstone.

12th June 1983. RIH to drill ahead with a Jl1 (3x15,  $12\frac{1}{4}$ "). Washed from 1819m-1838m, and reamed the core rathole. Trip gas was masked by washing/reaming gas of 330 units. Drilled  $12\frac{1}{4}$ " new hole down to 1993m. Flow-checks were made at the following drill-breaks: 1867, 1885, 1926, 1932, 1946, 1950 and 1988m (all were negative). Circulated a drill-break out at 1956m (2 units gas, no show). Today's maximum drill gas was 20 units (1915m), over a background of 1-2 units.

13th June 1983. Drilled  $12\frac{1}{4}$ " hole to 2062m. Flow-checked drill-breaks at 2016, 2025 and 2034m (all negative). Pulled the bit at 2062m due to low ROP'S (bit was graded  $8-4-\frac{1}{8}$ ). Survey result was  $1\frac{1}{2}$ °. RIH with an HTC J22 ( $12\frac{1}{4}$ ", 3x15 jets), reaming to bottom. Trip/reaming gas was 1-21-3 units. Drilled ahead in the Latrobe formation to 2153m. Made flow-checks at 2067 and 2081m (no flow). Maximum gas was 96 units (from Coal at 2015m), over a BG of 2 units. Drill rates varied from around 5m/hr in the shaley siltstones and dolomitic sandstones to 50m/hr in the sandstones.

14th June 1983. Drilled ahead to 2372m. Maximum gas was 26 units from a coal at 2190m; and the BG was 2-3 units. ROP'S ranged from 4-5m/hr in the shaley siltstone sections to 40-60m/hr in the Coal and Sandstone sections.

15th June 1983. Drilled ahead to 2477.7m, at which point the bit was pulled due to low ROP'S. Maximum gas was 5 units (2325m);

and the BG was 1-2 units. This depth was nominated as the intermediate logging point. Schlumberger ran the following tool:

DLL-MSFL-GR

16th June 1983. Schlumberger ran the following logs:

FDC-CNL-GR
RFT NO. 1 (pretest run)

17th June 1983. Schlumberger ran further RFT'S:

No. 2 Gas and condensate recovered from 1838.5m

No. 3 Formation water recovered from 1934.1m

No. 4 Formation water recovered from 1879m

(The RFT tool became snagged temporarily in the stack on run No. 4). Made a short wiper trip (5 stands) to clean out the BOP stack.

18th June 1983. Schlumberger ran RFT No. 5 (2013m, water) and No. 6 (1843m, oil, gas and water). Tested the stack. RIH with Bit No. 7 (HTC J22,  $12\frac{1}{4}$ ", 3x15). Encountered a bridge 5 stands from bottom (around 2335m). Drilled to 2515m. Maximum gas was 3 units, over a background of 0-1 units.

19th June 1983. Drilled  $12\frac{1}{4}$ " hole to 2636m, where the bit was pulled due to excessive torque. A flow check was made at 2617m, following a drill-break, but there was no flow. Gas levels remained low today around 0-1 units with the largest peak of 6 units coming from coal at 2563m.

20th June 1983. Ran back in the hole with a J33 ( $12\frac{1}{2}$ ", 3x15). Drilled ahead to 2733m, through the Latrobe Group, with ROP'S varying from 3-18m/hr. Background gas was low, around 1 unit, and the maximum gas peak was 4 units.

21st June 1983. Drilled ahead to 2840m. Beds of shale slowed the drilling down to 2m/hr at times. Maximum gas was 8 units (2790m, Coal), over a background of 0-2 units.

22nd June 1983. Drilled to 2901m. Pulled the bit (after 52 hours of on-bottom drilling). Survey was 3°; the bit was graded  $5-8-\frac{1}{4}$ . RIH with Bit No. 9 (HTC J33,  $12\frac{1}{4}$ ", 3x15). Reamed from 2881m-2891m. Maximum drill gas was 9 units from Coal at 2863m, and the BG was 1-2 units.

23rd June 1983. Continued reaming to 290lm, then drilled ahead to 3015m. Maximum gas was 42 units (from Coal at 2944m) and BG was 2-4 units.

24th June 1983. Drilled to T.D. at 302lm. Circulated bottoms-up and POOH to run the following Schlumberger logs:

HRT (1700m-2400m)
DLL-MSFL-GR (3018m-2400m)
LDL-CNL-GR (3019m-1800m)
BHC-CAR-GR (3019m-789m)
HDT (3018m-1700m)
WST (19 levels)
RFT No. 7 (2018m)

25th June 1983

26th June 1983. Schlumberger completed the logging suite with

CST Nos 1, 2, & 3 (153 shot and 137 recovered)

The plug and abandon program was started with a lower plug set at 2060m and a second at 1900m. Circulating at 1680m no cement was visible in returns.

27th June 1983. RIH, the second plug was tagged at 1710m prior to a third plug being set at 842m. Testing the 3rd plug to 1500 psi, a bridge plug was then set at 645m and the 13-3/8" casing was cut at 185m and laid down. A final plug was then set at 214m after connecting the cement lines.

<u>28th June 1983</u>. Displacing the riser and flushing the choke and kill lines, the slip joint was collapsed after testing the last plug to 500 psi for 15 mins. Unlatching the stack, the BOP's and riser were pulled to the surface. RIH with cutting assembly the 20" casing was cut at 85m.

29th June 1983. The pile joint and guide base were pulled, and set on the spider beams. Waited on work boats to pull anchors.

30 th June 1983. Waiting on work boats to arrive and then waited on weather to pull anchors.

<u>1st July 1983</u>. Anchors were finally pulled and tow commenced to <u>location for SNAPPER NO. 4</u>. Well duration (anchors down to anchors up) was 29 days.

4. LITHOLOGY AND CORE-O-GRAPHS

#### LITHOLOGICAL SUMMARY

#### Gippsland Limestone

The top part of the Gippsland Limestone was composed of a white to light grey, calcarenite, moderately sorted Biosparite. This part included abundant microfossils of common Bryozoa, Foramenifera, Octacodia, Gastropoda and shell fragments. Common throughout this section were Lithic fragments and loose quartz grains.

With depth the Gippsland Limestone became progressively more clayey. At 600m-650m, clay content was around fifty percent.

The lower part of the Gippsland Limestone became a medium grey to medium dark grey, very soft to sticky calcilutite. Carbonaceous flecks were common as was also glauconite and assorted microfossils.

#### Lakes Entrance Formation

Composed throughout by a Calcareous Siltstone, and Calcareous Claystone. The Calcareous Siltstone was typically light to medium grey, soft to firm, and very calcareous. Minor fossils and pyrite were common. The Calcareous Claystone was medium grey to light grey, very soft to soft, and sticky; also very calcareous. Glauconite was in evidence throughout the Calcareous Claystone.

Gas throughout the unit remained between 1 and 5 units, composed principally of  $\mathbf{C}_{\mathbf{1}}$  .

#### Latrobe Group

Top part of the Latrobe Group was dominated by three main units, a Sandstone, Siltstone and Coal.

Sandstone was generally clear, to milky, very coarse grained, subangular to sub-rounded, moderately well sorted, with occasional argillaceous matrix. There was an orange-white fluroscence, with a fast streaming milky white cut, - this produced a dull brown residue.

The Coal was predominantly black, soft-firm, brittle and vitreous. Siltstone was light to medium grey, very argillaceous, firm, moderately calcareous, with traces of Foramenifera.

Three cores were cut in this section of the Latrobe Group. The gas varied from 5-60 units, composed of  $\rm C_1$  through to  $\rm C_6$ .

Middle Latrobe Group became essentially a Sandstone and a Siltstone, with minor coals. The Sandstone remained clear to transparent, medium to very coarse, sub angular, to sub-rounded. This unit was also dominated by Sandstone aggregates, which were clear, very fine to medium grained, well sorted, friable, dolomitic cemented - and with a dull yellow fluorescence: no cut. The Siltstone was medium dark brown to grey, carbonaceous, argillaceous, non calcareous, sub-fissile to blocky, firm to occasionally soft. A minor shale was also present, this consisted of a medium to light grey, firm to soft, predominantly fissile, with carbonaceous inclusions.

Lower Latrobe Group consisted of Sandstones and Siltstones. The Siltstone was essentially the same as described for the middle Latrobe. The Sandstone was predominantly clear to translucent, medium to coarse grained, sub-angular to sub-rounded, and moderately well sorted. The more friable samples showed a good visual porosity. The Sand showed a trace of white to yellow fluorescence, with slow streaming cut, and slow to faint crush cut. Gas in this Lower section remained at 1-5 units, composed of  $\mathrm{C}_1$  to  $\mathrm{C}_4$ .

# CORE-O-GRAPH

CLIENT:

WELL:

CORE NO. .

INTERVAL CORED FROM

CUT: 9.6 m.

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 9.88

ESSO AUSTRALIA LTD

LUDERICK NO. 1

1

1837.9m. TO 1847.5m.

RECOVERED: 9.6m. ( 100.0% )

LATROBE GROUP

CHRIS RC4

6.75in. x 4.75in. x 9.83m.

MUD WT.: 9.2



# CORE-O-GRAPH

CLIENT:

WELL:

CORE NO. .

INTERVAL CORED FROM

CUT: 9.0 m.

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 9.88

ESSO AUSTRALIA LTD

LUDERICK NO. 1

2

1847,5m. TO 1856,5m.

RECOVERED: 8.5m. ( 94.4% )

LATROBE GROUP

CHRIS RC4

6.75in. × 4.75in. × 9.83m.

MUD WT.: 9.2

|      |     |        |   |      | 1410D W |   | · . |    |     |    |   |
|------|-----|--------|---|------|---------|---|-----|----|-----|----|---|
|      | ROP | M/HR   |   | LITH | WC      | B |     | RP | М   | HR | s |
|      | 4Ø  |        | Ø |      | Ø       | 1 | 25  | 5Ø | 150 | Ø  | L |
| 1848 |     | $\leq$ |   |      |         |   |     |    |     |    |   |
| 1850 |     |        |   |      | >       | } |     |    |     |    |   |
| 1852 | <   |        |   |      |         | } |     |    |     |    | ı |
| 1854 | <   |        |   |      | ·       |   |     |    |     |    |   |
| 1856 |     |        |   |      |         | } |     |    |     |    |   |

latimer'81

# CORE-O-GRAPH

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 5.1 m

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 9.88"

ESSO AUSTRALIA LTD

LUDERICK NO. 1

Э

1856.5m. TO 1861.6m.

RECOVERED: 4.9m. ( 96.1% )

LATROBE GROUP

CHRIS RC4

6.75in. x 4.75in. x 9.83m.

MUD WT.: 9.2



latimer'b

5. EXTENDED SERVICE PACKAGE

# INTERMEDIATE EXTENDED SERVICE INTRODUCTION

The Core Laboratories Intermediate Extended Service Package includes sensors, recorders and computer facilities useful in the drilling operation, for the detection of abnormal formation pressure, and the optimization of drilling.

Presented graphically on Core Laboratories I.E.S. logs (discussed individually in the following section of this report) are the various functions necessary for well control, abnormal formation pressure detection and drilling optimization.

Other available services include electric log interpretation programs for the wellsite geologist, hydraulics (synthesis and analysis), well kill, cost per foot, bit nozzle selection, swab and surge created by pipe movement, and bit performance programs for the drilling engineer.

Core Laboratories I.E.S. logs include the following :

#### I.E.S. PRESSURE LOG

Information plotted on this log includes formation pore pressure, mud weight in and formation fracture pressure. This is plotted on linear graph paper at a vertical scale of 1:5000. The formation pore pressure and fracture pressure gradients are based on all available information. This is the conclusion log, therefore the information may be modified by results from formation drill stem tests, data from adjacent wells, kicks, R.F.T.'s, and formation breakdown tests.

# CORE LAB DRILL DATA PLOT

This plot, which is drawn while drilling is in progress, is the primary tool by which formation overpressure is detected. Drawn on a 1:5000 scale it is particularly useful in that five plots are drawn side by side, and thus any trend can be readily recognised.

The main plot is that of the corrected "d"exponent, which is presented on a logarithmic scale. The "d" exponent was first developed by Jorden and Shirley in 1966 to assist in interpreting rate of penetration data by normalizing for rotary speed and weight-on-bit per inch of bit diameter.

The modified "dc" exponent was proposed by Rhem and McClendon to compensate for increases in mud weight. This involves multiplying the standard "d" exponent value by the inverse ratio of the mud weight. A multiple of 9 ppg was used for convenience to return the magnitude of the "dc" to a comparable value of it's uncorrected state. In this case, a multiplier of 10 ppg was used. The equation for "dc" is therefore:

Deviations from the normal "dc"s trend may be interpreted as being due to a change in formation pore pressure. An equation derived by Eaton is used in an attempt to evaluate pore pressure from deviations in the "dc"s plot. This method of overpressure detection can be fairly accurate for homogeneous shales, but where the sand/silt/shale ratio varies a great deal, inaccuracies often occur.

The other main plots are a logarithmic rate of penetration, which complements the "dc"s plot and a linear plot of total mud gas.

Shale densities are also plotted on a linear scale in order to show up a decreasing density trend, and hence a possible transition into abnormally pressured shales. The points are determined by measuring the density of air-dried shale samples in an accurately calibrated liquid density column.

An interpreted lithology column is also included on the log, as is a plot of mud density in , to assist in interpretation. All relevant information, such as casing points, bit runs, etc. are also included.

#### I.E.S. GEO-PLOT LOG

This is plotted by the computer while drilling is in progress. At a later date this plot can be re-run on different scales to suit the client. The data is stored on magnetic tape during the drilling operations. Functions plotted on this log are: rate of penetration, corrected "d" exponent, break-even analysis, formation pore pressure, mud density in and formation fracture pressure.

A Geo-plot is included in this report, at a scale of 1:5000.

#### I.E.S. FLOWLINE TEMPERATURE, FLOWLINE TEMPERATURE END-TO-END PLOTS

Flowline temperature and end-to-end plot of flowline temperature are the two main plots relating to the temperature of the returning drilling fluid. These are plotted on a vertical scale of 1:5000. The use of these plots as an indicator of the presence of over-pressure takes secondary role to the I.E.S. drill log. Continuous observation of flowline temperature may indicate an increase in geothermal gradient. Factors affecting temperature are noted on the log, such as new bit runs, changes in the circulation rates, circulating cuttings out and the addition of water and chemicals to the active mud system. Since the goal of the end-to-end plot is to provide a representation of the geothermal gradient, all surface changes which would cause artificial changes in the flowline temperature are disregarded.

#### ELECTRIC LOG PLOT

A plot of shale resistivity (ohm-metres squared/metre), sonic travel time (microseconds per foot), bulk density (gm/cc) and neutron porosity (%), is made-using data supplied by Schlumberger. Two-cycle semi-log paper is used, with a vertical scale of 1:10000. As far as possible only clean shale points are selected and plotted. The relatively compressed vertical scale makes deviations from the normal compaction trend easier to identify.

#### PROGRESS LOG

This is the traditional presentation of footage against elapsed time in days. It shows actual drilling time from spud to total depth.

#### DATA RECORDING

Data is recorded on tape while drilling, both as raw input numbers and computer calculated numbers. This data can be accessed later for use in interpretative programs or to review data. Comprehensive data lists are included in this report.

#### MUD DATA SHEETS

These are a record of the mud properties while drilling, and are derived from the mud engineer's daily report.

#### DRILLING PARAMETER PLOT

The drilling parameter plot shows : rate of penetration, weight-on-bit, rotary speed, pump pressure, hydraulic horsepower, impact force and jet velocity. This plot is drawn by the computer and is designed to aid the drilling engineer in drilling optimization. The scale chosen here is 1:5000.

#### HYDRAULIC ANALYSES

During drilling, routine hydraulic analyses are calculated by the computer, and these are made available to the drilling engineer. This report includes a sample hydraulics for each 100 metres.

# GAS COMPOSITION ANALYSIS

For each significant gas show the chromatograph results are analysed using two techniques :=

- 1. Log plot
- 2. Triangulation plot

Both plots are included in this report.

#### GRAPHOL OG

This is plotted on the industry-standard form on a vertical scale of 1:500. Rate of penetration is plotted in metres per hour, together with mud gas chromatography results. Total gas is also plotted, and a percentage lithology log is drawn. A lithology description is presented in an abbreviated form. All relevant drilling data is included, as is bit and mud data.

#### MISCELLANEOUS

Various data collected from this well are also included in this report for reference. These include formation leak-off test data, and R.F.T. and well test data where appropriate.

# CORE LABORATORIES EQUIPMENT

Core Laboratories Field Laboratory 802 monitoring equipment includes the following:

#### A. MUD LOGGING

- 1. T.H.M. total gas detector and recorder.
- 2. Hot Wire total gas detector and recorder.
- 3. F.I.D. (Flame Ionization Detector) chromatograph and recorder.
- 4. Gas trap and support equipment for the above.
- 5. Rate of penetration, recorder and digital display.
- 6. Pit volume totalizer, recorder and digital display.
- 7. Digital depth counter.
- 8. Two integrated pump stroke counters, with digital display.
- 9. Ultra-violet fluoroscope.
- 10. Binocular microscope.

# B. INTERMEDIATE EXTENDED SERVICE PACKAGE

- 1. Hewlett Packard 9825B desktop computer.
- 2. Hewlett Packard 9872B plotter
- 3. Hewlett Packard 2631A printer.
- Two Hewlett Packard 2621P visual display units, (one located in the client's office).
- 5. Hookload/weight-on-bit transducer and recorder.
- Rotary speed tacho-generator and recorder.
- 7. Stand-pipe pump pressure transducer and recorder.
- 8. Mud flow out sensor and recorder.
- 9. Mud temperature sensors and recorders (in and out).
- 10. Mud conductivity sensors and recorders (in and out).
- 11. Rotary torque sensor and recorder.
- 12. Shale density apparatus.
- 13. Hydrogen sulphide gas detector.
- 14. Carbon dioxide gas detector.

# CORE LABORATORIES MONITORING EQUIPMENT

#### DEPTH

Depth registered every 0.2 metres and rate of penetration calculated each metre (or every 0.2m while coring), ROP displayed on digital panel and chart.

#### WEIGHT-ON-BIT

A Tyco 0-1000 psi, solid state pressure transducer is connected to the rig's deadline anchor. The weight-on-bit is calculated in the Rig Functions Panel, and displayed (with hookload) on a digital meter and recorder chart.

# ROTARY SPEED

This is a DC generator for which 1 volt = 100 rpm, and which is belt-driven from the rotary drive shaft. The value is displayed on a digital meter and recorder chart.

#### PUMP PRESSURE

This is a Tyco 0-5000 psi transducer mounted on the stand-pipe manifold. The pressure is displayed on a digital panel meter and recorder chart.

#### PIT VOLUME

Six individual pits can be displayed on the meter. The pit volume total is calculated in the PVT panel and displayed on a digital meter. The sensors are vertical floats driving potentiometers accurate to +/1 barrel. Each sensor is equipped with a wave compensating device.
In addition, a sensor is fitted to the rig's trip tank, so that hole fill-up during trips may be closely monitored. A recorder chart displays the levels of the active pits, the pit volume total, and the trip tank.

#### PUMP STROKES

These are the limit switch type, counting individual strokes. The Pulse Data Box can monitor one or two pumps individually or integrate the total number of strokes from both pumps. The pump rate per minute is displayed on a recorder chart.

# ROTARY TORQUE

An American Aerospace Controls bi-directional current sensor is clamped over the power cable of the rotary table motor. Torque is displayed on a digital panel meter and recorder chart.

#### MUD TEMPERATURE

This is a platinum probe resistance thermometer, calibrated  $0-100~{
m deg}$ . C. Temperature in and out is displayed on a digital panel meter and chart recorder.

#### MUD CONDUCTIVITY

A Balsbaugh electrode-less conductivity sensor contains two toroidally-wound coils and a thermistor enclosed in a donut-shaped housing. Current is induced into the mud by the primary coil and is sampled by the secondary coil, the amplitude of the current being directly proportional to the conductivity of the mud.

All the sensors are 5 to 24V DC powered with the exception of the air driven gas trap. Along with monitoring and maintaining the above equipment, Core Lab performed other duties...

#### CUTTINGS

Microscopic and ultra-violet inspection of cuttings samples at predetermined intervals. Dry samples were washed, dried and boxed. Wet samples were washed, sacked and boxed. Geochemical samples were canned and boxed.

#### GAS

- 1.Flame Ionization Total Hydrocarbon gas detector. The T.H.M. accurately determines hydrocarbon concentrations up to 100% saturation.
- 2.Flame Ionization Detector chromatograph.
  The F.I.D. is capable of accurate determination of hydrocarbon concentration from C1 to C6+.
- 3.Hot Wire gas detector (Wheatstone Bridge type).
  A back-up system for total gas detection.

# SHALE DENSITY

Manual determination of shale density in an accurately calibrated variable density liquid column.

6. ESP PLOT DISCUSSIONS AND CONCLUSIONS

#### ESP PLOT DISCUSSIONS AND CONCLUSIONS

LUDERICK NO. 1 was drilled in the Gippsland Basin and Core Laboratories field unit FL802 was used to monitor parameters associated with overpressure detection, observing the well to be normally pressured.

The "Drill Data Plot" is the primary pressure detection plot and shows the d'c exponent trend for the well. A good trend does not develop until around 750m, due mainly to lack of consolidation in the lithology and drilling being achieved mainly through jet extrusion rather than rotary action of the Trending normally down to 850m, the d'c' exponent still remains fairly scattered and a lateral shift at 850m corresponds with the lithological transition into a calcareous siltstone shortly after the change in hole size to 124" from 172". A virtually vertical trend is established from 850m to 1500m due again to the much slower transitional trend from siltstone into claystone rather than the presence of any overpressure. Trending normally again from 1500m to 1750m in the Lower Lakes Entrance formation the d'c then becomes fairly scattered again as the Latrobe Group is penetrated. Being predominantly interbedded sand with siltstone and coal the lack of any homogeneous formation gives rise to this scattering effect, the d'c also being a tool primarily associated with shales.

No inference as to any overpressure is noticed from either ROP'S or background levels of gas as any changes in these could be directly attributed to a change in bit or lithology.

Schlumberger's RFT pressure tests verified the normally pressured nature of the well in indicating pore pressure of around 8.4 ppg.

A Temperature Plot drawn for LUDERICK NO. 1 failed to provide any conclusive information due to periodic treatment of the mud system. The thermal gradient of the well was calculated as  $4.22^{\circ}/100$  with a bottom-hole temperature at 302lm extrapolated to 141.4°C.

The "Pressure Plot" presents the pressure conclusion log for the well, all formation being normally pressured at 8.4 ppg (MSL) EMW. The leak-off test performed 6m below the 13-3/8" casing shoe gave a leak-off when the equivalent pressure of 16.8 ppg was applied and this data was the basis of the fracture gradient drawn on the Pressure Plot with the shape of the curve based on U.S. Gulf Coast data. This fracture gradient is as true as can be drawn for the Gippsland Basin until more leak-off data is available.

Information obtained from Schlumberger's FDC and/or LDL tools was used in deriving the overburden gradient calculations and plot provided with this report.

7. B.H.T. ESTIMATION

....

CORE LAB

B.H.T. INTERPOLATION (LINEAR 1/T METHOD) AT 3021 M

STRAIGHT LINE LEAST SQUARES BEST FIT

1/TIME ON A LINEAR SCALE AGAINST TEMP (DEG C) ON A LINEAR SCALE

# ENTERED DATA:

| DATA SET | # | TIME  | 1/TIME | TEMP (DEG C) | LOG:        |
|----------|---|-------|--------|--------------|-------------|
|          | 1 | 8.75  | 0.1143 | 93.5         | HRT         |
|          | ? | 11.67 | 0.0857 | 114.0        | DLL-MSFL-GR |
|          | 3 | 14.92 | 0.0670 | 114.0        | LDL-CNLG-GR |
|          | 4 | 19.83 | 0.0504 | 124.4        | BHC-GR      |
|          | 5 | 24.92 | 0.0401 | 122.2        | HDT         |

# COEFFICIENT & CONSTANT:

Y = M.X + C where M = -3.8883450E 02 and C = 1.4142867E 02

INTERPOLATED DATA:

1/TIME TEMP (DEG C) 0.0000 141.4

"TIME" is the time since circulation stopped

CORE LAB

B.H.T. INTERPOLATION (HORNER METHOD) AT 3021 M

STRAIGHT LINE LEAST SQUARES BEST FIT

(T+t)/T ON A LOGARITHMIC SCALE AGAINST TEMP (DEG C) ON A LINEAR SCALE

#### ENTERED DATA:

| DATA SET # | TIME    | HUHNER TIME<br>(T+t)/T | TEMP (DEG C) | L06:        |
|------------|---------|------------------------|--------------|-------------|
| 1          | 8.75    | 1.2000                 | 93.5         | HRT         |
| 5          | 11.67   | 1.1500                 | 114.0        | DLL-MSFL-GR |
| 3          | 14.92   | 1.1173                 | 114.0        | LDL-CNLG-GR |
| .43        | 19.83   | 1,0882                 | 124.4        | BHC -GR     |
| 5          | 24.92   | 1.0702                 | 122.2        | HDT         |
|            | (t=1.75 | i)                     |              |             |

# COEFFICIENT & CONSTANT:

Y = m.log(X) + c where M = -5.7766289E 02 and C = 1.4299514E 02

#### INTERPOLATED DATA:

(T+t)/T TEMP (DEG C) 1.0000 143.0

T = Time since circulation stopped
t = Time of circulation on bottom

8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT

#### OVERBURDEN GRADIENT CALCULATIONS

DEPTH . . . . . . . . . . . . . . . . metres

BULK DENSITY . . . . . . . . . . . . . . . . gm/cc

OVERBURDEN PRESSURE INCREMENT. .psi

CUMULATIVE OVERBURDEN PRESSURE .psi

OVERBURDEN PRESSURE GRADIENT . .psi/ft

OVERBURDEN EQUIVALENT DENSITY. . Pounds per gallon

BULK DENSITY TAKEN FROM AVERAGED F.D.C. LOG, OR FROM SONIC LOG FOR SECTIONS WHERE THE F.D.C. LOG IS NOT AVAILABLE.

## OVERBURDEN GRADIENT CALCULATIONS

| DEPTH<br>from                                                                        | DEPTH<br>to                                                                          | AVR.BULK<br>DENSITY                                                          | O/BURDEN<br>INC.                                                                                    | O/BURDEN<br>CUMM.                                                                                                     | O/BURDEN<br>GRAD.                                                                      | O/BURDEN<br>GRAD.                                                             |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| metres                                                                               | metres                                                                               | gm∕cc                                                                        | psi                                                                                                 | psi                                                                                                                   | psi/ft                                                                                 | þþg                                                                           |
| 0<br>74<br>800<br>808<br>842<br>897<br>969                                           | 74<br>800<br>808<br>842<br>897<br>969<br>1035                                        | 1.02<br>2.00<br>2.20<br>2.37<br>2.31<br>2.35<br>2.26                         | 107.23<br>2062.71<br>25.00<br>114.47<br>180.49<br>240.37<br>211.90                                  | 107.23<br>2169.94<br>2194.94<br>2309.41<br>2489.90<br>2730.26<br>2942.16                                              | 0.442<br>0.827<br>0.828<br>0.836<br>0.846<br>0.859<br>0.866                            | 8.49<br>15.90<br>15.92<br>16.08<br>16.27<br>16.52                             |
| 1035<br>1115<br>1164<br>1182<br>1229<br>1263<br>1287                                 | 1115<br>1164<br>1182<br>1229<br>1263<br>1287<br>1323                                 | 2.28<br>2.20<br>2.11<br>2.27<br>2.25<br>2.18<br>2.05                         | 259,12<br>153,14<br>53,95<br>151,56<br>108,68<br>74,33<br>104,84                                    | 3201.28<br>3354.42<br>3408.37<br>3559.94<br>3668.61<br>3742.94<br>3847.78                                             | 0.875<br>0.878<br>0.879<br>0.883<br>0.885<br>0.886                                     | 16.83<br>16.89<br>16.90<br>16.98<br>17.03<br>17.05                            |
| 1323<br>1338<br>1388<br>1425<br>1507<br>1651<br>1665                                 | 1338<br>1388<br>1425<br>1507<br>1651<br>1665<br>1689                                 | 2.07<br>2.22<br>2.14<br>2.35<br>2.35<br>2.15<br>2.00                         | 44.11<br>157.69<br>112.48<br>273.75<br>480.73<br>42.76<br>68.19                                     | 3891.89<br>4049.57<br>4162.06<br>4435.81<br>4916.54<br>4959.30<br>5027.49                                             | 0.887<br>0.889<br>0.890<br>0.897<br>0.908<br>0.908                                     | 17.05<br>17.10<br>17.12<br>17.25<br>17.46<br>17.46                            |
| 1689<br>1718<br>1750<br>1788<br>1802<br>1832                                         | 1718<br>1750<br>1788<br>1802<br>1832<br>1872                                         | 2.14<br>2.35<br>2.34<br>2.23<br>2.42<br>2.32                                 | 88.16<br>106.83<br>126.32<br>44.35<br>103.14<br>131.83                                              | 5115.65<br>5222.48<br>5348.80<br>5393.15<br>5496.28<br>5628.12                                                        | 0.908<br>0.910<br>0.912<br>0.912<br>0.914<br>0.916                                     | 17.45<br>17.49<br>17.53<br>17.54<br>17.59                                     |
| 1872<br>1948<br>1979<br>1988<br>2008<br>2020<br>2060                                 | 1948<br>1979<br>1988<br>2008<br>2020<br>2060<br>2070                                 | 1.98<br>2.22<br>2.10<br>2.23<br>1.93<br>2.25                                 | 213.77<br>97.77<br>26.85<br>63.36<br>32.90<br>127.85<br>80.55                                       | 5841.89<br>5939.65<br>5966.50<br>6029.86<br>6062.76<br>6190.62<br>6271.17                                             | 0.914<br>0.915<br>0.915<br>0.915<br>0.915<br>0.916                                     | 17.58<br>17.59<br>17.59<br>17.60<br>17.59<br>17.61                            |
| 2090<br>2131<br>2137<br>2167<br>2193<br>2235<br>2264<br>2290<br>2320<br>2336<br>2370 | 2131<br>2137<br>2167<br>2193<br>2235<br>2264<br>2290<br>2320<br>2336<br>2370<br>2384 | 2.26<br>1.88<br>2.31<br>2.35<br>2.28<br>2.38<br>2.36<br>2.46<br>2.39<br>2.29 | 131.63<br>16.02<br>98.87<br>85.32<br>140.21<br>93.93<br>87.91<br>100.58<br>55.91<br>115.44<br>45.54 | 6402.80<br>6418.82<br>6517.70<br>6603.02<br>6743.23<br>6837.16<br>6925.07<br>7025.65<br>7081.56<br>7197.00<br>7242.54 | 0.916<br>0.916<br>0.917<br>0.918<br>0.920<br>0.920<br>0.922<br>0.923<br>0.924<br>0.926 | 17.61<br>17.63<br>17.65<br>17.68<br>17.70<br>17.73<br>17.75<br>17.77<br>17.80 |

| DEPTH  | DEPTH  | AVR.BULK | O/BURDEN | O/BURDEN | OZBURDEN | O/BURDEN |
|--------|--------|----------|----------|----------|----------|----------|
| from   | to     | DENSITY  | INC.     | CUMM.    | GRAD.    | GRAD.    |
|        |        |          |          |          |          |          |
| metres | metres | gm/cc    | psi.     | psi.     | psi/ft   | p p g    |
| 2384   | 2437   | 2.38     | 179.19   | 7421,74  | 0.928    | 17,85    |
| 2437   | 2466   | 2.36     | 97,23    | 7518,96  | 0.929    | 17.87    |
| 2466   | 2500   | 2.33     | 112.54   | 7631.50  | 0,727    |          |
| 2500   | 2550   |          |          |          |          | 17,89    |
|        |        | 2.32     | 164.79   | 7796.29  | 0.932    | 17.92    |
| 2550   | 2575   | 2.35     | 83,46    | 7879,75  | 0.933    | 17.94    |
| 2575   | 2600   | 2.42     | 85.95    | 7965.70  | 0.934    | 17,96    |
| 2600   | 2625   | 2.38     | 84.53    | 8050.22  | 0.935    | 17.98    |
| 2625   | 2650   | 2.37     | 84.17    | 8134.39  | 0.936    | 17.99    |
| 2650   | 2675   | 2.41     | 85.59    | 8219.99  | 0.937    | 18.01    |
| 2675   | 2700   | 2.40     | 85.24    | 8305.22  | 0.938    | 18.03    |
| 2700   | 2725   | 2.48     | 88.08    | 8393.30  | 0.939    | 18.05    |
| 2725   | 2750   | 2.44     | 86.66    | 8479.96  | 0.940    | 18.07    |
| 2750   | 2775   | 2.42     | 85.95    | 8565.90  | 0.941    | 18.09    |
| 2775   | 2800   | 2.50     | 88.79    | 8654,69  | 0.942    | 18,12    |
| 2800   | 2825   | 2.45     | 87.01    | 8741.70  | 0.943    | 18.14    |
| 2825   | 2850   | 2.44     | 86.66    | 8828.36  | 0.944    | 18.16    |
| 2850   | 2875   | 2,45     | 87.01    | 8915.37  | 0.945    | 18.18    |
| 2875   | 2900   | 2.40     | 85.24    | 9000.61  | 0.946    | 18.19    |
| 2900   | 2925   | 2.53     | 89.85    | 9090,46  | 0,947    | 18.22    |
| 2925   | 2950   | 2,44     | 86.66    | 9177.11  | 0.948    | 18,23    |
| 2950   | 2975   | 2.45     | 87.01    | 9264.13  | 0.949    | 18.25    |
|        |        |          |          |          |          |          |
| 2975   | 3000   | 2.43     | 86.30    | 9350.43  | 0.950    | 18.27    |
| 3000   | 3021   | 2,42     | 72.19    | 9422.62  | 0.951    | 18.28    |





9. GAS ANALYSES

SIDEWALL CORE GAS ANALYSIS DATA SHEET

SHEET# 1

COMPANY \_\_ESSO AUSTRALIA LTD.

LOGGING SUITE NO. 3 RUNS 1, 2

WELL

LUDERICK NO. 1

| NΩ | DEPTH   | СI         | C S   | C3    | C4    | C 5  | C 6                                              | COMMENTS |
|----|---------|------------|-------|-------|-------|------|--------------------------------------------------|----------|
|    | М       | PPM        | PPM   | PPM   | PPM   | PPM  | PPM                                              |          |
| 4  | 2943.98 | 955        | 82    | 61    | 17    | 23   | 26                                               |          |
| 5  | 2935.02 | 2964       | 344   | 167   | 34    | 3    | 13                                               | ]        |
| 6  | 2925.93 | 1357       | 197   | 106   | 17    | 6    | 13                                               |          |
| 10 | 2853.98 | 91         | 25    | 30    | 4     | 12   | TR                                               |          |
| 11 | 2851.00 | 494        | 148   | 198   | 52    | 34   | 52                                               |          |
| 12 | 2844.6  | 403        | 66    | 65    | 26    | 6    | 13                                               |          |
| 13 | 2841.00 | 8320       | 1312  | 1216  | 275   | 171  | 156                                              |          |
| 14 | 2834.00 | 221        | 49    | 53    | 26    | 6    | 13                                               |          |
| 18 | 2757.00 | 247        | 45    | 46    | 22    | 6    | 13                                               |          |
| 43 | 2100.5  | 169        | 25    | 38    | 4     | 12   | TR                                               | ]        |
| 45 | 2081.7  | 32448      | 5510  | 913   |       |      |                                                  | COAL     |
| 47 | 2022.5  | 988        | 689   | 1064  | 602   | 228  | 156                                              | 1        |
| 48 | 2200.00 | 13         | 8     | 8     |       |      |                                                  | 1        |
| 49 | 2018.00 | 832        | 13120 | 18483 | 11558 | 4742 | 2496                                             |          |
| 52 | 2012.9  | 0          | 0     | 0     | 0     | 0    | 0                                                | 1        |
| 54 | 1918.00 | 806        | 262   | 114   | 34    | 40   | 65                                               |          |
| 55 | 1978.00 | 312        | 33    | 38    | 23    | 23   | 39                                               | 1        |
| 56 | 1953.00 | 64         | 8     | 15    |       | 1    |                                                  | 1        |
| 59 | 1937.00 | 0          | 0     | 0     | 0     | 0    | 0                                                |          |
| 60 | 1934.00 | 45         | 6     | 3     |       |      |                                                  |          |
| 61 | 1928.00 | 4899       | 1114  | 213   | TR    |      |                                                  | 1        |
| 62 | 1923.2  | 154        | 20    | 7     |       |      |                                                  | 1        |
| 64 | 1914.4  | 1031       | 287   | 68    | 9     | 10   |                                                  | 1        |
|    | 1896.00 | 206        | 49    | 7     | 8     |      |                                                  | 1        |
| 70 | 1886.9  | 206        | 49    | 7     | 9     |      |                                                  | 1        |
| 71 | 1883.5  | 77         | 16    | 15    | TR    |      |                                                  | 1        |
| 72 | 1879.00 | 77         | 9     | 16    | 7     |      | <del>                                     </del> | 1        |
| 74 | 1873.00 | 4332       | 393   | 136   | 26    | 11   |                                                  | 1        |
| 75 | 1870.00 | 206        | 65    | 45    | 8     | 11   |                                                  | 1        |
| 76 | 1837.00 | 180        | 270   | 1430  | 1735  | 872  | 526                                              | -        |
| 77 | 1835.00 | 309        | 622   | 1598  | 5687  | 2573 | 1684                                             | 1        |
| 78 | 1833.00 | 154        | 393   | 3896  | 5687  | 3951 | 3473                                             | 1        |
| 79 | 1831.00 | 618        | 393   | 487   | 156   | 114  | 263                                              | 1        |
| 80 | 1827.9  | 515        | 270   | 365   | 173   | 46   | 105                                              | 1        |
| 82 | 1823.5  | 77         | 213   | 197   | 173   | 68   | 1                                                |          |
| 02 | 1023.3  | <u>'</u> ' | 413   | 17/   | 1/3   | - 00 |                                                  | 1        |

10. CORELAB DATA SHEETS

#### BIT RECORD

BIT SIZE . . . . . . Inches

BIT COST . . . . . . Australian dollars

JET SIZE . . . . . . Thirty-seconds of an inch

DEPTHS . . . . . . Metres

HOLE MADE. . . . . . Metres

DRILLING TIME. . . . . Hours

AVERAGE ROP. . . . . Metres/hour

AVERAGE COST/METRE . . Australian dollars

BIT CONDITION. . . . Teeth

Bearings

· Gauge . . . . Inches

BIT RECORD

LAB

COMPANY ESSO AUSTRALIA LTD.

WELL LUDERICK NO. 1

Sheet No. 1

|           | WELL WILL |       |                    |              |                                      |                        |          |              |                                |                    |            |                                |                                       |              |
|-----------|-----------|-------|--------------------|--------------|--------------------------------------|------------------------|----------|--------------|--------------------------------|--------------------|------------|--------------------------------|---------------------------------------|--------------|
| <u>o.</u> | Bit No.   | Make  | Туре               | IADC<br>Code | Size                                 | Jets                   | Depth In | Hole<br>Made | Drilling<br>Time               | On Bottom<br>Hours | Turns K Co | ndition<br>FBG                 | Remarks                               | COST         |
| XR        | RR I      | нтс   | OSC 3AJ<br>+26" HO | 111          | 17 <sup>1</sup> / <sub>2</sub><br>26 | 18/18/18<br>-          | 74       | 135          | 6                              | 3.28               | 13.6 2     | ?-5-I                          | POOH FOR 20" CSG.                     | -            |
| XR        | 2         | 2 HTC | OSC 3AJ            | 111          | 17½                                  | 20/20/20               | 209      | 597          | 22                             | 12.77              | 106.6 2    | 2-2-I                          | POOH TO LOG AND RUN<br>13-3/8"        | 4442         |
| UK        | 3         | 3 нтс | X3A                | 114          | 12½                                  | 16/16/18               | 806      | 945          | 46                             | 22.01              | 196.1 4    | -6-I                           | POOH DUE TO LOW ROP.                  | 2201         |
| YS        | 4         | HTC   | J11                | 437          | 12½                                  | 16/16/16               | 1751     | 86           | 9                              | 7.07               | 48.6       | -1-I                           | POOH TO CUT CORE NO.1                 | 6788         |
| 080Z      |           | CHRIS | RC4                | 4            | 9-7/8                                | EOUIVALENT<br>15/15/14 | 1837.9   | 9.6          | 3½                             | 2.38               | 17.1 0     | .25                            | RERUN 20% WORN<br>INITIALLY PULLED TO | _            |
|           |           |       |                    |              |                                      |                        |          |              |                                |                    |            |                                | RETRIEVE CORE NO. 1                   |              |
| 080Z      | RC 4      | CHRIS | RC4                | 4            | 97/8                                 | EOUIVALENT<br>15/15/14 | 1847.5   | 9.0          | 3/4                            | 3.07               | 22.3 0     | .30                            | PULLED TO CATCH CORE NO. 2.           | _            |
| 080Z      | RR 4      | CHRIS | RC4                | 4            | 9-7/8                                | EQUIVALENT<br>15/15/14 | 1856.5   | 5.1          | 41/2                           | 7.47               | 54.0 0     | .35                            | PULLED TO CATCH<br>CORE NO. 3.        | 1            |
| YS        |           | HTC   | J11                | 437          | 121/4                                | 15/15/15               | 1861.6   | 200.4        | 26½                            | 22.32              | 147.7 8    | 3-4 <del>-8</del>              | OUT DUE TO LOW ROP'S.                 | 6788         |
| SK        | (         | HTC   | J22                | 517          | 12½                                  | 15/15/15               | 2062     | 415.6        | 47½                            | 40.25              | 180.9 3    | $3-3-\frac{1}{8}$              | OUT TO RUN INTERME-<br>DIATE LOGS.    | 6788         |
| VK        | -         | 7 HTC | Ј22                | 517          | 12½                                  | 15/15/15               | 2477.6   | 158.4        | 26 <sup>1</sup> / <sub>4</sub> | 20.78              | 90.6 4     | 1-8- <sup>1</sup> <sub>4</sub> | TORQUE INCREASED.                     | 6788         |
| BL        |           | В НТС | J33                | 537          | 121/4                                | 15/15/15               | 2636     | 265          | 56½                            | 52.43              | 214.0 5    | 5 <b>-</b> 8-½                 | PULLED AFTER 52 HRS.                  | 6637         |
| YL        | 9         | HTC   | J33                | 537          | 12½                                  | 15/15/15               | 2901     | 120          | 27½                            | 22.14              | 92.5 2     | 2-2-1                          | PULLED AT T.D.                        | 6637         |
|           |           |       |                    |              |                                      |                        |          |              |                                |                    |            |                                |                                       |              |
|           |           |       |                    |              |                                      |                        |          |              |                                |                    |            |                                | ,                                     |              |
|           |           |       |                    |              |                                      |                        |          |              |                                |                    |            |                                |                                       |              |
|           |           |       |                    |              |                                      |                        |          |              |                                |                    |            |                                |                                       |              |
|           |           |       |                    |              |                                      |                        |          |              |                                |                    |            |                                |                                       |              |
|           |           |       |                    |              |                                      |                        |          |              |                                |                    |            |                                |                                       |              |
|           |           |       |                    |              |                                      |                        |          |              |                                |                    |            |                                |                                       |              |
|           |           |       |                    |              |                                      |                        |          |              |                                |                    |            |                                |                                       |              |
|           |           |       |                    |              |                                      |                        |          |              |                                |                    |            |                                |                                       |              |
|           |           |       |                    |              |                                      |                        |          |              |                                |                    |            |                                |                                       |              |
|           |           |       |                    |              |                                      |                        |          |              | -                              |                    |            |                                |                                       |              |
|           | <u> </u>  |       |                    |              |                                      | <u> </u>               | J        | ٠            |                                | <del>I</del>       | <u> </u>   |                                |                                       | <del> </del> |

BIT RECORD

LAB

COMPANY ESSO AUSTRALIA LTD.

WELL LUDERICK NO. 1

Sheet No. 2\_

|             | VV b to b |       |         |      |                                |      |                        |          |           |              |             |                    |            |                |                    |                    |
|-------------|-----------|-------|---------|------|--------------------------------|------|------------------------|----------|-----------|--------------|-------------|--------------------|------------|----------------|--------------------|--------------------|
| NO.         | Bit No.   | Make  | Type    | Code | Size                           | Cost | Jets                   | Depth In | Depth Out | Hole<br>Made |             | On Bottom<br>Hours | Turns K    | Average<br>ROP | Average<br>Cost/ M | Condition<br>T B G |
| 2 <b>XR</b> | RR 1      | HTC   | 4263Ψ   | 111  | 26 <sup>1</sup> 2              | _    | 18/18/18               | 74       | 209       | 135          | 6           | 3.28               | 13.6       | 41.2           | 178.44             | 2-5-I              |
| 9 XR        | 2         | HTC   | OSC 3AJ | 111  | 17½                            | 4442 | 20/20/20               | 209      | 806       | 597          | 22          | 12.77              | 106.6      | 46.8           | 124.44             | 2-2-I              |
| 3 <b>UK</b> | 3         | HTC   | хза     | 114  | 12½                            | 2201 | 16/16/18               | 806      | 1751      | 945          | 46          | 22.01              | 196.1      | 42.9           | 126.69             | 4-6-I              |
| 7 YS        | 4         | HTC   | J11     | 437  | 12½                            | 6788 | 16/16/16               | 1751     | 1837.9    | 86           | 9           | 7.07               | 48.6       | 12.2           | 718.53             | 1-1-I              |
| в 0802      | 4         | CHRIS | RC4     | 4    | 9-7/8                          | _    | EOUIVALENT<br>15/15/14 | 1837.9   | 1847.5    | 9.6          | 3½          | 2.38               | 17.1       | 4.0            | 3657,86            | 0.25               |
| в 0802      | RR 4      | CHRIS | RC4     | 4    | 9-7/8                          | -    | ESYTYALENT             | 1847.5   | 1856.5    | 9.0          | 3/4         | 3.07               | 22.3       | 13.0           | 2045.26            | 0.30               |
| В 0802      | RR 4      | CHRIS | RC4     | 4    | 9-7/8                          | _    | EQUIVALENT 15/15/14    | 1856.5   | 1861.6    | 5.1          | 41/2        | 7.47               | 54.0       | 1.2            | 2392.50            | 0.35               |
| 5 <b>YS</b> | 5         | HTC   | J11 ·   | 437  | 12 <sup>1</sup> / <sub>4</sub> | 6788 | 15/15/15               |          | 2062.0    | 1            | 26 <b>½</b> | 22.32              | 147.7      | 9.0            | 641.66             | 8-4-1/8            |
| 7 <b>SK</b> | 6         | HTC   | J22     | 517  | 12½                            | 6788 | 15/15/15               | 2062.0   | 2477.6    | 415.6        | 47½         | 40.25              | 180.9      | 10.3           | 501.56             | 3-3-1/8            |
| 7 <b>VK</b> | 7         | нтс   | J22     | 517  | 12½                            | 6788 | 15/15/15               | 2477.6   | 2636.0    | 158.4        | 26½         | 20,78              | 90.6       | 7.6            | 802.70             | 4-8-1/4            |
| 6 BL        | 8         | HTC   | Ј33     | 537  | 12½                            | 6637 | 15/15/15               | 2636.0   | 2901.0    | 265.0        | 56½         | 52,43              | 214,0      | 5.1            | 995.35             | 5-8-1/4            |
| 9 YL        | 9         | HTC   | J33     | 537  | 12½                            | 6637 | 15/15/15               | 2901.0   | 3021.0    | 120.0        | 27½         | 22.14              | 92.5       | 5.4            | 1134.64            | 2-2-1              |
|             |           |       |         |      |                                |      |                        |          |           |              |             |                    |            |                |                    |                    |
|             |           |       |         |      |                                |      |                        |          |           |              |             |                    | ļ <u>.</u> |                |                    |                    |
|             |           |       |         |      |                                |      |                        |          |           |              |             |                    |            |                |                    |                    |
|             |           |       |         |      |                                |      |                        |          |           |              |             |                    |            |                |                    |                    |
|             |           |       |         |      |                                |      |                        |          |           |              |             |                    |            |                |                    |                    |
|             |           |       |         |      |                                |      |                        |          |           |              |             |                    |            |                |                    |                    |
|             |           |       |         |      |                                |      |                        |          |           |              |             |                    |            |                |                    |                    |
|             |           |       |         |      |                                |      |                        |          |           |              |             |                    |            |                |                    |                    |
|             |           |       |         |      |                                |      |                        |          |           |              |             |                    |            |                |                    |                    |
|             |           |       |         |      |                                |      |                        |          |           |              |             |                    | <u> </u>   |                |                    |                    |
|             |           |       |         |      |                                |      |                        |          |           |              |             |                    |            |                |                    |                    |
|             |           |       |         |      |                                |      |                        |          |           |              |             |                    |            |                |                    |                    |

#### MUD INFORMATION SHEETS

DEPTH . . . . . . Metres

MUD WEIGHT . . . . . Pounds per gallon

FUNNEL VISCOSITY . . . A.P.I.seconds

PLASTIC VISCOSITY. . . Centipoise

YIELD POINT. . . . . Pounds/100 square feet

GEL : INITIAL/10 min . Pounds/100 square feet

FILTRATE . . . . . . A.P.I. c.c.

CAKE THICKNESS . . . . Thirty-seconds of an inch

SALINITY : Ca/Cl . . . ppm

SOLIDS/SAND/OIL. . . Percentage

#### MUD INFORMATION SHEET ESSO AUSTRALIA LTD. COMPANY\_ LUDERICK NO. 1 Sheet No. 1 WELL. 775 DEPTH (M) 290 975 1646 806 1838 4/6/83 DATE 5/6/83 6/6/83 7/6/83 8/6/83 9/6/83 10/6/83 TIME 22:45 14:00 15:00 14:00 11:00 11:30 WEIGHT 8.7 9.0 9.2+ 9.0 9.2 9.2+ FUNNEL VISCOSITY 2/3 2/11 3/14 3/11 5/27 5/16 .49/.24 .28/2.44 PV/YP .21/3.59 .23/3.94 .21/8.67 .31/3.08 E 1/2 5/8 3/8 2/6 N/K 12/15 6/14 A 8.9 9.3 9.2 10.6 GEL: INITIAL/10 MIN 10.2 10.5 -/--/-23/-7.6/18.2 рΗ W -/-FILTRATE: API/API HTHP Α 14000 18000 CAKE T 16000 15000 17000 SALINITY (PPM) $\mathbf{E}$ TR TR TR TR SAND R 5 6 5 6 6 SOLIDS 0 0 0 0 0 OIL REMARKS: SPUDDED CEMENTED DRILLED 12½" HOLE LOG 20" CSG RAN CUT DRILLED 17½" 13-3/8" CORE HOLE CASING NO. 1 (M) 1856 1907 2130 2256 2477 2477 DEPTH 2477 11/6/83 12/6/83 13/6/83 14/6/83 15/6/83 16/6/83 17/6/83 DATE 16:00 10:30 22:00 09:30 16:30 23:00 23:30 TIME 9.2 9.2 9.2 9.2+ 9.2+ 9.3 9.1+ WEIGHT 43 7/13 FUNNEL VISCOSITY 40 44 45 40 42 8/14 5/14 6/23 8/16 $\frac{12}{12}$ 6/17 PV/YP .33/2.86 11/28 .45/1.35 12/30 .34/2.33 .27/5.35 22/30 .41/1.81 10/20 .57/.74 3/8 .43/1.35 8/15 N/K 4/13 GEL: INITIAL/10 MIN 10.6 10.4 рΗ 10.5 10.4 10.6 9.6 10.5 FILTRATE: API/API HTHP 8.6/19.2 8,6/19.0 9.0/18.6 9.0/19.2 9.8/20.2 7.6/15.2 7.6/15 CAKE 1 (PPM) 18000 18000 SALINITY 19000 17000 17000 18000 14000 SAND TR TR TR 1/4 TR TR TR SOLIDS 6 6 6 7 6 6 6 0 $\overline{0}$ 0 OIL 0 0 0 0 NITRATES (PPM) 160 180 200 160 200 160 80 REMARKS: CUT DRILLED 12坛" HOLE CORE-NO. 2 INTERMEDIATE LOGS & 3

# LAB

#### MUD INFORMATION SHEET

ESSO AUSTRALIA LTD.

COMPANY\_\_\_\_\_WELL LUDERICK NO. 1

Sheet No. 2

| - L L    | ODDICE OIL TIC                                                                                                      | / <del></del>                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | et 140. <u>–</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2496     | 2585                                                                                                                | 2712                                                                                                                                                                                | 2818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18/6/83  | 19/6/83                                                                                                             | 20/6/83                                                                                                                                                                             | 21/6/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22/6/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23/6/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24/6/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22:00    | 11:00                                                                                                               | 18:30                                                                                                                                                                               | 19:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9.3      | 9.2                                                                                                                 | 9.2                                                                                                                                                                                 | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 43       | 40                                                                                                                  | 43                                                                                                                                                                                  | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/14     | 7/15                                                                                                                |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| .38/1.89 |                                                                                                                     |                                                                                                                                                                                     | .39/2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .39/3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .34/3.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7/20     | 6/21                                                                                                                | 15/28                                                                                                                                                                               | 18/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18/28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10.6     | 10.5                                                                                                                | 10.7                                                                                                                                                                                | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9.2/19.0 | 9.0/18.8                                                                                                            | 9.2/19.8                                                                                                                                                                            | 9.7/19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.0/16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.8/8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.3/18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1        | 1                                                                                                                   | 1                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17000    | 18000                                                                                                               | 21000                                                                                                                                                                               | 20500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TR       | TR                                                                                                                  | TR                                                                                                                                                                                  | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6        | 6                                                                                                                   | 4.5                                                                                                                                                                                 | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0        | 0                                                                                                                   | 0                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 200      | 200                                                                                                                 | 200                                                                                                                                                                                 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                                                                                                                     |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                     |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                     |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 2496<br>18/6/83<br>22:00<br>9.3<br>43<br>6/14<br>.38/1.89<br>7/20<br>10.6<br>9.2/19.0<br>1<br>17000<br>TR<br>6<br>0 | 2496<br>18/6/83 19/6/83<br>22:00 11:00<br>9.3 9.2<br>43 40<br>6/14 7/15<br>.38/1.89 .40/1.83<br>7/20 6/21<br>10.6 10.5<br>9.2/19.0 9.0/18.8<br>1 1<br>17000 18000<br>TR TR<br>6 6 6 | 2496         2585         2712           18/6/83         19/6/83         20/6/83           22:00         11:00         18:30           9.3         9.2         9.2           43         40         43           6/14         7/15         9/23           .38/1.89         .40/1.83         .36/3.45           7/20         6/21         15/28           10.6         10.5         10.7           9.2/19.0         9.0/18.8         9.2/19.8           1         1         1           17000         18000         21000           TR         TR         TR           6         6         4.5           0         0         0 | 2496         2585         2712         2818           18/6/83         19/6/83         20/6/83         21/6/83           22:00         11:00         18:30         19:00           9.3         9.2         9.2         9.2           43         40         43         39           6/14         7/15         9/23         8/18           .38/1.89         .40/1.83         .36/3.45         .39/2.33           7/20         6/21         15/28         18/22           10.6         10.5         10.7         10.5           9.2/19.0         9.0/18.8         9.2/19.8         9.7/19.8           1         1         1         1           17000         18000         21000         20500           TR         TR         TR         TR           6         6         4.5         4.5           0         0         0         0 | 2496         2585         2712         2818         2901           18/6/83         19/6/83         20/6/83         21/6/83         22/6/83           22:00         11:00         18:30         19:00         21:00           9.3         9.2         9.2         9.2         9.2           43         40         43         39         40           6/14         7/15         9/23         8/18         11/24           .38/1.89         .40/1.83         .36/3.45         .39/2.33         .39/3.00           7/20         6/21         15/28         18/22         14/20           10.6         10.5         10.7         10.5         10.4           9.2/19.0         9.0/18.8         9.2/19.8         9.7/19.8         9.0/16.4           1         1         1         1         1           17000         18000         21000         20500         20000           TR         TR         TR         TR           6         6         4.5         4.5         4.5           0         0         0         0         0 | 2496         2585         2712         2818         2901         3008           18/6/83         19/6/83         20/6/83         21/6/83         22/6/83         23/6/83           22:00         11:00         18:30         19:00         21:00         21:15           9.3         9.2         9.2         9.2         9.2         9.2           43         40         43         39         40         41           6/14         7/15         9/23         8/18         11/24         8/22           .38/1.89         .40/1.83         .36/3.45         .39/2.33         .39/3.00         .34/3.58           7/20         6/21         15/28         18/22         14/20         18/20           10.6         10.5         10.7         10.5         10.4         10.5           9.2/19.0         9.0/18.8         9.2/19.8         9.7/19.8         9.0/16.4         8.8/8.1           1         1         1         1         1         1           17000         18000         21000         20500         20000         20000           TR         TR         TR         TR         TR           6         6         4.5 |

REMARKS:

DRILLED 12½" HOLE

T.D. AT 01:18 HOURS 24/6/83

| DEPTH (M)              | 3021     | 3021     |     |   |  |  |
|------------------------|----------|----------|-----|---|--|--|
| DATE                   | 25/6/83  | 26/6/83  | M   |   |  |  |
| TIME                   | 13:00    | 13:30    | U   |   |  |  |
| WEIGHT                 | 9.2      | 9.2      | D   |   |  |  |
| FUNNEL VISCOSITY       | 41       | 42       |     |   |  |  |
| PV/YP                  | 8/18     | 12/26    | T   |   |  |  |
| N/K                    | .39/2.33 | .40/3.22 | A   |   |  |  |
| GEL: INITIAL/10 MIN    | 14/20    | 10/22    | N   |   |  |  |
| рH                     | 10.1     | 10.0     | K   |   |  |  |
| FILTRATE: API/API HTHP | 9.4/-    | 9.7/-    | S   |   |  |  |
| CAKE                   | 1        | 1        |     |   |  |  |
| SALINITY (PPM)         | 21000    | 21000    | E   |   |  |  |
| SAND                   | TR       | TR       | M   |   |  |  |
| SOLIDS                 | 4.5      | 4.5      | P   |   |  |  |
| OIL                    | _        | 1        | T   |   |  |  |
| NITRATES (PPM)         | 200      | - ,      | Υ . |   |  |  |
|                        |          |          |     |   |  |  |
|                        |          |          |     |   |  |  |
|                        |          |          |     | , |  |  |

REMARKS:

SCHLUMBERGER LOGGING P & A

BOP & RISER TO SURFACE ON 28/6/83. ANCHORS FINALLY PULLED AND RIG ON TOW 1/7/83.

#### PORE PRESSURE DATA SHEET

COMPANY: ESSO AUSTRALIA LTD. DATA FROM RFT'S

WELL : LUDERICK No.1

| DEPTH<br>(FROM RKB) | DEPTH<br>(FROM MSL) | PORE PRESS         | PORE PRESS<br>GRADIENT<br>E.M.W.(MSL) |                |
|---------------------|---------------------|--------------------|---------------------------------------|----------------|
| METRES              | TVD. METRES         | PSTA               | PPG                                   | PSI/M          |
| 2400.0              | 2378.8              | 3400.40            | 8.379                                 | 1.429          |
| 2385.0              | 2363.8              | 3378.50            | 8.378                                 | 1.429          |
| 2370.0              | 2348.8              | 3357.40            | 8.379                                 | 1.429          |
| 2364.0              | 2342.8              | 3348.80            | 8.379                                 | 1.429          |
| 2116.7              | 2095.6              | 2996.40            | 8.381                                 | 1.430          |
| 2108.8              | 2087.7              | 2983.80            | 8.378                                 | 1,429          |
| 2048.0              | 2026.9              | 2896.30            | 8.376                                 | 1.429          |
| 2037.5              | 2016.4              | 2883.10            | 8.381                                 | 1.430          |
| 2029.2              | 2008.1              | 2871.20            | 8.381                                 | 1.430          |
| 2018.5              | 1997.4              | 2863.60            | 8.404                                 | 1.434          |
| 1995.5              | 1974.4              | 2825.10            | 8.387                                 | 1.431          |
| 1990.5              | 1969.4              | 2817.90            | 8.387                                 | 1.431          |
| 1967.0              | 1945.9              | 2783.70            | 8.385                                 | 1.431          |
| 1960.0              | 1938.9              | 2774.10            | 8.387                                 | 1.431          |
| 1955.8              | 1934.7              | 2767.80            | 8.386                                 | 1.431          |
| 1948.5              | 1927.4              | 2757.40            | 8.386                                 | 1.431          |
| 1937.5              | 1916.4              | 2742.10            | 8.387                                 | 1.431          |
| 1934.0              | 1912.9              | 2738.10            | 8.390                                 | 1.431          |
| 1923.4              | 1902.3              | 2721.70            | 8.386                                 | 1.431          |
| 1909.5              | 1888.4              | 2702.20            | 8.388                                 | 1.431          |
| 1896.2              | 1875.1              | 2683.20            | 8,388                                 | 1.431          |
| 1889.5              | 1868. <b>4</b>      | 2674.10            | 8.389                                 | 1.431          |
| 1885.5              | 1864.4              | 2669,00            | 8.391                                 | 1.432          |
| 1878.5              | 1857.4              | 2661.10            | 8,398                                 | 1.433          |
| 1871.8              | 1850.7              | 2649,40            | 8.391                                 | 1.432          |
| 1868.3              | 1847.2              | 2644.40            | 8.391                                 | 1.432          |
| 1861.2              | 1840.1              | 2636,90            | 8.400                                 | 1.433          |
| 1859.9              | 1838.8              | 2632.10            | 8,390                                 | 1.431          |
| 1852.0              |                     | . 2620.90          | 8.391                                 | 1.431          |
| 1844.5              | 1823.4              | 2611.60            | 8.395                                 | 1.432          |
| 1839.5              | 1818.4              | 2608.40            | 8.408                                 | 1.434          |
| 1833.0              | 1811.9              | 2606.40            | 8,432                                 | 1.438          |
| 1823.5              | 1802.4              | 2589.00            | 8,420                                 | 1.436          |
| 1812.0              | 1790.9              | 2569.30            | 8.409                                 | 1.435          |
| 1838.5              | 1817.4              | 2608.30            | 8,412                                 | 1.435          |
| 1934.1              | 1913.0              | 2737.30            | 8.387                                 | 1.431          |
| 1878.6              | 1857.5              | 2660.00            | 8.394                                 | 1.432          |
| 1879.0              | 1857.9              | 2658.60            | 8.388                                 | 1.431          |
| 2018.5              | 1997.4              | 2864.60<br>2848.50 | 8.407<br>8.382                        | 1.434<br>1.430 |

| DEPTH<br>(FROM RKB) | DEPTH<br>. (FROM MSL.) | PORE PRESS         | PORE PRESS<br>GRADIENT<br>E.M.W.(MSL) | PORE PRESS<br>GRADIENT | • |
|---------------------|------------------------|--------------------|---------------------------------------|------------------------|---|
| METRES              | TVD. METRES            | PSIA               | PPG                                   | PSI/M                  |   |
| 1843.0<br>2018.0    | 1821.9<br>1996.9       | 2609.90<br>2864.30 | 8.397<br>8.408                        | 1.433<br>1.434         |   |

COMPANY : ESSO AUSTRALIA WELL : LUDERICK NO. 1

LTD.

RUN No. : 2

PRESSURE GAUGE TYPE: HP



| CHA | MBER No.  |                                        | 1            | 2           |    |                                  |           |                  |
|-----|-----------|----------------------------------------|--------------|-------------|----|----------------------------------|-----------|------------------|
| CHA | MBER CAP  | ACITY (L)                              | 22.4         | 3.7         |    |                                  |           |                  |
| СНО | KE SIZE   |                                        | .030         | .020        |    | OIL PROPERTIES CONT.             |           |                  |
| SEA | T No.     |                                        | 2/36         | 2/36        |    | ODOUR                            |           |                  |
|     |           | (from RKB)                             | 1838.5       | 1838.5      |    | POUR POINT ( )                   |           |                  |
| A   | RECORDIN  | G TIMES                                |              |             |    | COMMENTS                         |           |                  |
|     | TOOL SET  |                                        | 03:39:20     | _           |    | (c)WATER PROPERTIES              |           |                  |
|     | PRETEST   | OPEN                                   | 03:39:20     | -           |    | RESISTIVITY ( )                  |           |                  |
| 1 [ | TIME OPE  | N                                      | 03:43:20     |             |    | C1 (frm. resis.)( )              |           |                  |
| 1 [ | CHAMBER   | OPEN                                   | 03:43:30     |             |    | C1 (frm. titrat)( )              |           |                  |
|     | CHAMBER   | FULL                                   | 03:50:00     |             |    | NO <sub>2</sub> ( )              |           |                  |
| 1 [ | FILL TIM  | Œ                                      | 06:30        |             |    | рН                               |           |                  |
|     | START BU  |                                        | 03:50:00     | 03:55:5     | 5  | OTHER TRACERS                    |           |                  |
|     | FINISH B  | BUILD UP                               | 03:52:20     |             |    | ( )                              |           |                  |
|     | BUILD UP  | TIME                                   | 02:20        | 02:0        | Ь  | DENSITY ()                       |           |                  |
| }   | SEAL CHA  | AMBER                                  | 03:52:20     |             |    | FLUORESCENCE                     |           |                  |
| ] [ | TOOL RET  | TRACT                                  | _            | 03:59:0     | þ  | COLOUR                           |           |                  |
|     | TOTAL TI  | ME                                     | 13 MINS      | 6 MINS      |    | COMMENTS                         |           |                  |
| В   |           | PRESSURES                              |              |             | 1  |                                  |           |                  |
|     | IHP       | ( PSIA)                                | 2958.7       |             |    | (d)OTHER SAMPLE                  |           |                  |
|     | ISIP      | (PSIA)                                 | 2608.3       | 2607.9      |    | PROPERTIES                       |           |                  |
|     | IFP       | (PSIA)                                 |              | 2598.7      | L  |                                  |           |                  |
|     | FFP       | (PSIA)                                 | 2590.0       | 2599.2      | F  | MUD PROPERTIES                   |           |                  |
|     | FSIP      | (PSIA)                                 | 2607.8       | 2607.9      | Γ  | TYPE                             | SEAWATER  |                  |
|     | FHP       | ( PSIA)                                | -            | 2956.6      | 1  | RESISTIVITY ( M)                 | .218 @ 25 | S <sup>O</sup> C |
|     | TEMP. CC  | ORR. ( )                               |              |             |    | Cl (frm.resis.)(PPM)             | 17000     |                  |
|     | COMMENTS  |                                        |              |             | ]  | C1 (frm.titrat)(PPM)             | 18000     |                  |
| С   | TEMPERAT  |                                        |              |             | ]  | NO <sub>3</sub> Dr1d/1st.circ( ) |           |                  |
|     | DEPTH TO  | OOL REACHED(M)                         | 1865         | 1865        | 1  | pH                               |           |                  |
|     | MAX. REC. | TEMP ( °C)                             | 76.7         | 76.7        |    | OTHER TRACERS                    |           |                  |
|     | TIME CI   | RC. STOPPED                            | 15/6 18:00   | 15/6 18:0   | Þ  | ()                               |           |                  |
|     |           | NCE CIRC.                              | 33.6         | 33.6        | 1  | DENSITY ( )                      |           |                  |
| D   |           | RECOVERY                               |              |             | G  | GENERAL COMMENTS                 |           |                  |
|     | SURFACE   | PRESSURE(PSIG)                         |              |             |    |                                  |           |                  |
|     | VOL. GAS  |                                        | 124.93       |             | 1  | THE LOWER CHAMBER WA             |           |                  |
|     | VOL. OII  |                                        |              |             | 1  | THE SURFACE, BUT THI             |           |                  |
|     | VOL. WAT  |                                        |              |             |    | WAS TRANSFERRED FOR              | ANALYSIS  | RA               |
| 1   | VOL. FII  |                                        |              |             | 1  | "FLOPETROL".                     |           |                  |
| 1   |           |                                        | 784          |             | 1  |                                  |           |                  |
|     | VOL. OT   |                                        | 755          |             | 1  |                                  |           |                  |
| E   |           | PROPERTIES                             | <del>,</del> |             | 4  |                                  |           |                  |
|     | (a) G     |                                        | 303121       |             | 4  |                                  |           |                  |
|     | A         |                                        | 45270        |             | -  |                                  |           |                  |
|     | S         |                                        | 24358        |             | 4  |                                  |           |                  |
|     |           | c4 (PPM)                               |              |             | 4  |                                  |           |                  |
|     | C         | c5 (PPM)                               |              | •           | 1  |                                  |           |                  |
|     | 0         | c6+ (PPM)                              |              |             | 4  |                                  |           |                  |
|     | M         |                                        | 0.7          |             | 4  |                                  |           |                  |
| 1   | P         | H <sub>2</sub> S (pp <sub>M</sub> )    |              |             | ╄- |                                  |           |                  |
| 1   |           | PROPERTIES (COM                        |              | T           | 4  |                                  |           |                  |
| -   | DENSITY   |                                        | 70           |             | -  |                                  |           |                  |
| -   | (OAPI)    | REFRACTOMETE                           |              | ļ           | 4  |                                  |           |                  |
|     |           | IVE INDEX                              |              |             | -  |                                  |           |                  |
|     | COLOUR    |                                        | CLEAR        |             | 4  |                                  |           |                  |
| 1   | FLUORES   |                                        | BLUE/W       | H           |    |                                  |           |                  |
|     | G.O.R.    | (STB/MS <b>¢</b> F                     | 39.4         |             | 1  |                                  |           |                  |
|     |           | ······································ |              | <del></del> |    |                                  |           |                  |

| CORE LABORATORIES                   | R.F. Т.                | DATA SII     | EE'T | - SAMPLING DATA                |               |                       |
|-------------------------------------|------------------------|--------------|------|--------------------------------|---------------|-----------------------|
| COMPANY : ES                        | SSO AUSTR              | ALIA WE      | LL   | : LUDERICK NO. 1               |               |                       |
| Li                                  | TD.                    |              |      |                                |               | KILAB                 |
| RUN No. : 3                         |                        | PR           | ESS  | URE GAUGE TYPE: HP             |               |                       |
| HAMBER No.                          | 1                      | 2            |      |                                |               |                       |
| HAMBER CAPACITY                     | 22.4                   | 3.7          |      |                                |               |                       |
| HOKE SIZE                           | .030                   | .020         |      | OIL PROPERTIES CONT.           | 1             | -                     |
| EAT No.                             | 3/37                   | 3/37         |      | ODOUR POUR POINT ( )           |               |                       |
| EPTH ( M ) (from RKB)               | 1934.1                 | 1934.1       |      | COMMENTS                       |               |                       |
| RECORDING TIMES TOOL SET            | 09:11:06               |              |      | (c)WATER PROPERTIES            | 1             | ·                     |
| PRETEST OPEN                        | 09:11:06               |              |      | RESISTIVITY ( M)               | .773@20°C     | .61@18 <sup>o</sup> C |
| TIME OPEN                           | 09:15:06               | 09:24:5      | 5    | C1 (frm. resis.)(PPM)          | 8200          | 10000                 |
| CHAMBER OPEN                        | 09:15:15               |              |      | C1 (frm. titrat)(PPM)          | 4000          | 4000                  |
| CHAMBER FULL                        | 09:20:42               | 09:27:1      | l    | NO <sub>3</sub> (PPM )         | 60            | 45                    |
| FILL TIME                           | 05:27                  |              | ķ    |                                | 7.5           | 7.1                   |
| START BUILD UP                      | 09:20:42               |              | ļ    | OTHER TRACERS                  |               |                       |
| FINISH BUILD UP                     | 09:23:39               |              |      | DENOTOR:                       | <u> </u>      | <del> </del>          |
| BUILD UP TIME                       | 03:00                  |              | 4    | DENSITY ( )                    | <u>'</u>      |                       |
| SEAL CHAMBER                        | 09:23:39               |              |      | FLUORESCENCE                   |               |                       |
| TOOL RETRACT                        | 10.00                  | 09:30:00     |      | COLOUR                         |               |                       |
| TOTAL TIME  SAMPLE PRESSURES        | 12:33                  | 05:00        | 1    | COLUMNIC                       |               |                       |
| SAMPLE PRESSURES  [ IHP             | 3104.8                 | _            | 1    | (d)OTHER SAMPLE                |               |                       |
| ISIP (PSIA)                         | 2737.3                 | 2736.9       | 1    | PROPERTIES                     |               |                       |
| IFP (PSIA)                          | 2343.6                 | 2681.1       |      |                                |               | <u></u>               |
| FFP (PSIA)                          | 2581.1                 |              | F    | MUD PROPERTIES                 |               |                       |
| FSIP (PSIA)                         | 2736.9                 | 2737.0       |      | TYPE                           | SEAWATER      | GEL                   |
| FHP (PSIA)                          | -                      | 3103.0       | 1    | RESISTIVITY (M)                | .218@25°      | C                     |
| TEMP. CORR. ( )                     |                        |              |      | C1 (frm.resis.)(PPM)           | 17000         |                       |
| COMMENTS                            | <u> </u>               | L            | 1    | C1 (frm.titrat)(PPM)           | 18000         |                       |
| TEMPERATURE                         | 1050                   | 11050        | 4    | NO <sub>3</sub> Drld/1st.circ( | <del>' </del> |                       |
| DEPTH TOOL REACHED(M)               |                        | 1950         | -    | OTHER TRACERS                  |               |                       |
| MAX. REC. TEMP. (°C)                | 86.7                   | 86.7         | 100  |                                | 1             |                       |
| TIME CIRC. STOPPED                  | 15/6 18:00<br>39:00:00 | 39.00.00     | 100  | DENSITY ()                     | <del> </del>  |                       |
| TIME SINCE CIRC.  D SAMPLE RECOVERY | 77.00.00               | 133.00.00    | G    | GENERAL COMMENTS               | <u> </u>      |                       |
| SURFACE PRESSURE(PSIG               | 0/10                   | 100          | ᡟ    |                                | NO 077 ==     |                       |
| VOL. GAS (CUFT                      |                        | 0            | 1    | LOWER CHAMBER -                |               |                       |
| VOL. OIL (                          |                        |              | 1    | UPPER CHAMBER -                | OIL FILM      |                       |
| VOL. WATER (LITRE                   | 21.3                   | 3.7          | ]    |                                | NO FLUORE     |                       |
| VOL. FILTRATE (                     | )                      |              | _    |                                | 120010        |                       |
| VOL. CONDENSATE (                   | )                      |              | 4    |                                |               |                       |
| VOL. OTHER (                        | )                      |              | 4    |                                |               |                       |
| E SAMPLE PROPERTIES                 | \[                     | T            | -    |                                |               |                       |
| (a) G c1 (                          | <del>( </del>          | ļ            | -    |                                |               |                       |
| A c2 (<br>S c3 (                    |                        | <del> </del> | 1    |                                |               |                       |
| 5 C3 (                              | <u> </u>               | <del> </del> | -    |                                |               |                       |
| C c5 (                              | <u> </u>               | ·            | -    |                                |               |                       |
| 0 6+ (                              | Ď                      |              | 7    |                                |               |                       |
| м СО2 (                             | )                      |              | 7    |                                |               | >                     |
| P H <sub>2</sub> S (                |                        |              |      | <u> </u>                       |               |                       |
| (b)OIL PROPERTIES                   |                        |              |      |                                |               |                       |
| DENSITY: HYDROMETER                 |                        |              |      |                                |               |                       |
| ( ) REFRACTOMET                     | ER                     |              |      |                                |               |                       |
| REFRACTIVE INDEX                    |                        |              | _    |                                |               |                       |
| COLOUR                              |                        |              | 4    |                                |               |                       |
| FLUORESCENCE                        |                        |              | _    |                                |               |                       |
| G.O.R. ( )                          |                        |              |      |                                |               |                       |

|                           | TD.        |            |          | : LUDERICK NO. 1 URE GAUGE TYPE: HP    |
|---------------------------|------------|------------|----------|----------------------------------------|
| CHAMBER No.               | 1          | 2          |          |                                        |
| CHAMBER CAPACITY (LITRES) | 22.4       | 10.2       |          |                                        |
| CHOKE SIZE                | .030       | .020       |          | OIL PROPERTIES CONT.                   |
| SEAT No.                  | 4/38A      | 4/38A      |          | ODOUR                                  |
| DEPTH (M ) (from RKB)     |            | 1879       | ľ        | POUR POINT ( )                         |
| A RECORDING TIMES         | [          |            |          | COMMENTS                               |
| TOOL SET                  | 15:34:33   | _          | ľ        | (c)WATER PROPERTIES SLIGHTLY DIRTY     |
| PRETEST OPEN              | 15:34:33   |            |          | RESISTIVITY ( )                        |
|                           | 15:37:10   |            | -        | C1 (frm. resis.)( )                    |
| TIME OPEN                 | 15:37:15   |            | -        | C1 (frm. titrat)( )                    |
| CHAMBER OPEN              | 15:48:15   |            | -        |                                        |
| CHAMBER FULL              |            | 42:00      | }        | NO <sub>3</sub> ( )                    |
| FILL TIME                 |            |            |          | OTHER TRACERS                          |
| START BUILD UP            | 15:48:15   |            |          | OTHER TRACERS                          |
| FINISH BUILD UP           | 15:56:55   |            |          | DINOTAL ( )                            |
| BUILD UP TIME             | 08:40      |            | L L      | DENSITY ( )                            |
| SEAL CHAMBER              |            | 16:48:50   |          | FLUORESCENCE                           |
| TOOL RETRACT              |            | 16:49:00   |          | COLOUR                                 |
| TOTAL TIME                | 01:52:00   |            |          | COMMENTS                               |
| B SAMPLE PRESSURES        |            |            |          |                                        |
| IHP (PSIA)                | 3017.8     | _          |          | (d)OTHER SAMPLE                        |
| ISIP (PSTA)               |            | 2658.6     |          | PROPERTIES                             |
| IFP (PSIA)                | 1          | 128        |          |                                        |
| FFP (PSIA)                |            | 1686       | F        | MUD PROPERTIES                         |
| FSIP (PSIA)               |            | 2657.2     |          | TYPE SEAWATER GEL                      |
| FHP (PSIA)                |            | 3017.4     | 1        | RESISTIVITY ( M ) .28@25°C             |
| TEMP. CORR. ( )           |            | 301767     | 1        | C1 (frm.resis.)(PPM) 28000             |
| COMMENTS                  |            |            | 1        | C1 (frm.titrat)(PPM) 18000             |
| C TEMPERATURE             |            |            | 1        | NO <sub>2</sub> Drld/1st.circ(PPM) 160 |
| DEPTH TOOL REACHED(M)     | 11905      | 1905       | 1        | pH                                     |
| MAX. REC. TEMP. (°)       |            |            | 1        | OTHER TRACERS                          |
|                           | 15/6 19 00 | 15/6 18:00 | ł        | ( )                                    |
| TIME CIRC. STOPPED        | . 1        |            | -        | DENSITY ( )                            |
| TIME SINCE CIRC.          | 45.5 HRS   | 46 HKS     | -        | GENERAL COMMENTS                       |
| D SAMPLE RECOVERY         | N.a        | la .       | G        | GENERAL COMMENTS                       |
| SURFACE PRESSURE(PSIG     |            | 0          | 4        |                                        |
|                           | 0.05       | 0          | -        | THE FORMATION WATER RECOVERED          |
| VOL. OIL (                | )          |            | 1        | FROM BOTH CHAMBERS CONTAINED A         |
|                           | 21.7       | 9.0        | ]        | THIN TRACE OF OIL FILM, WHICH          |
| VOL. FILTRATE (           | )          |            | 1        | FLUORESCED A DIFFUSE, DULL, MILKY      |
| VOL. CONDENSATE (         | )          |            | 1        | YELLOW-WHITE COLOUR.                   |
| VOL. OTHER (              | )          |            | ]        |                                        |
| E SAMPLE PROPERTIES       |            | ,          | 4        |                                        |
| (a) G c1 (                | )          |            |          |                                        |
| A c2 (                    | )          |            | _        |                                        |
| S c3 (                    | )          |            |          |                                        |
| c4 (                      | )          |            |          |                                        |
| C c5 (                    | )          |            | 1        |                                        |
| 0 c6+ (                   | )          |            | 7        |                                        |
| M CO <sub>2</sub> (       | 5          |            | 7        |                                        |
| P H <sub>2</sub> S (      | 5          |            | 1        |                                        |
| (b)OIL PROPERTIES         | <u>-1</u>  | I.,        |          |                                        |
| DENSITY: HYDROMETER       |            | 1          | 7        |                                        |
| ( ) REFRACTOMET           | ER         | -          | ┨        |                                        |
| REFRACTIVE INDEX          |            | -          | $\dashv$ |                                        |
|                           |            | -          | -        |                                        |
| COLOUR                    |            |            | $\dashv$ |                                        |
| FLUORESCENCE              |            |            | 4        |                                        |
| G.O.R. ( )                | i          |            |          |                                        |

CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA

| CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA |                |                       |          |                                    |              |        |                      |
|-----------------------------------------------------|----------------|-----------------------|----------|------------------------------------|--------------|--------|----------------------|
| COMPANY : E                                         | TD.            |                       |          | : LUDERICK NO. 1                   |              |        | LAB                  |
| CHANDED W.                                          | 1 1            | 2                     |          |                                    |              |        |                      |
| CHAMBER No.<br>CHAMBER CAPACITY                     | 22.4           | 3.7                   |          |                                    |              |        |                      |
| CHAMBER CATACITI                                    | .030           | .020                  |          | OIL PROPERTIES CONT.               |              |        |                      |
| SEAT No.                                            | 5/40           | 5/40                  |          | ODOUR                              |              |        |                      |
| DEPTH (M ) (from RKB)                               | 2013           | 2013                  |          | POUR POINT ( )                     |              |        |                      |
| A RECORDING TIMES                                   |                |                       |          | COMMENTS                           |              |        |                      |
| TOOL SET                                            | 00:29:30       |                       |          | (c)WATER PROPERTIES                |              | 0600   | .406@60 <sup>0</sup> |
| PRETEST OPEN                                        | 00:29:30       |                       |          | RESISTIVITY (M)                    | 305          | 0062 F | 18000                |
| TIME OPEN                                           |                | 00:54:3               |          | C1 (frm. resis.)(PPM)              | 1000         | 00     | 8000                 |
| CHAMBER OPEN                                        |                | 00:54:4               |          | C1 (frm. titrat)(PPM) NO (PPM)     | 65           | -      | 65                   |
| CHAMBER FULL                                        |                |                       |          | $\frac{NO}{pH}3$ (PPM)             | 8            |        | 7.5                  |
| FILL TIME                                           | 12:3           |                       |          | OTHER TRACERS                      | -            |        |                      |
| START BUILD UP                                      |                | 00:57:4               |          | ( )                                |              |        |                      |
| FINISH BUILD UP BUILD UP TIME                       |                | 01:00:3<br>0 02:5     |          | DENSITY ()                         |              |        |                      |
| SEAL CHAMBER                                        | 03:40          | 01:00:3               |          | FLUORESCENCE                       |              |        |                      |
| TOOL RETRACT                                        |                | 01:02:4               | Ó        | COLOUR                             |              |        | _                    |
| TOTAL TIME                                          | 24:0           | 08:0                  | lo       | COMMENTS                           |              |        |                      |
| B SAMPLE PRESSURES                                  |                |                       | 1        |                                    |              |        |                      |
| THP (PSIA)                                          | 3224.5         | -                     | 1        | (d)OTHER SAMPLE                    |              |        |                      |
| ISIP (PSIA)                                         | 2848.5         | 2849.0                | 1        | PROPERTIES                         |              |        |                      |
| IFP (PSIA)                                          | 164            | 1642                  |          |                                    |              |        |                      |
| FFP (PSIA)                                          | 1876           | 1992                  | F        | MUD PROPERTIES                     | .,           |        |                      |
| FSTP (PSIA)                                         | 2848.7         | 2848.5                |          | TYPE                               |              | WATER  |                      |
| FHP (PSIA)                                          | _              | 3225.3                | ]        | RESISTIVITY ( M)                   |              | 8@ 25° | С                    |
| TEMP. CORR. ( )                                     |                |                       |          | C1 (frm.resis.)(PPM)               | 280          |        |                      |
| COMMENTS                                            |                |                       | 1        | C1 (frm.titrat)(ppm)               | 180          |        |                      |
| C TEMPERATURE                                       | 1 6656         | 1 0050                | 4        | NO <sub>3</sub> Drld/1st.circ(PPM) | 160          |        |                      |
| DEPTH TOOL REACHED(M)                               |                | 2050                  | 4        | pH OTHER TRACERS                   | <del> </del> |        |                      |
| MAX.REC.TEMP.(°C)                                   | 200            | 200                   | ٦,,      | 1 -                                |              |        |                      |
| TIME CIRC. STOPPED                                  | 15/6 18:0      | 0 15/6 18:<br>54.5 HI | : UU     | DENSITY ( )                        | <del> </del> |        |                      |
| TIME SINCE CIRC.                                    | 34 HKS         | 34.3 111              | -        | GENERAL COMMENTS                   |              |        |                      |
| D SAMPLE RECOVERY                                   | کا ۵           | 200                   | G        | GENERAL COPPLENTS                  |              |        |                      |
| SURFACE PRESSURE( PSI                               | 9 0            | 200                   | ┨        |                                    |              |        |                      |
| VOL. GAS (                                          | $\dashv$       |                       | 1        |                                    |              |        |                      |
| VOL. WATER (LITR                                    | D 21.8         | 3.7                   | 1        |                                    |              |        |                      |
| VOL. FILTRATE (                                     | 3              |                       | 1        |                                    |              |        |                      |
| VOL. CONDENSATE (                                   | 3              | ·                     | 1        |                                    |              |        |                      |
| VOL. OTHER (                                        | 5              | TR. SC                | ŪМ       |                                    |              |        |                      |
| E SAMPLE PROPERTIES                                 |                |                       |          |                                    |              |        |                      |
| (a) G c1 (                                          | )              |                       |          |                                    |              |        |                      |
| A c2 (                                              | )              |                       |          |                                    |              |        |                      |
| S <b>c</b> 3 (                                      | )              |                       | 4        |                                    |              |        |                      |
| c4 (                                                | )              | -                     | _        |                                    |              |        |                      |
| C c5 (                                              | ) .            | <u> </u>              | 4        |                                    |              |        |                      |
| 0 c6+ (                                             |                | <del> </del>          | -        |                                    |              |        |                      |
| M CO <sub>2</sub> (                                 | <del>-{ </del> |                       | $\dashv$ |                                    |              |        |                      |
| P H <sub>2</sub> S (<br>(b)OIL PROPERTIES           | _/             |                       | +        | 1                                  |              |        |                      |
| DENSITY: HYDROMETER                                 |                | <u> </u>              | $\dashv$ |                                    |              |        |                      |
| ( ) REFRACTOMET                                     | rer            |                       | $\dashv$ |                                    |              |        |                      |
| REFRACTIVE INDEX                                    |                |                       | $\dashv$ |                                    |              |        |                      |
| COLOUR                                              |                |                       | ┪        |                                    |              |        |                      |
| FLUORESCENCE                                        | DULL,          | DIFFUSE,              | M:       | ILKY YELL-WH                       |              |        |                      |
| G.O.R. ( )                                          |                |                       | $\dashv$ |                                    |              |        |                      |
| /                                                   |                |                       |          |                                    |              |        |                      |

| CORE LABORATORIES                                                                     | R.F.Т.       | DATA SII    | EET                                    | - SAMPLING DATA         |              |  |  |  |
|---------------------------------------------------------------------------------------|--------------|-------------|----------------------------------------|-------------------------|--------------|--|--|--|
| COMPANY: ESSO AUSTRALIA WELL: LUDERICK NO. 1 LTD.  RUN No.: 6 PRESSURE GAUGE TYPE: HP |              |             |                                        |                         |              |  |  |  |
|                                                                                       | 1 1          |             |                                        |                         |              |  |  |  |
| CHAMBER No.                                                                           | 1            | 2           |                                        |                         |              |  |  |  |
| CHAMBER CAPACITY                                                                      | 22.4<br>.030 | 3.7         |                                        | LOTE PROPERTIES COM     |              |  |  |  |
| CHOKE SIZE                                                                            |              | .020        |                                        | OIL PROPERTIES CONT.    | <del></del>  |  |  |  |
| SEAT No.                                                                              | 6/41         | 6/41        |                                        | ODOUR                   |              |  |  |  |
| DEPTH (M) (from RKB)                                                                  | 1843         | 1843        | 1                                      | POUR POINT ( )          |              |  |  |  |
| A RECORDING TIMES                                                                     | ·            |             | 1                                      | COMMENTS                |              |  |  |  |
| TOOL SET                                                                              | 04:52:20     |             | 1                                      | (c)WATER PROPERTIES     |              |  |  |  |
| PRETEST OPEN                                                                          | 04:52:20     |             |                                        | RESISTIVITY ( )         |              |  |  |  |
| TIME OPEN                                                                             | 04:55:12     |             |                                        | C1 (frm. resis.)( )     |              |  |  |  |
| CHAMBER OPEN                                                                          | 04:55:15     |             |                                        | Cl (frm. titrat)(PPM)   | 16000        |  |  |  |
| CHAMBER FULL                                                                          | 05:02:00     | 05:11:00    | •                                      |                         |              |  |  |  |
| FILL TIME                                                                             | 07:00        | 02:30       | •                                      | $\frac{NO}{pH^3}$ (PPM) | 8            |  |  |  |
| START BUILD UP                                                                        | 05:02:00     | 05:11:00    | •                                      | OTHER TRACERS           |              |  |  |  |
| FINISH BUILD UP                                                                       | 05:07:00     |             |                                        | ( )                     |              |  |  |  |
| BUILD UP TIME                                                                         | 05:00        |             |                                        | DENSITY ( )             |              |  |  |  |
| SEAL CHAMBER                                                                          | 05:07:30     |             |                                        | FLUORESCENCE            |              |  |  |  |
| TOOL RETRACT                                                                          | -            | 05:19:00    |                                        | COLOUR                  |              |  |  |  |
| TOTAL TIME                                                                            | 15:00        | i .         | 1                                      | COMMENTS                |              |  |  |  |
| B SAMPLE PRESSURES                                                                    | 1 13.00      | 10.30       | 1                                      | COLUMNIATO              |              |  |  |  |
|                                                                                       | 2954.9       | _           | l                                      | (4)OMUDD CAMPLE         |              |  |  |  |
|                                                                                       | ·            |             |                                        | (d)OTHER SAMPLE         |              |  |  |  |
| ISIP (PSIA)                                                                           | 2609.9       | 2609.4      |                                        | PROPERTIES              |              |  |  |  |
| IFP (PSIA)                                                                            | 2230         | 2297        | _                                      |                         | 1            |  |  |  |
| FFP (PSIA)                                                                            | 2198         | 2285        | F                                      | MUD PROPERTIES          | -            |  |  |  |
| FSIP (PSIA)                                                                           | 2609.1       | 2609.2      | l                                      | TYPE                    | SEAWATER GEL |  |  |  |
| FHP (PSIA)                                                                            | _            | 2954.5      |                                        | RESISTIVITY ( M)        | .218 @ 25°C  |  |  |  |
| TEMP. CORR. ( )                                                                       |              |             |                                        | C1 (frm.resis.)(PPM)    | 28000        |  |  |  |
| COMMENTS                                                                              |              |             |                                        | C1 (frm.titrat)(PPM)    | 18000        |  |  |  |
| C TEMPERATURE                                                                         |              |             | ]                                      | NO2Drld/1st.circ(PPM)   |              |  |  |  |
| DEPTH TOOL REACHED(M)                                                                 | 1875         | 1875        | }                                      | pH                      |              |  |  |  |
| MAX.REC.TEMP.( )                                                                      |              |             | 1                                      | OTHER TRACERS           |              |  |  |  |
| TIME CIRC. STOPPED                                                                    | 15/6 18:00   | 15/6 18:0   | b                                      | ( )                     |              |  |  |  |
| TIME SINCE CIRC.                                                                      | 59 HRS       | 59 HRS      |                                        | DENSITY ()              |              |  |  |  |
| D SAMPLE RECOVERY                                                                     | 1            |             | G                                      | GENERAL COMMENTS        | <u> </u>     |  |  |  |
| SURFACE PRESSURE( PSIG                                                                | 1000         |             | ۲                                      | CHARACTE COLLEGE        |              |  |  |  |
|                                                                                       | 6.66         |             | 1                                      |                         |              |  |  |  |
|                                                                                       | 590          |             | 1                                      | THE UPPER CHAMBER       |              |  |  |  |
| VOL. WATER (L                                                                         | 21           |             | 1                                      | FOR ANALYSIS BY "       | FLOPETROL".  |  |  |  |
| VOL. WATER (E                                                                         | ) -1         |             | 1                                      |                         |              |  |  |  |
| VOL. CONDENSATE (                                                                     |              |             | 1                                      |                         |              |  |  |  |
| VOL. OTHER (                                                                          | <del> </del> |             | 1                                      |                         |              |  |  |  |
| E SAMPLE PROPERTIES                                                                   | <u>′</u>     | L           | 1                                      |                         |              |  |  |  |
|                                                                                       | 757800       |             | 1                                      |                         |              |  |  |  |
|                                                                                       | 82310        |             | 1                                      |                         |              |  |  |  |
| $ \begin{array}{c cccc} A & c2 & (PPM) \\ S & c3 & (PPM) \end{array} $                | 28620        |             | 1                                      |                         |              |  |  |  |
|                                                                                       | 5620         |             | 1                                      |                         |              |  |  |  |
| C C C5 (PPM )                                                                         | 670          | ļ           | 1                                      |                         |              |  |  |  |
|                                                                                       |              |             | 1                                      | j                       |              |  |  |  |
| 0 c6+ (PPM )                                                                          | 110          |             | -                                      |                         |              |  |  |  |
| M CO <sub>2</sub> (% )                                                                | 0.4          |             | -                                      |                         |              |  |  |  |
| P H <sub>2</sub> S (PPM )                                                             | 0            |             | <u> </u>                               | <u> </u>                |              |  |  |  |
| (b)OIL PROPERTIES                                                                     | 175 6675     | .O          | 1                                      |                         |              |  |  |  |
| DENSITY: HYDROMETER                                                                   | 45.9@60      | F           | 1                                      |                         |              |  |  |  |
| ( API ) REFRACTOMETI                                                                  |              |             |                                        |                         |              |  |  |  |
| REFRACTIVE INDEX                                                                      | _            |             | 1                                      |                         |              |  |  |  |
| COLOUR                                                                                | RED-BN       |             |                                        |                         |              |  |  |  |
| FLUORESCENCE                                                                          | BRT BLU      | E-WH        |                                        |                         |              |  |  |  |
| G.O.R. (SCF/BBL)                                                                      | 1794         |             | 1                                      |                         |              |  |  |  |
| Landa South DDR                                                                       | 11/24        | <del></del> | ــــــــــــــــــــــــــــــــــــــ |                         |              |  |  |  |

| COMPANY :ES:<br>LT:<br>RUN No. :          | D.             |          |          | : LUDERICK NO. 1  SURE GAUGE TYPE: HP | LAB                      |
|-------------------------------------------|----------------|----------|----------|---------------------------------------|--------------------------|
|                                           | <del></del>    |          |          | ***                                   | [WWIED]                  |
| CHAMBER No.                               | 1              | 2        | l        |                                       |                          |
| CHAMBER CAPACITY (LITRES)                 | 22.4           | 10.2     | <u> </u> | OTI DROPPRETE COM                     |                          |
| CHOKE SIZE                                | 0.03           | 0.02     |          | OIL PROPERTIES CONT.                  |                          |
| SEAT No.                                  | 7/42           | 7/42     | l        | POUR POINT ( )                        |                          |
| DEPTH (M) (from RKB)                      | 2018           | 2018     | ł        | POUR POINT ( )                        |                          |
| A RECORDING TIMES TOOL SET                | 19:30:51       |          | 1        | (c)WATER PROPERTIES                   |                          |
| PRETEST OPEN                              |                |          |          | RESISTIVITY (M)                       | .32 @ 48°C               |
| TIME OPEN                                 | 19:30:51       |          |          | C1 (frm. resis.)(PPM)                 |                          |
| CHAMBER OPEN                              | 19:35:46       | 19.46.2  |          | C1 (frm. titrat)(PPM)                 |                          |
| CHAMBER FULL                              | 19:42:50       |          |          | NO <sub>2</sub> (PPM)                 |                          |
| FILL TIME                                 | 07:04          |          | •        | Hg (1111)                             | 7.1                      |
| START BUILD UP                            | 19:42:50       |          |          | OTHER TRACERS                         |                          |
| FINISH BUILD UP                           | 19:43:20       |          |          | ( )                                   |                          |
| BUILD UP TIME                             | 01:30          |          | L        | DENSITY ()                            |                          |
| SEAL CHAMBER                              | 19:44:00       | 19:54:53 | <b>B</b> | FLUORESCENCE                          |                          |
| TOOL RETRACT                              | <del>  -</del> | 19:57:0  | Þ        | COLOUR                                |                          |
| TOTAL TIME                                |                |          | 1        | COMMENTS                              |                          |
| B SAMPLE PRESSURES                        | <del> </del>   |          | 1        |                                       |                          |
| IHP (PSIA)                                | 3257.3         |          |          | (d)OTHER SAMPLE                       |                          |
| ISIP (PSTA)                               | 2864.3         | 2864.3   |          | PROPERTIES                            |                          |
| IFP (PSIA)                                | 551.0          | 2775.9   | L        |                                       |                          |
| FFP (PSIA)                                | 2476.0         | 2640.0   | F        | MUD PROPERTIES                        |                          |
| FSIP (PSIA)                               | 2863.5         | 2863.0   |          |                                       | SEAWATER GEL             |
| FHP (PSIA)                                |                | 3257.6   |          | RESISTIVITY ( M )                     | .312 @ 15 <sup>0</sup> C |
| TEMP. CORR. ( )                           |                |          |          | C1 (frm.resis.)(PPM)                  | 24000                    |
| COMMENTS                                  |                |          |          |                                       | 21000                    |
| C TEMPERATURE                             | 12060          | 2060     |          | NO <sub>3</sub> Drld/1st.circ(PPM)    |                          |
| DEPTH TOOL REACHED(M)                     | 2060           | 2000     |          | pH TDA CERC                           | 10.1                     |
| MAX. REC. TEMP. (°C)                      | 01 / 02 02     | N K ~    |          | OTHER TRACERS                         |                          |
| TIME CIRC. STOPPED                        | 24/6 03:30     |          | βO       | DENSITY (PPG)                         | 9.2                      |
| TIME SINCE CIRC. (HRS)  D SAMPLE RECOVERY | 39.0           | 39.0     | G        | DENSITY (PPG) GENERAL COMMENTS        | 7.4                      |
| SURFACE PRESSURE(PSIG                     | 1000           |          | ٦        | GENERAL COPPLENTS                     |                          |
| VOL. GAS (CUFT)                           |                |          | 1        |                                       |                          |
| VOL. OIL (CC                              |                |          | 1        | THE UPPER CHAMBER                     | WAS PRESERVED            |
|                                           | 1828           |          | 1        | FOR ANALYSIS.                         |                          |
| VOL. FILTRATE (                           | )              |          | 1        |                                       |                          |
| VOL. CONDENSATE (                         |                |          | 1        |                                       |                          |
| VOL. OTHER (                              |                |          | 1        |                                       |                          |
| E SAMPLE PROPERTIES                       |                |          | 1        |                                       |                          |
|                                           | 204654         |          | ]        |                                       |                          |
|                                           | 25166          |          |          |                                       |                          |
|                                           | 13637          |          | 1        |                                       |                          |
| c4 (PPM)                                  |                |          | 1        |                                       |                          |
| C c5 (PPM)                                |                | •        | 1        |                                       |                          |
| 0 c6+ (PPM)                               |                |          |          |                                       |                          |
|                                           | 1.5            |          | 1        |                                       |                          |
| P H <sub>2</sub> S (PPM)                  | 10             |          | -        |                                       |                          |
| (b)OIL PROPERTIES                         | 160 -51-       | <b>y</b> | -        |                                       |                          |
| DENSITY: HYDROMETER                       | 60.7@60        | F        | 1        |                                       |                          |
| (API ) REFRACTOMETE                       | rk             | ļ        | 1        |                                       |                          |
| REFRACTIVE INDEX                          |                | <u></u>  | -        |                                       |                          |
| COLOUR                                    | GREYISH        |          | 1        |                                       |                          |
| FLUORESCENCE                              | BR BLUE        | √WH      | 1        |                                       |                          |
| G.O.R. (SCF/BB).                          | 1305           |          |          |                                       |                          |

R.F.T. DATA SHEET - SAMPLING DATA

CORE LABORATORIES

APPENDICES

#### COMPUTER DATA LISTINGS

Data is fed to the computer while drilling is in progress, using the DRILL program and is stored on a tape at 10, 5, 1, or 0.2m intervals. This data is then available at a later date for use in other programs (for example KICK, SURGE, COST, OPTBIT, and HYDRL).

The data can also be accessed by the REPORT program, which allows the operator to list both raw and calculated data in various formats. Either detailed data or data averaged over any particular depth interval, may be listed.

In addition, the data may be plotted in various formats, at any scale the operator desires.

the following data lists have been made for this well:

- (a). Bit record and bit initialization data
- (b). Hydraulic analyses
- (c). Data list A
- (d), Data list B
- (e). Data list C
- (f). Data list D

#### COMPUTER PLOTS

Using the REPORT program, hte following plots have been drawn for this well :

GEOPLOT - 1:5000 SCALE - 2m averages

Since all the data is stored on tape, further data lists or plots are available at any time on request.

#### (a). BIT RECORD AND BIT INITIALIZATION DATA

BIT SIZE . . . . . . Inches

BIT COST . . . . . . Australian dollars

JET SIZE . . . . . . Thirty-seconds of an inch

DEPTHS . . . . . . Metres

HOLE MADE. . . . . . Metres

DRILLING TIME. . . . . Hours

AVERAGE ROP. . . . . Metres/hour

AVERAGE COST/METRE . . Australian dollars

BIT CONDITION. . . . Teeth

Bearings

Gauge . . . Inches

| 11571 | . 1  | HATO | TOV  | 14 |
|-------|------|------|------|----|
| WELL  | : 1. | UDER | J.LR | ₩i |

| BIT | IADC |                  |        |         |          | DEPTH          | DEPTH  | BIT   | TOTAL |      | TRIP |         | TOTAL         | CONDITION |
|-----|------|------------------|--------|---------|----------|----------------|--------|-------|-------|------|------|---------|---------------|-----------|
| No. | CODE | MAKE & TYPE      | SIZE   | COST    | NOZZLES  | IN             | OUT    | RUN   | HOURS | AROP | TIME | CCOST   | TURNS         | TBG       |
| 1   | 111  | HTC OSC3AJ&26"HO | 26.000 | 0.00    | 18 18 18 | 74.0           | 209.0  | 135.0 | 3.28  | 41.2 | 2.4  | 178.44  | 13555         | 2 5 0.000 |
| 2   | 111  | HTC OSC3AJ       | 17.500 | 4442.00 | 20 20 20 | 209.0          | 806.0  | 597.0 | 12.77 | 46.8 | 3.7  | 124.44  | 106641        | 2 2 0.000 |
| 3   | 114  | HTC X3A          | 12.250 | 2201.00 | 16 16 18 | 806.0          | 1751.0 | 945.0 | 22.01 | 42.9 | 5.7  | 126.69  | 196061        | 4 6 0.000 |
| 4   | 437  | HTC J11          | 12,250 | 6788.00 | 16 16 16 | 1751.0         | 1837.0 | 86.0  | 7.07  | 12.2 | 5.9  | 718.53  | 48632         | 1 1 0.000 |
| 4   | 4    | CHRIS RC4        | 9,875  | 0.00    | 15 15 14 | 1837. <b>9</b> | 1847.5 | 9.6   | 2.38  | 4.0  | 5.9  | 3657.86 | 17130         | 0 0 0.250 |
| 4   | 4    | CHRIS RC4        | 9.875  | 0.00    | 15 15 14 | 1847.5         | 1856.5 | 9.0   | 3.07  | 13.0 | 5.9  | 2045.26 | 223 <b>29</b> | 0 0 0.300 |
| 4   | 4    | CHRIS RC4        | 9.875  | 0.00    | 15 15 14 | 1856.5         | 1861.6 | 5.1   | 7.47  | 1.2  | 5.9  | 2392.50 | 54023         | 0 0 0.350 |
| 5   | 437  | HTC J11          | 12.250 | 6788.00 | 15 15 15 | 1861.6         | 2062.0 | 200.4 | 22.32 | 9.0  | 6.4  | 641.66  | 147694        | 8 4 0.125 |

| WELL: LUDERICK NO.1                                              |           |         |                  |                  |                |                |                   |                  |                         | BIT RECORD                                       |
|------------------------------------------------------------------|-----------|---------|------------------|------------------|----------------|----------------|-------------------|------------------|-------------------------|--------------------------------------------------|
| BIT IADC<br>No. CODE MAKE & TYPE                                 | SIZE COST | NOZZLES | DEPTH<br>IN      | DEPTH<br>Dut     | BIT<br>Run     | TOTAL<br>HOURS | TRIF<br>AROP TIME |                  | TOTAL<br>TURNS          | CONDITION<br>T B G                               |
| 6 517 HTC J22<br>7 517 HTC J22<br>8 537 HTC J33<br>9 537 HTC J33 |           |         | 2477.6<br>2636.0 | 2636.0<br>2901.0 | 158.4<br>265.0 | 20.78<br>52.43 | 7.6 7.6           | 902.70<br>995.35 | 9055 <b>9</b><br>214055 | 3 3 0.125<br>4 8 0.250<br>5 8 0.250<br>2 2 0.000 |

| STARTING DEPTH  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  HW DRILL COLLAR LENGTH, OD, ID  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  CASING DEPTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE  OVERBURDEN GRADIENT MODIFIER  STRESS RATIO MODIFIER  "d" EXPONENT CORRECTION FACTOR  CUTTINGS DIAMETER, DENSITY                                     | 74.0<br>0.00<br>2.4<br>26.000<br>18<br>23.79<br>39.21<br>83.25<br>0.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.43<br>10.0<br>4.0                | 4241.00<br>18<br>9.750<br>8.000<br>5.000<br>0.000<br>0.119            | 18<br>3.062<br>2.813<br>3.125<br>4.276 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|
| FINISHING DEPTH                                                                                                                                                                                                                                                                                                                                                                                                      | 209.0<br>3.28<br>T 2                                                                                                                         | 13555<br>B 5                                                          | G 0.000                                |
| BIT NUMBER: 2 IADC CODE 111                                                                                                                                                                                                                                                                                                                                                                                          | HTC OSC3                                                                                                                                     | SAJ                                                                   |                                        |
| STARTING DEPTH  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  HW DRILL COLLAR LENGTH, OD, ID  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE  OVERBURDEN GRADIENT MODIFIER  STRESS RATIO MODIFIER  "d" EXPONENT CORRECTION FACTOR  CUTTINGS DIAMETER, DENSITY | 209.0<br>4442.00<br>3.7<br>17.500<br>20<br>21.95<br>95.35<br>27.21<br>194.00<br>74.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.43<br>10.0<br>3.5 | 4241.00<br>20<br>9.750<br>8.000<br>5.000<br>19.124<br>21.000<br>0.119 | 20<br>3.062<br>2.813<br>3.125<br>4.276 |
| FINISHING DEPTH                                                                                                                                                                                                                                                                                                                                                                                                      | 806.0<br>12.77<br>T 2                                                                                                                        | 106641<br>B 2                                                         | G 0.000                                |

BIT NUMBER: 1 IADC CODE 111 HTC OSC3AJ&26"HO

| BIT NUMBER: 3 IADC CODE 114                                                                                                                                                                                                                                                                                                                                        | HTC X3A                                                                                                                              |                                                                       |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|
| STARTING DEPTH  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE  OVERBURDEN GRADIENT MODIFIER  STRESS RATIO MODIFIER  "d" EXPONENT CORRECTION FACTOR  CUTTINGS DIAMETER, DENSITY | 806.0<br>2201.00<br>5.7<br>12.250<br>16<br>171.80<br>83.18<br>792.00<br>74.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.43<br>10.0<br>3.0 | 16<br>8.000<br>5.000<br>5.000<br>12.615<br>21.000<br>0.119            | 18<br>2.813<br>3.125<br>4.276 |
| FINISHING DEPTH                                                                                                                                                                                                                                                                                                                                                    | 1751.0<br>22.01<br>T 4                                                                                                               | 196061<br>B 6                                                         | G 0.000                       |
| BIT NUMBER: 4 IADC CODE 437                                                                                                                                                                                                                                                                                                                                        | HTC J11                                                                                                                              |                                                                       |                               |
| STARTING DEPTH  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE  OVERBURDEN GRADIENT MODIFIER  "d" EXPONENT CORRECTION FACTOR                                                    | 1751.0<br>6788.00<br>5.9<br>12.250<br>16<br>172.45<br>83.18<br>792.00<br>74.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.43<br>10.0       | 4241.00<br>16<br>8.000<br>5.000<br>5.000<br>12.615<br>21.000<br>0.119 | 16<br>2.813<br>3.125<br>4.276 |
| CUTTINGS DIAMETER, DENSITY  FINISHING DEPTH  CUMULATIVE HOURS, TURNS  BIT CONDITION OUT                                                                                                                                                                                                                                                                            | 2.6<br>1837.0<br>7.07<br>T 1                                                                                                         | 2,55<br>48632<br>B 1                                                  | G 0.000                       |

| BIT NUMBER: 4 IADC CODE 4 | CHRIS RC4                                                                                                                                                                                                                                                                      |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STARTING DEPTH            | . 0.00 4241,00<br>. 5.9<br>. 9.875<br>. 15 15 14<br>. 152.80 8.000 2.813<br>. 0.00 0.000 0.000<br>. 83.18 5.000 3.125<br>. 5.000 4.276<br>. 792.00 12.615<br>. 74.00 21.000<br>. 0.119 0.119                                                                                   |
| NORMAL PORE PRESSURE      | 8.4<br>. 0.00<br>. 0.43<br>. 10.0<br>. 2.5 2.50<br>. 1847.5<br>. 2.38 17130                                                                                                                                                                                                    |
| BIT NUMBER: 4 IADC CODE 4 | CHRIS RC4                                                                                                                                                                                                                                                                      |
| STARTING DEPTH            | . 1847.5<br>. 0.00 4241.00<br>. 5.9<br>9.6<br>. 2.38 17130<br>9.875<br>. 15 15 14<br>. 152.80 8.000 2.813<br>. 0.00 0.000 0.000<br>. 83.18 5.000 3.125<br>. 5.000 4.276<br>. 792.00 12.615<br>. 74.00 21.000<br>. 0.119 0.119<br>. 1.20<br>. 8.4<br>. 0.00<br>. 0.43<br>. 10.0 |

1856.5 3.07 T 0

22329 B 0

G 0.300

| BIT NUMBER: 4 IADC CODE 4                                                               | CHRIS RC4                                                                                                                                   |                                        |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| STARTING DEPTH  BIT COST, RIG COST/HOUR  TRIP TIME  PREVIOUS HOLE MADE                  | 1856.5<br>0.00 4241.00<br>5.9<br>18.6                                                                                                       |                                        |
| PREVIOUS HOURS, TURNS                                                                   | 3.07 22329<br>9.875                                                                                                                         |                                        |
| BIT DIAMETER                                                                            | 7.873<br>15 15<br>152.80 8.000<br>0.00 0.000<br>83.18 5.000<br>5.000<br>792.00 12.615<br>74.00 21.000<br>0.119 0.119<br>1.20<br>8.4<br>0.00 | 14<br>2.813<br>0.000<br>3.125<br>4.276 |
| STRESS RATIO MODIFIER                                                                   | 0.43<br>10.0                                                                                                                                |                                        |
| CUTTINGS DIAMETER, DENSITY                                                              | 2.5 2.50                                                                                                                                    |                                        |
| FINISHING DEPTH                                                                         | 1861.6<br>7.47 54023<br>T 0 B 0                                                                                                             | G 0.350                                |
| BIT NUMBER: 5 IADC CODE 437                                                             | HTC J11                                                                                                                                     |                                        |
| STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER                           | 1861.6<br>6788.00 4241.00<br>6.4<br>12.250                                                                                                  |                                        |
| NOZZLES                                                                                 | 15 15<br>172.45 8.000<br>0.00 0.000<br>83.18 5.000<br>5.000<br>792.00 12.615                                                                | 15<br>2.813<br>0.000<br>3.125<br>4.276 |
| RISER LENGTH, ID                                                                        | 74.00 21.000<br>0.119 0.119<br>1.20<br>8.4<br>0.00<br>0.43<br>10.0<br>2.5 2.50                                                              |                                        |
| CUTTINGS DIAMETER, DENSITY  FINISHING DEPTH  CUMULATIVE HOURS, TURNS  BIT CONDITION OUT | 2062.0<br>22.32 147694<br>T 8 B 4                                                                                                           | G 0.125                                |

| BIT NUMBER: 6 TADC CODE 517                                                                                                                                                                                                                                                                                                                                                                                          | HTC J22                                                                                                                                       |                                                                       |                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|
| STARTING DEPTH  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  HW DRILL COLLAR LENGTH, OD, ID  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  CASING DEPTH, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE  OVERBURDEN GRADIENT MODIFIER  STRESS RATIO MODIFIER  "d" EXPONENT CORRECTION FACTOR  CUTTINGS DIAMETER, DENSITY | 2062.0<br>6788.00<br>7.3<br>12.250<br>15<br>172.45<br>0.00<br>83.18<br>792.00<br>74.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.43<br>10.0<br>2.5 | 4241.00<br>15<br>8.000<br>0.000<br>5.000<br>12.615<br>21.000<br>0.119 | 15<br>2.813<br>0.000<br>3.125<br>4.276 |
| FINISHING DEPTH                                                                                                                                                                                                                                                                                                                                                                                                      | 2477.6<br>40.25                                                                                                                               | 180878                                                                |                                        |
| BIT CONDITION OUT                                                                                                                                                                                                                                                                                                                                                                                                    | T 3                                                                                                                                           | B 3                                                                   | G 0.125                                |
| STARTING DEPTH  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  HW DRILL COLLAR LENGTH, OD, ID                                                                                                                                                                                                                                                                                                            | 2477.6<br>6788.00<br>7.6<br>12.250<br>15<br>172.45                                                                                            | 4241.00<br>15<br>8.000                                                | 15<br>2.813<br>0.000                   |
| DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID                                                                                                                                                                                                                                                                                                                          | 0.00<br>83.18<br>792.00                                                                                                                       | 0.000<br>5.000<br>5.000<br>12.615                                     | 3.125<br>4.276                         |
| RISER LENGTH, ID                                                                                                                                                                                                                                                                                                                                                                                                     | 74.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.43<br>10.0<br>2.5                                                                                  | 21.000                                                                |                                        |
| FINISHING DEPTHCUMULATIVE HOURS, TURNSBIT CONDITION OUT                                                                                                                                                                                                                                                                                                                                                              | 2636.0<br>20.78<br>T 4                                                                                                                        | 90559<br>B 8                                                          | G 0.250                                |

| BIT NUMBER: 8 IADC CODE 537  STARTING DEPTH | HTC J33  2636.0 6637.00 8.2 12.250 15 172.45 0.00 83.18  792.00 74.00 0.119 1.20                        | 15<br>8.000<br>0.000<br>5.000<br>5.000<br>12.615<br>21.000<br>0.119            | 15<br>2.813<br>0.000<br>3.125<br>4.276 |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|
| NORMAL PORE PRESSURE                        | 8.4<br>0.00<br>0.43<br>10.0<br>2.4<br>2901.0<br>52.43<br>T 5                                            | 2,40<br>214055<br>B 8                                                          | G 0.250                                |
| BIT NUMBER: 9 IADC CODE 537  STARTING DEPTH | HTC J33  2901.0 6637.00 8.4 12.250 15 172.45 0.00 83.18  792.00 74.00 0.119 1.20 8.4 0.00 0.43 10.0 2.3 | 4241.00<br>15<br>8.000<br>0.000<br>5.000<br>5.000<br>12.615<br>21.000<br>0.119 | 15<br>2.813<br>0.000<br>3.125<br>4.276 |
| FINISHING DEPTH                             | 3021.0<br>22.14<br>T 2                                                                                  | 92542<br>B 2                                                                   | G 0.000                                |

#### (b), HYDRAULIC ANALYSIS

Data listed from the tape every 100m for each bit run.

DEPTH. . . . . . . Metres

FLOW RATE. . . . . . Rate of mud flow into the well,

in gallons per minute.

ANNULAR VOLUMES. . . . Barrels, Barrels/metre

ANNULAR VELOCITIES . . Metres/minute

CRITICAL VELOCITIES. . The annular velocity above which the flow becomes turbulent

SLIP VELOCITY, . . . The rate of slip of cuttings in the

annulus under laminar flow

ASCENT VELOCITY. . . . The rate of ascent of cuttings in

the annulus under laminar flow

PRESSURE UNITS . . . . Pounds per square inch

IMPACT FORCE . . . . The impact force at the bit, in foot-pounds per second squared.

H.H.P. . . . . . . . Hydraulic horsepower at the bit

JET VELOCITY . . . . The velocity of mud through the

bit nozzles, in metres per second.

DENSITY UNITS. . . . Pounds per gallon

#### HYDRAULICS ANALYSIS PROGRAM

| HYDRAULICS CALCULATIONS AT DEPTH 100. | O AND | TVD | 100.0 |
|---------------------------------------|-------|-----|-------|
|---------------------------------------|-------|-----|-------|

SPM 1 52 SPM 2 27 FLOW RATE 394

#### ANNULAR HYDRAULICS:

| ANNUL<br>T ) | .US<br>(PE | UNIT<br>UNIT | VOL  | ANN<br>VEL | CRIT   | TYPE OF<br>FLOW | SL.IP<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|--------------|------------|--------------|------|------------|--------|-----------------|--------------|---------------|------------------|
| HWDCZ        | ′0H        | 1,851        | 44   | 5          | 0      | TURBULENT       |              |               | 0.0              |
| DCZ          | /OH        | 1.950        | 76   | 5          | 0      | TURBULENT       |              |               | 0.0              |
| HWDP         |            | 2.074        | 77   | 5          | Û      | TURBULENT       |              |               | 0.0              |
|              | TOTAL      | VOLUME       | 197  |            |        | TOTAL           | PRESSUI      | RE DROP       | 0.0              |
| LAG:         | 21.0       | MINUTES      | 1092 | STROKES    | 3 #1 : | AND 566 S       | TROKES       | #2            |                  |

#### BIT HYDRAULICS:

| PRESSURE DROP      | 220.8 | ннр      | 51   | IMPACT FORCE | 297 |
|--------------------|-------|----------|------|--------------|-----|
| % SURFACE PRESSURE | 60.3  | HHP/sqin | 0.10 | JET VELOCITY | 51  |

#### PRESSURE BREAKDOWN:

| SURFACE | 10.8  |      |          |       |   |            |      |
|---------|-------|------|----------|-------|---|------------|------|
| STRING  | 35.8  |      |          |       |   |            |      |
| BIT     | 220.8 |      |          |       |   |            |      |
| ANNULUS | 0.0   |      |          |       |   |            |      |
| TOTAL   | 267.3 | PUMP | PRESSURE | 365.9 | % | DIFFERENCE | 26.9 |

#### BOTTOM HOLE PRESSURES:

|                                                               |      | D | ENSITY<br>UNITS              | !                                                                                      | UNITS |
|---------------------------------------------------------------|------|---|------------------------------|----------------------------------------------------------------------------------------|-------|
| NOT CIRCULATING:<br>CIRCULATING:<br>PULLING OUT:<br>EFFECTIVE | TRIP |   | 8.60<br>8.60<br>0.00<br>8.60 | HYDROSTATIC PRESSURE<br>CIRCULATING PRESSURE<br>ESTIMATED SWAB<br>BOTTOM HOLE PRESSURE | 146.7 |

#### HYDRAULICS ANALYSIS PROGRAM

#### HYDRAULICS CALCULATIONS AT DEPTH 200.0 AND TVD 200.0

SPM 1 99 SPM 2 94 FLOW RATE 964

#### ANNULAR HYDRAULICS:

| ANNUL.US | VOL/     |      | ANN  | CRIT | TYPE OF   | SLIP    | ASCEND  | PRESSURE |
|----------|----------|------|------|------|-----------|---------|---------|----------|
| TYPE     | TINU     | AUT" | VEL. | VEL  | FL.OW     | VEL     | VEI     | DROP     |
| HWDC/OH  | 1.851    | 44   | 12   | 0    | TURBULENT |         |         | 0.0      |
| DC/OH    | 1.950    | 76   | 12   | 0    | TURBULENT |         |         | 0.0      |
| HWDP/OH  | 2.074    | 173  | 11   | 0    | TURBULENT |         |         | 0.0      |
| DP/OH    | 2.074    | 111  | 11   | 0    | TURBULENT |         |         | 0.0      |
| TOTAL    | . VOLUME | 405  |      |      | TOTAL     | PRESSUR | RE DROP | 0.0      |
|          |          |      |      |      |           |         |         |          |

LAG: 17.6 MINUTES 1747 STROKES #1 AND 1653 STROKES #2

#### BIT HYDRAULICS:

PRESSURE DROP 1324.5 HHP 745 IMPACT FORCE 1781 X SURFACE PRESSURE 107.2 HHP/sqin 1.40 JET VELOCITY 126

#### PRESSURE BREAKDOWN:

SURFACE 53.9 STRING 261.0 BIT 1324.5 ANNULUS 0.0

TOTAL 1639.4 PUMP PRESSURE 1235.6 % DIFFERENCE 32.7

#### BOTTOM HOLE PRESSURES:

|                      | DENSITY     | PRESSURE                   |
|----------------------|-------------|----------------------------|
|                      | UNITS       | UNITS                      |
| NOT CIRCULATING: MUD | WEIGHT 8.60 | HYDROSTATIC PRESSURE 293.4 |
| CIRCULATING:         | ECD 8.60    | CIRCULATING PRESSURE 293.5 |
| PULLING OUT: TRIP    | MARGIN 0.00 | ESTIMATED SWAB 0.0         |
| EFFECTIVE MUD        | WEIGHT 8.60 | BOTTOM HOLE PRESSURE 293.4 |

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 300.0 AND TVD 300.0

SPM 1 100 SPM 2 92 FLOW RATE 961

#### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE                      | VOL/<br>UNIT                              | VOL                              | ANN<br>VEL                       | CRIT<br>VEL                      | TYPE OF<br>FLOW                                                | SLIP A<br>VEL              | VEL.                             | PRESSURE<br>DROP                       |
|--------------------------------------|-------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------------------------------------|----------------------------|----------------------------------|----------------------------------------|
| HWDC/OH DC/OH DC/CSG HWDP/CSG DP/CSG | 0.673<br>0.772<br>0.961<br>1.085<br>1.085 | 15<br>65<br>11<br>30<br>88<br>98 | 34<br>30<br>24<br>21<br>21<br>17 | 37<br>35<br>34<br>32<br>32<br>32 | LAMINAR<br>LAMINAR<br>LAMINAR<br>LAMINAR<br>LAMINAR<br>LAMINAR | 2<br>1<br>1<br>1<br>1<br>0 | 32<br>28<br>23<br>20<br>20<br>17 | 0.0<br>0.1<br>0.0<br>0.0<br>0.1<br>0.0 |
| TOTAL                                | _ VOLUME                                  | 307                              |                                  |                                  | TOTAL                                                          | PRESSURE                   | DROP                             | 0.3                                    |

LAG: 13.4 MINUTES 1338 STROKES #1 AND 1239 STROKES #2

#### BIT HYDRAULICS:

PRESSURE DROP 863.5 HHP 484 IMPACT FORCE 1434 % SURFACE PRESSURE 46.7 HHP/sqin 2.01 JET VELOCITY 102

#### PRESSURE BREAKDOWN:

SURFACE 61.6 STRING 390.1 BIT 863.5 ANNULUS 0.3

TOTAL 1315.4 PUMP PRESSURE 1847.3 % DIFFERENCE 28.8

#### BOTTOM HOLE PRESSURES:

|              |        | UNITS |                      | UNITS |
|--------------|--------|-------|----------------------|-------|
| CIRCULATING: | WEIGHT | 8.60  | HYDROSTATIC PRESSURE | 440.2 |
|              | ECD    | 8.61  | CIRCULATING PRESSURE | 440.5 |
|              | MARGIN | 0.01  | ESTIMATED SWAB       | 0.6   |
|              | WEIGHT | 8.59  | BOTTOM HOLE PRESSURE | 439.5 |

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 400.0 AND TVD 400.0

SPM 1 97 SPM 2 94 FLOW RATE 954

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF FLOW | SLIP ¢<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|--------------|---------------|--------------|------------------|
| HWDC/OH         | 0.673        | 15   | 34         | 37          | LAMINAR      | 2             | 32           | 0.0              |
| DC/OH           | 0.772        | 74   | 29         | 35          | LAMINAR      | 1             | 28           | 0.1              |
| HWDP/OH         | 0.896        | 24   | 25         | 33          | LAMINAR      | 1             | 24           | 0.0              |
| DP/OH           | 0.896        | 55   | 25         | 33          | LAMINAR      | 1             | 24           | 0.1              |
| DP/CSG          | 1.085        | 130  | 21         | 32          | LAMINAR      | 1             | 5.0          | 0.1              |
| DP/RIS          | 1.325        | 98   | 17         | 32          | L.AMINAR     | 0             | 17           | 0.0              |
| TOTAL           | VOLUME       | 396  |            |             | TOTAL.       | PRESSURE      | DROP         | 0.4              |

LAG: 17.4 MINUTES 1683 STROKES #1 AND 1646 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 851.2 HHP 474 IMPACT FORCE 1413 % SURFACE PRESSURE 45.2 HHP/sqin 1.97 JET VELOCITY 101

### PRESSURE BREAKDOWN:

SURFACE 60.8 STRING 420.1 BIT 851.2 ANNULUS 0.4

TOTAL 1332.5 PUMP PRESSURE 1884.1 % DIFFERENCE 29.3

## BOTTOM HOLE PRESSURES:

UNITS UNITS 586.9 HYDROSTATIC PRESSURE MUD WEIGHT 8.60 NOT CIRCULATING: 587.3 CIRCULATING PRESSURE 8.61 ECD CIRCULATING: 0.8 ESTIMATED SWAB TRIP MARGIN 0.01 PULLING OUT: 586.1 BOTTOM HOLE PRESSURE 8.59 EFFECTIVE MUD WEIGHT

DENSITY

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 500.0 AND TVD 500.0

SPM 1 96 SPM 2 97 FLOW RATE 967

## ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>TINU | VOL | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A   | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|-----|------------|-------------|-----------------|----------|---------------|------------------|
| HWDC/OH         | 0.673        | 15  | 34         | 37          | LAMINAR         | 2        | 32            | 0.0              |
| DC/OH           | 0.772        | 74  | 30         | 35          | LAMINAR         | 1        | 28            | 0.1              |
| HWDP/OH         | 0.896        | 24  | 26         | 33          | LAMINAR         | 1        | 25            | 0.0              |
| DP/OH           | 0.896        | 145 | 26         | 33          | L.AMI NAR       | 1        | 25            | 0.2              |
| DP/CSG          | 1.085        | 130 | 21         | 32          | LAMINAR         | ţ        | 21            | 0.1              |
| DP/RIS          | 1.325        | 98  | 17         | 31          | L.AMINAR        | 0        | 17            | 0.0              |
| TOTAL.          | VOLUME       | 486 |            |             | TOTAL           | PRESSURE | DROP          | 0.5              |

LAG: 21.1 MINUTES 2025 STROKES #1 AND 2056 STROKES #2

## BIT HYDRAULICS:

PRESSURE DROP 884.4 HHP 499 IMPACT FORCE 1468 % SURFACE PRESSURE 43.5 HHP/sqin 2.07 JET VELOCITY 102

## PRESSURE BREAKDOWN:

SURFACE 62.9 STRING 470.5 BIT 884.4 ANNULUS 0.5

TOTAL 1418.3 PUMP PRESSURE 2032.0 % DIFFERENCE 30.2

## **BOTTOM HOLE PRESSURES:**

|                                      | UNITS                   |                                     | UNITS          |
|--------------------------------------|-------------------------|-------------------------------------|----------------|
| NOT CIRCULATING: MUD<br>CIRCULATING: | WEIGHT 8.70<br>ECD 8.71 | HYDROSTATIC PRESSURE                | 742.1<br>742.6 |
|                                      | MARGIN 0.01             | ESTIMATED SWAB BOTTOM HOLE PRESSURE | 1.0            |

DENSITY

HYDRAULICS ANALYSIS PROGRAM

## HYDRAULICS CALCULATIONS AT DEPTH 600.0 AND TVD 600.0

SPM 2 98 FLOW RATE 974 SPM 1 97

# ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|-----|------------|-------------|-----------------|-------------|---------------|------------------|
| HWDC/OH         | 0.673        | 15  | 34         | 36          | L.AMINAR        | 2           | 33            | 0.0              |
| DC/OH           | 0.772        | 74  | 30         | 35          | LAMINAR         | 1           | 29            | 0.1              |
| HWDP/OH         | 0.896        | 24  | 26         | 33          | LAMINAR         | 1           | 25            | 0.0              |
| DP/OH           | 0.896        | 234 | 26         | 33          | LAMINAR         | 1           | 25            | 0.2              |
| DP/CSG          | 1.085        | 130 | 21         | 32          | LAMINAR         | 1           | 21            | 0.1              |
| DP/RIS          | 1.325        | 98  | 18         | 31          | LAMINAR         | 0           | 17            | 0.0              |
| TOTAL           | L VOLUME     | 575 |            |             | TOTAL.          | PRESSU      | RE DROP       | 0.6              |

LAG: 24.8 MINUTES 2404 STROKES #1 AND 2431 STROKES #2

### BIT HYDRAULICS:

IMPACT FORCE 1524 PRESSURE DROP 918.2 % SURFACE PRESSURE 43.3 522 HHP PRESSURE DROP HHP/sqin 2.17 JET VELOCITY

## PRESSURE BREAKDOWN:

64.9 SURFACE 523.0 STRING 918.2 BIT 0.6 **ANNULUS** 

PUMP PRESSURE 2118.7 % DIFFERENCE 28.9 TOTAL 1506.6

## BOTTOM HOLE PRESSURES:

| ACCITION TO THE PROPERTY OF TH | DENSITY<br>UNITS                                      | PRESSURE<br>UNITS                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| CIRCULATING:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WEIGHT 8.90<br>ECD 8.91<br>MARGIN 0.01<br>WEIGHT 8.89 | HYDROSTATIC PRESSURE 911.0<br>CIRCULATING PRESSURE 911.4<br>ESTIMATED SWAB 1.2<br>BOTTOM HOLE PRESSURE 909.8 |

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 700.0 AND TVD 700.0

SPM 1 96 SPM 2 97 FLOW RATE 966

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOI | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP 6<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|-----|------------|-------------|-----------------|---------------|---------------|------------------|
| HWDC/OH         | 0.673        | 15  | 34         | 36          | LAMINAR         | 2             | 32            | 0.0              |
| DC/OH           | 0.772        | 74  | 30         | 34          | L.AMINAR        | 1             | 28            | 0.1              |
| HWDP/OH         | 0.896        | 24  | 26         | 32          | LAMINAR         | 1             | 25            | 0.0              |
| DPZOH           | 0.896        | 324 | 26         | 32          | LAMINAR         | 1             | 25            | 0.3              |
| DP/CSG          | 1.085        | 130 | 21         | 32          | LAMINAR         | 1             | 21            | 0.1              |
| DP/RIS          | 1.325        | 98  | 17         | 31          | LAMINAR         | 0             | 17            | 0.0              |
| TOTAL           | . VOLUME     | 665 |            |             | TOTAL           | PRESSURI      | EDROP         | 0.7              |

LAG: 28.9 MINUTES 2775 STROKES #1 AND 2813 STROKES #2

# BIT HYDRAULICS:

PRESSURE DROP 913.4 HHP 515 IMPACT FORCE 1516 % SURFACE PRESSURE 42.5 HHP/sqin 2.14 JET VELOCITY 102

## PRESSURE BREAKDOWN:

SURFACE 64.5 STRING 557.1 BIT 913.4 ANNULUS 0.7

TOTAL 1535.6 PUMP PRESSURE 2150.1 % DIFFERENCE 28.6

## BOTTOM HOLE PRESSURES:

|                                   |                         | BTINU                |                                        | UNITS  |
|-----------------------------------|-------------------------|----------------------|----------------------------------------|--------|
| CIRCULATING:<br>PULLING OUT: TRIP | WEIGHT<br>ECD<br>MARGIN | 9.00<br>9.01<br>0.01 | CIRCULATING PRESSURE<br>ESTIMATED SWAB | 1.4    |
| FFFECTIVE MUD                     | WEIGHT                  | 8.99                 | BOTTOM HOLE PRESSURE                   | 10/0,4 |

DENSITY

#### CORE LAB 22 m; ;;; ;;; ;;; ;;; ;;; ;;; ;;;

HYDRAULICS ANALYSIS PROGRAM

## HYDRAULICS CALCULATIONS AT DEPTH 800.0 AND TYD 800.0

958 SPM 1 SPM 2 97 FLOW RATE 94

# ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/   | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------|------|------------|-------------|-----------------|---------------|--------------|------------------|
| HWDC/OH         | 0.673  | 15   | 34         | 129         | LAMINAR         | 0             | 34           | 0.4              |
| DCZOH           | 0.772  | 74   | 30         | 130         | LAMINAR         | 0             | 29           | 1.3              |
| HWDP/OH         | 0.896  | 24   | 25         | 130         | LAMINAR         | 0             | 25           | 0.3              |
| DPZOH           | 0.896  | 413  | 25         | 130         | L.AMI NAR       | 0             | 25           | 4.6              |
| DP/CSG          | 1.085  | 130  | 21         | 131         | LAMINAR         | 0             | 21           | 1 . 0            |
| DP/RIS          | 1.325  | 98   | 17         | 131         | LAMINAR         | 0             | 17           | 0.5              |
| TOTAL           | VOLUME | 755  |            |             | TOTAL           | PRESSURE      | DROP         | 8.2              |

LAG: 33.1 MINUTES 3126 STROKES #1 AND 3215 STROKES #2

### BIT HYDRAULICS:

IMPACT FORCE 1490 PRESSURE DROP 897.5 HHP 502 JET VELOCITY 101 % SURFACE PRESSURE 40.1 HHP/sqin 2.09

# PRESSURE BREAKDOWN:

SURFACE 63.5 585.0 STRING 897.5 BIT ANNULUS 8.2

PUMP PRESSURE 2239.2 % DIFFERENCE 30.6 TOTAL 1554.2

#### BOTTOM HOLE PRESSURES:

DENSITY UNITS UNITS HYDROSTATIC PRESSURE 1228.3 MUD WEIGHT 9.00 NOT CIRCULATING: CIRCULATING PRESSURE 1236.5 ECD 9.06 CIRCULATING: 16.4 TRIP MARGIN 0.12 ESTIMATED SWAB PULLING OUT: BOTTOM HOLE PRESSURE 1212.0 EFFECTIVE MUD WEIGHT 8.88

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 900.0 AND TVD 900.0

SPM 1 93 SPM 2 92 FLOW RATE 925

# ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|--------------|---------------|--------------|------------------|
| DC/OH           | 0.274        | 30   | 8.0        | 108         | LAMINAR      | 1             | 79           | 3.9              |
| DC/CSG          | 0.303        | 19   | 73         | 108         | LAMINAR      | 1             | 71           | 2.0              |
| HWDP/CSG        | 0.427        | 36   | 52         | 104         | LAMINAR      | 1             | 51           | 1.2              |
| DP/CSG          | 0.427        | 244  | 52         | 104         | LAMINAR      | 1             | 51           | 8.3              |
| DP/RIS          | 1.325        | 98   | 17         | 99          | LAMINAR      | 0             | 17           | 0.3              |
| TOTAL           | VOLUME       | 427  |            |             | TOTAL        | PRESSURE      | DROP         | 15.7             |

LAG: 19,4 MINUTES 1798 STROKES #1 AND 1787 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1726.6 HHP 932 IMPACT FORCE 1997 % SURFACE PRESSURE 60.3 HHP/sqin 7.91 JET VELOCITY 141

## PRESSURE BREAKDOWN:

SURFACE 68.5 STRING 909.6 BIT 1726.6

ANNULUS

TOTAL 2720.3 PUMP PRESSURE 2863.0 % DIFFERENCE 5.0

### BOTTOM HOLE PRESSURES:

15.7

UNITS UNITS HYDROSTATIC PRESSURE 1381.9 MUD WEIGHT 9.00 NOT CIRCULATING: 1397.5 CIRCULATING PRESSURE ECD 9:10 CIRCULATING: 31.3 TRIP MARGIN 0.20 ESTIMATED SWAB PULLING OUT: 1350.6 8.80 BOTTOM HOLE PRESSURE EFFECTIVE MUD WEIGHT

DENSITY

### HYDRAULICS ANALYSIS PROGRAM

| HYDRAULICS CALCULATIO | VS AT | DEPTH | 1000. | JUNA 0. | TVD | 1000.0 |  |
|-----------------------|-------|-------|-------|---------|-----|--------|--|
|                       |       |       |       |         |     |        |  |

SPM 1 93 SPM 2 90 FLOW RATE 911

## ANNULAR HYDRAULICS:

| ANNULUS  | VOL/   |      | ANN  | CRIT | TYPE OF | SLIP     | ASCEND | PRESSURE |
|----------|--------|------|------|------|---------|----------|--------|----------|
| TYPE     | TINU   | VOL. | VEI. | VEL  | FL.OW   | VEL      | VEL.   | DROP     |
| DC/OH    | 0.274  | 47   | 79   | 100  | LAMINAR | 2        | 77     | 5.2      |
| HWDP/OH  | 0.398  | 14   | 54   | 98   | LAMINAR | 1        | 54     | 0.5      |
| HWDP/CSG | 0.427  | 20   | 51   | 97   | LAMINAR | 1        | 50     | 0.6      |
| DP/CSG   | 0.427  | 287  | 51   | 97   | LAMINAR | 1        | 50     | 8.5      |
| DP/RIS   | 1.325  | 98   | 16   | 94   | LAMINAR | 0        | 16     | 0.3      |
| TOTAL    | VOLUME | 466  |      |      | TOTAL   | PRESSURI | E DROP | 15.0     |

LAG: 21.5 MINUTES 1992 STROKES #1 AND 1927 STROKES #2

## BIT HYDRAULICS:

PRESSURE DROP 1674.8 HHP 891 IMPACT FORCE 1937 % SURFACE PRESSURE 59.1 HHP/sqin 7.56 JET VELOCITY 139

## PRESSURE BREAKDOWN:

SURFACE 63.0 STRING 871.8 BIT 1674.8 ANNULUS 15.0

TOTAL 2624.6 PUMP PRESSURE 2832.4 % DIFFERENCE 7.3

# BOTTOM HOLE PRESSURES:

|                                  |     | Q                | UNITS        |                                     | UNITS          |
|----------------------------------|-----|------------------|--------------|-------------------------------------|----------------|
| NOT CIRCULATING:<br>CIRCULATING: | аим | WEIGHT<br>ECD    | ዎ.00<br>ዎ.09 | HYDROSTATIC PRESSURE                |                |
| PULLING OUT:                     |     | MARGIN<br>WEIGHT | 0.18<br>8.82 | ESTIMATED SWAB BOTTOM HOLE PRESSURE | 30.1<br>1505.3 |

HYDRAULICS ANALYSIS PROGRAM

## HYDRAULICS CALCULATIONS AT DEPTH 1100.0 AND TVD 1100.0

SPM 1 89 SPM 2 87 FLOW RATE 880

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | שמע | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|-----|------------|-------------|-----------------|---------------|--------------|------------------|
| DC/OH           | 0.274         | 47  | 76         | 100         | LAMINAR         | 2             | 75           | 5.1              |
| HODP/OH         | 0.398         | 33  | 53         | 98          | L.AMINAR        | 1             | 52           | 1.1              |
| DP/OH           | 0.398         | 21  | 53         | 98          | LAMINAR         | 1             | 52           | 0.7              |
| DP/CSG          | 0.427         | 307 | 49         | 97          | LAMINAR         | 1             | 48           | 9.0              |
| DP/RIS          | 1.325         | 98  | 16         | 94          | LAMINAR         | 0             | 16           | 0.3              |
| TOTAL           | _ VOLUME      | 506 |            |             | TOTAL           | PRESSURE      | DROP         | 16.2             |

LAG: 24.2 MINUTES 2149 STROKES #1 AND 2105 STROKES #2

#### BIT HYDRAULICS:

PRESSURE DROP 1562.3 HHP 802 IMPACT FORCE 1807 % SURFACE PRESSURE 54.3 HHP/sqin 6.81 JET VELOCITY 134

## PRESSURE BREAKDOWN:

SURFACE 59.1 STRING 853.0 BIT 1562.3 ANNULUS 16.2

TOTAL 2490.6 PUMP PRESSURE 2876.3 % DIFFERENCE 13.4

|                                   | DE               | NSITY<br>UNITS | PRESSU<br>UNI                                          |       |
|-----------------------------------|------------------|----------------|--------------------------------------------------------|-------|
| NOT CIRCULATING: MUD CIRCULATING: | WEIGHT<br>ECD    | 9.00<br>9.09   | HYDROSTATIC PRESSURE 1688<br>CIRCULATING PRESSURE 1705 |       |
| PULLING OUT: TRIP EFFECTIVE MUD   | MARGIN<br>WEIGHT | 0.17<br>8.83   | ESTIMATED SWAB 32 BOTTOM HOLE PRESSURE 1656            | • ••• |

## HYDRAULICS ANALYSIS PROGRAM

| HYDRAULICS                               | CALCULATIONS                                     | AT | DEPTH | 1200 | . 0 | AND | TVD | 1200. | 0 |
|------------------------------------------|--------------------------------------------------|----|-------|------|-----|-----|-----|-------|---|
| 1 1 1 1/13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100 1 1 hour last had been 1 1 1 and had 1 1 the |    |       |      |     |     |     |       |   |

SPM 1 88 SPM 2 86 FLOW RATE 869

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>TINU | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A   | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|----------|--------------|------------------|
| DC/OH           | 0.274        | 47   | 75         | 100         | L.AMINAR        | 2        | 74           | 5.1              |
| HWDP/OH         | 0.398        | 33   | 52         | 98          | LAMINAR         | 1        | 51           | 1.1              |
| DP/OH           | 0.398        | 61   | 52         | 98          | LAMINAR         | 1        | 51           | 2.1              |
| DP/CSG          | 0.427        | 307  | 48         | 97          | LAMINAR         | • 1      | 48           | 9.0              |
| DP/RIS          | 1.325        | 98   | 16         | 94          | LAMINAR         | 0        | 16           | 0.3              |
| TOTA            | L VOLUME     | 546  |            |             | TOTAL           | PRESSURE | DROP         | 17.5             |

LAG: 26.4 MINUTES 2321 STROKES #1 AND 2268 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1523.7 HHP 773 IMPACT FORCE 1762 % SURFACE PRESSURE 52.5 HHP/sqin 6.56 JET VELOCITY 132

PRESSURE BREAKDOWN:

SURFACE 57.8 STRING 867.3 BIT 1523.7

ANNULUS 17.5

TOTAL 2466.5 PUMP PRESSURE 2900.3 % DIFFERENCE 15.0

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS HYDROSTATIC PRESSURE 1842.5 NOT CIRCULATING: MUD WEIGHT 9.00 9.09 CIRCULATING PRESSURE 1860.0 ECD CIRCULATING: TRIP MARGIN ESTIMATED SWAB 35.1 0.17 PULLING OUT: BOTTOM HOLE PRESSURE 1807.4 EFFECTIVE MUD WEIGHT 8.83

## HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 1300.0 AND TVD 1300.0

SPM 1 87 SPM 2 87 FLOW RATE 870

## ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW |          | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|-----|------------|-------------|-----------------|----------|---------------|------------------|
| DC/OH           | 0.274        | 47  | 76         | 81          | LAMINAR         | 2        | 73            | 3.7              |
| HOV9ŒWH         | 0.398        | 33  | 52         | 77          | L.AMINAR        | 1        | 51            | 0 , 8:           |
| DP/OH           | 0.398        | 101 | 52         | 77          | LAMINAR         | 1        | 51            | 2.3              |
| DP/CSG          | 0.427        | 307 | 48         | 76          | L.AMINAR        | ī        | 48            | 6.0              |
| DP/RIS          | 1.325        | 98  | 16         | 71          | LAMINAR         | Ô        | 15            | 0.2              |
| TOTAL           | _ VOLUME     | 586 |            |             | TOTAL           | PRESSURE | DROP          | 12.9             |

LAG: 28.3 MINUTES 2462 STROKES #1 AND 2462 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1524.7 HHP 774 IMPACT FORCE 1763 % SURFACE PRESSURE 52.1 HHP/sqin 6.56 JET VELOCITY 132

## PRESSURE BREAKDOWN:

SURFACE 57.9 STRING 901.2 BIT 1524.7 ANNULUS 12.9

TOTAL 2496.7 PUMP PRESSURE 2925.0 % DIFFERENCE 14.6

|               | DENSI<br>UNI |                                                     | PRESSURE<br>UNITS |
|---------------|--------------|-----------------------------------------------------|-------------------|
| CIRCULATING:  | ECD 9.       | 00 HYDROSTATIC<br>06 CIRCULATING<br>12 ESTIMATED SW | PRESSURE 2008.9   |
| EFFECTIVE MUI |              | 88 BOTTOM HOLE                                      | 4.40.175          |

## HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 1400.0 AND TVD 1399.9

SPM 1 85 SPM 2 85 FLOW RATE 848

## ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|---------------|--------------|------------------|
| DC/OH           | 0.274        | 47   | 74         | 106         | LAMINAR         | 1             | 72           | 5.6              |
| HWDP/OH         | 0.398        | 33   | 51         | 104         | LAMINAR         | 1             | 50           | 1.2              |
| DPZOH           | 0.398        | 141  | 51         | 104         | LAMINAR         | 1             | 50           | 5.3              |
| DP/CSG          | 0.427        | 307  | 47         | 104         | LAMINAR         | 1             | 47           | 9.9              |
| DP/RIS          | 1.325        | 98   | 15         | 101         | LAMINAR         | 0             | 15           | 0.3              |
| TOTAL           | _ VOLUME     | 626  |            |             | TOTAL           | PRESSURE      | DROP         | 22.3             |

LAG: 31.0 MINUTES 2630 STROKES #1 AND 2628 STROKES #2

## BIT HYDRAULICS:

1448.1 PRESSURE DROP HHP 716 IMPACT FORCE 1675 HHP/sqin 6.08 JET VELOCITY 129 % SURFACE PRESSURE 49.6

## PRESSURE BREAKDOWN:

SURFACE 55.2 STRING 892.2 1448.1 BIT ANNULUS 22.3

PUMP PRESSURE 2921.4 % DIFFERENCE 17.2 TOTAL. 2417.9

## BOTTOM HOLE PRESSURES:

|                                   | DENSITY<br>UNITS           | PRESSURE<br>UNITS                                          |
|-----------------------------------|----------------------------|------------------------------------------------------------|
| NOT CIRCULATING: MUD CIRCULATING: | WEIGHT 9.00<br>ECD 9.09    | HYDROSTATIC PRESSURE 2149.5<br>CIRCULATING PRESSURE 2171.9 |
| PULLING OUT: TRIP EFFECTIVE MUD   | MARGIN 0.19<br>WEIGHT 8.81 | ESTIMATED SWAB 44.7 BOTTOM HOLE PRESSURE 2104.9            |

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 1500.0 AND TVD 1499.9

SPM 1 84 SPM 2 85 FLOW RATE 846

#### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>TINU | VOL | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|-----|------------|-------------|-----------------|---------------|--------------|------------------|
| DC/OH           | 0.274        | 47  | 73         | 106         | LAMINAR         | 1             | 72           | 5.6              |
| HWDP/OH         | 0.398        | 33  | 51         | 104         | L.AMINAR        | 1             | 50           | 1.2              |
| HO/9d           | 0.398        | 180 | 51         | 104         | LAMINAR         | 1             | 50           | 6,8              |
| DP/CSG          | 0.427        | 307 | 47         | 104         | LAMINAR         | 1             | 47           | 9.5              |
| DP/RIS          | 1.325        | 98  | 15         | 101         | LAMINAR         | 0             | 15           | 0.3              |
| TOTAL           | . VOLUME     | 666 |            |             | TOTAL           | PRESSURE      | DROP         | 23.8             |

LAG: 33.0 MINUTES 2775 STROKES #1 AND 2818 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1443.6 HHP 713 IMPACT FORCE 1670 % SURFACE PRESSURE 47.7 HHP/sqin 6.05 JET VELOCITY 129

PRESSURE BREAKDOWN:

SURFACE 55.1 STRING 921.4 BIT 1443.6

ANNULUS 23.8

TOTAL 2443.9 PUMP PRESSURE 3025.2 % DIFFERENCE 19.2

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS MUD WEIGHT 2303.1 9.00 HYDROSTATIC PRESSURE NOT CIRCULATING: 2326.9 9.09 CIRCULATING PRESSURE ECD CIRCULATING: 47.6 ESTIMATED SWAB TRIP MARGIN 0.19 PULLING OUT: BOTTOM HOLE PRESSURE 2255.4 EFFECTIVE MUD WEIGHT 8.81

## HYDRAULICS ANALYSIS PROGRAM

## HYDRAULICS CALCULATIONS AT DEPTH 1600.0 AND TVD 1599.9

FLOW RATE SPM 1 SPM 2 82 817 81

### ANNULAR HYDRAULICS:

| ANNULUS | VOL./    |      | ANN | CRIT | TYPE OF | SLIP A   | SCEND | PRESSURE |
|---------|----------|------|-----|------|---------|----------|-------|----------|
| TYPE    | TINU     | AOI" | VEL | VEL  | FLOW    | VEL      | VEI   | DROP     |
| DC/OH   | 0.274    | 47   | 71  | 156  | LAMINAR | 1        | 70    | 11.3     |
| HWDP/OH | 0.398    | 33   | 49  | 157  | LAMINAR | 0        | 49    | 2.7      |
| DP/OH   | 0.398    | 220  | 49  | 157  | LAMINAR | 0        | 49    | 17.9     |
| DP/CSG  | 0.427    | 307  | 46  | 157  | LAMINAR | 0        | 45    | 21.6     |
| DP/RIS  | 1.325    | 98   | 15  | 157  | LAMINAR | 0        | 15    | 0.7      |
| TOTAL   | L VOLUME | 705  |     |      | TOTAL   | PRESSURE | DROP  | 54.2     |

36.2 MINUTES 2940 STROKES #1 AND 2989 STROKES #2 LAG:

### BIT HYDRAULICS:

IMPACT FORCE 1575 650 PRESSURE DROP HHP 1362.1 JET VELOCITY 124 HMP/sqin 5.51 % SURFACE PRESSURE 46.1

## PRESSURE BREAKDOWN:

SURFACE 55.3 STRING 957.1 1362.1 BIT **ANNULUS** 54.2

PUMP PRESSURE 2953.4 % DIFFERENCE 17.8 TOTAL 2428.7

## BOTTOM HOLE PRESSURES:

| <b></b>      | D                           | ENSITY<br>UNITS              | Р                                                                                      | RESSURE<br>UNITS                    |
|--------------|-----------------------------|------------------------------|----------------------------------------------------------------------------------------|-------------------------------------|
| CIRCULATING: | D WEIGHT<br>ECD<br>P MARGIN | 9.10<br>9.30<br>0.40<br>8.70 | HYDROSTATIC PRESSURE<br>CIRCULATING PRESSURE<br>ESTIMATED SWAB<br>BOTTOM HOLE PRESSURE | 2483.9<br>2538.0<br>108.3<br>2375.5 |

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 1700.0 AND TVD 1699.9

SPM 1 80 SPM 2 82 FLOW RATE 809

### ANNULAR HYDRAULICS:

| ANNULUS | VOL/    |     | ANN | CRIT | TYPE OF | SLIP A   | SCEND | PRESSURE |
|---------|---------|-----|-----|------|---------|----------|-------|----------|
| TYPE    | TINU    | VOI | VEL | VEL  | FLOW    | VEL      | VEI   | DROP     |
| DC/OH   | 0.274   | 47  | 20  | 155  | LAMINAR | 1        | 70    | 11.3     |
| HWDP/OH | 0.398   | 33  | 48  | 156  | LAMINAR | 0        | 48    | 2.7      |
| DP/OH   | 0.398   | 260 | 48  | 156  | LAMINAR | 0        | 48    | 21.1     |
| DP/CSG  | 0.427   | 307 | 45  | 156  | LAMINAR | 0        | 45    | 21.5     |
| DP/RIS  | 1.325   | 98  | 15  | 156  | LAMINAR | 0        | 14    | 0.7      |
| TOTAL.  | YOL.UME | 745 |     |      | TOTAL   | PRESSURE | DROP  | 57.3     |

LAG: 38.7 MINUTES 3097 STROKES #1 AND 3166 STROKES #2

## BIT HYDRAULICS:

PRESSURE DROP 1347.4 HHP 636 IMPACT FORCE 1558 % SURFACE PRESSURE 45.9 HHP/sqin 5.39 JET VELOCITY 123

## PRESSURE BREAKDOWN:

SURFACE 54.7 STRING 978.3 BIT 1347.4

ANNULUS 57.3

TOTAL 2437.7 PUMP PRESSURE 2936.8 % DIFFERENCE 17.0

|                                      | a                | ENSITY<br>UNITS | F                                         | PRESSURE<br>UNITS |
|--------------------------------------|------------------|-----------------|-------------------------------------------|-------------------|
| NOT CIRCULATING: MUD<br>CIRCULATING: | WEIGHT<br>ECD    | 9,20<br>9,40    | HYDROSTATIC PRESSURE CIRCULATING PRESSURE | 2668.1<br>2725.4  |
| PULLING OUT: TRIP EFFECTIVE MUD      | MARGIN<br>WEIGHT | 0.40<br>8.80    | ESTIMATED SWAB BOTTOM HOLE PRESSURE       | 114.6<br>2553.6   |

## HYDRAULICS ANALYSIS PROGRAM

| HYDRAUL TOS | CALCULATIONS | AT | DEPTH | 1800.0 | AND TVI | 1799.9 |
|-------------|--------------|----|-------|--------|---------|--------|
|             |              |    |       |        |         |        |

SPM 2 77 FLOW RATE 777 SPM 1 78

#### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>TINU | VOL | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|-----|------------|-------------|-----------------|---------------|--------------|------------------|
| DC/OH           | 0.274        | 47  | 67         | 155         | LAMINAR         | 1             | 67           | 11.2             |
| HWDP/OH         | 0.398        | 33  | 46         | 156         | LAMINAR         | 0             | 46           | 2.7              |
| DP/OH           | 0.398        | 300 | 46         | 156         | LAMINAR         | 0             | 46           | 24.1             |
| DP/CSG          | 0.427        | 307 | 43         | 156         | LAMINAR         | 0             | 43           | 21.4             |
| DP/RIS          | 1.325        | 98  | 14         | 156         | LAMINAR         | 0             | 14           | 0.7              |
| TOTAL           | _ VOLUME     | 785 |            |             | TOTAL           | PRESSURE      | DROP         | 60.1             |

LAG: 42.4 MINUTES 3332 STROKES #1 AND 3265 STROKES #2

#### BIT HYDRAULICS:

1473.4 IMPACT FORCE 1566 HHP 668 PRESSURE DROP HHP/sgin 5.67 129 % SURFACE PRESSURE 49.9 JET VELOCITY

### PRESSURE BREAKDOWN:

SURFACE 50.9 940.7 STRING 1473.4 BIT ANNULUS 60.1

PUMP PRESSURE 2951.0 % DIFFERENCE 14.4 2525.1 TOTAL

### **BOTTOM HOLE PRESSURES:**

DENSITY UNITS UNITS 9.20 HYDROSTATIC PRESSURE 2825.0 NOT CIRCULATING: MUD WEIGHT 9.40 CIRCULATING PRESSURE 2885.1 CIRCULATING: ECD ESTIMATED SWAB 120.1 TRIP MARGIN 0.39 PULLING OUT: BOTTOM HOLE PRESSURE 2704.9 EFFECTIVE MUD WEIGHT 8.81

## HYDRAULICS ANALYSIS PROGRAM

| HYDRAULICS                              | CALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AT | DEPTH | 1840. | 0     | AND         | TVD | 1839 | <u>. 9</u> . |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|-------|-------|-------------|-----|------|--------------|
| 1 1 1 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | the state of the s |    |       | ****  | ***** | <del></del> |     |      |              |

SPM 1 0 SPM 2 42 FLOW RATE 209

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL.        | ANN<br>VEL | CRIT<br>VEL | TYPE OF FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|-------------|------------|-------------|--------------|---------------|--------------|------------------|
| HWDC/OH         | 0.107         | 16          | 47         | 120         | IAMINAR      | 1             | 45           | 14.8             |
| HWDP/OH         | 0.231         | 19          | 22         | 103         | LAMINAR      | 0             | 21           | 1.5              |
| DP/OH           | 0.231         | 188         | 22         | 103         | LAMINAR      | 0             | 21           | 14.7             |
| DP/CSG          | 0.427         | 307         | 12         | 96          | L.AMINAR     | 0             | 12           | 5.4              |
| DP/RIS          | 1.325         | 98          | 4          | 86          | LAMINAR      | 0             | .4           | 0.1              |
| TOTAL           | _ VOLUME      | 62 <b>8</b> |            |             | TOTAL        | PRESSURE      | DROP         | 36.5             |

LAG: 126.1 MINUTES 0 STROKES #1 AND 5277 STROKES #2

#### BIT HYDRAULICS:

PRESSURE DROP 150.9 HHP 18 IMPACT FORCE 135 % SURFACE PRESSURE 32.1 HHP/sqin 0.24 JET VELOCITY 41

## PRESSURE BREAKDOWN:

SURFACE 5.4
STRING 96.4
BIT 150.9
ANNULUS 36.5
TOTAL 289.2 PUMP PRESSURE 470.8 % DIFFERENCE 38.6

# BOTTOM HOLE PRESSURES:

|                   |                         | UNITS                |                                                                | UNTIE                    |
|-------------------|-------------------------|----------------------|----------------------------------------------------------------|--------------------------|
| CIRCULATING:      | WEIGHT<br>ECD<br>MARGIN | 9,20<br>9,32<br>0,23 | HYDROSTATIC PRESSURE<br>CIRCULATING PRESSURE<br>ESTIMATED SWAB | 2887.8<br>2924.3<br>73.0 |
| PULLING OUT: TRIP |                         | 8.97                 | ROTTOM HOLE PRESSURE                                           | 2814.9                   |

DENSITY

### HYDRAULICS ANALYSIS PROGRAM

SPM 1 64 SPM 2 0 FLOW RATE 318

#### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|---------------|--------------|------------------|
| ншрсион         | 0.107        | 16   | 71         | 120         | LAMINAR         | 2             | 69           | 17.6             |
| HWDP/OH         | 0.231        | 19   | 33         | 103         | LAMINAR         | 0             | 32           | 1.8              |
| DP/OH           | 0.231        | 190  | 33         | 103         | L.AMINAR        | 0             | 32           | 17.7             |
| DP/CSG          | 0.427        | 307  | 18         | 96          | LAMINAR         | 0             | 18           | 6.4              |
| DP/RIS          | 1.325        | 98   | 6          | , 86        | LAMINAR         | 0             | 6            | 0.1              |
| TOTAL           | _ VOLUME     | 630  |            |             | TOTAL           | PRESSURE      | DROP         | 43.6             |

5297 STROKES #1 AND 0 STROKES #2 LAG: 83.2 MINUTES

BIT HYDRAULICS:

349.2 HHP 65 IMPACT FORCE 312 PRESSURE DROP PRESSURE DROP 349.2 % SURFACE PRESSURE 41.3 HHP/sqin 0.85 JET VELOCITY 63

PRESSURE BREAKDOWN:

SURFACE 11.4 STRING 205.9 349.2 BIT

ANNULUS 43.6

PUMP PRESSURE 845.8 % DIFFERENCE 27.9 TOTAL 610.2

BOTTOM HOLE PRESSURES:

UNITS 9.20 2903.5 HYDROSTATIC PRESSURE MUD WEIGHT NOT CIRCULATING: CIRCULATING PRESSURE 2947.1 9.34 CIRCULATING: ECD 0.28 ESTIMATED SWAB 87.3 PULLING OUT: TRIP MARGIN BOTTOM HOLE PRESSURE 2816.2 EFFECTIVE MUD WEIGHT 8.92

DENSITY

PRESSURE

UNITS

HYDRAULICS ANALYSIS PROGRAM

| าทร | CALCULAT  | AT   | DEPTH | 1860.0         | AND | TVD | <u> 1859,9</u> |
|-----|-----------|------|-------|----------------|-----|-----|----------------|
| วพร | CALCULAT: | AT ( | DEPTH | <u> 1860.0</u> | AND | TVD |                |

SPM 1 0 SPM 2 54 FLOW RATE 270

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOT. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|---------------|-------|------------------|
| HWDC/OH         | 0.107        | 16   | 6.0        | 114         | LAMINAR         | 2             | 58    | 15.1             |
| HWDP/OH         | 0.231        | 19   | 28         | 100         | LAMINAR         | 0             | 27    | 1.6              |
| DP/OH           | 0.231        | 192  | 28         | 100         | L.AMINAR        | 0             | 27    | 15.9             |
| DP/CSG          | 0.427        | 307  | 15         | 94          | LAMINAR         | 0             | 15    | 5.8              |
| DP/RIS          | 1.325        | 98   | 5          | 85          | L.AMINAR        | 0             | 5     | 0.1              |
| TOTAL           | . VOLUME     | 633  |            |             | TOTAL           | PRESSURE      | DROP  | 38.5             |

LAG: 98.5 MINUTES 0 STROKES #1 AND 5316 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 251.3 HHP 40 IMPACT FORCE 225 % SURFACE PRESSURE 37.6 HHP/sqin 0.52 JET VELOCITY 53

PRESSURE BREAKDOWN:

SURFACE 8.2 STRING 148.9 BIT 251.3 ANNULUS 38.5

TOTAL 447.0 PUMP PRESSURE 668.1 % DIFFERENCE 33.1

| DOLLON TREASURED | DENSIT<br>TINU                                    |                                       | PRESSURE<br>UNITS |
|------------------|---------------------------------------------------|---------------------------------------|-------------------|
| CIRCULATING:     | WEIGHT 9.2<br>ECD 9.3<br>MARGIN 0.2<br>WEIGHT 8.5 | CIRCULATING PRESSUR<br>ESTIMATED SWAB | RE 2957.7<br>77.1 |

#### HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 1900.0 AND TVD 1899.9

SPM 1 73 SPM 2 68 FLOW RATE 706

## ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|--------------|---------------|--------------|------------------|
| HWDC/OH         | 0.274        | 47   | 61         | 102         | LAMINAR      | 1             | 60           | 5.5              |
| HOV9ŒWH         | 0.398        | 33   | 42         | 95          | LAMINAR      | 0             | 42           | 1.1              |
| DP/OH           | 0.398        | 340  | 42         | 95          | LAMINAR      | 0             | 42           | 11.1             |
| DP/CSG          | 0.427        | 307  | 39         | 94          | LAMINAR      | 0             | 39           | 8.5              |
| DP/RIS          | 1.325        | 98   | 13         | 85          | LAMINAR      | 0             | 13           | 0.2              |
| TOTAL           | . VOLUME     | 825  |            |             | TOTAL        | PRESSURE      | DROP         | 26.3             |

LAG: 49.1 MINUTES 3572 STROKES #1 AND 3360 STROKES #2

## BIT HYDRAULICS:

PRESSURE DROP 1577.1 HHP 650 IMPACT FORCE 1473 % SURFACE PRESSURE 53.1 HHP/sqin 5.51 JET VELOCITY 133

## PRESSURE BREAKDOWN:

SURFACE 46.5 STRING 886.5 BIT 1577.1 ANNULUS 26.3

TOTAL 2536.4 PUMP PRESSURE 2970.0 % DIFFERENCE 14.6

## BOTTOM HOLE PRESSURES:

UNITS UNITS 2982.0 MUD WEIGHT 9.20 HYDROSTATIC PRESSURE NOT CIRCULATING: CIRCULATING PRESSURE 3008.3 9.28 CIRCULATING: ECD 52.6 0.16 ESTIMATED SWAB PULLING OUT: TRIP MARGIN EFFECTIVE MUD WEIGHT 2929.4 9.04 BOTTOM HOLE PRESSURE

DENSITY

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 2000.0 AND TVD 1999.9

SPM 1 72 SPM 2 68 FLOW RATE 700

## ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A   | ASCEND<br>VEL. | PRESSURE<br>DROP |
|-----------------|---------------|-----|------------|-------------|-----------------|----------|----------------|------------------|
| HWDC/OH         | 0,274         | 47  | 61         | 102         | LAMINAR         | 1        | 60             | 5.5              |
| HWDP/OH         | 0.398         | 33  | 42         | 95          | LAMINAR         | 0        | 41             | 1.1              |
| DP/OH           | 0.398         | 379 | 42         | 95          | LAMINAR         | 0        | 41             | 12.3             |
| DP/CSG          | 0.427         | 307 | 39         | 94          | LAMINAR         | 0        | 39             | 8.4              |
| DP/RIS          | 1.325         | 98  | 13         | 85          | LAMINAR         | 0        | 13             | 0.2              |
| TOTAL           | UOLIJME       | 865 |            |             | TOTAL           | PRESSURE | DROP           | 27.5             |

LAG: 51.9 MINUTES 3734 STROKES #1 AND 3533 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1550.6 HHP 634 IMPACT FORCE 1448 % SURFACE PRESSURE 53.4 HHP/sqin 5.38 JET VELOCITY 132

## PRESSURE BREAKDOWN:

SURFACE 45.8 STRING 899.6 BIT 1550.6 ANNULUS 27.5

TOTAL 2523.5 PUMP PRESSURE 2904.5 % DIFFERENCE 13.1

#### BOTTOM HOLE PRESSURES:

|                  |               | UNITS | ·                    | UNITS  |
|------------------|---------------|-------|----------------------|--------|
| NOT CIRCULATING: | MUD WEIGHT    | 9.20  |                      | 3138.9 |
| CIRCULATING:     | ECD           | 9.28  | CIRCULATING PRESSURE | 3166.4 |
| PULLING OUT:     | TRIP MARGIN   | 0.16  | ESTIMATED SWAB       | 55.0   |
| FEFECTT          | JE MUD WETCHT | 9.04  | BOTTOM HOLE PRESSURE | 3083.9 |

DENSITY

## HYDRAULICS ANALYSIS PROGRAM

| HYDRAULICS | CALCULATIONS | AT | DEPTH | 2100 | <u>. 0</u> | AND | TVD | 2099, | 9 |
|------------|--------------|----|-------|------|------------|-----|-----|-------|---|
|            |              |    |       |      |            |     |     |       |   |

SPM 1 73 SPM 2 68 FLOW RATE 706

## ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|-----|------------|-------------|-----------------|---------------|--------------|------------------|
| HWDC/OH         | 0.274        | 47  | 61         | 115         | LAMINAR         | 1             | 61           | 6.8              |
| HWDP/OH         | 0.398        | 33  | 42         | 108         | LAMINAR         | 0             | 42           | 1.4              |
| DP/OH           | 0.398        | 419 | 42         | 108         | LAMINAR         | 0             | 42           | 17.1             |
| DP/CSG          | 0.427        | 307 | 39         | 107         | LAMINAR         | ŋ             | 39           | 10.6             |
| DP/RIS          | 1.325        | 98  | 13         | 97          | LAMINAR         | 0             | 13           | 0.3              |
| TOTAL           | VOLUME       | 905 |            |             | TOTAL           | PRESSURE      | DROP         | 36.1             |

LAG: 53.8 MINUTES 3927 STROKES #1 AND 3675 STROKES #2

## BIT HYDRAULICS:

PRESSURE DROP 1576.9 HHP 650 IMPACT FORCE 1473 % SURFACE PRESSURE 53.2 HHP/sqin 5.51 JET VELOCITY 133

## PRESSURE BREAKDOWN:

SURFACE 48.0 STRING 969.5 BIT 1576.9 ANNULUS 36.1

TOTAL 2630.5 PUMP PRESSURE 2963.6 % DIFFERENCE 11.2

| BOTTON MOLE PRESSURES. | DENS:               | ITY                                                                       | PRESSURE                    |
|------------------------|---------------------|---------------------------------------------------------------------------|-----------------------------|
|                        | INU                 | ITS                                                                       | UNITS                       |
| CIRCULATING:           | ECD 9<br>P MARGIN 0 | .20 HYDROSTATIC<br>.30 CIRCULATING<br>.20 ESTIMATED SW<br>.00 BOTTOM HOLE | PRESSURE 3331.9<br>JAB 72.1 |

# HYDRAULICS ANALYSIS PROGRAM

| HYDRAULICS | CALCULATIONS | AT DEPTH | 2200.0 6 | AND TUD | 2199.9 |
|------------|--------------|----------|----------|---------|--------|
|            |              |          |          |         |        |

SPM 1 72 SPM 2 68 FLOW RATE 701

#### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF FLOW | SLIP A<br>VEL | SCEND | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|--------------|---------------|-------|------------------|
| HWDC/OH         | 0,274        | 47   | 61         | 104         | LAMINAR      | 1             | 6.0   | 5.8              |
| HWDPZOH         | 0.398        | 33   | 42         | 95          | LAMINAR      | 0             | 42    | 1.1              |
| DP/OH           | 0.398        | 459  | 42         | 95          | L.AMINAR     | 0             | 42    | 15.1             |
| DP/CSG          | 0.427        | 307  | 39         | 94          | LAMINAR      | 0             | 39    | 8.5              |
| DP/RIS          | 1.325        | 98   | 13         | 82          | LAMINAR      | 0             | 13    | 0.2              |
| TOTAL           | . VOLUME     | 944  |            |             | TOTAL        | PRESSURE      | DROP  | 30.7             |

LAG: 56.6 MINUTES 4091 STROKES #1 AND 3845 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1552.3 HHP 635 IMPACT FORCE 1450 % SURFACE PRESSURE 53.1 HHP/sqin 5.38 JET VELOCITY 132

## PRESSURE BREAKDOWN:

SURFACE 48.6 STRING 1009.8 BIT 1552.3 ANNULUS 30.7

TOTAL 2641.4 PUMP PRESSURE 2923.3 % DIFFERENCE 9.6

#### BOTTOM HOLE PRESSURES:

|                                   |                  | UMT 12       |                                           | CHATIS                   |
|-----------------------------------|------------------|--------------|-------------------------------------------|--------------------------|
| NOT CIRCULATING: MUD CIRCULATING: | WEIGHT<br>ECD    | 9.20<br>9.28 | HYDROSTATIC PRESSURE CIRCULATING PRESSURE | 3452.8<br>3483. <b>5</b> |
| PULLING OUT: TRIP EFFECTIVE MUD   | MARGIN<br>WEIGHT | 0.16<br>9.04 | ESTIMATED SWAB<br>BOTTOM HOLE PRESSURE    | 61.4<br>3391.4           |

DENSITY

1131770

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 2300.0 AND TVD 2299.8

SPM 1 73 SPM 2 67 FLOW RATE 700

## ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|-----|------------|-------------|-----------------|---------------|--------------|------------------|
| HWDC/OH         | 0.274        | 47  | 61         | 104         | LAMINAR         | 1             | 60           | 5.8              |
| HWDP/OH         | 0.398        | 33  | 42         | 95          | LAMINAR         | 0             | 41           | 1.1              |
| DP/OH           | 0,398        | 499 | 42         | 95          | LAMINAR         | 0             | 41           | 16.4             |
| DP/CSG          | 0.427        | 307 | 39         | 94          | LAMINAR         | 0             | 39           | 8.5              |
| DP/RIS          | 1.325        | 98  | 13         | 82          | LAMINAR         | 0             | 13           | 0.2              |
| TOTAL           | . VOLUME     | 984 |            |             | TOTAL           | PRESSURE      | DROP         | 32.0             |

LAG: 59.1 MINUTES 4297 STROKES #1 AND 3974 STROKES #2

## BIT HYDRAULICS:

PRESSURE DROP 1547.1 HHP 631 IMPACT FORCE 1445 % SURFACE PRESSURE 52.3 HHP/sqin 5.36 JET VELOCITY 132

# PRESSURE BREAKDOWN:

SURFACE 48.4 STRING 1034.6 BIT 1547.1 ANNULUS 32.0

TOTAL 2662.1 PUMP PRESSURE 2958.9 % DIFFERENCE 10.0

#### BOTTOM HOLE PRESSURES:

|                                                  |                                                   | UNITS                        |                                                                                        | UNTIA                              |
|--------------------------------------------------|---------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------|------------------------------------|
| NOT CIRCULATING:<br>CIRCULATING:<br>PULLING OUT: | MUD WEIGHT<br>ECD<br>TRIP MARGIN<br>UF MUD WEIGHT | 9.20<br>9.28<br>0.16<br>9.04 | HYDROSTATIC PRESSURE<br>CIRCULATING PRESSURE<br>ESTIMATED SWAB<br>BOTTOM HOLE PRESSURE | 3609.7<br>3641.7<br>64.0<br>3545.7 |

DENSITY

HYDRAULICS ANALYSIS PROGRAM

## HYDRAULICS CALCULATIONS AT DEPTH 2400.0 AND TVD 2399.8

SPM 1 72 SPM 2 66 FLOW RATE 693

#### ANNULAR HYDRAULICS:

| ANNULUS | VOLZ     |      | ANN | CRIT | TYPE OF  | SLIP A   | SCEND | PRESSURE |
|---------|----------|------|-----|------|----------|----------|-------|----------|
| TYPE    | UNIT     | AOT" | VEL | VEL. | FLOW     | VEL      | VEI   | DROP     |
| HWDC/OH | 0.274    | 47   | 60  | 104  | L.AMINAR | 1        | 59    | 5.8      |
| HWDP/OH | 0.398    | 33   | 41  | 95   | LAMINAR  | 0        | 41    | 1.1      |
| DP/OH   | 0.398    | 539  | 41  | 95   | LAMINAR  | 0        | 41    | 17.7     |
| DP/CSG  | 0.427    | 307  | 39  | 94   | LAMINAR  | 0        | 38    | 8.5      |
| DP/RIS  | 1.325    | 98   | 12  | 82   | LAMINAR  | 0        | 12    | 0.2      |
| TOTAL   | _ VOLUME | 1024 |     |      | TOTAL    | PRESSURE | DROP  | 33.2     |

LAG: 62.0 MINUTES 4482 STROKES #1 AND 4124 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1519.1 HHP 614 IMPACT FORCE 1419 % SURFACE PRESSURE 51.4 HHP/sqin 5.21 JET VELOCITY 131

PRESSURE BREAKDOWN:

SURFACE 47.6

STRING 1045.2

BIT 1519.1 ANNULUS 33.2

TOTAL 2645.1 PUMP PRESSURE 2955.0 % DIFFERENCE 10.5

BOTTOM HOLE PRESSURES:

PRESSURE DENSITY UNITS UNITS MUD WEIGHT 9,20 HYDROSTATIC PRESSURE 3766.6 NOT CIRCULATING: 3799.7 ECD 9.28 CIRCULATING PRESSURE CIRCULATING: PULLING OUT: TRIP MARGIN 0.16 ESTIMATED SWAB 66.3 EFFECTIVE MUD WEIGHT 9.04 BOTTOM HOLE PRESSURE 3700.2

## HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 2500.0 AND TVD 2499.8

SPM 1 66 SPM 2 70 FLOW RATE 683

# ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|---------------|-------|------------------|
| HWDC/OH         | 0.274        | 47   | 59         | 107         | IAMINAR         | 1             | 59    | 5.9              |
| HWDP/OH         | 0.398        | 33   | 41         | 100         | LAMINAR         | 0             | 40    | 1.2              |
| DP/OH           | 0.398        | 579  | 41         | 100         | LAMINAR         | 0             | 40    | 20.5             |
| DP/CSG          | 0.427        | 307  | 38         | 100         | LAMINAR         | 0             | 38    | 9.2              |
| DP/RIS          | 1.325        | 98   | 12         | 91          | LAMINAR         | 0             | 12    | 0.2              |
| TOTAL           | VOLUME       | 1064 |            |             | TOTAL           | PRESSURE      | DROP  | 37.0             |

LAG: 65.4 MINUTES 4346 STROKES #1 AND 4595 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1475.1 HHP 588 IMPACT FORCE 1377 Z SURFACE PRESSURE 51.3 HHP/sqin 4.99 JET VELOCITY 129

# PRESSURE BREAKDOWN:

SURFACE 43.8 STRING 986.2 BIT 1475.1 ANNULUS 37.0

TOTAL 2542.1 PUMP PRESSURE 2876.4 % DIFFERENCE 11.6

|              | DENSITY<br>UNITS | PR                | UNITS                              |
|--------------|------------------|-------------------|------------------------------------|
| CIRCULATING: |                  | 11121424111111111 | 3923.6<br>3960.5<br>74.0<br>3849.6 |

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 2600.0 AND TVD 2599.8

SPM 1 69 SPM 2 69 FLOW RATE 689

## ANNULAR HYDRAULICS:

| ANNULUS | VOL/      | VOL  | ANN | CRIT | TYPE OF | SLIP A   | SCEND | PRESSURE |
|---------|-----------|------|-----|------|---------|----------|-------|----------|
| TYPE    | UNIT      |      | VEL | VEL  | FLOW    | VEL      | VEL   | DROP     |
| HWDC/OH | 0.274     | 47   | 60  | 107  | LAMINAR | 1        | 59    | 5.9      |
| HWDP/OH | 0.398     | 33   | 41  | 100  | LAMINAR | 0        | 41    | 1.2      |
| DP/OH   | 0.398     | 618  | 41  | 100  | LAMINAR | 0        | 41    | 22.0     |
| DP/CSG  | 0.427     | 307  | 38  | 100  | LAMINAR | 0        | 38    | 9.3      |
| DP/RIS  | 1.325     | 98   | 12  | 91   | LAMINAR | 0        | 12    | 0.2      |
| TOTAL   | _ VOL.UME | 1104 |     |      | TOTAL   | PRESSURE | DROP  | 38.5     |

LAG: 67.3 MINUTES 4619 STROKES #1 AND 4657 STROKES #2

## BIT HYDRAULICS:

PRESSURE DROP 1500.7 HHP 603 IMPACT FORCE 1401 % SURFACE PRESSURE 51.7 HHP/sqin 5.12 JET VELOCITY 130

### PRESSURE BREAKDOWN:

SURFACE 44.5 STRING 1027.3 BIT 1500.7 ANNULUS 38.5 TOTAL 2611.0 PUMP PRESSURE 2900.9 % DIFFERENCE 10.0

| BOLIOW HATE EXERPORER: | DENSITY<br>UNITS                                      | PRESSURE<br>UNITS                                                                                                |
|------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| CIRCULATING:           | WEIGHT 9.20<br>ECD 9.29<br>MARGIN 0.17<br>WEIGHT 9.03 | HYDROSTATIC PRESSURE 4080.5<br>CIRCULATING PRESSURE 4119.0<br>ESTIMATED SWAB 77.0<br>BOTTOM HOLE PRESSURE 4003.5 |

# HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 2700.0 AND TVD 2699.8

SPM 1 69 SPM 2 68 FLOW RATE 687

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF FLOW | SLIP 6<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|--------------|---------------|---------------|------------------|
| HWDC/OH         | 0.274        | 47   | 60         | 111         | LAMINAR      | 1             | 59            | 6.2              |
| HWDP/OH         | 0.398        | 33   | 41         | 103         | LAMINAR      | 0             | 41            | 1.2              |
| DP/OH           | 0.398        | 658  | 41         | 103         | LAMINAR      | 0             | 41            | 24.4             |
| DP/CSG          | 0.427        | 307  | 38         | 102         | LAMINAR      | 0             | .38           | 9.6              |
| DP/RIS          | 1.325        | 98   | 12         | 92          | LAMINAR      | 0             | 12            | 0.2              |
| TOTAL           | . VOLUME     | 1144 | •          |             | TOTAL        | PRESSURE      | EDROP         | 41.7             |

LAG: 69.9 MINUTES 4825 STROKES #1 AND 4785 STROKES #2

#### BIT HYDRAULICS:

PRESSURE DROP 1490.7 HHP 597 IMPACT FORCE 1392 % SURFACE PRESSURE 49.1 HHP/sqin 5.07 JET VELOCITY 129

## PRESSURE BREAKDOWN:

SURFACE 45.6 STRING 1079.4 BIT 1490.7 ANNULUS 41.7

TOTAL 2657.5 PUMP PRESSURE 3035.0 % DIFFERENCE 12.4

|              | DENSITY<br>UNITS                        | PRESSURE<br>UNITS                                                                                                |
|--------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|
| CIRCULATING: | 111111111111111111111111111111111111111 | HYDROSTATIC PRESSURE 4237.5<br>CIRCULATING PRESSURE 4279.2<br>ESTIMATED SWAB 83.5<br>BOTTOM HOLE PRESSURE 4154.0 |

HYDRAULICS ANALYSIS PROGRAM

## HYDRAULICS CALCULATIONS AT DEPTH 2800.0 AND TVD 2799.8

SPM 1 68 SPM 2 68 FLOW RATE, 680

#### ANNULAR HYDRAULICS:

| ANNULUS | VOLZ     |      | ANN | CRIT | TYPE OF | SLIP A   | SCEND | PRESSURE |
|---------|----------|------|-----|------|---------|----------|-------|----------|
| TYPE    | TINU     | VOL. | VEL | VEL  | FL.OW   | VEL.     | VEL   | DROP     |
| HWDC/OH | 0.274    | 47   | 59  | 131  | LAMINAR | 1        | 59    | 8.3      |
| HWDP/OH | 0.398    | 33   | 41  | 122  | LAMINAR | 0        | 40    | 1.6      |
| DP/OH   | 0,398    | 698  | 41  | 122  | LAMINAR | 0        | 40    | 34.8     |
| DP/CSG  | 0.427    | 307  | 38  | 121  | LAMINAR | 0        | 38    | 12.9     |
| DP/RIS  | 1.325    | 98   | 12  | 109  | LAMINAR | 0        | 12    | 0.3      |
| TOTAL   | _ VOLUME | 1183 |     |      | TOTAL   | PRESSURE | DROP  | 58.0     |

LAG: 73.1 MINUTES 4963 STROKES #1 AND 4982 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1459.8 HHP 579 IMPACT FORCE 1363 % SURFACE PRESSURE 48.2 HHP/sqin 4.91 JET VELOCITY 128

PRESSURE BREAKDOWN:

SURFACE 47.1 STRING 1140.9 BIT 1459.8 ANNULUS 58.0

TOTAL 2705.8 PUMP PRESSURE 3026.4 % DIFFERENCE 10.6

BOTTOM HOLE PRESSURES:

UNITS UNITS HYDROSTATIC PRESSURE 4394,4 NOT CIRCULATING: 9.20 MUD WEIGHT 4452.3 CIRCULATING: 9.32 CIRCULATING PRESSURE ECD PULLING OUT: TRIP MARGIN 0.24 ESTIMATED SWAB 115.9 EFFECTIVE MUD WEIGHT 8.96 BOTTOM HOLE PRESSURE 4278.5

DENSITY

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 2900.0 AND TVD 2899.8

SPM 1 69 SPM 2 68 FLOW RATE 683

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF FLOW | SLIP A<br>VEL | SCEND | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|--------------|---------------|-------|------------------|
| HWDC/OH         | 0.274        | 47   | 59         | 123         | LAMINAR      | 1             | 59    | 7.5              |
| HWDP/OH         | 0,398        | 33   | 41         | 115         | L.AMINAR     | 0             | 41    | 1.5              |
| DP/OH           | 0.398        | 738  | 41         | 115         | LAMINAR      | 0             | 41    | 33.3             |
| DP/CSG          | 0.427        | 307  | 38         | 114         | LAMINAR      | 0             | 38    | 11.7             |
| DP/RIS          | 1.325        | 98   | 12         | 103         | LAMINAR      | 0             | 12    | 0.3              |
| TOTAL           | L VOLUME     | 1223 |            |             | TOTAL        | PRESSURE      | DROP  | 54.3             |

LAG: 75.2 MINUTES 5172 STROKES #1 AND 5108 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1475.5 HHP 588 IMPACT FORCE 1378 % SURFACE PRESSURE 49.6 HHP/sqin 4.99 JET VELOCITY 129

## PRESSURE BREAKDOWN:

SURFACE 46.4 STRING 1151.9 BIT 1475.5 ANNULUS 54.3

TOTAL 2728.1 PUMP PRESSURE 2974.9 % DIFFERENCE 8.3

### BOTTOM HOLE PRESSURES:

|                  |        | •••    | UNITS |                      | UNITS  |
|------------------|--------|--------|-------|----------------------|--------|
| NOT CIRCULATING: | MUD    | WEIGHT | 9.20  | HYDROSTATIC PRESSURE | 4551.3 |
| CIRCULATING:     |        | ECD    | 9.31  | CIRCULATING PRESSURE | 4605.6 |
| PULLING OUT:     | TRIP   | MARGIN | 0.22  | ESTIMATED SWAB       | 108.5  |
| FFFCTI           | מווא א | WEIGHT | 8.98  | BOTTOM HOLE PRESSURE | 4442.8 |

DENSITY

#### CORE LAB \*\*\* \*\*\* \*\*\* \*\*\* \*\*\* \*\*\* \*\*\*

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 3000.0 AND TVD 2999.7

SPM 1 SPM 2 67 FLOW RATE 670 67

## ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL  | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP (<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|---------------|---------------|------------------|
| HWDC/OH         | 0.274        | 47   | 58         | 149         | LAMINAR         | 0             | 58            | 10.4             |
| HWDP/OH         | 0.398        | 33   | 40         | 140         | LAMINAR         | 0             | 40            | 2.1              |
| DP/OH           | 0.398        | 778  | 40         | 140         | LAMINAR         | 0             | 40            | 49.9             |
| DP/CSG          | 0.427        | 307  | 37         | 140         | LAMINAR         | 0             | 37            | 16.7             |
| DP/RIS          | 1.325        | 98   | 12         | 128         | I.AMINAR        | 0             | 12            | 0,4              |
| TOTAL           | L VOLUME     | 1263 |            |             | TOTAL           | PRESSUR       | E DROP        | 79.6             |

LAG: 79.1 MINUTES 5337 STROKES #1 AND 5277 STROKES #2

### BIT HYDRAULICS:

IMPACT FORCE 556 1327 HHP PRESSURE DROP 1420.8 HHP/sqin 4.72 JET VELOCITY % SURFACE PRESSURE 47.0 126

#### PRESSURE BREAKDOWN:

SURFACE 46.9 1191.3 STRING 1420.8 BIT ANNULUS 79.6

TOTAL 2738.7 PUMP PRESSURE 3022.7 % DIFFERENCE 9.4

## BOTTOM HOLE PRESSURES:

|                                   |                      | SITY         | PRESSURE<br>UNITS                                          |
|-----------------------------------|----------------------|--------------|------------------------------------------------------------|
| NOT CIRCULATING: MUD CIRCULATING: | VV ( a. ii. w/ ( ) i | 9.20<br>9.36 | HYDROSTATIC PRESSURE 4708.1<br>CIRCULATING PRESSURE 4787.8 |
| PULLING OUT: TRIP EFFECTIVE MUD   |                      | 0.31<br>8.89 | ESTIMATED SWAB 159.3<br>BOTTOM HOLE PRESSURE 4548.9        |

# (c). COMPUTER DATA LISTING : LIST A

| INTERVAL | All depth records (data not averaged)                                                                                                                       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH    | Well depth, in metres                                                                                                                                       |
| ROP      | Rate of penetration, in metres/hour                                                                                                                         |
| WOB      | Weight-on-bit, in thousands of pounds                                                                                                                       |
| RPM      | Rotary speed, in revolutions per minute                                                                                                                     |
| MW       | Mud weight in, in pounds per gallon                                                                                                                         |
| 'dc'     | Calculated 'd' exponent, corrected for variations in mud weight in, using a correction factor of 10 ppg.                                                    |
| HOURS    | Cumulative bit hours. The number of hours that the bit has actually been on bottom, recorded in decimal hours.                                              |
| TURNS    | Cumulative bit turns. The number of turns made by the bit, while actually on bottom                                                                         |
| ICOST    | Incremental cost per metre, calculated from the rate of penetration, in Australian dollars.                                                                 |
| CCOST    | Cumulative cost per metre, calculated from the drilling time, in A dollars.                                                                                 |
| PP       | Pore pressure gradient, in equivalent pounds per gallon. The pressure exerted by the fluid in the pore spaces of the formation.                             |
| FG       | Fracture gradient, in equivalent pounds per gallon. The pressure required to fracture the formation, calculated by the DRILL programusing Eaton's equation. |
|          | It is dependent on the pore pressure, the overburden gradient and the matrix stress. this value may be modified by leak-off information.                    |

|   | BIT NUMBE<br>HTC OSC3A<br>COST<br>TOTAL HOU                          | J&26"1                                                                       | 1<br>0.00<br>3.28                                    | S                                                        | ADC CODE<br>IZE<br>RIP TIME<br>OTAL TURNS                                                                | 111<br>26.000<br>2.4<br>13555                                                | NO2<br>BIT                                                                          | TERVAL<br>ZZLES<br>T RUN<br>NDITION                                       |                                                                                                  | .0- 209.0<br>18 18 18<br>135.0<br>B5 G0.000                                                  |
|---|----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|   | DEPTH                                                                | ROP                                                                          | MOB                                                  | RPM                                                      | MW "d"c                                                                                                  | HOURS                                                                        | TURNS                                                                               | icost                                                                     | CCOST                                                                                            | PP FG                                                                                        |
|   | 75.0<br>80.0<br>85.0                                                 | 5.1<br>21.7<br>42.8                                                          | 8.6<br>1.0<br>1.0                                    | 72<br>38<br>48                                           | 8.9 1.13<br>8.6 0.53<br>8.6 0.46                                                                         |                                                                              | 618                                                                                 | 831<br>196<br>99                                                          | 11424<br>2067<br>1173                                                                            | 8.4 14.2<br>8.4 14.2<br>8.4 14.2                                                             |
|   | 90.0<br>95.0<br>100.0<br>105.0<br>110.0<br>120.0<br>125.0<br>130.0   | 21.3<br>23.8<br>35.9<br>50.5<br>63.8<br>53.9<br>30.1<br>18.2<br>15.1<br>74.7 | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | 53<br>61<br>63<br>82<br>82<br>83<br>82<br>83<br>79       | 8.6 0.58<br>8.6 0.58<br>8.6 0.52<br>8.6 0.47<br>8.6 0.50<br>8.6 0.59<br>8.6 0.67<br>8.6 0.76<br>8.6 0.53 | 0.72<br>0.93<br>1.07<br>1.17<br>1.25<br>1.34<br>1.51<br>1.78<br>2.11<br>2.18 | 2480<br>2987<br>3364<br>3747<br>4202<br>5033<br>6385                                | 178.36<br>118.28<br>83.98<br>66.44<br>78.69<br>140.90<br>232.44<br>280.61 | 591.40<br>509.56<br>448.02<br>402.98<br>374.49                                                   | 8.4 14.2<br>8.4 14.3<br>8.4 14.3<br>8.4 14.3<br>8.4 14.3<br>8.4 14.4<br>8.4 14.4<br>8.4 14.4 |
|   | 140.0<br>145.0<br>150.0<br>155.0<br>160.0<br>170.0<br>170.0<br>180.0 | 87.0<br>90.0<br>32.7<br>65.7<br>94.3<br>51.7<br>78.6<br>72.0<br>87.0<br>46.9 | 1.8<br>2.0<br>2.1<br>2.3<br>2.3<br>2.9<br>2.4<br>1.7 | 84<br>78<br>79<br>82<br>50<br>81<br>80<br>81<br>78<br>85 | 8.6 0.47<br>8.6 0.46<br>8.6 0.52<br>8.6 0.38<br>8.6 0.57<br>8.6 0.52<br>8.6 0.53<br>8.6 0.53<br>8.6 0.53 | 2.24<br>2.29<br>2.45<br>2.52<br>2.58<br>2.67<br>2.74<br>2.81<br>2.86<br>2.97 | 8639<br>9899<br>9627<br>10002<br>10162<br>10430<br>10936<br>11272<br>11542<br>12084 | 47.12<br>129.59<br>64.56<br>44.97<br>81.99<br>53.95<br>58.90<br>48.77     | 307.87<br>289.51<br>278.99<br>265.75<br>252.92<br>243.52<br>233.65<br>225.00<br>216.69<br>211.00 | 8.4 14.6                                                                                     |
|   | 190.0<br>195.0<br>200.0<br>205.0<br>209.0                            | 93.8<br>104.7<br>57.4<br>60.4<br>95.7                                        | 1.7<br>3.0<br>3.1<br>2.5<br>3.0                      | 75<br>71<br>79<br>83<br>80                               | 8.6 0.44<br>8.6 0.45<br>8.6 0.57<br>8.6 0.55<br>8.6 0.48                                                 | 3.02<br>3.07<br>3.16<br>3.24<br>3.28                                         | 12325<br>12530<br>12940<br>13354<br>13555                                           | 40.53<br>73.93<br>70.21                                                   | 203.86<br>197.11<br>192.22<br>187.56<br>183.32                                                   | 8.4 14.7<br>8.4 14.7<br>8.4 14.7<br>8.4 14.7<br>8.4 14.7                                     |
|   | BIT NUMBE<br>HTC OSC3A<br>COST<br>TOTAL HOL                          | 1J<br>444                                                                    | 12.00                                                | S                                                        | ADC CODE<br>CIZE<br>RIP TIME<br>COTAL TURNS                                                              | 17,500<br>3,7                                                                | NOZ<br>BIJ                                                                          | ZZLES<br>F RUN                                                            |                                                                                                  | .0- 806.0<br>20 20 20<br>597.0<br>B2 G0.000                                                  |
|   | DEPTH                                                                | ROP                                                                          | MOB                                                  | RPM                                                      | MW "d"c                                                                                                  | HOURS                                                                        | TURNS                                                                               | ICOST                                                                     | CCOST                                                                                            | PP FG                                                                                        |
| • | 210.0<br>215.0<br>220.0<br>225.0<br>230.0                            | 94.7<br>145.1<br>236.8<br>189.5<br>174.7                                     | 3.0<br>3.1<br>2.1<br>2.9<br>3.7                      | 84<br>81<br>81<br>78<br>83                               | 8.6 0.52<br>8.6 0.41<br>8.6 0.33<br>8.6 0.38<br>8.6 0.42                                                 | 0.01<br>0.04<br>0.06<br>0.09<br>0.12                                         | 53<br>200<br>302<br>425<br>568                                                      |                                                                           | 20178<br>3384<br>1854<br>1282<br>982.37                                                          | 8.4 14.7<br>8.4 14.8<br>8.4 14.8<br>8.4 14.8<br>8.4 14.8                                     |

| DEPTH                                                                                  | ROP                                                                                    | wor                                                                         | RPM                                                      | MW                                     | "d "c                                                                | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                  | CCOST                                                                                            | PP                                     | FG                                                           |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 235.0<br>240.0<br>245.0<br>250.0<br>255.0<br>260.0<br>270.0<br>270.0<br>280.0          | 98.4<br>37.0<br>88.2<br>68.4<br>110.2<br>214.3<br>58.8<br>195.7<br>168.2<br>139.7      | 4.9<br>2.5<br>3.5<br>6.2<br>5.6<br>8.1<br>7.8<br>4.8                        | 78<br>84<br>85<br>125<br>150<br>150<br>150<br>148<br>140 | 8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6 | 0.55<br>0.68<br>0.55<br>0.75<br>0.67<br>0.57<br>0.82<br>0.58         | 0.17<br>0.30<br>0.36<br>0.43<br>0.48<br>0.50<br>0.59<br>0.61<br>0.64         | 807<br>1490<br>1778<br>2325<br>2733<br>2943<br>3708<br>3938<br>4203<br>4503            | 114.74<br>48.06<br>61.97<br>38.48<br>19.79<br>72.10<br>21.68<br>25.21  | 801.74<br>690.94<br>601.65<br>535.83<br>481.77<br>436.48<br>403.95<br>372.61<br>346.29<br>324.05 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.8<br>14.9<br>14.9<br>14.9<br>14.9<br>15.0<br>15.0         |
| 285.0<br>290.0<br>295.0<br>300.0<br>305.0<br>310.0<br>315.0<br>320.0<br>325.0<br>330.0 | 191.5<br>107.8<br>136.4<br>176.5<br>183.7<br>160.7<br>125.0<br>181.8<br>180.0<br>110.9 | 6.5<br>4.8<br>7.2<br>7.8<br>8.2<br>4.3<br>7.8<br>7.4                        | 140<br>140<br>140<br>140<br>140<br>140<br>140<br>140     | 8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6 | 0.56<br>0.64<br>0.64<br>0.59<br>0.60<br>0.62<br>0.60<br>0.59<br>0.60 | 0.70<br>0.75<br>0.79<br>0.82<br>0.84<br>0.87<br>0.91<br>0.91                 | 4723<br>5112<br>5428<br>5658<br>5887<br>6148<br>6484<br>6715<br>6949<br>7328           | 39.35<br>31.10<br>24.03<br>23.09<br>26.39<br>33.93<br>23.33<br>23.56   | 304.18<br>287.84<br>272.91<br>259.23<br>246.94<br>236.02<br>226.49<br>217.33<br>208.98<br>201.93 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.2<br>15.2<br>15.2 |
| 335.0<br>340.0<br>345.0<br>350.0<br>355.0<br>360.0<br>345.0<br>375.0<br>380.0          | 117.3<br>134.3<br>75.6<br>33.0<br>31.9<br>81.1<br>77.3<br>63.8<br>79.6<br>84.1         | 8.5<br>6.8<br>5.2<br>3.9<br>4.6<br>5.8<br>6.0<br>8.8<br>9.0                 | 140<br>140<br>140<br>140<br>140<br>140<br>140<br>140     | 8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6 | 0.70<br>0.64<br>0.73<br>0.85<br>0.89<br>0.73<br>0.74<br>0.84         | 1.06<br>1.09<br>1.16<br>1.31<br>1.47<br>1.53<br>1.59<br>1.67<br>1.79         | 7686<br>7998<br>8554<br>9828<br>11143<br>11661<br>12204<br>12862<br>13390<br>13889     | 31.57<br>56.08<br>128.64<br>132.77<br>52.31<br>54.90<br>66.44<br>53.25 | 195.35<br>189.10<br>184.21<br>182.24<br>180.54<br>176.30<br>172.41<br>169.11<br>165.62<br>162.26 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.2<br>15.3<br>15.3<br>15.3<br>15.4<br>15.4<br>15.4         |
| 385.0<br>390.0<br>395.0<br>400.0<br>405.0<br>410.0<br>415.0<br>425.0<br>430.0          | 73.5<br>76.6<br>56.6<br>17.8<br>76.3<br>43.4<br>102.3<br>91.4                          | 11.6<br>12.1<br>10.7<br>11.4<br>13.8<br>11.3<br>10.4<br>10.0<br>8.8<br>11.2 | 140<br>140<br>140<br>140                                 | 8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6 | 0.85<br>0.86<br>0.83<br>0.91<br>1.24<br>0.84<br>0.76<br>0.75         | 1.86<br>1.93<br>1.99<br>2.08<br>2.36<br>2.43<br>2.54<br>2.59<br>2.65         | 14444<br>15016<br>15564<br>16307<br>18665<br>19216<br>20184<br>20595<br>21055<br>21566 | 57.72<br>55.37<br>74.96<br>238.16<br>55.60<br>97.78<br>41.47<br>46.42  | 159.24<br>156.44<br>153.72<br>151.66<br>153.86<br>151.42<br>150.12<br>147.54<br>145.20<br>143.08 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.4<br>15.5<br>15.5<br>15.5<br>15.5<br>15.6<br>15.6         |
| 435.0<br>440.0<br>445.0<br>450.0<br>455.0<br>460.0<br>465.0<br>470.0<br>480.0          | 92.8<br>75.2<br>52.0<br>43.2<br>66.7<br>50.3<br>101.7                                  | 13.6<br>13.7<br>11.8<br>11.7<br>9.5<br>11.6<br>13.2<br>10.5<br>13.6         | 140<br>140<br>140<br>140<br>140<br>140<br>140            | 8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6 | 0.89<br>0.83<br>0.85<br>0.94<br>0.94<br>0.88<br>0.97<br>0.76<br>0.95 | 2.78<br>2.83<br>2.90<br>2.99<br>3.11<br>3.19<br>3.29<br>3.33<br>3.42<br>3.50 | 22149<br>22602<br>23160<br>23968<br>24941<br>25571<br>26406<br>26819<br>27570<br>28240 | 45.71<br>56.43<br>81.52<br>98.25<br>63.62<br>84.35<br>41.70<br>75.87   | 141.22<br>139.15<br>137.40<br>136.24<br>135.47<br>134.04<br>133.07<br>131.32<br>130.28<br>129.12 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.6<br>15.7<br>15.7<br>15.7<br>15.7<br>15.7<br>15.8<br>15.8 |

30 S

| DEPTH                                                                                  | ROP W                                                                                                      | ов крм                                                             | MW "d"c                                                                                                              | HOURS                                                                        | TURNS                                                                                  | icost                                                                       | ccost                                                                                            | рþ                                     | FG                                                                   |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|
| 485.0<br>490.0<br>495.0<br>500.0<br>515.0<br>515.0<br>520.0<br>525.0                   | 60.0 14<br>56.4 15<br>33.5 11<br>48.8 16<br>71.1 14<br>54.4 12<br>59.2 13<br>51.6 14<br>48.8 13<br>46.6 15 | .4 140<br>.3 140<br>.6 140<br>.3 140<br>.1 140<br>.5 140<br>.1 140 | 8.6 0.94<br>8.6 0.97<br>8.6 1.04<br>8.7 1.02<br>8.7 0.92<br>8.7 0.92<br>8.7 0.92<br>8.8 0.96<br>8.8 0.95<br>8.9 0.99 | 3.59<br>3.68<br>3.82<br>3.93<br>4.00<br>4.09<br>4.17<br>4.27<br>4.37<br>4.48 | 28940<br>29684<br>30937<br>31797<br>32388<br>33160<br>33869<br>34684<br>35545<br>36445 | 75.16<br>126.52<br>86.82<br>59.61<br>77.99<br>71.63<br>82.23<br>86.94       | 128.06<br>127.12<br>127.11<br>126.42<br>125.29<br>124.50<br>123.64<br>122.97<br>122.40<br>121.91 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.8<br>15.8<br>15.8<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9         |
| 535.0<br>540.0<br>545.0<br>550.0<br>555.0<br>560.0<br>570.0<br>575.0                   | 63.4 16<br>76.6 15<br>78.3 15<br>84.8 18<br>43.5 18<br>56.1 16<br>38.4 15<br>33.5 14<br>32.2 14<br>39.6 16 | .7 140<br>.6 140<br>.3 140<br>.1 140<br>.3 140<br>.8 140<br>.9 140 | 8.9 0.93<br>8.9 0.87<br>8.9 0.86<br>8.9 0.87<br>8.9 1.04<br>8.9 1.04<br>8.9 1.06<br>8.9 1.07<br>8.9 1.05             | 4.56<br>4.62<br>4.69<br>4.75<br>4.85<br>5.23<br>5.23<br>5.51                 | 42750<br>44054                                                                         | 55.37<br>54.19<br>50.03<br>97.47<br>75.63<br>110.50                         | 117.22                                                                                           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.0<br>16.0<br>16.0<br>16.0<br>16.1<br>16.1<br>16.1<br>16.1         |
| 585.0<br>590.0<br>595.0<br>600.0<br>605.0<br>610.0<br>615.0<br>620.0<br>625.0          | 55.7 14<br>52.9 16<br>42.5 16<br>37.9 16<br>32.7 18<br>40.4 20<br>35.9 21<br>37.7 19<br>43.6 19<br>45.9 21 | .9 140<br>.0 140<br>.5 140<br>.1 140<br>.4 140<br>.6 140<br>.4 140 | 8.9 0.94<br>8.9 0.98<br>8.9 1.02<br>8.9 1.06<br>8.9 1.12<br>8.9 1.14<br>8.9 1.10<br>8.9 1.05<br>8.9 1.07             | 5.60<br>5.70<br>5.81<br>5.95<br>6.10<br>6.22<br>6.36<br>6.49<br>6.61<br>6.72 | 50045<br>51083<br>52252<br>53365                                                       | 80.21<br>99.90<br>111.92<br>129.59<br>104.85<br>118.04<br>112.39<br>97.31   | 116.73<br>116.26<br>116.04<br>115.99<br>116.16<br>116.02<br>116.05<br>116.00<br>115.78<br>115.50 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.1<br>16.2<br>16.2<br>16.2<br>16.2<br>16.2<br>16.2<br>16.3<br>16.3 |
| 635.0<br>640.0<br>645.0<br>650.0<br>655.0<br>660.0<br>670.0<br>675.0<br>680.0          | 51.4 20<br>53.7 21<br>37.9 25<br>32.0 26<br>31.7 27<br>35.8 27<br>26.5 28<br>24.0 31<br>22.8 31<br>25.3 28 | .6 140<br>.9 140<br>.6 140<br>.2 140<br>.5 140<br>.6 140<br>.6 140 | 8.9 1.03<br>8.9 1.03<br>9.0 1.17<br>9.0 1.22<br>9.0 1.22<br>9.0 1.29<br>9.0 1.35<br>9.0 1.37<br>9.0 1.31             | 6.82<br>6.91<br>7.04<br>7.20<br>7.35<br>7.49<br>7.68<br>7.89<br>8.11         | 59263<br>60586<br>61760<br>63346<br>65099<br>66940                                     | 78.91<br>111.84<br>132.65<br>133.59<br>118.51<br>160.22<br>176.94<br>185.90 | 115.11<br>115.61                                                                                 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.3<br>16.3<br>16.3<br>16.4<br>16.4<br>16.4<br>16.4                 |
| 685.0<br>690.0<br>695.0<br>700.0<br>710.0<br>715.0<br>720.0<br>725.0<br>730.0<br>735.0 | 24.4 29<br>33.9 29<br>27.8 29<br>35.0 30<br>31.1 32<br>28.0 32<br>27.0 36<br>29.6 36<br>28.4 35<br>27.2 36 | .5 140<br>.8 140<br>.6 140<br>.6 140<br>.6 140<br>.7 140<br>.7 140 | 9.0 1.33<br>9.0 1.23<br>9.0 1.29<br>9.0 1.29<br>9.0 1.32<br>9.0 1.32<br>9.0 1.35<br>9.0 1.35<br>9.0 1.35             | 8.51<br>8.66<br>8.84<br>8.98<br>9.31<br>9.48<br>9.67<br>9.84<br>10.01        | 73074<br>74276<br>76980<br>78482<br>80038<br>81457<br>82934                            | 151.67<br>157.15<br>143.25                                                  | 118.22<br>118.57<br>118.60<br>118.96<br>119.28<br>119.65<br>119.88<br>120.16                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.6<br>16.6                 |

| DEPTH                                                                         | ROP                                                      | MOB                                          | RPM                                                 | ММ                                            | "d"c                                                 | HOURS                                                                         | TURNS                                                                                  | ICOST                                                    | CCOST                                                                        | рþ                                     | FG                                                   |
|-------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|-----------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|
| 740.0<br>745.0<br>750.0<br>755.0<br>760.0<br>770.0<br>775.0<br>780.0<br>785.0 | 25.5 3<br>23.2 3<br>30.7 3<br>27.6 3<br>28.8 3<br>30.8 3 | 34.6<br>35.8<br>34.0<br>35.0<br>39.7<br>38.9 | 140<br>1440<br>1445<br>1445<br>1445<br>1445<br>1445 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.35<br>1.32<br>1.38<br>1.40<br>1.32<br>1.36<br>1.37 | 10.38<br>10.55<br>10.74<br>10.96<br>11.12<br>11.30<br>11.48<br>11.64<br>11.83 | 86026<br>87406<br>87051<br>90889<br>92308<br>93887<br>95395<br>96805<br>98473<br>99949 | 166.13<br>182.78<br>138.30<br>153.93<br>147.02<br>137.52 | 121.01<br>121.43<br>121.99<br>122.14<br>122.43<br>122.64<br>122.78<br>123.12 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.6<br>16.7<br>16.7<br>16.7<br>16.7<br>16.7<br>16.7 |
| 790.0<br>795.0<br>800.0<br>805.0<br>806.0                                     | 28.7 3<br>26.7 3<br>23.0 3<br>31.9 3                     | 88.2<br>88.8<br>88.3                         |                                                     | 9.0<br>9.0<br>9.0                             | 1.38<br>1.41<br>1.45<br>1.34                         | 12.17<br>12.36<br>12.58<br>12.74<br>12.77                                     | 101465<br>103091<br>104983<br>106349<br>106641                                         | 147.73<br>158.57<br>184.48                               | 123.52<br>123.81<br>124.33<br>124.40                                         | 8.4<br>8.4<br>8.4                      | 16.8<br>16.8<br>16.8<br>16.8                         |

| BIT NUMBER 3 HTC X3A COST 2201.00 TOTAL HOURS 22.01                                                                                                                                                           | SIZE<br>TRIP TIME                                                                                                            | 114<br>12.250<br>5.7<br>196061                                               | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                                                                                                                                             | 806.0- 1751.0<br>16 16 18<br>945.0<br>T4 86 G0.000                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH ROP WOB                                                                                                                                                                                                 | RPM MW "d"c                                                                                                                  | HOURS                                                                        | TURNS ICOST                                                                                                                                                                             | CCOST PP FG                                                                                                                                                            |
| 807.0 24.0 29.3<br>808.0 24.8 27.6<br>809.0 12.7 29.2                                                                                                                                                         | 83 9.2 1.24                                                                                                                  | 0.06 '<br>0.10<br>0.17                                                       | 283 177<br>484 171<br>897 335                                                                                                                                                           | 26728 8.4 16.8<br>13449 8.4 16.8<br>9078 8.4 16.8                                                                                                                      |
| 810.0 20.4 28.1<br>811.0 16.7 28.5<br>812.0 17.2 29.6<br>813.0 19.7 28.7<br>814.0 20.5 24.1<br>815.0 22.4 30.5<br>816.0 20.9 31.0<br>817.0 16.4 27.5<br>818.0 23.2 29.4<br>819.0 25.2 31.7                    | 108 9.2 1.45<br>106 9.2 1.45<br>110 9.2 1.41<br>120 9.0 1.39<br>130 9.0 1.48<br>130 9.0 1.50<br>130 9.0 1.53<br>130 9.0 1.45 | 0.22<br>0.28<br>0.34<br>0.39<br>0.44<br>0.49<br>0.53<br>0.59<br>0.64         | 1200     208       1586     253       1956     246       2290     216       2642     207       2990     190       3363     203       3838     258       4173     183       4483     168 | 6860 8.4 16.8<br>5539 8.4 16.8<br>4657 8.4 16.8<br>4022 8.4 16.8<br>3545 8.4 16.8<br>3173 8.4 16.8<br>2876 8.4 16.8<br>2638 8.4 16.8<br>2433 8.4 16.8<br>2433 8.4 16.8 |
| 820.0 26.3 31.8<br>821.0 28.3 33.4<br>822.0 30.3 33.2<br>823.0 25.9 32.6<br>824.0 25.4 33.2<br>825.0 30.3 33.1<br>825.0 30.3 33.1<br>826.0 22.6 34.5<br>827.0 33.6 33.9<br>828.0 22.8 32.3<br>829.0 31.6 32.0 | 130 9.0 1.44<br>130 9.0 1.42<br>120 9.0 1.43<br>120 9.0 1.45<br>120 9.0 1.39<br>120 9.0 1.50<br>150 9.0 1.54                 | 0.72<br>0.75<br>0.78<br>0.82<br>0.86<br>0.89<br>0.94<br>0.97<br>1.01         | 4780 161<br>5055 150<br>5313 140<br>5591 164<br>5875 167<br>6113 140<br>6431 187<br>6699 126<br>7094 186<br>7379 134                                                                    | 2109 8.4 16.9<br>1978 8.4 16.9<br>1864 8.4 16.9<br>1764 8.4 16.9<br>1675 8.4 16.9<br>1594 8.4 16.9<br>1524 8.4 16.9<br>1457 8.4 16.9<br>1399 8.4 16.9                  |
| 830.0 29.0 31.4<br>831.0 28.3 32.4<br>832.0 25.9 33.3<br>833.0 33.3 34.8<br>834.0 26.7 33.5<br>835.0 30.3 33.3<br>836.0 29.3 33.7<br>837.0 26.9 34.8<br>838.0 30.0 33.5<br>839.0 25.0 33.5                    | 150 9.0 1.47<br>150 9.0 1.51<br>150 9.0 1.45<br>150 9.0 1.51<br>150 9.0 1.46<br>150 9.0 1.48<br>150 9.0 1.52<br>150 9.0 1.47 | 1.08<br>1.11<br>1.15<br>1.18<br>1.22<br>1.25<br>1.29<br>1.32<br>1.36<br>1.40 | 7689 146 8006 150 8354 164 8624 127 8961 159 9259 140 9566 145 9901 158 10201 141 10561 169.64                                                                                          | 1036 8.4 16.9<br>1008 8.4 16.9                                                                                                                                         |
| 840.0 37.9 32.4<br>841.0 46.2 32.9<br>842.0 38.3 32.3<br>843.0 37.1 32.8<br>844.0 35.3 33.3<br>845.0 32.4 33.4<br>846.0 38.7 33.6<br>847.0 33.0 33.0<br>848.0 30.5 32.8                                       | 150 9.0 1.32<br>150 9.0 1.37<br>150 9.0 1.39<br>150 9.0 1.41<br>150 9.0 1.44<br>150 9.0 1.39<br>150 9.0 1.43<br>150 9.0 1.45 | 1.42<br>1.45<br>1.47<br>1.50<br>1.53<br>1.56<br>1.58<br>1.61<br>1.65         | 11229 110.74                                                                                                                                                                            | 932.13 8.4 16.9<br>909.31 8.4 16.9<br>887.83 8.4 16.9<br>867.62 8.4 16.9<br>848.73 8.4 16.9<br>830.25 8.4 16.9<br>813.13 8.4 16.9<br>797.08 8.4 16.9                   |

| DEPTH                                                                                  | ROP WOB RPI                                                                                                                                                  | s MW "d"c                                                                                    | HOURS                                                                        | TURNS                                                                         | ICOST                                                                      | CCOST                                                                                            | PP                                     | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 850.0<br>851.0<br>852.0<br>853.0<br>854.0<br>855.0<br>856.0<br>857.0<br>858.0<br>859.0 | 38.3 31.9 15<br>41.9 31.5 15<br>46.2 29.8 15<br>47.4 29.6 15<br>25.2 31.2 15<br>20.7 27.6 15<br>35.3 31.9 15<br>41.9 29.5 15<br>52.9 30.8 15<br>40.4 33.2 15 | 9.0 1.34<br>9.0 1.28<br>9.0 1.27<br>9.0 1.49<br>9.0 1.50<br>9.0 1.40<br>9.0 1.31<br>9.0 1.25 | 1.70<br>1.73<br>1.75<br>1.77<br>1.81<br>1.86<br>1.89<br>1.91                 | 13539<br>13734<br>13924<br>14281<br>14716<br>14971<br>15186<br>15356          | 101.31<br>.91.89<br>89.53<br>168.46<br>204.98<br>120.16<br>101.31<br>80.11 | 766.42<br>751.64<br>737.30<br>723.52<br>711.95<br>701.61<br>689.98<br>678.43<br>666.93<br>656.32 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.9<br>16.9<br>16.9<br>17.0<br>17.0<br>17.0<br>17.0         |
| 860.0<br>861.0<br>862.0<br>863.0<br>864.0<br>865.0<br>866.0<br>867.0<br>868.0          | 48.0 32.6 15<br>45.6 31.4 15<br>49.3 33.1 15<br>46.8 30.4 15<br>45.0 29.2 15<br>46.2 32.4 15<br>47.4 33.3 15<br>39.6 34.0 15<br>50.0 33.4 15<br>54.5 33.1 15 | 9.0 1.31<br>9.0 1.30<br>9.0 1.29<br>9.0 1.28<br>9.0 1.32<br>9.0 1.32<br>9.0 1.38<br>9.0 1.38 | 1.98<br>2.00<br>2.02<br>2.04<br>2.06<br>2.08<br>2.10<br>2.13<br>2.15<br>2.17 | 15766<br>15964<br>16146<br>16339<br>16539<br>16734<br>16924<br>17151<br>17331 | 93.07<br>86.00<br>90.71<br>94.24<br>91.89<br>89.53<br>107.20<br>84.82      | 645.80<br>635.75<br>625.94<br>616.55<br>607.54<br>598.80<br>590.31<br>582.40<br>574.37<br>566.49 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0 |
| 870.0<br>871.0<br>872.0<br>873.0<br>874.0<br>875.0<br>875.0<br>877.0<br>878.0          | 54.5 34.1 15<br>44.4 31.9 15<br>75.0 31.6 15<br>34.6 32.4 15<br>40.0 32.4 15<br>48.6 35.0 15<br>51.4 32.7 15<br>57.1 34.5 15<br>52.2 34.1 15<br>46.8 33.4 15 | 9.0 1.32<br>9.0 1.15<br>9.0 1.41<br>9.0 1.36<br>9.0 1.33<br>9.0 1.28<br>9.0 1.27<br>9.0 1.30 | 2.19<br>2.21<br>2.25<br>2.25<br>2.30<br>2.32<br>2.33<br>2.35<br>2.37         | 17661<br>17864<br>17984<br>18244<br>18469<br>18654<br>18829<br>18986<br>19159 | 95.42<br>56.55<br>122.52<br>106.03<br>87.18<br>82.46<br>74.22<br>81.29     | 558.85<br>551.72<br>544.22<br>537.92<br>531.57<br>525.13<br>518.81<br>512.55<br>506.56<br>500.86 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0 |
| 880.0<br>881.0<br>882.0<br>883.0<br>884.0<br>885.0<br>886.0<br>887.0<br>888.0          | 46.2 32.8 15<br>40.4 33.7 15<br>48.0 33.6 15<br>63.2 35.4 15<br>54.5 36.0 15<br>53.7 34.8 15<br>52.9 32.8 15<br>38.7 35.2 15<br>50.0 34.9 15<br>41.4 33.8 15 | 9.0 1.37<br>9.0 1.32<br>9.0 1.25<br>9.0 1.30<br>9.0 1.29<br>9.0 1.28<br>9.0 1.41<br>9.0 1.32 | 2.40<br>2.42<br>2.44<br>2.48<br>2.49<br>2.51<br>2.54<br>2.58                 | 19956<br>20099<br>20264<br>20431<br>20601<br>20834<br>21014                   | 104.85<br>88.35<br>67.15<br>77.75<br>78.93<br>80.11<br>109.56<br>84.82     | 495.33<br>490.13<br>484.84<br>479.42<br>474.27<br>469.26<br>464.40<br>460.02<br>455.44<br>451.19 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0 |
| 870.0<br>891.0<br>892.0<br>893.0<br>894.0<br>895.0<br>896.0<br>897.0<br>898.0          | 42.4 33.9 15<br>42.4 33.9 15<br>47.4 34.0 15<br>42.4 32.1 15<br>50.7 32.2 15<br>59.0 30.5 15<br>39.1 31.9 15<br>46.2 33.7 15<br>40.0 34.1 15<br>43.9 33.7 15 | 9.0 1.36<br>9.0 1.33<br>9.0 1.34<br>9.0 1.28<br>9.0 1.22<br>9.0 1.36<br>9.0 1.33<br>9.0 1.38 | 2.61<br>2.63<br>2.65<br>2.69<br>2.71<br>2.74<br>2.76<br>2.78                 | 21656<br>21846<br>22059<br>22236<br>22389<br>22619<br>22814                   | 89.53<br>100.13<br>83.64<br>71.86<br>108.38<br>91.89<br>106.03             | 447.01<br>442.93<br>438.82<br>434.93<br>430.93<br>426.90<br>423.36<br>419.72<br>416.31<br>412.87 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.0<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1 |

| DEPTH                                                                                           | ROP WOE                                                                                                                        | RPM                                                                  | MW "d"c                                                                                                              | HOURS                                                                 | TURNS                                                                                  | ICOST                                                           | CCOST                                                                                            | рþ                                            | FG                                                           |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 900.0<br>901.0<br>902.0<br>903.0<br>904.0<br>905.0<br>906.0<br>907.0<br>908.0<br>909.0          | 40.9 33.3<br>46.8 33.3<br>43.9 34.8<br>44.4 31.1<br>50.7 32.9<br>59.0 34.0<br>52.9 34.4<br>48.0 33.7<br>46.2 35.8<br>47.4 34.4 | 150<br>150<br>150<br>150<br>150<br>150<br>150<br>150                 | 9.0 1.37<br>9.0 1.32<br>9.0 1.36<br>9.0 1.31<br>9.0 1.29<br>9.0 1.25<br>9.0 1.32<br>9.0 1.35<br>9.0 1.35             | 2.83<br>2.85<br>2.88<br>2.90<br>2.92<br>2.93<br>2.95<br>2.97.<br>3.00 | 23464<br>23656<br>23861<br>24064<br>24241<br>24394<br>24564<br>24751<br>24946<br>25136 | 96.60<br>95.42<br>83.64<br>71.86<br>80.11<br>88.35<br>91.89     | 409.58<br>406.23<br>403.00<br>399.83<br>396.60<br>393.32<br>390.19<br>387.20<br>384.31<br>381.44 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1 |
| 910.0<br>911.0<br>912.0<br>913.0<br>914.0<br>915.0<br>915.0<br>915.0<br>917.0                   | 52.2 33.6<br>36.7 35.5<br>45.0 32.0<br>54.5 32.6<br>60.0 32.9<br>57.1 34.6<br>42.4 35.0<br>34.6 33.5<br>43.9 31.4              | ; 150<br>; 150<br>; 150<br>; 150<br>; 150<br>; 150<br>; 150          | 9.0 1.29<br>9.0 1.43<br>9.0 1.32<br>9.0 1.26<br>9.0 1.24<br>9.0 1.27<br>9.0 1.37<br>9.0 1.42<br>9.0 1.32<br>9.0 1.34 | 3.04<br>3.06<br>3.09<br>3.10<br>3.12<br>3.14<br>3.16<br>3.19<br>3.21  | 25309<br>25554<br>25754<br>25719<br>26069<br>26226<br>26439<br>26699<br>267119         | 94.24<br>77.75<br>70.68<br>74.22<br>100.13<br>122.52            | 376.05<br>373.39<br>370.63<br>367.85<br>365.16<br>362.75<br>360.59<br>358.23                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1 |
| 920.0<br>921.0<br>922.0<br>923.0<br>924.0<br>925.0<br>925.0<br>926.0<br>927.0<br>928.0<br>929.0 | 47.4 30.5<br>38.3 29.3<br>46.2 30.2<br>36.7 29.9<br>52.2 29.0<br>56.2 28.6<br>42.4 29.3<br>24.8 31.0<br>30.0 31.3              | 3 150<br>2 150<br>2 150<br>3 150<br>3 150<br>3 150<br>3 150<br>3 150 | 9.0 1.28<br>9.0 1.34<br>9.0 1.29<br>9.0 1.36<br>9.0 1.24<br>9.0 1.30<br>9.0 1.50<br>9.0 1.44<br>9.0 1.36             | 3.26<br>3.28<br>3.31<br>3.33<br>3.35<br>3.37<br>3.43<br>3.47<br>3.50  | 27309<br>27544<br>27739<br>27984<br>28156<br>28316<br>28529<br>28891<br>29191<br>29454 | 110.74<br>91.89<br>115.45<br>81.29<br>75.40<br>100.13<br>170.82 | 353.62<br>351.51<br>349.27<br>347.27<br>345.02<br>342.75<br>340.73<br>339.32<br>337.70<br>335.96 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.1<br>17.2 |
| 930.0<br>931.0<br>932.0<br>933.0<br>934.0<br>935.0<br>935.0<br>937.0<br>938.0<br>939.0          | 49.2 29.5 50.0 30.6 52.2 29.6 60.0 29.6 53.7 31.3 58.1 32.6 42.9 34.0 37.9 33.2 49.3 33.0                                      | 3 150<br>3 150<br>3 150<br>4 150<br>4 150<br>5 150<br>6 150<br>2 150 | 9.0 1.26<br>9.0 1.27<br>9.0 1.24<br>9.0 1.20<br>9.0 1.25<br>9.0 1.24<br>9.0 1.36<br>9.0 1.39<br>9.0 1.30             | 3.52<br>3.54<br>3.56<br>3.57<br>3.59<br>3.61<br>3.64<br>3.66<br>3.69  | 30929                                                                                  | 81.29<br>70.68<br>78.93<br>73.04<br>121.34<br>98.96<br>111.92   | 333.95<br>331.95<br>329.97<br>327.92<br>325.98<br>324.02<br>322.46<br>320.75<br>319.17           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.2 |
| 940.0<br>941.0<br>942.0<br>943.0<br>944.0<br>945.0<br>945.0<br>946.0<br>947.0<br>948.0          | 41.9 30.4<br>50.7 30.3<br>50.7 31.6<br>60.0 32.3<br>47.4 30.3<br>49.3 32.6<br>33.6 30.3<br>34.6 30.3<br>41.9 31.2              | 150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150          | 9.0 1.32<br>9.0 1.26<br>9.0 1.28<br>9.0 1.23<br>9.0 1.29<br>9.0 1.30<br>9.0 1.38<br>9.0 1.38<br>9.0 1.33             | 3.73<br>3.75<br>3.77<br>3.79<br>3.81<br>3.83<br>3.86<br>3.89<br>3.91  | 31742<br>31919<br>32069<br>32259<br>32442<br>32709<br>32969<br>33184                   | 83.64<br>70.68<br>89.53<br>86.00<br>126.05<br>122.52            | 314.08<br>312.39<br>310.63<br>309.02<br>307.42<br>306.12<br>304.82                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.2         |

| DEPTH                                                                                  | ROP                                                          | MOB                                                                          | RPM                                           | MM                                            | "d"c                                                                         | HOURS                                                                | TURNS                                                                                  | ICOST                                                                    | CCOST                                                                                                      | PP                                     | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 950.0<br>951.0<br>952.0<br>953.0<br>954.0<br>955.0<br>956.0<br>957.0<br>959.0          | 40.4<br>41.9<br>37.1<br>50.0<br>49.3<br>52.9<br>50.0<br>42.9 | 29.1<br>30.6<br>30.9<br>32.5<br>32.2<br>32.6<br>29.6<br>31.3<br>28.4         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.33<br>1.34<br>1.33<br>1.37<br>1.29<br>1.29<br>1.27<br>1.26<br>1.33<br>1.22 | 3.96<br>3.99<br>4.01<br>4.04<br>4.06<br>4.08<br>4.10<br>4.12<br>4.14 |                                                                                        | 114.27<br>84.82<br>86.00<br>80.11<br>84.82<br>98.96                      |                                                                                                            | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.2 |
| 960.0<br>961.0<br>962.0<br>963.0<br>964.0<br>965.0<br>966.0<br>967.0<br>968.0          | 52.9<br>45.6<br>40.0<br>45.0<br>47.4<br>39.6<br>54.5<br>39.1 | 30.0<br>31.0<br>32.2<br>32.6<br>33.0<br>31.8<br>32.4<br>31.5<br>30.9<br>26.9 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0        | 1.26<br>1.26<br>1.32<br>1.36<br>1.30<br>1.36<br>1.25<br>1.35                 | 4.18<br>4.20<br>4.25<br>4.25<br>4.27<br>4.29<br>4.31<br>4.33<br>4.36 | 36979                                                                                  | 80.11<br>93.07<br>106.03<br>94.24<br>89.53<br>107.20<br>77.75<br>108.38  | 287.15<br>285.82<br>284.58<br>283.44<br>282.25<br>281.03<br>279.95<br>278.69<br>277.64<br>276.43           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.3<br>17.3         |
| 970.0<br>971.0<br>972.0<br>973.0<br>974.0<br>975.0<br>975.0<br>976.0<br>977.0<br>978.0 | 52.9<br>54.5<br>36.7<br>41.9<br>40.4<br>47.4<br>52.9<br>48.0 | 31.5<br>30.7<br>31.5<br>31.5<br>33.5<br>33.5<br>33.5<br>35.5                 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.35<br>1.25<br>1.24<br>1.38<br>1.34<br>1.37<br>1.33<br>1.29                 | 4.40<br>4.42<br>4.44<br>4.47<br>4.49<br>4.52<br>4.56<br>4.56         | 37607<br>37777<br>37942<br>38187<br>38402<br>38624<br>38814<br>38984<br>39172<br>39464 | 80.11<br>77.75<br>115.45<br>101.31<br>104.85<br>89.53<br>80.11<br>88.35  | 275.40<br>274.21<br>273.03<br>272.09<br>271.07<br>270.09<br>269.02<br>267.92<br>266.88<br>266.13           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3         |
| 980.0<br>981.0<br>982.0<br>983.0<br>984.0<br>985.0<br>986.0<br>987.0<br>988.0<br>989.0 | 46,2<br>54,5<br>50,7<br>38,3<br>52,9<br>67,5<br>42,4         | 32.0                                                                         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.34<br>1.30<br>1.22<br>1.25<br>1.28<br>1.39<br>1.29<br>1.20<br>1.35         | 4.63<br>4.65<br>4.67<br>4.69<br>4.71<br>4.74<br>4.76<br>4.77<br>4.81 | 39674<br>39869<br>40034<br>40199<br>40377<br>40612<br>40782<br>40915<br>41127<br>41287 | 91.89<br>77.75<br>77.75<br>83.64<br>110.74<br>80.11<br>62.83<br>100.13   | 265.17<br>264.18<br>263.12<br>262.07<br>261.07<br>260.23<br>259.23<br>259.23<br>258.14<br>257.28<br>256.28 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3         |
| 990.0<br>991.0<br>992.0<br>993.0<br>994.0<br>995.0<br>996.0<br>997.0<br>998.0          | 46.8<br>40.4<br>44.4<br>42.4<br>39.1<br>52.9<br>37.1         | 32.5<br>32.1<br>29.8<br>30.0<br>32.2                                         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.22<br>1.31<br>1.36<br>1.33<br>1.34<br>1.37<br>1.24<br>1.36<br>1.31         | 4.83<br>4.85<br>4.87<br>4.90<br>4.92<br>4.95<br>4.95<br>5.01         | 41437<br>41630<br>41852<br>42055<br>42267<br>42497<br>42667<br>42910<br>43103<br>43290 | 90.71<br>104.85<br>95.42<br>100.13<br>108.38<br>80.11<br>114.44<br>90.71 | 255.27<br>254.38<br>253.58<br>252.73<br>251.92<br>251.16<br>250.26<br>249.55<br>248.72<br>247.89           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3         |

| DEPTH                                                                                  | ROP                                                          | WOB RP                                                                                                     | м ми                                                                 | "d"c                                                                 | HOURS                                                                | TURNS                                                                                  | icost                                                                   | CCOST                                                                                            | pp FG                                                                                                    |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 1000.0<br>1001.0<br>1002.0<br>1003.0<br>1004.0<br>1005.0<br>1006.0<br>1007.0<br>1008.0 | 53.6<br>58.6<br>56.2<br>40.0<br>52.2<br>45.6<br>52.9<br>53.7 | 31.5 15<br>31.6 15<br>31.5 15<br>31.8 15<br>32.9 15<br>29.7 15<br>29.4 15<br>29.5 15<br>31.6 15<br>29.3 15 | 0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0          | 1.34<br>1.26<br>1.23<br>1.25<br>1.37<br>1.25<br>1.28<br>1.24<br>1.26 | 5.06<br>5.08<br>5.09<br>5.11<br>5.14<br>5.16<br>5.20<br>5.22         | 43510<br>43678<br>43832<br>43992<br>44217<br>44389<br>44587<br>44757<br>44924<br>45134 | 79.12<br>72.37<br>75.46<br>106.03<br>81.29<br>93.07<br>80.11<br>78.93   | 247.15<br>246.29<br>245.40<br>244.54<br>243.84<br>243.02<br>242.27<br>241.47<br>240.66<br>239.96 | 8.4 17.3<br>8.4 17.3<br>8.4 17.3<br>8.4 17.3<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4 |
| 1010.0<br>1011.0<br>1012.0<br>1013.0<br>1014.0<br>1015.0<br>1016.0<br>1017.0<br>1018.0 | 37.5<br>55.4<br>60.0<br>61.0<br>36.4<br>55.4<br>50.0<br>46.8 | 32.1 15<br>27.8 15<br>30.5 15<br>30.9 15<br>30.4 15<br>26.0 15<br>31.2 15<br>31.4 15<br>30.2 15<br>31.1 15 | 0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0                   | 1.40<br>1.32<br>1.24<br>1.21<br>1.20<br>1.31<br>1.24<br>1.28<br>1.28 | 5.27<br>5.29<br>5.31<br>5.33<br>5.34<br>5.37<br>5.41<br>5.43<br>5.46 | 45627<br>45789<br>45939<br>46087<br>46334<br>46497<br>46677<br>46869                   | 76.57<br>70.68<br>69.51<br>116.63<br>76.57<br>84.82                     | 239.37<br>238.75<br>237.97<br>237.16<br>236.35<br>235.78<br>235.02<br>234.31<br>233.63<br>233.01 | 8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4 |
| 1020.0<br>1021.0<br>1022.0<br>1023.0<br>1024.0<br>1025.0<br>1026.0<br>1027.0<br>1028.0 | 45.6<br>40.9<br>53.7<br>54.5<br>41.9<br>45.0<br>59.0         | 30.6 15<br>31.0 15<br>31.5 15<br>30.4 15<br>29.7 15<br>29.6 15<br>30.2 15<br>29.4 15<br>29.4 15<br>29.5 15 | 0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0          | 1.29<br>1.30<br>1.34<br>1.24<br>1.23<br>1.31<br>1.30<br>1.29         | 5.48<br>5.50<br>5.52<br>5.54<br>5.56<br>5.61<br>5.65<br>5.65         | 47864<br>48029                                                                         | 93.07<br>103.67<br>78.93<br>77.75<br>101.31<br>94.24<br>94.24           | 232.35<br>231.70<br>231.11<br>230.41<br>229.71<br>229.12<br>228.51<br>227.90<br>227.20<br>226.52 | 8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4 |
| 1030.0<br>1031.0<br>1032.0<br>1033.0<br>1034.0<br>1035.0<br>1036.0<br>1037.0<br>1038.0 | 72.0<br>48.6<br>53.7<br>52.2<br>54.6<br>47.4<br>52.9         | 31.1 15<br>28.7 15<br>30.1 15<br>29.8 15<br>29.5 15<br>30.8 15<br>31.0 15<br>32.4 15<br>31.1 15<br>31.3 15 | 0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0          | 1.24<br>1.13<br>1.27<br>1.24<br>1.24<br>1.24<br>1.30<br>1.31         | 5.68<br>5.70<br>5.72<br>5.73<br>5.75<br>5.77<br>5.83<br>5.83         | 49117<br>49242<br>49427<br>49594<br>49767<br>49932<br>50129<br>50319<br>50489<br>50649 | 58.90<br>87.18<br>78.93<br>81.29<br>77.75<br>93.07<br>89.53<br>80.11    | 225.84<br>225.10<br>224.49<br>223.85<br>223.23<br>222.59<br>222.03<br>221.45<br>220.84<br>220.22 | 8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4 |
| 1040.0<br>1041.0<br>1042.0<br>1043.0<br>1044.0<br>1045.0<br>1046.0<br>1047.0<br>1048.0 | 33.6<br>38.7<br>41.9<br>52.9<br>57.1<br>52.9<br>54.5         | 31.8 15<br>31.8 15<br>30.3 15<br>30.5 15<br>28.2 15<br>29.5 15<br>30.9 15<br>30.9 15<br>31.0 15            | 0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0<br>0 9.0 | 1.36<br>1.41<br>1.35<br>1.22<br>1.21<br>1.25<br>1.25                 | 5.88<br>5.91<br>5.93<br>5.96<br>5.98<br>5.99<br>6.01<br>6.05<br>6.07 | 51147<br>51379                                                                         | 126.05<br>109.56<br>101.31<br>80.11<br>74.22<br>81.29<br>80.11<br>77.75 | 219.74<br>219.34<br>218.88<br>218.38<br>217.80<br>217.20<br>216.63<br>216.07<br>215.50<br>214.93 | 8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.4<br>8.4 17.5<br>8.4 17.5<br>8.4 17.5<br>8.4 17.5<br>8.4 17.5 |

.

| DEPTH                                                                                  | ROP WO                                                                                                     | B RPM                                                                        | MW "d"c                                                                                                              | HOURS                                                                | TURNS                                                                                  | ICOST                                                                  | CCOST                                                                                            | PP                                                                   | FG                                                           |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|
| 1050.0<br>1051.0<br>1052.0<br>1053.0<br>1054.0<br>1055.0<br>1056.0<br>1057.0<br>1058.0 | 56.2 31.<br>46.2 30.<br>56.2 29.<br>51.4 31.<br>43.9 29.<br>48.6 30.<br>57.1 35.<br>54.5 34.<br>57.1 34.   | .0 150<br>.7 150<br>.4 150<br>.1 150<br>.2 150<br>.3 150<br>.8 150<br>.2 150 | 9.0 1.24<br>9.0 1.29<br>9.0 1.22<br>9.0 1.27<br>9.0 1.29<br>9.0 1.27<br>9.0 1.28<br>9.0 1.29<br>9.0 1.27             | 6.09<br>6.11<br>6.13<br>6.14<br>6.17<br>6.19<br>6.21<br>6.22<br>6.24 | 52754<br>52949<br>53109<br>53284<br>53489<br>53674<br>53832<br>53997<br>54154<br>54319 | 91.89<br>75.40<br>82.46<br>96.60<br>87.18<br>74.22<br>77.75<br>74.22   | 214.36<br>213.86<br>213.29<br>212.76<br>212.30<br>211.79<br>211.24<br>210.71<br>210.17<br>209.65 | 8.4 1<br>8.4 1<br>8.4 1<br>8.4 1<br>8.4 1<br>8.4 1<br>8.4 1<br>8.4 1 | 17.5<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5         |
| 1060.0<br>1061.0<br>1062.0<br>1063.0<br>1064.0<br>1065.0<br>1066.0<br>1067.0<br>1068.0 |                                                                                                            | .2 150<br>.2 150<br>.0 150<br>.8 150<br>.9 150<br>.4 150<br>.1 150<br>.3 150 | 9.0 1.29<br>9.0 1.32<br>9.0 1.29<br>9.0 1.27<br>9.0 1.27<br>9.0 1.27<br>9.0 1.29<br>9.0 1.27<br>9.0 1.26<br>9.0 1.31 | 6.28<br>6.30<br>6.31<br>6.33<br>6.35<br>6.37<br>6.39<br>6.41<br>6.43 | 54477<br>54654<br>54814<br>54989<br>55157<br>55322<br>55494<br>55664<br>55824<br>56012 | 83.64<br>75.40<br>82.46<br>78.93<br>77.75<br>81.29<br>80.11<br>75.40   | 209.11<br>208.62<br>208.10<br>207.61<br>207.11<br>206.61<br>206.13<br>205.65<br>205.15<br>204.71 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4                 | 17.5<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5         |
| 1070.0<br>1071.0<br>1072.0<br>1073.0<br>1074.0<br>1075.0<br>1075.0<br>1077.0<br>1078.0 | 45.6 34<br>48.0 35<br>43.4 31<br>45.6 33<br>58.1 31<br>42.4 29<br>45.0 30<br>40.4 31<br>45.6 33<br>44.4 36 | .7 150<br>.6 150<br>.1 150<br>.7 150<br>.4 150<br>.4 150<br>.2 150<br>.8 150 | 9.0 1.34<br>9.0 1.33<br>9.0 1.33<br>9.0 1.33<br>9.0 1.33<br>9.0 1.31<br>9.0 1.30<br>9.0 1.34<br>9.0 1.34<br>9.0 1.37 | 6.47<br>6.49<br>6.51<br>6.55<br>6.55<br>6.60<br>6.62<br>6.65         | 57369                                                                                  | 88.35<br>97.78<br>93.07<br>73.04<br>100.13<br>94.24<br>104.85<br>93.07 | 204.28<br>203.45<br>203.45<br>203.04<br>202.55<br>202.17<br>201.77<br>201.41<br>201.63           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4                        | 17.5<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5         |
| 1080.0<br>1081.0<br>1082.0<br>1083.0<br>1084.0<br>1085.0<br>1087.0<br>1088.0<br>1089.0 | 38.7 36<br>40.9 35<br>47.0 30<br>55.4 32<br>52.2 32<br>51.4 33<br>53.7 32<br>48.6 32<br>51.4 31            | .7 150<br>.8 150<br>.2 150<br>.0 150<br>.3 150<br>.5 150<br>.2 150<br>.8 150 | 9.0 1.42<br>9.0 1.39<br>9.0 1.25<br>9.0 1.25<br>9.0 1.27<br>9.0 1.27<br>9.0 1.30<br>9.0 1.27<br>9.0 1.27             | 6.69<br>6.72<br>6.74<br>6.78<br>6.80<br>6.81<br>6.85<br>6.85         |                                                                                        | 103.67<br>90.32<br>76.57<br>81.29<br>82.46<br>78.93<br>87.18<br>82.46  | 200.29<br>199.94<br>199.55<br>199.10<br>198.68<br>198.26<br>197.84<br>197.44<br>197.03<br>196.63 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4                               | 17.5<br>17.5<br>17.5<br>17.5<br>17.6<br>17.6<br>17.6<br>17.6 |
| 1090.0<br>1091.0<br>1092.0<br>1093.0<br>1094.0<br>1095.0<br>1096.0<br>1097.0           | 57.1 30<br>56.2 30<br>49.3 32<br>52.9 33<br>53.7 33<br>67.9 33<br>45.6 32<br>46.2 32<br>54.5 33            | .8 150<br>.6 150<br>.7 150<br>.8 150<br>.9 150<br>.7 150                     | 9.0 1.22<br>9.0 1.23<br>9.0 1.30<br>9.0 1.29<br>9.0 1.28<br>9.0 1.21<br>9.0 1.33<br>9.0 1.32<br>9.0 1.27<br>9.0 1.25 | 6.89<br>6.93<br>6.95<br>6.97<br>6.98<br>7.00<br>7.03<br>7.04         | 60006<br>60166<br>60349<br>60519<br>60686<br>60819<br>61016<br>61211<br>61376<br>61531 | 75.40<br>86.00<br>80.11<br>78.93<br>62.44<br>93.07<br>91.89<br>77.75   | 195.39<br>194.99<br>194.59<br>194.13<br>193.78                                                   | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4                               | 17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6 |

| DEPTH                                                                                            | ROP                                                          | WOB                                                                          | RPM                                           | MW                                            | "d"c                                                                 | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                | CCOST                                                                                            | pр                                     | FG                                                                   |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|
| 1100.0<br>1101.0<br>1102.0<br>1103.0<br>1104.0<br>1105.0<br>1106.0<br>1107.0<br>1108.0           | 59.0<br>54.5<br>52.2<br>50.0<br>50.7<br>46.8<br>47.4<br>48.6 | 33.5<br>32.3<br>31.5<br>32.1<br>32.6<br>32.2<br>32.1<br>31.3<br>30.7<br>32.8 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.33<br>1.24<br>1.25<br>1.27<br>1.29<br>1.28<br>1.31<br>1.29         | 7.08<br>7.10<br>7.12<br>7.14<br>7.16<br>7.18<br>7.20<br>7.22<br>7.24<br>7.26 | 61726<br>61879<br>62044<br>62216<br>62396<br>62574<br>62766<br>62956<br>63141<br>63316 | 71.86<br>77.75<br>81.29<br>84.82<br>83.64<br>90.71<br>89.53<br>87.18 | 192.28<br>191.87<br>191.49<br>191.12<br>190.76<br>190.40<br>190.07<br>189.74<br>189.40           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6         |
| 1110.0<br>1111.0<br>1112.0<br>1113.0<br>1114.0<br>1115.0<br>1116.0<br>1117.0<br>1118.0           | 52.9<br>47.4<br>52.9<br>59.0<br>56.2<br>51.4<br>58.1         | 30.4<br>33.8<br>34.2<br>33.0<br>32.4                                         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.30<br>1.26<br>1.28<br>1.29<br>1.26<br>1.26<br>1.28<br>1.26<br>1.26 | 7.28<br>7.30<br>7.32<br>7.34<br>7.36<br>7.37<br>7.43<br>7.45                 | 63504<br>63674<br>63864<br>64034<br>64186<br>64346<br>64521<br>64676<br>64836<br>65009 | 80.11<br>89.53<br>80.11<br>71.86<br>75.40<br>82.46<br>73.04<br>75.40 |                                                                                                  | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6         |
| 1120.0<br>1121.0<br>1122.0<br>1123.0<br>1124.0<br>1125.0<br>1125.0<br>1126.0<br>1127.0           | 50.0<br>59.7<br>53.7<br>52.2<br>53.7<br>56.2<br>49.3         | 33.7<br>32.3<br>30.9                                                         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.31<br>1.28<br>1.25<br>1.27<br>1.26<br>1.26<br>1.32<br>1.32         | 7.47<br>7.49<br>7.52<br>7.52<br>7.54<br>7.56<br>7.68<br>7.62                 | 65194<br>65374<br>65526<br>65694<br>65866<br>66034<br>66194<br>66376<br>66536          | 84.82<br>71.86<br>78.93<br>81.29<br>78.93<br>75.40                   | 184.23<br>183.90<br>183.58<br>183.24<br>182.93<br>182.60                                         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.7<br>17.7 |
| 1130.0<br>1131.0<br>1132.0<br>1133.0<br>1134.0<br>1135.0<br>1136.0<br>1137.0<br>1138.0<br>1139.0 | 48.6<br>45.0<br>40.9<br>47.4<br>42.9<br>48.0<br>47.4<br>46.8 | 27.2<br>30.9<br>32.8<br>29.7<br>32.2<br>32.0<br>30.6<br>30.4<br>32.9<br>32.7 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0        | 1.32<br>1.28<br>1.33<br>1.32<br>1.30<br>1.33<br>1.28<br>1.28<br>1.32 | 7.66<br>7.68<br>7.73<br>7.75<br>7.77<br>7.81<br>7.84<br>7.86                 | 67109<br>67309<br>67529<br>67719<br>67929<br>68116<br>68306<br>68499                   | 94.24<br>103.67<br>89.53<br>98.96<br>88.35                           | 181.75<br>181.48<br>181.24<br>180.96<br>180.71<br>180.43<br>180.16<br>179.89                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7         |
| 1140.0<br>1141.0<br>1142.0<br>1143.0<br>1144.0<br>1145.0<br>1146.0<br>1147.0<br>1148.0           | 47.0<br>44.3<br>49.0<br>49.3<br>48.0<br>47.0<br>45.0         | 32.3<br>32.0                                                                 | 150<br>150<br>150<br>150<br>150               | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.34<br>1.30<br>1.34<br>1.26<br>1.27<br>1.30<br>1.30<br>1.32         | 7.89<br>7.91<br>7.93<br>7.95<br>7.97<br>7.99<br>8.01<br>8.04<br>8.06<br>8.08 | 68961<br>69152<br>69355<br>69539<br>69722<br>69909<br>70101<br>70301<br>70498<br>70676 | 95.73<br>86.55<br>86.02<br>88.35<br>90.23<br>94.24<br>93.07          | 179.46<br>179.19<br>178.95<br>178.67<br>178.40<br>178.13<br>177.87<br>177.63<br>177.38<br>177.11 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7         |

| DEPTH                                                                                  | ROP                                                                          | мов                                                          | RPM                                           | MW                                            | "d "c                                                                | HOURS                                                                | TURNS                                                                                  | ICOST                                                                 | CCOST                                                                                  | PP                                     | FG                                                           |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1150.0<br>1151.0<br>1152.0<br>1153.0<br>1154.0<br>1155.0<br>1156.0<br>1157.0<br>1158.0 | 47.4<br>50.7<br>50.7<br>48.4<br>551.4<br>501.4<br>512.4                      | 29.9<br>29.6<br>28.3<br>29.8<br>29.8<br>29.8<br>28.8<br>30.1 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.23                                                                 | 8.10<br>8.12<br>8.14<br>8.16<br>8.18<br>8.20<br>8.22<br>8.24<br>8.24 | 70866<br>71046<br>71223<br>71411<br>71573<br>71748<br>71941<br>72118<br>72293<br>72463 | 84.82<br>83.64<br>788.35<br>76.57<br>82.46<br>90.71<br>83.64<br>82.46 | 176.85<br>176.59<br>176.32<br>176.06<br>175.78<br>175.51<br>175.27<br>175.01<br>174.75 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7 |
| 1160.0<br>1161.0<br>1162.0<br>1163.0<br>1164.0<br>1165.0<br>1166.0<br>1167.0<br>1168.0 | 36.7<br>37.9<br>49.2<br>52.2<br>52.4<br>52.7<br>50.7                         | 29.6<br>27.7<br>29.9<br>27.9<br>28.1<br>28.8<br>30.2<br>32.7 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.35<br>1.34<br>1.24<br>1.25<br>1.22<br>1.23<br>1.23<br>1.25<br>1.25 | 8.30<br>8.33<br>8.35<br>8.37<br>8.39<br>8.41<br>8.43<br>8.45<br>8.46 | 72708 72946 73128 73301 73473 73648 73818 73989 74167 74344                            | 81.29<br>81.29<br>82.46<br>80.11<br>80.50<br>83.64                    | 174.13<br>173.89<br>173.63<br>173.37<br>173.12                                         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7         |
| 1170.0<br>1171.0<br>1172.0<br>1173.0<br>1174.0<br>1175.0<br>1176.0<br>1177.0<br>1178.0 | 53.7<br>49.3<br>50.9<br>55.4<br>552.9<br>554.8<br>52.9                       | 33.3<br>32.1<br>32.9<br>32.5<br>33.1<br>31.9<br>32.0<br>33.6 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.28<br>1.26<br>1.27<br>1.27<br>1.25                                 | 8.50<br>8.52<br>8.54<br>8.56<br>8.58<br>8.60<br>8.62<br>8.64<br>8.66 | 74512<br>74694<br>74872<br>75042<br>75204<br>75372<br>75542<br>75704<br>75897<br>76067 | 86.00<br>83.64<br>80.11<br>76.57<br>78.93<br>80.11<br>76.57           | 171.86<br>171.62<br>171.38<br>171.13<br>170.88<br>170.63<br>170.38<br>170.13<br>169.91 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8 |
| 1180.0<br>1181.0<br>1182.0<br>1183.0<br>1184.0<br>1185.0<br>1186.0<br>1187.0<br>1188.0 | 52.9<br>46.2<br>46.2<br>39.1<br>35.0<br>54.5<br>46.2<br>40.0<br>34.3<br>50.0 | 34.0<br>32.8<br>29.1<br>28.2<br>34.2<br>26.1<br>29.2<br>30.4 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0        | 1.29<br>1.33<br>1.32<br>1.35<br>1.28<br>1.24<br>1.32                 | 8.69<br>8.72<br>8.74<br>8.76<br>8.79<br>8.81<br>8.83<br>8.86<br>8.89 | 77114<br>77279<br>77474<br>77699                                                       | 91.89<br>108.38<br>121.34<br>77.75<br>91.89<br>106.03<br>123.70       | 168.74<br>168.50<br>168.29                                                             | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8 |
| 1190.0<br>1191.0<br>1192.0<br>1193.0<br>1194.0<br>1195.0<br>1196.0<br>1197.0<br>1198.0 | 47.4<br>46.8<br>42.4<br>40.0<br>44.4<br>38.7                                 | 30.3<br>31.6<br>31.2<br>32.5<br>30.9<br>27.5<br>28.0         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.36<br>1.29<br>1.31<br>1.33<br>1.30<br>1.27<br>1.32                 | 8.94<br>8.96<br>8.99<br>9.01<br>9.03<br>9.06<br>9.10<br>9.13<br>9.15 | 78662<br>78889<br>79079<br>79272<br>79484<br>79709<br>79912                            | 106.03<br>95.42<br>109.56                                             | 167.56<br>167.41                                                                       | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8 |

| DEPTH                                                                                            | ROP                                                          | MOB                                                          | RPM                                                  | MW                                                   | "d"c                                                                 | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                                        | CCOST                                                                                  | PР                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1200.0<br>1201.0<br>1202.0<br>1203.0<br>1204.0<br>1205.0<br>1206.0<br>1207.0<br>1208.0<br>1209.0 | 43.5<br>42.1<br>39.1<br>42.9<br>42.4<br>36.0<br>43.4<br>40.0 | 31.8                                                         | 150<br>150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.33<br>1.32<br>1.34<br>1.36<br>1.35<br>1.35<br>1.35<br>1.37         | 9.18<br>9.20<br>9.25<br>9.27<br>9.30<br>9.32<br>9.35<br>9.35<br>9.37                   | 80774<br>80988<br>81218<br>81428<br>81640<br>81890<br>82098                            | 103.67<br>97.49<br>100.79<br>108.38<br>98.96<br>100.13<br>117.81<br>97.78<br>106.03<br>94.24 | 166.01<br>165.84<br>165.67<br>165.53<br>165.36<br>165.20<br>165.08<br>164.91<br>164.77 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8<br>17.8 |
| 1210.0<br>1211.0<br>1212.0<br>1213.0<br>1214.0<br>1215.0<br>1216.0<br>1217.0<br>1218.0<br>1219.0 | 42.9<br>45.6<br>43.4<br>41.5<br>52.2<br>46.2<br>40.0<br>29.8 | 30.9                                                         | 150<br>150<br>150<br>150<br>150<br>150<br>150        | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.35<br>1.36<br>1.33<br>1.35<br>1.34<br>1.26<br>1.30<br>1.35         | 9.42<br>9.44<br>9.46<br>9.51<br>9.53<br>9.55<br>9.61                                   |                                                                                        | 94.24<br>98.96<br>93.07<br>97.78<br>102.10<br>81.29<br>91.89<br>106.03<br>142.54<br>84.82    | 164.42<br>164.26<br>164.08<br>163.77<br>163.56<br>163.39<br>163.25<br>163.20           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.8<br>17.8<br>17.8<br>17.9<br>17.9<br>17.9<br>17.9         |
| 1220.0<br>1221.0<br>1222.0<br>1223.0<br>1224.0<br>1225.0<br>1226.0<br>1227.0<br>1228.0           | 51.4<br>48.0<br>50.0<br>52.7<br>53.7<br>44.4<br>49.3<br>31.6 | 32.7<br>31.8<br>31.2                                         | 150<br>150<br>150<br>150<br>150<br>150<br>150        | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0        | 1.34<br>1.26<br>1.29<br>1.29<br>1.28<br>1.26<br>1.31<br>1.30<br>1.44 | 9.65<br>9.67<br>9.69<br>9.73<br>9.75<br>9.77<br>9.82<br>9.84                           | 84854<br>85029<br>85217<br>85397<br>85568<br>85735<br>85938<br>86120<br>86405<br>86583 | 106.03<br>82.46<br>88.35<br>84.82<br>80.50<br>78.93<br>95.42<br>86.00<br>134.30<br>83.64     | 162.87<br>162.68<br>162.50<br>162.31<br>162.12<br>161.92<br>161.76<br>161.58<br>161.52 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.9<br>17.9<br>17.9<br>17.9<br>17.9<br>17.9<br>17.9         |
| 1230.0<br>1231.0<br>1232.0<br>1233.0<br>1234.0<br>1235.0<br>1237.0<br>1238.0<br>1239.0           | 40.9<br>35.3                                                 | 31.5<br>33.1<br>32.7                                         | 150<br>150<br>150<br>150<br>150<br>150<br>150        | 9.0<br>9.0<br>9.0<br>9.0<br>9.0                      | 1.36<br>1.34<br>1.36<br>1.39<br>1.26<br>1.26<br>1.32<br>1.36<br>1.34 | 9.87<br>9.89<br>9.95<br>9.95<br>9.97<br>9.98<br>10.01<br>10.03<br>10.05                | 87023<br>872 <b>43</b>                                                                 | 120.16<br>82.46<br>78.93<br>97.78<br>102.49<br>96.60                                         | 161.06<br>160.93<br>160.83<br>160.65<br>160.46<br>160.31                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.9<br>17.9<br>17.9<br>17.9<br>17.9<br>17.9<br>17.9         |
| 1240.0<br>1241.0<br>1242.0<br>1243.0<br>1244.0<br>1245.0<br>1246.0<br>1247.0<br>1248.0<br>1249.0 | 46.2<br>36.7<br>41.9<br>48.0<br>41.4<br>47.4<br>47.4<br>55.4 | 31.6<br>30.2<br>33.2<br>30.9<br>31.7<br>33.8<br>33.2<br>32.7 | 150<br>150<br>150<br>150<br>150<br>150<br>150        | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0        | 1.28<br>1.38<br>1.32<br>1.31<br>1.33<br>1.34<br>1.32<br>1.34<br>1.26 | 10.10<br>10.12<br>10.15<br>10.17<br>10.19<br>10.22<br>10.24<br>10.26<br>10.28<br>10.30 | 89323<br>89510                                                                         | 115.45<br>101.31<br>88.35<br>102.49<br>102.49<br>89.53<br>96.60<br>76.57                     | 159.48<br>159.32<br>159.19                                                             | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.9<br>17.9<br>17.9<br>17.9<br>17.9<br>17.9<br>17.9         |

•

| DEPTH                                                                                            | ROP WOB                                                                                                                        | RPM                                                         | MW "d"c                                                                                                              | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                 | CCOST                                                                                            | PP                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1250.0<br>1251.0<br>1252.0<br>1253.0<br>1254.0<br>1255.0<br>1256.0<br>1257.0<br>1258.0<br>1259.0 | 55.4 33.5<br>48.6 33.2<br>52.2 33.9<br>41.3 30.7<br>47.4 29.3<br>48.6 29.9<br>52.2 29.4<br>54.5 29.3<br>52.9 29.3<br>47.4 30.7 | 150<br>150<br>150<br>150<br>150<br>150<br>150<br>150        | 9.0 1.27<br>9.0 1.31<br>9.0 1.29<br>9.0 1.33<br>9.0 1.27<br>9.0 1.27<br>9.0 1.23<br>9.0 1.23<br>9.0 1.23             | 10.32<br>10.34<br>10.36<br>10.38<br>10.40<br>10.42<br>10.44<br>10.44                   | 90830<br>91015<br>91188<br>91405<br>91595<br>91780<br>91953<br>92118<br>92288<br>92478 | 87.18<br>81.29<br>102.66<br>89.53<br>87.18<br>81.29<br>77.75<br>80.11 | 158.21<br>158.05<br>157.88<br>157.75<br>157.60<br>157.45<br>157.28<br>157.10<br>156.93           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 17.9<br>17.9<br>17.9<br>17.9<br>17.9<br>17.9<br>17.9<br>17.9 |
| 1260.0<br>1261.0<br>1262.0<br>1263.0<br>1264.0<br>1265.0<br>1266.0<br>1267.0<br>1268.0           | 52.2 29.7<br>56.2 29.4<br>51.4 28.8<br>31.0 30.2<br>51.4 31.6<br>53.7 31.0<br>55.4 29.1<br>54.5 30.8<br>53.7 31.2<br>60.0 30.5 | 150<br>150<br>150<br>150<br>150<br>150<br>150               | 9.0 1.24<br>9.0 1.22<br>9.0 1.24<br>9.0 1.41<br>9.0 1.27<br>9.0 1.25<br>9.0 1.22<br>9.0 1.24<br>9.0 1.25<br>9.0 1.21 | 10.52<br>10.54<br>10.56<br>10.59<br>10.61<br>10.63<br>10.64<br>10.66<br>10.68          | 92650<br>92810<br>92985<br>93275<br>93450<br>93618<br>93780<br>93945<br>94113<br>94263 | 82.46<br>136.65<br>82.46<br>78.93<br>76.57<br>77.75<br>78.93          | 156.61<br>156.44<br>156.27<br>156.23<br>156.07<br>155.90<br>155.73<br>155.56<br>155.39<br>155.21 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0 |
| 1270.0<br>1271.0<br>1272.0<br>1273.0<br>1274.0<br>1275.0<br>1276.0<br>1277.0<br>1278.0           | 49.3 31.6<br>45.6 29.9<br>43.4 32.2<br>40.4 29.1<br>47.4 31.1<br>49.3 31.8<br>62.1 30.8<br>52.9 32.6<br>59.0 33.5<br>60.0 33.0 | 150<br>150<br>150<br>150<br>150<br>150<br>150               | 9.0 1.28<br>9.0 1.29<br>9.0 1.33<br>9.0 1.32<br>9.0 1.29<br>9.0 1.29<br>9.0 1.20<br>9.0 1.27<br>9.0 1.25<br>9.0 1.25 | 10.72<br>10.74<br>10.76<br>10.79<br>10.81<br>10.83<br>10.85<br>10.86<br>10.88          | 94445<br>94643<br>94850<br>95073<br>95263<br>95263<br>95590<br>95760<br>95913<br>96063 | 93.07<br>97.78<br>104.85<br>89.53<br>86.00<br>68.33<br>80.11<br>71.86 | 155.06<br>154.93<br>154.81<br>154.70<br>154.56<br>154.41<br>154.23<br>154.07<br>153.90           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0 |
| 1280.0<br>1281.0<br>1282.0<br>1283.0<br>1284.0<br>1285.0<br>1286.0<br>1287.0<br>1288.0           | 64.3 32.7<br>54.5 30.6<br>73.5 29.6<br>35.0 30.6<br>52.2 30.9<br>63.2 30.9<br>73.5 29.0<br>47.4 30.6<br>51.4 29.5<br>52.9 34.5 | 150<br>150<br>150<br>150<br>150<br>150<br>150<br>150        | 9.0 1.21<br>9.0 1.24<br>9.0 1.14<br>9.0 1.38<br>9.0 1.26<br>9.0 1.20<br>9.0 1.13<br>9.0 1.29<br>9.0 1.25<br>9.0 1.25 | 10.91<br>10.93<br>10.95<br>10.97<br>10.99<br>11.01<br>11.02<br>11.04<br>11.06          | 96203<br>96368<br>96490<br>96748<br>96920<br>97063<br>97185<br>97375<br>97550<br>97720 | 77.75<br>57.72<br>121.34<br>81.29<br>67.15<br>57.72<br>89.53<br>82.46 | 153.54<br>153.38<br>153.11<br>153.11<br>152.96<br>152.78<br>152.58<br>152.45<br>152.31<br>152.16 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0 |
| 1290.0<br>1291.0<br>1292.0<br>1293.0<br>1294.0<br>1295.0<br>1296.0<br>1297.0<br>1298.0           | 52.9 33.4<br>52.2 35.8<br>45.0 39.5<br>64.3 38.0<br>62.1 39.8<br>63.2 38.8<br>64.3 39.8<br>64.3 38.7<br>60.0 38.3<br>65.5 36.7 | ; 150<br>; 150<br>; 150<br>; 150<br>; 150<br>; 150<br>; 150 | 9.0 1.28<br>9.0 1.31<br>9.0 1.40<br>9.0 1.27<br>9.0 1.30<br>9.0 1.28<br>9.0 1.29<br>9.0 1.28<br>9.0 1.29<br>9.0 1.29 | 11.10<br>11.12<br>11.14<br>11.16<br>11.17<br>11.19<br>11.21<br>11.22<br>11.24<br>11.25 | 97890<br>98063<br>98263<br>98403<br>98548<br>98690<br>98830<br>98973<br>99123<br>99260 | 94.24<br>65.97<br>68.33<br>67.15<br>65.97<br>67.15<br>70.68           | 151.23                                                                                           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.0 |

| DEPTH                                                                                  | ROP                                                          | MOB                                                                          | RPM                                           | MW                                            | "d"c                                                                 | HOURS                                                                                  | TURNS                                                                                            | ICOST                                                                | ccost                                                                                            | рþ                                     | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1300.0<br>1301.0<br>1302.0<br>1303.0<br>1304.0<br>1305.0<br>1306.0<br>1307.0<br>1308.0 | 61.0<br>62.1<br>69.2<br>58.1<br>61.0<br>56.2<br>61.0<br>75.0 | 39.0<br>37.8<br>40.9<br>41.4<br>41.1<br>42.2<br>41.4<br>40.8<br>39.6<br>41.4 | 150<br>150<br>150<br>150<br>150<br>150<br>150 |                                               | 1.28<br>1.28<br>1.31<br>1.28<br>1.33<br>1.35<br>1.35<br>1.31<br>1.23 | 11.27<br>11.29<br>11.30<br>11.32<br>11.33<br>11.35<br>11.37<br>11.38<br>11.40<br>11.42 | 99401<br>99549<br>99694<br>99824<br>99979<br>100126<br>100286<br>100434<br>100554                | 69.51<br>68.33<br>61.26<br>73.04<br>69.51<br>75.40<br>69.51          | 150.37<br>150.21<br>150.04<br>149.87<br>149.71<br>149.55<br>149.40<br>149.24<br>149.06<br>148.98 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.0<br>18.0<br>18.0<br>18.0<br>18.0<br>18.1<br>18.1<br>18.1 |
| 1310.0<br>1311.0<br>1312.0<br>1313.0<br>1314.0<br>1315.0<br>1316.0<br>1317.0<br>1318.0 | 59.0<br>65.5<br>65.5<br>66.7<br>59.0<br>72.0<br>66.7         | 38.4<br>40.8<br>40.6<br>41.3<br>38.8<br>40.9<br>42.1<br>41.3<br>42.0<br>31.9 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0                                    | 1.21<br>1.32<br>1.29<br>1.29<br>1.26<br>1.33<br>1.27<br>1.29<br>1.32 | 11.44<br>11.45<br>11.47<br>11.48<br>11.50<br>11.52<br>11.53<br>11.54<br>11.56<br>11.57 | 100904<br>101056<br>101194<br>101331<br>101466<br>101619<br>101744<br>101879<br>102024<br>102136 | 71.86<br>64.79<br>64.79<br>63.62<br>71.86<br>58.90                   | 148.48<br>148.31<br>148.14<br>147.99<br>147.82<br>147.65<br>147.50                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.1<br>18.1<br>18.1<br>18.1<br>18.1<br>18.1<br>18.1<br>18.1 |
| 1320.0<br>1321.0<br>1322.0<br>1323.0<br>1324.0<br>1325.0<br>1326.0<br>1327.0<br>1328.0 | 64.3<br>66.7<br>73.5<br>58.1<br>69.2<br>59.0<br>76.6<br>55.4 | 39.1<br>38.5<br>38.5<br>40.0<br>40.7<br>40.5<br>41.3<br>42.6<br>43.5         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.25<br>1.27<br>1.26<br>1.24<br>1.33<br>1.27<br>1.33<br>1.25<br>1.37 | 11.59<br>11.60<br>11.62<br>11.63<br>11.65<br>11.66<br>11.68<br>11.69<br>11.71          | 102264<br>102404<br>102539<br>102661<br>102816<br>102946<br>103099<br>103216<br>103379<br>103609 | 63.62<br>57.72<br>73.04<br>61.26<br>71.86<br>55.37<br>76.57          | 147.15<br>146.99<br>146.83<br>146.65<br>146.51<br>146.35<br>146.20<br>146.03<br>145.83           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.1<br>18.1<br>18.1<br>18.1<br>18.1<br>18.1<br>18.1<br>18.1 |
| 1330.0<br>1331.0<br>1332.0<br>1333.0<br>1334.0<br>1335.0<br>1336.0<br>1337.0<br>1338.0 | 59.0<br>61.0<br>66.7<br>64.3<br>56.2<br>66.7<br>55.4<br>76.6 | 44.8<br>42.6<br>42.9<br>41.8<br>40.0<br>40.9<br>40.7<br>42.2<br>41.5         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.41<br>1.34<br>1.33<br>1.29<br>1.29<br>1.33<br>1.28<br>1.35<br>1.25 | 11.76<br>11.77<br>11.79<br>11.80<br>11.82<br>11.84<br>11.85<br>11.85                   | 103784<br>103936<br>104084<br>104219<br>104359<br>104519<br>104654<br>104816<br>104934<br>105151 | 71.86<br>69.51<br>63.62<br>65.97<br>75.40<br>63.62<br>76.57<br>55.37 | 144.83<br>144.70                                                                                 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.1<br>18.1<br>18.1<br>18.1<br>18.1<br>18.1<br>18.1         |
| 1340.0<br>1341.0<br>1342.0<br>1343.0<br>1344.0<br>1345.0<br>1346.0<br>1347.0<br>1348.0 | 58.1<br>66.7<br>59.0<br>67.9<br>66.7<br>49.3<br>50.7         | 40.5<br>39.1<br>39.4<br>39.5<br>39.7<br>39.7<br>39.8<br>40.5<br>36.5         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.31<br>1.31<br>1.27<br>1.31<br>1.27<br>1.27<br>1.38<br>1.37         | 11.92<br>11.94<br>11.96<br>11.97<br>11.99<br>12.00<br>12.02<br>12.04<br>12.06<br>12.08 | 105299<br>105454<br>105589<br>105741<br>105874<br>106009<br>106191<br>106369<br>106544<br>106671 | 63.62<br>71.86<br>62.44<br>63.62<br>86.00<br>83.64<br>82.46          | 144.31<br>144.18<br>144.03<br>143.90<br>143.74<br>143.60<br>143.49<br>143.38<br>143.27           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.1<br>18.1<br>18.1<br>18.1<br>18.1<br>18.1<br>18.1<br>18.1 |

| DEPTH                                                                                  | ROP                                                          | MOB                                                                          | RPM                                           | MW                                            | "d "c                                                                | HOURS                                                                                           | TURNS                                                                                            | ICOST                                                                  | CCOST                                                                                            | PP                                     | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1350.0<br>1351.0<br>1352.0<br>1353.0<br>1354.0<br>1355.0<br>1356.0<br>1357.0<br>1358.0 | 56.2<br>62.1<br>45.0<br>58.1<br>61.0<br>60.0<br>75.0         | 36.1<br>38.1                                                                 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0                                           | 1.34<br>1.31<br>1.27<br>1.38<br>1.30<br>1.26<br>1.29<br>1.19<br>1.34 | 12.10<br>12.11<br>12.13<br>12.15<br>12.17<br>12.19<br>12.20<br>12.22<br>12.24<br>12.26          | 106851<br>107011<br>107156<br>107356<br>107511<br>107659<br>107809<br>107929<br>108099<br>108296 | - 75.40<br>68.33<br>94.24<br>73.04<br>69.51<br>70.68<br>56.55<br>80.11 | 143.00<br>142.88<br>142.74<br>142.66<br>142.53<br>142.40<br>142.27<br>142.11<br>142.00<br>141.91 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.1<br>18.1<br>18.1<br>18.2<br>18.2<br>18.2<br>18.2<br>18.2 |
| 1360.0<br>1361.0<br>1362.0<br>1363.0<br>1364.0<br>1365.0<br>1366.0<br>1367.0<br>1369.0 | 55.4<br>59.0<br>51.4<br>55.4<br>56.2<br>58.1<br>40.9<br>51.4 | 37.4<br>37.1<br>37.7<br>36.8                                                 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.34<br>1.32<br>1.29<br>1.33<br>1.31<br>1.30<br>1.29<br>1.45<br>1.37 | 12.28<br>12.39<br>12.33<br>12.35<br>12.35<br>12.37<br>12.38<br>12.41<br>12.43<br>12.44          | 108471<br>108634<br>108786<br>108961<br>109124<br>109284<br>109439<br>109659<br>109834           | 76.57<br>71.86<br>82.46<br>76.57<br>75.40<br>73.04<br>103.67<br>82.46  | 141.80<br>141.68<br>141.56<br>141.45<br>141.34<br>141.22<br>141.10<br>141.03<br>140.93           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.2<br>18.2<br>18.2<br>18.2<br>18.2<br>18.2<br>18.2<br>18.2 |
| 1370.0<br>1371.0<br>1372.0<br>1373.0<br>1374.0<br>1375.0<br>1376.0<br>1377.0           | 51.4<br>61.0<br>54.5<br>54.5<br>51.4<br>50.7<br>53.0         | 38.6<br>39.3<br>38.9<br>38.3<br>38.4<br>40.4<br>40.4<br>39.8                 | 150<br>150<br>150<br>150<br>150<br>150        | 9.0<br>9.0<br>9.0                             | 1.26<br>1.35<br>1.30<br>1.33<br>1.33<br>1.35<br>1.35<br>1.35         | 12.46<br>12.48<br>12.50<br>12.51<br>12.53<br>12.55<br>12.55<br>12.57<br>12.59<br>12.61<br>12.62 | 110116<br>110291<br>110439<br>110604<br>110769<br>110944<br>111121<br>111289<br>111441<br>111591 | 82.46<br>69.51<br>77.75<br>77.75<br>82.46<br>83.64<br>78.93<br>71.86   | 140.66<br>140.56<br>140.43<br>140.32<br>140.21<br>140.11<br>140.01<br>139.91<br>139.79<br>139.67 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.2<br>18.2<br>18.2<br>18.2<br>18.2<br>18.2<br>18.2<br>18.2 |
| 1380.0<br>1381.0<br>1382.0<br>1383.0<br>1384.0<br>1385.0<br>1386.0<br>1387.0<br>1388.0 | 52.2<br>61.0<br>45.6<br>49.3<br>45.6<br>51.4<br>53.7<br>61.0 | 38.4<br>37.5<br>39.0<br>39.3<br>40.3<br>38.5<br>36.9<br>38.7<br>39.4<br>40.5 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0        | 1.32<br>1.33<br>1.30<br>1.40<br>1.38<br>1.39<br>1.33<br>1.34         | 12.64<br>12.66<br>12.68<br>12.70<br>12.72<br>12.74<br>12.76<br>12.78<br>12.80<br>12.82          | 111751<br>111924<br>112071<br>112269<br>112451<br>112649<br>112824<br>112991<br>113139<br>113344 | 86.00<br>93.07<br>82.46<br>78.93<br>69.51                              | 139.55<br>139.45<br>139.33<br>139.25<br>139.16<br>139.08<br>138.98<br>138.88<br>138.88           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.2<br>18.2<br>18.2<br>18.2<br>18.2<br>18.2<br>18.2<br>18.2 |
| 1390.0<br>1391.0<br>1392.0<br>1393.0<br>1394.0<br>1395.0<br>1396.0<br>1397.0<br>1398.0 | 50.7<br>48.0<br>53.7<br>45.6<br>58.1<br>47.4<br>46.2<br>43.4 | 37.5<br>36.8<br>34.0                                                         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.38<br>1.35<br>1.36<br>1.32<br>1.37<br>1.26<br>1.34<br>1.37         | 12.84<br>12.86<br>12.88<br>12.90<br>12.92<br>12.94<br>12.96<br>12.98<br>13.00<br>13.02          | 113531<br>113709<br>113896<br>114064<br>114261<br>114416<br>114606<br>114801<br>115009<br>115184 | 83.64<br>88.35<br>78.93<br>93.07<br>73.04<br>89.53<br>91.89<br>97.78   | 138.60<br>138.51<br>138.42<br>138.32<br>138.24<br>138.13<br>138.05<br>137.97<br>137.90<br>137.81 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.2<br>18.2<br>18.2<br>18.2<br>18.2<br>18.2<br>18.2<br>18.2 |

| DEPTH                                                                                            | ROP                                                          | MOB                                                                          | RPM                                           | MW                                            | "d"c                                                                 | HOURS                                                                         | TURNS                                                                                            | ICOST                                                                 | ccost                                                                                            | рþ                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1400.0<br>1401.0<br>1402.0<br>1403.0<br>1404.0<br>1405.0<br>1406.0<br>1407.0<br>1408.0           | 50.1<br>42.0<br>47.0<br>51.4<br>69.2<br>50.7<br>49.3<br>76.6 | 33.0<br>35.3<br>44.0<br>42.5<br>43.8<br>38.4<br>38.4<br>38.8<br>37.8<br>36.7 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.31<br>1.32<br>1.47<br>1.42<br>1.40<br>1.25<br>1.35<br>1.37         | 13.04<br>13.06<br>13.11<br>13.13<br>13.14<br>13.16<br>13.18<br>13.19<br>13.21 | 115371<br>115551<br>115761<br>115953<br>116128<br>116258<br>116435<br>116618<br>116735<br>116895 | 84.65<br>99.32<br>90.23<br>82.46<br>61.26<br>83.64<br>86.00<br>55.37  | 137.73<br>137.64<br>137.57<br>137.49<br>137.40<br>137.27<br>137.19<br>137.10<br>136.96<br>136.86 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.2<br>18.2<br>18.3<br>18.3<br>18.3<br>18.3<br>18.3<br>18.3 |
| 1410.0<br>1411.0<br>1412.0<br>1413.0<br>1414.0<br>1415.0<br>1416.0<br>1417.0<br>1418.0           | 54.5<br>69.2<br>46.8<br>61.0<br>59.0<br>59.0                 | 38.9<br>38.6<br>38.2<br>37.9<br>35.6<br>33.5<br>34.2<br>35.6<br>34.1         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.34<br>1.33<br>1.24<br>1.37<br>1.26<br>1.24<br>1.26<br>1.27         | 13.25<br>13.26<br>13.29<br>13.30<br>13.32<br>13.33<br>13.35<br>13.37          | 117063<br>117228<br>117358<br>117550<br>117698<br>117845<br>117998<br>118150<br>118278<br>118458 | 77.75<br>61.26<br>90.71<br>69.51<br>69.51<br>71.86<br>71.86<br>60.08  | 136.77<br>136.67<br>136.54<br>136.47<br>136.36<br>136.25<br>136.14<br>136.04<br>135.91<br>135.83 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.3<br>18.3<br>18.3<br>18.3<br>18.3<br>18.3<br>18.3<br>18.3 |
| 1420.0<br>1421.0<br>1422.0<br>1423.0<br>1424.0<br>1425.0<br>1426.0<br>1427.0<br>1428.0<br>1429.0 | 58.1<br>50.7<br>67.9<br>50.0<br>53.7<br>64.3<br>60.0         | 34.8<br>35.0<br>35.1<br>35.2<br>35.6<br>36.5<br>37.2<br>36.6<br>36.6         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0        | 1.22<br>1.27<br>1.32<br>1.22<br>1.33<br>1.31<br>1.26<br>1.28<br>1.29 | 13.40<br>13.42<br>13.45<br>13.47<br>13.47<br>13.51<br>13.51<br>13.52<br>13.54 | 118590<br>118745<br>118923<br>119055<br>119235<br>119403<br>119543<br>119693<br>119848<br>120043 | 73.04<br>83.64<br>62.44<br>84.82<br>78.93<br>65.97<br>70.68<br>73.04  | 135.71<br>135.61<br>135.52<br>135.41<br>135.32<br>135.23<br>135.12<br>135.02<br>134.92<br>134.92 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.3<br>18.3<br>18.3<br>18.3<br>18.3<br>18.3<br>18.3<br>18.3 |
| 1430.0<br>1431.0<br>1432.0<br>1433.0<br>1434.0<br>1435.0<br>1436.0<br>1437.0<br>1438.0<br>1439.0 | 58.1<br>48.0<br>46.8<br>61.0<br>30.0<br>49.3<br>52.9<br>47.4 | 37.7<br>37.0<br>36.6<br>36.1<br>34.5<br>35.7<br>35.9<br>36.8                 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.32<br>1.29<br>1.35<br>1.35<br>1.25<br>1.50<br>1.36<br>1.31         | 13.58<br>13.60<br>13.62<br>13.64<br>13.66<br>13.71<br>13.73<br>13.75<br>13.77 | 120210<br>120365<br>120553<br>120745<br>120893<br>121193<br>121375<br>121545<br>121735<br>121925 | 73.04<br>88.35<br>90.71<br>69.51<br>141.37<br>86.00<br>80.11<br>89.53 | 134.76<br>134.66<br>134.59<br>134.52<br>134.41<br>134.42<br>134.35<br>134.26<br>134.19           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.3<br>18.3<br>18.3<br>18.3<br>18.3<br>18.3<br>18.3<br>18.3 |
| 1440.0<br>1441.0<br>1442.0<br>1443.0<br>1444.0<br>1445.0<br>1445.0<br>1447.0<br>1448.0           | 46.8<br>41.9<br>47.4<br>43.4<br>42.4<br>46.8<br>39.1<br>40.5 | 36.9<br>37.8<br>35.0<br>35.7<br>36.2<br>36.1<br>37.0<br>38.0                 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.40<br>1.37<br>1.38<br>1.34<br>1.37<br>1.39<br>1.35<br>1.42<br>1.42 | 13.79<br>13.82<br>13.84<br>13.86<br>13.91<br>13.93<br>13.95<br>13.95          | 122330<br>122545<br>122735<br>122943<br>123155<br>123348<br>123578                               | 101.31<br>89.53<br>97.78<br>100.13<br>90.71<br>108.38<br>104.72       | 134.00<br>133.95<br>133.88<br>133.82<br>133.77<br>133.70<br>133.66                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.3<br>18.3<br>18.3<br>18.3<br>18.3<br>18.3<br>18.3         |

| DEPTH                                                                                            | ROP WOB                                                                                                                        | RPM                                                  | MW "d"c                                                                                                              | HOURS                                                                                  | TURNS                                                                        | ICOST                                                                       | CCOST                                                                        | PP FG                                                                                                    |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 1450.0<br>1451.0<br>1452.0<br>1453.0<br>1454.0<br>1455.0<br>1456.0<br>1457.0<br>1458.0<br>1459.0 | 51.2 37.3<br>36.0 38.5<br>54.5 36.9<br>33.6 38.8<br>37.9 38.2<br>41.9 37.9<br>51.4 38.1<br>40.4 37.1<br>52.2 37.4<br>51.4 37.2 | 150<br>150<br>150<br>150<br>150<br>150<br>150        | 9.0 1.34<br>9.0 1.47<br>9.0 1.31<br>9.0 1.50<br>9.0 1.45<br>9.0 1.41<br>9.0 1.34<br>9.0 1.33<br>9.0 1.33             | 14.01<br>14.04<br>14.06<br>14.09<br>14.12<br>14.14<br>14.16<br>14.18<br>14.20<br>14.22 | 124522<br>124789<br>125027<br>125242<br>125417                               | 117.81<br>- 77.75<br>126.05<br>111.92<br>101.31<br>82.46<br>104.85<br>81.29 | 133.32<br>133.30<br>133.27<br>133.22<br>133.14                               | 8.4 18.3<br>8.4 18.3<br>8.4 18.3<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4 |
| 1460.0<br>1461.0<br>1462.0<br>1463.0<br>1464.0<br>1465.0<br>1466.0<br>1467.0<br>1468.0           | 43.9 37.0<br>40.4 33.2<br>38.7 35.2<br>40.4 31.4<br>38.3 29.8<br>54.5 30.4<br>51.4 28.6<br>37.9 29.0<br>46.8 29.3<br>40.4 30.2 | 150<br>150<br>150<br>150<br>150<br>150<br>150        | 9.0 1.39<br>9.0 1.37<br>9.0 1.41<br>9.0 1.35<br>9.0 1.34<br>9.0 1.24<br>9.0 1.24<br>9.0 1.34<br>9.0 1.33             | 14.25<br>14.27<br>14.30<br>14.32<br>14.35<br>14.37<br>14.38<br>14.41<br>14.43          | 126647<br>126869<br>127104<br>127269<br>127444<br>127682<br>127874           | 104.85<br>109.56<br>104.85<br>110.74<br>77.75                               | 132.81<br>132.77<br>132.73<br>132.65<br>132.57<br>132.54<br>132.48           | 8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4 |
| 1470.0<br>1471.0<br>1472.0<br>1473.0<br>1474.0<br>1475.0<br>1476.0<br>1477.0<br>1478.0           | 32.1 29.8 52.9 30.2 50.7 28.7 47.4 28.5 49.3 29.3 44.4 28.5 43.5 32.1 46.1 29.2 39.1 29.3 34.0 30.7                            | 150<br>150<br>150<br>150<br>150<br>150<br>150        | 9.0 1.40<br>9.0 1.25<br>9.0 1.24<br>9.0 1.26<br>9.0 1.28<br>9.0 1.33<br>9.0 1.33<br>9.0 1.33<br>9.0 1.33             | 14.49<br>14.51<br>14.53<br>14.55<br>14.57<br>14.59<br>14.61<br>14.64<br>14.66          | 128547<br>128724<br>128714<br>129097<br>129299<br>129506<br>129701<br>129931 | 83.64<br>89.53<br>86.00<br>95.42<br>97.49                                   | 132.36<br>132.29<br>132.22<br>132.15<br>132.10<br>132.05<br>131.99<br>131.95 | 8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4             |
| 1480.0<br>1481.0<br>1482.0<br>1483.0<br>1484.0<br>1485.0<br>1486.0<br>1487.0<br>1488.0           | 51.4 27.9<br>43.4 28.5<br>40.9 29.3<br>57.1 31.6<br>35.0 34.5<br>45.6 32.4<br>44.4 32.6<br>43.4 32.9<br>49.3 32.3<br>42.4 35.2 | 150<br>150<br>150<br>150<br>150<br>150<br>150        | 9.0 1.23<br>9.0 1.29<br>9.0 1.32<br>9.0 1.24<br>9.0 1.43<br>9.0 1.32<br>9.0 1.33<br>9.0 1.34<br>9.0 1.29<br>9.0 1.38 | 14.71<br>14.73<br>14.76<br>14.77<br>14.80<br>14.83<br>14.85<br>14.87<br>14.89          | 130956<br>131214<br>131411<br>131614<br>131821<br>132004                     | 97.78<br>103.67<br>74.22<br>121.34<br>93.07<br>95.42<br>97.78               | 131.69<br>131.62<br>131.56<br>131.51<br>131.45                               | 8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4             |
| 1490.0<br>1491.0<br>1492.0<br>1493.0<br>1494.0<br>1495.0<br>1496.0<br>1497.0<br>1498.0           | 43.4 32.9<br>41.9 32.9<br>40.9 32.7<br>52.2 32.0<br>37.5 33.0<br>48.0 33.5<br>52.9 32.2<br>48.6 32.0<br>42.4 32.2              | 150<br>150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0 1.34<br>9.0 1.35<br>9.0 1.36<br>9.0 1.27<br>9.0 1.39<br>9.0 1.32<br>9.0 1.27<br>9.0 1.27<br>9.0 1.34<br>9.0 1.36 | 14.94<br>14.96<br>14.99<br>15.01<br>15.03<br>15.05<br>15.07<br>15.12<br>15.14          | 132639<br>132859<br>133031<br>133271<br>133459<br>133629<br>133814<br>134026 | 113.09<br>88.35<br>80.11                                                    | 131.31<br>131.27<br>131.20<br>131.17<br>131.11<br>131.03<br>130.97<br>130.93 | 8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4<br>8.4 18.4             |

| DEPTH                                                                                  | ROP                                                          | мов                                                                  | RPM                                           | MW                                            | "d"c                                                                 | HOURS                                                                                  | TURNS                                                                                            | ICOST                                                                | ccost                                                                                  | рp                                     | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1500.0<br>1501.0<br>1502.0<br>1503.0<br>1504.0<br>1505.0<br>1507.0<br>1508.0<br>1509.0 | 39.1<br>48.6<br>44.4<br>37.9<br>58.1<br>35.0<br>50.0<br>52.2 | 31.2<br>33.6<br>35.7<br>35.6<br>36.4<br>34.9<br>36.1<br>35.8<br>35.6 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.23<br>1.38<br>1.34<br>1.37<br>1.43<br>1.27<br>1.45<br>1.33<br>1.31 | 15.16<br>15.18<br>15.20<br>15.23<br>15.25<br>15.27<br>15.30<br>15.32<br>15.34<br>15.37 | 135406<br>135664<br>135844<br>136016                                                             | 108.38<br>87.18<br>95.42<br>111.92<br>73.04<br>121.34<br>84.82       | 130.70<br>130.65<br>130.63<br>130.54<br>130.53<br>130.47                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.4<br>18.4<br>18.4<br>18.4<br>18.5<br>18.5<br>18.5         |
| 1510.0<br>1511.0<br>1512.0<br>1513.0<br>1514.0<br>1515.0<br>1516.0<br>1517.0<br>1518.0 | 53.7<br>36.4<br>59.0<br>47.4<br>42.9<br>54.5<br>31.3         | 35.1<br>34.2<br>36.3<br>35.3<br>34.6<br>37.1<br>35.8<br>37.3<br>36.1 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.40<br>1.29<br>1.44<br>1.27<br>1.33<br>1.39<br>1.30<br>1.50<br>1.26 | 15.39<br>15.41<br>15.44<br>15.45<br>15.50<br>15.52<br>15.55<br>15.56                   | 136501<br>136669<br>136916<br>137069<br>137259<br>137469<br>137634<br>137921<br>138066<br>138221 | 116.63<br>71.86<br>89.53<br>98.96<br>77.75<br>135.48<br>68.33        | 130.28<br>130.26<br>130.18<br>130.12<br>130.07                                         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5 |
| 1520.0<br>1521.0<br>1522.0<br>1523.0<br>1524.0<br>1525.0<br>1526.0<br>1527.0<br>1528.0 | 53.7<br>51.4<br>50.0<br>59.0<br>57.1<br>91.1<br>43.0<br>50.0 | 35.8<br>35.4<br>36.5<br>35.6<br>36.1<br>34.6<br>37.0<br>36.8<br>36.0 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.35<br>1.30<br>1.33<br>1.33<br>1.28<br>1.27<br>1.14<br>1.39<br>1.33 | 15.60<br>15.62<br>15.64<br>15.66<br>15.70<br>15.71<br>15.73<br>15.77                   | 138414<br>138581<br>138756<br>138936<br>139089<br>139246<br>139345<br>139555<br>139735           | 78.93<br>82.46<br>84.82<br>71.86<br>74.22<br>46.55<br>98.66<br>84.82 | 129.79<br>129.72<br>129.65<br>129.59<br>129.51<br>129.43<br>129.31<br>129.27<br>129.21 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5 |
| 1530.0<br>1531.0<br>1532.0<br>1533.0<br>1534.0<br>1535.0<br>1536.0<br>1537.0<br>1538.0 | 46.8<br>46.2<br>45.6<br>42.9<br>56.2<br>56.2<br>47.4         | 35.5<br>36.7<br>34.4<br>34.8<br>35.4<br>35.4<br>35.9<br>35.9<br>35.0 | 150<br>150<br>150<br>150<br>150<br>150        | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.1 | 1.30<br>1.36<br>1.34<br>1.35<br>1.37<br>1.29<br>1.27<br>1.39         | 15.79<br>15.81<br>15.83<br>15.86<br>15.88<br>15.90<br>15.91<br>15.94<br>15.96<br>15.99 | 141630                                                                                           | 90.71<br>91.89<br>93.07<br>98.96<br>75.40                            | 128.67                                                                                 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5 |
| 1540.0<br>1541.0<br>1542.0<br>1543.0<br>1544.0<br>1545.0<br>1546.0<br>1547.0<br>1549.0 | 43.9<br>48.6<br>46.8<br>45.0<br>49.3<br>52.2<br>35.0         | 41.7<br>40.7<br>42.0<br>43.1<br>41.8<br>41.4<br>41.7<br>40.1<br>41.3 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1 |                                                                      | 16.01<br>16.03<br>16.05<br>16.07<br>16.09<br>16.11<br>16.13<br>16.16<br>16.18          | 143640                                                                                           | 96.60<br>87.18<br>90.71<br>94.24<br>86.00                            | 128.21                                                                                 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5 |

| DEPTH                                                                                  | ROP                                                          | MOB                                                                          | RPM                                           | MW                                            | "d "c                                                                | HOURS                                                                                  | TURNS                                                                                            | ICOST                                                                    | CCOST                                                              | рp                                     | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1550.0<br>1551.0<br>1552.0<br>1553.0<br>1554.0<br>1555.0<br>1556.0<br>1557.0<br>1559.0 | 45.6<br>49.3<br>41.9<br>45.6<br>50.0<br>28.3<br>47.4<br>50.7 | 41.5<br>41.9<br>42.0<br>41.7<br>42.5<br>42.0<br>42.3<br>42.2                 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1        | 1.48<br>1.41<br>1.39<br>1.44<br>1.41<br>1.39<br>1.58<br>1.40         | 16.23<br>16.25<br>16.27<br>16.30<br>16.32<br>16.34<br>16.38<br>16.40<br>16.42          | 144072<br>144270<br>144452<br>144667<br>144865<br>145045<br>145362<br>145552<br>145730<br>145917 | 86.00<br>101.31<br>93.07<br>84.82<br>149.61<br>89.53<br>83.64            | 128.09<br>128.03<br>128.00<br>127.95<br>127.89                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5<br>18.5 |
| 1560.0<br>1561.0<br>1562.0<br>1563.0<br>1564.0<br>1565.0<br>1566.0<br>1567.0<br>1568.0 | 39.1<br>50.0<br>49.3<br>46.2<br>42.9<br>33.3<br>41.9<br>38.7 | 41.9<br>43.0<br>41.9<br>41.6<br>42.8<br>42.9<br>41.2<br>41.3<br>42.5         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1 | 1.44<br>1.47<br>1.38<br>1.38<br>1.42<br>1.44<br>1.51<br>1.43<br>1.47 | 16.46<br>16.49<br>16.51<br>16.53<br>16.55<br>16.60<br>16.63<br>16.65<br>16.67          | 146130<br>146360<br>146540<br>146722<br>146917<br>147127<br>147397<br>147612<br>147845<br>148012 | 86.00<br>91.89<br>98.96<br>127.23<br>101.31<br>109.56                    | 127.70<br>127.64<br>127.59<br>127.54<br>127.50<br>127.50           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6 |
| 1570.0<br>1571.0<br>1572.0<br>1573.0<br>1574.0<br>1575.0<br>1576.0<br>1577.0<br>1578.0 | 46.8<br>45.6<br>38.3<br>42.4<br>45.6<br>36.7<br>41.9         | 42.1<br>42.8<br>41.5<br>44.0<br>43.8<br>43.1<br>43.4<br>44.3<br>43.3         | 150<br>150<br>150<br>150<br>150<br>150        | 9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1 | 1.49                                                                 | 16.70<br>16.72<br>16.77<br>16.79<br>16.81<br>16.84<br>16.88<br>16.88                   | 148440<br>148637<br>148872<br>149085<br>149282<br>149527<br>149742                               | 110.74<br>100.13<br>93.07<br>115.45<br>101.31                            | 127.31<br>127.27<br>127.24<br>127.21<br>127.16<br>127.15<br>127.12 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6 |
| 1580.0<br>1581.0<br>1582.0<br>1583.0<br>1584.0<br>1585.0<br>1586.0<br>1587.0<br>1588.0 | 41.9<br>45.6<br>36.0<br>42.9<br>38.7<br>45.0<br>45.6<br>42.4 | 43.4<br>43.4<br>44.2<br>44.3<br>43.1<br>42.9<br>41.3<br>42.1<br>41.6<br>42.0 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1 | 1.47<br>1.46<br>1.43<br>1.52<br>1.44<br>1.48<br>1.41<br>1.41         | 16.93<br>16.96<br>16.98<br>17.01<br>17.03<br>17.05<br>17.10<br>17.12<br>17.15          | 150587<br>150785<br>151035<br>151245<br>151477<br>151677<br>151875                               | 117.81<br>98.96<br>109.56<br>94.24<br>93.07<br>100.13                    | 126.97<br>126.93<br>126.92<br>126.88<br>126.86<br>126.82<br>126.77 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6 |
| 1590.0<br>1591.0<br>1592.0<br>1593.0<br>1594.0<br>1595.0<br>1595.0<br>1597.0<br>1598.0 | 45.6<br>47.4<br>42.9<br>34.8<br>42.4<br>48.6<br>33.6         | 40.0<br>41.8<br>41.4<br>42.2<br>41.4<br>43.0<br>43.7<br>44.4<br>45.1         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1 | 1.37<br>1.41<br>1.39<br>1.43<br>1.50<br>1.45<br>1.45<br>1.58         | 17.17<br>17.19<br>17.21<br>17.23<br>17.26<br>17.28<br>17.31<br>17.34<br>17.37<br>17.40 | 153548<br>153733<br>154000<br>154288                                                             | 93.07<br>89.53<br>98.96<br>121.73<br>100.13<br>87.18<br>126.05<br>135.48 | 126.44                                                             | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6 |

As Jagania a

| DEPTH                                                                                  | ROP                                                          | MOB                                                                          | RPM                                           | мы                                                   | "d "c                                                                | HOURS                                                                                  | TURNS                                                                        | ICOST                                                             | CCOST                                                                                            | PP                                            | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 1600.0<br>1601.0<br>1602.0<br>1603.0<br>1604.0<br>1605.0<br>1606.0<br>1607.0<br>1608.0 | 37.2<br>41.1<br>30.3<br>32.4<br>34.3<br>33.6<br>43.4         | 43.8<br>45.3<br>44.3<br>44.1                                                 | 150<br>150                                    | 9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1 | 1.56<br>1.55<br>1.52<br>1.47<br>1.58<br>1.55<br>1.54<br>1.54         | 17.43<br>17.46<br>17.49<br>17.52<br>17.55<br>17.58<br>17.61<br>17.64<br>17.66          | 155158<br>155400<br>155619<br>155916<br>156194<br>156456                     | 113.88<br>103.08<br>140.19<br>130.76<br>123.70<br>126.05<br>97.78 | 126.49<br>126.47<br>126.44<br>126.46<br>126.47                                                   | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6<br>18.6 |
| 1610.0<br>1611.0<br>1612.0<br>1613.0<br>1614.0<br>1615.0<br>1616.0<br>1617.0<br>1618.0 | 40.9<br>57.1<br>35.6<br>37.8<br>26.7<br>50.7<br>31.3<br>44.4 | 42.5<br>42.7<br>42.6<br>43.6<br>43.6<br>41.5<br>43.1<br>43.4                 | 150<br>150<br>150<br>150<br>150<br>150        |                                                      | 1.50<br>1.46<br>1.34<br>1.50<br>1.49<br>1.61<br>1.37<br>1.55<br>1.43 | 17.71<br>17.74<br>17.75<br>17.78<br>17.81<br>17.85<br>17.87<br>17.90<br>17.92          | 157614<br>157771<br>158024<br>158262<br>158599<br>158777                     |                                                                   | 126.35<br>126.29<br>126.28<br>126.26<br>126.30<br>126.25                                         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 18.6<br>18.6<br>18.6<br>18.6<br>18.7<br>18.7<br>18.7         |
| 1620.0<br>1621.0<br>1622.0<br>1623.0<br>1624.0<br>1625.0<br>1626.0<br>1627.0<br>1628.0 | 29.5<br>52.4<br>44.4<br>35.6<br>28.6<br>28.1<br>45.0<br>40.9 | 43.4<br>43.9<br>40.0<br>42.7<br>42.9<br>43.3<br>42.2<br>43.8<br>43.8         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1        | 1.59<br>1.58<br>1.34<br>1.43<br>1.51<br>1.59<br>1.58<br>1.42<br>1.45 | 17.98<br>18.01<br>18.03<br>18.05<br>18.08<br>18.12<br>18.15<br>18.17<br>18.20<br>18.22 | 160094<br>160266<br>160469<br>160721<br>161036<br>161356                     | 118.98<br>148.44<br>150.79<br>94.24<br>103.67                     | 126.22<br>126.24<br>126.18<br>126.15<br>126.14<br>126.16<br>126.19<br>126.15<br>126.13           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7 |
| 1630.0<br>1631.0<br>1632.0<br>1633.0<br>1634.0<br>1635.0<br>1636.0<br>1637.0<br>1638.0 | 34.3<br>46.2<br>40.9<br>42.9<br>34.6<br>41.9<br>42.4<br>43.4 | 42.7<br>43.4<br>41.2<br>43.0<br>43.0<br>44.1<br>43.5<br>43.7<br>45.1<br>43.8 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.1<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2               | 1.42<br>1.52<br>1.40<br>1.44<br>1.43<br>1.51<br>1.44<br>1.44         | 18.24<br>18.27<br>18.30<br>18.32<br>18.34<br>18.37<br>18.40<br>18.42<br>18.44          | 163544                                                                       | 98.96<br>122.52<br>101.31<br>100.13<br>97.78                      | 126.05<br>126.05<br>126.01<br>125.98<br>125.95<br>125.94<br>125.92<br>125.88<br>125.85<br>125.81 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7         |
| 1640.0<br>1641.0<br>1642.0<br>1643.0<br>1644.0<br>1645.0<br>1645.0<br>1647.0<br>1647.0 | 35,6<br>32,7<br>34,6<br>34,6<br>33,3<br>27,7<br>33,0<br>33,3 |                                                                              |                                               | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2               | 1.51<br>1.49<br>1.53<br>1.50<br>1.50<br>1.52<br>1.52<br>1.53<br>1.47 | 18.49<br>18.52<br>18.55<br>18.58<br>18.61<br>18.64<br>18.67<br>18.70<br>18.73          | 164659<br>164934<br>165194<br>165454<br>165724<br>166049<br>166321<br>166591 | 118.98<br>129.59                                                  | 125.79<br>125.79<br>125.79<br>125.79<br>125.82<br>125.82<br>125.83                               | 8,4<br>8,4<br>8,4<br>8,4<br>8,4<br>8,4        | 18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7         |

.

| DEPTH                                                                                  | ROP                                                          | WOB                                                                          | RPM                                           | MW                                            | "d "c                                                                | HOURS                                                                                  | TURNS                                                                        | ICOST                                                                                            | CCOST                                                                        | рþ                                     | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1650.0<br>1651.0<br>1652.0<br>1653.0<br>1654.0<br>1655.0<br>1656.0<br>1657.0<br>1659.0 | 34.0<br>35.0<br>27.7<br>31.0<br>34.0<br>37.9<br>31.0<br>35.3 | 43.9<br>43.2<br>43.1<br>43.3<br>43.3                                         | 150<br>150<br>150<br>150<br>150<br>150        | 99.222222<br>99.22222<br>99.22                | 1.51<br>1.50<br>1.51<br>1.59<br>1.55<br>1.51<br>1.47<br>1.54<br>1.50 | 18.79<br>18.82<br>18.85<br>18.88<br>18.92<br>18.95<br>18.97<br>19.00<br>19.03          | 167361<br>167619<br>167944<br>168234<br>168499<br>168736<br>169026<br>169281 | 127.23<br>124.87<br>121.34<br>153.15<br>136.65<br>124.87<br>111.92<br>136.65<br>120.16<br>129.59 | 125.81<br>125.80<br>125.84<br>125.85<br>125.85<br>125.83<br>125.84<br>125.84 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7 |
| 1660.0<br>1661.0<br>1662.0<br>1663.0<br>1664.0<br>1665.0<br>1666.0<br>1667.0<br>1668.0 | 28.6<br>29.0<br>35.0<br>35.6<br>36.4<br>39.6<br>33.6         | 43.4<br>43.8<br>42.7<br>43.3<br>42.6<br>43.4<br>43.2<br>43.3<br>42.9         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.55<br>1.56<br>1.50<br>1.51<br>1.51<br>1.49<br>1.46<br>1.51         | 19.10<br>19.13<br>19.17<br>19.19<br>19.22<br>19.25<br>19.28<br>19.31<br>19.34<br>19.37 | 170164<br>170474<br>170731<br>171004<br>171256<br>171504<br>171731           | 137.83<br>148.44<br>146.08<br>121.34<br>128.41<br>118.98<br>116.63<br>107.20<br>126.05<br>133.12 | 125.88<br>125.91<br>125.90<br>125.90<br>125.89<br>125.88<br>125.86<br>125.86 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7<br>18.7 |
| 1670.0<br>1671.0<br>1672.0<br>1673.0<br>1674.0<br>1675.0<br>1676.0<br>1677.0<br>1678.0 | 33.0<br>32.7<br>38.7<br>33.3<br>40.4<br>36.4<br>34.0<br>39.1 | 43.1<br>43.7<br>44.1<br>42.6<br>43.9<br>44.3<br>44.2<br>44.0<br>44.1<br>43.7 | 150<br>150<br>150<br>150<br>150               | 9.22<br>9.22<br>9.22<br>9.22<br>9.22          | 1.51<br>1.52<br>1.53<br>1.46<br>1.52<br>1.46<br>1.50<br>1.52         | 19.40<br>19.43<br>19.46<br>19.48<br>19.51<br>19.54<br>19.57<br>19.62<br>19.65          | 172821<br>173096<br>173329<br>173599<br>173821                               | 128.41<br>129.59<br>109.56<br>127.23<br>104.85<br>116.63                                         | 125.86<br>125.84<br>125.83<br>125.83<br>125.81                               | 8.4<br>8.4<br>8.4<br>8.4               | 18.8<br>18.8<br>18.8                                         |
| 1680.0<br>1681.0<br>1682.0<br>1683.0<br>1684.0<br>1685.0<br>1686.0<br>1687.0<br>1688.0 | 37.9<br>37.9<br>38.7<br>40.9<br>36.7<br>36.7<br>30.3         | 45.2<br>44.5<br>44.1<br>42.6<br>43.0<br>42.9<br>43.1<br>44.5<br>44.3         | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.48<br>1.49<br>1.48<br>1.46<br>1.44<br>1.48<br>1.56<br>1.53         | 19.67<br>19.70<br>19.73<br>19.75<br>19.78<br>19.81<br>19.83<br>19.87<br>19.90          | 175294<br>175531<br>175764<br>175984<br>176229<br>176474<br>176771           | 107.20<br>111.92<br>111.92<br>109.56<br>103.67<br>115.45<br>115.45<br>140.19<br>129.59           | 125.77<br>125.75<br>125.73<br>125.71<br>125.70<br>125.68<br>125.70<br>125.71 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8 |
| 1690.0<br>1691.0<br>1692.0<br>1693.0<br>1694.0<br>1695.0<br>1696.0<br>1697.0<br>1698.0 | 34.0<br>31.0<br>31.9<br>35.3<br>36.4<br>33.3<br>28.8<br>35.6 |                                                                              | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.45<br>1.53<br>1.56<br>1.55<br>1.50<br>1.49<br>1.55<br>1.49         | 19.94<br>19.97<br>20.01<br>20.04<br>20.07<br>20.12<br>20.16<br>20.19<br>20.22          | 177749<br>178039<br>178321<br>178576<br>178824<br>179094<br>179406<br>179659 | 102.49<br>124.87<br>136.65<br>133.12<br>120.16<br>116.63<br>127.23<br>147.26<br>118.98<br>139.01 | 125.65<br>125.67<br>125.67<br>125.66<br>125.66<br>125.66<br>125.68           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8 |

| DEPTH                                                                                  | ROP                                                          | MOB                                                                  | RPM                                                  | мы                                          | "d "c                                                                | HOURS                                                                                  | TURNS                                                                        | ICOST                                                                                            | CCOST                                                                        | РР                                     | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1700.0<br>1701.0<br>1702.0<br>1703.0<br>1704.0<br>1705.0<br>1706.0<br>1707.0<br>1708.0 | 28.3<br>31.3<br>32.7<br>30.8<br>37.9<br>47.4<br>32.7<br>29.3 | 43.1<br>42.8<br>43.8<br>43.1<br>44.7<br>43.9<br>45.7<br>47.1         | 150<br>150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.2 | 1.42<br>1.57<br>1.54<br>1.52<br>1.56<br>1.48<br>1.39<br>1.55<br>1.60 | 20.24<br>20.28<br>20.31<br>20.34<br>20.37<br>20.40<br>20.42<br>20.45<br>20.45          | 180764<br>181039<br>181331<br>181569<br>181759<br>182034<br>182341           | 149.61<br>135.48<br>129.59<br>132.83<br>111.92                                                   | 125.69<br>125.70<br>125.70<br>125.71<br>125.70<br>125.66<br>125.66           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8 |
| 1710.0<br>1711.0<br>1712.0<br>1713.0<br>1714.0<br>1715.0<br>1716.0<br>1717.0<br>1718.0 | 33.6<br>31.0<br>29.8<br>33.6<br>30.0<br>30.8<br>30.3         | 46.2<br>46.8<br>46.9<br>46.5<br>46.3<br>45.2<br>46.7<br>47.0<br>46.0 | 150<br>150<br>150<br>150<br>150<br>150               | 9.22222<br>99.2222<br>99.22                 | 1.56<br>1.55<br>1.58<br>1.60<br>1.55<br>1.57<br>1.57<br>1.59<br>1.59 | 20.55<br>20.58<br>20.61<br>20.64<br>20.67<br>20.71<br>20.74<br>20.77<br>20.81<br>20.84 | 183189<br>183479<br>183781<br>184049<br>184349<br>184641<br>184939<br>185239 | 136.65<br>142.54                                                                                 | 125.71<br>125.72<br>125.74<br>125.74<br>125.76<br>125.77<br>125.79<br>125.80 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8 |
| 1720.0<br>1721.0<br>1722.0<br>1723.0<br>1724.0<br>1725.0<br>1726.0<br>1727.0<br>1728.0 | 29.5<br>27.5<br>29.0<br>24.8<br>32.7<br>31.9<br>31.0         | 45.8<br>46.5<br>46.7<br>46.9<br>45.9<br>45.1<br>44.1                 | 150<br>150<br>150<br>150<br>150<br>150               | 9.22<br>9.22<br>9.22<br>9.22<br>9.22        | 1.58<br>1.60<br>1.62<br>1.60<br>1.66<br>1.55<br>1.56<br>1.57         | 20.87<br>20.91<br>20.94<br>20.98<br>21.02<br>21.05<br>21.11<br>21.11<br>21.14          | 186144<br>186471<br>186781<br>187144<br>187419<br>187701<br>187991<br>188266 | 142.54<br>143.72<br>154.33<br>146.08<br>170.82<br>129.59<br>133.12<br>136.65<br>129.59           | 125.86<br>125.89<br>125.91<br>125.96<br>125.96<br>125.97<br>125.98<br>125.99 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8<br>18.8         |
| 1730.0<br>1731.0<br>1732.0<br>1733.0<br>1734.0<br>1735.0<br>1736.0<br>1737.0<br>1738.0 | 26.1<br>25.5<br>29.3<br>30.8<br>34.3<br>31.0<br>23.8<br>31.9 | 45.5<br>44.8<br>42.4<br>43.4<br>42.2<br>42.0<br>42.2<br>44.8<br>43.6 | 150<br>150<br>150<br>150<br>150<br>150<br>150        | 9.22<br>9.22<br>9.22<br>9.22<br>9.22        | 1.60<br>1.62<br>1.60<br>1.56<br>1.53<br>1.49<br>1.53<br>1.65         | 21.21<br>21.25<br>21.29<br>21.32<br>21.35<br>21.35<br>21.41<br>21.46<br>21.49<br>21.52 | 189204<br>189556<br>189864<br>190156<br>190419<br>190709<br>191086<br>191369 | 149.61<br>162.57<br>166.11<br>144.90<br>137.83<br>123.70<br>136.65<br>177.89<br>133.12<br>135.48 | 126.10<br>126.12<br>126.13<br>126.13<br>126.14<br>126.20<br>126.20           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9 |
| 1740.0<br>1741.0<br>1742.0<br>1743.0<br>1744.0<br>1745.0<br>1746.0<br>1747.0<br>1748.0 | 36.4<br>30.8<br>29.0<br>30.0<br>34.6<br>30.5<br>39.1<br>27.9 | 45.5<br>46.0<br>46.5<br>45.1<br>42.7<br>43.8<br>44.8<br>46.3<br>46.2 | 150<br>150<br>150<br>150<br>150<br>150<br>150        | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2      | 1.61<br>1.58<br>1.58<br>1.55<br>1.55<br>1.56<br>1.49<br>1.61         | 21.56<br>21.58<br>21.62<br>21.65<br>21.68<br>21.71<br>21.75<br>21.77<br>21.81<br>21.85 | 192236<br>192529<br>192839<br>193139<br>193399<br>193694<br>193924<br>194246 | 156.68<br>116.63<br>137.83<br>146.08<br>141.37<br>122.52<br>139.01<br>108.38<br>151.97<br>195.56 | 126.24<br>126.25<br>126.27<br>126.28<br>126.28<br>126.29<br>126.28<br>126.30 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9 |

| DEPTH                                                                                  | ROP                                                        | MOB                                                                          | RPM                                           | MM                                            | "d"c                                                                 | HOURS                                                                        | TURNS                                                                                  | ICOST                                                              | CCOST                                                                        | РP                                            | FG                                                           |
|----------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 1750.0<br>1751.0                                                                       |                                                            | 45.4<br>45.5                                                                 |                                               |                                               | 1.78<br>1.95                                                         | 21.91<br>22.01                                                               |                                                                                        | 249.75<br>409.96                                                   |                                                                              |                                               | 18.9<br>18.9                                                 |
| BIT NUMBE<br>HTC J11<br>COST<br>TOTAL HOL                                              | 678                                                        |                                                                              |                                               |                                               | CODE<br>TIME<br>TURNS                                                |                                                                              | NO2                                                                                    | TERVAL<br>ZZLES<br>T RUN<br>MDITION                                |                                                                              | .0- 18<br>16 1<br>B1 G0                       | 6 16<br>86.0                                                 |
| DEPTH                                                                                  | ROP                                                        | MOB                                                                          | RPM                                           | МM                                            | "d "c                                                                | HOURS                                                                        | TURNS                                                                                  | ICOST                                                              | ccost                                                                        | ÞР                                            | FG                                                           |
| 1752.0<br>1753.0<br>1754.0<br>1755.0<br>1756.0<br>1757.0<br>1758.0<br>1759.0           | 5.1<br>5.3<br>6.6<br>8.2<br>10.1<br>12.5                   | 31.4<br>27.7<br>25.9<br>27.8<br>31.3<br>31.5<br>31.9                         | 130<br>130<br>130<br>130<br>130<br>130        | 9.2<br>9.2<br>9.2<br>9.2<br>9.2               | 1.93<br>1.85<br>1.81<br>1.77<br>1.77<br>1.71<br>1.65                 | 0.20<br>0.40<br>0.59<br>0.74<br>0.86<br>0.96<br>1.04                         | 1584<br>3101<br>4574<br>5751<br>6700<br>7475<br>8101<br>8888                           | 861<br>825<br>801<br>640<br>516<br>422<br>340<br>428               | 32671<br>16748<br>11432<br>8734<br>7091<br>5979<br>5174<br>4580              | 8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9                 |
| 1760.0<br>1761.0<br>1762.0<br>1763.0<br>1764.0<br>1765.0<br>1766.0<br>1767.0<br>1768.0 | 11.2<br>12.2<br>8.0<br>10.1<br>15.4<br>10.9<br>9.8<br>10.6 | 30.7<br>30.0<br>31.7<br>31.0<br>33.0<br>34.7<br>36.3<br>37.2<br>38.0<br>36.3 | 130<br>130<br>130<br>130<br>108<br>111<br>111 | 9,2<br>9,2<br>9,2<br>9,2<br>9,2<br>9,2        | 1.70<br>1.65<br>1.65<br>1.77<br>1.73<br>1.56<br>1.75<br>1.75         | 1.24<br>1.33<br>1.41<br>1.54<br>1.64<br>1.70<br>1.79<br>1.89<br>1.99         | 9674<br>10372<br>11011<br>11986<br>12758<br>13179<br>13790<br>14469<br>15081           | 428<br>379<br>348<br>530<br>419<br>276<br>390<br>431<br>402<br>362 | 4119<br>3745<br>3436<br>3194<br>2980<br>2787<br>2627<br>2490<br>2367<br>2256 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9         |
| 1770.0<br>1771.0<br>1772.0<br>1773.0<br>1774.0<br>1775.0<br>1776.0<br>1777.0<br>1778.0 | 12.3<br>10.8<br>14.9<br>7.4<br>8.2<br>8.2<br>7.1<br>6.4    | 36.1<br>36.4<br>34.6<br>34.3<br>32.8<br>33.9<br>33.9<br>32.8<br>32.8<br>32.8 | 110<br>110<br>110<br>110<br>110<br>110<br>110 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.66<br>1.68<br>1.57<br>1.77<br>1.76<br>1.76<br>1.79<br>1.82         | 2.16<br>2.24<br>2.33<br>2.40<br>2.53<br>2.65<br>2.78<br>2.92<br>3.07<br>3.21 | 16182<br>16720<br>17332<br>17776<br>18667<br>19471<br>20280<br>21208<br>22240<br>23169 | 346<br>345<br>393<br>285<br>573<br>517<br>520<br>596<br>663        | 2155<br>2065<br>1985<br>1908<br>1850<br>1794<br>1743<br>1699<br>1661<br>1623 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9 |
| 1780.0<br>1781.0<br>1782.0<br>1783.0<br>1784.0<br>1785.0<br>1786.0<br>1787.0<br>1788.0 | 7.9<br>5.8<br>8.6<br>10.1<br>11.9<br>14.1<br>11.9          | 40.0<br>36.9<br>35.3<br>32.6<br>31.9<br>32.3<br>32.3<br>39.2<br>40.7<br>40.4 | 110<br>110<br>110<br>110<br>110<br>110<br>110 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.93<br>1.81<br>1.89<br>1.72<br>1.66<br>1.61<br>1.56<br>1.71<br>1.71 | 3.37<br>3.50<br>3.67<br>3.79<br>3.89<br>3.97<br>4.04<br>4.13<br>4.21<br>4.30 | 24218<br>25050<br>26198<br>26970<br>27626<br>28180<br>28647<br>29203<br>29718<br>30365 | 674<br>535<br>737<br>496<br>422<br>356<br>300<br>357<br>331<br>416 | 1590<br>1555<br>1529<br>1496<br>1464<br>1431<br>1399<br>1370<br>1342         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9<br>18.9         |

|                                                                                        |                                                                           |                                                                           |                                                                                                                      | •                                                            |                                                                                        |                                                                          |                                                                              |                                        |                                                              |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| DEPTH                                                                                  | ROP (                                                                     | JOB RPM                                                                   | MW "d"c                                                                                                              | HOURS                                                        | TURNS                                                                                  | ICOST                                                                    | CCOST                                                                        | РР                                     | FG                                                           |
| 1790.0<br>1791.0<br>1792.0<br>1793.0<br>1794.0<br>1795.0<br>1796.0<br>1797.0<br>1798.0 | 12.8 4                                                                    | 7.1 110<br>0.3 110<br>0.2 110<br>1.0 110<br>1.1 110                       | 9.2 1.84<br>9.2 1.66<br>9.2 1.75<br>9.2 1.63<br>9.2 1.65<br>9.2 1.67<br>9.2 1.71<br>9.2 1.71<br>9.2 1.72<br>9.2 1.72 | 4.42<br>4.50<br>4.59<br>4.65<br>4.77<br>4.83<br>5.10         | 31152<br>31625<br>32215<br>32640<br>33067<br>33458<br>33955<br>34466<br>34981<br>35618 | 505<br>304<br>379<br>273<br>274<br>251<br>319<br>329<br>331<br>409       | 1297<br>1272<br>1250<br>1227<br>1205<br>1183<br>1164<br>1146<br>1128<br>1113 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0 |
| 1800.0<br>1801.0<br>1802.0<br>1803.0<br>1804.0<br>1805.0<br>1806.0<br>1807.0<br>1808.0 | 10.3 39 11.8 38 11.9 38 12.0 39 12.7 49 9.7 4                             | B.8 110<br>9.1 110<br>0.3 110<br>1.2 110<br>9.8 110<br>B.4 110            | 9.2 1.68<br>9.2 1.77<br>9.2 1.70<br>9.2 1.71<br>9.2 1.71<br>9.2 1.70<br>9.2 1.81<br>9.2 1.60<br>9.2 1.33<br>9.2 1.59 | 5.17<br>5.27<br>5.36<br>5.44<br>5.50<br>5.70<br>5.79<br>5.85 | 36100<br>36741<br>37299<br>37852<br>38404<br>38923<br>39603<br>39997<br>40177<br>40562 | 310<br>412<br>358<br>356<br>355<br>333<br>437<br>253<br>115.45<br>247.39 |                                                                              | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0 |
| 1810.0<br>1811.0<br>1812.0<br>1813.0<br>1814.0<br>1815.0<br>1816.0<br>1817.0<br>1818.0 | 17.9 30<br>19.8 30<br>17.1 30<br>15.1 30<br>22.1 30<br>15.0 30<br>17.1 30 | 5.6 110<br>7.2 110<br>8.0 110<br>6.8 110<br>7.4 110<br>7.7 110<br>7.6 110 | 9.2 1.66<br>9.2 1.56<br>9.2 1.50<br>9.2 1.57<br>9.2 1.62<br>9.2 1.48<br>9.2 1.61<br>9.2 1.57<br>9.2 1.50<br>9.2 1.03 | 5.92<br>5.98<br>6.09<br>6.15<br>6.20<br>6.32<br>6.32<br>6.39 | 41732<br>42119<br>42555<br>42854<br>43294<br>43679                                     | 192.02<br>282.73<br>247.39<br>242.68                                     | 952.60<br>940.50<br>929.34<br>919.04<br>907.68<br>898.06<br>888.20           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0 |
| 1820.0<br>1821.0<br>1822.0<br>1823.0<br>1824.0<br>1825.0<br>1826.0<br>1827.0<br>1828.0 | 16.9 33<br>15.1 33<br>15.1 33<br>16.4 33<br>14.5 33<br>14.5 3<br>15.2 3   | 2.7 110<br>3.4 110                                                        | 9.2 1.32<br>9.2 1.54<br>9.2 1.57<br>9.2 1.55<br>9.2 1.53<br>9.2 1.56<br>9.2 1.57<br>9.2 1.55<br>9.2 1.25             | 6.42<br>6.48<br>6.55<br>6.61<br>6.74<br>6.81<br>6.90<br>6.93 | 44727<br>45160<br>45598<br>46002<br>46456<br>46913<br>47347                            | 114.27                                                                   | 847.07<br>839.06<br>831.32<br>823.48<br>816.30                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0 |
| 1830.0<br>1831.0<br>1832.0<br>1833.0<br>1834.0<br>1835.0<br>1836.0<br>1837.0           | 62.1 3<br>63.2 3<br>59.0 3<br>62.1 3<br>69.2 3<br>44.4 3                  | 5.9 110<br>6.8 110<br>6.9 110                                             | 9.2 1.04<br>9.2 1.07<br>9.2 1.12<br>9.2 1.15<br>9.2 1.14<br>9.2 1.08<br>9.2 1.21<br>9.2 1.30                         | 6.94<br>6.96<br>6.97<br>6.99<br>7.01<br>7.02<br>7.04         | 47774<br>47881<br>47985<br>48097<br>48203<br>48299<br>48447<br>48632                   | 68.33<br>67.15<br>71.86<br>68.33<br>61.26<br>95.42                       | 775.36<br>766.52<br>757.88<br>749.52<br>741.31<br>733.22<br>725.71<br>718.66 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0         |

| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                   | 4<br>0.00<br>2.38                                                  | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                |                                                              | NOZZLES<br>BIT RUN                                                                                                                                        | 15 15 14                                            |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| DEPTH ROP                                                                        | WOB R                                                              | RPM MW "d"c                                                                  | HOURS                                                        | TURNS ICOST                                                                                                                                               | CCOST PP FG                                         |
|                                                                                  | 5.4 1<br>8.9 1<br>11.3 1                                           | 130 9.2 1.25                                                                 | 0.08                                                         | 618 331                                                                                                                                                   | 250266 8.4 19.0<br>23052 8.4 19.0<br>12183 8.4 19.0 |
| 1842.0 4.6<br>1843.0 2.8<br>1844.0 4.6<br>1845.0 5.2<br>1846.0 3.8<br>1847.0 1.8 | 13.4 1<br>15.7 1<br>15.0 1<br>16.5 1<br>19.2 1<br>19.3 1<br>17.8 1 | 130 9.2 1.72<br>130 9.2 1.83<br>130 9.2 1.74<br>124 9.2 1.76<br>110 9.2 1.81 | 0.26<br>0.48<br>0.84<br>1.06<br>1.25<br>1.51<br>2.08<br>2.38 | 2037 544<br>3730 921<br>6543 1529<br>8242 924<br>9667 814<br>11394 1110<br>15123 2396<br>17130 2579                                                       |                                                     |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                   | 4<br>0.00<br>3.07                                                  | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                | 4<br>9.975<br>5.9<br>22329                                   | NOZZLES<br>BIT RUN                                                                                                                                        |                                                     |
| DEPTH ROP                                                                        | wos r                                                              | RPM MW "d"c                                                                  | HOURS                                                        | TURNS ICOST                                                                                                                                               | CCOST PP FG                                         |
| 1848.0 12.0<br>1849.0 12.4                                                       | 4.5 1<br>8.0 1                                                     |                                                                              | 2.42<br>2.50                                                 | 17443 353<br>18049 343                                                                                                                                    | 3494 8.4 19.0<br>3210 8.4 19.0                      |
| 1851.0 11.9<br>1852.0 15.9<br>1853.0 17.3<br>1854.0 19.4<br>1855.0 14.9          | 16.9 1                                                             | 125 9.2 1.43<br>125 9.2 1.35<br>125 9.2 1.35<br>125 9.2 1.34<br>125 9.2 1.40 | 2.62<br>2.71<br>2.77<br>2.83<br>2.88<br>2.95<br>3.02         | 18953     511       19582     356       20055     267       20488     245       20876     219       21380     285       21953     324       22329     426 |                                                     |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                   | 4<br>0.00<br>7.47                                                  | SIZE<br>TRIP TIME                                                            |                                                              | NOZZLES<br>BIT RUN                                                                                                                                        | 15 15 14                                            |
| DEPTH ROP                                                                        | MOB 8                                                              | RPM MW "d"c                                                                  | HOURS                                                        | TURNS ICOST                                                                                                                                               | CCOST PP FG                                         |
|                                                                                  |                                                                    | 120 9.2 1.83<br>120 9.2 1.78                                                 | 3.21<br>3.49                                                 | 23307 1152<br>25347 1202                                                                                                                                  |                                                     |

| 70.00 TH             | מממ         | WOR           | M CLCI | MIJ        | "d"c         | HOURS         | TURNS          | ICOST                | CCOST          | PР             | FG   |
|----------------------|-------------|---------------|--------|------------|--------------|---------------|----------------|----------------------|----------------|----------------|------|
| DEPTH                | ROP         |               |        |            |              |               |                |                      |                |                |      |
| 1859.0<br>1860.0     |             | 15.6<br>20.8  |        |            | 2.08         | 4.40<br>5.79  | 31907<br>41889 | 386 <b>4</b><br>5880 | 2070<br>2243   | 8.4 1<br>8.4 1 |      |
| 1861.0               |             | 19.4          |        |            | 2.24         | 6.82          | 49361          | 4401                 | 2336           | 8.4 1          |      |
| 1861.6               |             | 18.7          |        |            | 2.23         | 7.47          | 54023          | 4577                 | 2393           | 8.4 1          | 9.1  |
|                      |             |               |        |            |              |               |                |                      |                |                |      |
|                      |             |               |        |            |              |               |                |                      |                |                |      |
| BIT NUMBE            | R           | 5             |        | CADC (     | ODE          | 437           |                | ERVAL                | 1861,          | 6-206          |      |
| HTC J11              | , t=1,1     |               |        | SIZE       | Y T MATT     | 12.250<br>6.4 |                | ZLES<br>RUN          |                | 15 15<br>20    | 10.4 |
| COST<br>TOTAL HOU    | 670<br>RS 2 |               |        |            | TURNS        |               |                | DITION               |                |                |      |
| T to 1 FFm. F For Mr |             |               |        |            |              |               |                |                      |                |                |      |
| DEPTH                | ROP         | MOB           | RPM    | MW         | "d"c         | HOURS         | TURNS          | ICOST                | CCOST          | PP             | FG   |
| 1862.0               | 12.7        | 25.8          | 120    | 9.2        | 1.52         | 0.03          | 227            | 334                  | 85160          | 8.4 1          |      |
| 1863.0               |             | 26.1          |        |            | 1.57         | 0.12          | 875            | 382                  | 24604          | 8.4 1          |      |
| 1864.0               |             | 23.8          |        |            | 1.07         | 0.14          | 1007<br>1174   | 78<br>99             | 14385<br>10183 | 8.4 1<br>8.4 1 |      |
| 1865.0<br>1866.0     |             | 25.4<br>25.0  |        |            | 1.16         | 0.16<br>0.18  | 1287           | 66                   | 7884           | 8.4 1          |      |
| 1867.0               |             | 21.4          |        |            | 1.05         | 0.20          | 1422           | 80                   | 6439           | 8.4 1          |      |
| 423775               | ···· /·· /  | <b>55 5</b> 4 | 4 7 6  | <i>a</i> a | 1.14         | 0.22          | 1604           | 107                  | 5449           | 8.4 1          | O 1  |
| 1868.0<br>1869.0     |             | 22.1<br>23.9  |        |            | 1.23         | 0.26          | 1836           | 137                  | 4731           | 8.4            |      |
| 1870.0               |             | 24.4          |        |            | 1.20         | 0.28          | 2040           | 120                  | 4182           | 8.4 1          |      |
| 1871.0               |             | 23.4          |        |            | 1.23         | 0.32          | 2272           | 137                  | 3752           | 8.4 1          |      |
| 1872.0               |             | 24.9          |        |            | 1.57         | 0.41<br>0.48  | 2962<br>3474   | 406<br>302           | 3430<br>3156   | 8.4 1<br>8.4 1 |      |
| 1873.0<br>1874.0     |             | 24.5<br>24.4  |        |            | 1.47<br>1.28 | 0.52          | 3740           | 157                  | 2914           | 8.4 1          |      |
| 1875.0               |             | 26.7          |        |            | 1.39         | 0.57          | 4092           | 207                  | 2712           | 8.4 1          | 9.1  |
| 1876.0               |             | 27.2          |        |            | 1.61         | 0.67          | 4804           | 419                  | 2553           | 8.4 1          |      |
| 1877.0               | 16.8        | 35.0          | 120    | 9.2        | 1.57         | 0.73          | 5232           | 252                  | 2403           | 8.4 1          | 9.1  |
| 1878.0               |             | 31.2          |        |            | 1,45         | 0.77          | 5578           | 204                  | 2269           | 8.4 1          |      |
| 1879.0               |             | 32.4          |        |            | 1.33         | 0.81          | 5799<br>5940   | 135<br>87            | 2147<br>2035   | 8.4 1<br>8.4 1 |      |
| 1880.0<br>1881.0     |             | 34.6<br>35.5  |        |            | 1.21         | 0.83<br>0.86  | 6186           | 151                  | 1938           | 8.4            |      |
| 1882.0               |             | 31.3          |        |            | 0.98         | 0.87          | 6262           | 47                   | 1845           | 8.4 1          |      |
| 1883.0               |             | 31.9          |        | 9.2        | 1.04         | 0.89          | 6352           | 55                   | 1761           | 8.4 1          |      |
| 1884.0               |             | 32.8          |        |            | 1.10         | 0.90          | 6460           | 66                   | 1686           | 8.4 1          |      |
| 1885.0               |             | 17.5<br>13.8  |        | 9.2        | 1.34<br>0.86 | 0.97<br>0.99  | 6954<br>7054   | 304<br>61            | 1627<br>1562   | 8.4            |      |
| 1886.0<br>1387.0     |             | 23.8          |        |            | 1.21         | 1.02          | 7267           | 131                  | 1506           | 8.4            |      |
| 1000 0               | os o        | 34.2          | 4 4 45 | 0 0        | 1.41         | 1.06          | 7533           | 164                  | 1455           | 8.4 1          | 9.1  |
| 1888.0<br>1889.0     |             | 34.5          |        |            | 1.29         | 1.08          | 7713           | 111                  | 1406           | 8.4            |      |
| 1890.0               |             | 37.3          |        |            | 1.67         | 1.16          | 8240           | 324                  | 1368           | 8.4 1          |      |
| 1891.0               | 13.6        | 37.3          | 115    |            | 1.66         | 1.23          | 8748           | 312                  | 1332           | 8.4 1          |      |
| 1892.0               |             | 37.5          |        |            | 1.79         | 1.34<br>1.42  | 9511<br>10011  | 469<br>307           | 1304<br>1272   | 8.4 1          |      |
| 1893.0<br>1894.0     |             | 35.3<br>28.6  |        |            | 1.62<br>1.52 | 1.49          | 10500          | 300                  | 1242           | 8.4 1          |      |
| 1895.0               |             | 38.5          |        |            | 1.97         | i .67         | 11757          | 773                  | 1228           | 8.4 1          | 19.1 |
| 1896.0               | 4.5         | 37.8          | 115    |            | 2.03         | 1.89          | 13304          | 951                  | 1220           | 8.4 1          |      |
| 1897.0               | 14.4        | 37.1          | 115    | 9.2        | 1.63         | 1.96          | 13783          | 295                  | 1194           | 8.4            | 17.1 |
|                      |             |               |        |            |              |               |                |                      |                |                |      |

| DEPTH                                                                                            | ROP                                                       | жом                                                                  | RPM                                               | MW                                            | "d"c                                                                         | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                                            | CCOST                                                                        | pр                                            | FG                                                           |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 1898.0<br>1899.0<br>1900.0<br>1901.0<br>1902.0<br>1903.0<br>1904.0<br>1905.0<br>1906.0           | 24.0<br>6.8<br>8.8<br>20.6<br>17.8<br>8.4<br>32.7<br>20.9 | 35.0<br>34.6<br>35.3<br>37.5<br>34.9<br>34.3<br>35.7<br>36.3<br>37.0 | 115<br>115<br>115<br>115<br>115<br>115<br>115     | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.68<br>1.44<br>1.85<br>1.80<br>1.49<br>1.53<br>1.79<br>1.36<br>1.51         | 2.05<br>2.09<br>2.24<br>2.35<br>2.40<br>2.58<br>2.61<br>2.64                 | 14381<br>14669<br>15685<br>16471<br>16806<br>17193<br>18015<br>18226<br>18556<br>19125 | 368<br>177<br>624<br>483<br>206<br>238<br>505<br>130<br>203<br>350                               | 1171<br>1144<br>1131<br>1114<br>1092<br>1071<br>1058<br>1037<br>1018<br>1003 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.1<br>19.1<br>19.1<br>19.1<br>19.1<br>19.1<br>19.1<br>19.1 |
| 1908.0<br>1909.0<br>1910.0<br>1911.0<br>1912.0<br>1913.0<br>1914.0<br>1915.0<br>1916.0           | 13.3<br>16.4<br>17.4<br>36.8<br>15.8<br>13.4<br>14.4      | 34.2<br>33.1<br>33.6<br>33.0<br>30.5<br>32.8<br>31.8<br>34.0<br>35.6 | 115<br>115<br>115<br>115<br>115<br>115            | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.87<br>1.61<br>1.55<br>1.52<br>1.55<br>1.55<br>1.58<br>1.59<br>1.78         | 2.90<br>2.98<br>3.04<br>3.10<br>3.13<br>3.19<br>3.26<br>3.33<br>3.45<br>3.64 | 20791<br>21212<br>21609<br>21801<br>22238<br>22751<br>23231<br>24024                   | 704.48<br>319.25<br>259.17<br>243.86<br>117.81<br>268.60<br>315.72<br>294.51<br>487.72<br>830.53 | 982.41<br>967.47<br>952.82<br>936.25<br>923.26<br>911.67<br>900.11<br>892.53 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.1<br>19.1<br>19.1<br>19.1<br>19.1<br>19.1<br>19.1<br>19.2 |
| 1918.0<br>1919.0<br>1920.0<br>1921.0<br>1922.0<br>1923.0<br>1924.0<br>1925.0<br>1926.0           | 8.1<br>3.6<br>5.5<br>4.2<br>4.9<br>5.2<br>6.9<br>38.7     | 40.5<br>39.2<br>40.6<br>42.6<br>41.2<br>40.2<br>38.6<br>36.8<br>37.2 | 105<br>105<br>105<br>105<br>105<br>20<br>88<br>95 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.84<br>1.82<br>2.12<br>2.01<br>2.00<br>2.02<br>1.93<br>1.81<br>1.24         | 3.77<br>3.89<br>4.17<br>4.35<br>4.59<br>4.80<br>4.99<br>5.13<br>5.16<br>5.21 | 26807<br>28560<br>29715<br>31222<br>32513<br>33550<br>34310<br>34457                   | 518.34<br>524.23<br>1180<br>777.52<br>1014<br>869.41<br>812.86<br>612.59<br>109.56<br>217.94     | 878.52<br>884<br>881.90<br>884<br>883.85<br>882.71<br>878.45<br>866.51       | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2 |
| 1928.0<br>1929.0<br>1930.0<br>1931.0<br>1932.0<br>1933.0<br>1935.0<br>1935.0<br>1936.0           | 3.9<br>2.8<br>7.7<br>48.0<br>11.9<br>40.0<br>50.0         | 37.9<br>38.8<br>39.9<br>35.4<br>31.8<br>35.0<br>33.2<br>38.8<br>37.5 | 120<br>120<br>120<br>120<br>120<br>120            | 9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22  | 1.51<br>2.04<br>2.23<br>1.83<br>1.20<br>1.68<br>1.27<br>1.20<br>2.12<br>2.10 | 5.26<br>5.52<br>5.88<br>6.01<br>6.03<br>6.11<br>6.14<br>6.16<br>6.42<br>6.69 | 36551<br>39127<br>40065<br>40215<br>40819                                              | 1083<br>1517<br>552.51<br>88.35<br>355.77<br>106.03                                              |                                                                              | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2 |
| 1938.0<br>1939.0<br>1940.0<br>1941.0<br>1942.0<br>1943.0<br>1944.0<br>1945.0<br>1946.0<br>1947.0 | 2.6<br>2.9<br>3.9<br>12.6<br>2.3<br>3.7<br>3.6<br>27.9    | 37.7<br>33.6<br>32.3<br>35.5<br>35.1<br>34.8<br>35.9<br>36.9         | 120<br>120<br>120<br>120<br>120<br>120<br>120     | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 2.33<br>2.14<br>2.09<br>2.05<br>1.66<br>2.20<br>2.07<br>2.13<br>1.43<br>2.19 | 7.22<br>7.60<br>7.95<br>8.28<br>8.71<br>8.95<br>9.25<br>9.59                 | 48809<br>51555<br>54049<br>55883<br>56455<br>59521<br>61467<br>63455<br>63713<br>65903 | 2269<br>1617<br>1469<br>1080<br>336.92<br>1806<br>1146<br>1171<br>151.97<br>1290                 | 845<br>855<br>863<br>865<br>858,91<br>871<br>874<br>877<br>868,86            | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2 |

| DEPTH                                                                                  | ROP                                                                 | МОВ                                                                  | RPM                                                        | MW                                            | "d"c                                                                 | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                  | CCOST                                                                                            | рþ                                            | FG                                                           |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 1948.0<br>1949.0<br>1950.0<br>1951.0<br>1952.0<br>1953.0<br>1954.0<br>1955.0<br>1955.0 | 3.3<br>11.1<br>36.7<br>38.3<br>45.6<br>46.8<br>42.9<br>22.8<br>46.2 | 41.3<br>38.9<br>35.7<br>32.7                                         | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 |                                                                      | 9.90<br>9.99<br>10.01<br>10.04<br>10.06<br>10.08<br>10.11<br>10.15<br>10.20            | 70061                                                                                  | 110.74<br>93.07<br>90.71<br>98.96<br>186.13                            | 864.25<br>855.82<br>847.38<br>839.10<br>831.09<br>824.19<br>816.43                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2 |
| 1958.0<br>1959.0<br>1960.0<br>1961.0<br>1962.0<br>1963.0<br>1964.0<br>1965.0<br>1966.0 | 17.1<br>28.1<br>32.7<br>44.4<br>37.5<br>37.9<br>53.7<br>28.1        | 34.4<br>33.1<br>30.9<br>31.6<br>28.5<br>29.3<br>29.6<br>31.9<br>33.7 | 120<br>110<br>97<br>120<br>120<br>120<br>120<br>120<br>120 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.29<br>1.51<br>1.29<br>1.32<br>1.18<br>1.25<br>1.25<br>1.16<br>1.39 | 10.22<br>10.28<br>10.32<br>10.35<br>10.37<br>10.40<br>10.42<br>10.44<br>10.48<br>10.50 | 70807<br>71013<br>71233<br>71395<br>71587<br>71777<br>71911                            | 150.79<br>129.59<br>95.42<br>113.09<br>111.92<br>78.93<br>150.79       | 796.01<br>789.45<br>782.82<br>775.97<br>769.43<br>763.01<br>756.40                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2 |
| 1968.0<br>1969.0<br>1970.0<br>1971.0<br>1972.0<br>1973.0<br>1974.0<br>1975.0<br>1976.0 | 50.0<br>42.4<br>27.1<br>52.9<br>46.8<br>51.4<br>48.0<br>49.3        | 31.7<br>31.8<br>31.9<br>32.3<br>31.1<br>30.6<br>31.7<br>31.3<br>31.4 | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.25<br>1.18<br>1.24<br>1.38<br>1.16<br>1.19<br>1.17<br>1.19<br>1.19 | 10.52<br>10.54<br>10.57<br>10.60<br>10.62<br>10.64<br>10.66<br>10.68<br>10.70          | 72493<br>72637<br>72807<br>73073<br>73209<br>73363<br>73503<br>73503<br>73799<br>73963 | 84.82<br>100.13<br>156.68<br>80.11<br>90.71<br>82.46<br>88.35<br>86.00 | 738.29<br>732.21<br>726.37<br>721.17<br>715.36<br>709.75<br>704.17<br>698.74<br>693.39<br>688.21 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2<br>19.2 |
| 1978.0<br>1979.0<br>1980.0<br>1981.0<br>1982.0<br>1983.0<br>1984.0<br>1985.0<br>1986.0 | 20.9<br>3.9<br>2.3<br>3.1<br>2.2<br>1.7<br>4.7<br>20.8              | 31.7<br>32.7<br>35.5<br>36.8<br>38.6<br>40.6<br>32.7<br>35.7<br>32.7 | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.29<br>1.47<br>2.05<br>2.24<br>2.18<br>2.33<br>2.26<br>2.00<br>1.45 | 10.75<br>10.80<br>11.06<br>11.49<br>11.82<br>12.28<br>12.86<br>13.08<br>13.13          | 76377<br>79487<br>81815<br>85157<br>89341<br>90889<br>91235                            | 1099<br>1832<br>1371<br>1969<br>2464<br>911.82<br>203.80               | 679.24<br>683                                                                                    | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.2<br>19.2<br>19.2<br>19.3<br>19.3<br>19.3<br>19.3         |
| 1988.0<br>1989.0<br>1990.0<br>1991.0<br>1992.0<br>1993.0<br>1994.0<br>1995.0<br>1996.0 | 19.9<br>18.8<br>17.6<br>20.9<br>22.8<br>20.8<br>35.6<br>32.1        | 29.0<br>27.1<br>28.4<br>28.0<br>27.3<br>26.9<br>27.5<br>27.4<br>28.5 | 120<br>120<br>120<br>120<br>120<br>120<br>120              | 9,2<br>9,2<br>9,2<br>9,2<br>9,2<br>9,2        | 1.46<br>1.40<br>1.37<br>1.40<br>1.24                                 | 13.24<br>13.29<br>13.34<br>13.40<br>13.45<br>13.49<br>13.54<br>13.57<br>13.60<br>13.63 | 92435<br>92817<br>93225<br>93569<br>93885<br>94231<br>94433<br>94657                   | 225.01<br>240.32<br>202.63<br>186.13<br>203.80<br>118.98<br>131.94     | 708.79<br>705.03<br>701.44<br>697.61                                                             | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3 |

| HTGGG                                                                                            | ROP                                                          | MOB                                                                          | RPM                                                  | MW                                            | "d "c                                                                        | HOURS                                                                                  | TURNS                                                                        | rcost                                                                                           | CCOST                                                                        | рþ                                            | FG                                                           |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 1998.0<br>1999.0<br>2000.0<br>2001.0<br>2002.0<br>2003.0<br>2064.0<br>2005.0<br>2006.0<br>2007.0 | 40.0<br>29.5<br>32.7<br>34.0<br>31.9<br>38.3<br>37.5<br>4.2  | 28.8<br>27.9<br>28.4<br>28.9<br>28.3<br>28.3<br>27.8<br>28.0<br>31.0<br>39.2 | 120<br>120<br>120<br>120<br>120<br>120<br>120        | 9.22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.       | 1.39<br>1.21<br>1.31<br>1.28<br>1.26<br>1.28<br>1.22<br>1.23<br>1.88<br>2.06 | 13.67<br>13.69<br>13.73<br>13.76<br>13.79<br>13.82<br>13.85<br>13.87<br>14.11          | 95337<br>95581<br>95801<br>96013<br>96239<br>96427<br>96419<br>97996         | 183.78<br>106.03<br>143.72<br>129.59<br>124.87<br>133.12<br>110.74<br>113.09<br>1003<br>1240    | 669.65<br>665.85<br>662.00<br>658.18<br>654.46<br>650.65<br>646.90           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3         |
| 2008.0<br>2009.0<br>2010.0<br>2011.0<br>2012.0<br>2013.0<br>2014.0<br>2015.0<br>2016.0           | 3.4<br>13.3<br>14.5<br>4.4<br>19.7<br>7.5<br>10.9<br>28.3    | 26.1                                                                         | 120<br>120                                           | 99999999999999999999999999999999999999        | 1.89<br>1.96<br>1.52<br>1.47<br>1.93<br>1.40<br>1.73<br>1.59                 | 14.59<br>14.89<br>14.97<br>15.03<br>15.26<br>15.31<br>15.45<br>15.54<br>15.57          | 102259<br>102646<br>103000<br>104624<br>104990<br>105956<br>106614<br>106868 | 812.86<br>1262<br>318.08<br>292.16<br>956.58<br>215.58<br>569.00<br>387.58<br>149.61<br>272.13  | 659<br>656.34<br>653.90<br>655.91<br>653.00<br>652.45<br>650.73<br>647.48    | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3 |
| 2018.0<br>2019.0<br>2020.0<br>2021.0<br>2022.0<br>2023.0<br>2024.0<br>2025.0<br>2026.0<br>2027.0 | 3.8<br>3.7<br>4.2<br>3.0<br>3.4<br>4.1<br>48.0<br>50.1       | 33.1<br>32.4<br>34.8<br>31.2<br>33.3<br>39.6<br>38.7<br>30.1<br>35.0<br>32.7 | 120<br>90<br>90<br>90<br>90<br>90<br>120<br>120      | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 2.02<br>2.00<br>1.96<br>1.86<br>2.01<br>2.07<br>1.99<br>1.18<br>1.22         | 15.90<br>16.17<br>16.44<br>16.68<br>17.01<br>17.31<br>17.55<br>17.55<br>17.59<br>17.68 | 115727<br>117317<br>118640<br>118790<br>118933                               | 1122<br>1149<br>998.99<br>1433<br>1249<br>1039<br>88.35                                         | 651<br>654<br>656.53<br>661<br>665<br>667<br>663.77<br>660.25                | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3         |
| 2028.0<br>2027.0<br>2030.0<br>2031.0<br>2032.0<br>2033.0<br>2034.0<br>2035.0<br>2036.0<br>2037.0 | 19.6<br>20.5<br>24.2<br>23.2<br>24.0<br>28.6<br>33.6         | 29.9<br>28.7                                                                 | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.89<br>1.42<br>1.44<br>1.43<br>1.40<br>1.41<br>1.40<br>1.35                 | 17.85<br>17.89<br>17.94<br>17.99<br>18.03<br>18.08<br>18.12<br>18.15<br>18.15          | 121087<br>121455<br>121807<br>122105<br>122415<br>122715<br>122967<br>123181 | 197,91<br>216,76<br>207,34<br>175,53                                                            | 653.39<br>650.75<br>647.96<br>645.25<br>642.53<br>639.68<br>636.74           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3         |
| 2038.0<br>2039.0<br>2040.0<br>2041.0<br>2042.0<br>2043.0<br>2044.0<br>2045.0<br>2046.0<br>2047.0 | 33.3<br>38.7<br>44.4<br>32.1<br>27.5<br>40.4<br>41.9<br>27.3 | 33.2<br>32.5<br>32.7<br>31.6<br>31.5<br>31.5<br>30.8<br>32.4<br>32.7         | 120<br>120<br>120<br>120<br>120<br>120<br>120        | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.37<br>1.38<br>1.28<br>1.22<br>1.32<br>1.37<br>1.25<br>1.23                 | 18.24<br>18.27<br>18.30<br>18.32<br>18.35<br>18.35<br>18.41<br>18.44<br>18.47          | 123825<br>124011<br>124173<br>124397<br>124659<br>124837<br>125009<br>125273 | 144.90<br>127.23<br>109.56<br>95.42<br>131.94<br>154.33<br>104.85<br>101.31<br>155.50<br>147.26 | 628.11<br>625.20<br>622.25<br>619.53<br>616.97<br>614.16<br>611.36<br>608.89 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3<br>19.3         |

.

.

| DEPTH                                                                                  | ROP                                                      | MOB                                                                  | RPM                                                  | MW                | "d"c                         | HOURS                                                                                  | TURNS                                                                                            | ICOST                                                                         | CCOST                                                                                | РP                                     | FG                                                   |
|----------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-------------------|------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|
| 2048.0<br>2049.0<br>2050.0<br>2051.0<br>2052.0<br>2053.0<br>2055.0<br>2055.0<br>2056.0 | 3.7<br>2.2<br>3.3<br>3.5<br>31.0<br>44.4<br>28.3<br>32.7 | 32.7<br>35.0<br>35.3<br>32.9<br>33.2<br>29.9<br>28.9<br>31.0<br>31.7 | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 |                   | 2.06<br>2.05<br>1.31<br>1.19 | 18.55<br>18.82<br>19.28<br>19.58<br>19.87<br>19.90<br>19.93<br>19.96<br>19.99<br>20.04 | 125837<br>127777<br>131049<br>133257<br>135341<br>135573<br>135735<br>135989<br>136209<br>136533 | 184.95<br>1143<br>1927<br>1301<br>1228<br>136.65<br>95.42<br>149.61<br>129.59 | 604.14<br>607<br>614<br>618<br>621<br>618.32<br>615.60<br>613.19<br>610.70<br>608.56 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.3<br>19.4<br>19.4<br>19.4<br>19.4<br>19.4<br>19.4 |
| 2058.0<br>2059.0<br>2060.0<br>2061.0<br>2062.0                                         |                                                          | 42.1                                                                 | 120<br>120<br>80<br>80<br>80                         | 9.2<br>9.2<br>9.2 | •• •                         | 20.07<br>20.12<br>20.64<br>21.48<br>22.32                                              | 136781<br>137091<br>139603<br>143655<br>147694                                                   | 146.08<br>182.60<br>2219<br>3580<br>3568                                      | 606.20<br>604.05<br>612<br>627<br>642                                                |                                        | 19.4<br>19.4<br>19.4<br>19.4                         |

| BIT NUMBER 6 HTC J22 COST 6788.00 TOTAL HOURS 40.25                                                                                                                                                                                                                                                                                                                       | SIZE<br>TRIP TIME                                                                                                    | 517<br>12.250<br>7.3<br>180878                                       | INTERVAL<br>NOZZLES<br>BIT. RUN<br>CONDITION                                                                                                                                                                                | 2062.0- 2477.6<br>15 15 15<br>415.6<br>T3 B3 G0.125                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH ROP WOE                                                                                                                                                                                                                                                                                                                                                             | RPM MW "d"c                                                                                                          | HOURS                                                                | TURNS ICOST                                                                                                                                                                                                                 | CCOST PP FG                                                                                                                                                             |
| 2063.0 4.5 21.9<br>2064.0 8.2 29.1<br>2065.0 7.0 33.7                                                                                                                                                                                                                                                                                                                     | 78 9.2 1.58                                                                                                          | 0.22°<br>0.34<br>0.49                                                | 1014 941<br>1583 515<br>2292 604                                                                                                                                                                                            | 38688 8.4 19.4<br>19602 8.4 19.4<br>13269 8.4 19.4                                                                                                                      |
| 2066.0     10.8     45.6       2067.0     31.3     46.0       2068.0     30.0     44.9       2069.0     31.3     43.0       2070.0     35.6     42.3       2071.0     24.7     40.4       2072.0     5.7     45.1       2073.0     6.9     45.2       2074.0     17.1     42.6       2075.0     42.4     43.0                                                             | 92 9.2 1.40<br>91 9.2 1.40<br>80 9.2 1.32<br>82 9.2 1.27<br>81 9.2 1.38<br>69 9.2 1.89<br>63 9.2 1.79<br>59 9.2 1.42 | 0.58<br>0.61<br>0.64<br>0.68<br>0.70<br>0.74<br>0.92<br>1.07<br>1.12 | 2709     393       2886     135       3067     141       3219     135       3356     119       3553     172       4287     748       4837     613       5044     247       5131     100                                     | 10050 8.4 19.4<br>8067 8.4 19.4<br>6746 8.4 19.4<br>5802 8.4 19.4<br>5092 8.4 19.4<br>4545 8.4 19.4<br>4165 8.4 19.4<br>3842 8.4 19.4<br>3543 8.4 19.4<br>3278 8.4 19.4 |
| 2076.0       20.7 45.2         2077.0       10.1 44.1         2078.0       40.4 42.2         2079.0       23.6 40.5         2080.0       46.2 46.6         2081.0       43.4 44.6         2082.0       11.4 44.6         2083.0       6.2 43.3         2084.0       5.0 38.6         2085.0       7.3 36.6                                                                | 63 9.2 1.64<br>62 9.2 1.14<br>62 9.2 1.31<br>62 9.2 1.13<br>62 9.2 1.13<br>66 9.2 1.62<br>63 9.2 1.80<br>61 9.2 1.80 | 1.20<br>1.29<br>1.32<br>1.36<br>1.38<br>1.41<br>1.49<br>1.66<br>1.86 | 5311       205         5684       421         5777       105         5936       180         6016       92         6102       98         6449       371         7060       688         7298       852         8293       581 | 3058 8.4 19.4<br>2883 8.4 19.4<br>2709 8.4 19.4<br>2560 8.4 19.4<br>2423 8.4 19.4<br>2301 8.4 19.4<br>2204 8.4 19.4<br>2132 8.4 19.4<br>2074 8.4 19.4<br>2009 8.4 19.4  |
| 2086.0       7.8       37.0         2087.0       10.2       36.6         2088.0       24.7       34.4         2089.0       25.2       35.2         2090.0       12.9       35.9         2091.0       12.9       36.2         2092.0       17.5       35.7         2093.0       16.2       36.2         2094.0       21.3       35.1         2095.0       22.8       35.0  | 60 9.2 1.53<br>60 9.2 1.21<br>59 9.2 1.22<br>60 9.2 1.44<br>60 9.2 1.45<br>60 9.2 1.34<br>65 9.2 1.40<br>61 9.2 1.28 | 2.12<br>2.22<br>2.26<br>2.30<br>2.38<br>2.45<br>2.57<br>2.57<br>2.66 | 8752     541       9105     416       9250     172       9391     168       9670     327       9948     329       10154     243       10393     262       10564     199       10725     186                                 | 1948 8.4 19.4<br>1886 8.4 19.4<br>1820 8.4 19.4<br>1759 8.4 19.4<br>1708 8.4 19.4<br>1661 8.4 19.4<br>1613 8.4 19.4<br>1570 8.4 19.4<br>1527 8.4 19.4<br>1486 8.4 19.4  |
| 2096.0       29.3       34.6         2097.0       31.3       36.6         2098.0       55.4       33.2         2099.0       39.6       32.9         2100.0       46.8       33.0         2101.0       31.0       32.4         2102.0       19.1       36.6         2103.0       25.2       34.7         2104.0       21.1       36.3         2105.0       25.2       36.5 | 61 9.2 1.17<br>61 9.2 0.95<br>61 9.2 1.06<br>61 9.2 1.00<br>61 9.2 1.13<br>56 9.2 1.30<br>56 9.2 1.19<br>56 9.2 1.27 | 2.70<br>2.73<br>2.75<br>2.77<br>2.80<br>2.83<br>2.88<br>2.92<br>2.97 | 10849     145       10966     135       11031     77       11124     107       11202     91       11321     137       11497     221       11629     168       11790     201       11924     168                             | 1447 8.4 19.4<br>1409 8.4 19.4<br>1372 8.4 19.4<br>1338 8.4 19.4<br>1305 8.4 19.4<br>1275 8.4 19.4<br>1249 8.4 19.4<br>1223 8.4 19.4<br>1198 8.4 19.4<br>1174 8.4 19.4  |

| DEPTH                                                                                                      | ROP                                                          | иов                                                                  | RPM                                                | MU                                            | "d"c                                                                 | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                        | ccost                                                                                            | рþ                                            | FG                                                           |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 2106.0<br>2107.0<br>2108.0<br>2109.0<br>2110.0<br>2111.0<br>2111.0<br>2112.0<br>2113.0<br>2114.0<br>2115.0 | 29.5<br>32.1<br>26.5<br>27.9<br>24.3<br>33.0<br>32.1<br>26.1 | 35.7<br>36.3<br>35.8<br>36.8<br>35.5                                 | 56666555555555555555555555555555555555             | 9.222222<br>9.22222<br>9.2222                 | 1.14<br>1.16<br>1.12<br>1.18<br>1.17<br>1.21<br>1.06<br>1.13<br>1.21 | 3.04<br>3.07<br>3.14<br>3.18<br>3.22<br>3.25<br>3.25<br>3.32<br>3.35         | 12032<br>12145<br>12249<br>12376<br>12497<br>12635<br>12719<br>12826<br>12959<br>13070 | 137<br>144<br>132<br>160<br>152<br>174<br>128<br>132<br>162.57               | 1151<br>1128<br>1107<br>1087<br>1067<br>1049<br>1031<br>1013<br>996.53                           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.4<br>19.4<br>19.4<br>19.4<br>19.4<br>19.4<br>19.4<br>19.4 |
| 2116.0<br>2117.0<br>2118.0<br>2119.0<br>2120.0<br>2121.0<br>2122.0<br>2123.0<br>2124.0<br>2125.0           | 38.3<br>22.8<br>23.1<br>20.6<br>15.1<br>29.3<br>36.7<br>40.9 | 35.2<br>35.1<br>36.0<br>36.7<br>38.1<br>37.1<br>35.3<br>33.7<br>33.7 | 58<br>58<br>58<br>58<br>58<br>57<br>61<br>61<br>61 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.15<br>1.07<br>1.25<br>1.25<br>1.30<br>1.39<br>1.18<br>1.09<br>1.05 | 3.38<br>3.41<br>3.45<br>3.50<br>3.55<br>3.61<br>3.67<br>3.70<br>3.73         | 13187<br>13277<br>13430<br>13581<br>13750<br>13977<br>14101<br>14201<br>14290<br>14395 | 110.74<br>186.13<br>183.78<br>206.16<br>280.38<br>144.90<br>115.45<br>103.67 | 899.40                                                                                           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.4<br>19.4<br>19.4<br>19.5<br>19.5<br>19.5<br>19.5         |
| 2126.0<br>2127.0<br>2128.0<br>2129.0<br>2130.0<br>2131.0<br>2132.0<br>2134.0<br>2135.0                     | 47.4<br>47.4<br>35.6<br>35.3<br>28.1                         | 36.2<br>34.9<br>35.7                                                 | 57<br>56<br>58                                     | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.06<br>1.00<br>1.00<br>1.09<br>1.11<br>1.17<br>1.56<br>1.79<br>1.57 | 3.75<br>3.77<br>3.79<br>3.82<br>3.85<br>3.89<br>4.00<br>4.26<br>4.38<br>4.43 | 14484<br>14561<br>14639<br>14742<br>14848<br>14966<br>15363<br>16225<br>16644<br>16811 | 89.53<br>89.53<br>118.98<br>120.16<br>150.79<br>490.07<br>1093<br>507.74     | 838.36<br>826.84<br>815.67<br>805.27<br>795.19<br>785.85<br>781.63<br>786<br>782.15<br>774.25    | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5 |
| 2136.0<br>2137.0<br>2138.0<br>2139.0<br>2140.0<br>2141.0<br>2142.0<br>2143.0<br>2144.0                     | 21.3<br>27.1<br>32.4<br>22.8<br>26.9<br>5.0<br>25.5<br>41.9  | 34.5<br>34.2<br>33.8<br>34.0<br>32.6<br>34.8<br>34.8<br>27.7<br>26.7 | 57<br>57<br>53<br>60<br>64<br>90                   | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.22<br>1.25<br>1.16<br>1.11<br>1.18<br>1.19<br>1.75<br>1.25<br>1.09 | 4.47<br>4.55<br>4.55<br>4.63<br>4.66<br>4.86<br>4.90<br>4.95                 | 18593<br>18721                                                                         | 199.09<br>156.68<br>130.76<br>186.13<br>157.86<br>842.31<br>166.11<br>101.31 | 766.22<br>758.66<br>750.74<br>742.69<br>735.55<br>728.24<br>729.66<br>722.71<br>715.13<br>707.76 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5         |
| 2146.0<br>2147.0<br>2148.0<br>2149.0<br>2150.0<br>2151.0<br>2152.0<br>2153.0<br>2154.0<br>2155.0           | 8.8<br>6.6<br>11.3<br>14.7<br>19.0<br>15.9<br>17.1           | 26.5<br>31.0<br>32.3<br>32.0<br>29.6<br>29.3<br>30.1<br>30.4<br>30.7 | 76<br>86<br>88<br>79<br>82<br>82<br>82<br>82       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1,56<br>1,41<br>1,34<br>1,40                                         | 4.97<br>5.08<br>5.23<br>5.32<br>5.39<br>5.44<br>5.51<br>5.63<br>5.69         | 20249<br>20718<br>21040<br>21299<br>21606<br>21892<br>22217                            | 479.47<br>640.86<br>374.62<br>288.62<br>222.65<br>266.24<br>247.39<br>281.56 | 700.29<br>697.69<br>697.03<br>693.32<br>688.73<br>683.49<br>678.85<br>674.11<br>669.84<br>665.24 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5 |

| DEPTH                                                                                            | ROP                                                          | acm                                                                          | RPM                                                      | MW                                            | "d "c                                                                | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                        | CCOST                                                                        | PP                                            | FG                                                           |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 2156.0<br>2157.0<br>2158.0<br>2159.0<br>2160.0<br>2161.0<br>2161.0<br>2163.0<br>2164.0<br>2165.0 | 15.6<br>39.6<br>35.6<br>32.1<br>34.6<br>32.4<br>42.9<br>40.4 | 30.7<br>30.5<br>28.1<br>27.6<br>26.6<br>25.5<br>26.2<br>27.6<br>27.2<br>28.4 | 82<br>81<br>80<br>81<br>82<br>82<br>82<br>82             | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.34<br>1.41<br>1.10<br>1.12<br>1.14<br>1.11<br>1.14<br>1.07<br>1.08 | 5.74<br>5.80<br>5.83<br>5.86<br>5.99<br>5.95<br>5.95<br>5.97                 | 22742<br>23055<br>23180<br>23314<br>23466<br>23761<br>23876<br>23997<br>24291          | 118.98<br>131.94<br>122.52<br>130.76<br>98.96<br>104.85                      |                                                                              | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5 |
| 2166.0<br>2167.0<br>2168.0<br>2169.0<br>2170.0<br>2171.0<br>2172.0<br>2173.0<br>2174.0<br>2175.0 | 10.3<br>10.0<br>28.6<br>32.7<br>33.3<br>36.4<br>37.9<br>32.1 | 28.4<br>29.4<br>30.0<br>29.1<br>29.5<br>30.1<br>35.1<br>38.5<br>38.4<br>39.5 | 83<br>83<br>77<br>83<br>84<br>84<br>83<br>83             | 9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22  | 1.18<br>1.18<br>1.21<br>1.22                                         | 6.09<br>6.19<br>6.29<br>6.32<br>6.35<br>6.41<br>6.44<br>6.47                 | 24477<br>24963<br>25424<br>25599<br>25753<br>25904<br>26042<br>26173<br>26329<br>26545 | 412.32<br>424.10<br>148.44<br>129.59<br>127.23<br>116.63<br>111.92<br>131.94 | 607.70<br>603.41<br>599.02<br>594.70<br>590.35<br>586.04                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5<br>19.5 |
| 2176.0<br>2177.0<br>2178.0<br>2179.0<br>2180.0<br>2181.0<br>2182.0<br>2183.0<br>2184.0<br>2185.0 | 30.5<br>37.1<br>36.7<br>41.4<br>29.5<br>33.3<br>10.3<br>20.8 | 39.5<br>37.9<br>38.9<br>39.0<br>39.0<br>40.5<br>38.6<br>39.0                 | 84<br>83<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 | 9,2<br>9,2<br>9,2<br>9,2                      | 1.41<br>1.28<br>1.23<br>1.25<br>1.21<br>1.32<br>1.29<br>1.70<br>1.43 | 6.56<br>6.59<br>6.62<br>6.64<br>6.67<br>6.70<br>6.83<br>6.88<br>6.92         | 26927<br>27061<br>27199<br>27322<br>27495<br>27648<br>28151<br>28398                   | 114.27<br>115.45<br>102.49<br>143.72                                         | 571.23<br>567.29<br>563.43<br>559.52<br>556.03<br>552.45<br>551.28<br>548.44 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 19.5<br>19.5                                                 |
| 2186.0<br>2187.0<br>2188.0<br>2189.0<br>2190.0<br>2191.0<br>2192.0<br>2193.0<br>2194.0<br>2195.0 | 23.4<br>25.9<br>26.9<br>29.8<br>46.2<br>38.7<br>7.1<br>8.3   | 38.3<br>38.1<br>39.1<br>38.3<br>37.6<br>36.7<br>36.7<br>39.8<br>38.9         | 83<br>83<br>83<br>84<br>85<br>84<br>82                   | 9,2<br>9,2<br>9,2<br>9,2<br>9,2<br>9,2        |                                                                      | 6.96<br>7.00<br>7.04<br>7.07<br>7.11<br>7.13<br>7.16<br>7.30<br>7.42<br>7.47 | 29016<br>29209<br>29395<br>29562<br>29672<br>29803<br>30518<br>31116                   | 109.56<br>599.63                                                             | 539.42<br>536.44<br>533.46<br>530.40<br>527.01<br>523.79<br>524.37<br>524.28 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.5<br>19.5<br>19.5<br>19.5<br>19.6<br>19.6<br>19.6<br>19.6 |
| 2196.0<br>2197.0<br>2198.0<br>2199.0<br>2200.0<br>2201.0<br>2202.0<br>2203.0<br>2204.0<br>2205.0 | 5.9<br>5.5<br>5.0<br>9.9<br>4.7<br>5.4<br>4.6<br>6.0         | 38.8<br>40.1<br>38.7<br>39.3<br>38.7<br>36.7<br>38.8<br>40.1<br>39.2<br>36.6 | 84<br>84<br>84<br>84<br>83<br>85                         | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.87<br>1.95                                                         | 7.63<br>7.80<br>7.98<br>8.18<br>8.28<br>8.49<br>8.67<br>8.67<br>9.06         | 33037<br>33958<br>34971<br>35476<br>36539<br>37451<br>38554<br>39375                   |                                                                              | 524.55<br>526.37<br>528.74<br>528.00<br>530.64<br>532.41                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6 |

And the second s

| DEPTH                                                                                                      | ROP                                                          | MOB                                                                          | RPM                                                | MW                                            | "d"c                                                                 | HOURS                                                                                  | TURNS                                                                | ICOST                                                              | CCOST                                                                                            | PP                                            | FG                                                           |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 2206.0<br>2207.0<br>2208.0<br>2209.0<br>2210.0<br>2211.0<br>2212.0<br>2213.0<br>2214.0<br>2215.0           | 5.8<br>4.1<br>5.3<br>4.9<br>5.0<br>7.0<br>8.2                | 38.4<br>38.9<br>38.7<br>35.7<br>37.0<br>38.9<br>39.1<br>39.0<br>38.4<br>37.3 | 86<br>86<br>85<br>76<br>84<br>85<br>85<br>85<br>85 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.47<br>1.77<br>1.86<br>1.89<br>1.86<br>1.92<br>1.91<br>1.79         | 9.14<br>9.27<br>9.44<br>9.69<br>9.88<br>10.08<br>10.29<br>10.43<br>10.55               | 40457<br>41337<br>42460<br>43422<br>44467<br>45487<br>46208<br>46832 | 874.12                                                             | 531.43<br>532.81<br>536<br>538.10                                                                | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6 |
| 2216.0<br>2217.0<br>2218.0<br>2219.0<br>2220.0<br>2221.0<br>2222.0<br>2223.0<br>2223.0<br>2224.0<br>2225.0 | 11.3<br>6.7<br>7.5<br>11.8<br>6.3<br>8.6<br>5.3              | 36.6<br>38.4<br>38.2<br>39.5<br>39.2<br>39.3<br>40.1<br>37.9<br>37.2         | 83<br>85<br>84<br>81<br>79<br>84<br>83<br>84<br>80 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.02<br>1.63<br>1.80<br>1.77<br>1.61<br>1.84<br>1.73<br>1.90<br>1.89 | 10.59<br>10.68<br>10.83<br>10.97<br>11.05<br>11.21<br>11.33<br>11.52<br>11.72          | 51635<br>52644                                                       | 564.29<br>360.48<br>670.31<br>494.78                               | 535.84<br>536.48<br>536.66<br>535.54<br>536.39<br>536.13<br>537.81<br>539.70                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6 |
| 2226.0<br>2227.0<br>2228.0<br>2229.0<br>2230.0<br>2231.0<br>2232.0<br>2233.0<br>2233.0<br>2235.0           | 10.3<br>9.2<br>12.3<br>15.5<br>15.4<br>17.1<br>15.0<br>20.7  |                                                                              | 74<br>81<br>83<br>83<br>83<br>83<br>81<br>79       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.59<br>1.52<br>1.52<br>1.44                                         | 12.05<br>12.15<br>12.26<br>12.34<br>12.41<br>12.47<br>12.53<br>12.60<br>12.64<br>12.70 | 54689<br>55228<br>55625<br>55946<br>56269<br>56559<br>56885<br>57114 | 460.62<br>345.17<br>274.49<br>275.67<br>247.39                     | 541.09<br>540.60<br>539.43<br>537.86<br>536.30<br>534.60<br>533.13<br>531.22                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6 |
| 2236.0<br>2237.0<br>2239.0<br>2240.0<br>2241.0<br>2242.0<br>2243.0<br>2244.0<br>2245.0                     | 16.4<br>21.8<br>24.2<br>10.5<br>37.1<br>27.7<br>25.0<br>21.6 | 38.7<br>37.0<br>36.3<br>36.2<br>38.8<br>35.4<br>36.1<br>36.3<br>36.9         | 82                                                 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.30                                                                 | 12.76<br>12.82<br>12.87<br>12.91<br>13.01<br>13.03<br>13.07<br>13.11<br>13.15          | 57996<br>58221<br>58425<br>58895<br>59027<br>59205<br>59395          | 257.99<br>194.38<br>175.53<br>404.07<br>114.27<br>153.15<br>169.64 | 527.99<br>526.45<br>524.56<br>522.59<br>521.92<br>519.64<br>517.61<br>515.68<br>513.93<br>512.10 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6 |
| 2246.0<br>2247.0<br>2248.0<br>2249.0<br>2250.0<br>2251.0<br>2252.0<br>2253.0<br>2254.0<br>2255.0           | 21.3<br>26.5<br>27.3<br>18.4<br>28.8<br>27.1<br>34.0<br>28.3 | 36.8<br>37.1<br>37.0<br>36.8<br>37.9<br>37.5<br>38.2<br>37.2                 | 83<br>83<br>83<br>83<br>83<br>84<br>85             | 9,2<br>9,2<br>9,2<br>9,2<br>9,2<br>9,2        | 1.31                                                                 | 13.24<br>13.28<br>13.32<br>13.36<br>13.41<br>13.45<br>13.49<br>13.51<br>13.55          | 60274<br>60463<br>60646<br>60919<br>61092<br>61276<br>61424          | 199.09<br>160.22<br>155.50<br>230.90<br>147.26<br>156.68<br>124.87 | 510.27<br>508.58<br>506.71<br>504.83<br>503.38<br>501.49<br>499.68<br>497.72<br>495.90<br>494.36 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6 |

| DEPTH                                                                                            | ROP                                                         | MOB                                                                  | RPM                                                | MW                                            | "d"c                                                                 | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                                            | CCOST                                                                        | PР                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2256.0<br>2257.0<br>2258.0<br>2259.0<br>2260.0<br>2261.0<br>2262.0<br>2263.0<br>2264.0<br>2265.0 | 31.6<br>28.1<br>26.9<br>8.8<br>10.3<br>8.4<br>14.6          | 36.5<br>38.3<br>38.3<br>39.0                                         | 85<br>85<br>85<br>87<br>85<br>81<br>79<br>83       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.34<br>1.27<br>1.33<br>1.72<br>1.66<br>1.72<br>1.63<br>1.47         | 13.63<br>13.67<br>13.70<br>13.74<br>13.85<br>13.95<br>14.07<br>14.14                   | 62039<br>62201<br>62382<br>62573<br>63159<br>63658<br>64240<br>64564<br>65020<br>65301 | 134.30<br>150.79<br>157.86<br>479.47<br>413.50<br>506.56<br>289.80                               | 486.09<br>485.62                                                             | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.7 |
| 2266.0<br>2267.0<br>2269.0<br>2269.0<br>2270.0<br>2271.0<br>2272.0<br>2273.0<br>2274.0<br>2275.0 | 5.8<br>7.7<br>6.8<br>7.4<br>6.1<br>7.0<br>12.8<br>13.5      | 39.8<br>41.6<br>39.9<br>40.9<br>40.5<br>40.6<br>39.8<br>40.4<br>35.0 | 81<br>87<br>87<br>87<br>87<br>80<br>84<br>80<br>64 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.84<br>1.91<br>1.79<br>1.84<br>1.81<br>1.87<br>1.80<br>1.60<br>1.58 | 14.45<br>14.62<br>14.75<br>14.90<br>15.04<br>15.34<br>15.42<br>15.42<br>15.58          | 67001<br>67683<br>68453<br>69158<br>70013                                              | 697.41<br>737.46<br>553.69<br>622.01<br>570.18<br>697.41<br>601.99<br>331.03<br>313.36<br>347.53 | 489.04<br>489.58<br>488.83<br>488.00                                         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7         |
| 2276.0<br>2277.0<br>2278.0<br>2279.0<br>2280.0<br>2281.0<br>2283.0<br>2283.0<br>2284.0<br>2285.0 | 13.8<br>13.8<br>18.2<br>6.3<br>12.5<br>11.0<br>14.6<br>15.5 | 35.8                                                                 | 63<br>62<br>62<br>76<br>69<br>66<br>65<br>65       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.51<br>1.43<br>1.45<br>1.34<br>1.78<br>1.49<br>1.53<br>1.43         | 15.67<br>15.74<br>15.82<br>15.87<br>16.03<br>16.11<br>16.20<br>16.27<br>16.33<br>16.39 | 72121<br>72393<br>72665<br>72869<br>73599<br>73930<br>74291<br>74562<br>74815<br>75049 | 407.61<br>307.47<br>307.47<br>233.26<br>676.20<br>338.10<br>385.22<br>290.98<br>273.31<br>253.28 | 485.31                                                                       | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7         |
| 2286.0<br>2287.0<br>2289.0<br>2289.0<br>2290.0<br>2291.0<br>2293.0<br>2293.0<br>2295.0           | 6.8<br>7.3<br>6.7<br>5.6<br>10.1<br>11.5<br>7.9             | 35.2<br>36.3<br>36.4<br>36.9<br>32.0<br>32.2<br>31.4<br>31.3         | 65<br>62<br>56<br>71<br>91<br>88<br>88<br>65<br>65 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.39<br>1.67<br>1.61<br>1.72<br>1.86<br>1.59<br>1.55<br>1.67         | 16.46<br>16.61<br>16.74<br>16.89<br>17.07<br>17.17<br>17.26<br>17.38<br>17.46<br>17.55 | 75843<br>76303<br>76939<br>77909<br>78430<br>78889<br>79561<br>79879                   | 266.24<br>627.90<br>581.96<br>636.15<br>755.13<br>418.21<br>368.78<br>538.37<br>345.17<br>364.02 | 480.76<br>481.21<br>481.89<br>483.09<br>482.80<br>482.31<br>482.55<br>481.96 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7         |
| 2296.0<br>2297.0<br>2298.0<br>2299.0<br>2300.0<br>2301.0<br>2302.0<br>2303.0<br>2304.0<br>2305.0 | 10.3<br>18.0<br>4.9<br>6.2<br>5.8<br>8.6<br>13.4<br>16.2    | 31.4<br>31.4<br>30.1<br>32.0<br>33.3<br>30.9<br>31.1<br>30.0<br>30.7 | 65<br>66<br>65<br>75<br>91<br>84<br>70<br>70<br>70 | 9.222222<br>9.22222<br>9.2222                 | 1.45<br>1.48<br>1.29<br>1.77<br>1.78<br>1.73<br>1.56<br>1.40<br>1.35 | 17.64<br>17.73<br>17.79<br>17.99<br>18.16<br>18.33<br>18.44<br>18.52<br>18.58          | 80938<br>81154<br>82072<br>82953<br>83813<br>84301<br>84613<br>84870                   | 372.27<br>409.96<br>235.61<br>863.51<br>683.27<br>725.68<br>491.25<br>315.72<br>261.53<br>227.36 | 480.68<br>479.65<br>481.27<br>482.11<br>483.13<br>483.17<br>482.47<br>481.56 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7         |

| DEPTH                                                                                            | ROP                                                         | wob                                                                          | RPM                                                       | мы                                            | "d "c                                                                        | HOURS                                                                                  | TURNS                                                                        | ICOST                                                                                            | CCOST                                                                        | pр                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2306.0<br>2307.0<br>2308.0<br>2309.0<br>2310.0<br>2311.0<br>2312.0<br>2313.0<br>2314.0<br>2315.0 | 13.9<br>6.3<br>15.9<br>6.1<br>24.8<br>22.9<br>23.0<br>21.2  | 30.1<br>30.1<br>31.9<br>31.0<br>34.2<br>40.8<br>41.0<br>39.7<br>41.2<br>41.4 | 101<br>102<br>102                                         | 9.2222<br>9.2222<br>9.222<br>9.222            | 1.35<br>1.39<br>1.71<br>1.44<br>1.81<br>1.45<br>1.48<br>1.47                 | 18.69<br>18.77<br>18.93<br>18.99<br>19.15<br>19.19<br>19.24<br>19.28<br>19.33          | 85653<br>86422<br>86757<br>87682<br>87924<br>88188<br>88454<br>88745         | 263.88<br>305.12<br>675.03<br>267.42<br>699.77<br>170.82<br>185.20<br>184.37<br>200.27<br>226.19 | 478.91<br>479.71<br>478.85<br>479.74<br>478.50<br>477.33<br>476.16<br>475.07 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7         |
| 2316.0<br>2317.0<br>2318.0<br>2319.0<br>2320.0<br>2321.0<br>2322.0<br>2323.0<br>2324.0<br>2325.0 | 4.9<br>9.0<br>8.2<br>4.7<br>13.4<br>14.3<br>10.7            | 40,8                                                                         | 100<br>85<br>84<br>68<br>64<br>63<br>62<br>62<br>61<br>63 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.47<br>1.95<br>1.74<br>1.69<br>1.53<br>1.58<br>1.58                         | 19.42<br>19.63<br>19.74<br>19.86<br>20.07<br>20.15<br>20.22<br>20.31<br>20.38<br>20.46 | 90374<br>90936<br>91433<br>92243<br>92523<br>92784<br>93134<br>93400         | 180.24<br>872.94<br>473.58<br>515.99<br>896.50<br>315.72<br>295.69<br>395.83<br>306.29           | 474.49<br>474.65<br>476.29<br>475.67<br>474.97<br>474.67<br>474.03           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7 |
| 2326.0<br>2327.0<br>2328.0<br>2329.0<br>2330.0<br>2331.0<br>2332.0<br>2333.0<br>2335.0           | 14.9<br>11.8<br>17.4<br>12.2<br>5.7<br>7.6<br>4.7           | 40.1<br>39.6<br>40.2<br>39.1<br>39.1<br>40.0<br>40.6<br>41.4<br>41.6<br>41.1 | 63<br>62<br>67<br>85<br>87<br>95<br>97<br>65              | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.48<br>1.45<br>1.56<br>1.50<br>1.62<br>1.89<br>1.83<br>2.02<br>2.00<br>1.82 | 20.53<br>20.60<br>20.69<br>20.74<br>20.82<br>21.00<br>21.13<br>21.34<br>21.56<br>21.74 | 94212<br>94555<br>94848<br>95269<br>96182<br>96931<br>98191<br>99384         | 300.40<br>285.09<br>359.31<br>243.86<br>346.35<br>741.00<br>558.40<br>896.50<br>925.95<br>770.45 | 472.13<br>471.70<br>470.85<br>470.38<br>471.39<br>471.71<br>473.28<br>474.94 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7<br>19.7         |
| 2336.0<br>2337.0<br>2338.0<br>2339.0<br>2340.0<br>2341.0<br>2342.0<br>2343.0<br>2344.0           | 4.1<br>12.8<br>20.8<br>16.6<br>18.6<br>21.3<br>25.0<br>29.5 | 37.2                                                                         | 60<br>57<br>65<br>80<br>80<br>78<br>90<br>88<br>83        | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.89<br>1.86<br>1.49<br>1.41<br>1.51<br>1.45<br>1.46<br>1.38<br>1.30         | 22.00<br>22.25<br>22.32<br>22.37<br>22.43<br>22.49<br>22.53<br>22.57<br>22.61<br>22.76 | 102397<br>102688<br>102941<br>103194<br>103406<br>103574                     | 1046<br>332.21                                                                                   | 478.80<br>477.99<br>477.10<br>476.11<br>475.02<br>473.84                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.7<br>19.7<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8         |
| 2346.0<br>2347.0<br>2348.0<br>2349.0<br>2350.0<br>2351.0<br>2352.0<br>2353.0<br>2354.0           | 17.1<br>8.0<br>15.1<br>10.0<br>9.3<br>4.3<br>4.8<br>6.7     | 40.7<br>40.7<br>37.8<br>36.4<br>37.8<br>36.5<br>39.2<br>45.0<br>43.8<br>43.6 | 68<br>66<br>72<br>83<br>84<br>83<br>86<br>89<br>83        | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.77<br>1.44<br>1.68<br>1.50<br>1.66<br>1.66<br>1.97<br>2.03<br>1.88         | 22.91<br>22.97<br>23.10<br>23.16<br>23.26<br>23.37<br>23.60<br>23.81<br>23.96<br>24.07 | 105172<br>105713<br>106045<br>106549<br>107081<br>108274<br>109391<br>110143 | 656.18<br>248.57<br>531.30<br>281.56<br>424.10<br>455.91<br>978.96<br>888.25<br>637.33<br>485.36 | 474.26<br>474.46<br>473.79<br>473.62<br>473.55<br>475.30<br>476.72<br>477.27 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8 |

.

| DEPTH                                                                                            | ROP                                                        | мов                                                                  | RPM                                                      | MW                                                   | "d "c                                                                | HOURS                                                                                  | TURNS                                                                                            | ICOST                                                                                            | CCOST                                                                        | PP                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2356.0<br>2357.0<br>2358.0<br>2359.0<br>2360.0<br>2361.0<br>2362.0<br>2363.0<br>2364.0           | 5.6<br>12.3<br>16.5<br>16.9<br>11.7<br>12.1<br>15.5        |                                                                      | 83<br>69<br>73<br>82<br>90<br>71<br>71<br>72<br>72<br>82 | 9.2<br>9.2<br>9.2                                    | 1.84<br>1.85<br>1.61<br>1.53<br>1.53<br>1.56<br>1.48<br>1.49         | 24.22<br>24.40<br>24.48<br>24.54<br>24.60<br>24.68<br>24.76<br>24.83<br>24.89<br>24.95 | 112155<br>112510<br>112808<br>113129<br>113495<br>113848<br>114128                               | 600.81<br>759.85<br>343.99<br>256.82<br>250.93<br>364.02<br>349.88<br>274.49<br>269.77<br>261.53 | 478.67<br>478.22<br>477.47<br>476.71<br>476.33<br>475.91<br>475.24<br>474.56 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8 |
| 2366.0<br>2367.0<br>2368.0<br>2369.0<br>2370.0<br>2371.0<br>2372.0<br>2373.0<br>2374.0<br>2375.0 | 11.4<br>10.1<br>5.5<br>5.1<br>20.7<br>9.1<br>4.2           | 38.6<br>38.8<br>39.4<br>37.7<br>40.3<br>39.2<br>39.5                 | 88<br>65<br>77<br>85<br>85<br>88<br>83<br>83             | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.43<br>1.56<br>1.63<br>1.84<br>1.42<br>1.73<br>1.97<br>1.97         | 25.00<br>25.09<br>25.19<br>25.37<br>25.57<br>25.61<br>25.72<br>25.96<br>26.20<br>26.35 | 117638<br>118193<br>119390<br>120588                                                             | 197.91<br>372.27<br>418.21<br>773.98<br>830.53<br>204.98<br>464.15<br>1015<br>1008<br>614.95     | 474.58<br>473.71<br>473.68<br>475<br>477                                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8 |
| 2376.0<br>2377.0<br>2378.0<br>2379.0<br>2380.0<br>2381.0<br>2382.0<br>2383.0<br>2384.0<br>2385.0 | 8.2<br>9.9<br>22.0<br>17.4<br>15.5                         | 39.9<br>41.2<br>39.9<br>39.4<br>35.9<br>36.4                         | 84<br>731<br>70<br>72<br>72<br>72<br>72<br>72            | 9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22 | 1.97<br>1.87<br>1.62<br>1.69<br>1.63<br>1.33<br>1.41<br>1.47         | 26.59<br>26.79<br>26.88<br>27.01<br>27.11<br>27.15<br>27.21<br>27.27<br>27.33<br>27.39 | 122563<br>123440<br>123831<br>124345<br>124771<br>124968<br>125216<br>125496<br>125751<br>125988 | 389.94<br>515.99<br>429.99<br>193.20<br>243.86<br>274.49<br>250.93                               | 477.24                                                                       | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8         |
| 2384.0<br>2387.0<br>2388.0<br>2389.0<br>2390.0<br>2391.0<br>2392.0<br>2393.0<br>2394.0<br>2395.0 | 10.7<br>6.3<br>10.9<br>15.7<br>12.4<br>13.4<br>11.0        | 41.6<br>42.4<br>43.8<br>44.0<br>43.2<br>44.2<br>43.8<br>44.1<br>46.5 | 71<br>72<br>72<br>74<br>73<br>73<br>73<br>64             | 9.2<br>9.2<br>9.2<br>9.2<br>9.2                      | 1.47<br>1.64<br>1.85<br>1.66<br>1.53<br>1.62<br>1.59<br>1.66<br>1.56 | 27.45<br>27.54<br>27.70<br>27.79<br>27.86<br>27.94<br>28.01<br>28.10<br>28.18<br>28.25 | 126643<br>127334<br>127739<br>128020<br>128375<br>128700<br>129097<br>129430                     | 248.57<br>395.83<br>675.03<br>388.76<br>269.77<br>341.64<br>316.90<br>384.05<br>323.97<br>306.29 | 475.53<br>476.14<br>475.87<br>475.25<br>474.84<br>474.36<br>474.09<br>473.64 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8 |
| 2396.0<br>2397.0<br>2398.0<br>2399.0<br>2400.0<br>2401.0<br>2402.0<br>2403.0<br>2404.0<br>2405.0 | 17.7<br>6.5<br>9.9<br>11.4<br>14.5<br>13.8<br>12.8<br>15.3 | 47.5<br>44.8<br>43.5<br>43.4<br>42.9<br>43.4<br>41.6<br>41.3         | 64<br>64<br>65<br>66<br>65<br>65<br>65<br>65<br>65       | 9,2<br>9,2<br>9,2<br>9,2<br>9,2<br>9,2               | 1.53<br>1.56                                                         | 28.31<br>28.36<br>28.52<br>28.62<br>28.71<br>28.78<br>28.85<br>28.93<br>28.99<br>29.04 | 130151<br>130747<br>131147<br>131492<br>131758<br>132040<br>132346                               | 249.75<br>239.15<br>647.93<br>428.81<br>371.09<br>292.16<br>306.29<br>332.21<br>276.84<br>203.80 | 471.77<br>472.29<br>472.16<br>471.86<br>471.33<br>470.85<br>470.44<br>469.88 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8 |

•

| DEPTH                                                                                            | ROP                                                      | MOB                                                                          | RPM                                          | мш                                            | "d "c                                                                        | HOURS                                                                                  | TURNS                                                                        | rcost                                                                                            | ccost                                                                                   | PP                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2406.0<br>2407.0<br>2408.0<br>2409.0<br>2410.0<br>2411.0<br>2412.0<br>2413.0<br>2414.0<br>2415.0 | 15.6<br>16.2<br>18.9<br>16.7<br>15.3<br>12.9<br>10.1     | 41.7<br>42.8<br>43.4<br>42.6<br>42.9<br>42.7<br>43.0<br>42.9<br>41.8<br>42.6 | 64<br>65<br>64<br>64<br>64<br>64<br>65<br>66 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.47<br>1.48<br>1.47<br>1.41<br>1.46<br>1.48<br>1.55<br>1.63<br>1.62<br>2.13 | 29.10<br>29.17<br>29.23<br>29.28<br>29.34<br>29.41<br>29.49<br>29.58<br>29.68<br>30.10 | 133275<br>133513<br>133716<br>133947<br>134197<br>134496<br>134878           | 275.67<br>272.13<br>261.53<br>223.83<br>254.46<br>278.02<br>329.86<br>419.39<br>411.14<br>1786   | 467.97<br>467.37<br>466.67<br>466.06<br>465.52<br>465.13<br>465.00                      | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8<br>19.8 |
| 2416.0<br>2417.0<br>2418.0<br>2419.0<br>2420.0<br>2421.0<br>2422.0<br>2423.0<br>2424.0<br>2425.0 | 9.1<br>15.0<br>13.1<br>12.1<br>15.8<br>7.7<br>2.8<br>3.4 | 42.5<br>41.8<br>40.8<br>41.5<br>41.0<br>40.9<br>42.2<br>42.1<br>40.7<br>39.5 | 66<br>62<br>72<br>66<br>63<br>64<br>72<br>85 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.95<br>1.65<br>1.46<br>1.56<br>1.71<br>2.10<br>2.06                         | 30.35<br>30.46<br>30.53<br>30.61<br>30.69<br>30.75<br>30.88<br>31.24<br>31.54<br>31.69 | 138594<br>138921<br>139247<br>139486<br>139982<br>141543                     | 1064<br>466.51<br>282.73<br>322.79<br>349.88<br>268.60<br>547.80<br>1533<br>1248<br>658.53       | 470<br>470.26<br>469.74<br>469.33<br>468.99<br>468.43<br>468.65<br>472<br>474<br>474.25 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9 |
| 2426.0<br>2427.0<br>2428.0<br>2429.0<br>2430.0<br>2431.0<br>2432.0<br>2433.0<br>2433.0           | 18.5<br>17.3<br>16.9<br>12.8<br>11.6<br>2.6<br>3.3       | 39.2<br>40.5                                                                 | 83<br>84<br>82<br>81<br>84<br>83<br>69<br>65 | 9.22<br>9.22<br>9.22<br>9.22<br>9.22          | 1.57<br>1.49<br>1.48<br>1.51<br>1.49<br>1.60<br>1.63<br>2.07<br>1.96         | 31.77<br>31.82<br>31.88<br>31.94<br>31.99<br>32.07<br>32.16<br>32.54<br>32.54<br>32.85 |                                                                              | 245.04<br>250.93<br>332.21                                                                       | 472.51<br>471.89                                                                        | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9 |
| 2436.0<br>2437.0<br>2438.0<br>2439.0<br>2440.0<br>2441.0<br>2442.0<br>2443.0<br>2444.0           | 3.3<br>3.6<br>3.2<br>3.7<br>4.5<br>10.3<br>9.8           | 39.3<br>39.4<br>39.7<br>39.8<br>39.3<br>39.5<br>37.8<br>37.8                 | 68<br>66<br>67<br>65<br>64<br>64<br>65<br>65 | 9,2<br>9,2<br>9,2<br>9,2<br>9,2<br>9,2<br>9,2 | 1.95<br>1.97<br>1.95<br>1.99<br>1.93<br>1.58<br>1.58<br>1.57                 | 33.38<br>33.69<br>33.96<br>34.28<br>34.54<br>34.77<br>34.87<br>34.97<br>35.07          | 156893<br>157285<br>157671                                                   | 1173<br>1302<br>1170<br>1338<br>1137<br>949.51<br>411.14<br>433.52<br>422.92<br>387.58           | 488.31<br>488.14                                                                        | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9         |
| 2446.0<br>2447.0<br>2448.0<br>2449.0<br>2450.0<br>2451.0<br>2452.0<br>2453.0<br>2454.0           | 10.6<br>9.2<br>9.7<br>9.6                                | 35.8<br>36.8<br>36.0<br>36.4<br>36.3<br>38.0<br>38.7<br>37.3                 | 64<br>64<br>65<br>64<br>64<br>65<br>67<br>92 | 9.2222<br>9.2222<br>9.2222<br>9.222           | 1.33<br>1.36<br>1.63<br>1.53<br>1.58<br>1.56<br>1.59<br>1.62<br>1.63         | 35.21<br>35.27<br>35.39<br>35.49<br>35.60<br>35.70<br>35.80<br>35.91<br>36.00<br>36.08 | 158440<br>158926<br>159288<br>159707<br>160104<br>160509<br>160940<br>161417 | 219.12<br>240.32<br>532.48<br>399.36<br>461.80<br>437.06<br>442.95<br>457.09<br>371.09<br>352.24 | 486.53<br>486.65<br>486.36<br>486.24<br>486.13<br>486.05<br>485.76                      | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9         |

| DEPTH                                                                                            | ROP                         | MOB                                                  | RPM                                                | MW                                            | "d "c                                                                        | HOURS                                                                                  | TURNS                                                                                            | ICOST                                                                                            | CCOST                                                                                            | PP                                            | FG                                                           |
|--------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 2456.0<br>2457.0<br>2458.0<br>2459.0<br>2460.0<br>2461.0<br>2462.0<br>2463.0<br>2464.0           | 5.4<br>10.9<br>17.2<br>13.3 | 38.8<br>37.4<br>38.6<br>40.1<br>39.4<br>39.5<br>39.3 | 928<br>777<br>775<br>781<br>81                     | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.88<br>1.62<br>1.45<br>1.55<br>1.61<br>1.43<br>1.42<br>1.94                 | 36.26<br>36.45<br>36.54<br>36.60<br>36.67<br>36.76<br>36.81<br>36.86<br>37.09<br>37.25 | 163855<br>164280<br>164548                                                                       | 775.16<br>779.87<br>388.76<br>246.21<br>319.25<br>369.91<br>214.41<br>206.16<br>955.40<br>705.66 | 486.15<br>486.90<br>486.65<br>486.04<br>485.63<br>485.34<br>484.66<br>483.96<br>485.14<br>485.68 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9 |
| 2466.0<br>2467.0<br>2468.0<br>2469.0<br>2470.0<br>2471.0<br>2472.0<br>2473.0<br>2473.0<br>2475.0 | 2,9<br>3,2<br>4,4           | 38.4<br>38.7<br>37.0<br>34.4<br>35.4<br>35.8<br>35.8 | 81<br>62<br>69<br>80<br>80<br>73<br>70<br>69<br>71 | 99.22222222222222222222222222222222222        | 2.07<br>1.95<br>1.86<br>1.74<br>1.67<br>1.84<br>1.57<br>1.59<br>1.68<br>2.04 | 37.59<br>37.90<br>38.13<br>38.29<br>38.41<br>38.61<br>38.71<br>38.82<br>38.96<br>39.36 | 169329<br>170480<br>171427<br>172173<br>172752<br>173656<br>174076<br>174522<br>175119<br>176816 | 1456<br>1306<br>970.72<br>660.89<br>512.45<br>871.76<br>426.46<br>454.73<br>605.52<br>1691       | 488<br>490<br>491.29<br>491.71<br>491.76<br>492.69<br>492.53<br>492.43<br>492.71<br>496          | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9<br>19.9         |
| 2476.0<br>2477.0<br>2477.6                                                                       | 2.8                         | 40.9<br>38.1<br>38.6                                 | 75<br>75<br>80                                     | 9.2                                           | 1.97<br>2.05<br>2.16                                                         | 39.62<br>39.97<br>40.25                                                                | 177946<br>179547<br>180878                                                                       | 1070<br>1510<br>1965                                                                             | 497<br>499<br>502                                                                                | 8.4                                           | 19.9<br>19.9<br>19.5                                         |

2477,6- 2636,0 517 INTERVAL 7 IADC CODE BIT NUMBER 15 15 15 12.250 NOZZLES SIZE HTC J22 158.4 BIT RUN 6788.00 TRIP TIME 7.6 COST T4 B8 G0.250 TOTAL HOURS 20.78 TOTAL TURNS 90559 CONDITION PP FG CCOST MW "d"c ICOST WOB RPM HOURS TURNS DEPTH ROP 19,9 0.26 783 2768 100317 8.4 9.2 1.76 1,5 19.8 50 2478.0 19.9 9.2 1.65 0.70 1975 1877 30003 8.4 45 2479.0 2.3 21.1 0,92 2691 931 17889 8,4 19,9 9.2 1.60 4,6 26.3 54 2480.0 1.05 536 12785 8.4 19.9 71 9.2 1.55 3229 7.9 28.3 2481.0 19.9 3729 491 9991 8.4 9.2 1.54 1.17 72 2482.0 8.6 29.1 19.9 390 8213 8.4 9.2 1.48 1.26 4146 76 2483.0 10.9 28.8 19.9 9.5 29.4 9.2 1.53 4627 444 6999 8.4 1.36 76 2484.0 19.9 1.45 5045 388 6106 8.4 76 9.2 1.49 2485.0 10.9 29.5 1.53 5420 8.4 19.9 5420 346 77 9.2 1.44 2486.0 12,2 28,5 19.9 233 4868 8.4 1.59 5672 9.2 1.32 2487.0 18.2 28.8 76 4426 8.4 19.9 15.9 28.6 9.2 1.36 1.65 5962 266 2488.0 77 8.4 19.9 4059 17.3 28.7 2489.0 76 9.2 1.34 1.71 6227 245 8.4 19.9 14.0 29.3 9.2 1.37 1.78 6519 304 3756 2490.0 68 1.84 6786 245 3494 8.4 19.9 2491.0 17.3 28.7 77 9.2 1.34 1.97 7342 561 3291 8.4 19.9 2492.0 7.6 30.0 70 9.2 1.58 29.7 1.40 2.04 296 3096 8.4 19.9 74 9.2 7650 14.3 2493.0 1.46 344 2928 8.4 19.9 76 9.2 2.12 8018 12.3 30,4 2494.0 2495.0 30.6 78 2.19 8322 277 2776 8.4 20.0 15.3 9.2 1.40 2.27 8691 342 2644 8.4 20.0 12.4 31.9 76 9.2 1.48 2496.0 1.77 2.46 9563 814 2549 8.4 20.0 2497.0 5.2 33.3 76 9.2 9.7 8,4 20.0 76 9.2 1,60 2.56 10037 439 2446 2498.0 34,8 35.1 75 10444 384 2350 8.4 20.0 11.0 9.2 1.55 2.66 2499.0 74 9.2 1.67 2.77 10967 502 2267 8,4 20,0 8.5 37.5 2500.0 2192 8.4 20.0 76 9,2 1,65 2.89 11507 505 2501.0 8.4 35.6 15.1 9.2 1.44 2.96 280 2113 8.4 20.0 2502.0 33.2 78 11815 77 9.2 1.48 3.03 319 2043 8.4 20.0 13.3 33.5 12162 2503.0 78 1,44 15.8 34.5 9.2 3.10 12457 269 1976 8.4 20.0 2504.0 76 1.45 1914 34.5 9.2 12761 283 8.4 20.0 2505.0 15.0 3.16 76 1,48 1857 20.0 2506.0 9.2 3,24 13096 312 8.4 13.6 34.4 76 1.42 266 3.30 1803 8.4 20.0 2507.0 15.9 33.1 9.2 13381 1.49 20.0 12.7 74 13730 333 1755 8.4 2508.0 9.2 3.38 33.8 72 1.40 14000 264 1707 8.4 20.0 2509.0 32.9 9.2 3.44 16.1 8,4 20.0 3.50 245 17.3 33.8 72 9.2 1.38 14251 1662 2510.0 297 1621 8.4 20.0 14.3 33.0 77 9.2 1.46 3.57 14576 2511.0 8.4 20.0 77 9.2 3,64 14900 297 1583 2512.0 14.3 33,3 1,46 8.4 14.5 77 9.2 292 1546 20.0 33.7 3.71 15219 2513.0 1.46 78 3,78 296 1512 8.4 20.0 1.45 15546 2514.0 14.3 33.4 9.3 343 1481 8.4 20.0 78 15924 2515.0 12.4 32.9 9.3 1.49 3.86 1454 8.4 20.0 9.1 31.5 78 9.3 1.56 3,97 16435 465 2516.0 8.4 77 1426 20.0 2517.0 12.1 32.2 9.3 1.48 4.05 16815 351 12.5 76 9.3 1,45 4.13 17180 338 1399 8.4 20.0 2518.0 31.0 1373 13.2 30.5 72 9.3 4.21 17507 322 8.4 20.0 2519.0 1.41 73 9.3 1.42 4,28 17842 324 1349 8.4 20.0 2520.0 13.1 31.0

|        |      |      | ·   |     |       |       | 1900 1 1 004 5 1 200 |        |          | m.m. |      |
|--------|------|------|-----|-----|-------|-------|----------------------|--------|----------|------|------|
| DEPTH  | ROP  | MOB  | RPM | MW  | "d "c | HOURS | TURNS                | ICOST  | CCOST    | PP   | FG   |
| 2521.0 | 11.4 | 30.8 | 75  | 9.3 | 1.47  | 4,37  | 18236                | 373    | 1326     | 8.4  | 20.0 |
| 2522.0 |      | 31.4 | 76  | 9.3 | 1.44  | 4.45  | 18589                | 330    | 1304     | 8.4  | 20.0 |
| 2523.0 |      | 31.9 | 75  | 9.3 | 1.47  | 4.53  | 18967                | 356    | 1283     | 8.4  | 20.0 |
| 2524.0 |      | 31.8 | 75  | 9.3 | 1.46  | 4.61  | 19330                | 340    | 1263     | 8.4  | 20.1 |
| 2525.0 |      | 31.6 | 75  |     | 1,46  | 4.70  | 19700                | 349    | 1243     | 8,4  | 20.0 |
| 2526.0 |      | 31.5 | 76  |     | 1.42  | 4.77  | 20027                | 304    | 1224     | 8.4  | 20.0 |
| 2527.0 |      | 32.6 | 75  | 9.3 | 1.52  | 4,86  | 20461                | 409    | 1207     | 8.4  | 20.0 |
| 2528.0 | 13.2 | 32.3 | 72  | 9.3 | 1,43  | 4.94  | 2078 <b>9</b>        | 320    | 1190     | 8.4  | 20.0 |
| 2529.0 | 13.5 | 30.9 | 68  | 9.3 | 1.39  | 5.01  | 21092                | 315    | 1173     |      | 20.0 |
| 2530.0 | 10.9 | 31.2 | 74  | 9.3 | 1.49  | 5.10  | 21500                | 390    | 1158     | 8.4  | 20.0 |
| 2531.0 | 12.2 | 31.8 | 74  | 9.3 | 1.46  | 5.19  | 21864                | 346    | 1143     | 8.4  | 20.0 |
| 2532.0 |      | 30.7 | 76  |     | 1.45  | 5.27  | 22237                | 349    | 1128     | 8.4  | 20.0 |
| 2533.0 |      | 30.5 | 76  |     | 1.45  | 5.35  | 22605                | 340    | 1114     | 8.4  | 20.0 |
| 2534.0 | 12.1 | 33.1 | 76  | 9.3 | 1.49  | 5.43  | 22982                | 351    | 1100     | 8.4  | 20.0 |
| 2535.0 | 3.1  | 36.5 | 76  | 9.2 | 1.99  | 5.75  | 24444                | 1354   | 1105     | 8.4  | 20.0 |
| 2536.0 | 3.7  | 37.5 | 76  | 9.2 | 1.95  | 6.02  | 25685                | 1158   | 1106     | 8,4  | 20.0 |
| 2537.0 | 3.4  | 33.8 | 76  | 9.2 | 1.92  | 6.32  | 27048                | 1262   | 1108     | 8.4  | 20.0 |
| 2538.0 | 6.5  | 32.8 | 76  | 9.2 | 1.70  | 6.48  | 27753                | 655    | 1101     | 8.4  | 20.0 |
| 2539.0 | 13.4 | 32.4 | 74  |     | 1.46  | 6.55  | 28085                | 317    | 1088     |      | 20.0 |
| 2540.0 | 10.9 | 32.7 | 75  | 8.2 | 1.53  | 6.64  | 28497                | 389    | 1077     | 8.4  | 20.0 |
| 2541.0 | 11.0 | 31.5 | 76  | 9.2 | 1.51  | 6.73  | 28908                | 384    | 1066     | 8.4  | 20.0 |
| 2542,0 |      | 32.6 | 76  |     | 1.55  | 6.83  | 29355                | 415    | 1056     | 8.4  | 20.0 |
| 2543.0 |      | 33.8 | 76  |     | 1.61  | 6.94  | 29857                | 465    | 1047     | 8.4  | 20.0 |
| 2544.0 |      | 32.3 | 76  |     | 1.56  | 7.04  | 30328                | 437    | 1038     | 8,4  | 20.0 |
| 2545.0 | 10.8 | 33.4 | 76  | 9.2 | 1.54  | 7.14  | 30749                | 392    | 1028     | 8.4  | 20.0 |
| 2546.0 | 10.7 | 33.2 | 76  |     | 1,54  | 7.23  | 31174                | 397    | 1019     |      | 20.0 |
| 2547.0 | 5.4  | 33.7 | 75  |     | 1.76  | 7.41  | 32007                | 786    | 1015     |      | 20.0 |
| 2548.0 | 8.9  | 33.5 | 69  |     | 1.57  | 7.53  | 32468                | 475    | 1008     |      | 20.0 |
| 2549.0 | 4.4  | 33.1 | 69  |     | 1.80  | 7.75  | 33413                | 965    | 1007     |      | 20.0 |
| 2550.0 | 3.6  | 34.8 | 72  | 9.2 | 1.90  | 8.03  | 34599                | 1167   | 1009     | 8.4  | 20.0 |
| 2551.0 | 5.9  | 34.3 | 76  | 9.2 | 1.75  | 8.20  | 35372                | 717    | 1005     | 8.4  | 20.0 |
| 2552.0 | 10.7 | 32.3 | 77  | 9.2 | 1.54  | 8.29  | 35805                | 397.00 | 997.14   | 8.4  | 20.0 |
| 2553.0 | 10.8 | 33.6 | 77  | 9.2 | 1.55  | 8.39  | 36234                | 393,47 | 989.13   | 8.4  | 20.0 |
| 2554.0 | 2.3  | 36.7 | 74  | 9.2 | 2.09  | 8.83  | 38197                | 1881   | 1001     |      | 20.0 |
| 2555.0 |      | 32.7 | 78  | 9.2 | 1.99  | 9.20  | 39964                |        | 1008     |      | 20.0 |
| 2556.0 | 12.0 | 32.1 | 77  |     | 1.50  | 9.29  | 40348                | 355    | 1000     |      | 20.0 |
| 2557.0 |      | 40.5 | 59  |     | 1.60  | 9.39  |                      | 446.48 |          |      | 20.0 |
| 2558.0 |      | 39.9 | 55  |     | 1.66  | 9.53  | 41181                |        |          |      | 20.0 |
| 2559.0 |      | 39.6 | 56  |     | 1.61  | 9.66  |                      | 518.34 |          |      | 20.0 |
| 2560.0 | 10.9 | 40.8 | 56  | 9,2 | 1.53  | 9.75  | 41896                | 387.58 | 975.18   | 8.4  | 20.0 |
| 2561.0 | 3.5  | 42.5 | 67  | 9.2 | 2.00  | 10.03 | 43047                | 1208   | 978      | 8.4  | 20.0 |
| 2562.0 | 4.5  | 42.8 | 67  | 9.2 | 1.92  | 10.25 | 43945                | 944.80 | 977.58   | 8.4  | 20.0 |
| 2563.0 | 16.8 | 41.2 | 66  | 9.2 | 1.45  | 10.31 |                      | 252.10 |          | 8.4  | 20.0 |
| 2564.0 |      | 41.8 | 67  |     | 1.64  | 10.42 |                      | 434.70 |          | 8.4  | 20.0 |
| 2565.0 |      | 42.9 | 67  | 9.2 | 2.03  | 10.72 | 45827                | 1297   | 967      | 8.4  | 20.0 |
| 2566.0 |      | 42.8 | 69  |     | 1.26  | 10.96 | 46831                | 1025   | 967      | 8.4  |      |
| 2567.0 |      | 37.4 | 25  |     | 1.89  | 11.19 |                      | 966.01 |          |      | 20.0 |
| 2568.0 |      | 34.0 | 79  |     | 1.98  | 11.53 | 49448                | 1429   | 972      |      | 20.0 |
| 2569.0 |      | 38.0 | 78  |     | 1.66  | 11.63 |                      | 446.48 |          |      | 20.0 |
| 2570.0 | 16.2 | 38.3 | 79  | 9.2 | 1.49  | 11.70 | 50236                | 261.53 | APA ' 68 | 8.4  | 20.0 |

| DEPTH                                                                                  | ROP V                                                                                               | JOB R                                                | WM M9                                                              | "d"c                                                 | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                                            | CCOST                                                                        | PP                                     | FG                                                           |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2572.0<br>2573.0<br>2574.0<br>2575.0<br>2576.0<br>2577.0<br>2578.0<br>2579.0           | 14.9 40<br>19.7 39<br>4.0 43<br>4.0 43                                                              | 7.9<br>0.9<br>7.0<br>3.6<br>2.5<br>3.6<br>3.3        | 73 9.2<br>76 9.2<br>80 9.2<br>74 9.2<br>76 9.2                     | 2.01<br>2.00<br>2.01<br>1.83                         | 11.77<br>11.86<br>11.92<br>11.97<br>12.22<br>12.47<br>12.72<br>12.86<br>12.94<br>13.04 | 50576<br>50969<br>51274<br>51519<br>52625<br>53757<br>54875<br>55523<br>55907<br>56348 | 299.23<br>380.51<br>283.91<br>215.58<br>1059<br>1058<br>1046<br>599.63<br>354.59<br>408.79       | 945.96<br>939.02<br>931.52<br>933<br>934<br>935<br>931.88<br>926.19          | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.0<br>20.0<br>20.0<br>20.0<br>20.1<br>20.1<br>20.1<br>20.1 |
| 2582.0<br>2583.0<br>2584.0                                                             | 12.7 4;<br>12.2 4;<br>12.1 4;<br>14.7 4;<br>11.6 4;<br>5.3 4;<br>3.6 4;<br>5.6 4;<br>6.1 4;         | 4.0<br>3.8<br>3.1<br>3.2<br>3.6<br>4.5<br>2.9<br>3.3 | 73 9.2<br>71 9.2<br>69 9.2<br>80 9.2<br>83 9.2<br>82 9.2           | 1.61<br>1.53<br>1.62<br>1.94<br>2.10                 | 13.12<br>13.20<br>13.28<br>13.35<br>13.44<br>13.63<br>13.90<br>14.08<br>14.25<br>14.42 | 58963<br>60343<br>61222<br>62045                                                       | 334.57<br>346.35<br>351.06<br>288.62<br>365.20<br>805.79<br>1170<br>755.13<br>700.94<br>717.44   | 910.01<br>904.71<br>898.92<br>893.95<br>893.14<br>896<br>894.39<br>892.66    | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1 |
| 2591.0<br>2592.0<br>2593.0<br>2594.0<br>2595.0<br>2596.0<br>2597.0<br>2599.0<br>2600.0 | 4.6 4                                                                                               | 4.9<br>3.8<br>7.2<br>8.0<br>8.4<br>7.6<br>7.5        | 84 9.2<br>84 9.2<br>83 9.2<br>82 9.2<br>80 9.2<br>82 9.2<br>84 9.2 | 2.09<br>2.06<br>2.04<br>2.11<br>2.05                 | 14.68<br>14.91<br>15.17<br>15.41<br>15.63<br>15.84<br>16.09<br>16.30<br>16.39<br>16.50 | 66715<br>67924<br>68990<br>69987<br>71256<br>72325<br>72761                            | 1097<br>982.50<br>1117<br>1025<br>915.35<br>882.36<br>1090<br>896.50<br>372.27<br>446.48         | 898<br>898.38<br>894.04                                                      | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1 |
| 2602.0<br>260 <b>3.0</b><br>260 <b>4.0</b>                                             | 17.0 4<br>12.9 4<br>15.2 4<br>15.5 4<br>12.5 4<br>16.6 4<br>4.1 4<br>4.1 4<br>6.0 4<br>5.5 5        | 6.9<br>7.3<br>6.6<br>6.1<br>6.7<br>8.2<br>8.6<br>0.2 | 69 9.2<br>74 9.2<br>80 9.2<br>82 9.2<br>73 9.2                     | 1,68<br>1,61<br>1,63<br>1,52<br>2,05<br>2,10<br>1,97 | 16.56<br>16.63<br>16.70<br>16.78<br>16.84<br>17.09<br>17.33<br>17.50<br>17.68<br>17.87 | 73924<br>74237<br>74571<br>74819<br>75916<br>77104<br>77929<br>78727                   | 249.75<br>329.86<br>279.20<br>338.10<br>255.64<br>1044<br>1046<br>708.01<br>769.27<br>782.23     | 875.93<br>871.68<br>866.84<br>868<br>870<br>868.36<br>867.60                 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1 |
| 2614.0<br>2615.0<br>2616.0<br>2617.0<br>2618.0<br>2619.0                               | 7.3 4'<br>8.7 5<br>12.4 4'<br>16.5 4<br>16.1 4<br>15.3 4'<br>24.3 4'<br>13.6 4<br>17.8 4'<br>17.6 4 | 0.1<br>9.4<br>6.0<br>7.1<br>6.6<br>5.9<br>4.4<br>5.5 | 78 9.2<br>76 9.2<br>62 9.2<br>60 9.2<br>58 9.2<br>65 9.2<br>73 9.2 | 1.69<br>1.48<br>1.49<br>1.50<br>1.36                 | 18.00<br>18.12<br>18.20<br>18.26<br>18.32<br>18.39<br>18.43<br>18.50<br>18.56<br>18.61 | 80836<br>81204<br>81429<br>81652<br>81882<br>82042<br>82365<br>82617                   | 578.43<br>488.89<br>342.81<br>256.82<br>263.88<br>278.02<br>174.35<br>312.18<br>237.97<br>216.76 | 862.00<br>858.16<br>853.75<br>849.46<br>845.33<br>840.52<br>836.76<br>832.52 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1 |

| DEPTH                                                                                            | ROP                                                       | MOB                                                                          | RPM                                                      | MW                                            | "d "c                                                                | HOURS                                                                         | TURNS                                                                                  | ICOST                                                                    | CCOST                                                                        | рр                                            | FG                                                                   |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|
| 2622.0<br>2623.0<br>2624.0<br>2625.0                                                             | 19.1<br>15.3<br>10.7<br>10.9<br>10.9<br>8.7<br>5.2<br>4.0 | 44.9<br>45.7<br>45.9<br>47.0<br>47.0<br>46.6<br>45.6<br>44.9                 | 71<br>68<br>59<br>43<br>60<br>71<br>72<br>72<br>63<br>58 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1,42<br>1,46<br>1,49<br>1,50<br>1,63<br>1,69<br>1,77<br>1,94<br>1,95 | 18.65<br>18.71<br>18.77<br>18.86<br>18.96<br>19.05<br>19.16<br>19.36<br>19.61 | 83239<br>83470<br>83707<br>84036<br>84430<br>84930                                     | 389.94                                                                   | 819.61<br>815.87<br>813.00<br>810.13<br>807.29<br>805.15                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1         |
| 2631.0<br>2632.0<br>2633.0<br>2634.0<br>2635.0<br>2636.0                                         | 3.8<br>6.1<br>9.9<br>10.5                                 | 46.7<br>46.8<br>45.5<br>30.6<br>29.7<br>29.9                                 | 62<br>55<br>49<br>55<br>42<br>52                         | 9.2<br>9.2<br>9.2<br>9.2                      | 1.88<br>1.97<br>1.74<br>1.43<br>1.32                                 | 20.03<br>20.30<br>20.46<br>20.56<br>20.66<br>20.78                            | 89114<br>89593<br>89923<br>90167                                                       | 771.63<br>1123<br>695.05<br>426.46<br>405.25<br>531.30                   | 810<br>809.45<br>807.00<br>804.45                                            | 8.4<br>8.4<br>8.4<br>8.4                      | 20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1                         |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOUR                                                      | 663                                                       | 8<br>37.00<br>52.43                                                          | 9<br>T                                                   | ADC C<br>IZE<br>RIP T<br>OTAL                 |                                                                      | 537<br>12.250<br>8.2<br>214055                                                | NO.                                                                                    | TERVAL<br>ZZLES<br>T RUN<br>NDITION                                      |                                                                              |                                               | 5 15<br>265.0                                                        |
| DEPTH                                                                                            | ROP                                                       | WOB                                                                          | RPM                                                      | MW                                            | "d"c                                                                 | HOURS                                                                         | TURNS                                                                                  | ICOST                                                                    | CCOST                                                                        | PP                                            | FG                                                                   |
| 2637.0<br>2638.0<br>2639.0<br>2640.0                                                             | 4.0<br>6.4                                                | 24.1<br>23.4<br>21.8<br>24.2                                                 | 49<br>47<br>47<br>46                                     | 9.2<br>9.2                                    | 1,59<br>1,55<br>1,38<br>1,54                                         | 0.27<br>0.52<br>0.68<br>0.91                                                  | 792<br>1500<br>1941<br>2602                                                            | 1147<br>1058<br>660<br>1007                                              | 42560<br>21809<br>14759<br>11321                                             | 8.4<br>8.4                                    | 20.1<br>20.1<br>20.1<br>20.1                                         |
| 2641.0<br>2642.0<br>2643.0<br>2644.0<br>2645.0<br>2646.0<br>2647.0<br>2648.0<br>2649.0<br>2650.0 | 6.8<br>4.7<br>12.7<br>3.6<br>3.1<br>3.0<br>2.9            | 26.9<br>29.9<br>30.5<br>38.0<br>35.3<br>33.7<br>33.9<br>42.4<br>44.3<br>46.0 | 57<br>59<br>59<br>62<br>61<br>64<br>54<br>63             | 9.22<br>9.22<br>9.22<br>9.22<br>9.22          | 1.61<br>1.55<br>1.68<br>1.50<br>1.86<br>1.86<br>1.90<br>2.00<br>2.00 | 1.12<br>1.27<br>1.48<br>1.56<br>1.84<br>2.16<br>2.49<br>2.83<br>3.17          | 3309<br>3821<br>4568<br>4875<br>5915<br>7114<br>8380<br>9518<br>10850<br>11862         | 876<br>627<br>894<br>333<br>1187<br>1381<br>1394<br>1421<br>1461<br>1127 | 9232<br>7798<br>6812<br>6002<br>5467<br>5058<br>4725<br>4450<br>4229         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1         |
| 2651.0<br>2652.0<br>2653.0<br>2654.0<br>2655.0<br>2656.0<br>2657.0<br>2658.0<br>2659.0<br>2660.0 | 3,3<br>4.6<br>6.5<br>5.9<br>8.1<br>8.6<br>9.3<br>7.6      | 45.4<br>45.3<br>46.0<br>47.9<br>48.5<br>50.5<br>48.1<br>48.4<br>46.6<br>47.7 | 61<br>64<br>70<br>69<br>71<br>54<br>62<br>62             | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.97<br>2.03<br>1.94<br>1.88<br>1.91<br>1.84<br>1.69<br>1.73<br>1.73 | 3.69<br>4.00<br>4.21<br>4.37<br>4.54<br>4.66<br>4.78<br>4.89<br>5.02<br>5.15  | 12795<br>13907<br>14749<br>15399<br>16098<br>16624<br>17001<br>17416<br>17909<br>18410 | 1089<br>1288<br>922<br>657<br>716<br>523<br>492<br>457<br>558<br>574     | 3805<br>3648<br>3487<br>3330<br>3193<br>3059<br>2937<br>2824<br>2726<br>2636 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.1<br>20.2<br>20.2 |

| DEPTH                                                                                            | ROP WO                                                                                                              | BRPM                                                         | MW "d"c                                                                                                              | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                        | ccost                                                                        | PР                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2661.0<br>2662.0<br>2663.0<br>2664.0<br>2665.0<br>2667.0<br>2667.0<br>2669.0<br>2670.0           | 8.6 48.<br>10.3 46.<br>10.4 48.<br>12.3 46.<br>11.0 47.<br>11.4 46.<br>13.2 47.<br>12.5 48.<br>11.7 48.<br>11.0 48. | 9 72<br>2 66<br>7 68<br>0 68<br>8 69<br>3 67<br>4 67<br>7 73 | 9.2 1.78<br>9.2 1.71<br>9.2 1.69<br>9.2 1.63<br>9.2 1.66<br>9.2 1.66<br>9.2 1.60<br>9.2 1.71                         | 5.27<br>5.37<br>5.46<br>5.54<br>5.63<br>5.88<br>5.88<br>5.95                           | 18892<br>19314<br>19695<br>20026<br>20397<br>20759<br>21064<br>21386<br>21764<br>22165 | 491<br>412<br>406<br>345<br>386<br>371<br>320<br>338<br>364<br>386           | 2550<br>2468<br>2392<br>2319<br>2252<br>2189<br>2129<br>2073<br>2021<br>1973 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2 |
| 2671.0<br>2672.0<br>2673.0<br>2674.0<br>2675.0<br>2676.0<br>2677.0<br>2679.0<br>2679.0           | 8.6 49.<br>9.3 50.<br>15.3 50.<br>5.8 51.<br>3.4 51.<br>5.4 52.<br>14.8 51.<br>14.9 51.                             | 0 61<br>2 65<br>7 69<br>3 72<br>9 71<br>6 69<br>5 61<br>4 63 | 9.2 1.79<br>9.2 1.72<br>9.2 1.57<br>9.2 1.97<br>9.2 2.17<br>9.2 2.17<br>9.2 2.00<br>9.2 1.57<br>9.2 1.58<br>9.2 1.55 | 6.17<br>6.28<br>6.34<br>6.52<br>6.81<br>7.11<br>7.29<br>7.36<br>7.43<br>7.49           | 22650<br>23043<br>23300<br>24023<br>25310<br>26557<br>27328<br>27575<br>27828<br>28059 | 492<br>455<br>278<br>736<br>1265<br>1242<br>789<br>287<br>284<br>253         | 1931<br>1890<br>1846<br>1817<br>1803<br>1789<br>1764<br>1729<br>1696<br>1663 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.2<br>20.2<br>20.2<br>20.2<br>20.2                         |
| 2681.0<br>2682.0<br>2683.0<br>2684.0<br>2685.0<br>2687.0<br>2688.0<br>2689.0<br>2690.0           | 7.0 51.<br>7.3 49.<br>12.2 49.<br>9.2 49.<br>12.5 48.<br>12.7 50.<br>10.2 50.<br>11.1 50.<br>10.5 50.<br>11.4 49.   | 7 66<br>1 68<br>0 71<br>8 71<br>1 69<br>3 68<br>1 69<br>5 70 | 9.2 1.84<br>9.2 1.84<br>9.2 1.66<br>9.2 1.77<br>9.2 1.66<br>9.2 1.66<br>9.2 1.73<br>9.2 1.71<br>9.2 1.74<br>9.2 1.69 | 7.63<br>7.77<br>7.85<br>7.96<br>8.04<br>8.12<br>8.22<br>8.31<br>8.40<br>8.49           | 28585<br>29131<br>29467<br>29933<br>30275<br>30604<br>31004<br>31377<br>31780<br>32143 | 606<br>584<br>348<br>462<br>339<br>335<br>417<br>383<br>404<br>373           | 1639<br>1616<br>1589<br>1566<br>1541<br>1517<br>1495<br>1474<br>1454         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2 |
| 2691.0<br>2692.0<br>2693.0<br>2694.0<br>2695.0<br>2697.0<br>2698.0<br>2699.0<br>2700.0           | 10.3 48.<br>12.0 48.<br>14.5 49.<br>16.3 49.<br>14.0 50.<br>5.0 51.<br>3.5 52.<br>7.3 51.<br>8.3 50.<br>4.3 51.     | 7 67<br>1 69<br>7 67<br>3 68<br>9 69<br>8 67<br>1 69<br>9 65 | 9.2 1.71<br>9.2 1.65<br>9.2 1.60<br>9.2 1.55<br>9.2 1.62<br>9.2 2.02<br>9.2 2.14<br>9.2 1.87<br>9.2 1.80<br>9.2 2.06 | 8.59<br>8.67<br>8.74<br>8.80<br>8.87<br>9.07<br>9.35<br>9.49<br>9.61<br>9.85           | 32534<br>32869<br>33157<br>33403<br>33692<br>34519<br>35651<br>36216<br>36690<br>37641 | 413<br>355<br>293<br>260<br>303<br>843<br>1199<br>580<br>511<br>993          | 1415<br>1396<br>1377<br>1358<br>1340<br>1331<br>1329<br>1317<br>1304<br>1300 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2 |
| 2701.0<br>2702.0<br>2703.0<br>2704.0<br>2705.0<br>2706.0<br>2707.0<br>2708.0<br>2709.0<br>2710.0 | 3.0 52. 3.5 53. 3.7 53. 3.5 54. 3.1 55. 4.0 50. 4.2 52. 3.9 54. 3.1 53.                                             | 3 74<br>4 77<br>4 77<br>4 78<br>6 78<br>6 80<br>5 77         | 9.2 2.24<br>9.2 2.19<br>9.2 2.19<br>9.2 2.23<br>9.2 2.28<br>9.2 2.12<br>9.2 2.15<br>9.2 2.15<br>9.2 2.25<br>9.2 2.25 | 10.18<br>10.47<br>10.74<br>11.02<br>11.34<br>11.59<br>11.83<br>12.09<br>12.41<br>12.74 | 39098<br>40373<br>41615<br>42953<br>44436<br>45596<br>46752<br>47937<br>49383<br>50831 | 1427<br>1215<br>1139<br>1220<br>1351<br>1052<br>1018<br>1089<br>1376<br>1390 | 1301<br>1300<br>1298<br>1297<br>1297<br>1294<br>1290<br>1287<br>1288         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2 |

| DEPTH                                                                                            | ROP                                                   | жож                                                                  | RPM                                                      | MW                                            | "d"c                                                                         | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                     | CCOST                                                                | pр                                            | FG                                                           |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 2711.0<br>2712.0<br>2713.0<br>2714.0<br>2715.0<br>2716.0<br>2717.0<br>2718.0<br>2719.0<br>2720.0 | 10.6<br>18.7<br>7.2<br>3.4<br>3.1<br>2.9<br>3.7       | 50.4<br>50.5<br>50.0<br>50.1<br>49.9<br>50.2                         | 72<br>74<br>71<br>73<br>74<br>72<br>74<br>74<br>74<br>73 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.99<br>1.84<br>1.74<br>1.54<br>1.89<br>2.15<br>2.19<br>2.24<br>2.14         | 12.91<br>13.03<br>13.13<br>13.18<br>13.32<br>13.61<br>13.93<br>14.28<br>14.55          | 51574<br>52101<br>52506<br>52740<br>53353<br>54635<br>56052<br>57593<br>58806<br>59629 | 733<br>502<br>402<br>227<br>586<br>1252<br>1355<br>1469<br>1156<br>796    | 1282<br>1272<br>1261<br>1248<br>1239<br>1239<br>1241<br>1244<br>1242 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2 |
| 2721.0<br>2722.0<br>2723.0<br>2724.0<br>2725.0<br>2726.0<br>2727.0<br>2728.0<br>2729.0<br>2730.0 | 3.7<br>3.4<br>8.0<br>12.5<br>15.8<br>17.1<br>11.8     | 51.3<br>52.1<br>49.9<br>49.7<br>50.2<br>50.6                         | 75<br>78<br>78<br>78<br>78<br>75<br>76<br>73<br>76       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 2.21<br>2.15<br>2.20<br>1.90<br>1.71<br>1.61<br>1.59<br>1.71<br>2.16<br>2.18 | 15.07<br>15.34<br>15.64<br>15.76<br>15.84<br>15.90<br>15.96<br>16.05<br>16.33<br>16.64 | 61131<br>62381<br>63777<br>64365<br>64738<br>65023<br>65292<br>65661<br>66967<br>68355 | 1409<br>1134<br>1263<br>530<br>338<br>269<br>249<br>359<br>1215<br>1290   | 1239<br>1238<br>1238<br>1230<br>1220<br>1210<br>1199<br>1190<br>1191 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2 |
| 2731.0<br>2732.0<br>2733.0<br>2734.0<br>2735.0<br>2736.0<br>2737.0<br>2738.0<br>2739.0<br>2740.0 | 3.4<br>3.0<br>3.1<br>9.0<br>10.4<br>3.1<br>3.6<br>3.2 | 50.1<br>49.7<br>50.3<br>50.4<br>49.2<br>49.5<br>48.9<br>49.8<br>52.3 | 78<br>74<br>75<br>80<br>84<br>72<br>70<br>63<br>65       | 9.22222<br>9.22222<br>9.2222<br>9.22          | 2.27<br>2.17<br>2.20<br>2.20<br>1.83<br>1.79<br>2.17<br>2.11<br>2.15<br>2.06 | 17.01<br>17.31<br>17.63<br>17.96<br>18.07<br>18.16<br>18.49<br>18.76<br>19.08<br>19.30 | 70123<br>71490<br>72954<br>74400<br>74936<br>75420<br>76840<br>77996<br>79175<br>80072 | 1593<br>1233<br>1392<br>1365<br>472<br>408<br>1388<br>1165<br>1318<br>971 | 1195<br>1196<br>1198<br>1200<br>1192<br>1184<br>1186<br>1188<br>1188 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2<br>20.2 |
| 2741.0<br>2742.0<br>2743.0<br>2744.0<br>2745.0<br>2746.0<br>2747.0<br>2748.0<br>2749.0<br>2750.0 | 2.5<br>3.0<br>3.0<br>2.9<br>3.7                       | 52.6                                                                 | 65<br>64<br>64<br>65<br>66<br>72<br>69<br>74<br>80       | 9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22  | 1.83<br>1.82<br>1.86<br>1.87<br>2.28<br>2.25<br>2.25<br>2.25<br>2.26<br>2.19 | 19.43<br>19.56<br>19.69<br>19.83<br>20.22<br>20.56<br>20.89<br>21.23<br>21.50<br>21.64 | 80565<br>81041<br>81564<br>82094<br>83621<br>84953<br>86377<br>87783<br>88992<br>89639 | 538<br>527<br>580<br>584<br>1668<br>1429<br>1395<br>1447<br>1160<br>575   | 1179<br>1173<br>1168<br>1162<br>1167<br>1169<br>1171<br>1174<br>1174 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3 |
| 2751.0<br>2752.0<br>2753.0<br>2754.0<br>2755.0<br>2756.0<br>2757.0<br>2758.0<br>2759.0<br>2760.0 | 9.3<br>10.2<br>9.8<br>8.6                             | 53.0<br>53.2<br>53.4<br>53.8<br>53.8<br>53.2<br>53.1                 | 79<br>80<br>81<br>80<br>80<br>77<br>74<br>79<br>77       | 9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22  | 1.77<br>1.85<br>1.87<br>1.83<br>1.85<br>1.88<br>1.81<br>1.80<br>1.74         | 21.73<br>21.83<br>21.94<br>22.04<br>22.14<br>22.26<br>22.36<br>22.45<br>22.53<br>22.62 | 90857<br>90557<br>91080<br>91546<br>92038<br>92575<br>93030<br>93463<br>93833<br>94238 | 372<br>442<br>458<br>415<br>434<br>491<br>432<br>389<br>342<br>371        | 1161<br>1155<br>1149<br>1143<br>1137<br>1132<br>1120<br>1114<br>1108 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3 |

| DEPTH                                                                                            | ROP                                                      | WOB                                                                  | RPM                                                | MW                                            | "d"c                                                                         | HOURS                                                                                  | TURNS                                                                                            | ICOST                                                                     | CCOST                                                                        | pр                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2761.0<br>2762.0<br>2763.0<br>2764.0<br>2765.0<br>2766.0<br>2767.0<br>2768.0<br>2769.0<br>2770.0 | 14.1<br>3.4<br>3.4<br>2.9<br>2.6<br>3.6<br>3.0<br>5.1    | 52.7<br>52.4<br>54.2<br>53.8<br>53.7<br>53.9<br>53.0<br>53.1         | 83<br>84<br>62<br>62<br>64<br>49<br>48<br>48       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.78<br>1.71<br>2.26<br>2.14<br>2.20<br>2.26<br>2.03<br>2.10<br>1.89         | 22.70<br>22.77<br>23.07<br>23.36<br>23.70<br>24.08<br>24.36<br>24.36<br>24.89<br>24.89 | 94659<br>95011<br>96491<br>97576<br>98839<br>100332<br>101166<br>102137<br>102683<br>102858      | 359<br>300<br>1244<br>1231<br>1448<br>1609<br>1191<br>1434<br>835<br>258  | 1102<br>1095<br>1096<br>1097<br>1100<br>1104<br>1105<br>1107<br>1105<br>1099 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.3                                                         |
| 2771.0<br>2772.0<br>2773.0<br>2774.0<br>2775.0<br>2776.0<br>2777.0<br>2778.0<br>2778.0<br>2780.0 | 7.6<br>11.6<br>3.2<br>3.0<br>3.9<br>3.0<br>2.9<br>3.1    | 51.8<br>52.7<br>53.0<br>54.2<br>53.6<br>54.2<br>53.6<br>53.5<br>52.9 | 487<br>533<br>552<br>558<br>558<br>558             | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.37<br>1.61<br>2.12<br>2.13<br>2.02<br>2.16<br>2.17<br>2.15<br>2.04         | 25.00<br>25.13<br>25.22<br>25.53<br>25.86<br>26.12<br>26.45<br>26.79<br>27.11<br>27.36 | 102999<br>103368<br>103631<br>104624<br>105669<br>106479<br>107601<br>108791<br>109916<br>110763 | 207<br>556<br>365<br>1332<br>1395<br>1096<br>1405<br>1438<br>1364<br>1031 | 1092<br>1088<br>1083<br>1085<br>1087<br>1087<br>1089<br>1092<br>1094<br>1093 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 |                                                              |
| 2781.0<br>2782.0<br>2783.0<br>2784.0<br>2785.0<br>2786.0<br>2787.0<br>2789.0<br>2789.0           | 3.1<br>3.2<br>3.7<br>3.6<br>3.8<br>4.9<br>6.0<br>7.3     | 55.4<br>49.1<br>48.4<br>51.7                                         | 50<br>50<br>59<br>54<br>55<br>55<br>55<br>56<br>66 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 2.17<br>2.12<br>2.16<br>2.03<br>2.00<br>2.01<br>1.93<br>1.93<br>1.88<br>1.75 | 27.72<br>28.04<br>28.36<br>28.63<br>28.90<br>29.17<br>29.37<br>29.54<br>29.67<br>29.77 | 111858<br>112823<br>113909<br>114859<br>115759<br>116564<br>117180<br>117769<br>118298<br>118671 | 1553<br>1365<br>1321<br>1143<br>1185<br>1116<br>866<br>707<br>577<br>401  | 1096<br>1098<br>1100<br>1100<br>1101<br>1101<br>1099<br>1097<br>1093         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3 |
| 2791.0<br>2792.0<br>2793.0<br>2794.0<br>2795.0<br>2796.0<br>2797.0<br>2798.0<br>2799.0<br>2800.0 | 12.5<br>7.6<br>5.5<br>2.9<br>3.6<br>3.2                  | 55.2<br>53.6<br>54.9<br>55.3<br>49.6<br>49.2<br>50.1<br>49.7         | 64<br>66<br>69<br>71<br>67<br>61<br>68<br>71<br>73 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.80<br>1.76<br>1.71<br>1.91<br>2.01<br>2.15<br>2.09<br>2.18<br>2.10         | 29.88<br>29.97<br>30.05<br>30.18<br>30.37<br>30.72<br>30.99<br>31.31<br>31.56<br>31.70 | 119082<br>119465<br>119794<br>120352<br>121077<br>122365<br>123485<br>124823<br>125944<br>126547 | 456<br>411<br>338<br>557<br>769<br>1488<br>1166<br>1336<br>1092<br>596    | 1085<br>1080<br>1076<br>1072<br>1070<br>1073<br>1074<br>1075<br>1075         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3 |
| 2801.0<br>2802.0<br>2803.0<br>2804.0<br>2805.0<br>2806.0<br>2807.0<br>2808.0<br>2809.0           | 4.9<br>6.2<br>10.6<br>6.3<br>18.1<br>7.1<br>13.8<br>10.2 | 51.3<br>51.6<br>51.2<br>51.2<br>50.6<br>48.2<br>49.4<br>48.4<br>47.2 | 72<br>72<br>72<br>67<br>67<br>69<br>67<br>68       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.96<br>2.04<br>1.95<br>1.74<br>1.91<br>1.42<br>1.60<br>1.60                 | 31.87<br>32.08<br>32.24<br>32.33<br>32.49<br>32.55<br>32.69<br>32.76<br>32.86<br>32.95 | 127273<br>128156<br>128861<br>129254<br>129899<br>130078<br>130661<br>130951<br>131365<br>131747 | 710<br>868<br>689<br>402<br>677<br>234<br>600<br>307<br>417               | 1070<br>1069<br>1067<br>1063<br>1060<br>1056<br>1053<br>1049<br>1045         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3 |

| DEPTH                                                                                            | ROP                                                   | MOB                                                                  | RPM                                                      | MW                                                   | "d"c                                                                 | HOURS                                                                                  | TURNS                                                                                            | ICOST                                                                     | ccost                                                                | pр                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2811.0<br>2812.0<br>2813.0<br>2814.0<br>2815.0<br>2816.0<br>2817.0<br>2818.0<br>2819.0           | 2.8<br>2.9<br>2.7<br>3.1<br>4.8<br>2.9<br>3.5         | 48.4<br>48.6<br>50.0<br>49.7                                         | 70<br>71<br>72<br>65<br>73<br>73<br>72                   |                                                      | 1.80<br>2.20<br>2.21<br>2.23<br>2.15<br>1.97<br>2.18<br>2.15<br>2.00 | 33.09<br>33.45<br>33.80<br>34.17<br>34.49<br>34.70<br>35.04<br>35.33<br>35.53          | 132298<br>133849<br>135379<br>136959<br>138296<br>139114<br>140581<br>141843<br>142701<br>143429 | 560<br>1539<br>1488<br>1555<br>1381<br>886<br>1457<br>1222<br>829<br>710  | 1038<br>1041<br>1044<br>1047<br>1049<br>1048<br>1050<br>1051<br>1050 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3 |
| 2821.0<br>2822.0<br>2823.0<br>2824.0<br>2825.0<br>2826.0<br>2827.0<br>2828.0<br>2829.0           | 8.8<br>10.2<br>2.6<br>3.5<br>9.5<br>5.9               | 51.9<br>51.8<br>51.8<br>53.2<br>54.0<br>53.6<br>53.9<br>51.5<br>42.9 | 70<br>62<br>64<br>70<br>65<br>69<br>71<br>67<br>75       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 |                                                                      | 35.81<br>35.92<br>36.02<br>36.26<br>36.65<br>36.93<br>37.04<br>37.21<br>37.33<br>37.46 | 143908<br>144327<br>144710<br>145722<br>147221<br>148401<br>148837<br>149551<br>150022<br>150617 | 482<br>479<br>425<br>1020<br>1626<br>1216<br>448<br>715<br>501<br>560     | 1045<br>1042<br>1038<br>1038<br>1041<br>1042<br>1039<br>1038<br>1035 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.3<br>20.3<br>20.4                                         |
| 2831.0<br>2832.0<br>2833.0<br>2834.0<br>2835.0<br>2836.0<br>2837.0<br>2838.0<br>2839.0<br>2840.0 | 7.0<br>7.3<br>2.9<br>2.1<br>3.3<br>3.5<br>11.5        | 48.5<br>49.0<br>48.8                                                 | 66<br>72<br>73<br>71<br>73<br>76<br>72<br>69             | 9.2<br>9.2<br>9.2<br>9.2<br>9.2                      | 1.73<br>1.80<br>1.80<br>2.10<br>2.19<br>2.15<br>2.14<br>1.70<br>1.69 | 37.59<br>37.73<br>37.87<br>38.21<br>38.69<br>38.99<br>39.28<br>39.37<br>39.46<br>39.59 | 151136<br>151746<br>152347<br>153847<br>155880<br>157230<br>158544<br>158925<br>159304<br>159842 | 556<br>602<br>580<br>1445<br>2032<br>1302<br>1220<br>369<br>372<br>554    | 1030<br>1028<br>1025<br>1028<br>1033<br>1034<br>1035<br>1032<br>1028 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 20.4<br>20.4<br>20.4                                         |
| 2841.0<br>2842.0<br>2843.0<br>2844.0<br>2845.0<br>2846.0<br>2847.0<br>2849.0<br>2850.0           | 8.6<br>6.1<br>2.3<br>2.8<br>5.7<br>9.2<br>11.5<br>8.5 | 47.5<br>49.4<br>47.1<br>45.1<br>45.1<br>45.8<br>44.7                 | 68<br>65<br>67<br>70<br>66<br>61<br>60<br>58             | 9.2<br>9.2<br>9.2<br>9.2<br>9.2                      | 1.72<br>1.77<br>1.87<br>2.22<br>2.16<br>1.87<br>1.67<br>1.69<br>1.69 | 39.69<br>39.81<br>39.97<br>40.41<br>40.76<br>40.94<br>41.05<br>41.14<br>41.25          | 160261<br>160719<br>161387<br>163130<br>164633<br>165328<br>165729<br>166042<br>166454<br>166782 | 436<br>495<br>700<br>1842<br>1513<br>750<br>461<br>368<br>501<br>558      | 1023<br>1021<br>1019<br>1023<br>1025<br>1024<br>1021<br>1018<br>1016 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.4<br>20.4<br>20.4<br>20.4<br>20.4<br>20.4<br>20.4<br>20.4 |
| 2851.0<br>2852.0<br>2853.0<br>2854.0<br>2855.0<br>2856.0<br>2857.0<br>2858.0<br>2859.0           | 6.7<br>2.5<br>3.2<br>3.5<br>3.5<br>5.8<br>3.9         | 40.4<br>41.0<br>46.1<br>46.1<br>47.7<br>47.2<br>45.6<br>46.5         | 66<br>68<br>67<br>66<br>66<br>70<br>68<br>71<br>70<br>66 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2               | 2.12                                                                 | 41.49<br>41.64<br>42.04<br>42.35<br>42.66<br>42.94<br>43.25<br>43.42<br>43.68<br>44.11 | 167208<br>167813<br>169400<br>170630<br>171860<br>173037<br>174314<br>175049<br>176116<br>177819 | 458<br>631<br>1681<br>1309<br>1314<br>1197<br>1323<br>734<br>1077<br>1825 | 1011<br>1009<br>1012<br>1014<br>1015<br>1016<br>1017<br>1016<br>1016 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.4<br>20.4<br>20.4<br>20.4<br>20.4<br>20.4<br>20.4<br>20.4 |

| DEPTH   | ROP  | MOB  | RPM | MW     | "d"c | HOURS | TURNS  | ICOST  | CCOST  | PР  | FG   |
|---------|------|------|-----|--------|------|-------|--------|--------|--------|-----|------|
| mm/ + 0 | 7 0  | 44.9 | 74  | 0 2    | 2.05 | 44.37 | 178992 | 1113   | 1020   | 8.4 | 20.4 |
| 2861.0  |      | 44,4 | 71  | 9.2    | 2.02 | 44.63 | 180103 | 1104   | 1021   |     | 20.4 |
| 2862.0  |      |      |     | 9.2    | 1.84 | 44.80 | 180784 | 712    | 1019   |     | 20.4 |
| 2863.0  |      | 43.8 | 68  | 9.2    | 1.68 | 44.90 | 181202 | 426    | 1017   |     | 20.4 |
| 2864.0  |      | 44.1 | 69  | 9.2    |      | 45.06 | 181890 | 683    | 1015   |     | 20.4 |
| 2865.0  |      | 44.6 | 71  |        | 1.86 | 45,33 | 183091 | 1159   | 1016   |     | 20.4 |
| 2866.0  |      | 44.4 | 73  |        | 2.05 | 45.53 | 183965 | 833    | 1015   |     | 20.4 |
| 2867.0  | 5.1  |      | 74  | 9.2    | 1.94 | 45.94 | 185697 | 1723   | 1018   |     | 20.4 |
| 2868.0  |      | 45.1 | 71  |        | 2.18 |       | 187201 | 1497   | 1020   |     | 20.4 |
| 2869.0  |      | 44.6 | 71  |        | 2.13 | 46,68 | 188781 | 1653   | 1023   |     | 20.4 |
| 2870.0  | 21.6 | 47.0 | 68  | 7 . 4. | 2.18 | 40,00 | 100001 |        |        |     |      |
| 2871.0  | 3.7  | 45.0 | 71  | 9.2    | 2.04 | 46.95 | 189924 | 1143   | 1023   |     | 20.4 |
| 2872.0  |      | 44.3 | 70  | 9.2    | 2.06 | 47.24 | 191161 | 1248   | 1024   |     | 20.4 |
| 2873.0  | 2.2  | 46.1 | 63  | 9.2    | 2.19 | 47.69 | 192854 | 1903   | 1028   |     | 20.4 |
| 2874.0  | 15.4 | 37.6 | 75  | 9.2    | 1.48 | 47.76 | 193145 | 276    | 1025   |     | 20.4 |
| 2875.0  | 12.3 | 43,2 | 75  | 9.2    | 1.62 | 47.84 | 193514 | 345    | 1022   |     | 20.4 |
| 2876.0  | 9.2  | 35.7 | 82  | 9.2    | 1.65 | 47,95 | 194048 | 463    | 1020   |     | 20.4 |
| 2877.0  | 6.0  | 35.1 | 83  | 9.2    | 1.78 | 48.11 | 194875 | 708    | 1019   |     | 20.4 |
| 2878.0  | 2.8  | 38.4 | 75  | 9.2    | 2.05 | 48.47 | 196450 | 1491   | 1020   |     | 20.4 |
| 2879.0  | 2.3  | 41.2 | 74  | 9.2    | 2.16 | 48.90 | 198375 | 1851   | 1024   |     | 20.4 |
| 5880.0  | 3.2  | 44.6 | 73  | 9.2    | 2.09 | 49.21 | 199742 | 1317   | 1025   | 8.4 | 20.4 |
| 2881.0  | 5.3  | 43.6 | 72  |        | 1.90 | 49.40 | 200558 | 796    | 1024   |     | 20.4 |
| 2882.0  | 6.8  | 44.7 | 59  | 9.2    | 1.76 | 49.55 | 201081 | 622    | 1023   |     | 20.4 |
| 2883.0  | 6.4  | 44,4 | 69  | 9.2    | 1.83 | 49.70 | 201721 | 660    | 1021   |     | 20.4 |
| 2884.0  | 3.5  | 42.2 | 78  |        | 2.05 | 49.99 | 203070 | 1218   | 1022   | 8.4 |      |
| 2885.0  | 3.7  | 38.0 | 78  | 9.2    | 1,97 | 50.26 | 204334 | 1151   | 1022   |     | 20.4 |
| 2886.0  | 9.1  | 38.5 | 75  | 9.2    | 1.67 | 50.37 | 204831 | 468    | 1020   |     | 20.4 |
| 2887.0  | 13.2 |      | 73  | 9.2    | 1.52 | 50.45 | 205166 | 322    | 1017   |     | 20.4 |
| 2888.0  | 6.9  | 36.8 | 76  | 9,2    | 1.74 | 50.59 | 205825 | 611    | 1016   |     | 20.4 |
| 2889.0  | 5.1  | 37.2 | 77  | 9.2    |      | 50.79 | 206727 | 827    | 1015   |     | 20.4 |
| 2870.0  | 7.8  | 38.2 | 72  | 9.2    | 1.70 | 50.92 | 207285 | 547    | 1013   | 8.4 | 20.4 |
| 2891.0  | 9.4  |      | 67  | 9.2    | 1.60 | 51,02 | 207715 | 452    | 1011   |     | 20.4 |
| 2892.0  | 7.2  | 38.0 | 65  | 9.2    | 1.69 | 51.16 | 208259 | 588    | 1009   |     | 20.4 |
| 2893.0  | 6.4  | 38.9 | 7.0 | 9.2    | 1.76 | 51.32 | 208911 | 659    | 1008   |     | 20.4 |
| 2894.0  |      | 38.9 | 73  | 9.2    | 1.75 | 51.46 | 209551 | 616    | 1006   |     | 20.4 |
| 2895.0  | 10.2 | 38.7 | 7.0 | 9.2    | 1.60 | 51.56 | 209961 | 416    | 1004   |     | 20,4 |
| 2896.0  | 12.9 | 39.0 | 77  | 9.2    | 1.56 | 51.64 | 210316 | 329    | 1002   |     | 20.4 |
| 2897.0  |      | 38.9 | 79  | 9.2    | 1.58 | 51.72 | 210695 |        |        |     | 20.4 |
| 2898.0  | 10.3 | 40.6 | 77  | 9.2    | 1.66 | 51.81 |        | 411.14 |        |     | 20.4 |
| 2899.0  | 11.7 | 39.7 | 78  | 9.2    | 1.61 | 51.90 |        | 364.02 |        |     | 20.4 |
| 2900.0  | 6.6  | 40.7 | 79  | 9.2    | 1.82 | 52.05 | 212269 | 646.75 | 993.05 | 8.4 | 20.4 |
| 2901.0  | 2.6  | 40.6 | 78  | 9.2    | 2.12 | 52.43 | 214055 | 1609   | 995    | 8.4 | 20.4 |

| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOUR                                            | 663                                                    | 9<br>87,00<br>22,14                                                          | S                                            | ADC C<br>IZE<br>RIP T<br>OTAL                 | TME                                                                          | 537<br>12,250<br>8,4<br>92542                                                | NOZ<br>BIT                                                                             | ERVAL<br>ZLES<br>RUN<br>DITION                                        |                                                                                | 0- 3021.0<br>15 15 15<br>120.0<br>B2 G0.000                                                                          |
|----------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| DEPTH                                                                                  | ROP                                                    | MOB                                                                          | RPM                                          | ми                                            | "d"c                                                                         | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                 | CCOST                                                                          | PP FG                                                                                                                |
| 2902.0<br>2903.0<br>2904.0                                                             | 2.1                                                    | 25.7<br>33.0<br>40.2                                                         | 57<br>57<br>56                               | 9.2                                           | 1.79<br>1.97<br>2.05                                                         |                                                                              | 1434<br>3071<br>4546                                                                   | 1767<br>2026<br>1850                                                  | 44028<br>23027<br>15968                                                        | 8.4 20.4<br>8.4 20.4<br>8.4 20.4                                                                                     |
| 2905.0<br>2906.0<br>2907.0<br>2908.0<br>2909.0<br>2910.0<br>2911.0<br>2912.0<br>2913.0 | 3.8<br>4.2<br>5.2<br>5.2<br>2.7<br>3.1<br>3.2          | 44.1<br>49.3<br>47.5<br>47.6<br>47.1<br>48.8<br>44.0<br>41.0<br>45.8<br>38.4 | 60<br>79<br>62<br>62<br>65<br>65<br>77<br>73 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.96<br>2.13<br>2.02<br>1.91<br>1.91<br>2.16<br>2.05<br>2.04<br>2.12<br>1.99 | 1.60<br>1.86<br>2.10<br>2.29<br>2.49<br>2.86<br>3.18<br>3.49<br>3.84         | 5503<br>6742<br>7719<br>8434<br>9159<br>10551<br>11798<br>13161<br>14552<br>15865      | 1136<br>1113<br>1020<br>814<br>821<br>1600<br>1354<br>1309<br>1471    | 12260<br>10031<br>8529<br>7427<br>6601<br>6045<br>5576<br>5188<br>4879<br>4601 | 8.4 20.4<br>8.4 20.4<br>8.4 20.4<br>8.4 20.4<br>8.4 20.4<br>8.4 20.4<br>8.4 20.4<br>8.4 20.4<br>8.4 20.5<br>8.4 20.5 |
| 2915.0<br>2916.0                                                                       | 15.8<br>15.3<br>5.6<br>4.0<br>3.8<br>4.3<br>4.0        | 37.2<br>36.8<br>39.1<br>39.7<br>40.4<br>43.3<br>37.7<br>36.3                 | 75<br>75<br>75<br>88<br>76<br>61<br>67<br>67 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.47<br>1.48<br>1.83<br>1.98<br>1.95<br>1.95<br>1.85<br>1.85<br>1.59         | 4.20<br>4.27<br>4.45<br>4.70<br>4.96<br>5.19<br>5.44<br>5.53                 | 16150<br>16448<br>17255<br>18459<br>19544<br>20576<br>21465<br>21782<br>22121<br>22566 | 269<br>277<br>760<br>1065<br>1119<br>987<br>1054<br>356<br>358<br>468 | 4291<br>4024<br>3820<br>3658<br>3516<br>3383<br>3267<br>3129<br>3003<br>2893   | 8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5             |
| 2925.0<br>2926.0<br>2927.0<br>2928.0<br>2929.0<br>2930.0<br>2931.0<br>2933.0<br>2933.0 | 8.8<br>9.0<br>8.8<br>9.9<br>8.8<br>9.3<br>9.8          | 34.3<br>35.4<br>34.5<br>34.6<br>34.5<br>35.5<br>35.5<br>35.8<br>36.1         | 67<br>67<br>67<br>63<br>64<br>63             | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.56<br>1.68<br>1.58<br>1.59<br>1.55<br>1.57<br>1.57<br>1.58<br>1.58         | 5.83<br>5.94<br>6.05<br>6.16<br>6.27<br>6.38<br>6.49<br>6.59<br>6.70         | 22991<br>23454<br>23902<br>24360<br>24768<br>25197<br>25610<br>25996<br>26427<br>26790 | 443<br>482<br>470<br>482<br>430<br>479<br>457<br>432<br>479<br>401    | 2791<br>2698<br>2613<br>2534<br>2458<br>2390<br>2326<br>2265<br>2209<br>2154   | 8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5             |
| 2935.0<br>2936.0<br>2937.0<br>2938.0<br>2939.0<br>2940.0<br>2941.0<br>2943.0<br>2944.0 | 8.3<br>6.6<br>5.1<br>4.5<br>3.9<br>5.1<br>12.5<br>10.0 | 35.9<br>36.4<br>36.2<br>36.7<br>40.0<br>40.0<br>40.2<br>40.2                 | 71<br>69<br>68<br>68<br>74<br>70             | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.63<br>1.65<br>1.72<br>1.81<br>1.89<br>1.93<br>1.84<br>1.57<br>1.63         | 6.91<br>7.03<br>7.19<br>7.38<br>7.60<br>7.86<br>8.06<br>8.14<br>8.24<br>8.30 | 27283<br>27800<br>28454<br>29280<br>30201<br>31244<br>32045<br>32397<br>32817<br>33110 | 502<br>509<br>647<br>825<br>944<br>1090<br>834<br>338<br>424<br>251   | 2106<br>2060<br>2021<br>1988<br>1961<br>1939<br>1911<br>1873<br>1838<br>1801   | 8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5<br>8.4 20.5 |

| DEPTH                                                                                            | ROP                                                    | MOB                                                                          | RPM                                          | MW                                            | "d "c                                                                | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                  | CCOST                                                                        | PP                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2945.0<br>2944.0<br>2947.0<br>2948.0<br>2949.0<br>2950.0<br>2951.0<br>2953.0<br>2954.0           | 16.9<br>16.1<br>3.6<br>3.7<br>4.3<br>3.9<br>5.4        | 40.5<br>40.2<br>39.1<br>41.6<br>39.8<br>40.1<br>41.3<br>41.0<br>39.2<br>40.2 | 84<br>84<br>84<br>72<br>75<br>77<br>77       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 |                                                                      | 8.35<br>8.41<br>8.47<br>8.75<br>9.02<br>9.26<br>9.52<br>9.70<br>9.77                   | 33389<br>33686<br>33998<br>35268<br>36451<br>37500<br>38657<br>39479<br>39764<br>40539 | 236<br>251<br>264<br>1175<br>1157<br>998<br>1098<br>792<br>270<br>713  | 1766<br>1732<br>1700<br>1689<br>1678<br>1664<br>1653<br>1636<br>1609<br>1592 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.5                                                         |
| 2955.0<br>2956.0<br>2957.0<br>2958.0<br>2959.0<br>2960.0<br>2961.0<br>2963.0<br>2964.0           | 8.7<br>12.8<br>10.3<br>5.7<br>4.5<br>4.5               | 41.5<br>40.8<br>40.6<br>39.3<br>44.1<br>44.6<br>46.5<br>46.4<br>46.7         | 775<br>772<br>667<br>776<br>776<br>775       | 9.2<br>9.2<br>9.2                             |                                                                      | 10.05<br>10.17<br>10.25<br>10.35<br>10.52<br>10.80<br>11.02<br>11.34<br>11.56          | 41084<br>41607<br>41953<br>42373<br>43099<br>44185<br>45073<br>46491<br>47507<br>48647 | 501<br>490<br>332<br>412<br>749<br>1159<br>933<br>1357<br>946<br>1073  | 1572<br>1553<br>1531<br>1511<br>1498<br>1492<br>1483<br>1481<br>1472<br>1466 | 8,4<br>8,4<br>8,4<br>8,4<br>8,4<br>8,4 | 20.5<br>20.5                                                 |
| 2965.0<br>2966.0<br>2967.0<br>2968.0<br>2969.0<br>2970.0<br>2971.0<br>2972.0<br>2973.0<br>2974.0 | 3.9<br>5.2<br>6.7<br>3.9<br>3.6<br>7.0                 | 46.8<br>47.1                                                                 | 71<br>77<br>77<br>77<br>77<br>77<br>77<br>75 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 2.00<br>2.04<br>1.95<br>1.85<br>2.04<br>2.08<br>1.85<br>1.85         | 12.04<br>12.30<br>12.49<br>12.64<br>12.89<br>13.17<br>13.31<br>13.45<br>13.51          | 49618<br>50748<br>51610<br>52263<br>53353<br>54585<br>55215<br>55843<br>56089<br>56642 | 962<br>1096<br>808<br>633<br>1083<br>1171<br>609<br>593<br>245<br>521  | 1458<br>1452<br>1443<br>1431<br>1426<br>1422<br>1410<br>1399<br>1383<br>1371 | 8.4<br>8.4<br>8.4<br>8.4               | 20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5         |
| 2975.0<br>2976.0<br>2977.0<br>2978.0<br>2979.0<br>2980.0<br>2981.0<br>2983.0<br>2983.0           | 6.9<br>4.5<br>5.9<br>6.6<br>5.1<br>8.9<br>17.2         | 47.6<br>47.7<br>47.5<br>48.2<br>48.3<br>48.0<br>47.7<br>42.9<br>44.0<br>43.4 | 70                                           | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.85<br>1.86<br>2.02<br>1.92<br>1.87<br>1.76<br>1.76<br>1.48<br>1.52 | 13.77<br>13.91<br>14.14<br>14.31<br>14.46<br>14.65<br>14.77<br>14.82<br>14.89          | 57250<br>57879<br>58860<br>59574<br>60205<br>61024<br>61485<br>61735<br>61999<br>62244 | 569<br>616<br>952<br>721<br>639<br>834<br>477<br>246<br>264<br>251     | 1360<br>1350<br>1345<br>1337<br>1328<br>1322<br>1311<br>1298<br>1285<br>1273 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5 |
| 2985.0<br>2986.0<br>2987.0<br>2988.0<br>2989.0<br>2990.0<br>2991.0<br>2992.0<br>2993.0<br>2994.0 | 18.2<br>14.0<br>3.5<br>4.4<br>2.9<br>3.2<br>2.5<br>7.6 | 43.3<br>43.3<br>41.2<br>42.3<br>42.9<br>44.4<br>44.3<br>41.8                 | 66<br>64<br>65<br>63<br>71<br>73<br>74<br>73 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.52<br>1.98<br>1.90<br>2.10<br>2.09                                 | 15.00<br>15.06<br>15.13<br>15.41<br>15.64<br>15.99<br>16.30<br>16.69<br>16.82<br>16.98 | 62484<br>62703<br>62978<br>64099<br>64962<br>66453<br>67811<br>69550<br>70125<br>70770 | 243<br>233<br>304<br>1213<br>967<br>1481<br>1308<br>1663<br>558<br>640 | 1261<br>1248<br>1237<br>1237<br>1234<br>1237<br>1238<br>1242<br>1235<br>1229 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 |                                                              |

| DEPTH  | ROP  | MOB  | RPM | MW  | "d "c | HOURS | TURNS | ICOST | CCOST | pр  | FG   |
|--------|------|------|-----|-----|-------|-------|-------|-------|-------|-----|------|
| 2995.0 | 16.4 | 41.1 | 70  | 9.2 | 1.47  | 17.04 | 71025 | 259   | 1218  |     | 20.5 |
| 2996.0 |      | 42.4 | 65  | 9.2 | 1.53  | 17.11 | 71311 | 310   | 1209  | 8.4 | 20.5 |
| 2997.0 |      | 42.8 | 70  | 9.2 | 1.90  | 17.31 | 72158 | 858   | 1205  | 8.4 | 20.5 |
| 2998.0 |      | 42.2 | 71  | 9.2 | 1.55  | 17.38 | 72468 | 310   | 1196  | 8.4 | 20.5 |
| 2999.0 |      | 43.4 | 71  | 9.2 | 1.81  | 17.53 | 73099 | 630   | 1190  | 8.4 | 20.5 |
| 3000.0 |      | 46.4 | 72  | 9.2 | 2.18  | 17.91 | 74707 | 1579  | 1194  | 8.4 | 20.6 |
| 3001.0 | 3.9  |      | 68  | 9.2 | 2.06  | 18.16 | 75754 | 1094  | 1193  | 8.4 | 20.6 |
| 3002.0 | 11.7 | 44.0 | 72  | 9.2 | 1.63  | 18.25 | 76123 | 363   | 1185  | 8.4 | 20.6 |
| 3003.0 | 19.0 | 44.8 | 74  | 9.2 | 1.48  | 18.30 | 76357 | 223   | 1175  |     | 20.6 |
| 3004.0 | 21.1 | 43.9 | 72  | 9.2 | 1.43  | 18.35 | 76562 | 201   | 1166  | 8.4 | 20.6 |
| 3005.0 | 20.7 | 44.0 | 73  | 9.2 | 1.44  | 18.40 | 76772 | 205   | 1157  | 8.4 | 20.6 |
| 3006.0 | 21.1 |      | 73  | 9,2 | 1.44  | 18.44 | 76981 | 201   | 1147  |     | 20.6 |
| 3007.0 | 5.5  | 39.8 | 58  | 9.2 | 1,76  | 18.63 | 77612 | 772   | 1144  |     | 20.6 |
| 3008.0 | 2.8  | 45.1 | 70  | 9.2 | 2.14  | 18.99 | 79134 | 1533  | 1148  |     | 20.6 |
| 3009.0 | 3.8  | 48.5 | 72  |     | 2.09  | 19.25 | 80269 | 1118  | 1147  |     | 20.6 |
| 3010.0 | 5.0  | 47.5 | 71  |     | 1.97  | 19.45 | 81124 | 851   | 1145  |     | 20.6 |
| 3011.0 | 5.1  | 47.2 | 70  | 9.2 | 1.95  | 19.65 | 81948 | 832   | 1142  |     | 20.6 |
| 3012.0 | 3.8  |      | 72  | 9.2 | 2.07  | 19.91 | 83087 | 1122  | 1142  | 8.4 |      |
| 3013.0 | 3.1  |      | 72  |     | 2.14  | 20.23 | 84468 | 1358  | 1143  |     | 20.6 |
| 3014.0 | 3.0  | 47.5 | 71  | 9.2 | 2.15  | 20.56 | 85882 | 1400  | 1146  | 8.4 | 20.6 |
| 3015.0 | 3.4  | 48.2 | 71  | 9.2 | 2.11  | 20.86 | 87130 | 1251  | 1147  |     | 20.6 |
| 3016.0 | 2.5  | 49.0 | 70  | 9.2 | 2.24  | 21.26 | 88820 | 1701  | 1151  | 8.4 |      |
| 3017.0 | 3.1  | 48.1 | 69  |     | 2.14  | 21.58 | 90148 | 1351  | 1153  | 8.4 |      |
| 3018.0 | 4.8  |      | 74  | 9.2 | 2.03  | 21.79 | 91076 | 892   | 1151  |     | 20.6 |
| 3019.0 | 7.1  | 49.1 | 68  | 9.2 | 1.85  | 21.93 | 91652 | 600   | 1146  |     | 20.6 |
| 3020.0 | 11.0 | 49.7 | 68  | 9.2 | 1.70  | 22.02 | 92020 | 385   | 1140  |     | 20.6 |
| 3021.0 | 8.5  | 49.8 | 74  | 9.2 | 1.82  | 22.14 | 92542 | 498   | 1135  | 8.4 | 20.6 |

## (d). COMPUTER DATA LISTING : LIST B

| INTERVAL   | 10m averages.                                                                                                                                                              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH      | Well depth, in metres.                                                                                                                                                     |
| ROP        | Rate of penetration, in metres per hour.                                                                                                                                   |
| BIT RUN    | Depth interval drilled by the bit, in metres.                                                                                                                              |
| HOURS      | Cumulative bit hours. The number of hours that the bit has actually been 'on bottom', recorded in decimal hours.                                                           |
| TURNS      | Cumulative bit turns. The number of turns made by the bit, while actually 'on bottom'.                                                                                     |
| TOTAL COST | Cumulative bit cost, in A dollars.                                                                                                                                         |
| icost      | . Incremental cost per metre, calculated from the drilling time, in A dollars.                                                                                             |
| ccost      | . Cumulative cost per metre, calculated from the drilling time, in A dollars.                                                                                              |
| IC         | ICOST minus CCOST, expressed as a positive<br>or negative sign. When the bit becomes worn,<br>(and therefore uneconomic), this should change<br>from negative to positive. |

| BIT NUMBER<br>HTC OSC3AJ&2<br>COST              | 6"H0           | ሰበ           | TRTP  | TTMF                    | 111<br>26.000<br>2.4           | RIT            | ERVAL<br>ZLES<br>RUN |                |                                    | 18<br>5.0  |
|-------------------------------------------------|----------------|--------------|-------|-------------------------|--------------------------------|----------------|----------------------|----------------|------------------------------------|------------|
| TOTAL HOURS                                     | 3.             | 28           | TOTAL | . TURNS                 | 13555                          | i 00%          | OITEG                | N T            | 2 B5 G0.                           | 0 0 0      |
|                                                 |                |              |       |                         |                                |                |                      |                |                                    |            |
| DEPTH                                           | ROP            | BIT RU       | N I   | 40URS                   | TURNS                          | TOTAL C        | COST                 | ICOST          | ccost                              | I-C        |
| 80.0                                            | 16.1           | 6.           | 0     | 0.37                    | 618                            | 11759          |                      | 263            | 1960                               | ****       |
|                                                 | 28.5           | 16.          |       |                         | 1706                           | 13249          |                      | 149.02         | 828.09                             | •••        |
| 100.0                                           | 28.6           | 26.          | 0     | 1.07                    | 2987                           | 14732          | 2.62                 | 148.32         | 566.64                             | ••••       |
| 110.0                                           | 56.4           | 36,          | n     | 1.25                    | 3747                           | 15484          | 1.73                 | 75.21          | 430.13                             |            |
|                                                 | 38.6           | 46.          |       | 1.51                    | 5033                           | 16582          |                      | 109.79         | 360.49                             | ****       |
|                                                 | 16.5           | 56.          |       | 2.11                    | 8030                           | 19147          | 7,94                 | 256.53         | 341.93                             |            |
|                                                 | 80.4           | 66.          |       | 2.24                    | 8639                           | 19675          |                      | 52.78          | 298.12                             | ••••       |
| 150.0                                           | 48.0           | 76.          |       | 2.45                    | 9627                           | 20559          |                      | 88.35          | 270.52                             | ***        |
| 160.0                                           | 77.4           | 86.          |       | 2.58                    | 10162                          | 21106          |                      | 54.77          | 245.43                             | •••        |
|                                                 | 62.4           | 96.          |       | 2.74                    | 10936                          | 21786          |                      | 67.97          | 226.94                             |            |
| 180.0                                           | 78.8           | 106.         |       | 2.86                    | 11542                          | 22325          |                      | 53.84<br>67.86 | 210.61<br>198.31                   | ****       |
|                                                 | 62.5           | 116.         |       | 3.02                    | 12325<br>12940                 |                | 8.58                 | 57.23          | 187.11                             |            |
| 200.0                                           | 74.1           | 126.         | U     | 3.16                    | 12740                          | 6.007          | 3.07                 | W 1 L. W       | 7 (3 / 1 7 7                       |            |
| 209.0                                           | 72.2           | 135.         | 0     | 3.28                    | 13555                          | 24104          | 4.19                 | 58.70          | 178.55                             | ****       |
| BIT NUMBER<br>HTC OSC3AJ<br>COST<br>TOTAL HOURS | 4442           | . 00         | TRIP  | CODE<br>TIME<br>L TURNS | 111<br>17,500<br>3,7<br>106641 | BI             | ZZLES<br>F RUN       | ٠              | 9.0- 80<br>20 20<br>59<br>2 B2 G0. | 20<br>27.0 |
| DEPTH                                           | ROP            | BIT RU       | ו או  | HOURS                   | TURNS                          | TOTAL (        | COST                 | ICOST          | CCOST                              | I-C        |
| 210.0                                           | 94.7           | 1.           | 0     | 0.01                    | 53                             | 20178          | 3.47                 |                | 20178                              | ****       |
|                                                 | 94.6           | 11.          | 0     | 0.06                    | 302                            | 20390          |                      | 22             | 1854                               | ****       |
|                                                 | 8.18           | 21.          |       | 0.12                    | 568                            |                | 7.70                 |                | 982.37                             |            |
| 240.0                                           | 53.7           | 31.          |       | 0.30                    | 1490                           | 21419          |                      | 78,93          | 69 <b>0.94</b><br>53 <b>5.8</b> 3  |            |
| 250.0                                           | 77.1           | 41.          |       | 0.43                    | 2325                           | 21969<br>22260 |                      | 55.02<br>29.14 | 436,48                             | ••••       |
|                                                 | 145.6          | 51.<br>61.   |       | 0.50<br>0.61            | 2943<br>3938                   | 22729          |                      | 46.89          | 372.61                             | ****       |
| 270.0<br>280.0                                  | 90.5           | 71.          |       | 0.68                    | 4503                           | 2300           |                      | 27.79          | 324.05                             |            |
|                                                 | 37.9           | 81.          |       | 0.75                    | 5112                           | 2331           |                      | 30.75          | 287.84                             | ****       |
|                                                 |                |              |       |                         |                                |                |                      |                |                                    |            |
|                                                 | 153.8          | 91.          |       | 0.82                    | 5658                           | 2359           |                      | 27.57          | 259.23                             | ****       |
|                                                 | 171.4          | 101.         |       | 0.87                    | 6148                           | 2383           |                      | 24.74          | 236.02                             | ****       |
|                                                 | 148.1          | 111.         |       | 0.94                    | 6715<br>7328                   | 2412/<br>2443: |                      | 28.63<br>30.91 | 217.33                             |            |
|                                                 | 137.2<br>125.2 | 121.<br>131. |       | 1.01<br>1.09            | 7928<br>7998                   | 2477           |                      | 33.87          | 189.10                             | ****       |
| 350.0                                           | 45.9           | 141.         |       | 1.31                    | 9828                           | 2569           |                      | 92.36          | 182.24                             | ****       |
| 360.0                                           | 45.8           | 151.         |       | 1.53                    | 11661                          | 2662           |                      | 92.54          | 176.30                             |            |
| 370.0                                           | 69.9           | 161.         |       | 1.67                    | 12862                          | 2722           |                      | 60.67          | 169.11                             | ••••       |
| 380.0                                           | 81.8           | 171.         |       | 1.79                    | 13889                          | 2774           |                      | 51.83          | 162.26                             |            |
| 390.0                                           | 74.5           | 181.         | 0     | 1.93                    | 15016                          | 2831           | 4.81                 | 56.90          | 156.44                             | ****       |
|                                                 |                |              |       |                         |                                |                |                      |                |                                    |            |

| DEPTH         | ROP        | BIT RUN  | HOURS | TURNS       | TOTAL COST                                                                                                             | ICOST          | CCOST      | I-C         |
|---------------|------------|----------|-------|-------------|------------------------------------------------------------------------------------------------------------------------|----------------|------------|-------------|
| 400 0         | 7.ET 4     | 191.0    | 2.08  | 16307       | 28966.44                                                                                                               | 65.16          | 151.66     |             |
| 400.0         | 65.1       |          |       |             |                                                                                                                        |                |            |             |
| 410.0         | 28.9       | 201.0    | 2.43  | 19216       | 30435,28                                                                                                               | 146,88         | 151,42     |             |
| 420.0         | 60.9       | 211.0    | 2,59  | 20595       | 31131.51                                                                                                               | 69.62          | 147.54     | ••••        |
| 430.0         | 86.5       | 221.0    | 2.71  | 21566       | 31621.58                                                                                                               | 49.01          | 143.08     | ****        |
| 440.0         | 81.1       | 231.0    | 2.83  | 22602       | 32144.64                                                                                                               | 52.31          | 139.15     | ****        |
| 450.0         | 61.5       | 241.0    | 2,99  | 23968       | 32834.39                                                                                                               | 68.98          | 136,24     |             |
| 460.0         | 52.4       | 251.0    | 3.19  | 25571       | 33643.71                                                                                                               | 80.93          | 134.04     | ****        |
| 470.0         | 67.3       | 261.0    | 3.33  | 26819       | 34273.97                                                                                                               | 63.03          | 131.32     | ••••        |
| 480.0         | 59.1       | 271.0    | 3.50  | 28240       | 34991.41                                                                                                               | 71.74          | 129,12     |             |
| 490.0         | 58.2       | 281.0    | 3,68  | 29684       | 35720.63                                                                                                               | 72.92          | 127.12     |             |
|               |            |          |       |             |                                                                                                                        |                |            |             |
| 500.0         | 39.8       | 291.0    | 3.93  | 31797       | 36787,36                                                                                                               | 106.67         | 126,42     | ••••        |
| 510.0         | 61.6       | 301.0    | 4.09  | 33160       | 37475,34                                                                                                               | 68.80          | 124.50     | ****        |
| 520.0         | 55.1       | 311.0    | 4,27  | 34684       | 38244.61                                                                                                               | 76,93          | 122,97     | ****        |
| 530.0         | 47.7       | 321.0    | 4,48  | 36445       | 39134.04                                                                                                               | 88.94          | 121.91     | ****        |
| 540.0         | 69.4       | 331.0    | 4,62  | 37656       | 39745,45                                                                                                               | 61.14          | 120.08     |             |
| 550.0         | 81.4       | 341.0    | 4.75  | 38688       | 40266.58                                                                                                               | 52.11          | 118.08     | ••••        |
|               |            |          | 4,95  | 40403       | 41132.10                                                                                                               | 86.55          | 117.19     | ••••        |
| 560.0         | 49.0       | 351.0    |       | 42750       | 42317,23                                                                                                               | 118.51         | 117.22     | -+-         |
| 570.0         | 35.8       | 361.0    | 5.23  |             |                                                                                                                        |                |            | .∳.         |
| 580.0         | 35.5       | 371.0    | 5.51  | 45116       | 43511.77                                                                                                               | 119.45         | 117.28     |             |
| 590.0         | 54.3       | 381.0    | 5.70  | 46664       | 44293.33                                                                                                               | 78.16          | 116.26     | ****        |
| 600.0         | 40.0       | 391.0    | 5.95  | 48762       | 45352.40                                                                                                               | 105.91         | 115.99     |             |
| 610.0         | 36.2       | 401.0    | 6.22  | 51083       | 46524.57                                                                                                               | 117.22         | 116.02     | .4.         |
| 620.0         | 36.8       | 411.0    | 6.49  | 53365       | 47676.70                                                                                                               | 115.21         | 116.00     |             |
| 630.0         | 44.7       | 421.0    | 6.72  | 55244       | 48625.04                                                                                                               | 94.83          | 115.50     | •           |
|               |            |          |       |             | 49431.92                                                                                                               | 80.69          | 114,69     |             |
| 640.0         | 52.6       | 431.0    | 6.91  | 56842       |                                                                                                                        |                |            |             |
| 650.0         | 34.7       | 441.0    | 7.20  | 59263       | 50654.35                                                                                                               | 122.24         | 114.86     | +           |
| 660.0         | 33.6       | 451.0    | 7.49  | 61760       | 51914.87                                                                                                               | 126.05         | 115.11     | .\$-        |
| 670.0         | 25.2       | 461.0    | 7.89  | 65099       | 53600.67                                                                                                               | 168.58         | 116.27     | .4.         |
| 680. <b>0</b> | 24.0       | 471.0    | 8.31  | 68601       | 55368.93                                                                                                               | 176.83         | 117,56     | -\$-        |
| 690.0         | 28.4       | 481.0    | 8.66  | 71562       | 56863.88                                                                                                               | 149.50         | 118.22     | .∳∙         |
| 700.0         | 31.0       | 491.0    | 8.98  | 74276       | 58233.96                                                                                                               | 137.01         | 118.60     | .4.         |
| 710.0         | 31.1       | 501.0    | 9.31  | 76980       | 59599.33                                                                                                               | 136.54         | 118.96     | ·<br>-{-    |
|               |            |          |       |             | 61143.42                                                                                                               | 154,41         |            | 4.          |
| 720.0         | 27.5       | 511.0    | 9.67  | 80038       |                                                                                                                        |                | 119.65     |             |
| 730.0         | 29.0       | 521.0    | 10.01 | 82934       | 62605.39                                                                                                               | 146.20         | 120.16     | -\$-        |
| 740.0         | 27.2       | 531.0    | 10.38 | 86026       | 64166.31                                                                                                               | 156.09         | 120.84     | - <b>†·</b> |
| 750.0         | 27.8       | 541.0    | 10.74 | 89051       | 65693.57                                                                                                               | 152.23         | 121.43     | -∳•         |
| 760.0         | 26.4       | 551.0    | 11.12 | 92308       | 67298.96                                                                                                               | 160.54         | 122.14     | ٠\$٠        |
| 770.0         | 28.2       | 561.0    | 11.48 | 95395       | 68803.73                                                                                                               | 150.48         | 122.64     | +           |
| 780.0         | 28.3       | 571.0    | 11.83 | 98473       | 70304.18                                                                                                               | 150.05         | 123.12     | .4-         |
| 790.0         | 29.1       | 581.0    | 12.17 | 101465      | 71762,62                                                                                                               | 145.84         | 123.52     | .∳•         |
| 77 A A        | /") A (**1 | E.U. 4 0 | am mm | 4 0 4 0 0 7 | יין אריים <i>ו</i> יין אריים | 4 177 4 127 75 | 473.4 7777 |             |
| 800.0         | 24.7       | 591.0    | 12.58 | 104983      | 73477.87                                                                                                               | 171.52         | 124.33     | .4.         |
| 806.0         | 31.5       | 597.0    | 12.77 | 106641      | 74286.01                                                                                                               | 134.69         | 124.43     | .4.         |
|               |            |          |       |             |                                                                                                                        |                |            |             |

| BIT NUMBER<br>HTC X3A<br>COST<br>TOTAL HOURS | 2201<br>22 | SI<br>.00 TR | DC CODE<br>ZE<br>ZIP TIME<br>STAL TURNS | 114<br>12.250<br>5.7<br>196061 | NOZZLES<br>BIT RUN |        | 6.0- 175<br>16 16<br>94<br>4 B6 G0. | 18<br>5.0 |
|----------------------------------------------|------------|--------------|-----------------------------------------|--------------------------------|--------------------|--------|-------------------------------------|-----------|
| DEPTH                                        | ROP        | BIT RUN      | HOURS                                   | TURNS                          | TOTAL COST         | ICOST  | CCOST                               | I-C       |
| 810.0                                        | 17.9       | 4.0          | 0.22                                    | 1200                           | 27322.64           | 237    | 6831                                | ****      |
| 820.0                                        | 20.3       | 14.0         |                                         | 4780                           |                    | 208    | 2101                                | •••       |
| 830.0                                        | 27.5       | 24.0         | 1.08                                    | 7689                           | 30948.17           | 154    | 1290                                | ****      |
| 840.0                                        | 28.9       | 34.0         | 1.42                                    | 10799                          | 32413.67           | 146.55 | 953. <b>34</b>                      |           |
| 850.0                                        | 35,6       | 44.0         | 1.70                                    | 13324                          | 33603.51           | 118.98 | 763.72                              | ****      |
| 860.0                                        | 36.8       | 54.0         | 1.98                                    | 15766                          | 34754,47           | 115.10 | 643.60                              |           |
| 870.0                                        | 47.5       | 64.0         | 2.19                                    | 17661                          | 35647,44           | 89.30  | 556,99                              | ••••      |
| 880.0                                        | 47.7       | 74.0         | 2.40                                    | 19546                          | 36535.69           | 88.83  | 493,73                              |           |
| 890.0                                        | 47.4       | 84.0         | 2.61                                    | 21444                          | 37429,84           | 89.41  | 445.59                              | ••••      |
| 900.0                                        | 44.6       | 94.0         | 2.83                                    | 23464                          | 38381.70           | 95,19  | 408.32                              | ••••      |
| 910.0                                        | 48.8       | 104.0        | 3.04                                    | 25309                          | 39251.11           | 86.94  | 377.41                              |           |
| 920.0                                        | 45.0       | 114.0        | 3.26                                    | 27309                          | 40193.55           | 94.24  | 352.58                              | ****      |
| 930.0                                        | 38.7       | 124.0        | 3.52                                    | 29637                          | 41290.52           | 109.70 | 332,9 <b>9</b>                      | ••••      |
| 940.0                                        | 46.7       | 134.0        | 3.73                                    | 31564                          | 42198.81           | 90.83  | 314.92                              | ••••      |
| 950.0                                        | 43.1       | 144.0        | 3.96                                    | 33653                          | 43183.07           | 98,43  | 299,88                              | ••••      |
| 960.0                                        | 46.1       | 154.0        | 4.18                                    | 35604                          | 44102.54           | 91.95  | 286.38                              |           |
| 970.0                                        | 44.9       | 164.0        | 4.40                                    | 37607                          | 45046.17           | 94.36  | 274.67                              | ,,,,,     |
| 980.0                                        | 43.5       | 174.0        | 4.63                                    | 39674                          | 46020.42           | 97,43  | 264,49                              | ***       |
| 990.0                                        | 51.0       | 184.0        | 4.83                                    | 41437                          | 46851.34           | 83.09  | 254.63                              | ••••      |
| 1000.0                                       | 43.4       | 194.0        | 5.06                                    | 43510                          | 47828.12           | 97,68  | 246.54                              | ****      |
| 1010.0                                       | 48.0       | 204.0        | 5,27                                    | 45387                          | 48712.43           | 88.43  | 238.79                              | ••••      |
| 1020.0                                       | 47.6       | 214.0        | 5.48                                    | 47279                          | 49604.22           | 89.18  | 231.80                              |           |
| 1030.0                                       | 49.0       | 224.0        | 5.68                                    | 49117                          | 50470.09           | 86.59  | 225.31                              |           |
| 1040.0                                       | 51.1       | 234.0        | 5.88                                    | 50879                          | 51300.62           | 83.05  | 219.23                              |           |
| 1050.0                                       | 48.0       | 244.0        | 6,09                                    | 52754                          | 52184.16           | 88.35  | 213.87                              |           |
| 1060.0                                       | 52.2       | 254.0        | 6.28                                    | 54477                          | 52995.84           | 81.17  | 208.65                              | ****      |
| 1070.0                                       | 51,9       | 264.0        | 6.47                                    | 56209                          | 53812,23           | 81.64  | 203.83                              | ****      |
| 1080.0                                       | 44.7       | 274.0        | 6.69                                    | 58224                          | 54761.74           | 94.95  | 199.86                              | ****      |
| 1090.0                                       | 50.5       | 284.0        | 6.89                                    | 60006                          | 55601,30           | 83.96  | 195.78                              | ••••      |
| 1100.0                                       | 52,3       | 294.0        | 7.08                                    | 61726                          | 56411.81           | 81.05  | 191.88                              | ****      |
| 1110.0                                       | 50.6       | 304.0        | 7.28                                    | 63504                          | 57249.40           | 83.76  | 188.32                              | ****      |
| 1120.0                                       | 53.3       | 314.0        | 7.47                                    | 65194                          | 58045.77           | 79.64  | 184.86                              | ****      |
| 1130.0                                       | 52.0       | 324.0        | 7.66                                    | 66924                          | 58860.98           | 81.52  | 181.67                              | ••••      |
| 1140.0                                       | 44.2       | 334.0        | 7.89                                    | 68961                          | 59821.00           | 96.00  | 179.10                              | ****      |
| 1150.0                                       | 47.2       | 344.0        | 8.10                                    | 70866                          | 60718.75           | 89.77  | 176.51                              |           |
| 1160.0                                       | 48.8       | 354.0        | 8.30                                    | 72708                          | 61586.98           | 86.82  | 173.97                              | ****      |
| 1170.0                                       | 49.9       | 364.0        | 8.50                                    | 74512                          | 62436.75           | 84.98  | 171.53                              | ••••      |
| 1180.0                                       | 52.2       | 374.0        | 8.69                                    | 76237                          | 63249.61           | 81,29  | 169.12                              | ****      |
| 1190.0                                       | 41.0       | 384.0        | 8.94                                    | 78429                          | 64282.76           | 103.32 | 167.40                              | ****      |
| 1200.0                                       | 42.1       | 394.0        | 9.18                                    | 80567                          | 65290.00           | 100.72 | 165.71                              | ****      |
| 1210.0                                       | 41.7       | 404.0        | 9.42                                    | 82723                          | 66305.85           | 101.59 | 164.12                              | ****      |
| • 1220.0                                     | 42.2       | 414.0        | 9.65                                    | 84854                          | 67310.34           | 100.45 | 162.59                              |           |
| 1230.0                                       | 46.0       | 424.0        | 9.87                                    | 86813                          | 68233.15           | 92.28  | 160.93                              |           |

| DEPTH            | ROP          | BIT RUN        | HOURS          | TURNS              | TOTAL COST             | rcost                  | CCOST            | 1-C          |
|------------------|--------------|----------------|----------------|--------------------|------------------------|------------------------|------------------|--------------|
| 1240.0           | 43.9         | 434.0          | 10.10          | 88863              | 69199.16               | 96.60                  | 159.45           | ****         |
| 1250.0           | 45.7         | 444.0          | 10.32          | 90830              | 70126.29               | 92.71                  | 157.94           | ••••         |
| 1260.0           | 49.4         | 454.0          | 10.52          | 92650              | 70984.08               | 85.78                  | 156.35           | ***          |
| 1270.0           | 50.1         | 464.0          | 10.72          | 94445              | 71829,92               | 84.58                  | 154,81           | ••••         |
| 1280.0           | 51.2         | 474.0          | 10.91          | 96203              | 72658.10               | 82.82                  | 153.29           | ****         |
| 1290.0           | 53.3         | 484.0          | 11.10          | 97890              | 73453.28               | 79.52                  | 151.76           |              |
| 1300.0           | 59.6         | 494.0          | 11.27          | 99401              | 74165.12               | 71.18                  | 150.13           | ****         |
| 1310.0           | 59.9         | 504.0          | 11.44          | 100904             | 74873.14               | 70.80                  | 148.56           |              |
| 1320.0<br>1330.0 | 66,2<br>59,2 | 514.0<br>524.0 | 11.59<br>11.76 | 1.02264<br>1.03784 | . 75514.00<br>76230.26 | 64.09<br>71.63         | 146.91<br>145.48 | •            |
| 1340.0           | 59.4         | 534.0          | 11.92          | 105299             | 76944.16               | 71.39                  | 144.09           |              |
| 1350.0           | 58.0         | 544.0          | 12.10          | 106851             | 77675.73               | 73.16                  | 142.79           | ***          |
| 1360.0           | 55.6         | 554.0          | 12.28          | 108471             | 78439.11               | 76.34                  | 141.59           | ••••         |
| 1370.0           | 54.7         | 564.0          | 12.46          | 110116             | 79214.27               | 77.52                  | 140,45           | ***          |
| 1380.0           | 55.0         | 574.0          | 12.64          | 111751             | 79984.72               | 77.04                  | 139.35           | ****         |
| 1390.0           | 50.6         | 584.0          | 12.84          | 113531             | 80823.49               | 83.88                  | 138,40           | ****         |
| 1400.0           | 48.9         | 594.0          | 13.04          | 115371             | 81690.54               | 86.70                  | 137.53           | ****         |
| 1410.0           | 53.2         | 604.0          | 13.23          | 117063             | 82487.81               | 79.73                  | 136,57<br>135,52 |              |
| 1420.0           | 58.9         | 614.0          | 13,40          | 118590             | 83207.60<br>83970.98   | 71.98<br>76.3 <b>4</b> | 134.57           |              |
| 1430.0           | 55.6         | 624.0          | 13.58          | 120210             |                        |                        |                  |              |
| 1440.0           | 46.7         | 634.0          | 13,79          | 122138             | 84879.26               | 90.83                  | 133.88           | ****         |
| 1450.0           | 45.7         | 644.0          | 14.01          | 124107             | 85807.01               | 92.78                  | 133.24           | ****         |
| 1460.0           | 43.2         | 654.0          | 14.25          | 126192             | 86789.51               | 98,25                  | 132.71           | ****         |
| 1470.0           | 41.2         | 664.0          | 14.49          | 128377             | 87819.13<br>88759.04   | 102.96<br>93.99        | 132,26<br>131,69 |              |
| 1480.0           | 45.1<br>43.8 | 674.0<br>684.0 | 14.71          | 130371<br>132424   | 89726.22               | 96,72                  | 131.18           | ***          |
| 1490.0<br>1500.0 | 45.6         | 694.0          | 15.16          | 134396             | 90655.71               | 92.95                  | 130.63           |              |
| 1510.0           | 42.8         | 704.0          | 15.39          | 136501             | 91647.63               | 99.19                  | 130,18           |              |
| 1520.0           | 47.1         | 714.0          | 15.60          | 138414             | 92548.84               | 90.12                  | 129.62           | ••••         |
| 1530.0           | 53.5         | 724.0          | 15.79          | 140097             | 93341.99               | 79.31                  | 128.93           | ****         |
| 1540.0           | 46.6         | 734.0          | 16.01          | 142030             | 94252.63               | 91.06                  | 128.41           |              |
| 1550.0           | 44.1         |                | CO to to O A   | 144072             | 95215.10               |                        |                  |              |
| 1560.0           | 43.7         | 754.0          | 16.46          | 146130             | 96184.64               | 96.95                  | 127.57           | - ****       |
| 1570.0           | 42.5         | 764.0<br>774.0 | 16.70          | 148247<br>150372   | 97182.45<br>98183.80   | 99.78<br>100.13        | 127.20<br>126.85 |              |
| 1580.0           | 42.4<br>42.7 | 784.0          | 16.93<br>17.17 | 152480             | 99176.90               | 99.31                  | 126.50           | ••••         |
| 1590.0<br>1600.0 | 37.5         | 794.0          | 17.43          | 154878             | 100307.05              | 113.01                 | 126.33           | ****         |
| 1610.0           | 35.8         | 804.0          | 17.71          | 157394             | 101492.54              | 118.55                 | 126.23           |              |
| 1620.0           | 37,6         | 814.0          | 17.98          | 159789             | 102621.40              | 112.89                 | 126.07           | ****         |
| 1630.0           | 37.6         | 824.0          | 18.24          | 162181             | 103748.45              | 112.70                 | 125,91           | ****         |
| 1640.0           | 40,4         | 834.0          | 18.49          | 164406             | 104796.92              | 104.85                 | 125.66           | ••••         |
| 1650.0           | 33.5         | 844.0          | 18.79          | 167096             | 106064.51              | 126.76                 | 125.67           | -4-          |
| 1660.0           | 32.7         | 854.0          | 19.10          | 169849             | 107361.55              | 129.70                 | 125.72           | +            |
| 1670.0           | 33.3         | 864.0          | 19.40          | 172549             | 108633.85              | 127.23                 | 125.73           | +            |
| 1680.0           | 35.9         | 874.0          | 19.67          | 175056             | 109815.44              | 118.16                 | 125.65           |              |
| 1690.0           | 37.1         | 884.0          | 19,94          | 177484             | 110959.33              | 114.39<br>126.05       | 125.52<br>125.53 | - <b>ķ</b> - |
| 1700.0<br>1710.0 | 33.6<br>32.6 | 894.0<br>904.0 | 20.24<br>20.55 | 180159<br>182921   | 113521.60              | 130.18                 | 125.58           | 4.           |
| 1720.0           | 30.8         | 914.0          | 20.87          | 185839             | 114896.39              | 137,48                 | 125.71           |              |
| 1730.0           | 29.8         | 924.0          | 21.21          | 188859             | 116319.48              | 142.31                 | 125.89           | -\$-         |
|                  |              |                |                |                    |                        |                        |                  |              |

| DEPTH                                        | ROP                  | BIT RUN                 | HOURS                                 | TURNS                         | TOTAL COST                          | ICOST                      | CCOST                              | I-C  |
|----------------------------------------------|----------------------|-------------------------|---------------------------------------|-------------------------------|-------------------------------------|----------------------------|------------------------------------|------|
| 1740.0<br>1750.0<br>1751.0                   | 28.8<br>28.1<br>10.3 | 934.0<br>944.0<br>945.0 | 21.56<br>21.91<br>22.01               | 191989<br>195191<br>196061    | 117794.41<br>119303.50<br>119713.46 | 147.49<br>150.91<br>409.96 | 126.12<br>126.38<br>126.68         | +    |
| BIT NUMBER<br>HTC J11<br>COST<br>TOTAL HOURS | 6788 .<br>7 .        | .00 TR                  | DC CODE<br>ZE<br>IP TIME<br>TAL TURNS | 437<br>12.250<br>5.9<br>48632 | NOZZLES<br>BIT RUN                  |                            | 1.0- 183<br>16 16<br>8<br>1 B1 G0. | 36.0 |
| DEPTH                                        | ROP                  | BIT RUN                 | HOURS                                 | TURNS                         | TOTAL COST                          | ICOST                      | CCOST                              | I-C  |
|                                              | - 7.3                | 9.0                     | 1.24                                  | 9674                          | 37070.05                            | 584                        | 4119                               |      |
| 1770.0                                       | 10.9                 | 19.0                    | 2.16                                  | 16182                         | 40952.92                            | 388                        | 2155                               |      |
| 1780.0                                       | 8.2                  | 29.0                    | 3.37                                  | 24218                         | 46116.34<br>50571.74                | 516<br>446                 | 1590<br>1297                       |      |
| 1790.0                                       | 9.5                  | 39.0                    | 4,42<br>5,17                          | 31152<br>36100                | 53751.32                            | 318                        | 1097                               | •••• |
| 1800.0<br>1810.0                             | 13.3                 | 49.0<br>59.0            | 5.92                                  | 41030                         | 56919.11                            | 316.78                     | 964.73                             | **** |
| 1820.0                                       | 20.0                 | 69.0                    | 6.42                                  | 44337                         | 59044.32                            | 212.52                     | 855.71                             | **** |
| 1830.0                                       | 19.2                 | 79.0                    | 6.94                                  | 47774                         | 61253.17                            | 220,89                     | 775.36                             |      |
| 1837.0                                       | 53.8                 | 86.0                    | 7.07                                  | 48632                         | 61804.50                            | 78.76                      | 718.66                             | **** |

.

| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS           | 0.00<br>2.38                        | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                        | 9,875<br>5,9<br>17130                              | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                          | 15 15 14<br>9.6                                       |
|----------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|
| DEPTH                                                    | ROP BIT                             | RUN HOURS                                                            | TURNS T                                            | OTAL COST                                                            | ICOST CCOST I-C                                       |
| 1838.0<br>1840.0<br>1842.0                               | 90.0<br>15.2<br>5.8                 | 0.1 0.00<br>2.1 0.13<br>4.1 0.48                                     | 9<br>1036<br>3730                                  | 25026.61<br>25585.01<br>27050.12                                     | 47 250266<br>279 12183<br>733 6598                    |
| 1844.0<br>1846.0<br>1847.5                               | 3.5<br>4.4<br>1.7                   | 6.1 1.06<br>8.1 1.51<br>9.6 2.38                                     | 8242<br>11394<br>17130                             | 29503.42<br>31427.18<br>35112.73                                     | 1227 4837 -<br>962 3880 -<br>2457 3658 -              |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS           | 4<br>0.00<br>3.07                   | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                        | 4<br>9.875<br>5.9<br>22329                         | NOZZLES<br>BIT RUN                                                   | 15 15 14<br>9.0                                       |
| DEPTH                                                    | ROP BIT                             | RUN HOURS                                                            | TURNS T                                            | OTAL COST                                                            | ICOST CCOST I-C                                       |
| 1848.0<br>1850.0<br>1852.0<br>1854.0<br>1856.0<br>1856.5 | 9.9 1<br>13.6 1<br>18.3 1<br>13.9 1 | 0.1 2.42<br>2.1 2.62<br>4.1 2.77<br>6.1 2.88<br>8.1 3.02<br>8.6 3.07 | 17443<br>18953<br>20055<br>20876<br>21953<br>22329 | 35292.19<br>36146.28<br>36769.47<br>37233.62<br>37842.68<br>38055.51 | 353 3494 427 2987 312 2608 232 2313 305 2091 426 2046 |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS           | 4<br>0.00<br>7.47                   | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                        | 9.875<br>5.9<br>54023                              | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                          | 15 15 14<br>5.1                                       |
| DEPTH                                                    | ROP BIT                             | RUN HOURS                                                            | TURNS T                                            | OTAL COST                                                            | ICOST CCOST I-C                                       |
| 1858.0                                                   | 3.6 2                               | 20.1 3.49                                                            | 25347                                              | 39819.46                                                             | 1185 1981 -                                           |
| 1860.0<br>1861.6                                         |                                     | 22.1 5.79<br>23.7 7.47                                               | 41889<br>54023                                     | 49563.15<br>56710.42                                                 | 4872 2243 +<br>4467 2393 +                            |

| BIT NUMBER<br>HTC J11<br>COST<br>TOTAL HOURS | 6788.<br>22. | SI:     | DC CODE<br>ZE<br>IP TIME<br>TAL TURNS | 43<br>12.25<br>6.<br>14769 | 0 NOZZLES<br>4 BIT RUN |        | 1.6- 206<br>15 15<br>20<br>8 B4 G0. | 5 15<br>00.4 |
|----------------------------------------------|--------------|---------|---------------------------------------|----------------------------|------------------------|--------|-------------------------------------|--------------|
| DEPTH                                        | ROP          | BIT RUN | HOURS                                 | TURNS                      | TOTAL COST             | ICOST  | CCOST                               | I-C          |
| 1870.0                                       | 29.6         | 8.4     | 0.28                                  | - 2040                     | . 35132.11             | 143    | 4182                                | ••••         |
| 1880.0                                       | 18.4         | 18.4    | 0.83                                  | 5940                       | 37438.75               | 231    | 2035                                |              |
| 1890.0                                       | 30.0         | 28.4    | 1.16                                  | 8240                       | 38852.41               | 141    | 1368                                |              |
| 1900.0                                       | 9.3          | 38.4    | 2,24                                  | 15685                      | 43427.98               | 458    | 1131                                | ••••         |
|                                              | 12.5         | 48.4    | 3.04                                  | 21212                      | 46825,49               | 339.75 | 967.47                              | ****         |
| 1920.0                                       | 8.9          | 58.4    | 4.17                                  | 28560                      | 51607.22               | 478.17 | 883,69                              |              |
| 1930.0                                       | 5.9          | 68.4    | 5.88                                  | 39127                      | 58849,91               | 724.27 | 860.38                              | ••••         |
| 1940.0                                       | 4.8          | 78.4    | 7.95                                  | 54049                      | 67639.38               | 878.95 | 862.75                              | +            |
| 1950.0                                       | 4.8          | 88.4    | 10.01                                 | 68921                      | 76399,40               | 876.00 | 864,25                              |              |
| 1960.0                                       | 33.1         | 98.4    | 10.32                                 | 71013                      | 77682.30               | 128.29 | 789.45                              | •            |
| 1970.0                                       | 40.1         | 108.4   | 10.57                                 | 72807                      | 78739.02               | 105.67 | 726.37                              |              |
| 1980.0                                       | 20.2         | 118.4   | 11.06                                 | 76377                      | 80841.85               | 210.28 | 682.79                              |              |
| 1990.0                                       | 4.4          | 128.4   | 13.34                                 | 92817                      | 90525.46               | 968.36 | 705.03                              | .4-          |
| 2000.0                                       | 26.0         | 138.4   | 13.73                                 | 95581                      | 92153.54               | 162.81 | 665.85                              | ••••         |
| 2010.0                                       | 8.1          | 148.4   | 14.97                                 | 102646                     | 97400.60               | 524.71 | 656.34                              |              |
| 2020.0                                       | 6.8          | 158.4   | 16.44                                 | 112631                     | 103652.54              | 625.19 | 654.37                              |              |
| 2030.0                                       | 6.6          | 168.4   | 17.94                                 | 121455                     | 110030.36              | 637.78 | 653.39                              | ****         |
| 2040.0                                       | 28.2         | 178.4   | 18.30                                 | 124011                     | 111535.92              | 150.56 | 625.20                              | ****         |
| 2050.0                                       | 10.2         | 188.4   | 19.28                                 | 131049                     | 115681,49              | 414.56 | 614.02                              | ***          |
| 2060.0                                       | 7.3          | 198.4   | 20.64                                 | 139603                     | 121459.86              | 577,84 | 612.20                              | ****         |
| 2062.0                                       | 1.2          | 200.4   | 22.32                                 | 147694                     | 128608.30              | 3574   | 642                                 | +            |

| HTC J22                                                                                          | 6788.<br>40.:                                                                | 00 TRI                                                                        | C CODE<br>E<br>P TIME<br>AL TURNS                                           | 517<br>12.250<br>7.3<br>180878                                                         | NOZZLES<br>BIT-RUN                                                                                                   |                                                                                                  | 2.0- 247<br>15 15<br>41<br>3 B3 G0.                                                              | 5.6 |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----|
| DEPTH                                                                                            | ROP :                                                                        | BIT RUN                                                                       | HOURS                                                                       | TURNS                                                                                  | TOTAL COST                                                                                                           | ICOST                                                                                            | CCOST                                                                                            | I-C |
| 2070.0<br>2080.0<br>2090.0                                                                       | 7.5<br>14.7<br>10.1                                                          | 8.0<br>18.0<br>28.0                                                           | 0.70<br>1.38<br>2.38                                                        | 3356.<br>6016<br>9670                                                                  | 43393.59<br>46275.63<br>50489.54                                                                                     | 565<br>288<br>421                                                                                | 5424<br>2571<br>1803                                                                             |     |
| 2100.0<br>2110.0<br>2120.0<br>2130.0<br>2140.0<br>2150.0<br>2160.0<br>2170.0<br>2180.0           | 23.9<br>26.2<br>27.1<br>32.9<br>12.9<br>13.1<br>20.2<br>21.4<br>31.9<br>22.7 | 38.0<br>48.0<br>58.0<br>68.0<br>78.0<br>98.0<br>108.0<br>118.0                | 2.80<br>3.18<br>3.55<br>3.85<br>4.63<br>5.39<br>5.89<br>6.35<br>6.47        | 11202<br>12497<br>13750<br>14848<br>17489<br>21040<br>23466<br>25753<br>27322<br>29562 | 52262.51<br>53883.52<br>55445.62<br>56734.41<br>60034.14<br>63269.08<br>65371.91<br>67355.76<br>68684.61<br>70553.00 | 177<br>162<br>156.21<br>128.88<br>329.97<br>323.49<br>210.28<br>198.38<br>132.88<br>186.84       | 1375<br>1123<br>955.96<br>834.33<br>769.67<br>718.97<br>667.06<br>623.66<br>582.07<br>551.20     |     |
| 2200.0<br>2210.0<br>2220.0<br>2230.0<br>2240.0<br>2250.0<br>2250.0<br>2260.0<br>2270.0<br>2280.0 | 8.5<br>6.3<br>7.4<br>16.7<br>24.5<br>8.5<br>10.6                             | 138.0<br>148.0<br>158.0<br>168.0<br>178.0<br>198.0<br>208.0<br>218.0<br>228.0 | 8.28<br>9.88<br>11.05<br>12.41<br>13.01<br>13.41<br>13.85<br>15.04<br>16.03 | 35476<br>43422<br>49307<br>55946<br>58895<br>60919<br>63159<br>69158<br>73599<br>77909 | 75525.57<br>82300.57<br>87276.68<br>93020.88<br>95563.12<br>97296.04<br>99156.19<br>104173.53<br>108396.86           | 497.26<br>677.50<br>497.61<br>574.42<br>254.22<br>173.29<br>186.01<br>501.73<br>422.33           | 547.29<br>556.08<br>552.38<br>553.70<br>536.87<br>517.53<br>500.83<br>497.23<br>494.76           | +   |
| 2310.0<br>2320.0<br>2330.0<br>2340.0<br>2350.0<br>2360.0<br>2370.0                               | 9.2<br>10.0<br>10.9<br>13.3<br>6.2<br>12.1<br>70.5<br>10.3<br>6.5<br>13.4    | 238.0<br>248.0<br>258.0<br>268.0<br>278.0<br>288.0<br>308.0<br>318.0<br>328.0 | 23.26 1<br>24.60 1<br>25.57 1<br>27.11 1                                    | 82953<br>87682<br>92243<br>95269<br>02688<br>06549<br>13129<br>17392<br>124771         | 117404.32<br>121637.08<br>125543.16<br>128723.91<br>135543.67<br>139062.53<br>144720.73<br>148833.32<br>155369.17    | 459.92<br>423.28<br>390.61<br>318.08<br>681.98<br>351.89<br>565.82<br>411.26<br>653.59<br>317.25 | 493.30<br>490.47<br>486.60<br>480.31<br>487.57<br>482.86<br>485.64<br>483.23<br>488.58<br>483.36 |     |
| 2400.0<br>2410.0<br>2420.0<br>2430.0<br>2440.0<br>2450.0<br>2460.0<br>2470.0                     | 11.7<br>15.7<br>7.4<br>7.7<br>3.9<br>9.5<br>9.3<br>5.8                       | 338.0<br>348.0<br>358.0<br>368.0<br>378.0<br>388.0<br>408.0<br>415.6          | 29.34 1<br>30.69 1<br>31.99 1<br>34.54 1<br>35.60 1<br>36.67 1<br>38.41 1   | 31492<br>33947<br>39247<br>45325<br>55656<br>59707<br>64896<br>72752                   | 162151.24<br>164850.16<br>170560.20<br>176095.88<br>186912.79<br>191370.55<br>195940.23<br>203298.36<br>211106.51    | 360.96<br>269.89<br>571.00<br>553.57<br>1082<br>445.78<br>456.97<br>735.81<br>1027               | 479.74<br>473.71<br>476.43<br>478.52<br>494<br>493.22<br>492.31<br>498.28<br>508                 | +   |

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS                                           | 6788.00                                                                  | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                                                            | 517<br>12.250<br>7.6<br>90559                                                             | NOZZLES<br>BIT RUN                                                                                                           | 1                                                                                                                  | 5 15<br>58.4               |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------|
| DEPTH                                                                                  | ROP BIT                                                                  | RUN HOURS                                                                                                                | TURNS                                                                                     | TOTAL COST                                                                                                                   | ICOST CCOST                                                                                                        | . I-C                      |
| 2480.0<br>2490.0<br>2500.0                                                             | 11.6                                                                     | 2.4 0.92<br>2.4 1.78<br>2.4 2.77                                                                                         | 2691<br>6519<br>10967                                                                     | 42934.28<br>46578.00<br>50781.31                                                                                             | 1631 17889<br>364 3756<br>420 2267                                                                                 | ,                          |
| 2510.0<br>2520.0<br>2530.0<br>2540.0<br>2550.0<br>2560.0<br>2570.0<br>2580.0<br>2590.0 | 12.8 4<br>12.2 5<br>6.5 6<br>7.2 7<br>5.8 8<br>5.1 9<br>7.4 10<br>7.3 11 | 2.4 3.50<br>2.4 4.28<br>2.4 5.10<br>2.4 6.64<br>2.4 8.03<br>2.4 9.75<br>2.4 11.70<br>2.4 13.04<br>2.4 14.42<br>2.4 16.50 | 14251<br>17842<br>21500<br>28497<br>34599<br>41896<br>50236<br>56348<br>62898<br>73283    | 88619.27 8<br>94324.60 5<br>100159.51 5                                                                                      | 308 1662 332 1349 349 1158 652 1077 588 1009 728.27 975.18 326.41 959.08 570.53 921.14 583.49 891.10 382.36 890.39 | 3<br>3<br>5<br>5<br>5<br>6 |
| 2610.0<br>2620.0<br>2630.0<br>2636.0                                                   | 13.5 146<br>8.1 15                                                       | 2.4 17.87<br>2.4 18.61<br>2.4 19.85<br>3.4 20.78                                                                         | 79630<br>82831<br>87556<br>90559                                                          | 117935.19 3<br>123198.74 5                                                                                                   | 580.19 866.96<br>315.01 828.20<br>526.36 808.39<br>558.73 802.72                                                   | ·                          |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOURS                                           | 8<br>6637.00<br>52.43                                                    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                                                            | 537<br>12.250<br>8.2<br>214055                                                            | NOZZLES<br>BIT RUN                                                                                                           | 15 1<br>2                                                                                                          | 5 15<br>265.0              |
| DEPTH                                                                                  | ROP BIT                                                                  | RUN HOURS                                                                                                                | TURNS                                                                                     | TOTAL COST                                                                                                                   | ICOST CCOST                                                                                                        | I-C                        |
| 2640.0<br>2650.0<br>2660.0<br>2670.0<br>2680.0<br>2690.0                               | 5.8 2-<br>11.1 3-<br>7.0 4-                                              | 4.0 0.91<br>4.0 3.44<br>4.0 5.15<br>4.0 6.05<br>4.0 7.49<br>4.0 8.49                                                     | 2602<br>11862<br>18410<br>22165<br>28059<br>32143                                         | 45284.68<br>55986.14<br>63262.99<br>67084.60<br>73166.90<br>77417.33                                                         | 968 11321<br>1070 3999<br>728 2636<br>382 1973<br>608 1663<br>425 1434                                             | -                          |
| 2700.0<br>2710.0<br>2720.0<br>2730.0<br>2740.0<br>2750.0<br>2760.0<br>2770.0<br>2790.0 | 3.5 7.5.0 8.5.3 9.3.8 10.4.3 11.4.4.3 13.4.2 14.4                        | 4.0 27.36                                                                                                                | 37641<br>50831<br>59629<br>68355<br>80072<br>89639<br>94238<br>102858<br>110763<br>118671 | 83168.59<br>95445.11<br>103922.41<br>111978.09<br>123283.89<br>133186.62<br>137331.61<br>147241.42<br>157431.60<br>167664.62 | 575 1300 1228 1290 848 1237 806 1191 1131 1185 990 1168 414 1108 991 1099 1019 1093 1023 1089                      |                            |

| DEPTH                                                                                  | ROP                                           | BIT RUN                                                                       | HOURS                                                                                  | TURNS                                                                                              | TOTAL COST                                                                                                                     | ICOST                                                                  | ccost I                                                                      | -c                           |
|----------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|
| 2800.0<br>2810.0<br>2820.0<br>2830.0<br>2840.0<br>2850.0<br>2860.0<br>2870.0<br>2880.0 | 5.2<br>8.6<br>5.7<br>5.7<br>5.7<br>5.7<br>5.9 | 164.0<br>174.0<br>184.0<br>194.0<br>204.0<br>214.0<br>224.0<br>234.0<br>254.0 | 31.70<br>32.95<br>35.70<br>37.46<br>39.59<br>41.38<br>44.11<br>46.68<br>49.21<br>50.92 | 126547<br>131747<br>143429<br>150617<br>159842<br>166782<br>177819<br>188781<br>-199742.<br>207285 | 175873.93<br>181174.00<br>192800.23<br>200271.46<br>209303.61<br>216926.81<br>228475.29<br>239379.37<br>250123.24<br>257344.72 | 821<br>530<br>1163<br>747<br>903<br>762<br>1155<br>1090<br>1074<br>722 | 1072<br>1041<br>1048<br>1032<br>1026<br>1014<br>1020<br>1023<br>1025<br>1013 | <br>+<br><br><br>+<br>+<br>+ |
| 2900.0<br>2901.0                                                                       | 8.8<br>2.6                                    | 264.0<br>265.0                                                                | 52.05<br>52.43                                                                         | 212269<br>214055                                                                                   | 262165.32<br>263774.54                                                                                                         | 482.06<br>1609                                                         | 993.05<br>995                                                                | <br>· <del>†</del>           |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOURS                                           | 6637<br>22                                    | .00 TR                                                                        | DC CODE<br>ZE<br>IP TIME<br>TAL TURN                                                   | 537<br>12.25(<br>8.4<br>IS 92542                                                                   | NOZZLES<br>BIT RUN                                                                                                             |                                                                        | 1.0- 3021<br>15 15<br>120<br>2 B2 G0.0                                       | 15<br>).(                    |
| DEPTH                                                                                  | ROP                                           | BIT RUN                                                                       | HOURS                                                                                  | TURNS                                                                                              | TOTAL COST                                                                                                                     | ICOST                                                                  | CCOST I                                                                      | r-c                          |
| 2910.0<br>2920.0<br>2930.0<br>2940.0<br>2950.0<br>2960.0<br>2970.0                     | 3.1<br>4.3<br>8.4<br>6.7<br>6.5<br>4.2<br>6.7 | 9.0<br>19.0<br>29.0<br>39.0<br>49.0<br>59.0<br>69.0                           | 2.86<br>5.19<br>6.38<br>7.86<br>9.26<br>10.80<br>13.17                                 | 10551<br>20576<br>25197<br>31244<br>37500<br>44185<br>54585<br>61024                               | 54408.33<br>64283.97<br>69316.62<br>75601.55<br>81528.35<br>88044.17<br>98105.95<br>104403.83                                  | 1350<br>988<br>503<br>628<br>593<br>652<br>1006<br>630                 | 6045<br>3383<br>2390<br>1939<br>1664<br>1492<br>1422<br>1322                 |                              |
| 2990.0<br>3000.0<br>3010.0<br>3020.0<br>3021.0                                         | 7.5<br>5.2<br>6.5<br>3.9<br>8.5               | 89.0<br>99.0<br>109.0<br>119.0<br>120.0                                       | 15.99<br>17.91<br>19.45<br>22.02<br>22.14                                              | 66453<br>74707<br>81124<br>92020<br>92542                                                          | 110083.24<br>118197.68<br>124758.27<br>135649.40<br>136147.72                                                                  | 568<br>811<br>656<br>1089<br>498                                       | 1237<br>1194<br>1145<br>1140<br>1135                                         |                              |

## (e), COMPUTER DATA LISTING : LIST C

| INTERVAL  |      | • |   |   | • |   | 10m averages.                                                |
|-----------|------|---|---|---|---|---|--------------------------------------------------------------|
| DEPTH     | , ,  |   | ı |   |   | • | Well depth, in metres.                                       |
| FLOW RATE |      | • | • | , | • | : | Mud flow into the well, in gallons per minute.               |
| PSP       |      | • |   |   |   |   | Pump pressure, in pounds per square inch.                    |
| PBIT      |      | • |   |   |   |   | Bit pressure drop, in pounds per square inch.                |
| %PSP      | f 1  | • |   |   | • | • | Percentage of surface pressure dropped at the bit.           |
| н.н.р     |      | • |   | , |   |   | Bit hydraulic horsepower.                                    |
| HHP/SQ IM | 1    | ı | , |   | , | • | Bit hydraulic horsepower per square inch<br>of bit diameter. |
| IMPACT FO | ORCE |   |   | · | • | r | Bit impact force, in foot-pounds per second squared.         |
| JET VELO  | YTI  |   | • |   |   |   | Mud velocity through the bit nozzles, in metres per second.  |

| BIT NUMBER                                                                                                                                                                       | <b>?</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 T                                                                                                                                                                                               | ADC CODE                                                                                                               | 111                                                                                                                            | INT                                                                                                                                         | ERVAL                                                                                                                                                  | 74.0                                                                                                 | - 209.0                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| HTC OSC3AJ                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                   | IZE                                                                                                                    | 26.000                                                                                                                         |                                                                                                                                             | ZLES                                                                                                                                                   |                                                                                                      | 18 18 18                                                                                                                                           |
| COST                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | RIP TIME                                                                                                               | 2.4                                                                                                                            |                                                                                                                                             | RUN                                                                                                                                                    |                                                                                                      | 135.0                                                                                                                                              |
| TOTAL HOUR                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | OTAL TURN                                                                                                              |                                                                                                                                |                                                                                                                                             | DITION                                                                                                                                                 | T2 E                                                                                                 | 5 G0.000                                                                                                                                           |
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   |                                                                                                                        |                                                                                                                                |                                                                                                                                             |                                                                                                                                                        |                                                                                                      |                                                                                                                                                    |
|                                                                                                                                                                                  | PT 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                   | •                                                                                                                      |                                                                                                                                |                                                                                                                                             | 131175 7                                                                                                                                               | TMDACT                                                                                               | JET                                                                                                                                                |
| 75.177.177.1.1                                                                                                                                                                   | FLOW<br>RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nen                                                                                                                                                                                               | optr                                                                                                                   | %PSP                                                                                                                           | ННР                                                                                                                                         | HHP/                                                                                                                                                   | IMPACT                                                                                               | VELOCITY                                                                                                                                           |
| DEPTH                                                                                                                                                                            | KHIE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PSP                                                                                                                                                                                               | PRIT                                                                                                                   | AF OF                                                                                                                          | rinr                                                                                                                                        | sqin                                                                                                                                                   | r on un                                                                                              | VELOCATI                                                                                                                                           |
| 80.0                                                                                                                                                                             | 363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 306.0                                                                                                                                                                                             | 187.8                                                                                                                  | 61.4                                                                                                                           | 40                                                                                                                                          | 0.07                                                                                                                                                   | 253                                                                                                  | 47                                                                                                                                                 |
| 90.0                                                                                                                                                                             | 368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 308.9                                                                                                                                                                                             | 193.1                                                                                                                  | 62.5                                                                                                                           | 41                                                                                                                                          | 0.08                                                                                                                                                   | 260                                                                                                  | 48                                                                                                                                                 |
| 100.0                                                                                                                                                                            | 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 365.9                                                                                                                                                                                             | 220.8                                                                                                                  | 60.3                                                                                                                           | 51                                                                                                                                          | 0.10                                                                                                                                                   | 297                                                                                                  | 51                                                                                                                                                 |
| 110.0                                                                                                                                                                            | 882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 892.2                                                                                                                                                                                             | 1109.8                                                                                                                 | 124.4                                                                                                                          | 571                                                                                                                                         | 1.08                                                                                                                                                   | 1492                                                                                                 | 115                                                                                                                                                |
| 120.0                                                                                                                                                                            | 863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 951.0                                                                                                                                                                                             | 1061.9                                                                                                                 | 111.7                                                                                                                          | 535                                                                                                                                         | 1.01                                                                                                                                                   | 1428                                                                                                 | 113                                                                                                                                                |
| 130.0                                                                                                                                                                            | 941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1086.7                                                                                                                                                                                            | 1260.8                                                                                                                 | 116.0                                                                                                                          | 692                                                                                                                                         | 1.30                                                                                                                                                   | 1695                                                                                                 | 123                                                                                                                                                |
| 140.0                                                                                                                                                                            | 963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1154.7                                                                                                                                                                                            | 1321.9                                                                                                                 | 114.5                                                                                                                          | 743                                                                                                                                         | 1.40                                                                                                                                                   | 1778                                                                                                 | 126                                                                                                                                                |
| 150.0                                                                                                                                                                            | 952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1183.5                                                                                                                                                                                            | 1291.3                                                                                                                 | 109.1                                                                                                                          | 717                                                                                                                                         | 1.35                                                                                                                                                   | 1736                                                                                                 | 125                                                                                                                                                |
| 160.0                                                                                                                                                                            | 964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1253.4                                                                                                                                                                                            | 1323.1                                                                                                                 | 105.6                                                                                                                          | 744                                                                                                                                         | 1.40                                                                                                                                                   | 1779                                                                                                 | 126                                                                                                                                                |
| 170.0                                                                                                                                                                            | 958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1209.1                                                                                                                                                                                            | 1308.3                                                                                                                 | 108.2                                                                                                                          | 731                                                                                                                                         | 1.38                                                                                                                                                   | 1759                                                                                                 | 125                                                                                                                                                |
| 180.0                                                                                                                                                                            | 959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1222.9                                                                                                                                                                                            | 1310.6                                                                                                                 | 107.2                                                                                                                          | 733                                                                                                                                         | 1.38                                                                                                                                                   | 1762                                                                                                 | 125                                                                                                                                                |
| 190.0                                                                                                                                                                            | 954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1215.3                                                                                                                                                                                            | 1298.0                                                                                                                 | 106.8                                                                                                                          | 723                                                                                                                                         | 1.36                                                                                                                                                   | 1745                                                                                                 | 125                                                                                                                                                |
| 200.0                                                                                                                                                                            | 964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1235.6                                                                                                                                                                                            | 1324.5                                                                                                                 | 107.2                                                                                                                          | 745                                                                                                                                         | 1.40                                                                                                                                                   | 1781                                                                                                 | 126                                                                                                                                                |
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   |                                                                                                                        |                                                                                                                                |                                                                                                                                             |                                                                                                                                                        |                                                                                                      | 4 200,000                                                                                                                                          |
| 209.0                                                                                                                                                                            | 970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1250.0                                                                                                                                                                                            | 1339.8                                                                                                                 | 107.2                                                                                                                          | 758                                                                                                                                         | 1.43                                                                                                                                                   | 1802                                                                                                 | 127                                                                                                                                                |
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   |                                                                                                                        |                                                                                                                                |                                                                                                                                             |                                                                                                                                                        |                                                                                                      |                                                                                                                                                    |
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   |                                                                                                                        |                                                                                                                                |                                                                                                                                             |                                                                                                                                                        |                                                                                                      |                                                                                                                                                    |
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   |                                                                                                                        |                                                                                                                                |                                                                                                                                             |                                                                                                                                                        |                                                                                                      |                                                                                                                                                    |
| BIT NUMBER                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | ADC CODE                                                                                                               | 111                                                                                                                            |                                                                                                                                             | ERVAL                                                                                                                                                  | 209.0                                                                                                |                                                                                                                                                    |
| HTC OSC3AJ                                                                                                                                                                       | ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S                                                                                                                                                                                                 | IZE                                                                                                                    | 17.500                                                                                                                         | NOZ                                                                                                                                         | ZLES                                                                                                                                                   |                                                                                                      | 20 20 20                                                                                                                                           |
| HTC OSC3AJ<br>COST                                                                                                                                                               | 4442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .00 T                                                                                                                                                                                             | IZE<br>RIP TIME                                                                                                        | 17.500<br>3.7                                                                                                                  | NOZ<br>BIT                                                                                                                                  | ZLES<br>RUN                                                                                                                                            |                                                                                                      | 20 20 20<br>597.0                                                                                                                                  |
| HTC OSC3AJ                                                                                                                                                                       | 4442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .00 T                                                                                                                                                                                             | IZE                                                                                                                    | 17.500<br>3.7                                                                                                                  | NOZ<br>BIT                                                                                                                                  | ZLES                                                                                                                                                   |                                                                                                      | 20 20 20                                                                                                                                           |
| HTC OSC3AJ<br>COST                                                                                                                                                               | 4442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .00 T                                                                                                                                                                                             | IZE<br>RIP TIME                                                                                                        | 17.500<br>3.7                                                                                                                  | NOZ<br>BIT                                                                                                                                  | ZLES<br>RUN                                                                                                                                            |                                                                                                      | 20 20 20<br>597.0                                                                                                                                  |
| HTC OSC3AJ<br>COST                                                                                                                                                               | 4442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .00 T                                                                                                                                                                                             | IZE<br>RIP TIME                                                                                                        | 17.500<br>3.7                                                                                                                  | NOZ<br>BIT                                                                                                                                  | ZLES<br>RUN                                                                                                                                            |                                                                                                      | 20 20 20<br>597.0                                                                                                                                  |
| HTC OSC3AJ<br>COST                                                                                                                                                               | 7<br>4442<br>(S 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .00 T                                                                                                                                                                                             | IZE<br>RIP TIME                                                                                                        | 17.500<br>3.7                                                                                                                  | NOZ<br>BIT                                                                                                                                  | ZLES<br>RUN<br>DITION                                                                                                                                  | T2 E                                                                                                 | 20 20 20<br>597.0<br>2 60.000                                                                                                                      |
| HTC OSC3AJ COST TOTAL HOUR DEPTH                                                                                                                                                 | FLOW RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .00 T<br>.77 T                                                                                                                                                                                    | IZE<br>RIP TIME<br>OTAL TURN:<br>PRIT                                                                                  | 17.500<br>3.7<br>S 106641<br>ZPSP                                                                                              | HHP                                                                                                                                         | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin                                                                                                                  | T2 E<br>IMPACT<br>FORCE                                                                              | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY                                                                                                   |
| HTC OSC3AJ COST TOTAL HOUR DEPTH 210.0                                                                                                                                           | FLOW<br>RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .00 T.77 T                                                                                                                                                                                        | IZE<br>RIP TIME<br>OTAL TURN:<br>PRIT<br>868.1                                                                         | 17.500<br>3.7<br>S 106641<br>%PSP<br>49.7                                                                                      | NOZ<br>BIT<br>CON<br>HHP<br>488                                                                                                             | ZLES RUN DITION HHP/ sqin 2.03                                                                                                                         | T2 E IMPACT FORCE 1441                                                                               | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY                                                                                                   |
| HTC OSC3AJ COST TOTAL HOUR DEPTH 210.0 220.0                                                                                                                                     | FLOW<br>RATE<br>964<br>950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PSP 1747.8 1730.5                                                                                                                                                                                 | IZE<br>RIP TIME<br>OTAL TURN:<br>PRIT<br>868.1<br>843.2                                                                | 17.500<br>3.7<br>S 106641<br>%PSP<br>49.7<br>48.7                                                                              | NOZ<br>BIT<br>CON<br>HHP<br>488<br>467                                                                                                      | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94                                                                                                  | T2 E IMPACT FORCE 1441 1400                                                                          | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY                                                                                                   |
| HTC OSC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0                                                                                                             | FLOW<br>RATE<br>964<br>939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .00 T<br>.77 T<br>PSP<br>1747.8<br>1730.5<br>1680.2                                                                                                                                               | IZE<br>RIP TIME<br>OTAL TURN:<br>PRIT<br>868.1<br>843.2<br>824.5                                                       | 17.500<br>3.7<br>S 106641<br>%PSP<br>49.7<br>48.7<br>49.1                                                                      | NOZ<br>BIT<br>CON<br>HHP<br>488<br>467<br>452                                                                                               | ZLES RUN DITION HHP/ sqin 2.03 1.94 1.88                                                                                                               | T2 B IMPACT FORCE 1441 1400 1369                                                                     | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY<br>102<br>101<br>100                                                                              |
| HTC OSC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0                                                                                                    | FLOW<br>RATE<br>964<br>939<br>825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PSP<br>1747.8<br>1730.5<br>1680.2<br>1396.5                                                                                                                                                       | IZE<br>RIP TIME<br>OTAL TURN:<br>PRIT<br>868.1<br>843.2<br>824.5<br>635.9                                              | 17.500<br>3.7<br>S 106641<br>ZPSP<br>49.7<br>48.7<br>49.1<br>45.5                                                              | NOZ<br>BIT<br>CON<br>HHP<br>488<br>467<br>452<br>306                                                                                        | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.27                                                                                  | T2 E IMPACT FORCE 1441 1400 1369 1056                                                                | 20 20 20<br>597.0<br>2 60.000<br>JET<br>VELOCITY<br>102<br>101<br>100                                                                              |
| HTC 0SC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0                                                                                           | FLOW<br>RATE<br>964<br>950<br>939<br>825<br>946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .00 T<br>.77 T<br>PSP<br>1747.8<br>1730.5<br>1680.2<br>1396.5<br>1737.9                                                                                                                           | IZE<br>RIP TIME<br>OTAL TURN:<br>PRIT<br>868.1<br>843.2<br>824.5<br>635.9<br>837.6                                     | 17.500<br>3.7<br>S 106641<br>ZPSP<br>49.7<br>48.7<br>49.1<br>45.5<br>48.2                                                      | NOZ<br>BIT<br>CON<br>HHP<br>488<br>467<br>452<br>306<br>463                                                                                 | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.27<br>1.92                                                                          | T2 E IMPACT FORCE 1441 1400 1369 1056 1390                                                           | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY<br>102<br>101<br>100<br>87<br>100                                                                 |
| HTC 08C3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0<br>260.0                                                                                  | FLOW<br>RATE<br>964<br>950<br>939<br>825<br>946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSP 1747.8 1730.5 1680.2 1396.5 1737.9 1802.5                                                                                                                                                     | IZE<br>RIP TIME<br>OTAL TURN:<br>PRIT<br>868.1<br>843.2<br>824.5<br>635.9<br>837.6<br>868.8                            | 17.500<br>3.7<br>S 106641<br>XPSP<br>49.7<br>48.7<br>49.1<br>45.5<br>48.2<br>48.2                                              | NOZ<br>BIT<br>CON<br>HHP<br>488<br>467<br>452<br>306<br>463<br>489                                                                          | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.27<br>1.92<br>2.03                                                                  | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442                                                      | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY<br>102<br>101<br>100<br>87<br>100<br>102                                                          |
| HTC 0SC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0<br>260.0                                                                                  | FLOW<br>RATE<br>964<br>950<br>939<br>825<br>946<br>967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PSP 1747.8 1730.5 1680.2 1396.5 1737.9 1802.5 1780.0                                                                                                                                              | IZE<br>RIP TIME<br>OTAL TURN:<br>PRIT<br>868.1<br>843.2<br>824.5<br>635.9<br>837.6<br>868.8<br>873.9                   | 17.500<br>3.7<br>S 106641<br>%PSP<br>49.7<br>48.7<br>49.1<br>45.5<br>48.2<br>48.2<br>49.1                                      | NOZ<br>BIT<br>CON<br>HHP<br>488<br>467<br>452<br>306<br>463<br>489<br>493                                                                   | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.27<br>1.92<br>2.03<br>2.05                                                          | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451                                                 | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY<br>102<br>101<br>100<br>102<br>102                                                                |
| HTC 08C3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0<br>260.0                                                                                  | FLOW<br>RATE<br>964<br>950<br>939<br>825<br>946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSP 1747.8 1730.5 1680.2 1396.5 1737.9 1802.5                                                                                                                                                     | IZE<br>RIP TIME<br>OTAL TURN:<br>PRIT<br>868.1<br>843.2<br>824.5<br>635.9<br>837.6<br>868.8                            | 17.500<br>3.7<br>S 106641<br>XPSP<br>49.7<br>48.7<br>49.1<br>45.5<br>48.2<br>48.2                                              | NOZ<br>BIT<br>CON<br>HHP<br>488<br>467<br>452<br>306<br>463<br>489                                                                          | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.27<br>1.92<br>2.03                                                                  | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442                                                      | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY<br>102<br>101<br>100<br>87<br>100<br>102                                                          |
| HTC OSC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0<br>250.0<br>280.0<br>290.0                                                                | FLOW<br>RATE<br>964<br>950<br>939<br>825<br>946<br>964<br>967<br>952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S.00 T.77 T                                                                                                                                                                                       | IZE<br>RIP TIME<br>OTAL TURN:<br>PRIT<br>868.1<br>843.2<br>824.5<br>635.9<br>837.6<br>868.8<br>873.9<br>856.2<br>865.1 | 17.500<br>3.7<br>S 106641<br>XPSP<br>49.7<br>49.1<br>45.5<br>48.2<br>49.1<br>47.6<br>47.7                                      | NOZ<br>BIT<br>CON<br>HHP<br>488<br>467<br>452<br>306<br>463<br>489<br>478<br>478<br>485                                                     | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.27<br>1.92<br>2.03<br>2.05<br>1.99<br>2.02                                          | T2 B IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1421 1436                                       | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY<br>102<br>101<br>100<br>102<br>102<br>101<br>102                                                  |
| HTC OSC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0<br>260.0<br>270.0<br>280.0<br>290.0                                                       | FLOW<br>RATE<br>964<br>950<br>939<br>825<br>946<br>967<br>957<br>962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S.00 T.77 T                                                                                                                                                                                       | IZE RIP TIME OTAL TURN:  PRIT  868.1 843.2 824.5 635.9 837.6 868.8 873.9 856.2 865.1                                   | 17.500<br>3.7<br>S 106641<br>ZPSP<br>49.7<br>49.1<br>45.5<br>48.2<br>49.1<br>47.6<br>47.7                                      | NOZ<br>BIT<br>CON<br>HHP<br>488<br>467<br>452<br>306<br>463<br>489<br>493<br>478<br>485                                                     | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.27<br>2.03<br>2.05<br>1.99<br>2.02                                                  | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1421 1436                                       | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY<br>102<br>101<br>100<br>102<br>102<br>101<br>102                                                  |
| HTC OSC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0<br>260.0<br>270.0<br>280.0<br>290.0                                                       | FLOW<br>RATE<br>964<br>9539<br>825<br>9464<br>957<br>952<br>964<br>967<br>967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S.00 T.77 T                                                                                                                                                                                       | IZE RIP TIME OTAL TURN:  PRIT  868.1 843.2 824.5 635.9 837.6 868.8 873.9 856.2 865.1                                   | 17.500<br>3.7<br>S 106641<br>XPSP<br>49.7<br>49.1<br>45.5<br>48.2<br>49.1<br>47.6<br>47.7                                      | NOZ<br>BIT<br>CON<br>HHP<br>488<br>467<br>452<br>306<br>463<br>489<br>493<br>478<br>485<br>484<br>463                                       | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.27<br>2.05<br>1.92<br>2.05<br>1.99<br>2.02                                          | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1421 1436                                       | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY<br>102<br>101<br>100<br>102<br>102<br>102<br>102<br>102                                           |
| HTC OSC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0<br>260.0<br>270.0<br>280.0<br>290.0                                                       | FLOW<br>RATE<br>964<br>9539<br>825<br>964<br>967<br>967<br>962<br>964<br>967<br>967<br>962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S.00 T.77 T                                                                                                                                                                                       | IZE RIP TIME OTAL TURN:  PRIT  868.1 843.2 824.5 635.9 837.6 868.8 873.9 856.2 865.1                                   | 17.500<br>3.7<br>S 106641<br>XPSP<br>49.7<br>49.1<br>45.5<br>48.2<br>48.2<br>47.6<br>47.7<br>46.7                              | NOZ<br>BIT<br>CON<br>HHP<br>488<br>467<br>452<br>306<br>463<br>489<br>493<br>478<br>485<br>484<br>463<br>466                                | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.27<br>2.05<br>1.92<br>2.05<br>1.99<br>2.02                                          | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1423 1436                                       | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY<br>102<br>101<br>100<br>102<br>102<br>102<br>102<br>101<br>102                                    |
| HTC OSC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0<br>260.0<br>270.0<br>280.0<br>290.0<br>310.0<br>320.0<br>330.0                            | FLOW RATE 953956447795 17945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S.00 T.77 T                                                                                                                                                                                       | IZE RIP TIME OTAL TURN:  PRIT  868.1 843.2 824.5 635.9 837.6 8638.9 856.2 865.1 863.5 838.4 841.3 870.0                | 17.500<br>3.7<br>3.7<br>5 106641<br>%PSP<br>49.7<br>49.1<br>45.5<br>48.2<br>49.1<br>47.6<br>47.7<br>46.7<br>46.4<br>46.8       | NOZ<br>BIT<br>CON<br>HHP<br>488<br>452<br>306<br>463<br>483<br>478<br>483<br>466<br>490                                                     | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.29<br>2.05<br>1.99<br>2.02<br>2.01<br>1.93<br>1.94<br>2.04                          | T2 E  IMPACT FORCE  1441 1400 1369 1056 1390 1442 1451 1421 1436  1434 1392 1397 1444                | 20 20 20<br>597.0<br>2 GO.000<br>JET<br>VELOCITY<br>102<br>101<br>100<br>102<br>102<br>102<br>102<br>101<br>102<br>100<br>101<br>101               |
| HTC OSC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0<br>260.0<br>270.0<br>280.0<br>290.0<br>310.0<br>320.0<br>330.0<br>340.0                   | FA 12<br>FLAT 4095324647722<br>995324647722<br>99589956495956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PSP 1747.8 1730.5 1680.2 1396.5 1737.9 1802.5 1780.0 1798.1 1813.4 1847.3 1781.0 1813.1 1860.0 1890.8                                                                                             | IZE RIP TIME OTAL TURN:  PRIT  868.1 843.2 824.5 635.9 837.6 868.8 873.9 856.2 865.1 863.5 838.4 841.3 870.0 857.6     | 17.500<br>3.7<br>106641<br>XPSP<br>49.7<br>49.1<br>45.2<br>48.2<br>49.1<br>47.7<br>46.7<br>47.7<br>46.8<br>46.8<br>45.4        | NOZ<br>BIT<br>CON<br>HHP<br>487<br>4526<br>4639<br>475<br>4836<br>4836<br>4836<br>4836<br>4836<br>487<br>487<br>487                         | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.22<br>2.05<br>1.99<br>2.02<br>2.01<br>1.94<br>2.04<br>1.99                          | T2 E  IMPACT FORCE  1441 1400 1369 1056 1390 1442 1451 1421 1436  1434 1392 1397 1444 1424           | 20 20 20<br>597.0<br>2 GO.000<br>JET<br>VELOCITY<br>102<br>101<br>100<br>102<br>102<br>102<br>102<br>100<br>102<br>101<br>102<br>101               |
| HTC OSC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0<br>260.0<br>270.0<br>280.0<br>290.0<br>310.0<br>320.0<br>330.0<br>340.0                   | FA 12<br>FA 12<br>FA 9532564772<br>FA 9932564772<br>9944587<br>9947587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PSP  1747.8 1730.5 1680.2 1396.5 1737.9 1802.5 1780.0 1798.1 1813.4  1847.3 1781.0 1813.1 1860.0 1890.8 1818.3                                                                                    | IZE RIP TIME OTAL TURN:  PRIT  868.1 843.2 824.5 635.9 837.6 8638.8 873.9 856.2 865.1 863.5 863.6 873.6 863.1          | 17.500<br>3.7<br>106641<br>XPSP<br>49.7<br>49.1<br>45.2<br>48.2<br>49.1<br>47.7<br>46.7<br>47.7<br>46.8<br>45.1                | NOZ<br>BIT<br>CON<br>HHP<br>487<br>452<br>306<br>463<br>487<br>478<br>483<br>484<br>466<br>499<br>448                                       | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.22<br>2.05<br>1.99<br>2.02<br>2.03<br>1.99<br>2.04<br>1.99<br>1.86                  | T2 E  IMPACT FORCE  1441 1400 1369 1056 1390 1442 1451 1421 1436  1434 1392 1397 1444 1424 1361      | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY<br>102<br>101<br>102<br>102<br>102<br>102<br>102<br>101<br>102<br>101<br>102<br>101<br>102        |
| HTC OSC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0<br>260.0<br>270.0<br>280.0<br>270.0<br>310.0<br>310.0<br>310.0<br>310.0<br>310.0          | FA 12<br>FA 12<br>FA 95325<br>FA | 9.00 T<br>.77 T<br>PSP<br>1747.8<br>1730.5<br>1680.2<br>1396.5<br>1737.9<br>1802.5<br>1780.0<br>1798.1<br>1813.4<br>1847.3<br>1781.0<br>1813.1<br>1860.0<br>1890.8<br>1818.3<br>1797.0            | IZE RIP TIME OTAL TURN:  PRIT  868.1 843.2 824.5 635.6 825.6 863.9 856.2 865.1 863.4 841.3 870.6 857.6 820.1 825.5     | 17.500<br>7.3.41<br>10.6641<br>XPSP 79.15<br>49.15<br>49.15<br>48.2167<br>47.67<br>46.47<br>46.46<br>45.49<br>45.9             | NOZ<br>BION<br>CON<br>HHP<br>487<br>45263<br>487<br>453<br>487<br>487<br>483<br>483<br>483<br>483<br>483<br>483<br>483<br>483<br>483<br>483 | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.22<br>2.05<br>1.99<br>2.05<br>1.99<br>2.04<br>1.99<br>1.88                          | T2 E  IMPACT FORCE  1441 1400 1369 1056 1390 1442 1451 1421 1436  1434 1392 1397 1444 1424 1361 1370 | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY<br>102<br>101<br>102<br>102<br>102<br>102<br>101<br>102<br>100<br>101<br>102<br>101<br>102        |
| HTC OSC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0<br>260.0<br>270.0<br>280.0<br>270.0<br>310.0<br>310.0<br>310.0<br>310.0<br>310.0<br>310.0 | FA 12  FA 12  FA 12  FA 95325  FA 95325  FA 97532  FA 97                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.00 T<br>7.77 T<br>PSP<br>1747.8<br>1730.5<br>1680.2<br>1396.5<br>1737.9<br>1802.5<br>1780.0<br>1798.1<br>1813.4<br>1847.3<br>1813.1<br>1860.0<br>1818.3<br>1890.8<br>1818.3<br>1797.0<br>1879.9 | IZE RIP TIME OTAL TURN:  PRIT  868.1 843.2 824.5 635.6 8637.6 8673.2 865.1 8638.4 870.0 857.6 820.1 825.5 861.0        | 17.500<br>3.7<br>106641<br>X 106641<br>XPSP 77.1<br>49.15<br>49.45.2<br>49.45.4<br>47.7 71.4<br>46.47.47.46.45.4<br>45.49.45.8 | NOZ<br>BION<br>CON<br>HHP 487<br>452<br>467<br>452<br>483<br>483<br>483<br>483<br>483<br>483<br>483<br>483<br>483<br>483                    | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.887<br>1.92<br>2.05<br>1.99<br>2.05<br>1.99<br>2.04<br>1.99<br>1.88<br>1.99<br>1.88<br>2.00 | T2 E  IMPACT FORCE  1441 1400 1369 1056 1390 1442 1451 1423 1436 1434 1367 1444 1361 1370 1429       | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY<br>102<br>101<br>102<br>102<br>102<br>101<br>102<br>101<br>102<br>101<br>102<br>101<br>102<br>101 |
| HTC OSC3AJ<br>COST<br>TOTAL HOUR<br>DEPTH<br>210.0<br>220.0<br>230.0<br>240.0<br>250.0<br>260.0<br>270.0<br>280.0<br>270.0<br>310.0<br>310.0<br>310.0<br>310.0<br>310.0          | FA 12<br>FA 12<br>FA 95325<br>FA | 9.00 T<br>.77 T<br>PSP<br>1747.8<br>1730.5<br>1680.2<br>1396.5<br>1737.9<br>1802.5<br>1780.0<br>1798.1<br>1813.4<br>1847.3<br>1781.0<br>1813.1<br>1860.0<br>1890.8<br>1818.3<br>1797.0            | IZE RIP TIME OTAL TURN:  PRIT  868.1 843.2 824.5 635.6 825.6 863.9 856.2 865.1 863.4 841.3 870.6 857.6 820.1 825.5     | 17.500<br>7.3.41<br>10.6641<br>XPSP 79.15<br>49.15<br>49.15<br>48.2167<br>47.67<br>46.47<br>46.46<br>45.49<br>45.9             | NOZ<br>BION<br>CON<br>HHP<br>487<br>45263<br>487<br>453<br>487<br>487<br>483<br>483<br>483<br>483<br>483<br>483<br>483<br>483<br>483<br>483 | ZLES<br>RUN<br>DITION<br>HHP/<br>sqin<br>2.03<br>1.94<br>1.88<br>1.22<br>2.05<br>1.99<br>2.05<br>1.99<br>2.04<br>1.99<br>1.88                          | T2 E  IMPACT FORCE  1441 1400 1369 1056 1390 1442 1451 1421 1436  1434 1392 1397 1444 1424 1361 1370 | 20 20 20<br>597.0<br>2 G0.000<br>JET<br>VELOCITY<br>102<br>101<br>102<br>102<br>102<br>102<br>102<br>101<br>102<br>100<br>101<br>102<br>101<br>102 |

| FLOW HHP/<br>DEPTH RATE PSP PBIT %PSP HHP sqin                               | IMPACT<br>FORCE      | JET<br>VELOCITY |
|------------------------------------------------------------------------------|----------------------|-----------------|
| 400.0 954 1884.1 851.2 45.2 474 1.97                                         | 1413                 | 101             |
| 410.0 974 1938.9 886.9 45.7 504 2.10                                         | 1472                 | 103             |
| 420.0 957 1927.4 856.5 44.4 478 1.99                                         | 1422                 | 101             |
| 430.0 966 1956.8 872.5 44.6 492 2.04                                         | 1448                 | 102             |
| 440.0 965 1946.5 870.7 44.7 490 2.04                                         | 1446                 | 102             |
| 450.0 961 1968.7 863.3 43.9 484 2.01                                         | 1433                 | 102             |
| 460.0 967 1976.6 874.9 44.3 494 2.05                                         | 1453                 | 103             |
| 470.0 972 2042.0 882.6 43.2 500 2.08                                         | 1465                 | 103             |
| 480.0 968 2006.9 876.8 43.7 495 2.06                                         | 1456                 | 103             |
| 490.0 946 1967.8 837.1 42.5 462 1.92                                         | 1390                 | 100             |
| 500.0 967 2032.0 884.4 43.5 499 2.07                                         | 1468                 | 102             |
| 510.0 966 2048.6 883.4 43.1 498 2.07                                         | 1467                 | 102             |
| 520.0 977 2035.0 913.6 44.9 521 2.17                                         | 1517                 | 104             |
| 530.0 962 2033.4 895.7 44.1 503 2.09                                         | 1487                 | 102             |
| 540.0 966 2064.7 903.6 43.8 509 2.12                                         | 1500                 | 102             |
| 550.0 969 2076.7 908.6 43.8 514 2.14                                         | 1508                 | 103             |
| 560.0 960 2099.7 891.0 42.4 499 2.07                                         | 1479                 | 102             |
| 570.0 941 2006.3 857.0 42.7 471 1.96                                         | 1423                 | 100             |
| 580.0 981 2120.1 930.7 43.9 533 2.21                                         | 1545                 | 104             |
| 590.0 972 2109.6 913.9 43.3 518 2.15                                         | 1517                 | 103             |
| 600.0 974 2118.7 918.2 43.3 522 2.17                                         | 1524                 | 103             |
| 610.0 969 2107.2 908.1 43.1 513 2.13                                         | 1508                 | 103             |
| 620.0 960 2134.9 891.0 41.7 499 2.07                                         | 1479                 | 102             |
| 630.0 960 2200.7 891.6 40.5 499 2.08                                         | 1480                 | 102             |
| 640.0 975 2150.0 919.1 42.7 523 2.17                                         | 1526                 | 103             |
| 650.0 953 2138.0 888.3 41.5 494 2.05                                         | 1475                 | 101             |
| 660.0 967 2155.7 915.7 42.5 517 2.15                                         | 1520                 | 103             |
| 670.0 940 2023.4 863.7 42.7 473 1.97                                         | 1434                 |                 |
| 680.0 965 2130.7 911.7 42.8 513 2.13<br>690.0 976 2201.5 931.3 42.3 530 2.20 | 151 <i>4</i><br>1546 | 102<br>103      |
|                                                                              |                      |                 |
| 700.0 966 2150.1 913.4 42.5 515 2.14                                         | 1516                 | 102             |
| 710.0 964 2144.6 909.8 42.4 512 2.13                                         | 1510                 | 102             |
| 720.0 969 2180.5 918.3 42.1 519 2.16                                         | 1525                 | 103             |
| 730.0 966 2140.7 913.6 42.7 515 2.14                                         | 1517                 | 102             |
| 740.0 966 2151.1 912.9 42.4 514 2.14                                         | 1516                 | 102             |
| 750.0 962 2170.3 905.7 41.7 508 2.11                                         | 1504                 | 102             |
| 760.0 934 2209.4 853.2 38.6 465 1.93                                         | 1416                 | 99              |
| 770.0 968 2213.2 916.9 41.4 518 2.15                                         | 1522                 | 103             |
| 780.0 954 2209.9 891.4 40.3 496 2.06                                         | 1480                 | 101             |
| 790.0 958 2230.8 897.5 40.2 501 2.08                                         | 1490                 | 101             |
| 800.0 958 2239.2 897.5 40.1 502 2.09                                         | 1490                 | 101             |
| 806.0 964 2250.7 909.7 40.4 512 2.13                                         | 1510                 | 102             |

SIZE 12.250 NOZZLES 16 16 18 HTC X3A 945.0 BIT RUN 2201.00 TRIP TIME 5.7 COST T4 B6 G0.000 CONDITION TOTAL HOURS 22,01 TOTAL TURNS 196061 JET IMPACT HHP/ FLOW FORCE VELOCITY HHP DEPTH RATE PSP PRIT %PSP sgin 1735 130 853 2523.5 1500.2 59.4 747 6.34 810.0 1708 130 856 2490.1 1476.6 59.3 737 6.26 820.0 2516.5 1526.3 60.7 775 6.57 1765 132 870 830.0 62.4 953 8,08 2026 142 932 2805.7 1751.8 840.0 7.90 1996 141 60.3 931 925 1725.4 2860.7 850.0 7,99 141 941 2010 1737.5 60.3 860.0 928 2882.8 8.02 946 2016 141 61.0 870.0 930 2856.0 1743.1 142 953 8.09 2026 61.0 880.0 932 2871.3 1752.1 140 7.83 1983 923 890.0 922 2859.4 1714.6 60.0 141 1997 7.91 900.0 925 2863.0 1726.6 60.3 932 7.80 1978 140 921 2866.4 1709.9 59.7 919 910.0 914 2809.2 1682.7 59.9 897 7.61 1946 139 920.0 930 7,89 1993 141 925 2800.0 1723.6 61.6 930.0 927 7.87 1990 141 924 2783.9 1720.4 61.8 940.0 921 7.81 1981 140 922 1712.5 60.9 2810.6 950.0 1724.6 7.90 1995 141 931 925 2791.1 61.8 960.0 7.91 1997 141 932 2871.6 1726.3 60.1 925 970.0 7.89 1994 141 61.5 930 1724.0 925 2803.7 980.0 7.76 1972 140 915 1705.0 60.2 990.0 920 2831.2 59.1 7.56 1937 139 891 1674.8 1000.0 911 2832.4 7.49 1926 138 57.5 883 1010.0 909 2896.3 1665.3 58.1 873 7,41 1911 138 1020.0 905 2845.0 1652.4 7.76 1972 140 915 920 2904.0 1705.3 58.7 1030.0 137 7.35 1902 57.5 867 1040.0 903 2861.7 1644.5 136 7.14 1865 894 2847,3 1612.2 56.6 841 1050.0 7.10 1859 136 893 2860.9 1607.3 56.2 837 1060.0 135 2871.7 1587.9 55.3 822 6.98 1837 1070.0 887 2878.5 1573.0 54.6 811 6.88 1819 134 1080.0 883 777 6.59 1769 132 871 2868.2 1529.2 53.3 1090.0 134 1100.0 54.3 802 6.81 1807 880 2876.3 1562.3 1785 54.0 788 6.69 133 875 2860.1 1543.5 1110.0 6,64 1777 54.1 783 133 873 2842.0 1536.8 1120.0 6.52 1755 132 2849.3 1517.8 53.3 768 868 1130.0 2850.0 734 6,23 1703 . 130 855 1472.6 51.7 1140.0 782 6.64 1776 133 2897.3 53.0 1150.0 873 1535.8 2895.3 6.50 1752 132 52,3 766 1160.0 867 1514.9 252 6.42 1738 131 1170.0 863 2872.8 1502.8 52.3 1522.7 772 6.55 1761 132 869 2838.6 53.6 1180.0 6.22 1701 130 2865.5 1470.4 51.3 733 1190.0 854 773 6.56 132 1523.7 52.5 1762 1200.0 869 2900.3 6.35 52.1 748 1724 131 860 2860.9 1491.0 1210.0 1752 6.50 132 2931.9 1514.8 51.7 766 1220.0 867 1699 51.2 6.21 130 854 2868.3 1469.0 732 1230.0

IADC CODE

3

BIT NUMBER

INTERVAL

114

806.0- 1751.0

| DEPTH            | FLOW<br>RATE       | P 8 P            | PBIT             | %PSP         | ннР                | HHP/<br>sqin | IMPACT<br>FORCE | JET<br>VELOCITY |
|------------------|--------------------|------------------|------------------|--------------|--------------------|--------------|-----------------|-----------------|
| 1240.0           | 867<br>863         | 2907.5<br>2852.5 | 1514.0<br>1500.8 | 52.1<br>52.6 | 765<br>755         | 6.49<br>6.41 | 1751<br>1736    | 132<br>131      |
| 1250.0<br>1260.0 | 871                | 2913.8           | 1530.8           | 52.5         | 778                | 6.60         | 1770            | 133             |
| 1270.0           | 888                | 2859.6           | 1517.3           | 53.1         | 768                | 6.52         | 1755            | 132             |
| 1280.0           | 869                | 2868.8           | 1523.8           | 53.1         | 773                | 6.56         | 1762            | 132             |
| 1290.0           | 876                | 2937.2           | 1548.3           | 52.7         | 792                | 6.72         | 1791            | 133             |
| 1300.0           | 870                | 2925.0           | 1524.7           | 52.1         | 774                | 6.56         | 1763            | 132             |
| 1310.0           | 870                | 2954.8           | 1526.6           | 51.7         | 775                | 6.58         | 1766            | 132             |
| 1320.0           | 865                | 2969.9           | 1506.9           | 50.7         | 760                | 6.45         | 1743            | 132             |
| 1330.0           | 880                | 2936.0           | 1560.0           | 53.1         | 801                | 6.79         | 1804            | 134             |
| 1340.0           | 872                | 2961.2           | 1531.6           | 51.7         | 779                | 6.61         | 1771            | 133             |
| 1350.0           | 868                | 2992.6           | 1518.2           | 50.7         | <b>769</b>         | 6.52         | 1756            | 132             |
| 1360.0           | 863                | 2957.4           | 1500.5           | 50.7         | 755                | 6.41         | 1735            | 131<br>132      |
| 1370.0           | 870                | 2957.2           | 1524.4           | 51.5         | 773                | 6.56         | 1763<br>1754    | 132             |
| 1380.0           | 867                | 2981.1           | 1516.3           | 50.9         | 767<br>716         | 6.51<br>6.07 | 1675            | 129             |
| 1390.0           | 847                | 2937.2<br>2921.4 | 1447.9<br>1448.1 | 49.3<br>49.6 | 716                | 6.08         | 1675            | 129             |
| 1400.0           | 8 <b>48</b><br>860 | 3020.9           | 1491.4           | 49.4         | 748                | 6.35         | 1725            | 131             |
| 1410.0<br>1420.0 | 854                | 3033.7           | 1472.0           | 48.5         | 734                | 6.23         | 1702            | 130             |
| 1430.0           | 860                | 2969.1           | 1490.4           | 50.2         | 748                | 6.34         | 1724            | 131             |
| 1440.0           | 851                | 2987.4           | 1459.1           | 48.8         | 724                | 6.14         | 1687            | 129             |
| 1450.0           | 845                | 2971.2           | 1440,4           | 48.5         | 710                | 6.03         | 1666            | 129             |
| 1460.0           | 854                | 3040.1           | 1470.5           | 48.4         | 733                | 6.22         | 1701            | 130<br>127      |
| 1470.0           | 834                | 2960.8           | 1402.1           | 47.4<br>48.3 | 682<br>68 <b>4</b> | 5.79<br>5.81 | 1622<br>1625    | 127             |
| 1480.0           | 835                | 2911.6           | 1405.2<br>1436.5 | 47.8         | 707                | 6,00         | 1661            | 128             |
| 1490.0<br>1500.0 | 844<br>846         | 3006.6<br>3025.2 | 1443.6           | 47.7         | 713                | 6.05         | 1670            | 129             |
| 1510.0           | 846                | 3039.5           | 1442.8           | 47.5         | 712                | 6,04         | 1669            |                 |
| 1520.0           | 841                | 3019.2           | 1425.1           | 47.2         | 699                | 5.93         | 1648            | 128             |
| 1530.0           | 840                | 3025.6           | 1423.9           | 47.1         | 698                | 5.92         | 1647            | 128             |
| 1540.0           | 841                | 3090.3           | 1440.2           | 46.6         | 706                | 5,99         | 1666            | 128             |
| 1550.0           | 844                | 3077.1           | 1450.5           | 47.1         | 714                | 6.06         | 1678            | 128             |
| 1560.0           | 841                | 3027.3           | 1442.6           | 47.7         | 708                | 6.01         | 1668            | 128<br>127      |
| 1570.0           | 838                | 3082.7           | 1431.0           | 46.4<br>46.5 | 700<br>699         | 5.94<br>5.93 | 1655<br>1654    | 127             |
| 1580.0           | 837<br>835         | 3072.8<br>3070.3 | 1429.8<br>1419.9 | 46.2         | 691                | 5.87         | 1642            | 127             |
| 1590.0<br>1600.0 | 817                | 2953.4           | 1362.1           | 46.1         | 650                | 5,51         | 1575            | 124             |
| 1610.0           | 821                | 3032.9           | 1374.1           | 45.3         | 658                | 5.59         | 1589            | 125             |
| 1620.0           | 818                | 2983.2           | 1365.2           | 45.8         | 652                | 5.53         | 1579            | 124             |
| 1630.0           | 822                | 3007.5           | 1377.4           | 45.8         | 661                | 5.60         | 1593            | 125             |
| 1640.0           | 816                | 3017.3           | 1373.6           | 45.5         | 654                | 5.55         | 1589            | 124             |
| 1650.0           | 791                | 2826.0           | 1288.3           | 45.6         | 594                | 5.04         | 1490            | 120             |
| 1660.0           | 824                | 3000.8           | 1397.9           | 46.6         | 672<br>442         | 5.70         | 1617<br>1569    |                 |
| 1670.0           | 811                | 2937.8           | 1356.2           | 46.2<br>46.3 | 642<br>630         | 5.45<br>5.34 | 1548            |                 |
| 1680.0           | 806<br>797         | 2890.7<br>2884.2 | 1338.8<br>1310.5 | 40.3<br>45.4 | 610                | 5.17         | 1516            |                 |
| 1690.0<br>1700.0 | 809                | 2936.8           | 1347.4           | 45.9         | 636                | 5.39         | 1558            |                 |
| 1710.0           | 803                | 2871.5           | 1329.2           | 46.3         | 623                | 5.28         | 1537            |                 |
| 1720.0           | 802                | 2901.5           | 1324.8           | 45.7         | 620                | 5.26         | 1532            | 122             |
| 1730.0           | 797                | 2937.4           | 1308.2           | 44,5         | 608                | 5.16         | 1513            | 121             |
|                  |                    |                  |                  |              |                    |              |                 |                 |

| DEPTH          | FLOW<br>RATE | PSP    | PRIT       | %PSP   | HHP                                     | HHP/<br>sgin | IMPACT<br>FORCE | JET<br>VELOCITY |
|----------------|--------------|--------|------------|--------|-----------------------------------------|--------------|-----------------|-----------------|
| A7 hai 111     |              |        |            | •••    | • • • • • • • • • • • • • • • • • • • • |              |                 |                 |
| 1740.0         | 791          | 2921.6 | 1288.2     | 44.1   | 594                                     | 5.04         | 1490            | 120             |
| 1750.0         | 798          | 2919.6 | 1313.5     | 45.0   | 612                                     | 5.19         | 1519            | 121             |
| 1751.0         | 796          | 2902.0 | 1307.0     | 45.0   | 607                                     | 5.15         | 1512            | 121             |
|                |              |        |            |        |                                         |              |                 |                 |
| BIT NUMBER     |              | 4 I    | ADC CODE   | 437    | TNT                                     | ERVAL.       | 1751.0          | - 1837.0        |
| HTC J11        |              |        | IZE        | 12,250 |                                         | ZLES         |                 | 16 16 16        |
| COST           | 6788         |        | RIP TIME   | 5.9    |                                         | RUN          |                 | 86.0            |
| TOTAL HOUR     |              |        | OTAL TURNS |        |                                         | DITION       | T1 B            | 1 G0.000        |
|                |              |        |            |        |                                         |              |                 |                 |
|                | FLOW         |        |            |        |                                         | HHP/         | IMPACT          | JET             |
| DEPTH          | RATE         | PSP    | PBIT       | %PSP   | ннр                                     | sqin         | FORCE           | VELOCITY        |
| 1760.0         | 773          | 2926.6 | 1457.8     | 49.8   | 657                                     | 5.58         | 1549            | 128             |
| 1770.0         | 767          | 2946.2 | 1436.1     | 48.7   | 643                                     | 5.45         | 1526            | 127             |
| 1780.0         | 775          | 2954.2 | 1467.6     | 49.7   | 664                                     | 5.63         | 1559            | 128             |
| 1790. <b>0</b> | 782          | 3002.4 | 1492.5     | 49.7   | 681                                     | 5.78         | 1586            | 129             |
| 1800.0         | 777          | 2951.0 | 1473.4     | 49.9   | 668                                     | 5.67         | 1566            | 129             |
| 1810.0         | 773          | 2844.6 | 1458.8     | 51.3   | 658                                     | 5.58         | 1550            | 128             |
| 1820.0         | 774          | 2911.6 | 1463.6     | 50.3   | 661                                     | 5.61         | 1555            | 128             |
| 1830.0         | 772          | 2888.1 | 1453.9     | 50.3   | 655                                     | 5.55         | 1545            | 128             |
| 1837.0         | 770          | 2892.3 | 1448.5     | 50.1   | 651                                     | 5.52         | 1539            | 128             |
|                |              |        |            |        |                                         |              |                 |                 |

·

| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS | 0.0                                    | O TR                                               | DC CODE<br>ZE<br>IP TIME<br>TAL TURNS              | 4<br>9.875<br>5.9<br>17130                   | NOZ:<br>BIT                      | ERVAL<br>ZLES<br>RUN<br>DITION               | 1837.9- 1<br>15<br>TO BO (             | 15 14<br>9.6                     |
|------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------------|----------------------------------|
| DEPTH                                          | FLOW<br>RATE                           | pSp                                                | PRIT                                               | %PSP                                         | ннР                              | HHP/<br>sqin                                 | IMPACT<br>FORCE VE                     | JET<br>OCITY                     |
| 1838.0<br>1840.0<br>1842.0                     | 240<br>209<br>264                      | 510.7<br>470.8<br>629.0                            | 198.6<br>150.9<br>241.0                            | 38.9<br>32.1<br>38.3                         | 28<br>18<br>37                   | 0.36<br>0.24<br>0.49                         | 178<br>135<br>215                      | 47<br>41<br>52                   |
| 1844.0<br>1846.0<br>1847.5                     | 267<br>271<br>280                      | 638.8<br>696.0<br>707.7                            | 246.3<br>253.5<br>271.3                            | 38.6<br>36.4<br>38.3                         | 38<br>40<br>44                   | 0.50<br>0.52<br>0.58                         | 220<br>227<br>242                      | 53<br>53<br>55                   |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS | 0.0<br>3.0                             | SI<br>O TR                                         | DC CODE<br>ZE<br>IP TIME<br>TAL TURNS              | 4<br>9.875<br>5.9<br>22329                   | NOZ:<br>BIT                      | ERVAL<br>ZLES<br>RUN<br>DITION               | 15                                     | 15 14<br>9.0                     |
| DEPTH                                          | FLOW<br>RATE                           | p S p                                              | PEIT                                               | %PSP                                         | ннР                              | HHP/<br>sqin                                 | IMPACT<br>FORCE VE                     | JET<br>LOCITY                    |
| 1848.0<br>1850.0<br>1852.0<br>1854.0<br>1856.0 | 335<br>318<br>278<br>227<br>215<br>218 | 812.9<br>845.8<br>725.7<br>593.2<br>549.8<br>524.1 | 386.4<br>349.2<br>265.9<br>178.1<br>159.1<br>164.4 | 47.5<br>41.3<br>36.6<br>30.0<br>28.9<br>31.4 | 25<br>65<br>43<br>24<br>20<br>21 | 0.98<br>0.85<br>0.56<br>0.31<br>0.26<br>0.27 | 345<br>312<br>238<br>159<br>142<br>142 | 66<br>63<br>55<br>45<br>42<br>43 |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS | 0.0<br>3 7.4                           | SI<br>OO TR                                        | DC CODE<br>ZE<br>IP TIME<br>TAL TURNS              | 9.875<br>5.9<br>54023                        | NOZ<br>BIT                       | ERVAL<br>ZLES<br>RUN<br>DITION               | 1856.5-<br>15<br>TO RO                 | 15 14<br>5.1                     |
| DEPTH                                          | FLOW<br>RATE                           | PSP                                                | PRIT                                               | %P SP                                        | ннр                              | HHP/<br>sqin                                 | IMPACT<br>FORCE VE                     | JET<br>LOCITY                    |
| 1858.0                                         | 284                                    | 707.8                                              | 277.5                                              | 39.2                                         | 46                               | 0.60                                         | 248                                    | 56                               |
| 1860.0<br>1861.6                               | 270<br>271                             | 668.1<br>677.6                                     | 251.3<br>253.8                                     | 37.6<br>37.5                                 | 40<br>40                         | 0.52<br>0.52                                 | : 225<br>227                           | 53<br>53                         |

| BIT NUMBER       |             |         | ADC CODE    | 437    |            | ERVAL.  | 1861.6      | 5- 2062.0 |
|------------------|-------------|---------|-------------|--------|------------|---------|-------------|-----------|
| HTC J11          |             |         | IZE         | 12,250 |            | ZLES    |             | 15 15 15  |
| COST             |             |         | RIP TIME    | 6.4    |            | RUN     |             | 200.4     |
| TOTAL HOUR       | S 22        | .32 T   | OTAL TURNS  | 147694 | COM        | NOITION | TBI         | 34 G0.125 |
|                  |             |         |             |        |            |         |             |           |
|                  | am 1 m. 1 1 |         |             |        |            | HHP/    | IMPACT      | JET       |
| 35 to be at 3 t  | FLOW        | nen     | ייי אין אין | %PSP   | ННР        |         |             | VELOCITY  |
| DEPTH            | RATE        | 1, 521, | PBIT        | Ar or  | 1717       | sqin    | r ONUE.     | VELOUITI  |
| 1870.0           | 725         | 2954.0  | 1663.4      | 56.3   | 704        | 5.97    | 1553        | 137       |
| 1880.0           | 704         | 2996.8  | 1566.0      | 52.3   | 643        | 5.46    | 1462        | 133       |
| 1890.0           | 703         | 2972.6  | 1561.7      | 52.5   | 640        | 5.43    | 1458        | 132       |
|                  |             |         |             |        |            |         |             |           |
| 1900.0           | 706         | 2970.0  | 1577.1      | 53.1   | 650        | 5.51    | 1473        | 133       |
| 1910.0           | 710         | 3023.3  | 1595.4      | 52.8   | 661        | 5.61    | 1490        |           |
| 1920.0           | 709         | 2990.4  | 1590.4      | 53.2   | 658        | 5.58    | 1485        |           |
| 1930.0           | 704         | 2924.7  | 1568.5      | 53.6   | 645        | 5.47    | 1465        |           |
| 1940.0           | 707         | 2943.7  | 1579.8      | 53.7   | 652        | 5.53    | 1475        |           |
| 1950.0           | 697         | 2922.8  | 1534.5      | 52.5   | 624        | 5.29    | 1433        |           |
| 1960.0           | 707         | 2910.4  | 1579.5      | 54.3   | 651        | 5.53    | 1475        |           |
| 1970.0           | 699         | 2876.6  | 1544.4      | 53.7   | 630        | 5.34    | 1442        |           |
| 1980.0           | 705         | 2933.5  | 1569.7      | 53.5   | 645        | 5.48    | 1466        |           |
| 1990.0           | 527         | 1754.5  | 877.7       | 50.0   | 270        | 2.29    | 820         | 99        |
| 2000             | 700         | 2904.5  | 1550.6      | 53.4   | 634        | 5.38    | 1448        | 132       |
| 2000.0<br>2010.0 | 700<br>702  | 2888.0  | 1558.5      | 54.0   | 638        | 5.42    | 1455        |           |
|                  | 704         | 2938.1  | 1566.9      | 53.3   | 644        | 5.46    | 1463        |           |
| 2020.0           | 521         | 1713.5  | 857.1       | 50.0   | 260        | 2.21    | 800         |           |
| 2030.0           | 708         | 2919.6  | 1585.1      | 54.3   | 655        | 5.56    | 1480        |           |
| 2040.0           |             | 2927.3  | 1561.1      | 53.3   | 640        | 5,43    | 1458        |           |
| 2050.0           | 703<br>702  | 2936.5  | 1559.6      | 53.1   | 639        | 5,42    | 1456        |           |
| 2060.0           | 70Z<br>702  | 2941.6  | 1556.8      | 52.9   | 637<br>637 | 5.41    | 1454        |           |
| 2062.0           | 702         | C771.0  | 1990.0      | G£ € 7 | UU/        | 0,71    | I X (.) *** | A toffee  |

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS                                                               | 6788<br>3 40                                                       | .00 T                                                                                            | ADC CODE<br>IZE<br>RIP TIME<br>OTAL TURNS                                              | 517<br>12.250<br>7.3<br>180878                                                        | NOZZ<br>BIT                                                        | ERVAL<br>(LES<br>RUN<br>)ITION                               |                                                                              | 15 15<br>415.6                                              |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|
| DEPTH                                                                                                      | FLOW<br>RATE                                                       | PSP                                                                                              | PBIT                                                                                   | %PSP                                                                                  | ннр                                                                | HHP/<br>sqin                                                 | IMPACT<br>FORCE VE                                                           | JET<br>LOCITY                                               |
| 2070.0<br>2080.0<br>2090.0                                                                                 | 707<br>700<br>701                                                  | 2958.8<br>2895.0<br>2909.6                                                                       | 1579.2<br>1550.6<br>1553.4                                                             | 53.4<br>53.6<br>53.4                                                                  | 651<br>634<br>635                                                  | 5.53<br>5.38<br>5.39                                         | 1475<br>1448<br>1451                                                         | 133<br>132<br>132                                           |
| 2100.0<br>2110.0<br>2120.0<br>2120.0<br>2130.0<br>2140.0<br>2150.0<br>2160.0<br>2170.0<br>2180.0<br>2190.0 | 706<br>704<br>702<br>704<br>706<br>636<br>647<br>706<br>699<br>700 | 2963.6<br>2916.7<br>2936.7<br>2945.1<br>2936.9<br>2457.1<br>2544.6<br>2976.7<br>2932.1           | 1576.9<br>1566.5<br>1557.9<br>1564.9<br>1573.7<br>1279.1<br>1323.9<br>1574.2<br>1545.2 | 53.2<br>53.0<br>53.1<br>52.1<br>52.9<br>52.7<br>52.7                                  | 650<br>643<br>638<br>642<br>648<br>475<br>500<br>648<br>630<br>633 | 5.51<br>5.46<br>5.41<br>5.50<br>4.03<br>4.24<br>5.33<br>5.33 | 1473<br>1463<br>1455<br>1461<br>1470<br>1194<br>1236<br>1470<br>1443         | 133<br>133<br>132<br>133<br>133<br>120<br>122<br>133<br>132 |
| 2200.0<br>2210.0<br>2220.0<br>2230.0<br>2240.0<br>2250.0<br>2260.0<br>2270.0<br>2280.0                     | 701<br>700<br>701<br>696<br>703<br>703<br>697<br>701<br>698        | 2923.3<br>2944.2<br>2928.6<br>2894.4<br>2938.4<br>2931.1<br>2946.4<br>2927.8<br>2920.2<br>2934.0 | 1552.3<br>1551.0<br>1551.5<br>1532.3<br>1562.5<br>1561.2<br>1535.4<br>1555.3<br>1534.6 | 53.1<br>52.7<br>52.0<br>52.9<br>53.3<br>52.1<br>52.1<br>52.5                          | 635<br>634<br>634<br>622<br>641<br>640<br>624<br>636<br>627        | 5.38<br>5.38<br>5.28<br>5.44<br>5.43<br>5.40<br>5.29<br>5.32 | 1450<br>1448<br>1449<br>1431<br>1459<br>1458<br>1452<br>1433                 | 132<br>132<br>131<br>132<br>132<br>131<br>132<br>131        |
| 2300.0<br>2310.0<br>2320.0<br>2330.0<br>2340.0<br>2350.0<br>2360.0<br>2370.0<br>2380.0                     | 700<br>699<br>692<br>696<br>697<br>702<br>699<br>693               | 2958.9<br>2939.9<br>2884.7<br>2910.8<br>2895.9<br>2943.5<br>2976.9<br>2949.5<br>2919.8<br>2971.4 | 1547.1<br>1544.5<br>1512.5<br>1529.3<br>1529.8<br>1534.4<br>1559.0<br>1542.5<br>1544.3 | 52.3<br>52.4<br>52.45<br>52.5<br>52.1<br>52.3<br>52.3<br>52.3<br>52.3<br>52.3<br>52.3 | 631<br>630<br>610<br>621<br>621<br>624<br>639<br>613<br>630        | 5.36<br>5.38<br>5.27<br>5.27<br>5.29<br>5.42<br>5.30<br>5.34 | 1445<br>1442<br>1412<br>1428<br>1429<br>1433<br>1456<br>1440<br>1416<br>1442 | 132<br>132<br>130<br>131<br>131<br>132<br>132<br>130<br>132 |
| 2400.0<br>2410.0<br>2420.0<br>2420.0<br>2430.0<br>2450.0<br>2450.0<br>2470.0                               | 693<br>694<br>549<br>698<br>701<br>710<br>721<br>704<br>692        | 2955.0<br>2958.6<br>1916.8<br>2967.5<br>2918.7<br>2884.8<br>2930.7<br>2938.1<br>2828.9           | 1519.1<br>1524.4<br>952.9<br>1538.3<br>1552.8<br>1593.0<br>1641.4<br>1568.0            | 51.4<br>51.5<br>49.7<br>51.8<br>53.2<br>55.2<br>56.8<br>53.4                          | 614<br>618<br>305<br>626<br>635<br>660<br>690<br>644<br>612        | 5.21<br>5.24<br>2.59<br>5.39<br>5.45<br>5.47<br>5.20         | 1419<br>1424<br>890<br>1437<br>1450<br>1488<br>1533<br>1464<br>1415          | 131<br>133<br>133<br>131<br>132<br>134<br>136<br>133        |

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS                                           | 6788<br>3 20                                                | . 00                                                                                             | TADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                          | 517<br>12.250<br>7.6<br>90559                                | NOZŽ<br>BIT                                                        | RVAL<br>(LES<br>RUN<br>)ITION                        | 1!                                                                           | 2636.0<br>5 15 15<br>158.4<br>G0.250                        |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|
| DEPTH                                                                                  | FLOW<br>RATE                                                | P S P                                                                                            | PRIT                                                                                   | %PSP .                                                       | ннр                                                                | HHP/<br>sqin                                         | IMPACT<br>FORCE V                                                            | JET<br>ELOCITY                                              |
| 2480.0<br>2490.0<br>2500.0                                                             | 67 <b>4</b><br>683<br>683                                   | 2919.7<br>2882.6<br>2876.4                                                                       | 1435.6<br>1473.8<br>1475.1                                                             | 49.2<br>51.1<br>51.3                                         | 564<br>587<br>588                                                  | 4.79<br>4.98<br>4.99                                 | 1341<br>1376<br>1377                                                         | 127<br>129<br>129                                           |
| 2510.0<br>2520.0<br>2530.0<br>2540.0<br>2550.0<br>2560.0<br>2570.0<br>2580.0<br>2590.0 | 692<br>692<br>683<br>677<br>687<br>681<br>685<br>690<br>687 | 2879.4<br>2942.4<br>2846.8<br>2819.5<br>2861.5<br>2855.5<br>2855.5<br>2936.7<br>2913.6<br>2900.9 | 1512.8<br>1531.7<br>1488.6<br>1448.6<br>1490.1<br>1466.6<br>1481.2<br>1506.6<br>1491.8 | 52.5<br>52.1<br>52.3<br>51.4<br>52.1<br>51.4<br>51.4<br>51.3 | 611<br>619<br>593<br>572<br>597<br>583<br>592<br>607<br>598<br>603 | 5.18<br>5.25<br>5.85<br>5.06<br>4.95<br>5.15<br>5.15 | 1413<br>1430<br>1390<br>1353<br>1392<br>1370<br>1383<br>1407<br>1393<br>1401 | 130<br>130<br>129<br>128<br>129<br>128<br>129<br>130<br>129 |
| 2610.0<br>2620.0<br>2630.0<br>2636.0                                                   | 690<br>684<br>687<br>686                                    | 2881.5<br>2930.9<br>2916.2<br>2928.8                                                             | 1504.1<br>1477.7<br>1490.0<br>1488.4                                                   | 52.2<br>50.4<br>51.1<br>50.8                                 | 605<br>589<br>597<br>596                                           | 5.14<br>5.00<br>5.06<br>5.06                         | 1405<br>1380<br>1391<br>1390                                                 | 130<br>129<br>129<br>129                                    |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOURS                                           | 6637<br>5 52                                                | .00                                                                                              | IADC CODE<br>BIZE<br>TRIP TIME<br>TOTAL TURNS                                          | 537<br>12.250<br>8.2<br>214055                               | NOZZ<br>BIT                                                        | ERVAL<br>ZLES<br>RUN<br>DITION                       | 1                                                                            | 2901.0<br>5 15 15<br>265.0<br>G0.250                        |
| DEPTH                                                                                  | FLOW<br>RATE                                                | m m m                                                                                            |                                                                                        |                                                              |                                                                    | 11115                                                | TMDACT                                                                       | .b. E A.                                                    |
|                                                                                        |                                                             | PSP                                                                                              | PRIT                                                                                   | %PSP                                                         | ННР                                                                | HHP/<br>sqin                                         | IMPACT<br>FORCE V                                                            | JET<br>ELOCITY                                              |
| 2640.0<br>2650.0<br>2660.0<br>2670.0<br>2680.0<br>2690.0                               | 315<br>688<br>688<br>691<br>695<br>657                      | 1620.4<br>3010.7<br>3022.2<br>3043.3<br>2968.8<br>2766.9                                         |                                                                                        | XPSP 19.4 49.7 49.5 49.5 51.4 49.2                           | HHP 58 601 600 607 619 522                                         |                                                      | FORCE V                                                                      |                                                             |

| DEPTH                                                                        | FLOW<br>RATE                                                | PSP                                                                                    | PRIT                                                                         | %PSP                                                                 | ННЬ                                                  | HHP/<br>sqin                                                 | IMPACT<br>FORCE                                              | JET<br>VELOCITY                                      |
|------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
| 2800.0<br>2810.0<br>2820.0<br>2830.0<br>2840.0<br>2850.0<br>2860.0<br>2870.0 | 680<br>679<br>681<br>685<br>621<br>681<br>683<br>689<br>680 | 3026.4<br>2964.6<br>2991.9<br>2990.7<br>2463.0<br>3055.5<br>2988.4<br>3023.5<br>3016.1 | 1459.8<br>1456.7<br>1464.5<br>1484.5<br>1218.6<br>1464.4<br>1474.0<br>1498.8 | 48.2<br>49.1<br>48.9<br>49.6<br>49.5<br>47.9<br>49.3<br>49.6<br>48.4 | 579<br>577<br>582<br>593<br>441<br>587<br>602<br>579 | 4.91<br>4.90<br>4.93<br>5.04<br>3.75<br>4.98<br>5.11<br>4.92 | 1363<br>1360<br>1368<br>1386<br>1138<br>1367<br>1376<br>1400 | 128<br>128<br>128<br>129<br>117<br>128<br>129<br>130 |
| 2870.0                                                                       | 691                                                         | 3015.6                                                                                 | 1508.7                                                                       | 50.0                                                                 | 608                                                  | 5.16                                                         | 1409                                                         | 130                                                  |
| 2900.0<br>2901.0                                                             | 683<br>683                                                  | 2974.9<br>2981.9                                                                       | 1475.5<br>1472.9                                                             | 49.6<br>49.4                                                         | 588<br>587                                           | 4,99<br>4,98                                                 | 1378<br>1375                                                 | 129<br>129                                           |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOUR                                  | 6637<br>S 22                                                | .00 T                                                                                  | ADC CODE<br>IZE<br>RIP TIME<br>OTAL TURNS                                    | 537<br>12.250<br>8.4<br>92542                                        | NOZ<br>BIT                                           | ERVAL<br>ZLES<br>RUN<br>DITION                               |                                                              | 0- 3021.0<br>15 15 15<br>120.0<br>02 G0.000          |
| DEPTH                                                                        | FLOW<br>RATE                                                | PSP                                                                                    | тіщч                                                                         | %PSP                                                                 | ннр                                                  | HHP/<br>sqin                                                 | IMPACT<br>FORCE                                              | JET<br>VELOCITY                                      |
| 2910.0<br>2920.0<br>2930.0<br>2940.0<br>2950.0<br>2960.0<br>2970.0           | 683<br>685<br>680<br>681<br>682<br>681<br>668               | 3015.9<br>3070.3<br>3043.3<br>3036.1<br>3032.1<br>3031.6<br>3028.2<br>2999.8           | 1474.8<br>1483.8<br>1462.3<br>1462.6<br>1464.7<br>1470.3<br>1464.0<br>1412.2 | 48.9<br>48.3<br>48.0<br>48.2<br>48.3<br>48.5<br>48.3                 | 588<br>593<br>580<br>582<br>585<br>581<br>551        | 4.99<br>5.03<br>4.92<br>4.92<br>4.94<br>4.96<br>4.93         | 1377<br>1386<br>1365<br>1366<br>1368<br>1373<br>1367         | 129<br>129<br>128<br>128<br>128<br>128<br>128        |
| 2990.0<br>3000.0<br>3010.0<br>3020.0<br>3021.0                               | 534<br>670<br>681<br>533<br>532                             | 2012.9<br>3022.7<br>2991.0<br>1947.2<br>1947.0                                         | 900.9<br>1420.8<br>1464.7<br>896.5<br>894.2                                  | 44.8<br>47.0<br>49.0<br>46.0<br>45.9                                 | 281<br>556<br>582<br>279<br>277                      | 2.38<br>4.72<br>4.94<br>2.36<br>2.35                         | 841<br>1327<br>1368<br>837<br>835                            | 101<br>126<br>128<br>100<br>100                      |

## (f), COMPUTER DATA LISTING : LIST D

INTERVAL . . . . . . . . 10m averages.

DEPTH . . . . . . . . Well depth, in metres.

SPM1 . . . . . . . . . Stroke rate per minute, for Pump no.1

SPM2 . . . . . . . . . . Stroke rate per minute, for Pump no.2.

FLOW RATE . . . . . . Mud flow rate into the well, in gallons

## ANNULAR VELOCITIES : (in metres per minute)

DC/OH - Between drill collars and the open hole.

per minute.

DC/CSG - Between drill collars and casing.

HW/OH - Between heavyweight drill pipe and the open hole.

HW/CSG - Between heavyweight drill pipe and casing.

DP/OH - Between drill pipe and open hole.

DP/CSG - Between drill pipe and casing.

DP/RIS - Between drill pipe and riser.

| DEPTH SPM1 SPM2 RATE OH CSG OH CSG RIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BIT NUMBER<br>HTC OSC3A<br>COST<br>TOTAL HOUR | 0H" 85&T<br>0 | . 0 0 | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR | 24  | 5.000<br>2.4 | NOZZ<br>BIT | ERVAL<br>ZLES<br>RUN<br>DITION |     |       | 18 18<br>135.  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------|-------|---------------------------------------------|-----|--------------|-------------|--------------------------------|-----|-------|----------------|
| 90.0 74 0 368 4 4 4 100.0 52 27 374 5 5  110.0 105 72 882 11 10 120.0 89 84 863 11 10 130.0 98 90 941 11 11 140.0 100 93 963 12 11 150.0 99 92 952 12 11 11 160.0 99 94 964 12 11 11 110 11 11 120.0 89 98 90 941 11 11 150.0 99 92 952 12 11 11 160.0 99 93 959 12 11 11 170.0 99 93 959 12 11 11 180.0 99 93 959 12 11 11 190.0 97 94 964 12 11 11 11 200.0 99 94 964 12 11 11 11 200.0 99 94 964 12 11 11 11 209.0 100 94 970 12 11 11  BIT NUMBER 2 IADC CODE 111 INTERVAL 289.0-806.0 HTC OSC34J 51 51 52 52 52 52 60 60 CSG 0H CSG | DEPTH                                         | SPM1          | SPMZ  |                                             |     |              |             | HW/<br>CSG                     |     |       |                |
| 100.0   52   27   374   5   5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80.0                                          | 73            | 0     | 363                                         | ·4  |              | 4           |                                |     |       |                |
| 110.0 105 72 882 11 10 10 12 13 13 13 10 13 13 10 10 13 13 10 10 10 98 84 863 11 11 11 11 11 11 11 15 10 10 93 963 12 11 11 11 15 10 10 93 963 12 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |               |       |                                             | 4   |              |             |                                |     |       |                |
| 120.0 89 84 863 11 10 11 11 11 13 140.0 100 93 963 12 11 11 11 150.0 99 97 92 952 12 11 11 11 11 150.0 99 97 92 952 12 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.0                                         | 52            | 27    | 394                                         | 5   |              | 5           |                                |     |       |                |
| 130.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.0                                         | 105           |       | 882                                         |     |              |             |                                |     |       |                |
| 140.0 100 93 963 12 11 150.0 99 92 952 12 11 11 160.0 99 92 95 12 11 11 170.0 99 93 959 12 11 11 180.0 99 93 959 12 11 11 190.0 97 94 964 12 11 11 190.0 97 94 964 12 11 11 200.0 99 94 964 12 11 11 200.0 99 94 964 12 11 11 209.0 100 94 970 12 11 11  BIT NUMBER 2 IADC CODE 111 INTERVAL 209.0- 806.0 HTC OSC3AJ SIZE 17.500 NOZZLES 20 20 20 COST 4442.00 TRIP TIME 3.7 BIT RUN 5797.0 TOTAL HOURS 12.77 TOTAL TURNS 106641 CONDITION T2 B2 G0.000  FLOW DEPTH SPM1 SPM2 RATE OH CSG OH CSG OH CSG OH CSG RIS  210.0 99 94 964 24 21 21 17 230.0 96 92 939 29 24 21 21 17 240.0 85 80 825 25 20 18 18 18 15 250.0 97 93 946 29 24 21 21 17 240.0 85 80 825 25 20 18 18 18 15 250.0 97 93 946 29 24 21 21 17 240.0 85 80 825 25 20 18 18 18 15 250.0 97 93 946 29 23 21 21 17 240.0 100 94 967 30 24 21 21 17 240.0 100 97 98 94 964 29 23 21 21 17 240.0 100 94 967 30 24 21 21 17 250.0 100 97 93 946 29 23 21 21 17 260.0 100 94 967 30 24 21 21 17 270.0 100 92 962 30 24 21 21 17 280.0 100 94 967 30 24 21 21 17 280.0 100 97 969 30 24 21 21 17 280.0 100 97 969 30 24 21 21 17 280.0 100 98 91 947 29 23 21 21 17 280.0 100 99 91 947 29 23 21 21 17 280.0 100 99 91 947 29 23 21 21 17 280.0 100 99 91 947 29 23 21 21 17 360.0 98 91 947 29 23 25 21 21 17 360.0 96 92 940 29 25 25 25 21 17 360.0 96 92 940 29 25 25 25 21 17 360.0 96 92 940 29 25 25 25 21 17 360.0 96 92 940 29 25 25 25 21 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.0                                         |               |       |                                             |     |              |             |                                |     |       |                |
| 150.0 99 92 952 12 11 11 11 11 160.0 99 94 964 12 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| 160.0 99 94 964 12 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |               |       |                                             |     |              |             |                                | 4 4 |       |                |
| 170.0 99 93 958 12 11 11 11 11 180.0 99 93 959 12 11 11 11 11 11 12 11 12 12 10 0.0 97 94 954 12 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| 180.0 99 93 959 12 11 11 11 12 190.0 97 94 954 12 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| 170.0 97 94 964 12 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| 200.0 97 94 964 12 11 11  BIT NUMBER 2 IADC CODE 111 INTERVAL 209.0—886.0 MOZZLES 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| BIT NUMBER 2 IADC CODE 1111 INTERVAL 209.0- 806.0 HTC OSC3AJ 5IZE 17.500 NOZZLES 20 20 20 COST 4442.00 TRIP TIME 3.7 BIT RUN 597.0 TOTAL HOURS 12.77 TOTAL TURNS 106641 CONDITION T2 B2 G0.000 TOTAL HOURS 12.77 TOTAL TURNS 106641 CONDITION T2 B2 G0.000 TOTAL HOURS 12.77 TOTAL TURNS 106641 CONDITION T2 B2 G0.000 TOTAL HOURS 12.77 TOTAL TURNS 106641 CONDITION T2 B2 G0.000 TOTAL HOURS 12.77 TOTAL TURNS 106641 CONDITION T2 B2 G0.000 T2 G0.0000  T2 G0.0000 T2 G0.0000 T2 G0.0000 T2 G0.0000 T2 G0.00000 T2 G0.0000 T2 G0.00 |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| HTC OSC3AJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 209.0                                         | 100           | 94    | 970                                         | 12  |              | 11          |                                | 11  |       |                |
| DEPTH SPM1 SPM2 RATE OH CSG OH CSG OH CSG RIS  210.0 99 94 964 24 21 17  220.0 97 93 950 29 24 21 21 17  230.0 96 92 939 29 23 21 21 17  240.0 85 80 825 25 20 18 18 18 15  250.0 97 93 946 29 23 21 21 17  260.0 102 91 964 30 24 21 21 17  270.0 100 94 967 30 24 21 21 17  280.0 100 91 957 30 24 21 21 17  280.0 100 92 962 30 24 21 21 17  270.0 100 92 962 30 24 21 21 17  300.0 100 92 962 30 24 21 21 17  300.0 100 92 961 30 24 21 21 17  300.0 100 92 961 30 24 21 21 17  300.0 98 91 947 29 23 21 21 17  320.0 98 91 947 29 23 21 17  320.0 99 91 949 29 25 21 21 17  330.0 101 92 965 30 26 21 21 17  340.0 100 91 958 30 25 25 21 17  350.0 96 92 937 29 25 25 21 17  360.0 96 92 937 29 25 25 21 17  360.0 96 92 940 29 25 25 21 17  360.0 96 92 940 29 25 25 21 17  360.0 96 92 940 29 25 25 21 17  370.0 95 97 960 30 26 26 26 21 17  380.0 93 96 945 29 25 25 21 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HTC OSC3A<br>COST                             | J<br>4442     | . 0 0 | SIZE<br>TRIP TIME                           | 1.  | 7.500<br>3.7 | NOZ:<br>BIT | ZLES<br>RUN                    |     | 20    | 20 20<br>597.0 |
| 220.0 97 93 950 29 24 21 21 17 230.0 96 92 939 29 23 21 21 17 240.0 85 80 825 25 20 18 18 15 250.0 97 93 946 29 23 21 21 17 260.0 102 91 964 30 24 21 21 17 270.0 100 94 967 30 24 21 21 17 280.0 100 91 957 30 24 21 21 17 290.0 100 92 962 30 24 21 21 17 290.0 100 92 962 30 24 21 21 17 310.0 98 91 947 29 23 21 21 17 320.0 99 91 949 29 25 21 21 17 330.0 101 92 965 30 26 21 21 17 330.0 101 92 965 30 26 21 21 17 330.0 100 91 958 30 26 21 21 17 330.0 100 91 958 30 25 25 21 17 330.0 96 92 937 29 25 25 21 17 360.0 96 92 937 29 25 25 21 17 370.0 95 97 960 30 26 26 26 21 17 370.0 95 97 960 30 26 26 26 21 17 380.0 93 96 945 29 25 25 21 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DEPTH                                         | SPM1          | SPM2  |                                             |     |              |             |                                |     |       |                |
| 220.0 97 93 950 29 24 21 21 17 230.0 96 92 939 29 23 21 21 17 240.0 85 80 825 25 20 18 18 15 250.0 97 93 946 29 23 21 21 17 260.0 102 91 964 30 24 21 21 17 270.0 100 94 967 30 24 21 21 17 280.0 100 91 957 30 24 21 21 17 290.0 100 92 962 30 24 21 21 17 270.0 100 92 962 30 24 21 21 17 310.0 98 91 947 29 23 21 21 17 320.0 99 91 947 29 23 21 21 17 330.0 101 92 965 30 24 21 21 17 330.0 101 92 965 30 24 21 21 17 330.0 101 92 965 30 26 21 21 17 330.0 100 91 958 30 26 21 21 17 340.0 100 91 958 30 25 25 21 17 350.0 96 92 937 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 370.0 95 97 960 30 26 26 26 21 17 380.0 93 96 945 29 25 25 21 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 210.0                                         | 99            | 94    | 964                                         |     | 24           |             | 21                             |     |       | 17             |
| 230.0       96       92       939       29       23       21       21       17         240.0       85       80       825       25       20       18       18       15         250.0       97       93       946       29       23       21       21       17         260.0       102       91       964       30       24       21       21       17         270.0       100       94       967       30       24       21       21       17         280.0       100       91       957       30       24       21       21       17         290.0       100       92       962       30       24       21       21       17         310.0       98       91       947       29       23       21       21       17         320.0       99       91       947       29       23       21       21       17         330.0       101       92       965       30       26       21       21       17         340.0       100       91       958       30       25       25       21       17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |               |       | 950                                         | 29  |              |             |                                |     | 21    | 17             |
| 240.0       85       80       825       25       20       18       18       15         250.0       97       93       946       29       23       21       21       17         260.0       102       91       964       30       24       21       21       17         270.0       100       94       967       30       24       21       21       17         280.0       100       91       957       30       24       21       21       17         290.0       100       92       962       30       24       21       21       17         310.0       100       92       961       30       24       21       21       17         310.0       98       91       947       29       23       21       21       17         320.0       99       91       947       29       25       21       21       17         330.0       101       92       965       30       26       21       21       17         340.0       100       91       958       30       25       25       21       17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |               |       |                                             |     |              |             | 21                             |     | 21    |                |
| 260.0       102       91       964       30       24       21       21       17         270.0       100       94       967       30       24       21       21       17         280.0       100       91       957       30       24       21       21       17         290.0       100       92       962       30       24       21       21       17         300.0       100       92       961       30       24       21       21       17         310.0       98       91       947       29       23       21       21       17         320.0       98       91       947       29       23       21       21       17         320.0       99       91       949       29       25       21       21       17         330.0       101       92       965       30       26       21       21       17         340.0       100       91       958       30       25       25       25       21       17         350.0       96       92       937       29       25       25       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 240.0                                         |               |       |                                             |     |              |             |                                |     |       |                |
| 270.0 100 94 967 30 24 21 21 17 280.0 100 91 957 30 24 21 21 17 290.0 100 92 962 30 24 21 21 17 21 17 310.0 98 91 947 29 23 21 21 17 320.0 99 91 949 29 25 21 21 17 340.0 100 91 958 30 26 21 21 17 350.0 96 92 937 29 25 25 21 17 350.0 96 92 940 29 25 25 21 17 37 360.0 96 92 940 29 25 25 25 21 17 37 370.0 95 97 960 30 26 26 26 21 17 380.0 93 96 945 29 25 25 25 21 17 380.0 93 96 945 29 25 25 25 21 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| 280.0 100 91 957 30 24 21 21 17 290.0 100 92 962 30 24 21 21 17 21 17 310.0 98 91 947 29 23 21 21 17 320.0 99 91 949 29 25 21 21 17 330.0 101 92 965 30 26 21 21 17 340.0 100 91 958 30 25 25 21 17 350.0 96 92 937 29 25 25 21 17 350.0 96 92 937 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 370.0 95 97 960 30 26 26 26 21 17 380.0 93 96 945 29 25 25 25 21 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| 290.0     100     92     962     30     24     21     21     17       300.0     100     92     961     30     24     21     21     17       310.0     98     91     947     29     23     21     21     17       320.0     99     91     949     29     25     21     21     17       330.0     101     92     965     30     26     21     21     17       340.0     100     91     958     30     25     25     21     17       350.0     96     92     937     29     25     25     21     17       360.0     96     92     940     29     25     25     21     17       370.0     95     97     960     30     26     26     21     17       380.0     93     96     945     29     25     25     21     17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| 300.0 100 92 961 30 24 21 21 17 310.0 98 91 947 29 23 21 21 17 320.0 99 91 949 29 25 21 21 17 330.0 101 92 965 30 26 21 21 17 340.0 100 91 958 30 25 25 21 17 350.0 96 92 937 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 370.0 95 97 960 30 26 26 26 21 17 380.0 93 96 945 29 25 25 25 21 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| 310.0     98     91     947     29     23     21     21     17       320.0     99     91     949     29     25     21     21     17       330.0     101     92     965     30     26     21     21     17       340.0     100     91     958     30     25     25     21     17       350.0     96     92     937     29     25     25     21     17       360.0     96     92     940     29     25     25     21     17       370.0     95     97     960     30     26     26     21     17       380.0     93     96     945     29     25     25     21     17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 290.0                                         | 1 (1 (1       | 76    | 702                                         | 3.0 | 62.44        |             | ez k                           |     | az. I | 1.7            |
| 320.0     99     91     949     29     25     21     21     17       330.0     101     92     965     30     26     21     21     17       340.0     100     91     958     30     25     25     21     17       350.0     96     92     937     29     25     25     21     17       360.0     96     92     940     29     25     25     21     17       370.0     95     97     960     30     26     26     21     17       380.0     93     96     945     29     25     25     21     17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| 330.0     101     92     965     30     26     21     17       340.0     100     91     958     30     25     25     21     17       350.0     96     92     937     29     25     25     21     17       360.0     96     92     940     29     25     25     21     17       370.0     95     97     960     30     26     26     21     17       380.0     93     96     945     29     25     25     21     17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |               |       |                                             |     | 23           | ,, p        |                                |     |       |                |
| 340.0     100     91     958     30     25     25     21     17       350.0     96     92     937     29     25     25     21     17       360.0     96     92     940     29     25     25     21     17       370.0     95     97     960     30     26     26     21     17       380.0     93     96     945     29     25     25     21     17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| 350.0 96 92 937 29 25 25 21 17<br>360.0 96 92 940 29 25 25 21 17<br>370.0 95 97 960 30 26 26 21 17<br>380.0 93 96 945 29 25 25 21 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |               |       |                                             |     |              |             | t X                            | 25  |       |                |
| 360.0     96     92     940     29     25     25     21     17       370.0     95     97     960     30     26     26     21     17       380.0     93     96     945     29     25     25     21     17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| 370.0     95     97     960     30     26     26     21     17       380.0     93     96     945     29     25     25     21     17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |               |       |                                             |     |              |             |                                |     |       |                |
| 380.0 93 96 945 29 25 25 21 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |               |       |                                             |     |              |             |                                |     |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |               |       |                                             |     |              |             |                                |     |       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |               |       |                                             |     |              |             |                                | 26  | 21    | 17             |

.

|       |      |           | FLOW        | DCZ | DCZ | HW/ | HW/ | DP/      | DP/         | DP/      |
|-------|------|-----------|-------------|-----|-----|-----|-----|----------|-------------|----------|
| DEPTH | SPM1 | SPM2      | RATE        | OH  | csc | OH  | CSG | ОН       | CSG         | RIS      |
| 400.0 | 97   | 94        | 954         | 29  |     | 25  |     | 25       | 21          | 17       |
| 410.0 | 99   | 96        | 974         | 3.0 |     | 26  | •   | 26       | 21          | 17       |
| 420.0 | 95   | 96        | 957         | 3.0 |     | 25  |     | 25       | 21          | 17       |
| 430.0 | 97   | 96        | 966         | 3.0 |     | 26  |     | 26       | 21          | 17       |
| 440.0 | 97   | 96        | 965         | 30  |     | 26  |     | 26       | 21          | 17       |
| 450.0 | 96   | 96        | 961         | 30  |     | 26  |     | 26       | 21          | 17       |
| 460.0 | 96   | 97        | 967         | 30  |     | 26  |     | 26       | 21          | 17       |
| 470.0 | 97   | 97        | 972         | 30  | •   | 26  |     | 26       | 21          | 17       |
| 480.0 | 96   | 98        | 968         | 30  |     | 26  |     | 26       | 21          | 17       |
| 490.0 | 97   | 92        | 946         | 29  |     | 25  |     | 25       | 21          | 17       |
| 500.0 | 96   | 97        | 967         | 30  |     | 26  |     | 26       | 21          | 17       |
| 510.0 | 96   | 97        | 966         | 3.0 |     | 56  |     | 26       | 21          | 17       |
| 520.0 | 98   | 97        | 977         | 30  |     | 26  |     | 26       | 21          | . 18     |
| 530.0 | 96   | 96        | 962         | 30  |     | 26  |     | 26       | 21          | 17       |
| 540.0 | 97   | 96        | 966         | 30  |     | 26  |     | 26       | 21          | 17       |
| 550.0 | 96   | 98        | 969         | 30  |     | 26  |     | 26       | 21          | 17<br>17 |
| 560.0 | 96   | 96        | 960         | 30  |     | 26  |     | 26       | 21          | 17       |
| 570.0 | 96   | 22        | 941         | 29  |     | 25  |     | 25       | 21          | 18       |
| 580.0 | 98   | 98        | 981         | 30  |     | 26  |     | 26<br>26 | 22<br>21    | 17       |
| 590.0 | 97   | 98        | 972         | 30  |     | 26  |     | 20       | <i>a.</i> 1 | 1 /      |
| 600.0 | 97   | 98        | 974         | 30  |     | 26  |     | 26       | 21          | 18       |
| 610.0 | 97   | 96        | 969         | 30  |     | 26  |     | 26       | 21          | 17       |
| 620.0 | 96   | 96        | 960         | 30  |     | 26  |     | 26       | 21          | 17       |
| 630.0 | 96   | <u>96</u> | 960         | 30  |     | 26  |     | 26       | 21          | 17       |
| 640.0 | 98   | 97        | 925         | 30  |     | 26  |     | 26       | 21          | 18       |
| 650.0 | 94   | 96        | 953         | 29  |     | 25  |     | 25       | 21          | 17       |
| 660.0 | 96   | 98        | 967         | 30  |     | 26  |     | 26       | 21          | 17<br>17 |
| 670.0 | 97   | 91        | 940         | 29  |     | 25  |     | 25       | 21          |          |
| 680.0 | 96   | 97        | 965         | 30  |     | 26  |     | 26       | 21          | 17<br>18 |
| 690.0 | 97   | 78        | 976         | 30  |     | 26  |     | 26       | 21          | 7.43     |
| 700.0 | 96   | 97        | 966         | 30  |     | 26  |     | 26       | 21          | 17       |
| 710.0 | 96   | 97        | 964         | 30  |     | 26  |     | 26       | 21          | 17       |
| 720.0 | 96   | 97        | 969         | 30  |     | 26  |     | 26       | 21          | 17       |
| 730.0 | 96   | 97        | 966         | 30  |     | 26  |     | 26       | 21          | 17       |
| 740.0 | 97   | 96        | 966         | 30  |     | 26  |     | 26       | 21          | 17       |
| 750.0 | 96   | 96        | 962         | 30  |     | 26  |     | 26       | 21          | 17       |
| 760.0 | 90   | 97        | 934         | 29  |     | 25  |     | 25       | 20          | 17       |
| 770.0 | 96   | 97        | 968         | 30  |     | 26  |     | 26       | 21          | 17       |
| 780.0 | 94   | 97        | 95 <b>4</b> | 29  |     | 25  |     | 25<br>25 | 21          | 17       |
| 790.0 | 95   | 97        | 958         | 30  |     | 25  |     | 25       | 21          | 17       |
| 800.0 | 94   | 97        | 958         | 3.0 |     | 25  |     | 25       | 21          | 17       |
| 806.0 | 96   | 96        | 964         | 30  |     | 26  |     | 26       | 21          | 17       |
|       |      |           |             |     |     |     |     |          |             |          |

|   | BIT NUMBER<br>HTC X3A<br>COST<br>TOTAL HOUR                                            | 2201<br>S 22                                 | 3<br>.00<br>.01                                          | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR                        | 1                                            | 114<br>2.250<br>5.7<br>96061 | NOZZ<br>BIT                             | ERVAL<br>ZLES<br>RUN<br>DITION         |                                              |                                              | 16 18<br>945.0                               |
|---|----------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
|   | DEPTH                                                                                  | SPM1                                         | SPM2                                                     | FLOW<br>RATE                                                       | DC/<br>OH                                    | DC/                          | HW/<br>HO                               | HW/<br>CSG                             | DP/<br>OH                                    | DP/<br>CSG                                   | DP/<br>RIS                                   |
|   | 810.0<br>820.0<br>830.0                                                                | 8 <b>4</b><br>85<br>86                       | 87<br>86<br>88                                           | 853<br>856<br>870                                                  | 74<br>74<br>76                               | 67<br>67<br>68               |                                         | 48<br>48<br>48                         |                                              | 48<br>49<br>48                               | 15<br>15<br>16                               |
|   | 840.0<br>850.0<br>860.0<br>870.0<br>880.0                                              | 93<br>92<br>94<br>93<br>94                   | 94<br>93<br>92<br>93<br>93                               | 932<br>925<br>928<br>930<br>932                                    | 81<br>80<br>81<br>81<br>81                   | 73<br>73<br>73<br>73<br>73   |                                         | 52<br>52<br>52<br>52<br>52             |                                              | 500055                                       | 17<br>17<br>17<br>17<br>17                   |
|   | 890.0<br>900.0<br>910.0<br>920.0<br>930.0                                              | 94<br>93<br>93<br>92<br>94                   | 91<br>92<br>91<br>91<br>91                               | 922<br>925<br>921<br>914<br>925                                    | 80<br>80<br>80<br>79<br>80                   | 72<br>73<br>72<br>72<br>73   |                                         | 51<br>52<br>51<br>51<br>52             |                                              | 51<br>52<br>51<br>51<br>52                   | 17<br>17<br>17<br>16<br>17                   |
|   | 940.0<br>950.0<br>960.0<br>970.0<br>980.0<br>990.0                                     | 93<br>92<br>93<br>93<br>94<br>92<br>93       | 92<br>92<br>92<br>92<br>91<br>92<br>90                   | 924<br>922<br>925<br>925<br>926<br>911                             | 80<br>80<br>80<br>80<br>80<br>80             | 73<br>72<br>73               | 55<br>55<br>54                          | 51<br>51<br>52<br>52<br>52<br>51<br>51 |                                              | 51<br>52<br>52<br>51<br>51                   | 17<br>17<br>17<br>17<br>17<br>17             |
|   | 1010.0<br>1020.0<br>1030.0                                                             | 92<br>90<br>93                               | 90<br>91<br>91                                           | 909<br>905<br>920                                                  | 79<br>79<br>80                               |                              | 54<br>54<br>55                          | 51<br>50<br>51                         |                                              | 51<br>50<br>51                               | 16<br>16<br>17                               |
|   | 1040.0<br>1050.0<br>1060.0<br>1070.0<br>1080.0<br>1100.0<br>1110.0<br>1120.0<br>1130.0 | 92<br>89<br>90<br>89<br>88<br>87<br>88<br>88 | 89<br>90<br>89<br>88<br>89<br>87<br>87<br>86<br>86       | 903<br>894<br>893<br>887<br>883<br>871<br>880<br>875<br>873<br>868 | 78<br>78<br>77<br>77<br>76<br>76<br>75       |                              | 4 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 50                                     | 53<br>53<br>53<br>52<br>52<br>52<br>52<br>52 | 50<br>50<br>50<br>49<br>49<br>49<br>49<br>49 | 16<br>16<br>16<br>16<br>16<br>16<br>16       |
| • | 1140.0<br>1150.0<br>1160.0<br>1170.0<br>1180.0<br>1190.0<br>1200.0<br>1210.0<br>1220.0 | 87<br>87<br>87<br>88<br>87<br>88<br>87<br>87 | 84<br>88<br>87<br>86<br>86<br>83<br>86<br>85<br>86<br>84 | 855<br>873<br>867<br>863<br>869<br>854<br>869<br>867<br>854        | 74<br>76<br>75<br>75<br>75<br>75<br>75<br>74 |                              | 51<br>522<br>552<br>552<br>552<br>551   |                                        | 51<br>52<br>52<br>52<br>51<br>51<br>51<br>51 | 48<br>49<br>48<br>48<br>48<br>48<br>48<br>48 | 15<br>16<br>16<br>16<br>16<br>15<br>16<br>15 |

| DEPTH            | SPM1     | SPM2             | FLOW<br>RATE | DC/<br>OH | pc/<br>csg | НW/<br>ОН | CSG<br>HW/ | NP/<br>HO | DP/<br>CSG | DP/<br>RIS |
|------------------|----------|------------------|--------------|-----------|------------|-----------|------------|-----------|------------|------------|
|                  |          |                  |              |           |            |           |            | 52        | 40         | 16         |
| 1240.0           | 88       | 85               | 867<br>863   | 75<br>75  |            | 52<br>52  |            | 52<br>52  | 48<br>48   | 16         |
| 1250.0           | 89<br>89 | 8 <b>4</b><br>85 | 871          | 76<br>76  |            | 52        | •          | 52        | 49         | 16         |
| 1260.0<br>1270.0 | 88       | 85               | 868          | 75<br>75  |            | 52        |            | 52        | 48         | 16         |
| 1280.0           | 88       | 86               | 869          | 25        |            | 52        |            | 52        | 48         | 16         |
| 1290.0           | 89       | 86               | 876          | 76        |            | 52        |            | 52        | 49         | 16         |
|                  | 87       | 87               | 870          | 76        |            | 52        |            | 52        | 48         | 16         |
| 1310.0           | 87       | 88               | 870          | 76        |            | 52        |            | 52        | 48         | 16         |
| 1320.0           | 86       | 87               | 865          | 75        |            | 52        |            | 52        | 48         | 16         |
| 1330.0           | 89       | 87               | 880          | 76        |            | 53        |            | 53        | 49         | 16         |
| 1340.0           | 87       | 87               | 872          | 76        |            | 52        |            | 52        | 49         | 16         |
| 1350.0           | 87       | 87               | 868          | 75        |            | 52        |            | 52        | 48         | 16         |
| 1360.0           | 87       | 86               | 863          | 75        |            | 52        |            | 52        | 48         | 15         |
| 1370.0           | 87       | 87               | 870          | 76        |            | 52        |            | 52        | 48         | 16         |
| 1380.0           | 87       | 86               | 867          | 75        |            | 52<br>51  |            | 52<br>51  | 48<br>47   | 16<br>15   |
| 1390.0           | 86       | 83<br>85         | 847<br>848   | 74<br>74  |            | 5 i       |            | 51        | 47         | 15         |
| 1400.0           | 85<br>86 | 86               | 860          | 75        |            | 51        |            | 51        | 48         | 15         |
| 1410.0<br>1420.0 | 84       | 87               | 854          | 74        |            | 51        |            | 5 i       | 48         | 15         |
| 1430.0           | 86       | 86               | 860          | 75        |            | 5 î       |            | 51        | 48         | 15         |
|                  |          |                  |              | P A       |            | 51        |            | 51        | 47         | 15         |
| 1440.0           | 84       | 86               | 851<br>845   | 74<br>73  |            | 51        |            | 51        | 47         | 15         |
| 1450.0           | 84<br>85 | 85<br>86         | 854          | 74        |            | 51        |            | 51        | 48         | 15         |
| 1460.0<br>1470.0 | 83       | 84               | 834          | 72        |            | 50        |            | 50        | 46         | 15         |
| 1480.0           | 84       | 83               | 835          | 73        |            | 50        |            | 50        | 47         | 15         |
| 1490.0           | 84       | 85               | 844          | 23        |            | 50        |            | 50        | 47         | 15         |
| 1500.0           | 84       | 85               | 846          | 73        |            | 51        |            | 51        | 47         | 15         |
| 1510.0           | 84       | 85               | 846          | 73        |            | 51        |            | 51        | 47         | 15         |
| 1520.0           | 84       | 84               | 841          | 73        |            | 50        |            | 50        | 47         | 15         |
| 1530.0           | 84       | 84               | 840          | 73        |            | 50        |            | 50        | 47         | 15         |
| 1540.0           | 83       | 85               | 841          | 73        |            | 50        |            | 50        | 47         | 15         |
| 1550.0           | 84       | 85               | 844          | 73        |            | 50        |            | 50        | 47         | 15         |
| 1560.0           | 84       | 85               | 841          | 73        |            | 50<br>50  |            | 50<br>50  | 47<br>47   | 15<br>15   |
| 1570.0<br>1580.0 | 84<br>84 | 84<br>84         | 838<br>837   | 73<br>73  |            | 50<br>50  |            | 50        | 47         | 15         |
| 1590.0           | 83       | 84               | 835          | 72        |            | 50        |            | 50        | 47         | 15         |
| 1600.0           | 81       | 82               | 817          | 71        |            | 49        |            | 49        | 46         | 15         |
| 1610.0           | 80       | 84               | 821          | 71        |            | 49        |            | 49        | 46         | 15         |
| 1620.0           | 81       | 83               | 818          | 71        |            | 49        |            | 49        | 46         | 15         |
| 1630.0           | 80       | 84               | 822          | 71        |            | 49        |            | 49        | 46         | 15         |
| 1640.0           | 81       | 83               | 816          | 71        |            | 49        |            | 49        | 45         | 15         |
| 1650.0           | 75       | 83               | 791          | 69        |            | 47        |            | 47        | 44         | 14         |
| 1660.0           | 80       | 84               | 824          | 72        |            | 49        |            | 49        | 46         | 15         |
| 1670.0           | 80       | 82               | 811          | 70        |            | 48        |            | 48        | 45<br>45   | 15         |
| 1680.0           | 79<br>70 | 82               | 806          | 70<br>40  |            | 48<br>48  |            | 48<br>48  | 45<br>44   | 14<br>14   |
| 1690.0<br>1700.0 | 79<br>80 | 80<br>82         | 797<br>809   | 69<br>70  |            | 48        |            | 48        | 45         | 15         |
| 1710.0           | 80       | 81               | 803          | 70        |            | 48        |            | 48        | 45         | 14         |
| 1720.0           | 78       | 82               | 802          | 70        |            | 48        |            | 48        | 45         | 14         |
| 1730.0           | 78       | 81               | 797          | 69        |            | 48        |            | 48        | 44         | 14         |
|                  |          |                  |              |           |            |           |            |           |            |            |

water to the grant of

| vs. im rs. vrt l. l | CD M4 | SPM2  | FLOW<br>RATE | DC/<br>HO    | DC/<br>CSG | HW/<br>OH | HW/<br>CSG | DP/<br>OH | DP/<br>CSG | DP/<br>RIS |
|---------------------|-------|-------|--------------|--------------|------------|-----------|------------|-----------|------------|------------|
| DEPTH               | SPM1  | ar m. | 15 17 1 1    | 4.23.1       | 121212     | (2)11     | 121212     | V-11      | 101011     |            |
| 1740.0              | 78    | 80    | 791          | 69           |            | 47        |            | 47        | 44         | 14         |
| 1750.0              | 79    | 81    | 798          | 69           |            | 48        |            | 48        | 44         | 14         |
| 1751.0              | 79    | 80    | 796          | 69           |            | 48        |            | 48        | 44         | 14         |
|                     |       |       |              |              |            |           |            |           |            |            |
| BIT NUMBER          |       | 4     | TADO CODE    | <del>.</del> | 437        | INTI      | ERVAL.     | 175       | 1.0- 18    | 337.0      |
| HTC J11             |       |       | SIZE         |              | 2.250      | NOZZ      | ZLES       |           | 16         | 16 16      |
| COST                | 6788  | . 0 0 | TRIP TIME    | •            | 5.9        | BIT       | RUN        |           |            | 86.0       |
| TOTAL HOURS         | s 7   | .07   | TOTAL TUR    |              | 48632      | CON       | NOITION    | T:        | t B1 G     | 0.000      |
|                     |       |       |              |              |            |           |            |           |            |            |
|                     |       |       | FLOW         | DCZ          | DCZ        | HW/       | HW/        | DP/       | DP/        | DP/        |
| DEPTH               | SPM1  | SPMR  | RATE         | OH           | CSG        | OH        | css        | OH        | CSG        | RIS        |
| 1760.0              | 77    | 77    | 773          | 67           |            | 46        |            | 46        | 43         | 14         |
| 1770.0              | 78    | 76    | 767          | 67           |            | 46        |            | 46        | 43         | 14         |
| 1780.0              | 78    | 77    | 775          | 67           |            | 46        |            | 46        | 43         | 14         |
| 1790.0              | 79    | 77    | 782          | 68           |            | 47        |            | 47        | 44         | 14         |
| 1800.0              | 78    | 77    | 777          | 67           |            | 46        |            | 46        | 43         | 14         |
| 1810.0              | 78    | 77    | 773          | 67           |            | 46        |            | 46        | 43         | 14         |
| 1820.0              | 78    | 77    | 774          | 67           |            | 46        |            | 46        | 43         | 14         |
| 1830.0              | 78    | 77    | 772          | 67           |            | 46        |            | 46        | 43         | 14         |
| 1837.0              | 77    | 77    | 770          | 67           |            | 46        |            | 46        | 43         | 14         |

•

•

| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS |                                  | 4<br>00<br>38         | TADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR |           | 4<br>9.875<br>5.9<br>17130 | NOZ:<br>BIT                      | ERVAL<br>ZLES<br>RUN<br>DITION |                                  | 15 1<br>15 1<br>BO GO            | 9.6                   |
|------------------------------------------------|----------------------------------|-----------------------|---------------------------------------------|-----------|----------------------------|----------------------------------|--------------------------------|----------------------------------|----------------------------------|-----------------------|
| DEPTH                                          | SPM1                             | SPM2                  | FLOW<br>RATE                                | DC/<br>OH | DC/<br>CSG                 | HW/<br>OH                        | HW/<br>CSG                     | DP/<br>OH                        | DP/<br>CSG                       | DP/<br>RIS            |
| 1838.0<br>1840.0<br>1842.0                     | 0<br>0<br>0                      | 48<br>42<br>53        | 240<br>209<br>264                           | ٠         |                            | 25<br>22<br>27                   |                                | 25<br>22<br>27                   | 13<br>12<br>15                   | 4<br>5                |
| 1844.0<br>1846.0<br>1847.5                     | 0<br>0<br>0                      | 53<br>54<br>56        | 267<br>271<br>280                           |           |                            | 28<br>28<br>29                   |                                | 28<br>28<br>29                   | 15<br>15<br>16                   | 5<br>5                |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOUR  | 0                                | 4<br>. 00<br>. 07     | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR | •         | 9.875<br>5.9<br>22329      | NOZ:<br>BIT                      | ERVAL<br>ZLES<br>RUN<br>DITION |                                  | '.5- 18<br>15 :<br>BO GO         | 15 14<br>9.0          |
| DEPTH                                          | SPM1                             | SPM2                  | FLOW<br>RATE                                | DC/<br>OH |                            | НW/<br>ОН                        | HW/<br>CSG                     | DP/<br>OH                        | DP/<br>CSG                       | DP/<br>RIS            |
| 1848.0<br>1850.0<br>1852.0<br>1854.0<br>1856.0 | 67<br>64<br>56<br>45<br>43<br>44 | 0<br>0<br>0<br>0<br>0 |                                             |           |                            | 34<br>33<br>29<br>23<br>22<br>22 |                                | 34<br>33<br>29<br>23<br>22<br>22 | 19<br>18<br>15<br>13<br>12<br>12 | 6<br>6<br>4<br>4<br>4 |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOUR  |                                  | 4<br>.00<br>.47       | IADC CODF<br>SIZE<br>TRIP TIME<br>TOTAL TUR |           | 4<br>9.875<br>5.9<br>54023 | NOZ<br>BII T                     | ERVAL<br>ZLES<br>RUN<br>DITION |                                  | 3.5- 16<br>15<br>180 G           | 15 14<br>5.1          |
| DEPTH                                          | SPM1                             | SPM2                  | FLOW<br>RATE                                | \ეთ<br>Н0 |                            | НW/<br>ОН                        | HW/<br>CSG                     | DP/<br>OH                        | DP/<br>CSG                       | DP/<br>RIS            |
| 1858.0                                         | 0                                | 57                    | 284                                         |           |                            | 29                               |                                | 29                               | 16                               | 5                     |
| 1860.0<br>1861.6                               | 0                                | 54<br>54              | 270<br>271                                  |           |                            | 28<br>28                         |                                | 28<br>28                         | 15<br>15                         | 5                     |

| BIT NUMBER<br>HTC J11<br>COST<br>TOTAL HOUR | 6788 | 5<br>.00<br>.32 | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUE | 1 /<br>E  | 437<br>2.250<br>6.4<br>47694 | NOZ:<br>BIT | ERVAL<br>ZLES<br>RUN<br>DITION |           |            | 15 15<br>200.4 |
|---------------------------------------------|------|-----------------|---------------------------------------------|-----------|------------------------------|-------------|--------------------------------|-----------|------------|----------------|
| DEPTH                                       | SPM1 | SPM2            | FLOW<br>RATE                                | DC/<br>OH | DC/<br>CSG                   | HW/<br>OH   | CSG<br>HW/                     | DP/<br>OH | DP/<br>CSG | DP/<br>RIS     |
| 1870.0                                      | 75   | 70              | 725                                         | •         | ٠                            | 43          |                                | 43        | 40         | 13             |
| 1880.0                                      | 71   | 70              | 704                                         |           |                              | 42          |                                | 42        | 39         | 13             |
| 1890.0                                      | 71   | 69              | 703                                         |           |                              | 42          |                                | 42        | 39         | 13             |
| 1900.0                                      | 73   | 68              | 706                                         |           |                              | 42          |                                | 42        | 39         | 13             |
| 1910.0                                      | 76   | 67              | 710                                         |           |                              | 42          |                                | 42        | 40         | 13             |
| 1920.0                                      | 73   | 69              | 709                                         |           |                              | 42          |                                | 42        | 40         | 13             |
| 1930.0                                      | 73   | 68              | 704                                         |           |                              | 42          |                                | 42        | 39         | 13             |
| 1940.0                                      | 73   | 68              | 707                                         |           |                              | 42          |                                | 42        | 39         | 13             |
| 1950.0                                      | 72   | 67              | 697                                         |           |                              | 42          |                                | 42        | 39         | 13             |
| 1960.0                                      | 74   | 68              | 707                                         |           |                              | 42          |                                | 42        | 39         | 13             |
| 1970.0                                      | 72   | 68              | 699                                         |           |                              | 42          | ~                              | 42        | 39         | 13             |
| 1980.0                                      | 73   | 68              | 705                                         |           |                              | 42          |                                | 42        | 39         | 13             |
| 1990.0                                      | 0    | 105             | 527                                         |           |                              | 31          |                                | 31        | 29         | 9              |
| 2000.0                                      | 72   | 68              | 700                                         |           |                              | 42          |                                | 42        | 39         | 13             |
| 2010.0                                      | 72   | 68              | 702                                         |           |                              | 42          |                                | 42        | 39         | 13             |
| 2020.0                                      | 73   | 68              | 704                                         |           |                              | 42          |                                | 42        | 39         | 13             |
| 2030.0                                      | 0    | 104             | 521                                         |           |                              | 31          |                                | 31        | 29         | 9              |
| 2040.0                                      | 72   | 70              | 708                                         |           |                              | 42          |                                | 42        | 39         | 13             |
| 2050.0                                      | 73   | 68              | 703                                         |           |                              | 42          |                                | 42        | 39         | 1.3            |
| 2060.0                                      | 73   | 68              | 702                                         |           |                              | 42          |                                | 42        | 39         | 13             |
| 2062.0                                      | 73   | 67              | 702                                         |           |                              | 42          |                                | 42        | 39         | 1.3            |

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOUR                                            | 6788                                                     |                                              | TADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR                        | 1.2<br>:  | 517<br>2.250<br>7.3<br>30878 | NOZZ<br>BIT                                        | RVAL<br>(LES<br>RUN<br>)ITION |                                                    |                                                    | 15 15<br>115.6                                     |
|----------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|-----------|------------------------------|----------------------------------------------------|-------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DEPTH                                                                                  | SPM1                                                     | SPMR                                         | FLOW<br>RATE                                                       | DC/<br>OH | DC/<br>CSG                   | HW/<br>OH                                          | CSG<br>HW/                    | DP/<br>OH                                          | DP/<br>CSG                                         | DP/<br>RIS                                         |
| 2070.0<br>2080.0<br>2090.0                                                             | 73<br>73<br>73                                           | 68<br>67<br>67                               | 707<br>700<br>701                                                  | ٠         | ٠                            | 42<br>42<br>42                                     |                               | 42<br>42<br>42                                     | 39<br>39<br>39                                     | 13<br>13<br>13                                     |
| 2100.0<br>2110.0<br>2120.0<br>2130.0<br>2140.0<br>2150.0<br>2160.0<br>2170.0<br>2180.0 | 73<br>72<br>72<br>73<br>58<br>60<br>72<br>72<br>72       | 68<br>68<br>69<br>68<br>69<br>69<br>69<br>68 | 706<br>704<br>702<br>704<br>706<br>636<br>647<br>706<br>699<br>700 |           |                              | 42<br>42<br>42<br>42<br>42<br>39<br>42<br>42<br>42 |                               | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>42       | 39<br>39<br>39<br>39<br>35<br>35<br>36<br>39<br>39 | 13<br>13<br>13<br>13<br>13<br>11<br>12<br>13<br>13 |
| 2200.0<br>2210.0<br>2220.0<br>2230.0<br>2240.0<br>2250.0<br>2260.0<br>2270.0<br>2280.0 | 72<br>73<br>73<br>72<br>73<br>73<br>73<br>72<br>73<br>73 | 68<br>67<br>67<br>68<br>68<br>67<br>68       | 701<br>700<br>701<br>696<br>703<br>703<br>697<br>701<br>697<br>698 |           |                              | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42 |                               | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42 | 39<br>39<br>39<br>39<br>39<br>39<br>39<br>39       | 13<br>13<br>13<br>13<br>13<br>13<br>13             |
| 2300.0<br>2310.0<br>2320.0<br>2330.0<br>2340.0<br>2350.0<br>2360.0<br>2370.0<br>2380.0 | 73<br>72<br>72<br>73<br>72<br>74<br>73<br>73<br>72<br>73 | 67<br>68<br>67<br>67<br>66<br>68<br>67<br>66 | 700<br>699<br>692<br>696<br>696<br>697<br>702<br>699               |           |                              | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42 |                               | 42<br>42<br>42<br>42<br>42<br>42<br>42<br>42<br>42 | 39<br>39<br>39<br>39<br>39<br>39<br>39<br>39       | 13<br>12<br>12<br>12<br>13<br>13<br>13<br>12       |
| 2400.0<br>2410.0<br>2420.0<br>2430.0<br>2440.0<br>2450.0<br>2450.0<br>2470.0           | 72<br>72<br>108<br>72<br>72<br>72<br>72<br>70            | 66<br>67<br>2<br>67<br>68<br>69<br>73<br>68  | 693<br>694<br>549<br>698<br>701<br>710<br>721<br>704<br>692        |           |                              | 41<br>33<br>42<br>42<br>42<br>43<br>41             |                               | 41<br>33<br>42<br>42<br>43<br>44<br>41             | 39<br>39<br>39<br>39<br>40<br>40<br>39             | 12<br>10<br>13<br>13<br>13<br>13<br>13             |

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOUR                                            | 6788.                                        | 0 0                                                 | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR                        | 1.2        | 2,250                        | NOZZ                                         | RVAL<br>ZLES<br>RUN<br>DITION  |                                                    | 15 1                                                     | 5 15                                              |
|----------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|------------|------------------------------|----------------------------------------------|--------------------------------|----------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|
| DEPTH                                                                                  | SPM1                                         | SPM2                                                | FLOW<br>RATE                                                       | DC/<br>OH  | CSG                          | HW/<br>OH                                    | HW/<br>CSG                     | DP/<br>OH                                          | DP/<br>CSG                                               | DP/<br>RIS                                        |
| 2480.0<br>2490.0<br>2500.0                                                             | 65<br>67<br>66                               | 69<br>70<br>70                                      | 674<br>683<br>683                                                  | ·          | ٠                            | 40<br>41<br>41                               |                                | 40<br>41<br>41                                     | 38<br>38<br>38                                           | 12<br>12<br>12                                    |
| 2510.0<br>2520.0<br>2530.0<br>2540.0<br>2550.0<br>2560.0<br>2570.0<br>2580.0<br>2590.0 | 67<br>66<br>68<br>67<br>68<br>66<br>69<br>69 | 71<br>72<br>69<br>69<br>70<br>69<br>69              | 692<br>692<br>683<br>677<br>687<br>681<br>685<br>690<br>687<br>689 |            |                              | 41<br>41<br>40<br>41<br>41<br>41<br>41       |                                | 41<br>41<br>40<br>41<br>41<br>41<br>41             | 39<br>39<br>38<br>38<br>38<br>38<br>38<br>38<br>38       | 12<br>12<br>12<br>12<br>12<br>12<br>12<br>12      |
| 2610.0<br>2620.0<br>2630.0<br>2636.0                                                   | 70<br>70<br>70<br>70                         | 68<br>67<br>67<br>68                                | 684                                                                |            |                              | 41<br>41<br>41<br>41                         |                                | 41<br>41<br>41<br>41                               | 38<br>38<br>38<br>38                                     | 12<br>12<br>12<br>12                              |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOUR                                            | 6637.                                        | 0 0                                                 | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR                        | <b>1</b> ; | 537<br>2,250<br>8,2<br>14055 | BIL                                          | ERVAL<br>ZLES<br>RUN<br>DITION |                                                    | .0- 29<br>15 1<br>2<br>3 88 GC                           | .5 15<br>265.0                                    |
| DEPTH                                                                                  | SPM1                                         | SPMZ                                                | FLOW<br>RATE                                                       | NOV<br>HO  | DC/<br>CSG                   | HW/<br>OH                                    | CSG<br>HW/                     | DP/<br>OH                                          | DP/<br>CSG                                               | DP/<br>RIS                                        |
| 2640.0<br>2650.0<br>2660.0<br>2670.0<br>2680.0<br>2690.0                               | 1<br>68<br>69<br>68<br>70<br>76              | 62<br>70<br>69<br>70<br>69<br>56                    | 315<br>688<br>688<br>691<br>695<br>657                             |            |                              | 19<br>41<br>41<br>41<br>42<br>39             |                                | 19<br>41<br>41<br>41<br>42<br>39                   | 18<br>38<br>38<br>38<br>39<br>37                         | 6<br>12<br>12<br>12<br>12<br>12                   |
| 2700.0<br>2710.0<br>2720.0<br>2730.0<br>2740.0<br>2750.0<br>2760.0<br>2770.0<br>2780.0 | 69<br>37<br>71<br>69<br>69<br>69<br>87<br>69 | 68<br>83<br>67<br>103<br>69<br>68<br>69<br>27<br>68 | 687<br>599<br>689<br>514<br>687<br>687<br>684<br>574<br>686        |            |                              | 41<br>36<br>41<br>41<br>41<br>41<br>41<br>41 |                                | 41<br>36<br>41<br>31<br>41<br>41<br>41<br>41<br>34 | 38<br>33<br>38<br>29<br>38<br>38<br>38<br>38<br>32<br>38 | 12<br>11<br>12<br>9<br>12<br>12<br>12<br>12<br>10 |

,

|                                                                              |                                                                           |                                                       | FLOW                                                                                                         | BC/       | <b>ኮሮ</b> /         | may                                                                            | LH.i Z               | np./                                                            | ne /                                                             | np/                                                              |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------|---------------------|--------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| DEPTH                                                                        | SPM1                                                                      | SPM2                                                  | RATE                                                                                                         | DCY       | DSS<br>CSG          | HW/                                                                            | HW/<br>CSG           | DP/<br>DH                                                       | ese                                                              | RIS                                                              |
| 2800.0                                                                       | 68                                                                        | 68                                                    | 680                                                                                                          |           |                     | 41                                                                             |                      | 41                                                              | 38                                                               | 12                                                               |
| 2810.0                                                                       | 68                                                                        | 68                                                    | 679                                                                                                          |           |                     | 41                                                                             |                      | 41                                                              | 38                                                               | 12                                                               |
| 2820.0                                                                       | 68                                                                        | 68                                                    | 681                                                                                                          |           |                     | Y                                                                              | -                    | 41                                                              | 38                                                               | 12                                                               |
| 2830.0                                                                       | 68                                                                        | 70                                                    | 685                                                                                                          |           |                     | 41                                                                             |                      | 41                                                              | 38                                                               | 12                                                               |
| 2840.0                                                                       | 79                                                                        | 45                                                    | 621                                                                                                          |           |                     | 37                                                                             |                      | 37                                                              | 35                                                               | 11                                                               |
| 2850.0                                                                       | 68                                                                        | 68                                                    | 681                                                                                                          |           |                     | 41                                                                             |                      | 41                                                              | 38                                                               | 12                                                               |
| 2860. <b>0</b>                                                               | 68                                                                        | 68                                                    | 683                                                                                                          |           |                     | 41                                                                             |                      | 41                                                              | 38                                                               | 12<br>12                                                         |
| 2870.0                                                                       | 69                                                                        | 68                                                    | 689                                                                                                          |           |                     | 41                                                                             |                      | 41<br>41                                                        | 38<br>38                                                         | 12                                                               |
| 2880.0                                                                       | 68                                                                        | 68                                                    | 680                                                                                                          | •         | •                   | 41                                                                             |                      | 41<br>41                                                        | აი<br>38                                                         | 12                                                               |
| 2890. <b>0</b>                                                               | 69                                                                        | 69                                                    | 691                                                                                                          |           |                     | 41                                                                             |                      | ~ <del>7</del> 1.                                               | 30                                                               | 1 4                                                              |
| 2900.0                                                                       | 69                                                                        | 68                                                    | 683                                                                                                          |           |                     | 41                                                                             |                      | 41                                                              | 38                                                               | 12                                                               |
| 2901.0                                                                       | 68                                                                        | 68                                                    | 683                                                                                                          |           |                     | 41                                                                             |                      | 41                                                              | 38                                                               | 12                                                               |
| BIT NUMBER                                                                   |                                                                           | 9                                                     | IADC CODE                                                                                                    | 1         | 537<br>2.250        | INTI<br>NOZ                                                                    | ERVAL.               | 2901                                                            | 1.0- 3<br>15                                                     | 021.0<br>15 15                                                   |
| COST                                                                         | 6637                                                                      |                                                       | TRIP TIME                                                                                                    |           | 8.4                 | BIT                                                                            | RUN                  | та                                                              |                                                                  | 120.0                                                            |
|                                                                              |                                                                           | .00<br>.14                                            |                                                                                                              |           |                     | BIT                                                                            |                      | TZ                                                              |                                                                  | 120.0                                                            |
| COST                                                                         |                                                                           |                                                       | TRIP TIME                                                                                                    |           | 8.4                 | BIT                                                                            | RUN                  | T2                                                              | DP/                                                              | 120.0<br>0.000<br>DP/                                            |
| COST                                                                         |                                                                           |                                                       | TRIP TIME<br>TOTAL TUR                                                                                       | МВ        | 8.4<br>92542        | CON                                                                            | RUN                  |                                                                 | 2 B2 G                                                           | 120.0<br>0.000                                                   |
| COST<br>TOTAL HOUR<br>DEPTH                                                  | S 22<br>SPM1                                                              | ,14<br>SPM2                                           | TRIP TIME<br>TOTAL TUR<br>FLOW<br>RATE                                                                       | NS<br>NC/ | 8.4<br>92542<br>DC/ | HW/<br>COM                                                                     | RUN<br>DITION<br>HW/ | DP/<br>OH                                                       | DP/<br>CSG                                                       | 120.0<br>0.000<br>DP/<br>RIS                                     |
| COST<br>TOTAL HOUR<br>DEPTH<br>2910.0                                        | S 22<br>SPM1<br>69                                                        | .14<br>SPM2<br>68                                     | TRIP TIME<br>TOTAL TUR<br>FLOW<br>RATE<br>683                                                                | NS<br>NC/ | 8.4<br>92542<br>DC/ | BIT<br>CON<br>HW/<br>OH<br>41                                                  | RUN<br>DITION<br>HW/ | DP/<br>OH<br>41                                                 | 2 B2 G<br>DP/<br>CSG<br>38                                       | 120.0<br>0.000<br>DP/<br>RIS                                     |
| COST<br>TOTAL HOUR<br>DEPTH<br>2910.0<br>2920.0                              | S 22<br>SPM1<br>69<br>70                                                  | .14<br>SPM2<br>68<br>67                               | TRIP TIME<br>TOTAL TUR<br>FLOW<br>RATE<br>683<br>685                                                         | NS<br>NC/ | 8.4<br>92542<br>DC/ | BIT<br>CON<br>HW/<br>OH<br>41<br>41                                            | RUN<br>DITION<br>HW/ | DP/<br>OH<br>41<br>41                                           | DP/<br>CSG<br>38<br>38                                           | 120.0<br>0.000<br>DP/<br>RIS<br>12                               |
| COST<br>TOTAL HOUR<br>DEPTH<br>2910.0<br>2920.0<br>2930.0                    | S 22<br>SPM1<br>69<br>70<br>69                                            | .14<br>SPM2<br>68<br>67<br>68                         | TRIP TIME<br>TOTAL TUR<br>FLOW<br>RATE<br>683<br>685<br>680                                                  | NS<br>NC/ | 8.4<br>92542<br>DC/ | BIT<br>CON!<br>HW/<br>OH<br>41<br>41<br>41                                     | RUN<br>DITION<br>HW/ | DP/<br>OH<br>41<br>41<br>41                                     | DP/<br>CSG<br>38<br>38<br>38                                     | 120.0<br>0.000<br>DP/<br>RIS<br>12<br>12                         |
| DEPTH 2910.0 2920.0 2930.0 2940.0                                            | S 22<br>SPM1<br>69<br>70<br>69<br>68                                      | .14<br>SPM2<br>68<br>67<br>68<br>68                   | TRIP TIME<br>TOTAL TUR<br>FLOW<br>RATE<br>683<br>685<br>680<br>680                                           | NS<br>NC/ | 8.4<br>92542<br>DC/ | BIT<br>CON!<br>HW/<br>OH<br>41<br>41<br>41<br>41                               | RUN<br>DITION<br>HW/ | DP/<br>OH<br>41<br>41<br>41<br>41                               | DP/<br>CSG<br>38<br>38<br>38<br>38                               | 120.0<br>0.000<br>DP/<br>RIS<br>12<br>12<br>12                   |
| DEPTH 2910.0 2920.0 2930.0 2940.0 2950.0                                     | S 22<br>SPM1<br>69<br>70<br>69<br>68<br>68                                | .14<br>SPM2<br>68<br>67<br>68<br>68<br>68             | TRIP TIME<br>TOTAL TUR<br>FLOW<br>RATE<br>683<br>685<br>680<br>680<br>681                                    | NS<br>NC/ | 8.4<br>92542<br>DC/ | BIT<br>CON!<br>HW/<br>OH<br>41<br>41<br>41<br>41<br>41                         | RUN<br>DITION<br>HW/ | DP/<br>OH<br>41<br>41<br>41<br>41<br>41                         | DP/<br>CSG<br>38<br>38<br>38<br>38<br>38                         | 120.0<br>0.000<br>DP/<br>RIS<br>12<br>12<br>12<br>12             |
| DEPTH 2910.0 2920.0 2930.0 2940.0 2950.0 2960.0                              | S 22<br>SPM1<br>69<br>70<br>69<br>68<br>68<br>69                          | .14<br>SPM2<br>68<br>67<br>68<br>68<br>68             | FLOW RATE  683 685 680 681 682                                                                               | NS<br>NC/ | 8.4<br>92542<br>DC/ | BIT<br>CON!<br>HW/<br>OH<br>41<br>41<br>41<br>41<br>41                         | RUN<br>DITION<br>HW/ | DP/<br>OH<br>41<br>41<br>41<br>41<br>41                         | DP/<br>CSG<br>38<br>38<br>38<br>38<br>38<br>38                   | 120.0<br>0.000<br>DP/<br>RIS<br>12<br>12<br>12<br>12             |
| DEPTH 2910.0 2920.0 2930.0 2940.0 2950.0 2960.0 2970.0                       | S 22<br>SPM1<br>69<br>78<br>69<br>68<br>68<br>69<br>68                    | .14<br>SPM2<br>68<br>67<br>68<br>68<br>68             | TRIP TIME<br>TOTAL TUR<br>FLOW<br>RATE<br>683<br>685<br>680<br>680<br>681                                    | NS<br>NC/ | 8.4<br>92542<br>DC/ | BIT<br>CON!<br>HW/<br>OH<br>41<br>41<br>41<br>41<br>41                         | RUN<br>DITION<br>HW/ | DP/<br>OH<br>41<br>41<br>41<br>41<br>41                         | DP/<br>CSG<br>38<br>38<br>38<br>38<br>38                         | 120.0<br>0.000<br>DP/<br>RIS<br>12<br>12<br>12<br>12             |
| DEPTH 2910.0 2920.0 2930.0 2940.0 2950.0 2960.0 2970.0 2980.0                | S 22<br>SPM1<br>69<br>70<br>69<br>68<br>69<br>68<br>69<br>68              | .14<br>SPM2<br>68<br>67<br>68<br>68<br>68<br>68       | TRIP TIME<br>TOTAL TUR<br>FLOW<br>RATE<br>683<br>685<br>680<br>680<br>681<br>682<br>681<br>668               | NS<br>NC/ | 8.4<br>92542<br>DC/ | BIT<br>CON!<br>HW/<br>OH<br>41<br>41<br>41<br>41<br>41<br>41                   | RUN<br>DITION<br>HW/ | DP/<br>OH<br>41<br>41<br>41<br>41<br>41<br>41                   | DP/<br>CSG<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38       | 120.0<br>0.000<br>DP/<br>RIS<br>12<br>12<br>12<br>12<br>12       |
| DEPTH 2910.0 2920.0 2930.0 2940.0 2950.0 2960.0 2970.0 2980.0                | S 22 SPM1 69 70 69 68 68 69 68 67 68                                      | .14<br>SPM2<br>68<br>67<br>68<br>68<br>68<br>68<br>67 | TRIP TIME<br>TOTAL TUR<br>FLOW<br>RATE<br>683<br>685<br>680<br>681<br>682<br>681<br>668                      | NS<br>NC/ | 8.4<br>92542<br>DC/ | BIT<br>CON!<br>HW/<br>OH<br>41<br>41<br>41<br>41<br>41<br>41<br>41             | RUN<br>DITION<br>HW/ | DP/<br>OH<br>41<br>41<br>41<br>41<br>41<br>41<br>41             | DP/<br>CSG<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>37 | 120.0<br>0.000<br>DP/<br>RIS<br>12<br>12<br>12<br>12<br>12<br>12 |
| DEPTH  2910.0 2920.0 2930.0 2940.0 2950.0 2960.0 2970.0 2980.0               | S 22 SPM1 69 70 69 68 69 68 69 68 67                                      | .14<br>SPM2<br>68<br>67<br>68<br>68<br>68<br>67<br>0  | TRIP TIME<br>TOTAL TUR<br>FLOW<br>RATE<br>683<br>685<br>680<br>681<br>682<br>681<br>668<br>534<br>670        | NS<br>NC/ | 8.4<br>92542<br>DC/ | BIT<br>CON!<br>HW/<br>OH<br>41<br>41<br>41<br>41<br>41<br>41<br>40             | RUN<br>DITION<br>HW/ | DP/<br>OH<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>40       | DP/<br>CSG<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>37       | 120.0<br>0.000<br>DP/<br>RIS<br>12<br>12<br>12<br>12<br>12<br>12 |
| DEPTH  2910.0 2920.0 2930.0 2940.0 2950.0 2960.0 2970.0 2970.0 3000.0 3010.0 | S 22<br>SPM1<br>69<br>70<br>69<br>68<br>69<br>68<br>66<br>107<br>67<br>69 | .14<br>SPM2<br>68<br>67<br>68<br>68<br>68<br>67<br>67 | TRIP TIME<br>TOTAL TUR<br>FLOW<br>RATE<br>683<br>685<br>680<br>681<br>682<br>681<br>668<br>534<br>670<br>681 | NS<br>NC/ | 8.4<br>92542<br>DC/ | BIT<br>CON!<br>HW/<br>OH<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41 | RUN<br>DITION<br>HW/ | DP/<br>OH<br>41<br>41<br>41<br>41<br>41<br>41<br>40<br>32<br>40 | PP/<br>CSG<br>38<br>38<br>38<br>38<br>38<br>38<br>37<br>37<br>37 | 120.0<br>0.000<br>DP/<br>RIS<br>12<br>12<br>12<br>12<br>12<br>12 |
| DEPTH  2910.0 2920.0 2930.0 2940.0 2950.0 2960.0 2970.0 2980.0               | S 22 SPM1 69 70 69 68 69 68 69 68 67                                      | .14<br>SPM2<br>68<br>67<br>68<br>68<br>68<br>67<br>0  | TRIP TIME<br>TOTAL TUR<br>FLOW<br>RATE<br>683<br>685<br>680<br>681<br>682<br>681<br>668<br>534<br>670        | NS<br>NC/ | 8.4<br>92542<br>DC/ | BIT<br>CON!<br>HW/<br>OH<br>41<br>41<br>41<br>41<br>41<br>41<br>40             | RUN<br>DITION<br>HW/ | DP/<br>OH<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>40       | DP/<br>CSG<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>37       | 120.0<br>0.000<br>DP/<br>RIS<br>12<br>12<br>12<br>12<br>12<br>12 |

This is an enclosure indicator page. The enclosure PE603549 is enclosed within the container PE906175 at this location in this document.

The enclosure PE603549 has the following characteristics:

ITEM\_BARCODE = PE603549
CONTAINER\_BARCODE = PE906175

NAME = Drill Data Plot

BASIN = GIPPSLAND

PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = WELL\_LOG

DESCRIPTION = Drill Data Plot for Luderick-1

REMARKS =

DATE\_CREATED = 24/06/1983

DATE\_RECEIVED = 06/09/1983

 $W_NO = W819$ 

WELL\_NAME = LUDERICK-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT\_OP\_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603550 is enclosed within the container PE906175 at this location in this document.

The enclosure PE603550 has the following characteristics:

ITEM\_BARCODE = PE603550
CONTAINER\_BARCODE = PE906175

NAME = Temperature Plot

BASIN = GIPPSLAND PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = WELL\_LOG

DESCRIPTION = Temperature Plot for Luderick-1

REMARKS =

DATE\_CREATED = 24/06/1983 DATE\_RECEIVED = 06/09/1983

 $W_NO = W819$ 

WELL\_NAME = LUDERICK-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT\_OP\_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page.

The enclosure PE603551 is enclosed within the container PE906175 at this location in this document.

The enclosure PE603551 has the following characteristics:

ITEM\_BARCODE = PE603551 CONTAINER\_BARCODE = PE906175

NAME = Pressure Plot

BASIN = GIPPSLAND

PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = WELL\_LOG

DESCRIPTION = Pressure Plot for Luderick-1

REMARKS =

DATE\_CREATED = 24/06/1983 DATE\_RECEIVED = 06/09/1983

 $W_NO = W819$ 

WELL\_NAME = LUDERICK-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT\_OP\_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603552 is enclosed within the container PE906175 at this location in this document.

The enclosure PE603552 has the following characteristics:

ITEM\_BARCODE = PE603552
CONTAINER\_BARCODE = PE906175

NAME = Geoplot

BASIN = GIPPSLAND

PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = WELL\_LOG

DESCRIPTION = Geoplot for Luderick-1 containing rate

of penetration, corrected ""d""

exponent, costs and pressure data.

REMARKS =

DATE\_CREATED = 24/06/83

DATE\_RECEIVED = 6/09/83

 $W_NO = W819$ 

WELL\_NAME = LUDERICK-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT\_OP\_CO = ESSO AUSTRALIA LIMITED

GRAPHOLOG PE 603553

This is an enclosure indicator page. The enclosure PE603553 is enclosed within the container PE906175 at this location in this document.

The enclosure PE603553 has the following characteristics:

ITEM\_BARCODE = PE603553
CONTAINER\_BARCODE = PE906175

NAME = Grapholog (Mud Log)

BASIN = GIPPSLAND

PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = MUD\_LOG

DESCRIPTION = Grapholog (mud log) for Luderick-1

REMARKS =

DATE\_CREATED = 24/06/1983

DATE\_RECEIVED = 06/09/1983

 $W_NO = W819$ 

WELL\_NAME = LUDERICK-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT\_OP\_CO = ESSO AUSTRALIA LIMITED