W8/9 # ATTACHMENT TO WCR VOL 2 LUDERICK-1 (W 819) ESSO AUSTRALIA LTD. 0 6 SEP 1983 ES WELL REPORT LUDERICK NO. 1 OIL and GAS DIVISION # CORE LABORATORIES AUSTRALIA (QLD.) LTD. 1st August 1983 Mr. S Twartz Esso Australia Ltd. (Geology Department) Esso House 127 Kent Street Sydney N.S.W. 2001 Dear Mr. Twartz, Please find enclosed the original well report plus five (5) copies for the well LUDERICK NO. 1. If you have any enquiries, please do not hesitate to contact us. Yours very truly CORE LABORATORIES AUSTRALIA (QLD) LTD. T. Charles M. MOWATT Unit Supervisor FL 802 ARC:pc #### INDEX - 1. INTRODUCTION - 2. RIG SPECIFICATIONS - 3. WELL INFORMATION, PROGRESS AND HISTORY - 4. LITHOLOGY AND CORE-O-GRAPHS - 5. EXTENDED SERVICE PACKAGE : - A. INTRODUCTION - B. EQUIPMENT - C. MONITORING EQUIPMENT - 6. ESP PLOT DESCRIPTIONS AND CONCLUSIONS - 7. B.H.T. ESTIMATION - 8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT - 9. GAS ANALYSES : - A. COMPOSITION GRAPHICS - B. SIDEWALL CORES - 10. CORELAB DATA SHEETS : - A. BIT RECORDS - B. MUD DATA - C. R.F.T. DATA #### COMPUTER DATA LISTINGS : BIT RECORD AND INITIALIZATION DATA HYDRAULIC ANALYSES DATA LIST A DATA LIST B DATA LIST C DATA LIST D # APPENDED PLOTS : DRILL DATA PLOT TEMPERATURE PLOT PRESSURE PLOT GEOPLOT GRAPHOLOG #### INTRODUCTION LUDERICK NO. 1 was drilled by ESSO AUSTRALIA LTD. in the Bass Strait, Australia. #### Well co-ordinates were: Latitude : 38° 26' 20.61" S Longitude : 147° 42' 57.85" E The well was drilled by South Seas Drilling Company's semi-submersible rig "Southern Cross", and monitored by Core Laboratories Intermediate Extended Service Field Laboratory 802. LUDERICK NO. 1 was spudded on 4th June 1983 and reached a total depth of 3021m on 24th June 1983, a total drilling time of 21 days. The main objective of the well was to evaluate the hydrocarbon potential of a large areal intra-Latrobe anticlinal closure that lies to the northwest of the Bream field. #### Elevations were: | Kelly | bushings to | mean sea | level | 21m | |-------|-------------|----------|-------|-----| | Water | depth | | | 53m | | Kellv | bushings to | mean sea | bed | 74m | All depths used in this report and accompanying logs refer to depth below rotary kelly bushings (RKB). Core Laboratories personnel involved in the logging of LUDERICK NO. 1 were as follows: TONY CHARLES Pressure Engineer GAVIN MUNN Pressure Engineer PAUL DENTON Well Logger RUSSELL MARTIN Well Logger BRYAN PAULET Well Logger ALAN BOCK Sample Catcher ERIC DIESPOSTI Sample Catcher TROY GROTH Sample Catcher GARY KILLEN Sample Catcher 2. RIG SPECIFICATIONS | | RIG INFORMATION SHEET | |-------------------------------|--| | | PANY ESSO AUSTRALIA LTD. | | | LUDERICK No. 1 | | | | | OWNER | SOUTH SEAS DRILLING COMPANY | | NAME AND NUMBER | SOUTHERN CROSS (NO 107) | | TYPE DERRICK, DRILL FLOOR | SEMI-SUBMERSIBLE , TWIN HULLED. | | & SUBSTRUCTURE | DERRICK: LEE C MOORE, 152° HIGH X 40° AT BASE. LOAD CAPACITY OF 1 000 000 lbs | | | LUAD CAPACITY OF 1 DUD DUD IDS | | | | | DRAWWORKS | DILWELL E-2000 DRIVEN BY 2 GE 752 ELECTRIC MOTORS. | | • | | | | | | | LEE C MOODE 224ED C CADACTEV FOR SUCCESSION | | CROWN BLOCK | LEE C MOORE 27458 C. CAPACITY 500 SHORT TONS. | | TRAVELING BLOCK SWIVEL | OILWELL PC 425 | | ELEVATORS | BYRON JACKSON MODEL GG CAPACITY 350 TON | | KELLY & KELLY SPINNER | DRILLCO 54"x 50' HEX KELLY | | ROTARY TABLE | OILWELL A 37½ SINGLE ELECTRIC MOTOR | | ROTARY SLIPS | VARCO DCS-L | | MUD PUMPS | TWO DILWELL A 1700PT. RATED AT 1600HP | | = | TWO DIEWELL A TOUPT. RAILD AT IDDUMP | | | FOUR MUD TANKS HAVING A TOTAL CAPACITY OF 1200 BBL, AND ONE PILL | | | TANK HAVING A CAPACITY OF 105 BBL. | | MUD SYSTEM | TWO MUD HOPPERS POWERED BY 2 MISSION 6x8" CENTRIFUGAL BY TWO 100 | | | HP ELECTRIC MOTORS. | | | DESANDER : 1 DEMCO 4 CONE 12" MODEL NO 124 | | | DESILTER: 1 DEMCD 4"-16H 16 CONE | | | DEGASSER: 1 SWACD MODEL Nº 36 | | | SHALE SHAKERS : 2 BRANDT DUAL UNIT TANDEM - GHI DUAL UNIT. | | BLOW OUT PREVENTORS | THREE SHAFFER L.W.S. 1834" - 10 000 psi | | | TWO HYDRIL G.L. 183" - 5000 psi | | | | | | FOUR VALV CON ACCUMULATORS. 2" - 10 000ps | | WELL CONTROL EQUIP. | CHOKES:2 C.I.W. ABJ H2 2 1/16" - 10 000 psi.1 SWACO SUPER CHOKE | | TUBULAR DRILLING
EQUIPMENT | DC: $6\frac{2}{3}$ " x 2 13/16" (4" IF TJ) | | | 8" x 2 13/16" (6 5/8" H9D TJ) | | | 9 ³ " × 3" (7 5/8" H90 YJ) | | | HWDP: 5" 501b/ft GRADE G ($6\frac{1}{2}$ " DD $4\frac{1}{2}$ " IF TJ) | | | DP : 5" 1921b/ft GRADE G&E(6 3/8" DD 42" IF TJ) | | CEMENTING UNIT | HALLIBURTON HT-400 UNIT | | MONITORING | MARTIN DECKER : MUD VOLUME TOTALIZER | | EQUIPMENT | . 6 CHANNEL DRILLING RECORDER | | | 4 PRESSURE GAUGES | | | FLOWSHOW INDICATOR | | POWER SUPPLY | 2 EMD MD 18 DIESEL ENGINES RATED AT 1950 HP EACH | | | 1 EMD MD 12 DIESEL ENGINE RATED AT 1500 HP | | DIRECTIONAL EQUIP. | Re . | | MISCELLANEOUS (E.G. RISE | R, COMPENSATION SYSTEM, PIPE RACKER, DP EQUIPMENT) ELESCOPIC 21" ID. PLUS FLOW DIVERTOR. | | CACTAC DOWER TOWER | ELESCUPIC 21" ID. PLUS FLOW D'IVERTOR. | | CHOIND PUWER TUNGS | ECKEL 13 3/8"(20 000 ft 1bs),20" (35 000 ft 1bs) | | CILL BOCK LANKS: 3x1 | 57Ucu ft.RISER TENSIONER:6WESTERN GFAR.50°STROKE RO DODING | | HOD DOCK IMMK2:3X1 | 570cu ft.GUIDE LINE TENSIONERS : 4 WESTERN GEAR 16 000 165,40'STROKE | | | | 3. WELL INFORMATION, PROGRESS AND HISTORY | | | | | | | | 14/51 | LUNEODM | ATION | CHEET | |--------------------|------------------------------|----------------|-----------------------------|--------------------------|----------|----------|--------------|------------------|------------|--------------| | | | | | | | | WEL | L INFORM | ATION | SHEET | | | . AB con | IPANY | ESSO AUS | | LTD. | | | | | | | | WEL | . L | LUDERICK | NO. 1 | | | | | Sheet N | lo. <u>l</u> | | WELL
NAME | LUDERICK NO. 1 | | | | | | | | | | | OPERATOR | ESSO AUSTRALIA LTD. | | | | | | | | | | | PARTNERS | В.Н.Р. | | | | | | | | | | | RIG | OWNER | | SOUTH SEAS DRILLING COMPANY | | | | | | | | | | NAME OR N | | SOUTHERN CROSS | | | | | | | | | | TYPE | | SEMI-SUBMERSIBLE | | | | | | | | | LOCATION | LATITUDE (| | 38 ⁰ 26' | | <u>S</u> | + | UDE (Y) | 147° 42' | | E | | | FIELD | | GIPPSLAN | | | AREA | - | BASS STR | | | | | COUNTY | | AUSTRALI | | | STATE | | VICTORIA | | | | | COUNTRY | | AUSTRALI
EXPLORAT | | | | | | | | | DATUM | DESCRIPTIO | | | ION | | DKB to | Ground Leve | 1 | | | | POINTS | Ground Eleva
Mean Water [| | -
53М | | | + | Water Level | 21M | | | | DATES | SPUD | | 33M
4TH JUNE | 1083 | | TOTAL | | 24TH JUN | E 1983 | | | HOLE | Depth From | , , | Bit Size" | No. of Bits | No. c | | Date From | Date To | Cased | Logged | | SIZES | 74 | 209 | 26 | 1 | 140.0 | - | 4/6/83 | 4/6/83 | YES | NO | | | 209 | 806 | 17½ | 1 | | | 5/6/83 | 6/6/83 | YES | YES | | | 806 | 3021 | 12½ | 7 | | _ | 8/6/83 | 24/6/83 | NO | YES | | | | 3021 | 1 4 | <u> </u> | | | 0/0/00 | 12.7.07.00 | | 1 2 2 2 | DRILLING | Depth From | Depth To | Weights | | Type | | | | | | | FLUID | 74 | 209 | 8.6 T | 0 8.6 | SEAW | ATER | | | | | | 1 | 209 | 806 | | 0 9.0 | | ATER G | | | | | | | 806 | 3021 | + | 0 9.2 | SEAW | ATER G | EL | | | | | | | | | 0 | | | | | | | | | | | | 0 | | | | | | | | | | | | 0 | | | | | | | | | ļ | ļ | | 0 | • | | | | | | | WIRELINE | Depth From | Depth To | Hole Size" | | Logs | Run | | | | | | LOGGING | 806 | 194 | 17½ | 7/6/8: | | C-CAL- | CR | | | | | | 2469 | 792 | 124 | 15/6/8 | | L-MSFL | | | | | | | 2468 | 789 | 124 | 16/6/8 | | | | | | | | | _ | _ | 121/4 | 16/6/8 | | T 1 | <u> </u> | | | | | | - | _ | 124 | 17/6/8 | | | T 2, 3, 4 | | | | | İ | _ | _ | 121/4 | 18/6/83 | | RFT 5, 6 | | | | | | | 1700 | 2400 | 124 | 24/6/8 | | | | | | | | DIGES | <u> </u> | | OD " | ID " | 101- | G1 | Thursday | Data Bira | ement Stag | 00 Fuses | | RISER,
CASING & | Depth From | Depth To | | | Weight | Grade | + | | ement Stag | E XCESS | | LINER | 0 | 74 | 22 | 21
19, ¹²⁴ | Q/, /, | X52 | JV BOX | ISER
5/6/83 E | C101 1 | == | | 1 | 74
194 | 194
792 | 20
13-3/8 | | | K55 | BUTT | | C101 1 | | | | 1 27 | 172 | 13-3/0 | 12.013 | J-1-J | LUJ | 1011 | , , 0, 05 | 0101 1 | + | | | | | | | | <u> </u> | | | | | | 1 | | | † | | | | | | | | | 1 | M | \mathcal{M} | | |---|---------------|-----| | | IK) | MAR | | W | | | COMPANY ESSO AUSTRALIA LTD. WELL LUDERICK NO. 1 WELL INFORMATION SHEET (SUPPLEMENTARY) Sheet No. 2 # WIRELINE LOGGING (continued) | | INE LOGGING (continued) | | | | | | | | | |--------------|-------------------------|---------------------------------------|--|--|--|--|--|--|--| | Depth | Depth | Hole | Date | Toga mun | | | | | | | from | to | size | run | Logs run | | | | | | | 3018 | 2400 | 124 | 24/6/83 | DLL-MSFL-GR | | | | | | | 3019 | 1800 | 124 | 24/6/83 | LDL-CNLG-GR | | | | | | | 3019
3018 | 789 | $\frac{12\frac{1}{4}}{12\frac{1}{4}}$ | 24/6/83 | BHC-CAL-GR | | | | | | | 3018 | 1700 | 12½ | 25/6/83 | HDT | | | | | | | - | _ | 12½ | 25/6/83
25/6/83 | WST (19 LEVELS) RFT NO. 7 | | | | | | | _ | _ | 12½
12¼ | 25/6/83 | RFT NO. 7 | | | | | | | _ | _ | 12½ | 26/6/83 | CST'S 1, 2, 3 (153 SHOT, 137 RECOVERED |
| - | | | | | | | | | | | ļ | • | - | _ | ······································ | | | | | | | | | | | | | | | | | | #### WELL HISTORY 3rd June 1983. On tow to location, arriving at 05:30 hours Latitude : 38° 26' 20.61" S Longitude : 147° 42' 57.85" E Ran all anchors and set the temporary guide base, BHA was made up and RIH to spud. 4th June 1983. RIH, the well was spudded at 00:30 hours and 26" hole was drilled from 74m (mudline) to 103m (Bit No. 1 was a rerun HTC OSC 3AJ $(17\frac{1}{2}")$ and it was run with a 26" hole-opener). The hole opener became stuck at 103m and pulling up to 500 kips failed to free it. With the riser tensioner rigged up to hold drill pipe, the kelly was backed out and jars rigged up. Rotating the fish with 35-40 kips ft/1b of torque the jars were tripped with 100 kips and the fish was freed. Pulling the hole opener to the TGB and inspecting with TV camera it was found to be OK. RIH to 85m and washing and reaming to 103 several times, continued. Drilled to 209m, circulating 50 bbls hi-vis mud every 2 joints. The hole was displaced with 350 bbls of hi-vis mud and POOH to the TGB a survey was recovered $(\frac{1}{2}^{0})$. RIH to 209m (no fill) the hole was circulated again with 350 bbls of hi-vis mud. POOH, 20" surface casing was then run (casing shoe at 194m) followed by the cement stinger. 5th June 1983. Cemented the 20" casing. The riser and stack were run and the diverter, hose reels and flowline rigged up. RIH with Bit No. 2 ($17\frac{1}{2}$ " HTC OSC 3AJ). Cement was tagged at 183m and new hole drilled from 209m to 363m. Maximum gas was 2/5/3 units from 280m and BG remained at 1-2 units. New formation was drilled from 20:00 hours onwards at ROP'S of mainly 170 to 230m/hr. Cement was drilled at 20-30m/hr. 6th June 1983. Drilling 17½" hole continued from 363m to 806m and maximum gas was 10.9/25/6.7 units at 550m. Background gas was 5-9 units and T.D. for the 13-3/8" casing (806m) was reached at 15:38 hours. Drill rates varied from 30-100m/hr. After circulating out, a survey was dropped (3/4 when recovered) and POOH commenced. POOH, tight hole was experienced in the first 5 stands (130 kips overpull). Picking up the kelly and circulating (Gas 0.2/7.5/2.3 units) to wash the hole at 668m, POOH continued to the 20" casing shoe. RIH and washing through tight spots at 608m and 749m, 3m of fill were found on bottom (WTG was 0.2/8.6/6.9 units). Pumping a 40 bbls hi-vis slug and POOH to run Schlumberger logs, no drag was found. 7th June 1983. Schlumberger were rigged up; and ran 1 log, a BHC/CAL/GR (806m-194m). RIH for a wiper trip, no fill was found and circulating B/U, WTG was 0.4/3.9/0.1 units. POOH, then ran and cemented the 13-3/8" casing. POOH with the casing ring tool. The stack was tested and the wear bushing re-run. (Casing shoe was set at 792m.) 8th June 1983. Making up a new BHA ($12\frac{1}{4}$ " HTC X3A was Bit No. 3) and RIH, cement was tagged at 758m and drilled from 758m-792m, and the rat hole cleaned out to 806m. Drilling 6m of new formation to 812m a pressure integrity test (PIT) was conducted after circulating B/U. The PIT gave leak off at 16.8 ppg max EMW. New hole was then drilled in the Gippsland Limestone formation from 812m to 1282m. Trip gas was 0.1/2.2/1.8 units and maximum gas for the day was 7.5/9.3/6.9 units at 974m over background levels of 2-7 units. ROP'S were consistently high at 40-70m/hr. 9th June 1983. Continued drilling $12\frac{1}{4}$ " hole from 1282m to 1751m where it was decided to pull the bit due to low ROP. (25-30m/hr decreased to 10m/hr). Circulated B/U dropped a survey amd POOH. The survey indicated a deviation of $1\frac{1}{2}$ and BCO was 4-6-I. Maximum drag experienced in POOH was 10 Kips. Changed the bit ($12\frac{1}{4}$ " HTC J11); added a junk sub to the BHA; RIH and washed through tight spots at 1634m and 1690m. Reaming from 1732m to 1751m, no fill was found. Drilling $12\frac{1}{4}$ " hole then continued to 1755m with trip gas being 1.1/57/8 units and maximum gas for the day was 6.7/7.8/5.4 units at 1340m over a background of 2-5 units. Bit No. 3 made 945m of hole, a record for the Southern Cross. 10th June 1983. Drilled $12\frac{1}{4}$ " hole to 1837m, having circulated drill breaks out from: 1808m (14 units); 1819m (114 units); 1830m (150 units) and 1837m (118 units). As a significant hydrocarbon show was obtained from 1837m, it was decided to cut a core. (BG was 3-4 units for the drilled interval.) Core No. 1 was cut from 1837.9m-1847.5m (recovered 100%, all sandstone). A plastic liner was used for coring operations. # 11th June 1983. Cut Cores 2 and 3 as follows: No. 2 1847.5m-1856.5m; 94.4% recovery, all sandstone. No. 3 1856.5m-1861.6m; 96.1% recovery, predominantly shale/mudstone with thin interbeds of sandstone. 12th June 1983. RIH to drill ahead with a Jl1 (3x15, $12\frac{1}{4}$ "). Washed from 1819m-1838m, and reamed the core rathole. Trip gas was masked by washing/reaming gas of 330 units. Drilled $12\frac{1}{4}$ " new hole down to 1993m. Flow-checks were made at the following drill-breaks: 1867, 1885, 1926, 1932, 1946, 1950 and 1988m (all were negative). Circulated a drill-break out at 1956m (2 units gas, no show). Today's maximum drill gas was 20 units (1915m), over a background of 1-2 units. 13th June 1983. Drilled $12\frac{1}{4}$ " hole to 2062m. Flow-checked drill-breaks at 2016, 2025 and 2034m (all negative). Pulled the bit at 2062m due to low ROP'S (bit was graded $8-4-\frac{1}{8}$). Survey result was $1\frac{1}{2}$ °. RIH with an HTC J22 ($12\frac{1}{4}$ ", 3x15 jets), reaming to bottom. Trip/reaming gas was 1-21-3 units. Drilled ahead in the Latrobe formation to 2153m. Made flow-checks at 2067 and 2081m (no flow). Maximum gas was 96 units (from Coal at 2015m), over a BG of 2 units. Drill rates varied from around 5m/hr in the shaley siltstones and dolomitic sandstones to 50m/hr in the sandstones. 14th June 1983. Drilled ahead to 2372m. Maximum gas was 26 units from a coal at 2190m; and the BG was 2-3 units. ROP'S ranged from 4-5m/hr in the shaley siltstone sections to 40-60m/hr in the Coal and Sandstone sections. 15th June 1983. Drilled ahead to 2477.7m, at which point the bit was pulled due to low ROP'S. Maximum gas was 5 units (2325m); and the BG was 1-2 units. This depth was nominated as the intermediate logging point. Schlumberger ran the following tool: DLL-MSFL-GR 16th June 1983. Schlumberger ran the following logs: FDC-CNL-GR RFT NO. 1 (pretest run) 17th June 1983. Schlumberger ran further RFT'S: No. 2 Gas and condensate recovered from 1838.5m No. 3 Formation water recovered from 1934.1m No. 4 Formation water recovered from 1879m (The RFT tool became snagged temporarily in the stack on run No. 4). Made a short wiper trip (5 stands) to clean out the BOP stack. 18th June 1983. Schlumberger ran RFT No. 5 (2013m, water) and No. 6 (1843m, oil, gas and water). Tested the stack. RIH with Bit No. 7 (HTC J22, $12\frac{1}{4}$ ", 3x15). Encountered a bridge 5 stands from bottom (around 2335m). Drilled to 2515m. Maximum gas was 3 units, over a background of 0-1 units. 19th June 1983. Drilled $12\frac{1}{4}$ " hole to 2636m, where the bit was pulled due to excessive torque. A flow check was made at 2617m, following a drill-break, but there was no flow. Gas levels remained low today around 0-1 units with the largest peak of 6 units coming from coal at 2563m. 20th June 1983. Ran back in the hole with a J33 ($12\frac{1}{2}$ ", 3x15). Drilled ahead to 2733m, through the Latrobe Group, with ROP'S varying from 3-18m/hr. Background gas was low, around 1 unit, and the maximum gas peak was 4 units. 21st June 1983. Drilled ahead to 2840m. Beds of shale slowed the drilling down to 2m/hr at times. Maximum gas was 8 units (2790m, Coal), over a background of 0-2 units. 22nd June 1983. Drilled to 2901m. Pulled the bit (after 52 hours of on-bottom drilling). Survey was 3°; the bit was graded $5-8-\frac{1}{4}$. RIH with Bit No. 9 (HTC J33, $12\frac{1}{4}$ ", 3x15). Reamed from 2881m-2891m. Maximum drill gas was 9 units from Coal at 2863m, and the BG was 1-2 units. 23rd June 1983. Continued reaming to 290lm, then drilled ahead to 3015m. Maximum gas was 42 units (from Coal at 2944m) and BG was 2-4 units. 24th June 1983. Drilled to T.D. at 302lm. Circulated bottoms-up and POOH to run the following Schlumberger logs: HRT (1700m-2400m) DLL-MSFL-GR (3018m-2400m) LDL-CNL-GR (3019m-1800m) BHC-CAR-GR (3019m-789m) HDT (3018m-1700m) WST (19 levels) RFT No. 7 (2018m) 25th June 1983 26th June 1983. Schlumberger completed the logging suite with CST Nos 1, 2, & 3 (153 shot and 137 recovered) The plug and abandon program was started with a lower plug set at 2060m and a second at 1900m. Circulating at 1680m no cement was visible in returns. 27th June 1983. RIH, the second plug was tagged at 1710m prior to a third plug being set at 842m. Testing the 3rd plug to 1500 psi, a bridge plug was then set at 645m and the 13-3/8" casing was cut at 185m and laid down. A final plug was then set at 214m after connecting the cement lines. <u>28th June 1983</u>. Displacing the riser and flushing the choke and kill lines, the slip joint was collapsed after testing the last plug to 500 psi for 15 mins. Unlatching the stack, the BOP's and riser were pulled to the surface. RIH with cutting assembly the 20" casing was cut at 85m. 29th June 1983. The pile joint and guide base were pulled, and set on the spider beams. Waited on work boats to pull anchors. 30 th June 1983. Waiting on work boats to arrive and then waited on weather to pull anchors. <u>1st July 1983</u>. Anchors were finally pulled and tow commenced
to <u>location for SNAPPER NO. 4</u>. Well duration (anchors down to anchors up) was 29 days. 4. LITHOLOGY AND CORE-O-GRAPHS #### LITHOLOGICAL SUMMARY #### Gippsland Limestone The top part of the Gippsland Limestone was composed of a white to light grey, calcarenite, moderately sorted Biosparite. This part included abundant microfossils of common Bryozoa, Foramenifera, Octacodia, Gastropoda and shell fragments. Common throughout this section were Lithic fragments and loose quartz grains. With depth the Gippsland Limestone became progressively more clayey. At 600m-650m, clay content was around fifty percent. The lower part of the Gippsland Limestone became a medium grey to medium dark grey, very soft to sticky calcilutite. Carbonaceous flecks were common as was also glauconite and assorted microfossils. #### Lakes Entrance Formation Composed throughout by a Calcareous Siltstone, and Calcareous Claystone. The Calcareous Siltstone was typically light to medium grey, soft to firm, and very calcareous. Minor fossils and pyrite were common. The Calcareous Claystone was medium grey to light grey, very soft to soft, and sticky; also very calcareous. Glauconite was in evidence throughout the Calcareous Claystone. Gas throughout the unit remained between 1 and 5 units, composed principally of $\mathbf{C}_{\mathbf{1}}$. #### Latrobe Group Top part of the Latrobe Group was dominated by three main units, a Sandstone, Siltstone and Coal. Sandstone was generally clear, to milky, very coarse grained, subangular to sub-rounded, moderately well sorted, with occasional argillaceous matrix. There was an orange-white fluroscence, with a fast streaming milky white cut, - this produced a dull brown residue. The Coal was predominantly black, soft-firm, brittle and vitreous. Siltstone was light to medium grey, very argillaceous, firm, moderately calcareous, with traces of Foramenifera. Three cores were cut in this section of the Latrobe Group. The gas varied from 5-60 units, composed of $\rm C_1$ through to $\rm C_6$. Middle Latrobe Group became essentially a Sandstone and a Siltstone, with minor coals. The Sandstone remained clear to transparent, medium to very coarse, sub angular, to sub-rounded. This unit was also dominated by Sandstone aggregates, which were clear, very fine to medium grained, well sorted, friable, dolomitic cemented - and with a dull yellow fluorescence: no cut. The Siltstone was medium dark brown to grey, carbonaceous, argillaceous, non calcareous, sub-fissile to blocky, firm to occasionally soft. A minor shale was also present, this consisted of a medium to light grey, firm to soft, predominantly fissile, with carbonaceous inclusions. Lower Latrobe Group consisted of Sandstones and Siltstones. The Siltstone was essentially the same as described for the middle Latrobe. The Sandstone was predominantly clear to translucent, medium to coarse grained, sub-angular to sub-rounded, and moderately well sorted. The more friable samples showed a good visual porosity. The Sand showed a trace of white to yellow fluorescence, with slow streaming cut, and slow to faint crush cut. Gas in this Lower section remained at 1-5 units, composed of C_1 to C_4 . # CORE-O-GRAPH CLIENT: WELL: CORE NO. . INTERVAL CORED FROM CUT: 9.6 m. FORMATION: BIT MAKE & TYPE: CORE BARREL SIZE: BIT SIZE: 9.88 ESSO AUSTRALIA LTD LUDERICK NO. 1 1 1837.9m. TO 1847.5m. RECOVERED: 9.6m. (100.0%) LATROBE GROUP CHRIS RC4 6.75in. x 4.75in. x 9.83m. MUD WT.: 9.2 # CORE-O-GRAPH CLIENT: WELL: CORE NO. . INTERVAL CORED FROM CUT: 9.0 m. FORMATION: BIT MAKE & TYPE: CORE BARREL SIZE: BIT SIZE: 9.88 ESSO AUSTRALIA LTD LUDERICK NO. 1 2 1847,5m. TO 1856,5m. RECOVERED: 8.5m. (94.4%) LATROBE GROUP CHRIS RC4 6.75in. × 4.75in. × 9.83m. MUD WT.: 9.2 | | | | | | 1410D W | | · . | | | | | |------|-----|--------|---|------|---------|---|-----|----|-----|----|---| | | ROP | M/HR | | LITH | WC | B | | RP | М | HR | s | | | 4Ø | | Ø | | Ø | 1 | 25 | 5Ø | 150 | Ø | L | | 1848 | | \leq | | | | | | | | | | | 1850 | | | | | > | } | | | | | | | 1852 | < | | | | | } | | | | | ı | | 1854 | < | | | | · | | | | | | | | 1856 | | | | | | } | | | | | | latimer'81 # CORE-O-GRAPH CLIENT: WELL: CORE NO. : INTERVAL CORED FROM CUT: 5.1 m FORMATION: BIT MAKE & TYPE: CORE BARREL SIZE: BIT SIZE: 9.88" ESSO AUSTRALIA LTD LUDERICK NO. 1 Э 1856.5m. TO 1861.6m. RECOVERED: 4.9m. (96.1%) LATROBE GROUP CHRIS RC4 6.75in. x 4.75in. x 9.83m. MUD WT.: 9.2 latimer'b 5. EXTENDED SERVICE PACKAGE # INTERMEDIATE EXTENDED SERVICE INTRODUCTION The Core Laboratories Intermediate Extended Service Package includes sensors, recorders and computer facilities useful in the drilling operation, for the detection of abnormal formation pressure, and the optimization of drilling. Presented graphically on Core Laboratories I.E.S. logs (discussed individually in the following section of this report) are the various functions necessary for well control, abnormal formation pressure detection and drilling optimization. Other available services include electric log interpretation programs for the wellsite geologist, hydraulics (synthesis and analysis), well kill, cost per foot, bit nozzle selection, swab and surge created by pipe movement, and bit performance programs for the drilling engineer. Core Laboratories I.E.S. logs include the following : #### I.E.S. PRESSURE LOG Information plotted on this log includes formation pore pressure, mud weight in and formation fracture pressure. This is plotted on linear graph paper at a vertical scale of 1:5000. The formation pore pressure and fracture pressure gradients are based on all available information. This is the conclusion log, therefore the information may be modified by results from formation drill stem tests, data from adjacent wells, kicks, R.F.T.'s, and formation breakdown tests. # CORE LAB DRILL DATA PLOT This plot, which is drawn while drilling is in progress, is the primary tool by which formation overpressure is detected. Drawn on a 1:5000 scale it is particularly useful in that five plots are drawn side by side, and thus any trend can be readily recognised. The main plot is that of the corrected "d"exponent, which is presented on a logarithmic scale. The "d" exponent was first developed by Jorden and Shirley in 1966 to assist in interpreting rate of penetration data by normalizing for rotary speed and weight-on-bit per inch of bit diameter. The modified "dc" exponent was proposed by Rhem and McClendon to compensate for increases in mud weight. This involves multiplying the standard "d" exponent value by the inverse ratio of the mud weight. A multiple of 9 ppg was used for convenience to return the magnitude of the "dc" to a comparable value of it's uncorrected state. In this case, a multiplier of 10 ppg was used. The equation for "dc" is therefore: Deviations from the normal "dc"s trend may be interpreted as being due to a change in formation pore pressure. An equation derived by Eaton is used in an attempt to evaluate pore pressure from deviations in the "dc"s plot. This method of overpressure detection can be fairly accurate for homogeneous shales, but where the sand/silt/shale ratio varies a great deal, inaccuracies often occur. The other main plots are a logarithmic rate of penetration, which complements the "dc"s plot and a linear plot of total mud gas. Shale densities are also plotted on a linear scale in order to show up a decreasing density trend, and hence a possible transition into abnormally pressured shales. The points are determined by measuring the density of air-dried shale samples in an accurately calibrated liquid density column. An interpreted lithology column is also included on the log, as is a plot of mud density in , to assist in interpretation. All relevant information, such as casing points, bit runs, etc. are also included. #### I.E.S. GEO-PLOT LOG This is plotted by the computer while drilling is in progress. At a later date this plot can be re-run on different scales to suit the client. The data is stored on magnetic tape during the drilling operations. Functions plotted on this log are: rate of penetration, corrected "d" exponent, break-even analysis, formation pore pressure, mud density in and formation fracture pressure. A Geo-plot is included in this report, at a scale of 1:5000. #### I.E.S. FLOWLINE TEMPERATURE, FLOWLINE TEMPERATURE END-TO-END PLOTS Flowline temperature and end-to-end plot of flowline temperature are the two main plots relating to the temperature of the returning drilling fluid. These are plotted on a vertical scale of 1:5000. The use of these plots as an indicator of the presence of over-pressure takes secondary role to the I.E.S. drill log. Continuous observation of flowline temperature may indicate an increase in geothermal gradient. Factors affecting temperature are noted on the log, such as new bit runs, changes in the circulation rates, circulating cuttings out and the addition of water and chemicals to the active mud system. Since the goal of the end-to-end plot is to provide a representation of the geothermal gradient, all surface changes which would cause artificial changes in the flowline temperature are disregarded. #### ELECTRIC LOG PLOT A plot of shale resistivity (ohm-metres squared/metre), sonic travel time (microseconds per foot), bulk density (gm/cc) and neutron porosity (%), is made-using data supplied by Schlumberger. Two-cycle semi-log paper is used, with a vertical scale of 1:10000. As far as possible only clean shale points are selected and plotted. The relatively compressed vertical scale makes deviations from the normal compaction trend easier to identify. #### PROGRESS LOG This is the traditional presentation of footage against elapsed time in days. It shows actual drilling time from spud to total depth. #### DATA RECORDING Data is recorded on tape while drilling, both as raw input numbers and computer calculated numbers. This data can be accessed later for use in
interpretative programs or to review data. Comprehensive data lists are included in this report. #### MUD DATA SHEETS These are a record of the mud properties while drilling, and are derived from the mud engineer's daily report. #### DRILLING PARAMETER PLOT The drilling parameter plot shows : rate of penetration, weight-on-bit, rotary speed, pump pressure, hydraulic horsepower, impact force and jet velocity. This plot is drawn by the computer and is designed to aid the drilling engineer in drilling optimization. The scale chosen here is 1:5000. #### HYDRAULIC ANALYSES During drilling, routine hydraulic analyses are calculated by the computer, and these are made available to the drilling engineer. This report includes a sample hydraulics for each 100 metres. # GAS COMPOSITION ANALYSIS For each significant gas show the chromatograph results are analysed using two techniques := - 1. Log plot - 2. Triangulation plot Both plots are included in this report. #### GRAPHOL OG This is plotted on the industry-standard form on a vertical scale of 1:500. Rate of penetration is plotted in metres per hour, together with mud gas chromatography results. Total gas is also plotted, and a percentage lithology log is drawn. A lithology description is presented in an abbreviated form. All relevant drilling data is included, as is bit and mud data. #### MISCELLANEOUS Various data collected from this well are also included in this report for reference. These include formation leak-off test data, and R.F.T. and well test data where appropriate. # CORE LABORATORIES EQUIPMENT Core Laboratories Field Laboratory 802 monitoring equipment includes the following: #### A. MUD LOGGING - 1. T.H.M. total gas detector and recorder. - 2. Hot Wire total gas detector and recorder. - 3. F.I.D. (Flame Ionization Detector) chromatograph and recorder. - 4. Gas trap and support equipment for the above. - 5. Rate of penetration, recorder and digital display. - 6. Pit volume totalizer, recorder and digital display. - 7. Digital depth counter. - 8. Two integrated pump stroke counters, with digital display. - 9. Ultra-violet fluoroscope. - 10. Binocular microscope. # B. INTERMEDIATE EXTENDED SERVICE PACKAGE - 1. Hewlett Packard 9825B desktop computer. - 2. Hewlett Packard 9872B plotter - 3. Hewlett Packard 2631A printer. - Two Hewlett Packard 2621P visual display units, (one located in the client's office). - 5. Hookload/weight-on-bit transducer and recorder. - Rotary speed tacho-generator and recorder. - 7. Stand-pipe pump pressure transducer and recorder. - 8. Mud flow out sensor and recorder. - 9. Mud temperature sensors and recorders (in and out). - 10. Mud conductivity sensors and recorders (in and out). - 11. Rotary torque sensor and recorder. - 12. Shale density apparatus. - 13. Hydrogen sulphide gas detector. - 14. Carbon dioxide gas detector. # CORE LABORATORIES MONITORING EQUIPMENT #### DEPTH Depth registered every 0.2 metres and rate of penetration calculated each metre (or every 0.2m while coring), ROP displayed on digital panel and chart. #### WEIGHT-ON-BIT A Tyco 0-1000 psi, solid state pressure transducer is connected to the rig's deadline anchor. The weight-on-bit is calculated in the Rig Functions Panel, and displayed (with hookload) on a digital meter and recorder chart. # ROTARY SPEED This is a DC generator for which 1 volt = 100 rpm, and which is belt-driven from the rotary drive shaft. The value is displayed on a digital meter and recorder chart. #### PUMP PRESSURE This is a Tyco 0-5000 psi transducer mounted on the stand-pipe manifold. The pressure is displayed on a digital panel meter and recorder chart. #### PIT VOLUME Six individual pits can be displayed on the meter. The pit volume total is calculated in the PVT panel and displayed on a digital meter. The sensors are vertical floats driving potentiometers accurate to +/1 barrel. Each sensor is equipped with a wave compensating device. In addition, a sensor is fitted to the rig's trip tank, so that hole fill-up during trips may be closely monitored. A recorder chart displays the levels of the active pits, the pit volume total, and the trip tank. #### PUMP STROKES These are the limit switch type, counting individual strokes. The Pulse Data Box can monitor one or two pumps individually or integrate the total number of strokes from both pumps. The pump rate per minute is displayed on a recorder chart. # ROTARY TORQUE An American Aerospace Controls bi-directional current sensor is clamped over the power cable of the rotary table motor. Torque is displayed on a digital panel meter and recorder chart. #### MUD TEMPERATURE This is a platinum probe resistance thermometer, calibrated $0-100~{ m deg}$. C. Temperature in and out is displayed on a digital panel meter and chart recorder. #### MUD CONDUCTIVITY A Balsbaugh electrode-less conductivity sensor contains two toroidally-wound coils and a thermistor enclosed in a donut-shaped housing. Current is induced into the mud by the primary coil and is sampled by the secondary coil, the amplitude of the current being directly proportional to the conductivity of the mud. All the sensors are 5 to 24V DC powered with the exception of the air driven gas trap. Along with monitoring and maintaining the above equipment, Core Lab performed other duties... #### CUTTINGS Microscopic and ultra-violet inspection of cuttings samples at predetermined intervals. Dry samples were washed, dried and boxed. Wet samples were washed, sacked and boxed. Geochemical samples were canned and boxed. #### GAS - 1.Flame Ionization Total Hydrocarbon gas detector. The T.H.M. accurately determines hydrocarbon concentrations up to 100% saturation. - 2.Flame Ionization Detector chromatograph. The F.I.D. is capable of accurate determination of hydrocarbon concentration from C1 to C6+. - 3.Hot Wire gas detector (Wheatstone Bridge type). A back-up system for total gas detection. # SHALE DENSITY Manual determination of shale density in an accurately calibrated variable density liquid column. 6. ESP PLOT DISCUSSIONS AND CONCLUSIONS #### ESP PLOT DISCUSSIONS AND CONCLUSIONS LUDERICK NO. 1 was drilled in the Gippsland Basin and Core Laboratories field unit FL802 was used to monitor parameters associated with overpressure detection, observing the well to be normally pressured. The "Drill Data Plot" is the primary pressure detection plot and shows the d'c exponent trend for the well. A good trend does not develop until around 750m, due mainly to lack of consolidation in the lithology and drilling being achieved mainly through jet extrusion rather than rotary action of the Trending normally down to 850m, the d'c' exponent still remains fairly scattered and a lateral shift at 850m corresponds with the lithological transition into a calcareous siltstone shortly after the change in hole size to 124" from 172". A virtually vertical trend is established from 850m to 1500m due again to the much slower transitional trend from siltstone into claystone rather than the presence of any overpressure. Trending normally again from 1500m to 1750m in the Lower Lakes Entrance formation the d'c then becomes fairly scattered again as the Latrobe Group is penetrated. Being predominantly interbedded sand with siltstone and coal the lack of any homogeneous formation gives rise to this scattering effect, the d'c also being a tool primarily associated with shales. No inference as to any overpressure is noticed from either ROP'S or background levels of gas as any changes in these could be directly attributed to a change in bit or lithology. Schlumberger's RFT pressure tests verified the normally pressured nature of the well in indicating pore pressure of around 8.4 ppg. A Temperature Plot drawn for LUDERICK NO. 1 failed to provide any conclusive information due to periodic treatment of the mud system. The thermal gradient of the well was calculated as $4.22^{\circ}/100$ with a bottom-hole temperature at 302lm extrapolated to 141.4°C. The "Pressure Plot" presents the pressure conclusion log for the well, all formation being normally pressured at 8.4 ppg (MSL) EMW. The leak-off test performed 6m below the 13-3/8" casing shoe gave a leak-off when the equivalent pressure of 16.8 ppg was applied and this data was the basis of the fracture gradient drawn on the Pressure Plot with the shape of the curve based on U.S. Gulf Coast data. This fracture gradient is as true as can be drawn for the Gippsland Basin until more leak-off data is available. Information obtained from Schlumberger's FDC and/or LDL tools was used in deriving the overburden gradient calculations and plot provided with this report. 7. B.H.T. ESTIMATION CORE LAB B.H.T. INTERPOLATION (LINEAR 1/T METHOD) AT 3021 M STRAIGHT LINE LEAST SQUARES BEST FIT 1/TIME ON A LINEAR SCALE AGAINST TEMP (DEG C) ON A LINEAR SCALE # ENTERED DATA: | DATA SET | # | TIME | 1/TIME | TEMP (DEG C) | LOG: | |----------|---|-------|--------|--------------|-------------| | | 1 | 8.75 | 0.1143 | 93.5 | HRT | | | ? | 11.67 | 0.0857 | 114.0 | DLL-MSFL-GR | | | 3 | 14.92 | 0.0670 | 114.0 | LDL-CNLG-GR | | | 4 | 19.83 | 0.0504 | 124.4 | BHC-GR | | | 5 | 24.92 | 0.0401 | 122.2 | HDT | # COEFFICIENT & CONSTANT: Y = M.X + C where M = -3.8883450E 02 and C = 1.4142867E 02 INTERPOLATED DATA: 1/TIME TEMP (DEG C) 0.0000 141.4 "TIME" is the time since circulation stopped CORE LAB B.H.T. INTERPOLATION (HORNER METHOD) AT 3021 M STRAIGHT LINE LEAST SQUARES BEST FIT (T+t)/T ON A LOGARITHMIC SCALE AGAINST TEMP (DEG C) ON A LINEAR SCALE #### ENTERED DATA: | DATA SET # | TIME | HUHNER TIME
(T+t)/T | TEMP (DEG C) | L06: | |------------|---------|------------------------|--------------|-------------| | 1 | 8.75 | 1.2000 | 93.5 | HRT | | 5 | 11.67 | 1.1500 | 114.0 | DLL-MSFL-GR | | 3 | 14.92 | 1.1173 | 114.0 | LDL-CNLG-GR | | .43 | 19.83 | 1,0882 | 124.4 | BHC -GR | | 5 | 24.92 | 1.0702 | 122.2 | HDT | | | (t=1.75 | i) | | | # COEFFICIENT & CONSTANT: Y = m.log(X) + c where M = -5.7766289E 02 and C =
1.4299514E 02 #### INTERPOLATED DATA: (T+t)/T TEMP (DEG C) 1.0000 143.0 T = Time since circulation stopped t = Time of circulation on bottom 8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT #### OVERBURDEN GRADIENT CALCULATIONS DEPTH metres BULK DENSITY gm/cc OVERBURDEN PRESSURE INCREMENT. .psi CUMULATIVE OVERBURDEN PRESSURE .psi OVERBURDEN PRESSURE GRADIENT . .psi/ft OVERBURDEN EQUIVALENT DENSITY. . Pounds per gallon BULK DENSITY TAKEN FROM AVERAGED F.D.C. LOG, OR FROM SONIC LOG FOR SECTIONS WHERE THE F.D.C. LOG IS NOT AVAILABLE. ## OVERBURDEN GRADIENT CALCULATIONS | DEPTH
from | DEPTH
to | AVR.BULK
DENSITY | O/BURDEN
INC. | O/BURDEN
CUMM. | O/BURDEN
GRAD. | O/BURDEN
GRAD. | |--|--|--|---|---|--|---| | metres | metres | gm∕cc | psi | psi | psi/ft | þþg | | 0
74
800
808
842
897
969 | 74
800
808
842
897
969
1035 | 1.02
2.00
2.20
2.37
2.31
2.35
2.26 | 107.23
2062.71
25.00
114.47
180.49
240.37
211.90 | 107.23
2169.94
2194.94
2309.41
2489.90
2730.26
2942.16 | 0.442
0.827
0.828
0.836
0.846
0.859
0.866 | 8.49
15.90
15.92
16.08
16.27
16.52 | | 1035
1115
1164
1182
1229
1263
1287 | 1115
1164
1182
1229
1263
1287
1323 | 2.28
2.20
2.11
2.27
2.25
2.18
2.05 | 259,12
153,14
53,95
151,56
108,68
74,33
104,84 | 3201.28
3354.42
3408.37
3559.94
3668.61
3742.94
3847.78 | 0.875
0.878
0.879
0.883
0.885
0.886 | 16.83
16.89
16.90
16.98
17.03
17.05 | | 1323
1338
1388
1425
1507
1651
1665 | 1338
1388
1425
1507
1651
1665
1689 | 2.07
2.22
2.14
2.35
2.35
2.15
2.00 | 44.11
157.69
112.48
273.75
480.73
42.76
68.19 | 3891.89
4049.57
4162.06
4435.81
4916.54
4959.30
5027.49 | 0.887
0.889
0.890
0.897
0.908
0.908 | 17.05
17.10
17.12
17.25
17.46
17.46 | | 1689
1718
1750
1788
1802
1832 | 1718
1750
1788
1802
1832
1872 | 2.14
2.35
2.34
2.23
2.42
2.32 | 88.16
106.83
126.32
44.35
103.14
131.83 | 5115.65
5222.48
5348.80
5393.15
5496.28
5628.12 | 0.908
0.910
0.912
0.912
0.914
0.916 | 17.45
17.49
17.53
17.54
17.59 | | 1872
1948
1979
1988
2008
2020
2060 | 1948
1979
1988
2008
2020
2060
2070 | 1.98
2.22
2.10
2.23
1.93
2.25 | 213.77
97.77
26.85
63.36
32.90
127.85
80.55 | 5841.89
5939.65
5966.50
6029.86
6062.76
6190.62
6271.17 | 0.914
0.915
0.915
0.915
0.915
0.916 | 17.58
17.59
17.59
17.60
17.59
17.61 | | 2090
2131
2137
2167
2193
2235
2264
2290
2320
2336
2370 | 2131
2137
2167
2193
2235
2264
2290
2320
2336
2370
2384 | 2.26
1.88
2.31
2.35
2.28
2.38
2.36
2.46
2.39
2.29 | 131.63
16.02
98.87
85.32
140.21
93.93
87.91
100.58
55.91
115.44
45.54 | 6402.80
6418.82
6517.70
6603.02
6743.23
6837.16
6925.07
7025.65
7081.56
7197.00
7242.54 | 0.916
0.916
0.917
0.918
0.920
0.920
0.922
0.923
0.924
0.926 | 17.61
17.63
17.65
17.68
17.70
17.73
17.75
17.77
17.80 | | DEPTH | DEPTH | AVR.BULK | O/BURDEN | O/BURDEN | OZBURDEN | O/BURDEN | |--------|--------|----------|----------|----------|----------|----------| | from | to | DENSITY | INC. | CUMM. | GRAD. | GRAD. | | | | | | | | | | metres | metres | gm/cc | psi. | psi. | psi/ft | p p g | | 2384 | 2437 | 2.38 | 179.19 | 7421,74 | 0.928 | 17,85 | | 2437 | 2466 | 2.36 | 97,23 | 7518,96 | 0.929 | 17.87 | | 2466 | 2500 | 2.33 | 112.54 | 7631.50 | 0,727 | | | 2500 | 2550 | | | | | 17,89 | | | | 2.32 | 164.79 | 7796.29 | 0.932 | 17.92 | | 2550 | 2575 | 2.35 | 83,46 | 7879,75 | 0.933 | 17.94 | | 2575 | 2600 | 2.42 | 85.95 | 7965.70 | 0.934 | 17,96 | | 2600 | 2625 | 2.38 | 84.53 | 8050.22 | 0.935 | 17.98 | | 2625 | 2650 | 2.37 | 84.17 | 8134.39 | 0.936 | 17.99 | | 2650 | 2675 | 2.41 | 85.59 | 8219.99 | 0.937 | 18.01 | | 2675 | 2700 | 2.40 | 85.24 | 8305.22 | 0.938 | 18.03 | | 2700 | 2725 | 2.48 | 88.08 | 8393.30 | 0.939 | 18.05 | | 2725 | 2750 | 2.44 | 86.66 | 8479.96 | 0.940 | 18.07 | | 2750 | 2775 | 2.42 | 85.95 | 8565.90 | 0.941 | 18.09 | | 2775 | 2800 | 2.50 | 88.79 | 8654,69 | 0.942 | 18,12 | | 2800 | 2825 | 2.45 | 87.01 | 8741.70 | 0.943 | 18.14 | | 2825 | 2850 | 2.44 | 86.66 | 8828.36 | 0.944 | 18.16 | | 2850 | 2875 | 2,45 | 87.01 | 8915.37 | 0.945 | 18.18 | | 2875 | 2900 | 2.40 | 85.24 | 9000.61 | 0.946 | 18.19 | | 2900 | 2925 | 2.53 | 89.85 | 9090,46 | 0,947 | 18.22 | | 2925 | 2950 | 2,44 | 86.66 | 9177.11 | 0.948 | 18,23 | | 2950 | 2975 | 2.45 | 87.01 | 9264.13 | 0.949 | 18.25 | | | | | | | | | | 2975 | 3000 | 2.43 | 86.30 | 9350.43 | 0.950 | 18.27 | | 3000 | 3021 | 2,42 | 72.19 | 9422.62 | 0.951 | 18.28 | 9. GAS ANALYSES SIDEWALL CORE GAS ANALYSIS DATA SHEET SHEET# 1 COMPANY __ESSO AUSTRALIA LTD. LOGGING SUITE NO. 3 RUNS 1, 2 WELL LUDERICK NO. 1 | NΩ | DEPTH | СI | C S | C3 | C4 | C 5 | C 6 | COMMENTS | |----|---------|------------|-------|-------|-------|------|--|----------| | | М | PPM | PPM | PPM | PPM | PPM | PPM | | | 4 | 2943.98 | 955 | 82 | 61 | 17 | 23 | 26 | | | 5 | 2935.02 | 2964 | 344 | 167 | 34 | 3 | 13 |] | | 6 | 2925.93 | 1357 | 197 | 106 | 17 | 6 | 13 | | | 10 | 2853.98 | 91 | 25 | 30 | 4 | 12 | TR | | | 11 | 2851.00 | 494 | 148 | 198 | 52 | 34 | 52 | | | 12 | 2844.6 | 403 | 66 | 65 | 26 | 6 | 13 | | | 13 | 2841.00 | 8320 | 1312 | 1216 | 275 | 171 | 156 | | | 14 | 2834.00 | 221 | 49 | 53 | 26 | 6 | 13 | | | 18 | 2757.00 | 247 | 45 | 46 | 22 | 6 | 13 | | | 43 | 2100.5 | 169 | 25 | 38 | 4 | 12 | TR |] | | 45 | 2081.7 | 32448 | 5510 | 913 | | | | COAL | | 47 | 2022.5 | 988 | 689 | 1064 | 602 | 228 | 156 | 1 | | 48 | 2200.00 | 13 | 8 | 8 | | | | 1 | | 49 | 2018.00 | 832 | 13120 | 18483 | 11558 | 4742 | 2496 | | | 52 | 2012.9 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 54 | 1918.00 | 806 | 262 | 114 | 34 | 40 | 65 | | | 55 | 1978.00 | 312 | 33 | 38 | 23 | 23 | 39 | 1 | | 56 | 1953.00 | 64 | 8 | 15 | | 1 | | 1 | | 59 | 1937.00 | 0 | 0 | 0 | 0 | 0 | 0 | | | 60 | 1934.00 | 45 | 6 | 3 | | | | | | 61 | 1928.00 | 4899 | 1114 | 213 | TR | | | 1 | | 62 | 1923.2 | 154 | 20 | 7 | | | | 1 | | 64 | 1914.4 | 1031 | 287 | 68 | 9 | 10 | | 1 | | | 1896.00 | 206 | 49 | 7 | 8 | | | 1 | | 70 | 1886.9 | 206 | 49 | 7 | 9 | | | 1 | | 71 | 1883.5 | 77 | 16 | 15 | TR | | | 1 | | 72 | 1879.00 | 77 | 9 | 16 | 7 | | | 1 | | 74 | 1873.00 | 4332 | 393 | 136 | 26 | 11 | | 1 | | 75 | 1870.00 | 206 | 65 | 45 | 8 | 11 | | 1 | | 76 | 1837.00 | 180 | 270 | 1430 | 1735 | 872 | 526 | - | | 77 | 1835.00 | 309 | 622 | 1598 | 5687 | 2573 | 1684 | 1 | | 78 | 1833.00 | 154 | 393 | 3896 | 5687 | 3951 | 3473 | 1 | | 79 | 1831.00 | 618 | 393 | 487 | 156 | 114 | 263 | 1 | | 80 | 1827.9 | 515 | 270 | 365 | 173 | 46 | 105 | 1 | | 82 | 1823.5 | 77 | 213 | 197 | 173 | 68 | 1 | | | 02 | 1023.3 | <u>'</u> ' | 413 | 17/ | 1/3 | - 00 | | 1 | 10. CORELAB DATA SHEETS #### BIT RECORD BIT SIZE Inches BIT COST Australian dollars JET SIZE Thirty-seconds of an inch DEPTHS Metres HOLE MADE. Metres DRILLING TIME. Hours AVERAGE ROP. Metres/hour AVERAGE COST/METRE . . Australian dollars BIT CONDITION. . . . Teeth Bearings · Gauge Inches BIT RECORD LAB COMPANY ESSO AUSTRALIA LTD. WELL LUDERICK NO. 1 Sheet No. 1 | | WELL WILL | | | | | | | | | | | | | | |-----------|-----------|-------|--------------------|--------------|--------------------------------------|------------------------|----------|--------------|--------------------------------|--------------------|------------|--------------------------------|---------------------------------------|--------------| | <u>o.</u> | Bit No. | Make | Туре | IADC
Code | Size | Jets | Depth In | Hole
Made | Drilling
Time | On Bottom
Hours | Turns K Co | ndition
FBG | Remarks | COST | | XR | RR I | нтс | OSC 3AJ
+26" HO | 111 | 17 ¹ / ₂
26 | 18/18/18
- | 74 | 135 | 6 | 3.28 | 13.6 2 | ?-5-I | POOH FOR 20" CSG. | - | | XR | 2 | 2 HTC | OSC 3AJ | 111 | 17½ | 20/20/20 | 209 | 597 | 22 | 12.77 | 106.6 2 | 2-2-I | POOH TO LOG AND RUN
13-3/8" | 4442 | | UK | 3 | 3 нтс | X3A | 114 | 12½ | 16/16/18 | 806 | 945 | 46 | 22.01 | 196.1 4 | -6-I | POOH DUE TO LOW ROP. | 2201 | | YS | 4 | HTC | J11 | 437 | 12½ | 16/16/16 | 1751 | 86 | 9 | 7.07 | 48.6 | -1-I | POOH TO CUT CORE NO.1 | 6788 | | 080Z | | CHRIS | RC4 | 4 | 9-7/8 | EOUIVALENT
15/15/14 | 1837.9 | 9.6 | 3½ | 2.38 | 17.1 0 | .25 | RERUN 20% WORN
INITIALLY PULLED TO | _ | | | | | | | | | | | | | | | RETRIEVE CORE NO. 1 | | | 080Z | RC 4 | CHRIS | RC4 | 4 | 97/8 | EOUIVALENT
15/15/14 | 1847.5 | 9.0 | 3/4 | 3.07 | 22.3 0 | .30 | PULLED TO CATCH CORE NO. 2. | _ | | 080Z | RR 4 | CHRIS | RC4 | 4 | 9-7/8 | EQUIVALENT
15/15/14 | 1856.5 | 5.1 | 41/2 | 7.47 | 54.0 0 | .35 | PULLED TO CATCH
CORE NO. 3. | 1 | | YS | | HTC | J11 | 437 | 121/4 | 15/15/15 | 1861.6 | 200.4 | 26½ | 22.32 | 147.7
8 | 3-4 -8 | OUT DUE TO LOW ROP'S. | 6788 | | SK | (| HTC | J22 | 517 | 12½ | 15/15/15 | 2062 | 415.6 | 47½ | 40.25 | 180.9 3 | $3-3-\frac{1}{8}$ | OUT TO RUN INTERME-
DIATE LOGS. | 6788 | | VK | - | 7 HTC | Ј22 | 517 | 12½ | 15/15/15 | 2477.6 | 158.4 | 26 ¹ / ₄ | 20.78 | 90.6 4 | 1-8- ¹ ₄ | TORQUE INCREASED. | 6788 | | BL | | В НТС | J33 | 537 | 121/4 | 15/15/15 | 2636 | 265 | 56½ | 52.43 | 214.0 5 | 5 - 8-½ | PULLED AFTER 52 HRS. | 6637 | | YL | 9 | HTC | J33 | 537 | 12½ | 15/15/15 | 2901 | 120 | 27½ | 22.14 | 92.5 2 | 2-2-1 | PULLED AT T.D. | 6637 | , | - | | | | | | | | <u> </u> | | | | | <u> </u> | J | ٠ | | I | <u> </u> | | | | BIT RECORD LAB COMPANY ESSO AUSTRALIA LTD. WELL LUDERICK NO. 1 Sheet No. 2_ | | VV b to b | | | | | | | | | | | | | | | | |-------------|-----------|-------|---------|------|--------------------------------|------|------------------------|----------|-----------|--------------|-------------|--------------------|------------|----------------|--------------------|--------------------| | NO. | Bit No. | Make | Type | Code | Size | Cost | Jets | Depth In | Depth Out | Hole
Made | | On Bottom
Hours | Turns K | Average
ROP | Average
Cost/ M | Condition
T B G | | 2 XR | RR 1 | HTC | 4263Ψ | 111 | 26 ¹ 2 | _ | 18/18/18 | 74 | 209 | 135 | 6 | 3.28 | 13.6 | 41.2 | 178.44 | 2-5-I | | 9 XR | 2 | HTC | OSC 3AJ | 111 | 17½ | 4442 | 20/20/20 | 209 | 806 | 597 | 22 | 12.77 | 106.6 | 46.8 | 124.44 | 2-2-I | | 3 UK | 3 | HTC | хза | 114 | 12½ | 2201 | 16/16/18 | 806 | 1751 | 945 | 46 | 22.01 | 196.1 | 42.9 | 126.69 | 4-6-I | | 7 YS | 4 | HTC | J11 | 437 | 12½ | 6788 | 16/16/16 | 1751 | 1837.9 | 86 | 9 | 7.07 | 48.6 | 12.2 | 718.53 | 1-1-I | | в 0802 | 4 | CHRIS | RC4 | 4 | 9-7/8 | _ | EOUIVALENT
15/15/14 | 1837.9 | 1847.5 | 9.6 | 3½ | 2.38 | 17.1 | 4.0 | 3657,86 | 0.25 | | в 0802 | RR 4 | CHRIS | RC4 | 4 | 9-7/8 | - | ESYTYALENT | 1847.5 | 1856.5 | 9.0 | 3/4 | 3.07 | 22.3 | 13.0 | 2045.26 | 0.30 | | В 0802 | RR 4 | CHRIS | RC4 | 4 | 9-7/8 | _ | EQUIVALENT 15/15/14 | 1856.5 | 1861.6 | 5.1 | 41/2 | 7.47 | 54.0 | 1.2 | 2392.50 | 0.35 | | 5 YS | 5 | HTC | J11 · | 437 | 12 ¹ / ₄ | 6788 | 15/15/15 | | 2062.0 | 1 | 26 ½ | 22.32 | 147.7 | 9.0 | 641.66 | 8-4-1/8 | | 7 SK | 6 | HTC | J22 | 517 | 12½ | 6788 | 15/15/15 | 2062.0 | 2477.6 | 415.6 | 47½ | 40.25 | 180.9 | 10.3 | 501.56 | 3-3-1/8 | | 7 VK | 7 | нтс | J22 | 517 | 12½ | 6788 | 15/15/15 | 2477.6 | 2636.0 | 158.4 | 26½ | 20,78 | 90.6 | 7.6 | 802.70 | 4-8-1/4 | | 6 BL | 8 | HTC | Ј33 | 537 | 12½ | 6637 | 15/15/15 | 2636.0 | 2901.0 | 265.0 | 56½ | 52,43 | 214,0 | 5.1 | 995.35 | 5-8-1/4 | | 9 YL | 9 | HTC | J33 | 537 | 12½ | 6637 | 15/15/15 | 2901.0 | 3021.0 | 120.0 | 27½ | 22.14 | 92.5 | 5.4 | 1134.64 | 2-2-1 | ļ <u>.</u> | <u> </u> | #### MUD INFORMATION SHEETS DEPTH Metres MUD WEIGHT Pounds per gallon FUNNEL VISCOSITY . . . A.P.I.seconds PLASTIC VISCOSITY. . . Centipoise YIELD POINT. Pounds/100 square feet GEL : INITIAL/10 min . Pounds/100 square feet FILTRATE A.P.I. c.c. CAKE THICKNESS Thirty-seconds of an inch SALINITY : Ca/Cl . . . ppm SOLIDS/SAND/OIL. . . Percentage #### MUD INFORMATION SHEET ESSO AUSTRALIA LTD. COMPANY_ LUDERICK NO. 1 Sheet No. 1 WELL. 775 DEPTH (M) 290 975 1646 806 1838 4/6/83 DATE 5/6/83 6/6/83 7/6/83 8/6/83 9/6/83 10/6/83 TIME 22:45 14:00 15:00 14:00 11:00 11:30 WEIGHT 8.7 9.0 9.2+ 9.0 9.2 9.2+ FUNNEL VISCOSITY 2/3 2/11 3/14 3/11 5/27 5/16 .49/.24 .28/2.44 PV/YP .21/3.59 .23/3.94 .21/8.67 .31/3.08 E 1/2 5/8 3/8 2/6 N/K 12/15 6/14 A 8.9 9.3 9.2 10.6 GEL: INITIAL/10 MIN 10.2 10.5 -/--/-23/-7.6/18.2 рΗ W -/-FILTRATE: API/API HTHP Α 14000 18000 CAKE T 16000 15000 17000 SALINITY (PPM) \mathbf{E} TR TR TR TR SAND R 5 6 5 6 6 SOLIDS 0 0 0 0 0 OIL REMARKS: SPUDDED CEMENTED DRILLED 12½" HOLE LOG 20" CSG RAN CUT DRILLED 17½" 13-3/8" CORE HOLE CASING NO. 1 (M) 1856 1907 2130 2256 2477 2477 DEPTH 2477 11/6/83 12/6/83 13/6/83 14/6/83 15/6/83 16/6/83 17/6/83 DATE 16:00 10:30 22:00 09:30 16:30 23:00 23:30 TIME 9.2 9.2 9.2 9.2+ 9.2+ 9.3 9.1+ WEIGHT 43 7/13 FUNNEL VISCOSITY 40 44 45 40 42 8/14 5/14 6/23 8/16 $\frac{12}{12}$ 6/17 PV/YP .33/2.86 11/28 .45/1.35 12/30 .34/2.33 .27/5.35 22/30 .41/1.81 10/20 .57/.74 3/8 .43/1.35 8/15 N/K 4/13 GEL: INITIAL/10 MIN 10.6 10.4 рΗ 10.5 10.4 10.6 9.6 10.5 FILTRATE: API/API HTHP 8.6/19.2 8,6/19.0 9.0/18.6 9.0/19.2 9.8/20.2 7.6/15.2 7.6/15 CAKE 1 (PPM) 18000 18000 SALINITY 19000 17000 17000 18000 14000 SAND TR TR TR 1/4 TR TR TR SOLIDS 6 6 6 7 6 6 6 0 $\overline{0}$ 0 OIL 0 0 0 0 NITRATES (PPM) 160 180 200 160 200 160 80 REMARKS: CUT DRILLED 12坛" HOLE CORE-NO. 2 INTERMEDIATE LOGS & 3 # LAB #### MUD INFORMATION SHEET ESSO AUSTRALIA LTD. COMPANY_____WELL LUDERICK NO. 1 Sheet No. 2 | - L L | ODDICE OIL TIC | / | | | One | et 140. <u>–</u> | |----------|---|---|--|---|--|--| | 2496 | 2585 | 2712 | 2818 | 2901 | 3008 | 3021 | | 18/6/83 | 19/6/83 | 20/6/83 | 21/6/83 | 22/6/83 | 23/6/83 | 24/6/83 | | 22:00 | 11:00 | 18:30 | 19:00 | 21:00 | 21:15 | 02:00 | | 9.3 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 | | 43 | 40 | 43 | 39 | 40 | 41 | 40 | | 6/14 | 7/15 | | | | | 10/20 | | .38/1.89 | | | .39/2.33 | .39/3.00 | .34/3.58 | | | 7/20 | 6/21 | 15/28 | 18/22 | 14/20 | 18/20 | 18/28 | | 10.6 | 10.5 | 10.7 | 10.5 | 10.4 | 10.5 | 10.4 | | 9.2/19.0 | 9.0/18.8 | 9.2/19.8 | 9.7/19.8 | 9.0/16.4 | 8.8/8.1 | 9.3/18.7 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | | 17000 | 18000 | 21000 | 20500 | 20000 | 20000 | 21000 | | TR | 6 | 6 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 2496
18/6/83
22:00
9.3
43
6/14
.38/1.89
7/20
10.6
9.2/19.0
1
17000
TR
6
0 | 2496
18/6/83 19/6/83
22:00 11:00
9.3 9.2
43 40
6/14 7/15
.38/1.89 .40/1.83
7/20 6/21
10.6 10.5
9.2/19.0 9.0/18.8
1 1
17000 18000
TR TR
6 6 6 | 2496 2585 2712 18/6/83 19/6/83 20/6/83 22:00 11:00 18:30 9.3 9.2 9.2 43 40 43 6/14 7/15 9/23 .38/1.89 .40/1.83 .36/3.45 7/20 6/21 15/28 10.6 10.5 10.7 9.2/19.0 9.0/18.8 9.2/19.8 1 1 1 17000 18000 21000 TR TR TR 6 6 4.5 0 0 0 | 2496 2585 2712 2818 18/6/83 19/6/83 20/6/83 21/6/83 22:00 11:00 18:30 19:00 9.3 9.2 9.2 9.2 43 40 43 39 6/14 7/15 9/23 8/18 .38/1.89 .40/1.83 .36/3.45 .39/2.33 7/20 6/21 15/28 18/22 10.6 10.5 10.7 10.5 9.2/19.0 9.0/18.8 9.2/19.8 9.7/19.8 1 1 1 1 17000 18000 21000 20500 TR TR TR TR 6 6 4.5 4.5 0 0 0 0 | 2496 2585 2712 2818 2901 18/6/83 19/6/83 20/6/83 21/6/83 22/6/83 22:00 11:00 18:30 19:00 21:00 9.3 9.2 9.2 9.2 9.2 43 40 43 39 40 6/14 7/15 9/23 8/18 11/24 .38/1.89 .40/1.83 .36/3.45 .39/2.33 .39/3.00 7/20 6/21 15/28 18/22 14/20 10.6 10.5 10.7 10.5 10.4 9.2/19.0 9.0/18.8 9.2/19.8 9.7/19.8 9.0/16.4 1 1 1 1 1 17000 18000 21000 20500 20000 TR TR TR TR 6 6 4.5 4.5 4.5 0 0 0 0 0 | 2496 2585 2712 2818 2901 3008 18/6/83 19/6/83 20/6/83 21/6/83 22/6/83 23/6/83 22:00 11:00 18:30 19:00 21:00 21:15 9.3 9.2 9.2 9.2 9.2 9.2 43 40 43 39 40 41 6/14 7/15 9/23 8/18 11/24 8/22 .38/1.89 .40/1.83 .36/3.45 .39/2.33 .39/3.00 .34/3.58 7/20 6/21 15/28 18/22 14/20 18/20 10.6 10.5 10.7 10.5 10.4 10.5 9.2/19.0 9.0/18.8 9.2/19.8 9.7/19.8 9.0/16.4 8.8/8.1 1 1 1 1 1 1 17000 18000 21000 20500 20000 20000 TR TR TR TR TR 6 6 4.5 | REMARKS: DRILLED 12½" HOLE T.D. AT 01:18 HOURS 24/6/83 | DEPTH (M) | 3021 | 3021 | | | | | |------------------------|----------|----------|-----|---|--|--| | DATE | 25/6/83 | 26/6/83 | M | | | | | TIME | 13:00 | 13:30 | U | | | | | WEIGHT | 9.2 | 9.2 | D | | | | | FUNNEL VISCOSITY | 41 | 42 | | | | | | PV/YP | 8/18 | 12/26 | T | | | | | N/K | .39/2.33 | .40/3.22 | A | | | | | GEL: INITIAL/10 MIN | 14/20 | 10/22 | N | | | | | рH | 10.1 | 10.0 | K | | | | | FILTRATE: API/API HTHP | 9.4/- | 9.7/- | S | | | | | CAKE | 1 | 1 | | | | | | SALINITY (PPM) | 21000 | 21000 | E | | | | | SAND | TR | TR | M | | | | | SOLIDS | 4.5 | 4.5 | P | | | | | OIL | _ | 1 | T | | | | | NITRATES (PPM) | 200 | - , | Υ . | , | | | REMARKS: SCHLUMBERGER LOGGING P & A BOP & RISER TO SURFACE ON 28/6/83. ANCHORS FINALLY PULLED AND RIG ON TOW 1/7/83. #### PORE PRESSURE DATA SHEET COMPANY: ESSO AUSTRALIA LTD. DATA FROM RFT'S WELL : LUDERICK No.1 | DEPTH
(FROM RKB) | DEPTH
(FROM MSL) | PORE PRESS | PORE PRESS
GRADIENT
E.M.W.(MSL) | | |---------------------|---------------------|--------------------|---------------------------------------|----------------| | METRES | TVD. METRES | PSTA | PPG | PSI/M | | 2400.0 | 2378.8 | 3400.40 | 8.379 | 1.429 | | 2385.0 | 2363.8 | 3378.50 | 8.378 | 1.429 | | 2370.0 | 2348.8 | 3357.40 | 8.379 | 1.429 | | 2364.0 | 2342.8 | 3348.80 | 8.379 | 1.429 | | 2116.7 | 2095.6 | 2996.40 | 8.381 | 1.430 | | 2108.8 | 2087.7 | 2983.80 | 8.378 | 1,429 | | 2048.0 | 2026.9 | 2896.30 | 8.376 | 1.429 | | 2037.5 | 2016.4 | 2883.10 | 8.381 | 1.430 | | 2029.2 | 2008.1 | 2871.20 | 8.381 | 1.430 | | 2018.5 | 1997.4 | 2863.60 | 8.404 | 1.434 | | 1995.5 | 1974.4 | 2825.10 | 8.387 | 1.431 | | 1990.5 | 1969.4 | 2817.90 | 8.387 | 1.431 | | 1967.0 | 1945.9 | 2783.70 | 8.385 | 1.431 | | 1960.0 | 1938.9 | 2774.10 | 8.387 | 1.431 | | 1955.8 | 1934.7 | 2767.80 | 8.386 | 1.431 | | 1948.5 | 1927.4 | 2757.40 | 8.386 | 1.431 | | 1937.5 | 1916.4 | 2742.10 | 8.387 | 1.431 | | 1934.0 | 1912.9 | 2738.10 | 8.390 | 1.431 | | 1923.4 | 1902.3 | 2721.70 | 8.386 | 1.431 | | 1909.5 | 1888.4 | 2702.20 | 8.388 | 1.431 | | 1896.2 | 1875.1 | 2683.20 | 8,388 | 1.431 | | 1889.5 | 1868. 4 | 2674.10 | 8.389 | 1.431 | | 1885.5 | 1864.4 | 2669,00 | 8.391 | 1.432 | | 1878.5 | 1857.4 | 2661.10 | 8,398 | 1.433 | | 1871.8 | 1850.7 | 2649,40 | 8.391 | 1.432 | | 1868.3 | 1847.2 | 2644.40 | 8.391 | 1.432 | | 1861.2 | 1840.1 | 2636,90 | 8.400 | 1.433 | | 1859.9 | 1838.8 | 2632.10 | 8,390 | 1.431 | | 1852.0 | | . 2620.90 | 8.391 | 1.431 | | 1844.5 | 1823.4 | 2611.60 | 8.395 | 1.432 | | 1839.5 | 1818.4 | 2608.40 | 8.408 | 1.434 | | 1833.0 | 1811.9 | 2606.40 | 8,432 | 1.438 | | 1823.5 | 1802.4 | 2589.00 | 8,420 | 1.436 | | 1812.0 | 1790.9 | 2569.30 | 8.409 | 1.435 | | 1838.5 | 1817.4 | 2608.30 | 8,412 | 1.435 | | 1934.1 | 1913.0 | 2737.30 | 8.387 | 1.431 | | 1878.6 | 1857.5 | 2660.00 | 8.394 | 1.432 | | 1879.0 | 1857.9 | 2658.60 | 8.388 | 1.431 | | 2018.5 | 1997.4 | 2864.60
2848.50 | 8.407
8.382 | 1.434
1.430 | | DEPTH
(FROM RKB) | DEPTH
. (FROM MSL.) | PORE PRESS | PORE PRESS
GRADIENT
E.M.W.(MSL) | PORE PRESS
GRADIENT | • | |---------------------|------------------------|--------------------|---------------------------------------|------------------------|---| | METRES | TVD. METRES | PSIA | PPG | PSI/M | | | 1843.0
2018.0 | 1821.9
1996.9 | 2609.90
2864.30 | 8.397
8.408 | 1.433
1.434 | | COMPANY : ESSO AUSTRALIA WELL : LUDERICK NO. 1 LTD. RUN No. : 2 PRESSURE GAUGE TYPE: HP | CHA | MBER No. | | 1 | 2 | | | | | |-----|-----------|--|--------------|-------------|----|----------------------------------|-----------|------------------| | CHA | MBER CAP | ACITY (L) | 22.4 | 3.7 | | | | | | СНО | KE SIZE | | .030 | .020 | | OIL PROPERTIES CONT. | | | | SEA | T No. | | 2/36 | 2/36 | | ODOUR | | | | | | (from RKB) | 1838.5 | 1838.5 | | POUR POINT () | | | | A | RECORDIN | G TIMES | | | | COMMENTS | | | | | TOOL SET | | 03:39:20 | _ | | (c)WATER PROPERTIES | | | | | PRETEST | OPEN | 03:39:20 | - | | RESISTIVITY () | | | | 1 [| TIME OPE | N | 03:43:20 | | | C1 (frm. resis.)() | | | | 1 [| CHAMBER | OPEN | 03:43:30 | | | C1 (frm. titrat)() | | | | | CHAMBER | FULL | 03:50:00 | | | NO ₂ () | | | | 1 [| FILL TIM | Œ | 06:30 | | | рН | | | | | START BU | | 03:50:00 | 03:55:5 | 5 | OTHER TRACERS | | | | | FINISH B | BUILD UP | 03:52:20 | | | () | | | | | BUILD UP | TIME | 02:20 | 02:0 | Ь | DENSITY () | | | | } | SEAL CHA | AMBER | 03:52:20 | | | FLUORESCENCE | | | |] [| TOOL RET | TRACT | _ | 03:59:0 | þ | COLOUR | | | | | TOTAL TI | ME | 13 MINS | 6 MINS | | COMMENTS | | | | В | | PRESSURES | | | 1 | | | | | | IHP | (PSIA) | 2958.7 | | | (d)OTHER SAMPLE | | | | | ISIP | (PSIA) | 2608.3 | 2607.9 | | PROPERTIES | | | | | IFP | (PSIA) | | 2598.7 | L | | | | | | FFP | (PSIA) | 2590.0 | 2599.2 | F | MUD PROPERTIES | | | | | FSIP | (PSIA) | 2607.8 | 2607.9 | Γ | TYPE | SEAWATER | | | | FHP | (PSIA) | - | 2956.6 | 1 | RESISTIVITY (M) | .218 @ 25 | S ^O C | | | TEMP. CC | ORR. () | | | | Cl (frm.resis.)(PPM) | 17000 | | | | COMMENTS | | | |] | C1 (frm.titrat)(PPM) | 18000 | | | С | TEMPERAT | | | |] | NO ₃ Dr1d/1st.circ() | | | | | DEPTH TO | OOL REACHED(M) | 1865 | 1865 | 1 | pH | | | | | MAX. REC. | TEMP (°C) | 76.7 | 76.7 | | OTHER TRACERS | | | | | TIME CI | RC. STOPPED | 15/6 18:00 | 15/6 18:0 | Þ | () | | | | | | NCE CIRC. | 33.6 | 33.6 | 1 | DENSITY () | | | | D | | RECOVERY | | | G | GENERAL COMMENTS | | | | | SURFACE | PRESSURE(PSIG) | | | | | | | | | VOL. GAS | | 124.93 | | 1 | THE LOWER CHAMBER WA | | | | | VOL. OII | | | | 1 | THE SURFACE, BUT THI | | | | | VOL. WAT | | | | | WAS TRANSFERRED FOR | ANALYSIS | RA | | 1 | VOL. FII | | | | 1 | "FLOPETROL". | | | | 1 | | | 784 | | 1 | | | | | | VOL. OT | | 755 | | 1 | | | | | E | | PROPERTIES | , | | 4 | | | | | | (a) G | | 303121 | | 4 | | | | | | A | | 45270 | | - | | | | | | S | | 24358 | | 4 | | | | | | | c4 (PPM) | | | 4 | | | | | | C | c5 (PPM) | | • | 1 | | | | | | 0 | c6+ (PPM) | | | 4 | | | | | | M | | 0.7 | | 4 | | | | | 1 | P | H ₂ S (pp _M) | | | ╄- | | | | | 1 | | PROPERTIES (COM | | T | 4 | | | | | - | DENSITY | | 70 | | - | | | | | - | (OAPI) | REFRACTOMETE | | ļ | 4 | | | | | | | IVE INDEX | | | - | | | | | | COLOUR | | CLEAR | | 4 | | | | | 1 | FLUORES | | BLUE/W | H | | | | | | | G.O.R. | (STB/MS ¢ F | 39.4 | | 1 | | | | | | | ······································ | | | | | | | | CORE LABORATORIES | R.F. Т. | DATA SII | EE'T | - SAMPLING DATA | | | |-------------------------------------|------------------------|--------------|------|--------------------------------|---------------|-----------------------| | COMPANY : ES | SSO AUSTR | ALIA WE | LL | : LUDERICK NO. 1 | | | | Li | TD. | | | | | KILAB | | RUN No. : 3 | | PR | ESS | URE GAUGE TYPE: HP | | | | HAMBER No. | 1 | 2 | | | | | | HAMBER CAPACITY | 22.4 | 3.7 | | | | | | HOKE SIZE | .030 | .020 | | OIL PROPERTIES CONT. | 1 | - | | EAT No. | 3/37 | 3/37 | | ODOUR POUR POINT () | | | | EPTH (M) (from RKB) | 1934.1 | 1934.1 | | COMMENTS | | | | RECORDING TIMES TOOL SET | 09:11:06 | | | (c)WATER PROPERTIES | 1 | · | | PRETEST OPEN | 09:11:06 | | | RESISTIVITY (M) | .773@20°C | .61@18 ^o C | | TIME OPEN | 09:15:06 | 09:24:5 | 5 | C1 (frm. resis.)(PPM) | 8200 | 10000 | | CHAMBER OPEN | 09:15:15 | | | C1 (frm. titrat)(PPM) | 4000 | 4000 | | CHAMBER FULL | 09:20:42 | 09:27:1 | l | NO ₃ (PPM) | 60 | 45 | | FILL TIME | 05:27 | | ķ | | 7.5 | 7.1 | | START BUILD UP | 09:20:42 | | ļ | OTHER TRACERS | | | | FINISH BUILD UP | 09:23:39 | | | DENOTOR: | <u> </u> | | | BUILD UP TIME | 03:00 | | 4 | DENSITY () | <u>'</u> | | | SEAL CHAMBER | 09:23:39 | | | FLUORESCENCE | | | | TOOL RETRACT | 10.00 | 09:30:00 | | COLOUR | | | | TOTAL TIME SAMPLE PRESSURES | 12:33 | 05:00 | 1 | COLUMNIC | | | | SAMPLE PRESSURES [IHP | 3104.8 | _ | 1 | (d)OTHER SAMPLE | | | | ISIP (PSIA) | 2737.3 | 2736.9 | 1 | PROPERTIES | | | | IFP
(PSIA) | 2343.6 | 2681.1 | | | | <u></u> | | FFP (PSIA) | 2581.1 | | F | MUD PROPERTIES | | | | FSIP (PSIA) | 2736.9 | 2737.0 | | TYPE | SEAWATER | GEL | | FHP (PSIA) | - | 3103.0 | 1 | RESISTIVITY (M) | .218@25° | C | | TEMP. CORR. () | | | | C1 (frm.resis.)(PPM) | 17000 | | | COMMENTS | <u> </u> | L | 1 | C1 (frm.titrat)(PPM) | 18000 | | | TEMPERATURE | 1050 | 11050 | 4 | NO ₃ Drld/1st.circ(| ' | | | DEPTH TOOL REACHED(M) | | 1950 | - | OTHER TRACERS | | | | MAX. REC. TEMP. (°C) | 86.7 | 86.7 | 100 | | 1 | | | TIME CIRC. STOPPED | 15/6 18:00
39:00:00 | 39.00.00 | 100 | DENSITY () | | | | TIME SINCE CIRC. D SAMPLE RECOVERY | 77.00.00 | 133.00.00 | G | GENERAL COMMENTS | <u> </u> | | | SURFACE PRESSURE(PSIG | 0/10 | 100 | ᡟ | | NO 077 == | | | VOL. GAS (CUFT | | 0 | 1 | LOWER CHAMBER - | | | | VOL. OIL (| | | 1 | UPPER CHAMBER - | OIL FILM | | | VOL. WATER (LITRE | 21.3 | 3.7 |] | | NO FLUORE | | | VOL. FILTRATE (|) | | _ | | 120010 | | | VOL. CONDENSATE (|) | | 4 | | | | | VOL. OTHER (|) | | 4 | | | | | E SAMPLE PROPERTIES | \[| T | - | | | | | (a) G c1 (| (| ļ | - | | | | | A c2 (
S c3 (| | | 1 | | | | | 5 C3 (| <u> </u> | | - | | | | | C c5 (| <u> </u> | · | - | | | | | 0 6+ (| Ď | | 7 | | | | | м СО2 (|) | | 7 | | | > | | P H ₂ S (| | | | <u> </u> | | | | (b)OIL PROPERTIES | | | | | | | | DENSITY: HYDROMETER | | | | | | | | () REFRACTOMET | ER | | | | | | | REFRACTIVE INDEX | | | _ | | | | | COLOUR | | | 4 | | | | | FLUORESCENCE | | | _ | | | | | G.O.R. () | | | | | | | | | TD. | | | : LUDERICK NO. 1 URE GAUGE TYPE: HP | |---------------------------|------------|------------|----------|--| | CHAMBER No. | 1 | 2 | | | | CHAMBER CAPACITY (LITRES) | 22.4 | 10.2 | | | | CHOKE SIZE | .030 | .020 | | OIL PROPERTIES CONT. | | SEAT No. | 4/38A | 4/38A | | ODOUR | | DEPTH (M) (from RKB) | | 1879 | ľ | POUR POINT () | | A RECORDING TIMES | [| | | COMMENTS | | TOOL SET | 15:34:33 | _ | ľ | (c)WATER PROPERTIES SLIGHTLY DIRTY | | PRETEST OPEN | 15:34:33 | | | RESISTIVITY () | | | 15:37:10 | | - | C1 (frm. resis.)() | | TIME OPEN | 15:37:15 | | - | C1 (frm. titrat)() | | CHAMBER OPEN | 15:48:15 | | - | | | CHAMBER FULL | | 42:00 | } | NO ₃ () | | FILL TIME | | | | OTHER TRACERS | | START BUILD UP | 15:48:15 | | | OTHER TRACERS | | FINISH BUILD UP | 15:56:55 | | | DINOTAL () | | BUILD UP TIME | 08:40 | | L L | DENSITY () | | SEAL CHAMBER | | 16:48:50 | | FLUORESCENCE | | TOOL RETRACT | | 16:49:00 | | COLOUR | | TOTAL TIME | 01:52:00 | | | COMMENTS | | B SAMPLE PRESSURES | | | | | | IHP (PSIA) | 3017.8 | _ | | (d)OTHER SAMPLE | | ISIP (PSTA) | | 2658.6 | | PROPERTIES | | IFP (PSIA) | 1 | 128 | | | | FFP (PSIA) | | 1686 | F | MUD PROPERTIES | | FSIP (PSIA) | | 2657.2 | | TYPE SEAWATER GEL | | FHP (PSIA) | | 3017.4 | 1 | RESISTIVITY (M) .28@25°C | | TEMP. CORR. () | | 301767 | 1 | C1 (frm.resis.)(PPM) 28000 | | COMMENTS | | | 1 | C1 (frm.titrat)(PPM) 18000 | | C TEMPERATURE | | | 1 | NO ₂ Drld/1st.circ(PPM) 160 | | DEPTH TOOL REACHED(M) | 11905 | 1905 | 1 | pH | | MAX. REC. TEMP. (°) | | | 1 | OTHER TRACERS | | | 15/6 19 00 | 15/6 18:00 | ł | () | | TIME CIRC. STOPPED | . 1 | | - | DENSITY () | | TIME SINCE CIRC. | 45.5 HRS | 46 HKS | - | GENERAL COMMENTS | | D SAMPLE RECOVERY | N.a | la . | G | GENERAL COMMENTS | | SURFACE PRESSURE(PSIG | | 0 | 4 | | | | 0.05 | 0 | - | THE FORMATION WATER RECOVERED | | VOL. OIL (|) | | 1 | FROM BOTH CHAMBERS CONTAINED A | | | 21.7 | 9.0 |] | THIN TRACE OF OIL FILM, WHICH | | VOL. FILTRATE (|) | | 1 | FLUORESCED A DIFFUSE, DULL, MILKY | | VOL. CONDENSATE (|) | | 1 | YELLOW-WHITE COLOUR. | | VOL. OTHER (|) | |] | | | E SAMPLE PROPERTIES | | , | 4 | | | (a) G c1 (|) | | | | | A c2 (|) | | _ | | | S c3 (|) | | | | | c4 (|) | | | | | C c5 (|) | | 1 | | | 0 c6+ (|) | | 7 | | | M CO ₂ (| 5 | | 7 | | | P H ₂ S (| 5 | | 1 | | | (b)OIL PROPERTIES | <u>-1</u> | I., | | | | DENSITY: HYDROMETER | | 1 | 7 | | | () REFRACTOMET | ER | - | ┨ | | | REFRACTIVE INDEX | | - | \dashv | | | | | - | - | | | COLOUR | | | \dashv | | | FLUORESCENCE | | | 4 | | | G.O.R. () | i | | | | CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA | CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA | | | | | | | | |---|----------------|-----------------------|----------|------------------------------------|--------------|--------|----------------------| | COMPANY : E | TD. | | | : LUDERICK NO. 1 | | | LAB | | CHANDED W. | 1 1 | 2 | | | | | | | CHAMBER No.
CHAMBER CAPACITY | 22.4 | 3.7 | | | | | | | CHAMBER CATACITI | .030 | .020 | | OIL PROPERTIES CONT. | | | | | SEAT No. | 5/40 | 5/40 | | ODOUR | | | | | DEPTH (M) (from RKB) | 2013 | 2013 | | POUR POINT () | | | | | A RECORDING TIMES | | | | COMMENTS | | | | | TOOL SET | 00:29:30 | | | (c)WATER PROPERTIES | | 0600 | .406@60 ⁰ | | PRETEST OPEN | 00:29:30 | | | RESISTIVITY (M) | 305 | 0062 F | 18000 | | TIME OPEN | | 00:54:3 | | C1 (frm. resis.)(PPM) | 1000 | 00 | 8000 | | CHAMBER OPEN | | 00:54:4 | | C1 (frm. titrat)(PPM) NO (PPM) | 65 | - | 65 | | CHAMBER FULL | | | | $\frac{NO}{pH}3$ (PPM) | 8 | | 7.5 | | FILL TIME | 12:3 | | | OTHER TRACERS | - | | | | START BUILD UP | | 00:57:4 | | () | | | | | FINISH BUILD UP BUILD UP TIME | | 01:00:3
0 02:5 | | DENSITY () | | | | | SEAL CHAMBER | 03:40 | 01:00:3 | | FLUORESCENCE | | | | | TOOL RETRACT | | 01:02:4 | Ó | COLOUR | | | _ | | TOTAL TIME | 24:0 | 08:0 | lo | COMMENTS | | | | | B SAMPLE PRESSURES | | | 1 | | | | | | THP (PSIA) | 3224.5 | - | 1 | (d)OTHER SAMPLE | | | | | ISIP (PSIA) | 2848.5 | 2849.0 | 1 | PROPERTIES | | | | | IFP (PSIA) | 164 | 1642 | | | | | | | FFP (PSIA) | 1876 | 1992 | F | MUD PROPERTIES | ., | | | | FSTP (PSIA) | 2848.7 | 2848.5 | | TYPE | | WATER | | | FHP (PSIA) | _ | 3225.3 |] | RESISTIVITY (M) | | 8@ 25° | С | | TEMP. CORR. () | | | | C1 (frm.resis.)(PPM) | 280 | | | | COMMENTS | | | 1 | C1 (frm.titrat)(ppm) | 180 | | | | C TEMPERATURE | 1 6656 | 1 0050 | 4 | NO ₃ Drld/1st.circ(PPM) | 160 | | | | DEPTH TOOL REACHED(M) | | 2050 | 4 | pH OTHER TRACERS | | | | | MAX.REC.TEMP.(°C) | 200 | 200 | ٦,, | 1 - | | | | | TIME CIRC. STOPPED | 15/6 18:0 | 0 15/6 18:
54.5 HI | : UU | DENSITY () | | | | | TIME SINCE CIRC. | 34 HKS | 34.3 111 | - | GENERAL COMMENTS | | | | | D SAMPLE RECOVERY | کا ۵ | 200 | G | GENERAL COPPLENTS | | | | | SURFACE PRESSURE(PSI | 9 0 | 200 | ┨ | | | | | | VOL. GAS (| \dashv | | 1 | | | | | | VOL. WATER (LITR | D 21.8 | 3.7 | 1 | | | | | | VOL. FILTRATE (| 3 | | 1 | | | | | | VOL. CONDENSATE (| 3 | · | 1 | | | | | | VOL. OTHER (| 5 | TR. SC | ŪМ | | | | | | E SAMPLE PROPERTIES | | | | | | | | | (a) G c1 (|) | | | | | | | | A c2 (|) | | | | | | | | S c 3 (|) | | 4 | | | | | | c4 (|) | - | _ | | | | | | C c5 (|) . | <u> </u> | 4 | | | | | | 0 c6+ (| | | - | | | | | | M CO ₂ (| -{ | | \dashv | | | | | | P H ₂ S (
(b)OIL PROPERTIES | _/ | | + | 1 | | | | | DENSITY: HYDROMETER | | <u> </u> | \dashv | | | | | | () REFRACTOMET | rer | | \dashv | | | | | | REFRACTIVE INDEX | | | \dashv | | | | | | COLOUR | | | ┪ | | | | | | FLUORESCENCE | DULL, | DIFFUSE, | M: | ILKY YELL-WH | | | | | G.O.R. () | | | \dashv | | | | | | / | | | | | | | | | CORE LABORATORIES | R.F.Т. | DATA SII | EET | - SAMPLING DATA | | | | | |---|--------------|-------------|--|-------------------------|--------------|--|--|--| | COMPANY: ESSO AUSTRALIA WELL: LUDERICK NO. 1 LTD. RUN No.: 6 PRESSURE GAUGE TYPE: HP | | | | | | | | | | | 1 1 | | | | | | | | | CHAMBER No. | 1 | 2 | | | | | | | | CHAMBER CAPACITY | 22.4
.030 | 3.7 | | LOTE PROPERTIES COM | | | | | | CHOKE SIZE | | .020 | | OIL PROPERTIES CONT. | | | | | | SEAT No. | 6/41 | 6/41 | | ODOUR | | | | | | DEPTH (M) (from RKB) | 1843 | 1843 | 1 | POUR POINT () | | | | | | A RECORDING TIMES | · | | 1 | COMMENTS | | | | | | TOOL SET | 04:52:20 | | 1 | (c)WATER PROPERTIES | | | | | | PRETEST OPEN | 04:52:20 | | | RESISTIVITY () | | | | | | TIME OPEN | 04:55:12 | | | C1 (frm. resis.)() | | | | | | CHAMBER OPEN | 04:55:15 | | | Cl (frm. titrat)(PPM) | 16000 | | | | | CHAMBER FULL | 05:02:00 | 05:11:00 | • | | | | | | | FILL TIME | 07:00 | 02:30 | • | $\frac{NO}{pH^3}$ (PPM) | 8 | | | | | START BUILD UP | 05:02:00 | 05:11:00 | • | OTHER TRACERS | | | | | | FINISH BUILD UP | 05:07:00 | | | () | | | | | | BUILD UP TIME | 05:00 | | | DENSITY () | | | | | | SEAL CHAMBER | 05:07:30 | | | FLUORESCENCE | | | | | | TOOL RETRACT | - | 05:19:00 | | COLOUR | | | | | | TOTAL TIME | 15:00 | i . | 1 | COMMENTS | | | | | | B SAMPLE PRESSURES | 1 13.00 | 10.30 | 1 | COLUMNIATO | | | | | | | 2954.9 | _ | l | (4)OMUDD CAMPLE | | | | | | | · | | | (d)OTHER SAMPLE | | | | | | ISIP (PSIA) | 2609.9 | 2609.4 | | PROPERTIES | | | | | | IFP (PSIA) | 2230 | 2297 | _ | | 1 | | | | | FFP (PSIA) | 2198 | 2285 | F | MUD PROPERTIES | - | | | | | FSIP (PSIA) | 2609.1 | 2609.2 | l | TYPE | SEAWATER GEL | | | | | FHP (PSIA) | _ | 2954.5 | | RESISTIVITY (M) | .218 @ 25°C | | | | | TEMP. CORR. () | | | | C1 (frm.resis.)(PPM) | 28000 | | | | | COMMENTS | | | | C1 (frm.titrat)(PPM) | 18000 | | | | | C TEMPERATURE | | |] | NO2Drld/1st.circ(PPM) | | | | | | DEPTH TOOL REACHED(M) | 1875 | 1875 | } | pH | | | | | | MAX.REC.TEMP.() | | | 1 | OTHER TRACERS | | | | | | TIME CIRC. STOPPED | 15/6 18:00 | 15/6 18:0 | b | () | | | | | | TIME SINCE CIRC. | 59 HRS | 59 HRS | | DENSITY () | | | | | | D SAMPLE RECOVERY | 1 | | G | GENERAL COMMENTS | <u> </u> | | | | | SURFACE PRESSURE(PSIG | 1000 | | ۲ | CHARACTE COLLEGE | | | | | | | 6.66 | | 1 | | | | | | | | 590 | | 1 | THE UPPER CHAMBER | | | | | | VOL. WATER (L | 21 | | 1 | FOR ANALYSIS BY " |
FLOPETROL". | | | | | VOL. WATER (E |) -1 | | 1 | | | | | | | VOL. CONDENSATE (| | | 1 | | | | | | | VOL. OTHER (| | | 1 | | | | | | | E SAMPLE PROPERTIES | <u>′</u> | L | 1 | | | | | | | | 757800 | | 1 | | | | | | | | 82310 | | 1 | | | | | | | $ \begin{array}{c cccc} A & c2 & (PPM) \\ S & c3 & (PPM) \end{array} $ | 28620 | | 1 | | | | | | | | 5620 | | 1 | | | | | | | C C C5 (PPM) | 670 | ļ | 1 | | | | | | | | | | 1 | j | | | | | | 0 c6+ (PPM) | 110 | | - | | | | | | | M CO ₂ (%) | 0.4 | | - | | | | | | | P H ₂ S (PPM) | 0 | | <u> </u> | <u> </u> | | | | | | (b)OIL PROPERTIES | 175 6675 | .O | 1 | | | | | | | DENSITY: HYDROMETER | 45.9@60 | F | 1 | | | | | | | (API) REFRACTOMETI | | | | | | | | | | REFRACTIVE INDEX | _ | | 1 | | | | | | | COLOUR | RED-BN | | | | | | | | | FLUORESCENCE | BRT BLU | E-WH | | | | | | | | G.O.R. (SCF/BBL) | 1794 | | 1 | | | | | | | Landa South DDR | 11/24 | | ــــــــــــــــــــــــــــــــــــــ | | | | | | | COMPANY :ES:
LT:
RUN No. : | D. | | | : LUDERICK NO. 1 SURE GAUGE TYPE: HP | LAB | |---|----------------|----------|----------|---------------------------------------|--------------------------| | | | | | *** | [WWIED] | | CHAMBER No. | 1 | 2 | l | | | | CHAMBER CAPACITY (LITRES) | 22.4 | 10.2 | <u> </u> | OTI DROPPRETE COM | | | CHOKE SIZE | 0.03 | 0.02 | | OIL PROPERTIES CONT. | | | SEAT No. | 7/42 | 7/42 | l | POUR POINT () | | | DEPTH (M) (from RKB) | 2018 | 2018 | ł | POUR POINT () | | | A RECORDING TIMES TOOL SET | 19:30:51 | | 1 | (c)WATER PROPERTIES | | | PRETEST OPEN | | | | RESISTIVITY (M) | .32 @ 48°C | | TIME OPEN | 19:30:51 | | | C1 (frm. resis.)(PPM) | | | CHAMBER OPEN | 19:35:46 | 19.46.2 | | C1 (frm. titrat)(PPM) | | | CHAMBER FULL | 19:42:50 | | | NO ₂ (PPM) | | | FILL TIME | 07:04 | | • | Hg (1111) | 7.1 | | START BUILD UP | 19:42:50 | | | OTHER TRACERS | | | FINISH BUILD UP | 19:43:20 | | | () | | | BUILD UP TIME | 01:30 | | L | DENSITY () | | | SEAL CHAMBER | 19:44:00 | 19:54:53 | B | FLUORESCENCE | | | TOOL RETRACT | - | 19:57:0 | Þ | COLOUR | | | TOTAL TIME | | | 1 | COMMENTS | | | B SAMPLE PRESSURES | | | 1 | | | | IHP (PSIA) | 3257.3 | | | (d)OTHER SAMPLE | | | ISIP (PSTA) | 2864.3 | 2864.3 | | PROPERTIES | | | IFP (PSIA) | 551.0 | 2775.9 | L | | | | FFP (PSIA) | 2476.0 | 2640.0 | F | MUD PROPERTIES | | | FSIP (PSIA) | 2863.5 | 2863.0 | | | SEAWATER GEL | | FHP (PSIA) | | 3257.6 | | RESISTIVITY (M) | .312 @ 15 ⁰ C | | TEMP. CORR. () | | | | C1 (frm.resis.)(PPM) | 24000 | | COMMENTS | | | | | 21000 | | C TEMPERATURE | 12060 | 2060 | | NO ₃ Drld/1st.circ(PPM) | | | DEPTH TOOL REACHED(M) | 2060 | 2000 | | pH TDA CERC | 10.1 | | MAX. REC. TEMP. (°C) | 01 / 02 02 | N K ~ | | OTHER TRACERS | | | TIME CIRC. STOPPED | 24/6 03:30 | | βO | DENSITY (PPG) | 9.2 | | TIME SINCE CIRC. (HRS) D SAMPLE RECOVERY | 39.0 | 39.0 | G | DENSITY (PPG) GENERAL COMMENTS | 7.4 | | SURFACE PRESSURE(PSIG | 1000 | | ٦ | GENERAL COPPLENTS | | | VOL. GAS (CUFT) | | | 1 | | | | VOL. OIL (CC | | | 1 | THE UPPER CHAMBER | WAS PRESERVED | | | 1828 | | 1 | FOR ANALYSIS. | | | VOL. FILTRATE (|) | | 1 | | | | VOL. CONDENSATE (| | | 1 | | | | VOL. OTHER (| | | 1 | | | | E SAMPLE PROPERTIES | | | 1 | | | | | 204654 | |] | | | | | 25166 | | | | | | | 13637 | | 1 | | | | c4 (PPM) | | | 1 | | | | C c5 (PPM) | | • | 1 | | | | 0 c6+ (PPM) | | | | | | | | 1.5 | | 1 | | | | P H ₂ S (PPM) | 10 | | - | | | | (b)OIL PROPERTIES | 160 -51- | y | - | | | | DENSITY: HYDROMETER | 60.7@60 | F | 1 | | | | (API) REFRACTOMETE | rk | ļ | 1 | | | | REFRACTIVE INDEX | | <u></u> | - | | | | COLOUR | GREYISH | | 1 | | | | FLUORESCENCE | BR BLUE | √WH | 1 | | | | G.O.R. (SCF/BB). | 1305 | | | | | R.F.T. DATA SHEET - SAMPLING DATA CORE LABORATORIES APPENDICES #### COMPUTER DATA LISTINGS Data is fed to the computer while drilling is in progress, using the DRILL program and is stored on a tape at 10, 5, 1, or 0.2m intervals. This data is then available at a later date for use in other programs (for example KICK, SURGE, COST, OPTBIT, and HYDRL). The data can also be accessed by the REPORT program, which allows the operator to list both raw and calculated data in various formats. Either detailed data or data averaged over any particular depth interval, may be listed. In addition, the data may be plotted in various formats, at any scale the operator desires. the following data lists have been made for this well: - (a). Bit record and bit initialization data - (b). Hydraulic analyses - (c). Data list A - (d), Data list B - (e). Data list C - (f). Data list D #### COMPUTER PLOTS Using the REPORT program, hte following plots have been drawn for this well : GEOPLOT - 1:5000 SCALE - 2m averages Since all the data is stored on tape, further data lists or plots are available at any time on request. #### (a). BIT RECORD AND BIT INITIALIZATION DATA BIT SIZE Inches BIT COST Australian dollars JET SIZE Thirty-seconds of an inch DEPTHS Metres HOLE MADE. Metres DRILLING TIME. Hours AVERAGE ROP. Metres/hour AVERAGE COST/METRE . . Australian dollars BIT CONDITION. . . . Teeth Bearings Gauge . . . Inches | 11571 | . 1 | HATO | TOV | 14 | |-------|------|------|------|----| | WELL | : 1. | UDER | J.LR | ₩i | | BIT | IADC | | | | | DEPTH | DEPTH | BIT | TOTAL | | TRIP | | TOTAL | CONDITION | |-----|------|------------------|--------|---------|----------|----------------|--------|-------|-------|------|------|---------|---------------|-----------| | No. | CODE | MAKE & TYPE | SIZE | COST | NOZZLES | IN | OUT | RUN | HOURS | AROP | TIME | CCOST | TURNS | TBG | | 1 | 111 | HTC OSC3AJ&26"HO | 26.000 | 0.00 | 18 18 18 | 74.0 | 209.0 | 135.0 | 3.28 | 41.2 | 2.4 | 178.44 | 13555 | 2 5 0.000 | | 2 | 111 | HTC OSC3AJ | 17.500 | 4442.00 | 20 20 20 | 209.0 | 806.0 | 597.0 | 12.77 | 46.8 | 3.7 | 124.44 | 106641 | 2 2 0.000 | | 3 | 114 | HTC X3A | 12.250 | 2201.00 | 16 16 18 | 806.0 | 1751.0 | 945.0 | 22.01 | 42.9 | 5.7 | 126.69 | 196061 | 4 6 0.000 | | 4 | 437 | HTC J11 | 12,250 | 6788.00 | 16 16 16 | 1751.0 | 1837.0 | 86.0 | 7.07 | 12.2 | 5.9 | 718.53 | 48632 | 1 1 0.000 | | 4 | 4 | CHRIS RC4 | 9,875 | 0.00 | 15 15 14 | 1837. 9 | 1847.5 | 9.6 | 2.38 | 4.0 | 5.9 | 3657.86 | 17130 | 0 0 0.250 | | 4 | 4 | CHRIS RC4 | 9.875 | 0.00 | 15 15 14 | 1847.5 | 1856.5 | 9.0 | 3.07 | 13.0 | 5.9 | 2045.26 | 223 29 | 0 0 0.300 | | 4 | 4 | CHRIS RC4 | 9.875 | 0.00 | 15 15 14 | 1856.5 | 1861.6 | 5.1 | 7.47 | 1.2 | 5.9 | 2392.50 | 54023 | 0 0 0.350 | | 5 | 437 | HTC J11 | 12.250 | 6788.00 | 15 15 15 | 1861.6 | 2062.0 | 200.4 | 22.32 | 9.0 | 6.4 | 641.66 | 147694 | 8 4 0.125 | | WELL: LUDERICK NO.1 | | | | | | | | | | BIT RECORD | |--|-----------|---------|------------------|------------------|----------------|----------------|-------------------|------------------|-------------------------|--| | BIT IADC
No. CODE MAKE & TYPE | SIZE COST | NOZZLES | DEPTH
IN | DEPTH
Dut | BIT
Run | TOTAL
HOURS | TRIF
AROP TIME | | TOTAL
TURNS | CONDITION
T B G | | 6 517 HTC J22
7 517 HTC J22
8 537 HTC J33
9 537 HTC J33 | | | 2477.6
2636.0 | 2636.0
2901.0 | 158.4
265.0 | 20.78
52.43 | 7.6 7.6 | 902.70
995.35 | 9055 9
214055 | 3 3 0.125
4 8 0.250
5 8 0.250
2 2 0.000 | | STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES HW DRILL COLLAR LENGTH, OD, ID DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY | 74.0
0.00
2.4
26.000
18
23.79
39.21
83.25
0.00
0.119
1.20
8.4
0.00
0.43
10.0
4.0 | 4241.00
18
9.750
8.000
5.000
0.000
0.119 | 18
3.062
2.813
3.125
4.276 | |--|--|---|--| | FINISHING DEPTH | 209.0
3.28
T 2 | 13555
B 5 | G 0.000 | | BIT NUMBER: 2 IADC CODE 111 | HTC OSC3 | SAJ | | | STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES HW DRILL COLLAR LENGTH, OD, ID DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY | 209.0
4442.00
3.7
17.500
20
21.95
95.35
27.21
194.00
74.00
0.119
1.20
8.4
0.00
0.43
10.0
3.5 | 4241.00
20
9.750
8.000
5.000
19.124
21.000
0.119 | 20
3.062
2.813
3.125
4.276 | | FINISHING DEPTH | 806.0
12.77
T 2 | 106641
B 2 | G 0.000 | BIT NUMBER: 1 IADC CODE 111 HTC OSC3AJ&26"HO | BIT NUMBER: 3 IADC CODE 114 | HTC X3A | | |
--|--|---|-------------------------------| | STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY | 806.0
2201.00
5.7
12.250
16
171.80
83.18
792.00
74.00
0.119
1.20
8.4
0.00
0.43
10.0
3.0 | 16
8.000
5.000
5.000
12.615
21.000
0.119 | 18
2.813
3.125
4.276 | | FINISHING DEPTH | 1751.0
22.01
T 4 | 196061
B 6 | G 0.000 | | BIT NUMBER: 4 IADC CODE 437 | HTC J11 | | | | STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER "d" EXPONENT CORRECTION FACTOR | 1751.0
6788.00
5.9
12.250
16
172.45
83.18
792.00
74.00
0.119
1.20
8.4
0.00
0.43
10.0 | 4241.00
16
8.000
5.000
5.000
12.615
21.000
0.119 | 16
2.813
3.125
4.276 | | CUTTINGS DIAMETER, DENSITY FINISHING DEPTH CUMULATIVE HOURS, TURNS BIT CONDITION OUT | 2.6
1837.0
7.07
T 1 | 2,55
48632
B 1 | G 0.000 | | BIT NUMBER: 4 IADC CODE 4 | CHRIS RC4 | |---------------------------|--| | STARTING DEPTH | . 0.00 4241,00
. 5.9
. 9.875
. 15 15 14
. 152.80 8.000 2.813
. 0.00 0.000 0.000
. 83.18 5.000 3.125
. 5.000 4.276
. 792.00 12.615
. 74.00 21.000
. 0.119 0.119 | | NORMAL PORE PRESSURE | 8.4
. 0.00
. 0.43
. 10.0
. 2.5 2.50
. 1847.5
. 2.38 17130 | | BIT NUMBER: 4 IADC CODE 4 | CHRIS RC4 | | STARTING DEPTH | . 1847.5
. 0.00 4241.00
. 5.9
9.6
. 2.38 17130
9.875
. 15 15 14
. 152.80 8.000 2.813
. 0.00 0.000 0.000
. 83.18 5.000 3.125
. 5.000 4.276
. 792.00 12.615
. 74.00 21.000
. 0.119 0.119
. 1.20
. 8.4
. 0.00
. 0.43
. 10.0 | 1856.5 3.07 T 0 22329 B 0 G 0.300 | BIT NUMBER: 4 IADC CODE 4 | CHRIS RC4 | | |---|---|--| | STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME PREVIOUS HOLE MADE | 1856.5
0.00 4241.00
5.9
18.6 | | | PREVIOUS HOURS, TURNS | 3.07 22329
9.875 | | | BIT DIAMETER | 7.873
15 15
152.80 8.000
0.00 0.000
83.18 5.000
5.000
792.00 12.615
74.00 21.000
0.119 0.119
1.20
8.4
0.00 | 14
2.813
0.000
3.125
4.276 | | STRESS RATIO MODIFIER | 0.43
10.0 | | | CUTTINGS DIAMETER, DENSITY | 2.5 2.50 | | | FINISHING DEPTH | 1861.6
7.47 54023
T 0 B 0 | G 0.350 | | BIT NUMBER: 5 IADC CODE 437 | HTC J11 | | | STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER | 1861.6
6788.00 4241.00
6.4
12.250 | | | NOZZLES | 15 15
172.45 8.000
0.00 0.000
83.18 5.000
5.000
792.00 12.615 | 15
2.813
0.000
3.125
4.276 | | RISER LENGTH, ID | 74.00 21.000
0.119 0.119
1.20
8.4
0.00
0.43
10.0
2.5 2.50 | | | CUTTINGS DIAMETER, DENSITY FINISHING DEPTH CUMULATIVE HOURS, TURNS BIT CONDITION OUT | 2062.0
22.32 147694
T 8 B 4 | G 0.125 | | BIT NUMBER: 6 TADC CODE 517 | HTC J22 | | | |--|---|---|--| | STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES HW DRILL COLLAR LENGTH, OD, ID DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY | 2062.0
6788.00
7.3
12.250
15
172.45
0.00
83.18
792.00
74.00
0.119
1.20
8.4
0.00
0.43
10.0
2.5 | 4241.00
15
8.000
0.000
5.000
12.615
21.000
0.119 | 15
2.813
0.000
3.125
4.276 | | FINISHING DEPTH | 2477.6
40.25 | 180878 | | | BIT CONDITION OUT | T 3 | B 3 | G 0.125 | | STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES HW DRILL COLLAR LENGTH, OD, ID | 2477.6
6788.00
7.6
12.250
15
172.45 | 4241.00
15
8.000 | 15
2.813
0.000 | | DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID | 0.00
83.18
792.00 | 0.000
5.000
5.000
12.615 | 3.125
4.276 | | RISER LENGTH, ID | 74.00
0.119
1.20
8.4
0.00
0.43
10.0
2.5 | 21.000 | | | FINISHING DEPTHCUMULATIVE HOURS, TURNSBIT CONDITION OUT | 2636.0
20.78
T 4 | 90559
B 8 | G 0.250 | | BIT NUMBER: 8 IADC CODE 537 STARTING DEPTH | HTC J33 2636.0 6637.00 8.2 12.250 15 172.45 0.00 83.18 792.00 74.00 0.119 1.20 | 15
8.000
0.000
5.000
5.000
12.615
21.000
0.119 | 15
2.813
0.000
3.125
4.276 | |---|---|--|--| | NORMAL PORE PRESSURE | 8.4
0.00
0.43
10.0
2.4
2901.0
52.43
T 5 | 2,40
214055
B 8 | G 0.250 | | BIT NUMBER: 9 IADC CODE 537 STARTING DEPTH | HTC J33 2901.0 6637.00 8.4 12.250 15 172.45 0.00 83.18 792.00 74.00 0.119 1.20 8.4 0.00 0.43 10.0 2.3 | 4241.00
15
8.000
0.000
5.000
5.000
12.615
21.000
0.119 | 15
2.813
0.000
3.125
4.276 | | FINISHING DEPTH | 3021.0
22.14
T 2 | 92542
B 2 | G 0.000 | #### (b), HYDRAULIC ANALYSIS Data listed from the tape every 100m for each bit run. DEPTH. Metres FLOW RATE. Rate of mud flow into the well, in gallons per minute. ANNULAR VOLUMES. . . . Barrels, Barrels/metre ANNULAR VELOCITIES . . Metres/minute CRITICAL VELOCITIES. . The annular velocity above which the flow becomes turbulent SLIP VELOCITY, . . . The rate of slip of cuttings in the annulus under laminar flow ASCENT VELOCITY. . . . The rate of ascent of cuttings in the annulus under laminar flow PRESSURE UNITS Pounds per square inch IMPACT FORCE The impact force at the bit, in foot-pounds per second squared. H.H.P. Hydraulic horsepower at the bit JET VELOCITY The velocity of mud through the bit nozzles, in metres per second. DENSITY UNITS. . . . Pounds per gallon #### HYDRAULICS ANALYSIS PROGRAM | HYDRAULICS CALCULATIONS AT DEPTH 100. | O AND | TVD | 100.0 | |---------------------------------------|-------|-----|-------| |---------------------------------------|-------|-----|-------| SPM 1 52 SPM 2 27 FLOW RATE 394 #### ANNULAR HYDRAULICS: | ANNUL
T) | .US
(PE | UNIT
UNIT | VOL | ANN
VEL | CRIT | TYPE OF
FLOW | SL.IP
VEL | ASCEND
VEL | PRESSURE
DROP | |--------------|------------|--------------|------|------------|--------|-----------------|--------------|---------------|------------------| | HWDCZ | ′0H | 1,851 | 44 | 5 | 0 | TURBULENT | | | 0.0 | | DCZ | /OH | 1.950 | 76 | 5 | 0 | TURBULENT | | | 0.0 | | HWDP | | 2.074 | 77 | 5 | Û | TURBULENT | | | 0.0 | | | TOTAL | VOLUME | 197 | | | TOTAL | PRESSUI | RE DROP | 0.0 | | LAG: | 21.0 | MINUTES | 1092 | STROKES | 3 #1 : | AND 566 S | TROKES | #2 | | #### BIT HYDRAULICS: | PRESSURE DROP | 220.8 | ннр | 51 | IMPACT FORCE | 297 | |--------------------|-------|----------|------|--------------|-----| | % SURFACE PRESSURE | 60.3 | HHP/sqin | 0.10 | JET VELOCITY | 51 | #### PRESSURE BREAKDOWN: | SURFACE | 10.8 | | | | | | | |---------|-------|------|----------|-------|---|------------|------| | STRING | 35.8 | | | | | | | | BIT | 220.8 | | | | | | | | ANNULUS | 0.0 | | | | | | | | TOTAL | 267.3 | PUMP | PRESSURE | 365.9 | % | DIFFERENCE | 26.9 | #### BOTTOM HOLE PRESSURES: | | | D | ENSITY
UNITS | ! | UNITS | |---|------|---|------------------------------|--|-------| | NOT CIRCULATING:
CIRCULATING:
PULLING OUT:
EFFECTIVE | TRIP | | 8.60
8.60
0.00
8.60 | HYDROSTATIC
PRESSURE
CIRCULATING PRESSURE
ESTIMATED SWAB
BOTTOM HOLE PRESSURE | 146.7 | #### HYDRAULICS ANALYSIS PROGRAM #### HYDRAULICS CALCULATIONS AT DEPTH 200.0 AND TVD 200.0 SPM 1 99 SPM 2 94 FLOW RATE 964 #### ANNULAR HYDRAULICS: | ANNUL.US | VOL/ | | ANN | CRIT | TYPE OF | SLIP | ASCEND | PRESSURE | |----------|----------|------|------|------|-----------|---------|---------|----------| | TYPE | TINU | AUT" | VEL. | VEL | FL.OW | VEL | VEI | DROP | | HWDC/OH | 1.851 | 44 | 12 | 0 | TURBULENT | | | 0.0 | | DC/OH | 1.950 | 76 | 12 | 0 | TURBULENT | | | 0.0 | | HWDP/OH | 2.074 | 173 | 11 | 0 | TURBULENT | | | 0.0 | | DP/OH | 2.074 | 111 | 11 | 0 | TURBULENT | | | 0.0 | | TOTAL | . VOLUME | 405 | | | TOTAL | PRESSUR | RE DROP | 0.0 | | | | | | | | | | | LAG: 17.6 MINUTES 1747 STROKES #1 AND 1653 STROKES #2 #### BIT HYDRAULICS: PRESSURE DROP 1324.5 HHP 745 IMPACT FORCE 1781 X SURFACE PRESSURE 107.2 HHP/sqin 1.40 JET VELOCITY 126 #### PRESSURE BREAKDOWN: SURFACE 53.9 STRING 261.0 BIT 1324.5 ANNULUS 0.0 TOTAL 1639.4 PUMP PRESSURE 1235.6 % DIFFERENCE 32.7 #### BOTTOM HOLE PRESSURES: | | DENSITY | PRESSURE | |----------------------|-------------|----------------------------| | | UNITS | UNITS | | NOT CIRCULATING: MUD | WEIGHT 8.60 | HYDROSTATIC PRESSURE 293.4 | | CIRCULATING: | ECD 8.60 | CIRCULATING PRESSURE 293.5 | | PULLING OUT: TRIP | MARGIN 0.00 | ESTIMATED SWAB 0.0 | | EFFECTIVE MUD | WEIGHT 8.60 | BOTTOM HOLE PRESSURE 293.4 | HYDRAULICS ANALYSIS PROGRAM ### HYDRAULICS CALCULATIONS AT DEPTH 300.0 AND TVD 300.0 SPM 1 100 SPM 2 92 FLOW RATE 961 #### ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A
VEL | VEL. | PRESSURE
DROP | |--------------------------------------|---|----------------------------------|----------------------------------|----------------------------------|--|----------------------------|----------------------------------|--| | HWDC/OH DC/OH DC/CSG HWDP/CSG DP/CSG | 0.673
0.772
0.961
1.085
1.085 | 15
65
11
30
88
98 | 34
30
24
21
21
17 | 37
35
34
32
32
32 | LAMINAR
LAMINAR
LAMINAR
LAMINAR
LAMINAR
LAMINAR | 2
1
1
1
1
0 | 32
28
23
20
20
17 | 0.0
0.1
0.0
0.0
0.1
0.0 | | TOTAL | _ VOLUME | 307 | | | TOTAL | PRESSURE | DROP | 0.3 | LAG: 13.4 MINUTES 1338 STROKES #1 AND 1239 STROKES #2 #### BIT HYDRAULICS: PRESSURE DROP 863.5 HHP 484 IMPACT FORCE 1434 % SURFACE PRESSURE 46.7 HHP/sqin 2.01 JET VELOCITY 102 #### PRESSURE BREAKDOWN: SURFACE 61.6 STRING 390.1 BIT 863.5 ANNULUS 0.3 TOTAL 1315.4 PUMP PRESSURE 1847.3 % DIFFERENCE 28.8 #### BOTTOM HOLE PRESSURES: | | | UNITS | | UNITS | |--------------|--------|-------|----------------------|-------| | CIRCULATING: | WEIGHT | 8.60 | HYDROSTATIC PRESSURE | 440.2 | | | ECD | 8.61 | CIRCULATING PRESSURE | 440.5 | | | MARGIN | 0.01 | ESTIMATED SWAB | 0.6 | | | WEIGHT | 8.59 | BOTTOM HOLE PRESSURE | 439.5 | DENSITY PRESSURE HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 400.0 AND TVD 400.0 SPM 1 97 SPM 2 94 FLOW RATE 954 ### ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL. | ANN
VEL | CRIT
VEL | TYPE OF FLOW | SLIP ¢
VEL | SCEND
VEL | PRESSURE
DROP | |-----------------|--------------|------|------------|-------------|--------------|---------------|--------------|------------------| | HWDC/OH | 0.673 | 15 | 34 | 37 | LAMINAR | 2 | 32 | 0.0 | | DC/OH | 0.772 | 74 | 29 | 35 | LAMINAR | 1 | 28 | 0.1 | | HWDP/OH | 0.896 | 24 | 25 | 33 | LAMINAR | 1 | 24 | 0.0 | | DP/OH | 0.896 | 55 | 25 | 33 | LAMINAR | 1 | 24 | 0.1 | | DP/CSG | 1.085 | 130 | 21 | 32 | LAMINAR | 1 | 5.0 | 0.1 | | DP/RIS | 1.325 | 98 | 17 | 32 | L.AMINAR | 0 | 17 | 0.0 | | TOTAL | VOLUME | 396 | | | TOTAL. | PRESSURE | DROP | 0.4 | LAG: 17.4 MINUTES 1683 STROKES #1 AND 1646 STROKES #2 ### BIT HYDRAULICS: PRESSURE DROP 851.2 HHP 474 IMPACT FORCE 1413 % SURFACE PRESSURE 45.2 HHP/sqin 1.97 JET VELOCITY 101 ### PRESSURE BREAKDOWN: SURFACE 60.8 STRING 420.1 BIT 851.2 ANNULUS 0.4 TOTAL 1332.5 PUMP PRESSURE 1884.1 % DIFFERENCE 29.3 ## BOTTOM HOLE PRESSURES: UNITS UNITS 586.9 HYDROSTATIC PRESSURE MUD WEIGHT 8.60 NOT CIRCULATING: 587.3 CIRCULATING PRESSURE 8.61 ECD CIRCULATING: 0.8 ESTIMATED SWAB TRIP MARGIN 0.01 PULLING OUT: 586.1 BOTTOM HOLE PRESSURE 8.59 EFFECTIVE MUD WEIGHT DENSITY HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 500.0 AND TVD 500.0 SPM 1 96 SPM 2 97 FLOW RATE 967 ## ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
TINU | VOL | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A | ASCEND
VEL | PRESSURE
DROP | |-----------------|--------------|-----|------------|-------------|-----------------|----------|---------------|------------------| | HWDC/OH | 0.673 | 15 | 34 | 37 | LAMINAR | 2 | 32 | 0.0 | | DC/OH | 0.772 | 74 | 30 | 35 | LAMINAR | 1 | 28 | 0.1 | | HWDP/OH | 0.896 | 24 | 26 | 33 | LAMINAR | 1 | 25 | 0.0 | | DP/OH | 0.896 | 145 | 26 | 33 | L.AMI NAR | 1 | 25 | 0.2 | | DP/CSG | 1.085 | 130 | 21 | 32 | LAMINAR | ţ | 21 | 0.1 | | DP/RIS | 1.325 | 98 | 17 | 31 | L.AMINAR | 0 | 17 | 0.0 | | TOTAL. | VOLUME | 486 | | | TOTAL | PRESSURE | DROP | 0.5 | LAG: 21.1 MINUTES 2025 STROKES #1 AND 2056 STROKES #2 ## BIT HYDRAULICS: PRESSURE DROP 884.4 HHP 499 IMPACT FORCE 1468 % SURFACE PRESSURE 43.5 HHP/sqin 2.07 JET VELOCITY 102 ## PRESSURE BREAKDOWN: SURFACE 62.9 STRING 470.5 BIT 884.4 ANNULUS 0.5 TOTAL 1418.3 PUMP PRESSURE 2032.0 % DIFFERENCE 30.2 ## **BOTTOM HOLE PRESSURES:** | | UNITS | | UNITS | |--------------------------------------|-------------------------|-------------------------------------|----------------| | NOT CIRCULATING: MUD
CIRCULATING: | WEIGHT 8.70
ECD 8.71 | HYDROSTATIC PRESSURE | 742.1
742.6 | | | MARGIN 0.01 | ESTIMATED SWAB BOTTOM HOLE PRESSURE | 1.0 | DENSITY HYDRAULICS ANALYSIS PROGRAM ## HYDRAULICS CALCULATIONS AT DEPTH 600.0 AND TVD 600.0 SPM 2 98 FLOW RATE 974 SPM 1 97 # ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP
VEL | ASCEND
VEL | PRESSURE
DROP | |-----------------|--------------|-----|------------|-------------|-----------------|-------------|---------------|------------------| | HWDC/OH | 0.673 | 15 | 34 | 36 | L.AMINAR | 2 | 33 | 0.0 | | DC/OH | 0.772 | 74 | 30 | 35 | LAMINAR | 1 | 29 | 0.1 | | HWDP/OH | 0.896 | 24 | 26 | 33 | LAMINAR | 1 | 25 | 0.0 | | DP/OH | 0.896 | 234 | 26 | 33 | LAMINAR | 1 | 25 | 0.2 | | DP/CSG | 1.085 | 130 | 21 | 32 | LAMINAR | 1 | 21 | 0.1 | | DP/RIS | 1.325 | 98 | 18 | 31 | LAMINAR | 0 | 17 | 0.0 | | TOTAL | L VOLUME | 575 | | | TOTAL. | PRESSU | RE DROP | 0.6 | LAG: 24.8 MINUTES 2404 STROKES #1 AND 2431 STROKES #2 ### BIT HYDRAULICS: IMPACT FORCE 1524 PRESSURE DROP 918.2 % SURFACE PRESSURE 43.3 522 HHP PRESSURE DROP HHP/sqin 2.17 JET VELOCITY ## PRESSURE BREAKDOWN: 64.9 SURFACE 523.0 STRING 918.2 BIT 0.6 **ANNULUS** PUMP PRESSURE 2118.7 % DIFFERENCE 28.9 TOTAL 1506.6 ## BOTTOM HOLE PRESSURES: | ACCITION TO THE PROPERTY OF TH | DENSITY
UNITS | PRESSURE
UNITS | |--|---|--| | CIRCULATING: | WEIGHT 8.90
ECD 8.91
MARGIN 0.01
WEIGHT 8.89 | HYDROSTATIC PRESSURE 911.0
CIRCULATING PRESSURE 911.4
ESTIMATED SWAB 1.2
BOTTOM HOLE PRESSURE 909.8 | HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 700.0 AND TVD 700.0 SPM 1 96 SPM 2 97 FLOW RATE 966 ### ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOI | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP 6
VEL | ASCEND
VEL | PRESSURE
DROP | |-----------------|--------------|-----|------------|-------------
-----------------|---------------|---------------|------------------| | HWDC/OH | 0.673 | 15 | 34 | 36 | LAMINAR | 2 | 32 | 0.0 | | DC/OH | 0.772 | 74 | 30 | 34 | L.AMINAR | 1 | 28 | 0.1 | | HWDP/OH | 0.896 | 24 | 26 | 32 | LAMINAR | 1 | 25 | 0.0 | | DPZOH | 0.896 | 324 | 26 | 32 | LAMINAR | 1 | 25 | 0.3 | | DP/CSG | 1.085 | 130 | 21 | 32 | LAMINAR | 1 | 21 | 0.1 | | DP/RIS | 1.325 | 98 | 17 | 31 | LAMINAR | 0 | 17 | 0.0 | | TOTAL | . VOLUME | 665 | | | TOTAL | PRESSURI | EDROP | 0.7 | LAG: 28.9 MINUTES 2775 STROKES #1 AND 2813 STROKES #2 # BIT HYDRAULICS: PRESSURE DROP 913.4 HHP 515 IMPACT FORCE 1516 % SURFACE PRESSURE 42.5 HHP/sqin 2.14 JET VELOCITY 102 ## PRESSURE BREAKDOWN: SURFACE 64.5 STRING 557.1 BIT 913.4 ANNULUS 0.7 TOTAL 1535.6 PUMP PRESSURE 2150.1 % DIFFERENCE 28.6 ## BOTTOM HOLE PRESSURES: | | | BTINU | | UNITS | |-----------------------------------|-------------------------|----------------------|--|--------| | CIRCULATING:
PULLING OUT: TRIP | WEIGHT
ECD
MARGIN | 9.00
9.01
0.01 | CIRCULATING PRESSURE
ESTIMATED SWAB | 1.4 | | FFFECTIVE MUD | WEIGHT | 8.99 | BOTTOM HOLE PRESSURE | 10/0,4 | DENSITY #### CORE LAB 22 m; ;;; ;;; ;;; ;;; ;;; ;;; ;;; HYDRAULICS ANALYSIS PROGRAM ## HYDRAULICS CALCULATIONS AT DEPTH 800.0 AND TYD 800.0 958 SPM 1 SPM 2 97 FLOW RATE 94 # ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/ | VOL. | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A
VEL | SCEND
VEL | PRESSURE
DROP | |-----------------|--------|------|------------|-------------|-----------------|---------------|--------------|------------------| | HWDC/OH | 0.673 | 15 | 34 | 129 | LAMINAR | 0 | 34 | 0.4 | | DCZOH | 0.772 | 74 | 30 | 130 | LAMINAR | 0 | 29 | 1.3 | | HWDP/OH | 0.896 | 24 | 25 | 130 | LAMINAR | 0 | 25 | 0.3 | | DPZOH | 0.896 | 413 | 25 | 130 | L.AMI NAR | 0 | 25 | 4.6 | | DP/CSG | 1.085 | 130 | 21 | 131 | LAMINAR | 0 | 21 | 1 . 0 | | DP/RIS | 1.325 | 98 | 17 | 131 | LAMINAR | 0 | 17 | 0.5 | | TOTAL | VOLUME | 755 | | | TOTAL | PRESSURE | DROP | 8.2 | LAG: 33.1 MINUTES 3126 STROKES #1 AND 3215 STROKES #2 ### BIT HYDRAULICS: IMPACT FORCE 1490 PRESSURE DROP 897.5 HHP 502 JET VELOCITY 101 % SURFACE PRESSURE 40.1 HHP/sqin 2.09 # PRESSURE BREAKDOWN: SURFACE 63.5 585.0 STRING 897.5 BIT ANNULUS 8.2 PUMP PRESSURE 2239.2 % DIFFERENCE 30.6 TOTAL 1554.2 #### BOTTOM HOLE PRESSURES: DENSITY UNITS UNITS HYDROSTATIC PRESSURE 1228.3 MUD WEIGHT 9.00 NOT CIRCULATING: CIRCULATING PRESSURE 1236.5 ECD 9.06 CIRCULATING: 16.4 TRIP MARGIN 0.12 ESTIMATED SWAB PULLING OUT: BOTTOM HOLE PRESSURE 1212.0 EFFECTIVE MUD WEIGHT 8.88 HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 900.0 AND TVD 900.0 SPM 1 93 SPM 2 92 FLOW RATE 925 # ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL. | ANN
VEL | CRIT
VEL | TYPE OF FLOW | SLIP A
VEL | SCEND
VEL | PRESSURE
DROP | |-----------------|--------------|------|------------|-------------|--------------|---------------|--------------|------------------| | DC/OH | 0.274 | 30 | 8.0 | 108 | LAMINAR | 1 | 79 | 3.9 | | DC/CSG | 0.303 | 19 | 73 | 108 | LAMINAR | 1 | 71 | 2.0 | | HWDP/CSG | 0.427 | 36 | 52 | 104 | LAMINAR | 1 | 51 | 1.2 | | DP/CSG | 0.427 | 244 | 52 | 104 | LAMINAR | 1 | 51 | 8.3 | | DP/RIS | 1.325 | 98 | 17 | 99 | LAMINAR | 0 | 17 | 0.3 | | TOTAL | VOLUME | 427 | | | TOTAL | PRESSURE | DROP | 15.7 | LAG: 19,4 MINUTES 1798 STROKES #1 AND 1787 STROKES #2 ### BIT HYDRAULICS: PRESSURE DROP 1726.6 HHP 932 IMPACT FORCE 1997 % SURFACE PRESSURE 60.3 HHP/sqin 7.91 JET VELOCITY 141 ## PRESSURE BREAKDOWN: SURFACE 68.5 STRING 909.6 BIT 1726.6 ANNULUS TOTAL 2720.3 PUMP PRESSURE 2863.0 % DIFFERENCE 5.0 ### BOTTOM HOLE PRESSURES: 15.7 UNITS UNITS HYDROSTATIC PRESSURE 1381.9 MUD WEIGHT 9.00 NOT CIRCULATING: 1397.5 CIRCULATING PRESSURE ECD 9:10 CIRCULATING: 31.3 TRIP MARGIN 0.20 ESTIMATED SWAB PULLING OUT: 1350.6 8.80 BOTTOM HOLE PRESSURE EFFECTIVE MUD WEIGHT DENSITY ### HYDRAULICS ANALYSIS PROGRAM | HYDRAULICS CALCULATIO | VS AT | DEPTH | 1000. | JUNA 0. | TVD | 1000.0 | | |-----------------------|-------|-------|-------|---------|-----|--------|--| | | | | | | | | | SPM 1 93 SPM 2 90 FLOW RATE 911 ## ANNULAR HYDRAULICS: | ANNULUS | VOL/ | | ANN | CRIT | TYPE OF | SLIP | ASCEND | PRESSURE | |----------|--------|------|------|------|---------|----------|--------|----------| | TYPE | TINU | VOL. | VEI. | VEL | FL.OW | VEL | VEL. | DROP | | DC/OH | 0.274 | 47 | 79 | 100 | LAMINAR | 2 | 77 | 5.2 | | HWDP/OH | 0.398 | 14 | 54 | 98 | LAMINAR | 1 | 54 | 0.5 | | HWDP/CSG | 0.427 | 20 | 51 | 97 | LAMINAR | 1 | 50 | 0.6 | | DP/CSG | 0.427 | 287 | 51 | 97 | LAMINAR | 1 | 50 | 8.5 | | DP/RIS | 1.325 | 98 | 16 | 94 | LAMINAR | 0 | 16 | 0.3 | | TOTAL | VOLUME | 466 | | | TOTAL | PRESSURI | E DROP | 15.0 | LAG: 21.5 MINUTES 1992 STROKES #1 AND 1927 STROKES #2 ## BIT HYDRAULICS: PRESSURE DROP 1674.8 HHP 891 IMPACT FORCE 1937 % SURFACE PRESSURE 59.1 HHP/sqin 7.56 JET VELOCITY 139 ## PRESSURE BREAKDOWN: SURFACE 63.0 STRING 871.8 BIT 1674.8 ANNULUS 15.0 TOTAL 2624.6 PUMP PRESSURE 2832.4 % DIFFERENCE 7.3 # BOTTOM HOLE PRESSURES: | | | Q | UNITS | | UNITS | |----------------------------------|-----|------------------|--------------|-------------------------------------|----------------| | NOT CIRCULATING:
CIRCULATING: | аим | WEIGHT
ECD | ዎ.00
ዎ.09 | HYDROSTATIC PRESSURE | | | PULLING OUT: | | MARGIN
WEIGHT | 0.18
8.82 | ESTIMATED SWAB BOTTOM HOLE PRESSURE | 30.1
1505.3 | HYDRAULICS ANALYSIS PROGRAM ## HYDRAULICS CALCULATIONS AT DEPTH 1100.0 AND TVD 1100.0 SPM 1 89 SPM 2 87 FLOW RATE 880 ### ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL./
UNIT | שמע | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A
VEL | SCEND
VEL | PRESSURE
DROP | |-----------------|---------------|-----|------------|-------------|-----------------|---------------|--------------|------------------| | DC/OH | 0.274 | 47 | 76 | 100 | LAMINAR | 2 | 75 | 5.1 | | HODP/OH | 0.398 | 33 | 53 | 98 | L.AMINAR | 1 | 52 | 1.1 | | DP/OH | 0.398 | 21 | 53 | 98 | LAMINAR | 1 | 52 | 0.7 | | DP/CSG | 0.427 | 307 | 49 | 97 | LAMINAR | 1 | 48 | 9.0 | | DP/RIS | 1.325 | 98 | 16 | 94 | LAMINAR | 0 | 16 | 0.3 | | TOTAL | _ VOLUME | 506 | | | TOTAL | PRESSURE | DROP | 16.2 | LAG: 24.2 MINUTES 2149 STROKES #1 AND 2105 STROKES #2 #### BIT HYDRAULICS: PRESSURE DROP 1562.3 HHP 802 IMPACT FORCE 1807 % SURFACE PRESSURE 54.3 HHP/sqin 6.81 JET VELOCITY 134 ## PRESSURE BREAKDOWN: SURFACE 59.1 STRING 853.0 BIT 1562.3 ANNULUS 16.2 TOTAL 2490.6 PUMP PRESSURE 2876.3 % DIFFERENCE 13.4 | | DE | NSITY
UNITS | PRESSU
UNI | | |-----------------------------------|------------------|----------------|--|-------| | NOT CIRCULATING: MUD CIRCULATING: | WEIGHT
ECD | 9.00
9.09 | HYDROSTATIC PRESSURE 1688
CIRCULATING PRESSURE 1705 | | | PULLING OUT: TRIP EFFECTIVE MUD | MARGIN
WEIGHT | 0.17
8.83 | ESTIMATED SWAB 32 BOTTOM HOLE PRESSURE 1656 | • ••• | ## HYDRAULICS ANALYSIS PROGRAM | HYDRAULICS | CALCULATIONS | AT | DEPTH | 1200 | . 0 | AND | TVD | 1200. | 0 | |--|--|----|-------|------|-----|-----|-----|-------|---| | 1 1 1 1/13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100 1 1 hour last had been 1 1 1 and had 1 1 the | | | | | | | | | SPM 1 88 SPM 2 86 FLOW RATE 869 ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
TINU | VOL. | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A | SCEND
VEL | PRESSURE
DROP | |-----------------|--------------|------|------------|-------------|-----------------|----------|--------------|------------------| | DC/OH | 0.274 | 47 | 75 | 100 | L.AMINAR | 2 | 74 | 5.1 | | HWDP/OH | 0.398 | 33 | 52 | 98 | LAMINAR | 1 | 51 | 1.1 | | DP/OH | 0.398 | 61 | 52 | 98 | LAMINAR | 1 | 51 | 2.1 | | DP/CSG | 0.427 | 307 | 48 | 97 | LAMINAR | • 1 | 48 | 9.0 | | DP/RIS | 1.325 | 98 | 16 | 94 | LAMINAR | 0 | 16 | 0.3 | | TOTA | L VOLUME | 546 | | | TOTAL | PRESSURE | DROP | 17.5 | LAG: 26.4 MINUTES 2321 STROKES #1 AND 2268 STROKES #2 BIT HYDRAULICS: PRESSURE DROP 1523.7 HHP 773 IMPACT FORCE 1762 % SURFACE PRESSURE 52.5 HHP/sqin 6.56 JET VELOCITY 132 PRESSURE BREAKDOWN: SURFACE 57.8 STRING 867.3 BIT 1523.7 ANNULUS 17.5 TOTAL 2466.5 PUMP PRESSURE 2900.3 % DIFFERENCE 15.0 BOTTOM HOLE PRESSURES: DENSITY PRESSURE UNITS UNITS HYDROSTATIC PRESSURE 1842.5 NOT CIRCULATING: MUD WEIGHT 9.00 9.09 CIRCULATING PRESSURE 1860.0 ECD CIRCULATING: TRIP MARGIN ESTIMATED SWAB 35.1 0.17 PULLING OUT: BOTTOM HOLE PRESSURE 1807.4 EFFECTIVE MUD WEIGHT 8.83 ## HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 1300.0 AND TVD 1300.0 SPM 1 87 SPM 2 87 FLOW RATE 870 ## ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | | ASCEND
VEL | PRESSURE
DROP | |-----------------|--------------|-----|------------|-------------|-----------------|----------|---------------|------------------| | DC/OH | 0.274 | 47 | 76 | 81 | LAMINAR | 2 | 73 | 3.7 | | HOV9ŒWH | 0.398 | 33 | 52 | 77 | L.AMINAR | 1 | 51 | 0 , 8: | | DP/OH | 0.398 | 101 | 52 | 77 | LAMINAR | 1 | 51 | 2.3 | | DP/CSG | 0.427 | 307 | 48 | 76 | L.AMINAR | ī | 48 | 6.0 | | DP/RIS | 1.325 | 98 | 16 | 71 | LAMINAR | Ô | 15 | 0.2 | | TOTAL | _ VOLUME | 586 | | | TOTAL | PRESSURE | DROP | 12.9 | LAG: 28.3 MINUTES 2462 STROKES #1 AND 2462 STROKES #2 ### BIT HYDRAULICS: PRESSURE DROP 1524.7 HHP 774 IMPACT FORCE 1763 % SURFACE PRESSURE 52.1 HHP/sqin 6.56 JET VELOCITY 132 ## PRESSURE BREAKDOWN: SURFACE 57.9 STRING 901.2 BIT 1524.7 ANNULUS 12.9 TOTAL 2496.7 PUMP PRESSURE 2925.0 % DIFFERENCE 14.6 | | DENSI
UNI | | PRESSURE
UNITS | |---------------|--------------|---|-------------------| | CIRCULATING: | ECD 9. | 00 HYDROSTATIC
06 CIRCULATING
12 ESTIMATED SW | PRESSURE 2008.9 | | EFFECTIVE MUI | | 88 BOTTOM HOLE | 4.40.175 | ## HYDRAULICS ANALYSIS PROGRAM #
HYDRAULICS CALCULATIONS AT DEPTH 1400.0 AND TVD 1399.9 SPM 1 85 SPM 2 85 FLOW RATE 848 ## ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL. | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A
VEL | SCEND
VEL | PRESSURE
DROP | |-----------------|--------------|------|------------|-------------|-----------------|---------------|--------------|------------------| | DC/OH | 0.274 | 47 | 74 | 106 | LAMINAR | 1 | 72 | 5.6 | | HWDP/OH | 0.398 | 33 | 51 | 104 | LAMINAR | 1 | 50 | 1.2 | | DPZOH | 0.398 | 141 | 51 | 104 | LAMINAR | 1 | 50 | 5.3 | | DP/CSG | 0.427 | 307 | 47 | 104 | LAMINAR | 1 | 47 | 9.9 | | DP/RIS | 1.325 | 98 | 15 | 101 | LAMINAR | 0 | 15 | 0.3 | | TOTAL | _ VOLUME | 626 | | | TOTAL | PRESSURE | DROP | 22.3 | LAG: 31.0 MINUTES 2630 STROKES #1 AND 2628 STROKES #2 ## BIT HYDRAULICS: 1448.1 PRESSURE DROP HHP 716 IMPACT FORCE 1675 HHP/sqin 6.08 JET VELOCITY 129 % SURFACE PRESSURE 49.6 ## PRESSURE BREAKDOWN: SURFACE 55.2 STRING 892.2 1448.1 BIT ANNULUS 22.3 PUMP PRESSURE 2921.4 % DIFFERENCE 17.2 TOTAL. 2417.9 ## BOTTOM HOLE PRESSURES: | | DENSITY
UNITS | PRESSURE
UNITS | |-----------------------------------|----------------------------|--| | NOT CIRCULATING: MUD CIRCULATING: | WEIGHT 9.00
ECD 9.09 | HYDROSTATIC PRESSURE 2149.5
CIRCULATING PRESSURE 2171.9 | | PULLING OUT: TRIP EFFECTIVE MUD | MARGIN 0.19
WEIGHT 8.81 | ESTIMATED SWAB 44.7 BOTTOM HOLE PRESSURE 2104.9 | HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 1500.0 AND TVD 1499.9 SPM 1 84 SPM 2 85 FLOW RATE 846 #### ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
TINU | VOL | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A
VEL | SCEND
VEL | PRESSURE
DROP | |-----------------|--------------|-----|------------|-------------|-----------------|---------------|--------------|------------------| | DC/OH | 0.274 | 47 | 73 | 106 | LAMINAR | 1 | 72 | 5.6 | | HWDP/OH | 0.398 | 33 | 51 | 104 | L.AMINAR | 1 | 50 | 1.2 | | HO/9d | 0.398 | 180 | 51 | 104 | LAMINAR | 1 | 50 | 6,8 | | DP/CSG | 0.427 | 307 | 47 | 104 | LAMINAR | 1 | 47 | 9.5 | | DP/RIS | 1.325 | 98 | 15 | 101 | LAMINAR | 0 | 15 | 0.3 | | TOTAL | . VOLUME | 666 | | | TOTAL | PRESSURE | DROP | 23.8 | LAG: 33.0 MINUTES 2775 STROKES #1 AND 2818 STROKES #2 BIT HYDRAULICS: PRESSURE DROP 1443.6 HHP 713 IMPACT FORCE 1670 % SURFACE PRESSURE 47.7 HHP/sqin 6.05 JET VELOCITY 129 PRESSURE BREAKDOWN: SURFACE 55.1 STRING 921.4 BIT 1443.6 ANNULUS 23.8 TOTAL 2443.9 PUMP PRESSURE 3025.2 % DIFFERENCE 19.2 BOTTOM HOLE PRESSURES: DENSITY PRESSURE UNITS UNITS MUD WEIGHT 2303.1 9.00 HYDROSTATIC PRESSURE NOT CIRCULATING: 2326.9 9.09 CIRCULATING PRESSURE ECD CIRCULATING: 47.6 ESTIMATED SWAB TRIP MARGIN 0.19 PULLING OUT: BOTTOM HOLE PRESSURE 2255.4 EFFECTIVE MUD WEIGHT 8.81 ## HYDRAULICS ANALYSIS PROGRAM ## HYDRAULICS CALCULATIONS AT DEPTH 1600.0 AND TVD 1599.9 FLOW RATE SPM 1 SPM 2 82 817 81 ### ANNULAR HYDRAULICS: | ANNULUS | VOL./ | | ANN | CRIT | TYPE OF | SLIP A | SCEND | PRESSURE | |---------|----------|------|-----|------|---------|----------|-------|----------| | TYPE | TINU | AOI" | VEL | VEL | FLOW | VEL | VEI | DROP | | DC/OH | 0.274 | 47 | 71 | 156 | LAMINAR | 1 | 70 | 11.3 | | HWDP/OH | 0.398 | 33 | 49 | 157 | LAMINAR | 0 | 49 | 2.7 | | DP/OH | 0.398 | 220 | 49 | 157 | LAMINAR | 0 | 49 | 17.9 | | DP/CSG | 0.427 | 307 | 46 | 157 | LAMINAR | 0 | 45 | 21.6 | | DP/RIS | 1.325 | 98 | 15 | 157 | LAMINAR | 0 | 15 | 0.7 | | TOTAL | L VOLUME | 705 | | | TOTAL | PRESSURE | DROP | 54.2 | 36.2 MINUTES 2940 STROKES #1 AND 2989 STROKES #2 LAG: ### BIT HYDRAULICS: IMPACT FORCE 1575 650 PRESSURE DROP HHP 1362.1 JET VELOCITY 124 HMP/sqin 5.51 % SURFACE PRESSURE 46.1 ## PRESSURE BREAKDOWN: SURFACE 55.3 STRING 957.1 1362.1 BIT **ANNULUS** 54.2 PUMP PRESSURE 2953.4 % DIFFERENCE 17.8 TOTAL 2428.7 ## BOTTOM HOLE PRESSURES: | | D | ENSITY
UNITS | Р | RESSURE
UNITS | |--------------|-----------------------------|------------------------------|--|-------------------------------------| | CIRCULATING: | D WEIGHT
ECD
P MARGIN | 9.10
9.30
0.40
8.70 | HYDROSTATIC PRESSURE
CIRCULATING PRESSURE
ESTIMATED SWAB
BOTTOM HOLE PRESSURE | 2483.9
2538.0
108.3
2375.5 | HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 1700.0 AND TVD 1699.9 SPM 1 80 SPM 2 82 FLOW RATE 809 ### ANNULAR HYDRAULICS: | ANNULUS | VOL/ | | ANN | CRIT | TYPE OF | SLIP A | SCEND | PRESSURE | |---------|---------|-----|-----|------|---------|----------|-------|----------| | TYPE | TINU | VOI | VEL | VEL | FLOW | VEL | VEI | DROP | | DC/OH | 0.274 | 47 | 20 | 155 | LAMINAR | 1 | 70 | 11.3 | | HWDP/OH | 0.398 | 33 | 48 | 156 | LAMINAR | 0 | 48 | 2.7 | | DP/OH | 0.398 | 260 | 48 | 156 | LAMINAR | 0 | 48 | 21.1 | | DP/CSG | 0.427 | 307 | 45 | 156 | LAMINAR | 0 | 45 | 21.5 | | DP/RIS | 1.325 | 98 | 15 | 156 | LAMINAR | 0 | 14 | 0.7 | | TOTAL. | YOL.UME | 745 | | | TOTAL | PRESSURE | DROP | 57.3 | LAG: 38.7 MINUTES 3097 STROKES #1 AND 3166 STROKES #2 ## BIT HYDRAULICS: PRESSURE DROP 1347.4 HHP 636 IMPACT FORCE 1558 % SURFACE PRESSURE 45.9 HHP/sqin 5.39 JET VELOCITY 123 ## PRESSURE BREAKDOWN: SURFACE 54.7 STRING 978.3 BIT 1347.4 ANNULUS 57.3 TOTAL 2437.7 PUMP PRESSURE 2936.8 % DIFFERENCE 17.0 | | a | ENSITY
UNITS | F | PRESSURE
UNITS | |--------------------------------------|------------------|-----------------|---|-------------------| | NOT CIRCULATING: MUD
CIRCULATING: | WEIGHT
ECD | 9,20
9,40 | HYDROSTATIC PRESSURE CIRCULATING PRESSURE | 2668.1
2725.4 | | PULLING OUT: TRIP EFFECTIVE MUD | MARGIN
WEIGHT | 0.40
8.80 | ESTIMATED SWAB BOTTOM HOLE PRESSURE | 114.6
2553.6 | ## HYDRAULICS ANALYSIS PROGRAM | HYDRAUL TOS | CALCULATIONS | AT | DEPTH | 1800.0 | AND TVI | 1799.9 | |-------------|--------------|----|-------|--------|---------|--------| | | | | | | | | SPM 2 77 FLOW RATE 777 SPM 1 78 #### ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
TINU | VOL | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A
VEL | SCEND
VEL | PRESSURE
DROP | |-----------------|--------------|-----|------------|-------------|-----------------|---------------|--------------|------------------| | DC/OH | 0.274 | 47 | 67 | 155 | LAMINAR | 1 | 67 | 11.2 | | HWDP/OH | 0.398 | 33 | 46 | 156 | LAMINAR | 0 | 46 | 2.7 | | DP/OH | 0.398 | 300 | 46 | 156 | LAMINAR | 0 | 46 | 24.1 | | DP/CSG | 0.427 | 307 | 43 | 156 | LAMINAR | 0 | 43 | 21.4 | | DP/RIS | 1.325 | 98 | 14 | 156 | LAMINAR | 0 | 14 | 0.7 | | TOTAL | _ VOLUME | 785 | | | TOTAL | PRESSURE | DROP | 60.1 | LAG: 42.4 MINUTES 3332 STROKES #1 AND 3265 STROKES #2 #### BIT HYDRAULICS: 1473.4 IMPACT FORCE 1566 HHP 668 PRESSURE DROP HHP/sgin 5.67 129 % SURFACE PRESSURE 49.9 JET VELOCITY ### PRESSURE BREAKDOWN: SURFACE 50.9 940.7 STRING 1473.4 BIT ANNULUS 60.1 PUMP PRESSURE 2951.0 % DIFFERENCE 14.4 2525.1 TOTAL ### **BOTTOM HOLE PRESSURES:** DENSITY UNITS UNITS 9.20 HYDROSTATIC PRESSURE 2825.0 NOT CIRCULATING: MUD WEIGHT 9.40 CIRCULATING PRESSURE 2885.1 CIRCULATING: ECD ESTIMATED SWAB 120.1 TRIP MARGIN 0.39 PULLING OUT: BOTTOM HOLE PRESSURE 2704.9 EFFECTIVE MUD WEIGHT 8.81 ## HYDRAULICS ANALYSIS PROGRAM | HYDRAULICS | CALCULATIONS | AT | DEPTH | 1840. | 0 | AND | TVD | 1839 | <u>. 9</u> . | |---|--|----|-------|-------|-------|-------------|-----|------|--------------| | 1 1 1 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | the state of s | | | **** | ***** | | | | | SPM 1 0 SPM 2 42 FLOW RATE 209 ### ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL./
UNIT | VOL. | ANN
VEL | CRIT
VEL | TYPE OF FLOW | SLIP A
VEL | SCEND
VEL | PRESSURE
DROP | |-----------------|---------------|-------------|------------|-------------|--------------|---------------|--------------
------------------| | HWDC/OH | 0.107 | 16 | 47 | 120 | IAMINAR | 1 | 45 | 14.8 | | HWDP/OH | 0.231 | 19 | 22 | 103 | LAMINAR | 0 | 21 | 1.5 | | DP/OH | 0.231 | 188 | 22 | 103 | LAMINAR | 0 | 21 | 14.7 | | DP/CSG | 0.427 | 307 | 12 | 96 | L.AMINAR | 0 | 12 | 5.4 | | DP/RIS | 1.325 | 98 | 4 | 86 | LAMINAR | 0 | .4 | 0.1 | | TOTAL | _ VOLUME | 62 8 | | | TOTAL | PRESSURE | DROP | 36.5 | LAG: 126.1 MINUTES 0 STROKES #1 AND 5277 STROKES #2 #### BIT HYDRAULICS: PRESSURE DROP 150.9 HHP 18 IMPACT FORCE 135 % SURFACE PRESSURE 32.1 HHP/sqin 0.24 JET VELOCITY 41 ## PRESSURE BREAKDOWN: SURFACE 5.4 STRING 96.4 BIT 150.9 ANNULUS 36.5 TOTAL 289.2 PUMP PRESSURE 470.8 % DIFFERENCE 38.6 # BOTTOM HOLE PRESSURES: | | | UNITS | | UNTIE | |-------------------|-------------------------|----------------------|--|--------------------------| | CIRCULATING: | WEIGHT
ECD
MARGIN | 9,20
9,32
0,23 | HYDROSTATIC PRESSURE
CIRCULATING PRESSURE
ESTIMATED SWAB | 2887.8
2924.3
73.0 | | PULLING OUT: TRIP | | 8.97 | ROTTOM HOLE PRESSURE | 2814.9 | DENSITY ### HYDRAULICS ANALYSIS PROGRAM SPM 1 64 SPM 2 0 FLOW RATE 318 #### ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL. | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A
VEL | SCEND
VEL | PRESSURE
DROP | |-----------------|--------------|------|------------|-------------|-----------------|---------------|--------------|------------------| | ншрсион | 0.107 | 16 | 71 | 120 | LAMINAR | 2 | 69 | 17.6 | | HWDP/OH | 0.231 | 19 | 33 | 103 | LAMINAR | 0 | 32 | 1.8 | | DP/OH | 0.231 | 190 | 33 | 103 | L.AMINAR | 0 | 32 | 17.7 | | DP/CSG | 0.427 | 307 | 18 | 96 | LAMINAR | 0 | 18 | 6.4 | | DP/RIS | 1.325 | 98 | 6 | , 86 | LAMINAR | 0 | 6 | 0.1 | | TOTAL | _ VOLUME | 630 | | | TOTAL | PRESSURE | DROP | 43.6 | 5297 STROKES #1 AND 0 STROKES #2 LAG: 83.2 MINUTES BIT HYDRAULICS: 349.2 HHP 65 IMPACT FORCE 312 PRESSURE DROP PRESSURE DROP 349.2 % SURFACE PRESSURE 41.3 HHP/sqin 0.85 JET VELOCITY 63 PRESSURE BREAKDOWN: SURFACE 11.4 STRING 205.9 349.2 BIT ANNULUS 43.6 PUMP PRESSURE 845.8 % DIFFERENCE 27.9 TOTAL 610.2 BOTTOM HOLE PRESSURES: UNITS 9.20 2903.5 HYDROSTATIC PRESSURE MUD WEIGHT NOT CIRCULATING: CIRCULATING PRESSURE 2947.1 9.34 CIRCULATING: ECD 0.28 ESTIMATED SWAB 87.3 PULLING OUT: TRIP MARGIN BOTTOM HOLE PRESSURE 2816.2 EFFECTIVE MUD WEIGHT 8.92 DENSITY PRESSURE UNITS HYDRAULICS ANALYSIS PROGRAM | าทร | CALCULAT | AT | DEPTH | 1860.0 | AND | TVD | <u> 1859,9</u> | |-----|-----------|------|-------|----------------|-----|-----|----------------| | วพร | CALCULAT: | AT (| DEPTH | <u> 1860.0</u> | AND | TVD | | SPM 1 0 SPM 2 54 FLOW RATE 270 ### ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOT. | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A
VEL | SCEND | PRESSURE
DROP | |-----------------|--------------|------|------------|-------------|-----------------|---------------|-------|------------------| | HWDC/OH | 0.107 | 16 | 6.0 | 114 | LAMINAR | 2 | 58 | 15.1 | | HWDP/OH | 0.231 | 19 | 28 | 100 | LAMINAR | 0 | 27 | 1.6 | | DP/OH | 0.231 | 192 | 28 | 100 | L.AMINAR | 0 | 27 | 15.9 | | DP/CSG | 0.427 | 307 | 15 | 94 | LAMINAR | 0 | 15 | 5.8 | | DP/RIS | 1.325 | 98 | 5 | 85 | L.AMINAR | 0 | 5 | 0.1 | | TOTAL | . VOLUME | 633 | | | TOTAL | PRESSURE | DROP | 38.5 | LAG: 98.5 MINUTES 0 STROKES #1 AND 5316 STROKES #2 BIT HYDRAULICS: PRESSURE DROP 251.3 HHP 40 IMPACT FORCE 225 % SURFACE PRESSURE 37.6 HHP/sqin 0.52 JET VELOCITY 53 PRESSURE BREAKDOWN: SURFACE 8.2 STRING 148.9 BIT 251.3 ANNULUS 38.5 TOTAL 447.0 PUMP PRESSURE 668.1 % DIFFERENCE 33.1 | DOLLON TREASURED | DENSIT
TINU | | PRESSURE
UNITS | |------------------|---|---------------------------------------|-------------------| | CIRCULATING: | WEIGHT 9.2
ECD 9.3
MARGIN 0.2
WEIGHT 8.5 | CIRCULATING PRESSUR
ESTIMATED SWAB | RE 2957.7
77.1 | #### HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 1900.0 AND TVD 1899.9 SPM 1 73 SPM 2 68 FLOW RATE 706 ## ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL. | ANN
VEL | CRIT
VEL | TYPE OF FLOW | SLIP A
VEL | SCEND
VEL | PRESSURE
DROP | |-----------------|--------------|------|------------|-------------|--------------|---------------|--------------|------------------| | HWDC/OH | 0.274 | 47 | 61 | 102 | LAMINAR | 1 | 60 | 5.5 | | HOV9ŒWH | 0.398 | 33 | 42 | 95 | LAMINAR | 0 | 42 | 1.1 | | DP/OH | 0.398 | 340 | 42 | 95 | LAMINAR | 0 | 42 | 11.1 | | DP/CSG | 0.427 | 307 | 39 | 94 | LAMINAR | 0 | 39 | 8.5 | | DP/RIS | 1.325 | 98 | 13 | 85 | LAMINAR | 0 | 13 | 0.2 | | TOTAL | . VOLUME | 825 | | | TOTAL | PRESSURE | DROP | 26.3 | LAG: 49.1 MINUTES 3572 STROKES #1 AND 3360 STROKES #2 ## BIT HYDRAULICS: PRESSURE DROP 1577.1 HHP 650 IMPACT FORCE 1473 % SURFACE PRESSURE 53.1 HHP/sqin 5.51 JET VELOCITY 133 ## PRESSURE BREAKDOWN: SURFACE 46.5 STRING 886.5 BIT 1577.1 ANNULUS 26.3 TOTAL 2536.4 PUMP PRESSURE 2970.0 % DIFFERENCE 14.6 ## BOTTOM HOLE PRESSURES: UNITS UNITS 2982.0 MUD WEIGHT 9.20 HYDROSTATIC PRESSURE NOT CIRCULATING: CIRCULATING PRESSURE 3008.3 9.28 CIRCULATING: ECD 52.6 0.16 ESTIMATED SWAB PULLING OUT: TRIP MARGIN EFFECTIVE MUD WEIGHT 2929.4 9.04 BOTTOM HOLE PRESSURE DENSITY HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 2000.0 AND TVD 1999.9 SPM 1 72 SPM 2 68 FLOW RATE 700 ## ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL./
UNIT | VOL | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A | ASCEND
VEL. | PRESSURE
DROP | |-----------------|---------------|-----|------------|-------------|-----------------|----------|----------------|------------------| | HWDC/OH | 0,274 | 47 | 61 | 102 | LAMINAR | 1 | 60 | 5.5 | | HWDP/OH | 0.398 | 33 | 42 | 95 | LAMINAR | 0 | 41 | 1.1 | | DP/OH | 0.398 | 379 | 42 | 95 | LAMINAR | 0 | 41 | 12.3 | | DP/CSG | 0.427 | 307 | 39 | 94 | LAMINAR | 0 | 39 | 8.4 | | DP/RIS | 1.325 | 98 | 13 | 85 | LAMINAR | 0 | 13 | 0.2 | | TOTAL | UOLIJME | 865 | | | TOTAL | PRESSURE | DROP | 27.5 | LAG: 51.9 MINUTES 3734 STROKES #1 AND 3533 STROKES #2 ### BIT HYDRAULICS: PRESSURE DROP 1550.6 HHP 634 IMPACT FORCE 1448 % SURFACE PRESSURE 53.4 HHP/sqin 5.38 JET VELOCITY 132 ## PRESSURE BREAKDOWN: SURFACE 45.8 STRING 899.6 BIT 1550.6 ANNULUS 27.5 TOTAL 2523.5 PUMP PRESSURE 2904.5 % DIFFERENCE 13.1 #### BOTTOM HOLE PRESSURES: | | | UNITS | · | UNITS | |------------------|---------------|-------|----------------------|--------| | NOT CIRCULATING: | MUD WEIGHT | 9.20 | | 3138.9 | | CIRCULATING: | ECD | 9.28 | CIRCULATING PRESSURE | 3166.4 | | PULLING OUT: | TRIP MARGIN | 0.16 | ESTIMATED SWAB | 55.0 | | FEFECTT | JE MUD WETCHT | 9.04 | BOTTOM HOLE PRESSURE | 3083.9 | DENSITY ## HYDRAULICS ANALYSIS PROGRAM | HYDRAULICS | CALCULATIONS | AT | DEPTH | 2100 | <u>. 0</u> | AND | TVD | 2099, | 9 | |------------|--------------|----|-------|------|------------|-----|-----|-------|---| | | | | | | | | | | | SPM 1 73 SPM 2 68 FLOW RATE 706 ## ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A
VEL | SCEND
VEL | PRESSURE
DROP | |-----------------|--------------|-----|------------|-------------|-----------------|---------------|--------------|------------------| | HWDC/OH | 0.274 | 47 | 61 | 115 | LAMINAR | 1 | 61 | 6.8 | | HWDP/OH | 0.398 | 33 | 42 | 108 | LAMINAR | 0 | 42 | 1.4 | | DP/OH | 0.398 | 419 | 42 | 108 | LAMINAR | 0 | 42 | 17.1 | | DP/CSG | 0.427 | 307 | 39 | 107 | LAMINAR | ŋ | 39 | 10.6 | | DP/RIS | 1.325 | 98 | 13 | 97 | LAMINAR | 0 | 13 | 0.3 | | TOTAL | VOLUME | 905 | | | TOTAL | PRESSURE | DROP | 36.1 | LAG: 53.8 MINUTES 3927 STROKES #1 AND 3675 STROKES #2 ## BIT HYDRAULICS: PRESSURE DROP 1576.9 HHP 650 IMPACT FORCE 1473 % SURFACE PRESSURE 53.2 HHP/sqin 5.51 JET VELOCITY 133 ## PRESSURE BREAKDOWN: SURFACE 48.0 STRING 969.5 BIT 1576.9 ANNULUS 36.1 TOTAL 2630.5 PUMP PRESSURE 2963.6 % DIFFERENCE 11.2 | BOTTON MOLE PRESSURES. | DENS: | ITY | PRESSURE | |------------------------|---------------------|---|-----------------------------| | | INU | ITS | UNITS | | CIRCULATING: | ECD 9
P MARGIN 0 | .20 HYDROSTATIC
.30 CIRCULATING
.20 ESTIMATED SW
.00 BOTTOM HOLE | PRESSURE 3331.9
JAB 72.1 | # HYDRAULICS ANALYSIS PROGRAM | HYDRAULICS | CALCULATIONS | AT DEPTH | 2200.0 6 | AND TUD | 2199.9 | |------------|--------------|----------|----------|---------|--------| | | | | | | | SPM 1 72 SPM 2 68 FLOW RATE 701 #### ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL. | ANN
VEL | CRIT
VEL | TYPE OF FLOW | SLIP A
VEL | SCEND | PRESSURE
DROP | |-----------------|--------------|------|------------|-------------|--------------|---------------|-------|------------------| | HWDC/OH | 0,274 | 47 | 61 | 104 | LAMINAR | 1 | 6.0 | 5.8 | | HWDPZOH | 0.398 | 33 | 42 | 95 | LAMINAR | 0 | 42 | 1.1 | | DP/OH | 0.398 | 459 | 42 | 95 | L.AMINAR | 0 | 42 | 15.1 | | DP/CSG | 0.427 | 307 | 39 | 94 | LAMINAR | 0 | 39 | 8.5 | | DP/RIS | 1.325 | 98 | 13 | 82 | LAMINAR | 0 | 13 | 0.2 | | TOTAL | . VOLUME | 944 | | | TOTAL | PRESSURE | DROP | 30.7 | LAG: 56.6 MINUTES 4091 STROKES #1 AND 3845 STROKES #2 ### BIT HYDRAULICS: PRESSURE DROP 1552.3 HHP 635 IMPACT FORCE 1450 % SURFACE PRESSURE 53.1 HHP/sqin 5.38 JET VELOCITY 132 ## PRESSURE BREAKDOWN: SURFACE 48.6 STRING 1009.8 BIT 1552.3 ANNULUS 30.7 TOTAL 2641.4 PUMP PRESSURE 2923.3 % DIFFERENCE 9.6 #### BOTTOM HOLE PRESSURES: | | | UMT 12 | | CHATIS | |-----------------------------------|------------------|--------------|---|--------------------------| | NOT CIRCULATING: MUD CIRCULATING: | WEIGHT
ECD | 9.20
9.28 | HYDROSTATIC PRESSURE CIRCULATING PRESSURE | 3452.8
3483. 5 | | PULLING OUT: TRIP EFFECTIVE MUD | MARGIN
WEIGHT | 0.16
9.04 | ESTIMATED SWAB
BOTTOM HOLE PRESSURE | 61.4
3391.4 | DENSITY 1131770
HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 2300.0 AND TVD 2299.8 SPM 1 73 SPM 2 67 FLOW RATE 700 ## ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A
VEL | SCEND
VEL | PRESSURE
DROP | |-----------------|--------------|-----|------------|-------------|-----------------|---------------|--------------|------------------| | HWDC/OH | 0.274 | 47 | 61 | 104 | LAMINAR | 1 | 60 | 5.8 | | HWDP/OH | 0.398 | 33 | 42 | 95 | LAMINAR | 0 | 41 | 1.1 | | DP/OH | 0,398 | 499 | 42 | 95 | LAMINAR | 0 | 41 | 16.4 | | DP/CSG | 0.427 | 307 | 39 | 94 | LAMINAR | 0 | 39 | 8.5 | | DP/RIS | 1.325 | 98 | 13 | 82 | LAMINAR | 0 | 13 | 0.2 | | TOTAL | . VOLUME | 984 | | | TOTAL | PRESSURE | DROP | 32.0 | LAG: 59.1 MINUTES 4297 STROKES #1 AND 3974 STROKES #2 ## BIT HYDRAULICS: PRESSURE DROP 1547.1 HHP 631 IMPACT FORCE 1445 % SURFACE PRESSURE 52.3 HHP/sqin 5.36 JET VELOCITY 132 # PRESSURE BREAKDOWN: SURFACE 48.4 STRING 1034.6 BIT 1547.1 ANNULUS 32.0 TOTAL 2662.1 PUMP PRESSURE 2958.9 % DIFFERENCE 10.0 #### BOTTOM HOLE PRESSURES: | | | UNITS | | UNTIA | |--|---|------------------------------|--|------------------------------------| | NOT CIRCULATING:
CIRCULATING:
PULLING OUT: | MUD WEIGHT
ECD
TRIP MARGIN
UF MUD WEIGHT | 9.20
9.28
0.16
9.04 | HYDROSTATIC PRESSURE
CIRCULATING PRESSURE
ESTIMATED SWAB
BOTTOM HOLE PRESSURE | 3609.7
3641.7
64.0
3545.7 | DENSITY HYDRAULICS ANALYSIS PROGRAM ## HYDRAULICS CALCULATIONS AT DEPTH 2400.0 AND TVD 2399.8 SPM 1 72 SPM 2 66 FLOW RATE 693 #### ANNULAR HYDRAULICS: | ANNULUS | VOLZ | | ANN | CRIT | TYPE OF | SLIP A | SCEND | PRESSURE | |---------|----------|------|-----|------|----------|----------|-------|----------| | TYPE | UNIT | AOT" | VEL | VEL. | FLOW | VEL | VEI | DROP | | HWDC/OH | 0.274 | 47 | 60 | 104 | L.AMINAR | 1 | 59 | 5.8 | | HWDP/OH | 0.398 | 33 | 41 | 95 | LAMINAR | 0 | 41 | 1.1 | | DP/OH | 0.398 | 539 | 41 | 95 | LAMINAR | 0 | 41 | 17.7 | | DP/CSG | 0.427 | 307 | 39 | 94 | LAMINAR | 0 | 38 | 8.5 | | DP/RIS | 1.325 | 98 | 12 | 82 | LAMINAR | 0 | 12 | 0.2 | | TOTAL | _ VOLUME | 1024 | | | TOTAL | PRESSURE | DROP | 33.2 | LAG: 62.0 MINUTES 4482 STROKES #1 AND 4124 STROKES #2 BIT HYDRAULICS: PRESSURE DROP 1519.1 HHP 614 IMPACT FORCE 1419 % SURFACE PRESSURE 51.4 HHP/sqin 5.21 JET VELOCITY 131 PRESSURE BREAKDOWN: SURFACE 47.6 STRING 1045.2 BIT 1519.1 ANNULUS 33.2 TOTAL 2645.1 PUMP PRESSURE 2955.0 % DIFFERENCE 10.5 BOTTOM HOLE PRESSURES: PRESSURE DENSITY UNITS UNITS MUD WEIGHT 9,20 HYDROSTATIC PRESSURE 3766.6 NOT CIRCULATING: 3799.7 ECD 9.28 CIRCULATING PRESSURE CIRCULATING: PULLING OUT: TRIP MARGIN 0.16 ESTIMATED SWAB 66.3 EFFECTIVE MUD WEIGHT 9.04 BOTTOM HOLE PRESSURE 3700.2 ## HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 2500.0 AND TVD 2499.8 SPM 1 66 SPM 2 70 FLOW RATE 683 # ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL. | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP A
VEL | SCEND | PRESSURE
DROP | |-----------------|--------------|------|------------|-------------|-----------------|---------------|-------|------------------| | HWDC/OH | 0.274 | 47 | 59 | 107 | IAMINAR | 1 | 59 | 5.9 | | HWDP/OH | 0.398 | 33 | 41 | 100 | LAMINAR | 0 | 40 | 1.2 | | DP/OH | 0.398 | 579 | 41 | 100 | LAMINAR | 0 | 40 | 20.5 | | DP/CSG | 0.427 | 307 | 38 | 100 | LAMINAR | 0 | 38 | 9.2 | | DP/RIS | 1.325 | 98 | 12 | 91 | LAMINAR | 0 | 12 | 0.2 | | TOTAL | VOLUME | 1064 | | | TOTAL | PRESSURE | DROP | 37.0 | LAG: 65.4 MINUTES 4346 STROKES #1 AND 4595 STROKES #2 ### BIT HYDRAULICS: PRESSURE DROP 1475.1 HHP 588 IMPACT FORCE 1377 Z SURFACE PRESSURE 51.3 HHP/sqin 4.99 JET VELOCITY 129 # PRESSURE BREAKDOWN: SURFACE 43.8 STRING 986.2 BIT 1475.1 ANNULUS 37.0 TOTAL 2542.1 PUMP PRESSURE 2876.4 % DIFFERENCE 11.6 | | DENSITY
UNITS | PR | UNITS | |--------------|------------------|-------------------|------------------------------------| | CIRCULATING: | | 11121424111111111 | 3923.6
3960.5
74.0
3849.6 | HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 2600.0 AND TVD 2599.8 SPM 1 69 SPM 2 69 FLOW RATE 689 ## ANNULAR HYDRAULICS: | ANNULUS | VOL/ | VOL | ANN | CRIT | TYPE OF | SLIP A | SCEND | PRESSURE | |---------|-----------|------|-----|------|---------|----------|-------|----------| | TYPE | UNIT | | VEL | VEL | FLOW | VEL | VEL | DROP | | HWDC/OH | 0.274 | 47 | 60 | 107 | LAMINAR | 1 | 59 | 5.9 | | HWDP/OH | 0.398 | 33 | 41 | 100 | LAMINAR | 0 | 41 | 1.2 | | DP/OH | 0.398 | 618 | 41 | 100 | LAMINAR | 0 | 41 | 22.0 | | DP/CSG | 0.427 | 307 | 38 | 100 | LAMINAR | 0 | 38 | 9.3 | | DP/RIS | 1.325 | 98 | 12 | 91 | LAMINAR | 0 | 12 | 0.2 | | TOTAL | _ VOL.UME | 1104 | | | TOTAL | PRESSURE | DROP | 38.5 | LAG: 67.3 MINUTES 4619 STROKES #1 AND 4657 STROKES #2 ## BIT HYDRAULICS: PRESSURE DROP 1500.7 HHP 603 IMPACT FORCE 1401 % SURFACE PRESSURE 51.7 HHP/sqin 5.12 JET VELOCITY 130 ### PRESSURE BREAKDOWN: SURFACE 44.5 STRING 1027.3 BIT 1500.7 ANNULUS 38.5 TOTAL 2611.0 PUMP PRESSURE 2900.9 % DIFFERENCE 10.0 | BOLIOW HATE EXERPORER: | DENSITY
UNITS | PRESSURE
UNITS | |------------------------|---|--| | CIRCULATING: | WEIGHT 9.20
ECD 9.29
MARGIN 0.17
WEIGHT 9.03 | HYDROSTATIC PRESSURE 4080.5
CIRCULATING PRESSURE 4119.0
ESTIMATED SWAB 77.0
BOTTOM HOLE PRESSURE 4003.5 | # HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 2700.0 AND TVD 2699.8 SPM 1 69 SPM 2 68 FLOW RATE 687 ### ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL. | ANN
VEL | CRIT
VEL | TYPE OF FLOW | SLIP 6
VEL | ASCEND
VEL | PRESSURE
DROP | |-----------------|--------------|------|------------|-------------|--------------|---------------|---------------|------------------| | HWDC/OH | 0.274 | 47 | 60 | 111 | LAMINAR | 1 | 59 | 6.2 | | HWDP/OH | 0.398 | 33 | 41 | 103 | LAMINAR | 0 | 41 | 1.2 | | DP/OH | 0.398 | 658 | 41 | 103 | LAMINAR | 0 | 41 | 24.4 | | DP/CSG | 0.427 | 307 | 38 | 102 | LAMINAR | 0 | .38 | 9.6 | | DP/RIS | 1.325 | 98 | 12 | 92 | LAMINAR | 0 | 12 | 0.2 | | TOTAL | . VOLUME | 1144 | • | | TOTAL | PRESSURE | EDROP | 41.7 | LAG: 69.9 MINUTES 4825 STROKES #1 AND 4785 STROKES #2 #### BIT HYDRAULICS: PRESSURE DROP 1490.7 HHP 597 IMPACT FORCE 1392 % SURFACE PRESSURE 49.1 HHP/sqin 5.07 JET VELOCITY 129 ## PRESSURE BREAKDOWN: SURFACE 45.6 STRING 1079.4 BIT 1490.7 ANNULUS 41.7 TOTAL 2657.5 PUMP PRESSURE 3035.0 % DIFFERENCE 12.4 | | DENSITY
UNITS | PRESSURE
UNITS | |--------------|---|--| | CIRCULATING: | 111111111111111111111111111111111111111 | HYDROSTATIC PRESSURE 4237.5
CIRCULATING PRESSURE 4279.2
ESTIMATED SWAB 83.5
BOTTOM HOLE PRESSURE 4154.0 | HYDRAULICS ANALYSIS PROGRAM ## HYDRAULICS CALCULATIONS AT DEPTH 2800.0 AND TVD 2799.8 SPM 1 68 SPM 2 68 FLOW RATE, 680 #### ANNULAR HYDRAULICS: | ANNULUS | VOLZ | | ANN | CRIT | TYPE OF | SLIP A | SCEND | PRESSURE | |---------|----------|------|-----|------|---------|----------|-------|----------| | TYPE | TINU | VOL. | VEL | VEL | FL.OW | VEL. | VEL | DROP | | HWDC/OH | 0.274 | 47 | 59 | 131 | LAMINAR | 1 | 59 | 8.3 | | HWDP/OH | 0.398 | 33 | 41 | 122 | LAMINAR | 0 | 40 | 1.6 | | DP/OH | 0,398 | 698 | 41 | 122 | LAMINAR | 0 | 40 | 34.8 | | DP/CSG | 0.427 | 307 | 38 | 121 | LAMINAR | 0 | 38 | 12.9 | | DP/RIS | 1.325 | 98 | 12 | 109 | LAMINAR | 0 | 12 | 0.3 | | TOTAL | _ VOLUME | 1183 | | | TOTAL | PRESSURE | DROP | 58.0 | LAG: 73.1 MINUTES 4963 STROKES #1 AND 4982 STROKES #2 BIT HYDRAULICS: PRESSURE DROP 1459.8 HHP 579 IMPACT FORCE 1363 % SURFACE PRESSURE 48.2 HHP/sqin 4.91 JET VELOCITY 128 PRESSURE BREAKDOWN: SURFACE 47.1 STRING 1140.9 BIT 1459.8 ANNULUS 58.0 TOTAL 2705.8 PUMP PRESSURE 3026.4 % DIFFERENCE 10.6 BOTTOM HOLE PRESSURES: UNITS UNITS HYDROSTATIC PRESSURE 4394,4 NOT CIRCULATING: 9.20 MUD WEIGHT 4452.3 CIRCULATING: 9.32 CIRCULATING PRESSURE ECD PULLING OUT: TRIP MARGIN 0.24 ESTIMATED SWAB 115.9 EFFECTIVE MUD WEIGHT 8.96 BOTTOM HOLE PRESSURE 4278.5 DENSITY HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 2900.0 AND TVD 2899.8 SPM 1 69 SPM 2 68 FLOW RATE 683 ### ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL. | ANN
VEL | CRIT
VEL | TYPE OF FLOW | SLIP A
VEL | SCEND | PRESSURE
DROP | |-----------------|--------------|------|------------|-------------|--------------|---------------|-------|------------------| | HWDC/OH | 0.274 | 47 | 59 | 123 | LAMINAR | 1 | 59 | 7.5 | | HWDP/OH | 0,398 | 33 | 41 | 115 | L.AMINAR | 0 | 41 | 1.5 | | DP/OH | 0.398 | 738 | 41 | 115 | LAMINAR | 0 | 41 | 33.3 | | DP/CSG | 0.427 | 307 | 38 | 114 | LAMINAR | 0 | 38 | 11.7 | | DP/RIS | 1.325 | 98 | 12 | 103 | LAMINAR | 0 | 12 | 0.3 | | TOTAL | L VOLUME | 1223 | | | TOTAL | PRESSURE | DROP | 54.3 | LAG: 75.2 MINUTES 5172 STROKES #1 AND 5108 STROKES #2 ### BIT HYDRAULICS: PRESSURE DROP 1475.5 HHP 588 IMPACT FORCE 1378 % SURFACE PRESSURE 49.6 HHP/sqin 4.99 JET VELOCITY 129 ## PRESSURE BREAKDOWN: SURFACE 46.4 STRING 1151.9 BIT 1475.5 ANNULUS 54.3 TOTAL 2728.1 PUMP PRESSURE 2974.9 % DIFFERENCE 8.3 ### BOTTOM HOLE PRESSURES: | | | ••• | UNITS | | UNITS | |------------------|--------|--------|-------|----------------------|--------| | NOT CIRCULATING: | MUD | WEIGHT | 9.20 | HYDROSTATIC PRESSURE | 4551.3 | | CIRCULATING: | | ECD | 9.31 | CIRCULATING PRESSURE | 4605.6 | | PULLING OUT: | TRIP | MARGIN | 0.22 | ESTIMATED SWAB | 108.5 | | FFFCTI | מווא א | WEIGHT | 8.98 | BOTTOM HOLE PRESSURE | 4442.8 | DENSITY #### CORE LAB *** *** *** *** *** *** ***
HYDRAULICS ANALYSIS PROGRAM # HYDRAULICS CALCULATIONS AT DEPTH 3000.0 AND TVD 2999.7 SPM 1 SPM 2 67 FLOW RATE 670 67 ## ANNULAR HYDRAULICS: | ANNULUS
TYPE | VOL/
UNIT | VOL | ANN
VEL | CRIT
VEL | TYPE OF
FLOW | SLIP (
VEL | ASCEND
VEL | PRESSURE
DROP | |-----------------|--------------|------|------------|-------------|-----------------|---------------|---------------|------------------| | HWDC/OH | 0.274 | 47 | 58 | 149 | LAMINAR | 0 | 58 | 10.4 | | HWDP/OH | 0.398 | 33 | 40 | 140 | LAMINAR | 0 | 40 | 2.1 | | DP/OH | 0.398 | 778 | 40 | 140 | LAMINAR | 0 | 40 | 49.9 | | DP/CSG | 0.427 | 307 | 37 | 140 | LAMINAR | 0 | 37 | 16.7 | | DP/RIS | 1.325 | 98 | 12 | 128 | I.AMINAR | 0 | 12 | 0,4 | | TOTAL | L VOLUME | 1263 | | | TOTAL | PRESSUR | E DROP | 79.6 | LAG: 79.1 MINUTES 5337 STROKES #1 AND 5277 STROKES #2 ### BIT HYDRAULICS: IMPACT FORCE 556 1327 HHP PRESSURE DROP 1420.8 HHP/sqin 4.72 JET VELOCITY % SURFACE PRESSURE 47.0 126 #### PRESSURE BREAKDOWN: SURFACE 46.9 1191.3 STRING 1420.8 BIT ANNULUS 79.6 TOTAL 2738.7 PUMP PRESSURE 3022.7 % DIFFERENCE 9.4 ## BOTTOM HOLE PRESSURES: | | | SITY | PRESSURE
UNITS | |-----------------------------------|----------------------|--------------|--| | NOT CIRCULATING: MUD CIRCULATING: | VV (a. ii. w/ () i | 9.20
9.36 | HYDROSTATIC PRESSURE 4708.1
CIRCULATING PRESSURE 4787.8 | | PULLING OUT: TRIP EFFECTIVE MUD | | 0.31
8.89 | ESTIMATED SWAB 159.3
BOTTOM HOLE PRESSURE 4548.9 | # (c). COMPUTER DATA LISTING : LIST A | INTERVAL | All depth records (data not averaged) | |----------|---| | DEPTH | Well depth, in metres | | ROP | Rate of penetration, in metres/hour | | WOB | Weight-on-bit, in thousands of pounds | | RPM | Rotary speed, in revolutions per minute | | MW | Mud weight in, in pounds per gallon | | 'dc' | Calculated 'd' exponent, corrected for variations in mud weight in, using a correction factor of 10 ppg. | | HOURS | Cumulative bit hours. The number of hours that the bit has actually been on bottom, recorded in decimal hours. | | TURNS | Cumulative bit turns. The number of turns made by the bit, while actually on bottom | | ICOST | Incremental cost per metre, calculated from the rate of penetration, in Australian dollars. | | CCOST | Cumulative cost per metre, calculated from the drilling time, in A dollars. | | PP | Pore pressure gradient, in equivalent pounds per gallon. The pressure exerted by the fluid in the pore spaces of the formation. | | FG | Fracture gradient, in equivalent pounds per gallon. The pressure required to fracture the formation, calculated by the DRILL programusing Eaton's equation. | | | It is dependent on the pore pressure, the overburden gradient and the matrix stress. this value may be modified by leak-off information. | | | BIT NUMBE
HTC OSC3A
COST
TOTAL HOU | J&26"1 | 1
0.00
3.28 | S | ADC CODE
IZE
RIP TIME
OTAL TURNS | 111
26.000
2.4
13555 | NO2
BIT | TERVAL
ZZLES
T RUN
NDITION | | .0- 209.0
18 18 18
135.0
B5 G0.000 | |---|--|--|--|--|--|--|---|---|--|--| | | DEPTH | ROP | MOB | RPM | MW "d"c | HOURS | TURNS | icost | CCOST | PP FG | | | 75.0
80.0
85.0 | 5.1
21.7
42.8 | 8.6
1.0
1.0 | 72
38
48 | 8.9 1.13
8.6 0.53
8.6 0.46 | | 618 | 831
196
99 | 11424
2067
1173 | 8.4 14.2
8.4 14.2
8.4 14.2 | | | 90.0
95.0
100.0
105.0
110.0
120.0
125.0
130.0 | 21.3
23.8
35.9
50.5
63.8
53.9
30.1
18.2
15.1
74.7 | 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | 53
61
63
82
82
83
82
83
79 | 8.6 0.58
8.6 0.58
8.6 0.52
8.6 0.47
8.6 0.50
8.6 0.59
8.6 0.67
8.6 0.76
8.6 0.53 | 0.72
0.93
1.07
1.17
1.25
1.34
1.51
1.78
2.11
2.18 | 2480
2987
3364
3747
4202
5033
6385 | 178.36
118.28
83.98
66.44
78.69
140.90
232.44
280.61 | 591.40
509.56
448.02
402.98
374.49 | 8.4 14.2
8.4 14.3
8.4 14.3
8.4 14.3
8.4 14.3
8.4 14.4
8.4 14.4
8.4 14.4 | | | 140.0
145.0
150.0
155.0
160.0
170.0
170.0
180.0 | 87.0
90.0
32.7
65.7
94.3
51.7
78.6
72.0
87.0
46.9 | 1.8
2.0
2.1
2.3
2.3
2.9
2.4
1.7 | 84
78
79
82
50
81
80
81
78
85 | 8.6 0.47
8.6 0.46
8.6 0.52
8.6 0.38
8.6 0.57
8.6 0.52
8.6 0.53
8.6 0.53
8.6 0.53 | 2.24
2.29
2.45
2.52
2.58
2.67
2.74
2.81
2.86
2.97 | 8639
9899
9627
10002
10162
10430
10936
11272
11542
12084 | 47.12
129.59
64.56
44.97
81.99
53.95
58.90
48.77 | 307.87
289.51
278.99
265.75
252.92
243.52
233.65
225.00
216.69
211.00 | 8.4 14.6 | | | 190.0
195.0
200.0
205.0
209.0 | 93.8
104.7
57.4
60.4
95.7 | 1.7
3.0
3.1
2.5
3.0 | 75
71
79
83
80 | 8.6 0.44
8.6 0.45
8.6 0.57
8.6 0.55
8.6 0.48 | 3.02
3.07
3.16
3.24
3.28 | 12325
12530
12940
13354
13555 | 40.53
73.93
70.21 | 203.86
197.11
192.22
187.56
183.32 | 8.4 14.7
8.4 14.7
8.4 14.7
8.4 14.7
8.4 14.7 | | | BIT NUMBE
HTC OSC3A
COST
TOTAL HOL | 1J
444 | 12.00 | S | ADC CODE
CIZE
RIP TIME
COTAL TURNS | 17,500
3,7 | NOZ
BIJ | ZZLES
F RUN | | .0- 806.0
20 20 20
597.0
B2 G0.000 | | | DEPTH | ROP | MOB | RPM | MW "d"c | HOURS | TURNS | ICOST | CCOST | PP FG | | • | 210.0
215.0
220.0
225.0
230.0 | 94.7
145.1
236.8
189.5
174.7 | 3.0
3.1
2.1
2.9
3.7 | 84
81
81
78
83 | 8.6 0.52
8.6 0.41
8.6 0.33
8.6 0.38
8.6 0.42 | 0.01
0.04
0.06
0.09
0.12 | 53
200
302
425
568 | | 20178
3384
1854
1282
982.37 | 8.4 14.7
8.4 14.8
8.4 14.8
8.4 14.8
8.4 14.8 | | DEPTH | ROP | wor | RPM | MW | "d "c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|--|---|--|--|--|--|--|--|--|--|--| | 235.0
240.0
245.0
250.0
255.0
260.0
270.0
270.0
280.0 | 98.4
37.0
88.2
68.4
110.2
214.3
58.8
195.7
168.2
139.7 | 4.9
2.5
3.5
6.2
5.6
8.1
7.8
4.8 | 78
84
85
125
150
150
150
148
140 | 8.6
8.6
8.6
8.6
8.6
8.6 | 0.55
0.68
0.55
0.75
0.67
0.57
0.82
0.58 | 0.17
0.30
0.36
0.43
0.48
0.50
0.59
0.61
0.64 | 807
1490
1778
2325
2733
2943
3708
3938
4203
4503 | 114.74
48.06
61.97
38.48
19.79
72.10
21.68
25.21 | 801.74
690.94
601.65
535.83
481.77
436.48
403.95
372.61
346.29
324.05 | 8.4
8.4
8.4
8.4
8.4
8.4 | 14.8
14.9
14.9
14.9
14.9
15.0
15.0 | | 285.0
290.0
295.0
300.0
305.0
310.0
315.0
320.0
325.0
330.0 | 191.5
107.8
136.4
176.5
183.7
160.7
125.0
181.8
180.0
110.9 | 6.5
4.8
7.2
7.8
8.2
4.3
7.8
7.4 | 140
140
140
140
140
140
140
140 | 8.6
8.6
8.6
8.6
8.6
8.6 | 0.56
0.64
0.64
0.59
0.60
0.62
0.60
0.59
0.60 | 0.70
0.75
0.79
0.82
0.84
0.87
0.91
0.91 | 4723
5112
5428
5658
5887
6148
6484
6715
6949
7328 | 39.35
31.10
24.03
23.09
26.39
33.93
23.33
23.56 | 304.18
287.84
272.91
259.23
246.94
236.02
226.49
217.33
208.98
201.93 | 8.4
8.4
8.4
8.4
8.4
8.4 | 15.0
15.1
15.1
15.1
15.1
15.2
15.2
15.2 | | 335.0
340.0
345.0
350.0
355.0
360.0
345.0
375.0
380.0 | 117.3
134.3
75.6
33.0
31.9
81.1
77.3
63.8
79.6
84.1 | 8.5
6.8
5.2
3.9
4.6
5.8
6.0
8.8
9.0 | 140
140
140
140
140
140
140
140 | 8.6
8.6
8.6
8.6
8.6
8.6 | 0.70
0.64
0.73
0.85
0.89
0.73
0.74
0.84 | 1.06
1.09
1.16
1.31
1.47
1.53
1.59
1.67
1.79 |
7686
7998
8554
9828
11143
11661
12204
12862
13390
13889 | 31.57
56.08
128.64
132.77
52.31
54.90
66.44
53.25 | 195.35
189.10
184.21
182.24
180.54
176.30
172.41
169.11
165.62
162.26 | 8.4
8.4
8.4
8.4
8.4
8.4 | 15.2
15.3
15.3
15.3
15.4
15.4
15.4 | | 385.0
390.0
395.0
400.0
405.0
410.0
415.0
425.0
430.0 | 73.5
76.6
56.6
17.8
76.3
43.4
102.3
91.4 | 11.6
12.1
10.7
11.4
13.8
11.3
10.4
10.0
8.8
11.2 | 140
140
140
140 | 8.6
8.6
8.6
8.6
8.6
8.6 | 0.85
0.86
0.83
0.91
1.24
0.84
0.76
0.75 | 1.86
1.93
1.99
2.08
2.36
2.43
2.54
2.59
2.65 | 14444
15016
15564
16307
18665
19216
20184
20595
21055
21566 | 57.72
55.37
74.96
238.16
55.60
97.78
41.47
46.42 | 159.24
156.44
153.72
151.66
153.86
151.42
150.12
147.54
145.20
143.08 | 8.4
8.4
8.4
8.4
8.4
8.4 | 15.4
15.5
15.5
15.5
15.5
15.6
15.6 | | 435.0
440.0
445.0
450.0
455.0
460.0
465.0
470.0
480.0 | 92.8
75.2
52.0
43.2
66.7
50.3
101.7 | 13.6
13.7
11.8
11.7
9.5
11.6
13.2
10.5
13.6 | 140
140
140
140
140
140
140 | 8.6
8.6
8.6
8.6
8.6
8.6 | 0.89
0.83
0.85
0.94
0.94
0.88
0.97
0.76
0.95 | 2.78
2.83
2.90
2.99
3.11
3.19
3.29
3.33
3.42
3.50 | 22149
22602
23160
23968
24941
25571
26406
26819
27570
28240 | 45.71
56.43
81.52
98.25
63.62
84.35
41.70
75.87 | 141.22
139.15
137.40
136.24
135.47
134.04
133.07
131.32
130.28
129.12 | 8.4
8.4
8.4
8.4
8.4
8.4 | 15.6
15.7
15.7
15.7
15.7
15.7
15.8
15.8 | 30 S | DEPTH | ROP W | ов крм | MW "d"c | HOURS | TURNS | icost | ccost | рþ | FG | |--|--|--|--|--|--|---|--|--|--| | 485.0
490.0
495.0
500.0
515.0
515.0
520.0
525.0 | 60.0 14
56.4 15
33.5 11
48.8 16
71.1 14
54.4 12
59.2 13
51.6 14
48.8 13
46.6 15 | .4 140
.3 140
.6 140
.3 140
.1 140
.5 140
.1 140 | 8.6 0.94
8.6 0.97
8.6 1.04
8.7 1.02
8.7 0.92
8.7 0.92
8.7 0.92
8.8 0.96
8.8 0.95
8.9 0.99 | 3.59
3.68
3.82
3.93
4.00
4.09
4.17
4.27
4.37
4.48 | 28940
29684
30937
31797
32388
33160
33869
34684
35545
36445 | 75.16
126.52
86.82
59.61
77.99
71.63
82.23
86.94 | 128.06
127.12
127.11
126.42
125.29
124.50
123.64
122.97
122.40
121.91 | 8.4
8.4
8.4
8.4
8.4
8.4 | 15.8
15.8
15.8
15.9
15.9
15.9
15.9
15.9 | | 535.0
540.0
545.0
550.0
555.0
560.0
570.0
575.0 | 63.4 16
76.6 15
78.3 15
84.8 18
43.5 18
56.1 16
38.4 15
33.5 14
32.2 14
39.6 16 | .7 140
.6 140
.3 140
.1 140
.3 140
.8 140
.9 140 | 8.9 0.93
8.9 0.87
8.9 0.86
8.9 0.87
8.9 1.04
8.9 1.04
8.9 1.06
8.9 1.07
8.9 1.05 | 4.56
4.62
4.69
4.75
4.85
5.23
5.23
5.51 | 42750
44054 | 55.37
54.19
50.03
97.47
75.63
110.50 | 117.22 | 8.4
8.4
8.4
8.4
8.4
8.4 | 16.0
16.0
16.0
16.0
16.1
16.1
16.1
16.1 | | 585.0
590.0
595.0
600.0
605.0
610.0
615.0
620.0
625.0 | 55.7 14
52.9 16
42.5 16
37.9 16
32.7 18
40.4 20
35.9 21
37.7 19
43.6 19
45.9 21 | .9 140
.0 140
.5 140
.1 140
.4 140
.6 140
.4 140 | 8.9 0.94
8.9 0.98
8.9 1.02
8.9 1.06
8.9 1.12
8.9 1.14
8.9 1.10
8.9 1.05
8.9 1.07 | 5.60
5.70
5.81
5.95
6.10
6.22
6.36
6.49
6.61
6.72 | 50045
51083
52252
53365 | 80.21
99.90
111.92
129.59
104.85
118.04
112.39
97.31 | 116.73
116.26
116.04
115.99
116.16
116.02
116.05
116.00
115.78
115.50 | 8.4
8.4
8.4
8.4
8.4
8.4 | 16.1
16.2
16.2
16.2
16.2
16.2
16.2
16.3
16.3 | | 635.0
640.0
645.0
650.0
655.0
660.0
670.0
675.0
680.0 | 51.4 20
53.7 21
37.9 25
32.0 26
31.7 27
35.8 27
26.5 28
24.0 31
22.8 31
25.3 28 | .6 140
.9 140
.6 140
.2 140
.5 140
.6 140
.6 140 | 8.9 1.03
8.9 1.03
9.0 1.17
9.0 1.22
9.0 1.22
9.0 1.29
9.0 1.35
9.0 1.37
9.0 1.31 | 6.82
6.91
7.04
7.20
7.35
7.49
7.68
7.89
8.11 | 59263
60586
61760
63346
65099
66940 | 78.91
111.84
132.65
133.59
118.51
160.22
176.94
185.90 | 115.11
115.61 | 8.4
8.4
8.4
8.4
8.4
8.4 | 16.3
16.3
16.3
16.4
16.4
16.4
16.4 | | 685.0
690.0
695.0
700.0
710.0
715.0
720.0
725.0
730.0
735.0 | 24.4 29
33.9 29
27.8 29
35.0 30
31.1 32
28.0 32
27.0 36
29.6 36
28.4 35
27.2 36 | .5 140
.8 140
.6 140
.6 140
.6 140
.7 140
.7 140 | 9.0 1.33
9.0 1.23
9.0 1.29
9.0 1.29
9.0 1.32
9.0 1.32
9.0 1.35
9.0 1.35
9.0 1.35 | 8.51
8.66
8.84
8.98
9.31
9.48
9.67
9.84
10.01 | 73074
74276
76980
78482
80038
81457
82934 | 151.67
157.15
143.25 | 118.22
118.57
118.60
118.96
119.28
119.65
119.88
120.16 | 8.4
8.4
8.4
8.4
8.4
8.4 | 16.5
16.5
16.5
16.5
16.5
16.6
16.6 | | DEPTH | ROP | MOB | RPM | ММ | "d"c | HOURS | TURNS | ICOST | CCOST | рþ | FG | |---|--|--|---|---|--|---|--|--|--|--|--| | 740.0
745.0
750.0
755.0
760.0
770.0
775.0
780.0
785.0 | 25.5 3
23.2 3
30.7 3
27.6 3
28.8 3
30.8 3 | 34.6
35.8
34.0
35.0
39.7
38.9 | 140
1440
1445
1445
1445
1445
1445 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.35
1.32
1.38
1.40
1.32
1.36
1.37 | 10.38
10.55
10.74
10.96
11.12
11.30
11.48
11.64
11.83 | 86026
87406
87051
90889
92308
93887
95395
96805
98473
99949 | 166.13
182.78
138.30
153.93
147.02
137.52 | 121.01
121.43
121.99
122.14
122.43
122.64
122.78
123.12 | 8.4
8.4
8.4
8.4
8.4
8.4 | 16.6
16.7
16.7
16.7
16.7
16.7
16.7 | | 790.0
795.0
800.0
805.0
806.0 | 28.7 3
26.7 3
23.0 3
31.9 3 | 88.2
88.8
88.3 | | 9.0
9.0
9.0 | 1.38
1.41
1.45
1.34 | 12.17
12.36
12.58
12.74
12.77 | 101465
103091
104983
106349
106641 | 147.73
158.57
184.48 | 123.52
123.81
124.33
124.40 | 8.4
8.4
8.4 | 16.8
16.8
16.8
16.8 | | BIT NUMBER 3 HTC X3A COST 2201.00 TOTAL HOURS 22.01 | SIZE
TRIP TIME | 114
12.250
5.7
196061 | INTERVAL
NOZZLES
BIT RUN
CONDITION | 806.0- 1751.0
16 16 18
945.0
T4 86 G0.000 | |---|--|--|---|--| | DEPTH ROP WOB | RPM MW "d"c | HOURS | TURNS ICOST | CCOST PP FG | | 807.0 24.0 29.3
808.0 24.8 27.6
809.0 12.7 29.2 | 83 9.2 1.24 | 0.06 '
0.10
0.17 | 283 177
484 171
897 335 | 26728 8.4 16.8
13449 8.4 16.8
9078 8.4 16.8 | | 810.0 20.4 28.1
811.0 16.7 28.5
812.0 17.2 29.6
813.0 19.7 28.7
814.0 20.5 24.1
815.0 22.4 30.5
816.0 20.9 31.0
817.0 16.4 27.5
818.0 23.2 29.4
819.0 25.2 31.7 | 108 9.2 1.45
106 9.2 1.45
110 9.2 1.41
120 9.0 1.39
130 9.0 1.48
130 9.0 1.50
130 9.0 1.53
130 9.0 1.45 |
0.22
0.28
0.34
0.39
0.44
0.49
0.53
0.59
0.64 | 1200 208 1586 253 1956 246 2290 216 2642 207 2990 190 3363 203 3838 258 4173 183 4483 168 | 6860 8.4 16.8
5539 8.4 16.8
4657 8.4 16.8
4022 8.4 16.8
3545 8.4 16.8
3173 8.4 16.8
2876 8.4 16.8
2638 8.4 16.8
2433 8.4 16.8
2433 8.4 16.8 | | 820.0 26.3 31.8
821.0 28.3 33.4
822.0 30.3 33.2
823.0 25.9 32.6
824.0 25.4 33.2
825.0 30.3 33.1
825.0 30.3 33.1
826.0 22.6 34.5
827.0 33.6 33.9
828.0 22.8 32.3
829.0 31.6 32.0 | 130 9.0 1.44
130 9.0 1.42
120 9.0 1.43
120 9.0 1.45
120 9.0 1.39
120 9.0 1.50
150 9.0 1.54 | 0.72
0.75
0.78
0.82
0.86
0.89
0.94
0.97
1.01 | 4780 161
5055 150
5313 140
5591 164
5875 167
6113 140
6431 187
6699 126
7094 186
7379 134 | 2109 8.4 16.9
1978 8.4 16.9
1864 8.4 16.9
1764 8.4 16.9
1675 8.4 16.9
1594 8.4 16.9
1524 8.4 16.9
1457 8.4 16.9
1399 8.4 16.9 | | 830.0 29.0 31.4
831.0 28.3 32.4
832.0 25.9 33.3
833.0 33.3 34.8
834.0 26.7 33.5
835.0 30.3 33.3
836.0 29.3 33.7
837.0 26.9 34.8
838.0 30.0 33.5
839.0 25.0 33.5 | 150 9.0 1.47
150 9.0 1.51
150 9.0 1.45
150 9.0 1.51
150 9.0 1.46
150 9.0 1.48
150 9.0 1.52
150 9.0 1.47 | 1.08
1.11
1.15
1.18
1.22
1.25
1.29
1.32
1.36
1.40 | 7689 146 8006 150 8354 164 8624 127 8961 159 9259 140 9566 145 9901 158 10201 141 10561 169.64 | 1036 8.4 16.9
1008 8.4 16.9 | | 840.0 37.9 32.4
841.0 46.2 32.9
842.0 38.3 32.3
843.0 37.1 32.8
844.0 35.3 33.3
845.0 32.4 33.4
846.0 38.7 33.6
847.0 33.0 33.0
848.0 30.5 32.8 | 150 9.0 1.32
150 9.0 1.37
150 9.0 1.39
150 9.0 1.41
150 9.0 1.44
150 9.0 1.39
150 9.0 1.43
150 9.0 1.45 | 1.42
1.45
1.47
1.50
1.53
1.56
1.58
1.61
1.65 | 11229 110.74 | 932.13 8.4 16.9
909.31 8.4 16.9
887.83 8.4 16.9
867.62 8.4 16.9
848.73 8.4 16.9
830.25 8.4 16.9
813.13 8.4 16.9
797.08 8.4 16.9 | | DEPTH | ROP WOB RPI | s MW "d"c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|--|--|--|---|--|--|--|--| | 850.0
851.0
852.0
853.0
854.0
855.0
856.0
857.0
858.0
859.0 | 38.3 31.9 15
41.9 31.5 15
46.2 29.8 15
47.4 29.6 15
25.2 31.2 15
20.7 27.6 15
35.3 31.9 15
41.9 29.5 15
52.9 30.8 15
40.4 33.2 15 | 9.0 1.34
9.0 1.28
9.0 1.27
9.0 1.49
9.0 1.50
9.0 1.40
9.0 1.31
9.0 1.25 | 1.70
1.73
1.75
1.77
1.81
1.86
1.89
1.91 | 13539
13734
13924
14281
14716
14971
15186
15356 | 101.31
.91.89
89.53
168.46
204.98
120.16
101.31
80.11 | 766.42
751.64
737.30
723.52
711.95
701.61
689.98
678.43
666.93
656.32 | 8.4
8.4
8.4
8.4
8.4
8.4 | 16.9
16.9
16.9
17.0
17.0
17.0
17.0 | | 860.0
861.0
862.0
863.0
864.0
865.0
866.0
867.0
868.0 | 48.0 32.6 15
45.6 31.4 15
49.3 33.1 15
46.8 30.4 15
45.0 29.2 15
46.2 32.4 15
47.4 33.3 15
39.6 34.0 15
50.0 33.4 15
54.5 33.1 15 | 9.0 1.31
9.0 1.30
9.0 1.29
9.0 1.28
9.0 1.32
9.0 1.32
9.0 1.38
9.0 1.38 | 1.98
2.00
2.02
2.04
2.06
2.08
2.10
2.13
2.15
2.17 | 15766
15964
16146
16339
16539
16734
16924
17151
17331 | 93.07
86.00
90.71
94.24
91.89
89.53
107.20
84.82 | 645.80
635.75
625.94
616.55
607.54
598.80
590.31
582.40
574.37
566.49 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | | 870.0
871.0
872.0
873.0
874.0
875.0
875.0
877.0
878.0 | 54.5 34.1 15
44.4 31.9 15
75.0 31.6 15
34.6 32.4 15
40.0 32.4 15
48.6 35.0 15
51.4 32.7 15
57.1 34.5 15
52.2 34.1 15
46.8 33.4 15 | 9.0 1.32
9.0 1.15
9.0 1.41
9.0 1.36
9.0 1.33
9.0 1.28
9.0 1.27
9.0 1.30 | 2.19
2.21
2.25
2.25
2.30
2.32
2.33
2.35
2.37 | 17661
17864
17984
18244
18469
18654
18829
18986
19159 | 95.42
56.55
122.52
106.03
87.18
82.46
74.22
81.29 | 558.85
551.72
544.22
537.92
531.57
525.13
518.81
512.55
506.56
500.86 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | | 880.0
881.0
882.0
883.0
884.0
885.0
886.0
887.0
888.0 | 46.2 32.8 15
40.4 33.7 15
48.0 33.6 15
63.2 35.4 15
54.5 36.0 15
53.7 34.8 15
52.9 32.8 15
38.7 35.2 15
50.0 34.9 15
41.4 33.8 15 | 9.0 1.37
9.0 1.32
9.0 1.25
9.0 1.30
9.0 1.29
9.0 1.28
9.0 1.41
9.0 1.32 | 2.40
2.42
2.44
2.48
2.49
2.51
2.54
2.58 | 19956
20099
20264
20431
20601
20834
21014 | 104.85
88.35
67.15
77.75
78.93
80.11
109.56
84.82 | 495.33
490.13
484.84
479.42
474.27
469.26
464.40
460.02
455.44
451.19 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | | 870.0
891.0
892.0
893.0
894.0
895.0
896.0
897.0
898.0 | 42.4 33.9 15
42.4 33.9 15
47.4 34.0 15
42.4 32.1 15
50.7 32.2 15
59.0 30.5 15
39.1 31.9 15
46.2 33.7 15
40.0 34.1 15
43.9 33.7 15 | 9.0 1.36
9.0 1.33
9.0 1.34
9.0 1.28
9.0 1.22
9.0 1.36
9.0 1.33
9.0 1.38 | 2.61
2.63
2.65
2.69
2.71
2.74
2.76
2.78 | 21656
21846
22059
22236
22389
22619
22814 | 89.53
100.13
83.64
71.86
108.38
91.89
106.03 | 447.01
442.93
438.82
434.93
430.93
426.90
423.36
419.72
416.31
412.87 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.0
17.1
17.1
17.1
17.1
17.1
17.1
17.1 | | DEPTH | ROP WOE | RPM | MW "d"c | HOURS | TURNS | ICOST | CCOST | рþ | FG | |---|--|--|--|---|--|---|--|---|--| | 900.0
901.0
902.0
903.0
904.0
905.0
906.0
907.0
908.0
909.0 | 40.9 33.3
46.8 33.3
43.9 34.8
44.4 31.1
50.7 32.9
59.0 34.0
52.9 34.4
48.0 33.7
46.2 35.8
47.4 34.4 | 150
150
150
150
150
150
150
150 | 9.0 1.37
9.0 1.32
9.0 1.36
9.0 1.31
9.0 1.29
9.0 1.25
9.0 1.32
9.0 1.35
9.0 1.35 | 2.83
2.85
2.88
2.90
2.92
2.93
2.95
2.97.
3.00 | 23464
23656
23861
24064
24241
24394
24564
24751
24946
25136 | 96.60
95.42
83.64
71.86
80.11
88.35
91.89 | 409.58
406.23
403.00
399.83
396.60
393.32
390.19
387.20
384.31
381.44 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1 | | 910.0
911.0
912.0
913.0
914.0
915.0
915.0
915.0
917.0 | 52.2 33.6
36.7 35.5
45.0 32.0
54.5 32.6
60.0 32.9
57.1 34.6
42.4 35.0
34.6 33.5
43.9 31.4 | ; 150
; 150
; 150
; 150
; 150
; 150
; 150 | 9.0 1.29
9.0 1.43
9.0 1.32
9.0 1.26
9.0 1.24
9.0 1.27
9.0 1.37
9.0 1.42
9.0 1.32
9.0 1.34 | 3.04
3.06
3.09
3.10
3.12
3.14
3.16
3.19
3.21 | 25309
25554
25754
25719
26069
26226
26439
26699
267119 | 94.24
77.75
70.68
74.22
100.13
122.52 | 376.05
373.39
370.63
367.85
365.16
362.75
360.59
358.23 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1 | | 920.0
921.0
922.0
923.0
924.0
925.0
925.0
926.0
927.0
928.0
929.0 | 47.4 30.5
38.3 29.3
46.2 30.2
36.7 29.9
52.2 29.0
56.2 28.6
42.4 29.3
24.8 31.0
30.0 31.3 | 3 150
2 150
2 150
3 150
3 150
3 150
3 150
3 150 | 9.0 1.28
9.0 1.34
9.0 1.29
9.0 1.36
9.0 1.24
9.0 1.30
9.0 1.50
9.0 1.44
9.0 1.36 | 3.26
3.28
3.31
3.33
3.35
3.37
3.43
3.47
3.50 | 27309
27544
27739
27984
28156
28316
28529
28891
29191
29454 | 110.74
91.89
115.45
81.29
75.40
100.13
170.82 | 353.62
351.51
349.27
347.27
345.02
342.75
340.73
339.32
337.70
335.96 | 8.4
8.4
8.4
8.4
8.4
8.4 |
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.2 | | 930.0
931.0
932.0
933.0
934.0
935.0
935.0
937.0
938.0
939.0 | 49.2 29.5 50.0 30.6 52.2 29.6 60.0 29.6 53.7 31.3 58.1 32.6 42.9 34.0 37.9 33.2 49.3 33.0 | 3 150
3 150
3 150
4 150
4 150
5 150
6 150
2 150 | 9.0 1.26
9.0 1.27
9.0 1.24
9.0 1.20
9.0 1.25
9.0 1.24
9.0 1.36
9.0 1.39
9.0 1.30 | 3.52
3.54
3.56
3.57
3.59
3.61
3.64
3.66
3.69 | 30929 | 81.29
70.68
78.93
73.04
121.34
98.96
111.92 | 333.95
331.95
329.97
327.92
325.98
324.02
322.46
320.75
319.17 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 17.2
17.2
17.2
17.2
17.2
17.2
17.2
17.2 | | 940.0
941.0
942.0
943.0
944.0
945.0
945.0
946.0
947.0
948.0 | 41.9 30.4
50.7 30.3
50.7 31.6
60.0 32.3
47.4 30.3
49.3 32.6
33.6 30.3
34.6 30.3
41.9 31.2 | 150
150
150
150
150
150
150
150
150 | 9.0 1.32
9.0 1.26
9.0 1.28
9.0 1.23
9.0 1.29
9.0 1.30
9.0 1.38
9.0 1.38
9.0 1.33 | 3.73
3.75
3.77
3.79
3.81
3.83
3.86
3.89
3.91 | 31742
31919
32069
32259
32442
32709
32969
33184 | 83.64
70.68
89.53
86.00
126.05
122.52 | 314.08
312.39
310.63
309.02
307.42
306.12
304.82 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 17.2
17.2
17.2
17.2
17.2
17.2
17.2 | | DEPTH | ROP | MOB | RPM | MM | "d"c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|--|--|---|---|--|--|--|--|--|--|--| | 950.0
951.0
952.0
953.0
954.0
955.0
956.0
957.0
959.0 | 40.4
41.9
37.1
50.0
49.3
52.9
50.0
42.9 | 29.1
30.6
30.9
32.5
32.2
32.6
29.6
31.3
28.4 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.33
1.34
1.33
1.37
1.29
1.29
1.27
1.26
1.33
1.22 | 3.96
3.99
4.01
4.04
4.06
4.08
4.10
4.12
4.14 | | 114.27
84.82
86.00
80.11
84.82
98.96 | | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.2
17.2
17.2
17.2
17.2
17.2
17.2
17.2 | | 960.0
961.0
962.0
963.0
964.0
965.0
966.0
967.0
968.0 | 52.9
45.6
40.0
45.0
47.4
39.6
54.5
39.1 | 30.0
31.0
32.2
32.6
33.0
31.8
32.4
31.5
30.9
26.9 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0 | 1.26
1.26
1.32
1.36
1.30
1.36
1.25
1.35 | 4.18
4.20
4.25
4.25
4.27
4.29
4.31
4.33
4.36 | 36979 | 80.11
93.07
106.03
94.24
89.53
107.20
77.75
108.38 | 287.15
285.82
284.58
283.44
282.25
281.03
279.95
278.69
277.64
276.43 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.2
17.2
17.2
17.2
17.2
17.3
17.3 | | 970.0
971.0
972.0
973.0
974.0
975.0
975.0
976.0
977.0
978.0 | 52.9
54.5
36.7
41.9
40.4
47.4
52.9
48.0 | 31.5
30.7
31.5
31.5
33.5
33.5
33.5
35.5 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.35
1.25
1.24
1.38
1.34
1.37
1.33
1.29 | 4.40
4.42
4.44
4.47
4.49
4.52
4.56
4.56 | 37607
37777
37942
38187
38402
38624
38814
38984
39172
39464 | 80.11
77.75
115.45
101.31
104.85
89.53
80.11
88.35 | 275.40
274.21
273.03
272.09
271.07
270.09
269.02
267.92
266.88
266.13 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.3
17.3
17.3
17.3
17.3
17.3
17.3 | | 980.0
981.0
982.0
983.0
984.0
985.0
986.0
987.0
988.0
989.0 | 46,2
54,5
50,7
38,3
52,9
67,5
42,4 | 32.0 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.34
1.30
1.22
1.25
1.28
1.39
1.29
1.20
1.35 | 4.63
4.65
4.67
4.69
4.71
4.74
4.76
4.77
4.81 | 39674
39869
40034
40199
40377
40612
40782
40915
41127
41287 | 91.89
77.75
77.75
83.64
110.74
80.11
62.83
100.13 | 265.17
264.18
263.12
262.07
261.07
260.23
259.23
259.23
258.14
257.28
256.28 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.3
17.3
17.3
17.3
17.3
17.3
17.3 | | 990.0
991.0
992.0
993.0
994.0
995.0
996.0
997.0
998.0 | 46.8
40.4
44.4
42.4
39.1
52.9
37.1 | 32.5
32.1
29.8
30.0
32.2 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.22
1.31
1.36
1.33
1.34
1.37
1.24
1.36
1.31 | 4.83
4.85
4.87
4.90
4.92
4.95
4.95
5.01 | 41437
41630
41852
42055
42267
42497
42667
42910
43103
43290 | 90.71
104.85
95.42
100.13
108.38
80.11
114.44
90.71 | 255.27
254.38
253.58
252.73
251.92
251.16
250.26
249.55
248.72
247.89 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.3
17.3
17.3
17.3
17.3
17.3
17.3 | | DEPTH | ROP | WOB RP | м ми | "d"c | HOURS | TURNS | icost | CCOST | pp FG | |--|--|--|--|--|--|--|---|--|--| | 1000.0
1001.0
1002.0
1003.0
1004.0
1005.0
1006.0
1007.0
1008.0 | 53.6
58.6
56.2
40.0
52.2
45.6
52.9
53.7 | 31.5 15
31.6 15
31.5 15
31.8 15
32.9 15
29.7 15
29.4 15
29.5 15
31.6 15
29.3 15 | 0 9.0
0 9.0
0 9.0
0 9.0
0 9.0
0 9.0
0 9.0 | 1.34
1.26
1.23
1.25
1.37
1.25
1.28
1.24
1.26 | 5.06
5.08
5.09
5.11
5.14
5.16
5.20
5.22 | 43510
43678
43832
43992
44217
44389
44587
44757
44924
45134 | 79.12
72.37
75.46
106.03
81.29
93.07
80.11
78.93 | 247.15
246.29
245.40
244.54
243.84
243.02
242.27
241.47
240.66
239.96 | 8.4 17.3
8.4 17.3
8.4 17.3
8.4 17.3
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4 | | 1010.0
1011.0
1012.0
1013.0
1014.0
1015.0
1016.0
1017.0
1018.0 | 37.5
55.4
60.0
61.0
36.4
55.4
50.0
46.8 | 32.1 15
27.8 15
30.5 15
30.9 15
30.4 15
26.0 15
31.2 15
31.4 15
30.2 15
31.1 15 | 0 9.0
0 9.0
0 9.0
0 9.0
0 9.0
0 9.0 | 1.40
1.32
1.24
1.21
1.20
1.31
1.24
1.28
1.28 | 5.27
5.29
5.31
5.33
5.34
5.37
5.41
5.43
5.46 | 45627
45789
45939
46087
46334
46497
46677
46869 | 76.57
70.68
69.51
116.63
76.57
84.82 | 239.37
238.75
237.97
237.16
236.35
235.78
235.02
234.31
233.63
233.01 | 8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4 | | 1020.0
1021.0
1022.0
1023.0
1024.0
1025.0
1026.0
1027.0
1028.0 | 45.6
40.9
53.7
54.5
41.9
45.0
59.0 | 30.6 15
31.0 15
31.5 15
30.4 15
29.7 15
29.6 15
30.2 15
29.4 15
29.4 15
29.5 15 | 0 9.0
0 9.0
0 9.0
0 9.0
0 9.0
0 9.0
0 9.0 | 1.29
1.30
1.34
1.24
1.23
1.31
1.30
1.29 | 5.48
5.50
5.52
5.54
5.56
5.61
5.65
5.65 | 47864
48029 | 93.07
103.67
78.93
77.75
101.31
94.24
94.24 | 232.35
231.70
231.11
230.41
229.71
229.12
228.51
227.90
227.20
226.52 | 8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4 | | 1030.0
1031.0
1032.0
1033.0
1034.0
1035.0
1036.0
1037.0
1038.0 | 72.0
48.6
53.7
52.2
54.6
47.4
52.9 | 31.1 15
28.7 15
30.1 15
29.8 15
29.5 15
30.8 15
31.0 15
32.4 15
31.1 15
31.3 15 | 0 9.0
0 9.0
0 9.0
0 9.0
0 9.0
0 9.0
0 9.0 | 1.24
1.13
1.27
1.24
1.24
1.24
1.30
1.31 | 5.68
5.70
5.72
5.73
5.75
5.77
5.83
5.83 | 49117
49242
49427
49594
49767
49932
50129
50319
50489
50649 | 58.90
87.18
78.93
81.29
77.75
93.07
89.53
80.11 |
225.84
225.10
224.49
223.85
223.23
222.59
222.03
221.45
220.84
220.22 | 8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4 | | 1040.0
1041.0
1042.0
1043.0
1044.0
1045.0
1046.0
1047.0
1048.0 | 33.6
38.7
41.9
52.9
57.1
52.9
54.5 | 31.8 15
31.8 15
30.3 15
30.5 15
28.2 15
29.5 15
30.9 15
30.9 15
31.0 15 | 0 9.0
0 9.0
0 9.0
0 9.0
0 9.0
0 9.0
0 9.0
0 9.0 | 1.36
1.41
1.35
1.22
1.21
1.25
1.25 | 5.88
5.91
5.93
5.96
5.98
5.99
6.01
6.05
6.07 | 51147
51379 | 126.05
109.56
101.31
80.11
74.22
81.29
80.11
77.75 | 219.74
219.34
218.88
218.38
217.80
217.20
216.63
216.07
215.50
214.93 | 8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.4
8.4 17.5
8.4 17.5
8.4 17.5
8.4 17.5
8.4 17.5 | . | DEPTH | ROP WO | B RPM | MW "d"c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|--|--|--|--|--|--|--|--|--| | 1050.0
1051.0
1052.0
1053.0
1054.0
1055.0
1056.0
1057.0
1058.0 | 56.2 31.
46.2 30.
56.2 29.
51.4 31.
43.9 29.
48.6 30.
57.1 35.
54.5 34.
57.1 34. | .0 150
.7 150
.4 150
.1 150
.2 150
.3 150
.8 150
.2 150 | 9.0 1.24
9.0 1.29
9.0 1.22
9.0 1.27
9.0 1.29
9.0 1.27
9.0 1.28
9.0 1.29
9.0 1.27 | 6.09
6.11
6.13
6.14
6.17
6.19
6.21
6.22
6.24 | 52754
52949
53109
53284
53489
53674
53832
53997
54154
54319 | 91.89
75.40
82.46
96.60
87.18
74.22
77.75
74.22 | 214.36
213.86
213.29
212.76
212.30
211.79
211.24
210.71
210.17
209.65 | 8.4 1
8.4 1
8.4 1
8.4 1
8.4 1
8.4 1
8.4 1
8.4 1 | 17.5
17.5
17.5
17.5
17.5
17.5
17.5 | | 1060.0
1061.0
1062.0
1063.0
1064.0
1065.0
1066.0
1067.0
1068.0 | | .2 150
.2 150
.0 150
.8 150
.9 150
.4 150
.1 150
.3 150 | 9.0 1.29
9.0 1.32
9.0 1.29
9.0 1.27
9.0 1.27
9.0 1.27
9.0 1.29
9.0 1.27
9.0 1.26
9.0 1.31 | 6.28
6.30
6.31
6.33
6.35
6.37
6.39
6.41
6.43 | 54477
54654
54814
54989
55157
55322
55494
55664
55824
56012 | 83.64
75.40
82.46
78.93
77.75
81.29
80.11
75.40 | 209.11
208.62
208.10
207.61
207.11
206.61
206.13
205.65
205.15
204.71 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 17.5
17.5
17.5
17.5
17.5
17.5
17.5 | | 1070.0
1071.0
1072.0
1073.0
1074.0
1075.0
1075.0
1077.0
1078.0 | 45.6 34
48.0 35
43.4 31
45.6 33
58.1 31
42.4 29
45.0 30
40.4 31
45.6 33
44.4 36 | .7 150
.6 150
.1 150
.7 150
.4 150
.4 150
.2 150
.8 150 | 9.0 1.34
9.0 1.33
9.0 1.33
9.0 1.33
9.0 1.33
9.0 1.31
9.0 1.30
9.0 1.34
9.0 1.34
9.0 1.37 | 6.47
6.49
6.51
6.55
6.55
6.60
6.62
6.65 | 57369 | 88.35
97.78
93.07
73.04
100.13
94.24
104.85
93.07 | 204.28
203.45
203.45
203.04
202.55
202.17
201.77
201.41
201.63 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 17.5
17.5
17.5
17.5
17.5
17.5
17.5 | | 1080.0
1081.0
1082.0
1083.0
1084.0
1085.0
1087.0
1088.0
1089.0 | 38.7 36
40.9 35
47.0 30
55.4 32
52.2 32
51.4 33
53.7 32
48.6 32
51.4 31 | .7 150
.8 150
.2 150
.0 150
.3 150
.5 150
.2 150
.8 150 | 9.0 1.42
9.0 1.39
9.0 1.25
9.0 1.25
9.0 1.27
9.0 1.27
9.0 1.30
9.0 1.27
9.0 1.27 | 6.69
6.72
6.74
6.78
6.80
6.81
6.85
6.85 | | 103.67
90.32
76.57
81.29
82.46
78.93
87.18
82.46 | 200.29
199.94
199.55
199.10
198.68
198.26
197.84
197.44
197.03
196.63 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.5
17.5
17.5
17.5
17.6
17.6
17.6
17.6 | | 1090.0
1091.0
1092.0
1093.0
1094.0
1095.0
1096.0
1097.0 | 57.1 30
56.2 30
49.3 32
52.9 33
53.7 33
67.9 33
45.6 32
46.2 32
54.5 33 | .8 150
.6 150
.7 150
.8 150
.9 150
.7 150 | 9.0 1.22
9.0 1.23
9.0 1.30
9.0 1.29
9.0 1.28
9.0 1.21
9.0 1.33
9.0 1.32
9.0 1.27
9.0 1.25 | 6.89
6.93
6.95
6.97
6.98
7.00
7.03
7.04 | 60006
60166
60349
60519
60686
60819
61016
61211
61376
61531 | 75.40
86.00
80.11
78.93
62.44
93.07
91.89
77.75 | 195.39
194.99
194.59
194.13
193.78 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.6
17.6
17.6
17.6
17.6
17.6
17.6
17.6 | | DEPTH | ROP | WOB | RPM | MW | "d"c | HOURS | TURNS | ICOST | CCOST | pр | FG | |--|--|--|---|---|--|--|--|--|--|--|--| | 1100.0
1101.0
1102.0
1103.0
1104.0
1105.0
1106.0
1107.0
1108.0 | 59.0
54.5
52.2
50.0
50.7
46.8
47.4
48.6 | 33.5
32.3
31.5
32.1
32.6
32.2
32.1
31.3
30.7
32.8 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.33
1.24
1.25
1.27
1.29
1.28
1.31
1.29 | 7.08
7.10
7.12
7.14
7.16
7.18
7.20
7.22
7.24
7.26 | 61726
61879
62044
62216
62396
62574
62766
62956
63141
63316 | 71.86
77.75
81.29
84.82
83.64
90.71
89.53
87.18 | 192.28
191.87
191.49
191.12
190.76
190.40
190.07
189.74
189.40 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.6
17.6
17.6
17.6
17.6
17.6
17.6
17.6 | | 1110.0
1111.0
1112.0
1113.0
1114.0
1115.0
1116.0
1117.0
1118.0 | 52.9
47.4
52.9
59.0
56.2
51.4
58.1 | 30.4
33.8
34.2
33.0
32.4 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.30
1.26
1.28
1.29
1.26
1.26
1.28
1.26
1.26 | 7.28
7.30
7.32
7.34
7.36
7.37
7.43
7.45 | 63504
63674
63864
64034
64186
64346
64521
64676
64836
65009 | 80.11
89.53
80.11
71.86
75.40
82.46
73.04
75.40 | | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.6
17.6
17.6
17.6
17.6
17.6
17.6
17.6 | | 1120.0
1121.0
1122.0
1123.0
1124.0
1125.0
1125.0
1126.0
1127.0 | 50.0
59.7
53.7
52.2
53.7
56.2
49.3 | 33.7
32.3
30.9 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.31
1.28
1.25
1.27
1.26
1.26
1.32
1.32 | 7.47
7.49
7.52
7.52
7.54
7.56
7.68
7.62 | 65194
65374
65526
65694
65866
66034
66194
66376
66536 | 84.82
71.86
78.93
81.29
78.93
75.40 | 184.23
183.90
183.58
183.24
182.93
182.60 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.6
17.6
17.6
17.6
17.6
17.6
17.6
17.7
17.7 | | 1130.0
1131.0
1132.0
1133.0
1134.0
1135.0
1136.0
1137.0
1138.0
1139.0 | 48.6
45.0
40.9
47.4
42.9
48.0
47.4
46.8 | 27.2
30.9
32.8
29.7
32.2
32.0
30.6
30.4
32.9
32.7 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0 | 1.32
1.28
1.33
1.32
1.30
1.33
1.28
1.28
1.32 | 7.66
7.68
7.73
7.75
7.77
7.81
7.84
7.86 | 67109
67309
67529
67719
67929
68116
68306
68499 | 94.24
103.67
89.53
98.96
88.35 | 181.75
181.48
181.24
180.96
180.71
180.43
180.16
179.89 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.7
17.7
17.7
17.7
17.7
17.7
17.7
17.7 | | 1140.0
1141.0
1142.0
1143.0
1144.0
1145.0
1146.0
1147.0
1148.0 | 47.0
44.3
49.0
49.3
48.0
47.0
45.0 | 32.3
32.0 | 150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.34
1.30
1.34
1.26
1.27
1.30
1.30
1.32 | 7.89
7.91
7.93
7.95
7.97
7.99
8.01
8.04
8.06
8.08 |
68961
69152
69355
69539
69722
69909
70101
70301
70498
70676 | 95.73
86.55
86.02
88.35
90.23
94.24
93.07 | 179.46
179.19
178.95
178.67
178.40
178.13
177.87
177.63
177.38
177.11 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.7
17.7
17.7
17.7
17.7
17.7
17.7
17.7 | | DEPTH | ROP | мов | RPM | MW | "d "c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|--|--|---|---|--|--|--|---|--|--|--| | 1150.0
1151.0
1152.0
1153.0
1154.0
1155.0
1156.0
1157.0
1158.0 | 47.4
50.7
50.7
48.4
551.4
501.4
512.4 | 29.9
29.6
28.3
29.8
29.8
29.8
28.8
30.1 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.23 | 8.10
8.12
8.14
8.16
8.18
8.20
8.22
8.24
8.24 | 70866
71046
71223
71411
71573
71748
71941
72118
72293
72463 | 84.82
83.64
788.35
76.57
82.46
90.71
83.64
82.46 | 176.85
176.59
176.32
176.06
175.78
175.51
175.27
175.01
174.75 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.7
17.7
17.7
17.7
17.7
17.7
17.7
17.7 | | 1160.0
1161.0
1162.0
1163.0
1164.0
1165.0
1166.0
1167.0
1168.0 | 36.7
37.9
49.2
52.2
52.4
52.7
50.7 | 29.6
27.7
29.9
27.9
28.1
28.8
30.2
32.7 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.35
1.34
1.24
1.25
1.22
1.23
1.23
1.25
1.25 | 8.30
8.33
8.35
8.37
8.39
8.41
8.43
8.45
8.46 | 72708 72946 73128 73301 73473 73648 73818 73989 74167 74344 | 81.29
81.29
82.46
80.11
80.50
83.64 | 174.13
173.89
173.63
173.37
173.12 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.7
17.7
17.7
17.7
17.7
17.7
17.7 | | 1170.0
1171.0
1172.0
1173.0
1174.0
1175.0
1176.0
1177.0
1178.0 | 53.7
49.3
50.9
55.4
552.9
554.8
52.9 | 33.3
32.1
32.9
32.5
33.1
31.9
32.0
33.6 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.28
1.26
1.27
1.27
1.25 | 8.50
8.52
8.54
8.56
8.58
8.60
8.62
8.64
8.66 | 74512
74694
74872
75042
75204
75372
75542
75704
75897
76067 | 86.00
83.64
80.11
76.57
78.93
80.11
76.57 | 171.86
171.62
171.38
171.13
170.88
170.63
170.38
170.13
169.91 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8 | | 1180.0
1181.0
1182.0
1183.0
1184.0
1185.0
1186.0
1187.0
1188.0 | 52.9
46.2
46.2
39.1
35.0
54.5
46.2
40.0
34.3
50.0 | 34.0
32.8
29.1
28.2
34.2
26.1
29.2
30.4 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0 | 1.29
1.33
1.32
1.35
1.28
1.24
1.32 | 8.69
8.72
8.74
8.76
8.79
8.81
8.83
8.86
8.89 | 77114
77279
77474
77699 | 91.89
108.38
121.34
77.75
91.89
106.03
123.70 | 168.74
168.50
168.29 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8 | | 1190.0
1191.0
1192.0
1193.0
1194.0
1195.0
1196.0
1197.0
1198.0 | 47.4
46.8
42.4
40.0
44.4
38.7 | 30.3
31.6
31.2
32.5
30.9
27.5
28.0 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.36
1.29
1.31
1.33
1.30
1.27
1.32 | 8.94
8.96
8.99
9.01
9.03
9.06
9.10
9.13
9.15 | 78662
78889
79079
79272
79484
79709
79912 | 106.03
95.42
109.56 | 167.56
167.41 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8 | | DEPTH | ROP | MOB | RPM | MW | "d"c | HOURS | TURNS | ICOST | CCOST | PР | FG | |--|--|--|--|--|--|--|--|--|--|--|--| | 1200.0
1201.0
1202.0
1203.0
1204.0
1205.0
1206.0
1207.0
1208.0
1209.0 | 43.5
42.1
39.1
42.9
42.4
36.0
43.4
40.0 | 31.8 | 150
150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.33
1.32
1.34
1.36
1.35
1.35
1.35
1.37 | 9.18
9.20
9.25
9.27
9.30
9.32
9.35
9.35
9.37 | 80774
80988
81218
81428
81640
81890
82098 | 103.67
97.49
100.79
108.38
98.96
100.13
117.81
97.78
106.03
94.24 | 166.01
165.84
165.67
165.53
165.36
165.20
165.08
164.91
164.77 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8 | | 1210.0
1211.0
1212.0
1213.0
1214.0
1215.0
1216.0
1217.0
1218.0
1219.0 | 42.9
45.6
43.4
41.5
52.2
46.2
40.0
29.8 | 30.9 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.35
1.36
1.33
1.35
1.34
1.26
1.30
1.35 | 9.42
9.44
9.46
9.51
9.53
9.55
9.61 | | 94.24
98.96
93.07
97.78
102.10
81.29
91.89
106.03
142.54
84.82 | 164.42
164.26
164.08
163.77
163.56
163.39
163.25
163.20 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.8
17.8
17.8
17.9
17.9
17.9
17.9 | | 1220.0
1221.0
1222.0
1223.0
1224.0
1225.0
1226.0
1227.0
1228.0 | 51.4
48.0
50.0
52.7
53.7
44.4
49.3
31.6 | 32.7
31.8
31.2 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.34
1.26
1.29
1.29
1.28
1.26
1.31
1.30
1.44 | 9.65
9.67
9.69
9.73
9.75
9.77
9.82
9.84 | 84854
85029
85217
85397
85568
85735
85938
86120
86405
86583 | 106.03
82.46
88.35
84.82
80.50
78.93
95.42
86.00
134.30
83.64 | 162.87
162.68
162.50
162.31
162.12
161.92
161.76
161.58
161.52 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.9
17.9
17.9
17.9
17.9
17.9
17.9 | | 1230.0
1231.0
1232.0
1233.0
1234.0
1235.0
1237.0
1238.0
1239.0 | 40.9
35.3 | 31.5
33.1
32.7 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0 | 1.36
1.34
1.36
1.39
1.26
1.26
1.32
1.36
1.34 | 9.87
9.89
9.95
9.95
9.97
9.98
10.01
10.03
10.05 | 87023
872 43 | 120.16
82.46
78.93
97.78
102.49
96.60 | 161.06
160.93
160.83
160.65
160.46
160.31 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.9
17.9
17.9
17.9
17.9
17.9
17.9 | | 1240.0
1241.0
1242.0
1243.0
1244.0
1245.0
1246.0
1247.0
1248.0
1249.0 | 46.2
36.7
41.9
48.0
41.4
47.4
47.4
55.4 | 31.6
30.2
33.2
30.9
31.7
33.8
33.2
32.7 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.28
1.38
1.32
1.31
1.33
1.34
1.32
1.34
1.26 | 10.10
10.12
10.15
10.17
10.19
10.22
10.24
10.26
10.28
10.30 | 89323
89510 | 115.45
101.31
88.35
102.49
102.49
89.53
96.60
76.57 | 159.48
159.32
159.19 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.9
17.9
17.9
17.9
17.9
17.9
17.9 | • | DEPTH | ROP WOB | RPM | MW "d"c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|--|---|--|--|--|---
--|--|--| | 1250.0
1251.0
1252.0
1253.0
1254.0
1255.0
1256.0
1257.0
1258.0
1259.0 | 55.4 33.5
48.6 33.2
52.2 33.9
41.3 30.7
47.4 29.3
48.6 29.9
52.2 29.4
54.5 29.3
52.9 29.3
47.4 30.7 | 150
150
150
150
150
150
150
150 | 9.0 1.27
9.0 1.31
9.0 1.29
9.0 1.33
9.0 1.27
9.0 1.27
9.0 1.23
9.0 1.23
9.0 1.23 | 10.32
10.34
10.36
10.38
10.40
10.42
10.44
10.44 | 90830
91015
91188
91405
91595
91780
91953
92118
92288
92478 | 87.18
81.29
102.66
89.53
87.18
81.29
77.75
80.11 | 158.21
158.05
157.88
157.75
157.60
157.45
157.28
157.10
156.93 | 8.4
8.4
8.4
8.4
8.4
8.4 | 17.9
17.9
17.9
17.9
17.9
17.9
17.9
17.9 | | 1260.0
1261.0
1262.0
1263.0
1264.0
1265.0
1266.0
1267.0
1268.0 | 52.2 29.7
56.2 29.4
51.4 28.8
31.0 30.2
51.4 31.6
53.7 31.0
55.4 29.1
54.5 30.8
53.7 31.2
60.0 30.5 | 150
150
150
150
150
150
150 | 9.0 1.24
9.0 1.22
9.0 1.24
9.0 1.41
9.0 1.27
9.0 1.25
9.0 1.22
9.0 1.24
9.0 1.25
9.0 1.21 | 10.52
10.54
10.56
10.59
10.61
10.63
10.64
10.66
10.68 | 92650
92810
92985
93275
93450
93618
93780
93945
94113
94263 | 82.46
136.65
82.46
78.93
76.57
77.75
78.93 | 156.61
156.44
156.27
156.23
156.07
155.90
155.73
155.56
155.39
155.21 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0 | | 1270.0
1271.0
1272.0
1273.0
1274.0
1275.0
1276.0
1277.0
1278.0 | 49.3 31.6
45.6 29.9
43.4 32.2
40.4 29.1
47.4 31.1
49.3 31.8
62.1 30.8
52.9 32.6
59.0 33.5
60.0 33.0 | 150
150
150
150
150
150
150 | 9.0 1.28
9.0 1.29
9.0 1.33
9.0 1.32
9.0 1.29
9.0 1.29
9.0 1.20
9.0 1.27
9.0 1.25
9.0 1.25 | 10.72
10.74
10.76
10.79
10.81
10.83
10.85
10.86
10.88 | 94445
94643
94850
95073
95263
95263
95590
95760
95913
96063 | 93.07
97.78
104.85
89.53
86.00
68.33
80.11
71.86 | 155.06
154.93
154.81
154.70
154.56
154.41
154.23
154.07
153.90 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0 | | 1280.0
1281.0
1282.0
1283.0
1284.0
1285.0
1286.0
1287.0
1288.0 | 64.3 32.7
54.5 30.6
73.5 29.6
35.0 30.6
52.2 30.9
63.2 30.9
73.5 29.0
47.4 30.6
51.4 29.5
52.9 34.5 | 150
150
150
150
150
150
150
150 | 9.0 1.21
9.0 1.24
9.0 1.14
9.0 1.38
9.0 1.26
9.0 1.20
9.0 1.13
9.0 1.29
9.0 1.25
9.0 1.25 | 10.91
10.93
10.95
10.97
10.99
11.01
11.02
11.04
11.06 | 96203
96368
96490
96748
96920
97063
97185
97375
97550
97720 | 77.75
57.72
121.34
81.29
67.15
57.72
89.53
82.46 | 153.54
153.38
153.11
153.11
152.96
152.78
152.58
152.45
152.31
152.16 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0 | | 1290.0
1291.0
1292.0
1293.0
1294.0
1295.0
1296.0
1297.0
1298.0 | 52.9 33.4
52.2 35.8
45.0 39.5
64.3 38.0
62.1 39.8
63.2 38.8
64.3 39.8
64.3 38.7
60.0 38.3
65.5 36.7 | ; 150
; 150
; 150
; 150
; 150
; 150
; 150 | 9.0 1.28
9.0 1.31
9.0 1.40
9.0 1.27
9.0 1.30
9.0 1.28
9.0 1.29
9.0 1.28
9.0 1.29
9.0 1.29 | 11.10
11.12
11.14
11.16
11.17
11.19
11.21
11.22
11.24
11.25 | 97890
98063
98263
98403
98548
98690
98830
98973
99123
99260 | 94.24
65.97
68.33
67.15
65.97
67.15
70.68 | 151.23 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0 | | DEPTH | ROP | MOB | RPM | MW | "d"c | HOURS | TURNS | ICOST | ccost | рþ | FG | |--|--|--|---|---|--|--|--|--|--|--|--| | 1300.0
1301.0
1302.0
1303.0
1304.0
1305.0
1306.0
1307.0
1308.0 | 61.0
62.1
69.2
58.1
61.0
56.2
61.0
75.0 | 39.0
37.8
40.9
41.4
41.1
42.2
41.4
40.8
39.6
41.4 | 150
150
150
150
150
150
150 | | 1.28
1.28
1.31
1.28
1.33
1.35
1.35
1.31
1.23 | 11.27
11.29
11.30
11.32
11.33
11.35
11.37
11.38
11.40
11.42 | 99401
99549
99694
99824
99979
100126
100286
100434
100554 | 69.51
68.33
61.26
73.04
69.51
75.40
69.51 | 150.37
150.21
150.04
149.87
149.71
149.55
149.40
149.24
149.06
148.98 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.0
18.0
18.0
18.0
18.0
18.1
18.1
18.1 | | 1310.0
1311.0
1312.0
1313.0
1314.0
1315.0
1316.0
1317.0
1318.0 | 59.0
65.5
65.5
66.7
59.0
72.0
66.7 | 38.4
40.8
40.6
41.3
38.8
40.9
42.1
41.3
42.0
31.9 | 150
150
150
150
150
150
150 | 9.0
9.0 | 1.21
1.32
1.29
1.29
1.26
1.33
1.27
1.29
1.32 | 11.44
11.45
11.47
11.48
11.50
11.52
11.53
11.54
11.56
11.57 | 100904
101056
101194
101331
101466
101619
101744
101879
102024
102136 | 71.86
64.79
64.79
63.62
71.86
58.90 | 148.48
148.31
148.14
147.99
147.82
147.65
147.50 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.1
18.1
18.1
18.1
18.1
18.1
18.1
18.1 | | 1320.0
1321.0
1322.0
1323.0
1324.0
1325.0
1326.0
1327.0
1328.0 | 64.3
66.7
73.5
58.1
69.2
59.0
76.6
55.4 | 39.1
38.5
38.5
40.0
40.7
40.5
41.3
42.6
43.5 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.25
1.27
1.26
1.24
1.33
1.27
1.33
1.25
1.37 | 11.59
11.60
11.62
11.63
11.65
11.66
11.68
11.69
11.71 | 102264
102404
102539
102661
102816
102946
103099
103216
103379
103609 | 63.62
57.72
73.04
61.26
71.86
55.37
76.57 | 147.15
146.99
146.83
146.65
146.51
146.35
146.20
146.03
145.83 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.1
18.1
18.1
18.1
18.1
18.1
18.1
18.1 | | 1330.0
1331.0
1332.0
1333.0
1334.0
1335.0
1336.0
1337.0
1338.0 | 59.0
61.0
66.7
64.3
56.2
66.7
55.4
76.6 | 44.8
42.6
42.9
41.8
40.0
40.9
40.7
42.2
41.5 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.41
1.34
1.33
1.29
1.29
1.33
1.28
1.35
1.25 | 11.76
11.77
11.79
11.80
11.82
11.84
11.85
11.85 | 103784
103936
104084
104219
104359
104519
104654
104816
104934
105151 | 71.86
69.51
63.62
65.97
75.40
63.62
76.57
55.37 | 144.83
144.70 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.1
18.1
18.1
18.1
18.1
18.1
18.1 | | 1340.0
1341.0
1342.0
1343.0
1344.0
1345.0
1346.0
1347.0
1348.0 | 58.1
66.7
59.0
67.9
66.7
49.3
50.7 | 40.5
39.1
39.4
39.5
39.7
39.7
39.8
40.5
36.5 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.31
1.31
1.27
1.31
1.27
1.27
1.38
1.37 | 11.92
11.94
11.96
11.97
11.99
12.00
12.02
12.04
12.06
12.08 | 105299
105454
105589
105741
105874
106009
106191
106369
106544
106671 | 63.62
71.86
62.44
63.62
86.00
83.64
82.46 | 144.31
144.18
144.03
143.90
143.74
143.60
143.49
143.38
143.27 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.1
18.1
18.1
18.1
18.1
18.1
18.1
18.1 | | DEPTH | ROP | MOB | RPM | MW | "d "c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|--|--|---|---|--|---|--|--
--|--|--| | 1350.0
1351.0
1352.0
1353.0
1354.0
1355.0
1356.0
1357.0
1358.0 | 56.2
62.1
45.0
58.1
61.0
60.0
75.0 | 36.1
38.1 | 150
150
150
150
150
150
150 | 9.0 | 1.34
1.31
1.27
1.38
1.30
1.26
1.29
1.19
1.34 | 12.10
12.11
12.13
12.15
12.17
12.19
12.20
12.22
12.24
12.26 | 106851
107011
107156
107356
107511
107659
107809
107929
108099
108296 | - 75.40
68.33
94.24
73.04
69.51
70.68
56.55
80.11 | 143.00
142.88
142.74
142.66
142.53
142.40
142.27
142.11
142.00
141.91 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.1
18.1
18.1
18.2
18.2
18.2
18.2
18.2 | | 1360.0
1361.0
1362.0
1363.0
1364.0
1365.0
1366.0
1367.0
1369.0 | 55.4
59.0
51.4
55.4
56.2
58.1
40.9
51.4 | 37.4
37.1
37.7
36.8 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.34
1.32
1.29
1.33
1.31
1.30
1.29
1.45
1.37 | 12.28
12.39
12.33
12.35
12.35
12.37
12.38
12.41
12.43
12.44 | 108471
108634
108786
108961
109124
109284
109439
109659
109834 | 76.57
71.86
82.46
76.57
75.40
73.04
103.67
82.46 | 141.80
141.68
141.56
141.45
141.34
141.22
141.10
141.03
140.93 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.2
18.2
18.2
18.2
18.2
18.2
18.2
18.2 | | 1370.0
1371.0
1372.0
1373.0
1374.0
1375.0
1376.0
1377.0 | 51.4
61.0
54.5
54.5
51.4
50.7
53.0 | 38.6
39.3
38.9
38.3
38.4
40.4
40.4
39.8 | 150
150
150
150
150
150 | 9.0
9.0
9.0 | 1.26
1.35
1.30
1.33
1.33
1.35
1.35
1.35 | 12.46
12.48
12.50
12.51
12.53
12.55
12.55
12.57
12.59
12.61
12.62 | 110116
110291
110439
110604
110769
110944
111121
111289
111441
111591 | 82.46
69.51
77.75
77.75
82.46
83.64
78.93
71.86 | 140.66
140.56
140.43
140.32
140.21
140.11
140.01
139.91
139.79
139.67 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.2
18.2
18.2
18.2
18.2
18.2
18.2
18.2 | | 1380.0
1381.0
1382.0
1383.0
1384.0
1385.0
1386.0
1387.0
1388.0 | 52.2
61.0
45.6
49.3
45.6
51.4
53.7
61.0 | 38.4
37.5
39.0
39.3
40.3
38.5
36.9
38.7
39.4
40.5 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0 | 1.32
1.33
1.30
1.40
1.38
1.39
1.33
1.34 | 12.64
12.66
12.68
12.70
12.72
12.74
12.76
12.78
12.80
12.82 | 111751
111924
112071
112269
112451
112649
112824
112991
113139
113344 | 86.00
93.07
82.46
78.93
69.51 | 139.55
139.45
139.33
139.25
139.16
139.08
138.98
138.88
138.88 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.2
18.2
18.2
18.2
18.2
18.2
18.2
18.2 | | 1390.0
1391.0
1392.0
1393.0
1394.0
1395.0
1396.0
1397.0
1398.0 | 50.7
48.0
53.7
45.6
58.1
47.4
46.2
43.4 | 37.5
36.8
34.0 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.38
1.35
1.36
1.32
1.37
1.26
1.34
1.37 | 12.84
12.86
12.88
12.90
12.92
12.94
12.96
12.98
13.00
13.02 | 113531
113709
113896
114064
114261
114416
114606
114801
115009
115184 | 83.64
88.35
78.93
93.07
73.04
89.53
91.89
97.78 | 138.60
138.51
138.42
138.32
138.24
138.13
138.05
137.97
137.90
137.81 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.2
18.2
18.2
18.2
18.2
18.2
18.2
18.2 | | DEPTH | ROP | MOB | RPM | MW | "d"c | HOURS | TURNS | ICOST | ccost | рþ | FG | |--|--|--|---|---|--|---|--|---|--|--|--| | 1400.0
1401.0
1402.0
1403.0
1404.0
1405.0
1406.0
1407.0
1408.0 | 50.1
42.0
47.0
51.4
69.2
50.7
49.3
76.6 | 33.0
35.3
44.0
42.5
43.8
38.4
38.4
38.8
37.8
36.7 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.31
1.32
1.47
1.42
1.40
1.25
1.35
1.37 | 13.04
13.06
13.11
13.13
13.14
13.16
13.18
13.19
13.21 | 115371
115551
115761
115953
116128
116258
116435
116618
116735
116895 | 84.65
99.32
90.23
82.46
61.26
83.64
86.00
55.37 | 137.73
137.64
137.57
137.49
137.40
137.27
137.19
137.10
136.96
136.86 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.2
18.2
18.3
18.3
18.3
18.3
18.3
18.3 | | 1410.0
1411.0
1412.0
1413.0
1414.0
1415.0
1416.0
1417.0
1418.0 | 54.5
69.2
46.8
61.0
59.0
59.0 | 38.9
38.6
38.2
37.9
35.6
33.5
34.2
35.6
34.1 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.34
1.33
1.24
1.37
1.26
1.24
1.26
1.27 | 13.25
13.26
13.29
13.30
13.32
13.33
13.35
13.37 | 117063
117228
117358
117550
117698
117845
117998
118150
118278
118458 | 77.75
61.26
90.71
69.51
69.51
71.86
71.86
60.08 | 136.77
136.67
136.54
136.47
136.36
136.25
136.14
136.04
135.91
135.83 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3 | | 1420.0
1421.0
1422.0
1423.0
1424.0
1425.0
1426.0
1427.0
1428.0
1429.0 | 58.1
50.7
67.9
50.0
53.7
64.3
60.0 | 34.8
35.0
35.1
35.2
35.6
36.5
37.2
36.6
36.6 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0 | 1.22
1.27
1.32
1.22
1.33
1.31
1.26
1.28
1.29 | 13.40
13.42
13.45
13.47
13.47
13.51
13.51
13.52
13.54 | 118590
118745
118923
119055
119235
119403
119543
119693
119848
120043 | 73.04
83.64
62.44
84.82
78.93
65.97
70.68
73.04 | 135.71
135.61
135.52
135.41
135.32
135.23
135.12
135.02
134.92
134.92 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3 | | 1430.0
1431.0
1432.0
1433.0
1434.0
1435.0
1436.0
1437.0
1438.0
1439.0 | 58.1
48.0
46.8
61.0
30.0
49.3
52.9
47.4 | 37.7
37.0
36.6
36.1
34.5
35.7
35.9
36.8 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.32
1.29
1.35
1.35
1.25
1.50
1.36
1.31 | 13.58
13.60
13.62
13.64
13.66
13.71
13.73
13.75
13.77 | 120210
120365
120553
120745
120893
121193
121375
121545
121735
121925 | 73.04
88.35
90.71
69.51
141.37
86.00
80.11
89.53 | 134.76
134.66
134.59
134.52
134.41
134.42
134.35
134.26
134.19 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3 | | 1440.0
1441.0
1442.0
1443.0
1444.0
1445.0
1445.0
1447.0
1448.0 | 46.8
41.9
47.4
43.4
42.4
46.8
39.1
40.5 | 36.9
37.8
35.0
35.7
36.2
36.1
37.0
38.0 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.40
1.37
1.38
1.34
1.37
1.39
1.35
1.42
1.42 | 13.79
13.82
13.84
13.86
13.91
13.93
13.95
13.95 | 122330
122545
122735
122943
123155
123348
123578 | 101.31
89.53
97.78
100.13
90.71
108.38
104.72 | 134.00
133.95
133.88
133.82
133.77
133.70
133.66 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.3
18.3
18.3
18.3
18.3
18.3
18.3 | | DEPTH | ROP WOB | RPM | MW "d"c | HOURS | TURNS | ICOST | CCOST | PP FG | |--|--|--|--|--|--|---|--
--| | 1450.0
1451.0
1452.0
1453.0
1454.0
1455.0
1456.0
1457.0
1458.0
1459.0 | 51.2 37.3
36.0 38.5
54.5 36.9
33.6 38.8
37.9 38.2
41.9 37.9
51.4 38.1
40.4 37.1
52.2 37.4
51.4 37.2 | 150
150
150
150
150
150
150 | 9.0 1.34
9.0 1.47
9.0 1.31
9.0 1.50
9.0 1.45
9.0 1.41
9.0 1.34
9.0 1.33
9.0 1.33 | 14.01
14.04
14.06
14.09
14.12
14.14
14.16
14.18
14.20
14.22 | 124522
124789
125027
125242
125417 | 117.81
- 77.75
126.05
111.92
101.31
82.46
104.85
81.29 | 133.32
133.30
133.27
133.22
133.14 | 8.4 18.3
8.4 18.3
8.4 18.3
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4 | | 1460.0
1461.0
1462.0
1463.0
1464.0
1465.0
1466.0
1467.0
1468.0 | 43.9 37.0
40.4 33.2
38.7 35.2
40.4 31.4
38.3 29.8
54.5 30.4
51.4 28.6
37.9 29.0
46.8 29.3
40.4 30.2 | 150
150
150
150
150
150
150 | 9.0 1.39
9.0 1.37
9.0 1.41
9.0 1.35
9.0 1.34
9.0 1.24
9.0 1.24
9.0 1.34
9.0 1.33 | 14.25
14.27
14.30
14.32
14.35
14.37
14.38
14.41
14.43 | 126647
126869
127104
127269
127444
127682
127874 | 104.85
109.56
104.85
110.74
77.75 | 132.81
132.77
132.73
132.65
132.57
132.54
132.48 | 8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4 | | 1470.0
1471.0
1472.0
1473.0
1474.0
1475.0
1476.0
1477.0
1478.0 | 32.1 29.8 52.9 30.2 50.7 28.7 47.4 28.5 49.3 29.3 44.4 28.5 43.5 32.1 46.1 29.2 39.1 29.3 34.0 30.7 | 150
150
150
150
150
150
150 | 9.0 1.40
9.0 1.25
9.0 1.24
9.0 1.26
9.0 1.28
9.0 1.33
9.0 1.33
9.0 1.33
9.0 1.33 | 14.49
14.51
14.53
14.55
14.57
14.59
14.61
14.64
14.66 | 128547
128724
128714
129097
129299
129506
129701
129931 | 83.64
89.53
86.00
95.42
97.49 | 132.36
132.29
132.22
132.15
132.10
132.05
131.99
131.95 | 8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4 | | 1480.0
1481.0
1482.0
1483.0
1484.0
1485.0
1486.0
1487.0
1488.0 | 51.4 27.9
43.4 28.5
40.9 29.3
57.1 31.6
35.0 34.5
45.6 32.4
44.4 32.6
43.4 32.9
49.3 32.3
42.4 35.2 | 150
150
150
150
150
150
150 | 9.0 1.23
9.0 1.29
9.0 1.32
9.0 1.24
9.0 1.43
9.0 1.32
9.0 1.33
9.0 1.34
9.0 1.29
9.0 1.38 | 14.71
14.73
14.76
14.77
14.80
14.83
14.85
14.87
14.89 | 130956
131214
131411
131614
131821
132004 | 97.78
103.67
74.22
121.34
93.07
95.42
97.78 | 131.69
131.62
131.56
131.51
131.45 | 8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4 | | 1490.0
1491.0
1492.0
1493.0
1494.0
1495.0
1496.0
1497.0
1498.0 | 43.4 32.9
41.9 32.9
40.9 32.7
52.2 32.0
37.5 33.0
48.0 33.5
52.9 32.2
48.6 32.0
42.4 32.2 | 150
150
150
150
150
150
150
150 | 9.0 1.34
9.0 1.35
9.0 1.36
9.0 1.27
9.0 1.39
9.0 1.32
9.0 1.27
9.0 1.27
9.0 1.34
9.0 1.36 | 14.94
14.96
14.99
15.01
15.03
15.05
15.07
15.12
15.14 | 132639
132859
133031
133271
133459
133629
133814
134026 | 113.09
88.35
80.11 | 131.31
131.27
131.20
131.17
131.11
131.03
130.97
130.93 | 8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4
8.4 18.4 | | DEPTH | ROP | мов | RPM | MW | "d"c | HOURS | TURNS | ICOST | ccost | рp | FG | |--|--|--|---|---|--|--|--|--|--|--|--| | 1500.0
1501.0
1502.0
1503.0
1504.0
1505.0
1507.0
1508.0
1509.0 | 39.1
48.6
44.4
37.9
58.1
35.0
50.0
52.2 | 31.2
33.6
35.7
35.6
36.4
34.9
36.1
35.8
35.6 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.23
1.38
1.34
1.37
1.43
1.27
1.45
1.33
1.31 | 15.16
15.18
15.20
15.23
15.25
15.27
15.30
15.32
15.34
15.37 | 135406
135664
135844
136016 | 108.38
87.18
95.42
111.92
73.04
121.34
84.82 | 130.70
130.65
130.63
130.54
130.53
130.47 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.4
18.4
18.4
18.4
18.5
18.5
18.5 | | 1510.0
1511.0
1512.0
1513.0
1514.0
1515.0
1516.0
1517.0
1518.0 | 53.7
36.4
59.0
47.4
42.9
54.5
31.3 | 35.1
34.2
36.3
35.3
34.6
37.1
35.8
37.3
36.1 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.40
1.29
1.44
1.27
1.33
1.39
1.30
1.50
1.26 | 15.39
15.41
15.44
15.45
15.50
15.52
15.55
15.56 | 136501
136669
136916
137069
137259
137469
137634
137921
138066
138221 | 116.63
71.86
89.53
98.96
77.75
135.48
68.33 | 130.28
130.26
130.18
130.12
130.07 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | | 1520.0
1521.0
1522.0
1523.0
1524.0
1525.0
1526.0
1527.0
1528.0 | 53.7
51.4
50.0
59.0
57.1
91.1
43.0
50.0 | 35.8
35.4
36.5
35.6
36.1
34.6
37.0
36.8
36.0 | 150
150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 1.35
1.30
1.33
1.33
1.28
1.27
1.14
1.39
1.33 | 15.60
15.62
15.64
15.66
15.70
15.71
15.73
15.77 | 138414
138581
138756
138936
139089
139246
139345
139555
139735 | 78.93
82.46
84.82
71.86
74.22
46.55
98.66
84.82 | 129.79
129.72
129.65
129.59
129.51
129.43
129.31
129.27
129.21 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | | 1530.0
1531.0
1532.0
1533.0
1534.0
1535.0
1536.0
1537.0
1538.0 | 46.8
46.2
45.6
42.9
56.2
56.2
47.4 | 35.5
36.7
34.4
34.8
35.4
35.4
35.9
35.9
35.0 | 150
150
150
150
150
150 | 9.0
9.0
9.0
9.0
9.0
9.0
9.1 | 1.30
1.36
1.34
1.35
1.37
1.29
1.27
1.39 | 15.79
15.81
15.83
15.86
15.88
15.90
15.91
15.94
15.96
15.99 | 141630 | 90.71
91.89
93.07
98.96
75.40 | 128.67 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | | 1540.0
1541.0
1542.0
1543.0
1544.0
1545.0
1546.0
1547.0
1549.0 | 43.9
48.6
46.8
45.0
49.3
52.2
35.0 | 41.7
40.7
42.0
43.1
41.8
41.4
41.7
40.1
41.3 | 150
150
150
150
150
150
150 | 9.1
9.1
9.1
9.1
9.1
9.1
9.1 | | 16.01
16.03
16.05
16.07
16.09
16.11
16.13
16.16
16.18 | 143640 | 96.60
87.18
90.71
94.24
86.00 | 128.21 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | | DEPTH | ROP | MOB | RPM | MW | "d "c | HOURS | TURNS | ICOST | CCOST | рp | FG | |--|--|--|---|---|--|--|--|--|--|--|--| | 1550.0
1551.0
1552.0
1553.0
1554.0
1555.0
1556.0
1557.0
1559.0 | 45.6
49.3
41.9
45.6
50.0
28.3
47.4
50.7 | 41.5
41.9
42.0
41.7
42.5
42.0
42.3
42.2 | 150
150
150
150
150
150
150 | 9.1
9.1
9.1
9.1
9.1
9.1 | 1.48
1.41
1.39
1.44
1.41
1.39
1.58
1.40 | 16.23
16.25
16.27
16.30
16.32
16.34
16.38
16.40
16.42 | 144072
144270
144452
144667
144865
145045
145362
145552
145730
145917 | 86.00
101.31
93.07
84.82
149.61
89.53
83.64 | 128.09
128.03
128.00
127.95
127.89 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | |
1560.0
1561.0
1562.0
1563.0
1564.0
1565.0
1566.0
1567.0
1568.0 | 39.1
50.0
49.3
46.2
42.9
33.3
41.9
38.7 | 41.9
43.0
41.9
41.6
42.8
42.9
41.2
41.3
42.5 | 150
150
150
150
150
150
150 | 9.1
9.1
9.1
9.1
9.1
9.1
9.1 | 1.44
1.47
1.38
1.38
1.42
1.44
1.51
1.43
1.47 | 16.46
16.49
16.51
16.53
16.55
16.60
16.63
16.65
16.67 | 146130
146360
146540
146722
146917
147127
147397
147612
147845
148012 | 86.00
91.89
98.96
127.23
101.31
109.56 | 127.70
127.64
127.59
127.54
127.50
127.50 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.6
18.6
18.6
18.6
18.6
18.6
18.6
18.6 | | 1570.0
1571.0
1572.0
1573.0
1574.0
1575.0
1576.0
1577.0
1578.0 | 46.8
45.6
38.3
42.4
45.6
36.7
41.9 | 42.1
42.8
41.5
44.0
43.8
43.1
43.4
44.3
43.3 | 150
150
150
150
150
150 | 9.1
9.1
9.1
9.1
9.1
9.1
9.1 | 1.49 | 16.70
16.72
16.77
16.79
16.81
16.84
16.88
16.88 | 148440
148637
148872
149085
149282
149527
149742 | 110.74
100.13
93.07
115.45
101.31 | 127.31
127.27
127.24
127.21
127.16
127.15
127.12 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.6
18.6
18.6
18.6
18.6
18.6
18.6
18.6 | | 1580.0
1581.0
1582.0
1583.0
1584.0
1585.0
1586.0
1587.0
1588.0 | 41.9
45.6
36.0
42.9
38.7
45.0
45.6
42.4 | 43.4
43.4
44.2
44.3
43.1
42.9
41.3
42.1
41.6
42.0 | 150
150
150
150
150
150
150 | 9.1
9.1
9.1
9.1
9.1
9.1
9.1 | 1.47
1.46
1.43
1.52
1.44
1.48
1.41
1.41 | 16.93
16.96
16.98
17.01
17.03
17.05
17.10
17.12
17.15 | 150587
150785
151035
151245
151477
151677
151875 | 117.81
98.96
109.56
94.24
93.07
100.13 | 126.97
126.93
126.92
126.88
126.86
126.82
126.77 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.6
18.6
18.6
18.6
18.6
18.6
18.6
18.6 | | 1590.0
1591.0
1592.0
1593.0
1594.0
1595.0
1595.0
1597.0
1598.0 | 45.6
47.4
42.9
34.8
42.4
48.6
33.6 | 40.0
41.8
41.4
42.2
41.4
43.0
43.7
44.4
45.1 | 150
150
150
150
150
150
150 | 9.1
9.1
9.1
9.1
9.1
9.1
9.1 | 1.37
1.41
1.39
1.43
1.50
1.45
1.45
1.58 | 17.17
17.19
17.21
17.23
17.26
17.28
17.31
17.34
17.37
17.40 | 153548
153733
154000
154288 | 93.07
89.53
98.96
121.73
100.13
87.18
126.05
135.48 | 126.44 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.6
18.6
18.6
18.6
18.6
18.6
18.6
18.6 | As Jagania a | DEPTH | ROP | MOB | RPM | мы | "d "c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|--|--|---|--|--|--|--|---|--|---|--| | 1600.0
1601.0
1602.0
1603.0
1604.0
1605.0
1606.0
1607.0
1608.0 | 37.2
41.1
30.3
32.4
34.3
33.6
43.4 | 43.8
45.3
44.3
44.1 | 150
150 | 9.1
9.1
9.1
9.1
9.1
9.1
9.1
9.1 | 1.56
1.55
1.52
1.47
1.58
1.55
1.54
1.54 | 17.43
17.46
17.49
17.52
17.55
17.58
17.61
17.64
17.66 | 155158
155400
155619
155916
156194
156456 | 113.88
103.08
140.19
130.76
123.70
126.05
97.78 | 126.49
126.47
126.44
126.46
126.47 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.6
18.6
18.6
18.6
18.6
18.6
18.6
18.6 | | 1610.0
1611.0
1612.0
1613.0
1614.0
1615.0
1616.0
1617.0
1618.0 | 40.9
57.1
35.6
37.8
26.7
50.7
31.3
44.4 | 42.5
42.7
42.6
43.6
43.6
41.5
43.1
43.4 | 150
150
150
150
150
150 | | 1.50
1.46
1.34
1.50
1.49
1.61
1.37
1.55
1.43 | 17.71
17.74
17.75
17.78
17.81
17.85
17.87
17.90
17.92 | 157614
157771
158024
158262
158599
158777 | | 126.35
126.29
126.28
126.26
126.30
126.25 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.6
18.6
18.6
18.6
18.7
18.7
18.7 | | 1620.0
1621.0
1622.0
1623.0
1624.0
1625.0
1626.0
1627.0
1628.0 | 29.5
52.4
44.4
35.6
28.6
28.1
45.0
40.9 | 43.4
43.9
40.0
42.7
42.9
43.3
42.2
43.8
43.8 | 150
150
150
150
150
150
150 | 9.1
9.1
9.1
9.1
9.1
9.1
9.1 | 1.59
1.58
1.34
1.43
1.51
1.59
1.58
1.42
1.45 | 17.98
18.01
18.03
18.05
18.08
18.12
18.15
18.17
18.20
18.22 | 160094
160266
160469
160721
161036
161356 | 118.98
148.44
150.79
94.24
103.67 | 126.22
126.24
126.18
126.15
126.14
126.16
126.19
126.15
126.13 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 18.7
18.7
18.7
18.7
18.7
18.7
18.7
18.7 | | 1630.0
1631.0
1632.0
1633.0
1634.0
1635.0
1636.0
1637.0
1638.0 | 34.3
46.2
40.9
42.9
34.6
41.9
42.4
43.4 | 42.7
43.4
41.2
43.0
43.0
44.1
43.5
43.7
45.1
43.8 | 150
150
150
150
150
150
150 | 9.1
9.2
9.2
9.2
9.2
9.2 | 1.42
1.52
1.40
1.44
1.43
1.51
1.44
1.44 | 18.24
18.27
18.30
18.32
18.34
18.37
18.40
18.42
18.44 | 163544 | 98.96
122.52
101.31
100.13
97.78 | 126.05
126.05
126.01
125.98
125.95
125.94
125.92
125.88
125.85
125.81 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.7
18.7
18.7
18.7
18.7
18.7
18.7 | | 1640.0
1641.0
1642.0
1643.0
1644.0
1645.0
1645.0
1647.0
1647.0 | 35,6
32,7
34,6
34,6
33,3
27,7
33,0
33,3 | | | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.51
1.49
1.53
1.50
1.50
1.52
1.52
1.53
1.47 | 18.49
18.52
18.55
18.58
18.61
18.64
18.67
18.70
18.73 | 164659
164934
165194
165454
165724
166049
166321
166591 | 118.98
129.59 | 125.79
125.79
125.79
125.79
125.82
125.82
125.83 | 8,4
8,4
8,4
8,4
8,4
8,4 | 18.7
18.7
18.7
18.7
18.7
18.7
18.7 | . | DEPTH | ROP | WOB | RPM | MW | "d "c | HOURS | TURNS | ICOST | CCOST | рþ | FG | |--|--|--|---|---|--|--|--|--|--|--|--| | 1650.0
1651.0
1652.0
1653.0
1654.0
1655.0
1656.0
1657.0
1659.0 | 34.0
35.0
27.7
31.0
34.0
37.9
31.0
35.3 | 43.9
43.2
43.1
43.3
43.3 | 150
150
150
150
150
150 | 99.222222
99.22222
99.22 | 1.51
1.50
1.51
1.59
1.55
1.51
1.47
1.54
1.50 | 18.79
18.82
18.85
18.88
18.92
18.95
18.97
19.00
19.03 | 167361
167619
167944
168234
168499
168736
169026
169281 | 127.23
124.87
121.34
153.15
136.65
124.87
111.92
136.65
120.16
129.59 | 125.81
125.80
125.84
125.85
125.85
125.83
125.84
125.84 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.7
18.7
18.7
18.7
18.7
18.7
18.7
18.7 | | 1660.0
1661.0
1662.0
1663.0
1664.0
1665.0
1666.0
1667.0
1668.0 | 28.6
29.0
35.0
35.6
36.4
39.6
33.6 | 43.4
43.8
42.7
43.3
42.6
43.4
43.2
43.3
42.9 | 150
150
150
150
150
150
150 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.55
1.56
1.50
1.51
1.51
1.49
1.46
1.51 | 19.10
19.13
19.17
19.19
19.22
19.25
19.28
19.31
19.34
19.37 | 170164
170474
170731
171004
171256
171504
171731 | 137.83
148.44
146.08
121.34
128.41
118.98
116.63
107.20
126.05
133.12 | 125.88
125.91
125.90
125.90
125.89
125.88
125.86
125.86 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.7
18.7
18.7
18.7
18.7
18.7
18.7
18.7 | | 1670.0
1671.0
1672.0
1673.0
1674.0
1675.0
1676.0
1677.0
1678.0 | 33.0
32.7
38.7
33.3
40.4
36.4
34.0
39.1 |
43.1
43.7
44.1
42.6
43.9
44.3
44.2
44.0
44.1
43.7 | 150
150
150
150
150 | 9.22
9.22
9.22
9.22
9.22 | 1.51
1.52
1.53
1.46
1.52
1.46
1.50
1.52 | 19.40
19.43
19.46
19.48
19.51
19.54
19.57
19.62
19.65 | 172821
173096
173329
173599
173821 | 128.41
129.59
109.56
127.23
104.85
116.63 | 125.86
125.84
125.83
125.83
125.81 | 8.4
8.4
8.4
8.4 | 18.8
18.8
18.8 | | 1680.0
1681.0
1682.0
1683.0
1684.0
1685.0
1686.0
1687.0
1688.0 | 37.9
37.9
38.7
40.9
36.7
36.7
30.3 | 45.2
44.5
44.1
42.6
43.0
42.9
43.1
44.5
44.3 | 150
150
150
150
150
150
150 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.48
1.49
1.48
1.46
1.44
1.48
1.56
1.53 | 19.67
19.70
19.73
19.75
19.78
19.81
19.83
19.87
19.90 | 175294
175531
175764
175984
176229
176474
176771 | 107.20
111.92
111.92
109.56
103.67
115.45
115.45
140.19
129.59 | 125.77
125.75
125.73
125.71
125.70
125.68
125.70
125.71 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.8
18.8
18.8
18.8
18.8
18.8
18.8
18.8 | | 1690.0
1691.0
1692.0
1693.0
1694.0
1695.0
1696.0
1697.0
1698.0 | 34.0
31.0
31.9
35.3
36.4
33.3
28.8
35.6 | | 150
150
150
150
150
150
150 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.45
1.53
1.56
1.55
1.50
1.49
1.55
1.49 | 19.94
19.97
20.01
20.04
20.07
20.12
20.16
20.19
20.22 | 177749
178039
178321
178576
178824
179094
179406
179659 | 102.49
124.87
136.65
133.12
120.16
116.63
127.23
147.26
118.98
139.01 | 125.65
125.67
125.67
125.66
125.66
125.66
125.68 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.8
18.8
18.8
18.8
18.8
18.8
18.8
18.8 | | DEPTH | ROP | MOB | RPM | мы | "d "c | HOURS | TURNS | ICOST | CCOST | РР | FG | |--|--|--|--|---|--|--|--|--|--|--|--| | 1700.0
1701.0
1702.0
1703.0
1704.0
1705.0
1706.0
1707.0
1708.0 | 28.3
31.3
32.7
30.8
37.9
47.4
32.7
29.3 | 43.1
42.8
43.8
43.1
44.7
43.9
45.7
47.1 | 150
150
150
150
150
150
150
150 | 9.22
9.22
9.22
9.22
9.22
9.2 | 1.42
1.57
1.54
1.52
1.56
1.48
1.39
1.55
1.60 | 20.24
20.28
20.31
20.34
20.37
20.40
20.42
20.45
20.45 | 180764
181039
181331
181569
181759
182034
182341 | 149.61
135.48
129.59
132.83
111.92 | 125.69
125.70
125.70
125.71
125.70
125.66
125.66 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.8
18.8
18.8
18.8
18.8
18.8
18.8
18.8 | | 1710.0
1711.0
1712.0
1713.0
1714.0
1715.0
1716.0
1717.0
1718.0 | 33.6
31.0
29.8
33.6
30.0
30.8
30.3 | 46.2
46.8
46.9
46.5
46.3
45.2
46.7
47.0
46.0 | 150
150
150
150
150
150 | 9.22222
99.2222
99.22 | 1.56
1.55
1.58
1.60
1.55
1.57
1.57
1.59
1.59 | 20.55
20.58
20.61
20.64
20.67
20.71
20.74
20.77
20.81
20.84 | 183189
183479
183781
184049
184349
184641
184939
185239 | 136.65
142.54 | 125.71
125.72
125.74
125.74
125.76
125.77
125.79
125.80 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.8
18.8
18.8
18.8
18.8
18.8
18.8
18.8 | | 1720.0
1721.0
1722.0
1723.0
1724.0
1725.0
1726.0
1727.0
1728.0 | 29.5
27.5
29.0
24.8
32.7
31.9
31.0 | 45.8
46.5
46.7
46.9
45.9
45.1
44.1 | 150
150
150
150
150
150 | 9.22
9.22
9.22
9.22
9.22 | 1.58
1.60
1.62
1.60
1.66
1.55
1.56
1.57 | 20.87
20.91
20.94
20.98
21.02
21.05
21.11
21.11
21.14 | 186144
186471
186781
187144
187419
187701
187991
188266 | 142.54
143.72
154.33
146.08
170.82
129.59
133.12
136.65
129.59 | 125.86
125.89
125.91
125.96
125.96
125.97
125.98
125.99 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.8
18.8
18.8
18.8
18.8
18.8
18.8 | | 1730.0
1731.0
1732.0
1733.0
1734.0
1735.0
1736.0
1737.0
1738.0 | 26.1
25.5
29.3
30.8
34.3
31.0
23.8
31.9 | 45.5
44.8
42.4
43.4
42.2
42.0
42.2
44.8
43.6 | 150
150
150
150
150
150
150 | 9.22
9.22
9.22
9.22
9.22 | 1.60
1.62
1.60
1.56
1.53
1.49
1.53
1.65 | 21.21
21.25
21.29
21.32
21.35
21.35
21.41
21.46
21.49
21.52 | 189204
189556
189864
190156
190419
190709
191086
191369 | 149.61
162.57
166.11
144.90
137.83
123.70
136.65
177.89
133.12
135.48 | 126.10
126.12
126.13
126.13
126.14
126.20
126.20 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.9
18.9
18.9
18.9
18.9
18.9
18.9
18.9 | | 1740.0
1741.0
1742.0
1743.0
1744.0
1745.0
1746.0
1747.0
1748.0 | 36.4
30.8
29.0
30.0
34.6
30.5
39.1
27.9 | 45.5
46.0
46.5
45.1
42.7
43.8
44.8
46.3
46.2 | 150
150
150
150
150
150
150 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.61
1.58
1.58
1.55
1.55
1.56
1.49
1.61 | 21.56
21.58
21.62
21.65
21.68
21.71
21.75
21.77
21.81
21.85 | 192236
192529
192839
193139
193399
193694
193924
194246 | 156.68
116.63
137.83
146.08
141.37
122.52
139.01
108.38
151.97
195.56 | 126.24
126.25
126.27
126.28
126.28
126.29
126.28
126.30 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.9
18.9
18.9
18.9
18.9
18.9
18.9
18.9 | | DEPTH | ROP | MOB | RPM | MM | "d"c | HOURS | TURNS | ICOST | CCOST | РP | FG | |--|--|--|---|---|--|--|--|--|--|---|--| | 1750.0
1751.0 | | 45.4
45.5 | | | 1.78
1.95 | 21.91
22.01 | | 249.75
409.96 | | | 18.9
18.9 | | BIT NUMBE
HTC J11
COST
TOTAL HOL | 678 | | | | CODE
TIME
TURNS | | NO2 | TERVAL
ZZLES
T RUN
MDITION | | .0- 18
16 1
B1 G0 | 6 16
86.0 | | DEPTH | ROP | MOB | RPM | МM | "d "c | HOURS | TURNS | ICOST | ccost | ÞР | FG | | 1752.0
1753.0
1754.0
1755.0
1756.0
1757.0
1758.0
1759.0 | 5.1
5.3
6.6
8.2
10.1
12.5 | 31.4
27.7
25.9
27.8
31.3
31.5
31.9 | 130
130
130
130
130
130 | 9.2
9.2
9.2
9.2
9.2 | 1.93
1.85
1.81
1.77
1.77
1.71
1.65 | 0.20
0.40
0.59
0.74
0.86
0.96
1.04 | 1584
3101
4574
5751
6700
7475
8101
8888 | 861
825
801
640
516
422
340
428 | 32671
16748
11432
8734
7091
5979
5174
4580 | 8.4
8.4
8.4
8.4
8.4 | 18.9
18.9
18.9
18.9
18.9
18.9 | | 1760.0
1761.0
1762.0
1763.0
1764.0
1765.0
1766.0
1767.0
1768.0 | 11.2
12.2
8.0
10.1
15.4
10.9
9.8
10.6 | 30.7
30.0
31.7
31.0
33.0
34.7
36.3
37.2
38.0
36.3 | 130
130
130
130
108
111
111 | 9,2
9,2
9,2
9,2
9,2
9,2 | 1.70
1.65
1.65
1.77
1.73
1.56
1.75
1.75 | 1.24
1.33
1.41
1.54
1.64
1.70
1.79
1.89
1.99 | 9674
10372
11011
11986
12758
13179
13790
14469
15081 | 428
379
348
530
419
276
390
431
402
362 | 4119
3745
3436
3194
2980
2787
2627
2490
2367
2256 | 8.4
8.4
8.4
8.4
8.4
8.4 | 18.9
18.9
18.9
18.9
18.9
18.9
18.9 | | 1770.0
1771.0
1772.0
1773.0
1774.0
1775.0
1776.0
1777.0
1778.0 | 12.3
10.8
14.9
7.4
8.2
8.2
7.1
6.4 | 36.1
36.4
34.6
34.3
32.8
33.9
33.9
32.8
32.8
32.8 | 110
110
110
110
110
110
110 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.66
1.68
1.57
1.77
1.76
1.76
1.79
1.82 |
2.16
2.24
2.33
2.40
2.53
2.65
2.78
2.92
3.07
3.21 | 16182
16720
17332
17776
18667
19471
20280
21208
22240
23169 | 346
345
393
285
573
517
520
596
663 | 2155
2065
1985
1908
1850
1794
1743
1699
1661
1623 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 18.9
18.9
18.9
18.9
18.9
18.9
18.9
18.9 | | 1780.0
1781.0
1782.0
1783.0
1784.0
1785.0
1786.0
1787.0
1788.0 | 7.9
5.8
8.6
10.1
11.9
14.1
11.9 | 40.0
36.9
35.3
32.6
31.9
32.3
32.3
39.2
40.7
40.4 | 110
110
110
110
110
110
110 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.93
1.81
1.89
1.72
1.66
1.61
1.56
1.71
1.71 | 3.37
3.50
3.67
3.79
3.89
3.97
4.04
4.13
4.21
4.30 | 24218
25050
26198
26970
27626
28180
28647
29203
29718
30365 | 674
535
737
496
422
356
300
357
331
416 | 1590
1555
1529
1496
1464
1431
1399
1370
1342 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 18.9
18.9
18.9
18.9
18.9
18.9
18.9 | | | | | | • | | | | | | |--|---|---|--|--|--|--|--|--|--| | DEPTH | ROP (| JOB RPM | MW "d"c | HOURS | TURNS | ICOST | CCOST | РР | FG | | 1790.0
1791.0
1792.0
1793.0
1794.0
1795.0
1796.0
1797.0
1798.0 | 12.8 4 | 7.1 110
0.3 110
0.2 110
1.0 110
1.1 110 | 9.2 1.84
9.2 1.66
9.2 1.75
9.2 1.63
9.2 1.65
9.2 1.67
9.2 1.71
9.2 1.71
9.2 1.72
9.2 1.72 | 4.42
4.50
4.59
4.65
4.77
4.83
5.10 | 31152
31625
32215
32640
33067
33458
33955
34466
34981
35618 | 505
304
379
273
274
251
319
329
331
409 | 1297
1272
1250
1227
1205
1183
1164
1146
1128
1113 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0 | | 1800.0
1801.0
1802.0
1803.0
1804.0
1805.0
1806.0
1807.0
1808.0 | 10.3 39 11.8 38 11.9 38 12.0 39 12.7 49 9.7 4 | B.8 110
9.1 110
0.3 110
1.2 110
9.8 110
B.4 110 | 9.2 1.68
9.2 1.77
9.2 1.70
9.2 1.71
9.2 1.71
9.2 1.70
9.2 1.81
9.2 1.60
9.2 1.33
9.2 1.59 | 5.17
5.27
5.36
5.44
5.50
5.70
5.79
5.85 | 36100
36741
37299
37852
38404
38923
39603
39997
40177
40562 | 310
412
358
356
355
333
437
253
115.45
247.39 | | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0 | | 1810.0
1811.0
1812.0
1813.0
1814.0
1815.0
1816.0
1817.0
1818.0 | 17.9 30
19.8 30
17.1 30
15.1 30
22.1 30
15.0 30
17.1 30 | 5.6 110
7.2 110
8.0 110
6.8 110
7.4 110
7.7 110
7.6 110 | 9.2 1.66
9.2 1.56
9.2 1.50
9.2 1.57
9.2 1.62
9.2 1.48
9.2 1.61
9.2 1.57
9.2 1.50
9.2 1.03 | 5.92
5.98
6.09
6.15
6.20
6.32
6.32
6.39 | 41732
42119
42555
42854
43294
43679 | 192.02
282.73
247.39
242.68 | 952.60
940.50
929.34
919.04
907.68
898.06
888.20 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0 | | 1820.0
1821.0
1822.0
1823.0
1824.0
1825.0
1826.0
1827.0
1828.0 | 16.9 33
15.1 33
15.1 33
16.4 33
14.5 33
14.5 3
15.2 3 | 2.7 110
3.4 110 | 9.2 1.32
9.2 1.54
9.2 1.57
9.2 1.55
9.2 1.53
9.2 1.56
9.2 1.57
9.2 1.55
9.2 1.25 | 6.42
6.48
6.55
6.61
6.74
6.81
6.90
6.93 | 44727
45160
45598
46002
46456
46913
47347 | 114.27 | 847.07
839.06
831.32
823.48
816.30 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0 | | 1830.0
1831.0
1832.0
1833.0
1834.0
1835.0
1836.0
1837.0 | 62.1 3
63.2 3
59.0 3
62.1 3
69.2 3
44.4 3 | 5.9 110
6.8 110
6.9 110 | 9.2 1.04
9.2 1.07
9.2 1.12
9.2 1.15
9.2 1.14
9.2 1.08
9.2 1.21
9.2 1.30 | 6.94
6.96
6.97
6.99
7.01
7.02
7.04 | 47774
47881
47985
48097
48203
48299
48447
48632 | 68.33
67.15
71.86
68.33
61.26
95.42 | 775.36
766.52
757.88
749.52
741.31
733.22
725.71
718.66 | 8.4
8.4
8.4
8.4
8.4 | 19.0
19.0
19.0
19.0
19.0
19.0
19.0 | | BIT NUMBER
CHRIS RC4
COST
TOTAL HOURS | 4
0.00
2.38 | IADC CODE
SIZE
TRIP TIME
TOTAL TURNS | | NOZZLES
BIT RUN | 15 15 14 | |--|--|--|--|---|---| | DEPTH ROP | WOB R | RPM MW "d"c | HOURS | TURNS ICOST | CCOST PP FG | | | 5.4 1
8.9 1
11.3 1 | 130 9.2 1.25 | 0.08 | 618 331 | 250266 8.4 19.0
23052 8.4 19.0
12183 8.4 19.0 | | 1842.0 4.6
1843.0 2.8
1844.0 4.6
1845.0 5.2
1846.0 3.8
1847.0 1.8 | 13.4 1
15.7 1
15.0 1
16.5 1
19.2 1
19.3 1
17.8 1 | 130 9.2 1.72
130 9.2 1.83
130 9.2 1.74
124 9.2 1.76
110 9.2 1.81 | 0.26
0.48
0.84
1.06
1.25
1.51
2.08
2.38 | 2037 544
3730 921
6543 1529
8242 924
9667 814
11394 1110
15123 2396
17130 2579 | | | BIT NUMBER
CHRIS RC4
COST
TOTAL HOURS | 4
0.00
3.07 | IADC CODE
SIZE
TRIP TIME
TOTAL TURNS | 4
9.975
5.9
22329 | NOZZLES
BIT RUN | | | DEPTH ROP | wos r | RPM MW "d"c | HOURS | TURNS ICOST | CCOST PP FG | | 1848.0 12.0
1849.0 12.4 | 4.5 1
8.0 1 | | 2.42
2.50 | 17443 353
18049 343 | 3494 8.4 19.0
3210 8.4 19.0 | | 1851.0 11.9
1852.0 15.9
1853.0 17.3
1854.0 19.4
1855.0 14.9 | 16.9 1 | 125 9.2 1.43
125 9.2 1.35
125 9.2 1.35
125 9.2 1.34
125 9.2 1.40 | 2.62
2.71
2.77
2.83
2.88
2.95
3.02 | 18953 511 19582 356 20055 267 20488 245 20876 219 21380 285 21953 324 22329 426 | | | BIT NUMBER
CHRIS RC4
COST
TOTAL HOURS | 4
0.00
7.47 | SIZE
TRIP TIME | | NOZZLES
BIT RUN | 15 15 14 | | DEPTH ROP | MOB 8 | RPM MW "d"c | HOURS | TURNS ICOST | CCOST PP FG | | | | 120 9.2 1.83
120 9.2 1.78 | 3.21
3.49 | 23307 1152
25347 1202 | | | 70.00 TH | מממ | WOR | M CLCI | MIJ | "d"c | HOURS | TURNS | ICOST | CCOST | PР | FG | |----------------------|-------------|---------------|--------|------------|--------------|---------------|----------------|----------------------|----------------|----------------|------| | DEPTH | ROP | | | | | | | | | | | | 1859.0
1860.0 | | 15.6
20.8 | | | 2.08 | 4.40
5.79 | 31907
41889 | 386 4
5880 | 2070
2243 | 8.4 1
8.4 1 | | | 1861.0 | | 19.4 | | | 2.24 | 6.82 | 49361 | 4401 | 2336 | 8.4 1 | | | 1861.6 | | 18.7 | | | 2.23 | 7.47 | 54023 | 4577 | 2393 | 8.4 1 | 9.1 | BIT NUMBE | R | 5 | | CADC (| ODE | 437 | | ERVAL | 1861, | 6-206 | | | HTC J11 | , t=1,1 | | | SIZE | Y T MATT | 12.250
6.4 | | ZLES
RUN | | 15 15
20 | 10.4 | | COST
TOTAL HOU | 670
RS 2 | | | | TURNS | | | DITION | | | | | T to 1 FFm. F For Mr | | | | | | | | | | | | | DEPTH | ROP | MOB | RPM | MW | "d"c | HOURS | TURNS | ICOST | CCOST | PP | FG | | 1862.0 | 12.7 | 25.8 | 120 | 9.2 | 1.52 | 0.03 | 227 | 334 | 85160 | 8.4 1 | | | 1863.0 | | 26.1 | | | 1.57 | 0.12 | 875 | 382 | 24604 | 8.4 1 | | | 1864.0 | | 23.8 | | | 1.07 | 0.14 | 1007
1174 | 78
99 | 14385
10183 | 8.4 1
8.4 1 | | | 1865.0
1866.0 | | 25.4
25.0 | | | 1.16 | 0.16
0.18 | 1287 | 66 | 7884 | 8.4 1 | | | 1867.0 | | 21.4 | | | 1.05 | 0.20 | 1422 | 80 | 6439 | 8.4 1 | | | 423775 | ···· /·· / | 55 5 4 | 4 7 6 | <i>a</i> a | 1.14 | 0.22 | 1604 | 107 | 5449 | 8.4 1 | O 1 | | 1868.0
1869.0 | | 22.1
23.9 | | | 1.23 | 0.26 | 1836 | 137 | 4731 | 8.4 | | | 1870.0 | | 24.4 | | | 1.20 | 0.28 | 2040 | 120 | 4182 | 8.4 1 | | | 1871.0 | | 23.4 | | | 1.23 | 0.32 | 2272 | 137 | 3752 | 8.4 1 | | | 1872.0 | | 24.9 | | | 1.57 | 0.41
0.48 | 2962
3474 | 406
302 | 3430
3156 | 8.4 1
8.4 1 | | | 1873.0
1874.0 | | 24.5
24.4 | | | 1.47
1.28 | 0.52 | 3740 | 157 | 2914 | 8.4 1 | | | 1875.0 | | 26.7 | | | 1.39 | 0.57 | 4092 | 207 | 2712 | 8.4 1 | 9.1 | | 1876.0 | | 27.2 | | | 1.61 | 0.67 | 4804 | 419 | 2553 | 8.4 1 | | | 1877.0 | 16.8 | 35.0 | 120 | 9.2 | 1.57 | 0.73 | 5232 | 252 | 2403 | 8.4 1 | 9.1 | | 1878.0 | | 31.2 | | | 1,45 | 0.77 | 5578 | 204 | 2269 | 8.4 1 | | | 1879.0 | | 32.4 | | | 1.33 | 0.81 | 5799
5940 | 135
87 | 2147
2035 | 8.4 1
8.4 1 | | | 1880.0
1881.0 | | 34.6
35.5 | | | 1.21 | 0.83
0.86 | 6186 | 151 | 1938 | 8.4 | | | 1882.0 | | 31.3 | | | 0.98 | 0.87 | 6262 | 47 | 1845 |
8.4 1 | | | 1883.0 | | 31.9 | | 9.2 | 1.04 | 0.89 | 6352 | 55 | 1761 | 8.4 1 | | | 1884.0 | | 32.8 | | | 1.10 | 0.90 | 6460 | 66 | 1686 | 8.4 1 | | | 1885.0 | | 17.5
13.8 | | 9.2 | 1.34
0.86 | 0.97
0.99 | 6954
7054 | 304
61 | 1627
1562 | 8.4 | | | 1886.0
1387.0 | | 23.8 | | | 1.21 | 1.02 | 7267 | 131 | 1506 | 8.4 | | | 1000 0 | os o | 34.2 | 4 4 45 | 0 0 | 1.41 | 1.06 | 7533 | 164 | 1455 | 8.4 1 | 9.1 | | 1888.0
1889.0 | | 34.5 | | | 1.29 | 1.08 | 7713 | 111 | 1406 | 8.4 | | | 1890.0 | | 37.3 | | | 1.67 | 1.16 | 8240 | 324 | 1368 | 8.4 1 | | | 1891.0 | 13.6 | 37.3 | 115 | | 1.66 | 1.23 | 8748 | 312 | 1332 | 8.4 1 | | | 1892.0 | | 37.5 | | | 1.79 | 1.34
1.42 | 9511
10011 | 469
307 | 1304
1272 | 8.4 1 | | | 1893.0
1894.0 | | 35.3
28.6 | | | 1.62
1.52 | 1.49 | 10500 | 300 | 1242 | 8.4 1 | | | 1895.0 | | 38.5 | | | 1.97 | i .67 | 11757 | 773 | 1228 | 8.4 1 | 19.1 | | 1896.0 | 4.5 | 37.8 | 115 | | 2.03 | 1.89 | 13304 | 951 | 1220 | 8.4 1 | | | 1897.0 | 14.4 | 37.1 | 115 | 9.2 | 1.63 | 1.96 | 13783 | 295 | 1194 | 8.4 | 17.1 | | | | | | | | | | | | | | | DEPTH | ROP | жом | RPM | MW | "d"c | HOURS | TURNS | ICOST | CCOST | pр | FG | |--|---|--|---|---|--|--|--|--|--|---|--| | 1898.0
1899.0
1900.0
1901.0
1902.0
1903.0
1904.0
1905.0
1906.0 | 24.0
6.8
8.8
20.6
17.8
8.4
32.7
20.9 | 35.0
34.6
35.3
37.5
34.9
34.3
35.7
36.3
37.0 | 115
115
115
115
115
115
115 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.68
1.44
1.85
1.80
1.49
1.53
1.79
1.36
1.51 | 2.05
2.09
2.24
2.35
2.40
2.58
2.61
2.64 | 14381
14669
15685
16471
16806
17193
18015
18226
18556
19125 | 368
177
624
483
206
238
505
130
203
350 | 1171
1144
1131
1114
1092
1071
1058
1037
1018
1003 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1 | | 1908.0
1909.0
1910.0
1911.0
1912.0
1913.0
1914.0
1915.0
1916.0 | 13.3
16.4
17.4
36.8
15.8
13.4
14.4 | 34.2
33.1
33.6
33.0
30.5
32.8
31.8
34.0
35.6 | 115
115
115
115
115
115 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.87
1.61
1.55
1.52
1.55
1.55
1.58
1.59
1.78 | 2.90
2.98
3.04
3.10
3.13
3.19
3.26
3.33
3.45
3.64 | 20791
21212
21609
21801
22238
22751
23231
24024 | 704.48
319.25
259.17
243.86
117.81
268.60
315.72
294.51
487.72
830.53 | 982.41
967.47
952.82
936.25
923.26
911.67
900.11
892.53 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.2 | | 1918.0
1919.0
1920.0
1921.0
1922.0
1923.0
1924.0
1925.0
1926.0 | 8.1
3.6
5.5
4.2
4.9
5.2
6.9
38.7 | 40.5
39.2
40.6
42.6
41.2
40.2
38.6
36.8
37.2 | 105
105
105
105
105
20
88
95 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.84
1.82
2.12
2.01
2.00
2.02
1.93
1.81
1.24 | 3.77
3.89
4.17
4.35
4.59
4.80
4.99
5.13
5.16
5.21 | 26807
28560
29715
31222
32513
33550
34310
34457 | 518.34
524.23
1180
777.52
1014
869.41
812.86
612.59
109.56
217.94 | 878.52
884
881.90
884
883.85
882.71
878.45
866.51 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.2 | | 1928.0
1929.0
1930.0
1931.0
1932.0
1933.0
1935.0
1935.0
1936.0 | 3.9
2.8
7.7
48.0
11.9
40.0
50.0 | 37.9
38.8
39.9
35.4
31.8
35.0
33.2
38.8
37.5 | 120
120
120
120
120
120 | 9.22
9.22
9.22
9.22
9.22
9.22 | 1.51
2.04
2.23
1.83
1.20
1.68
1.27
1.20
2.12
2.10 | 5.26
5.52
5.88
6.01
6.03
6.11
6.14
6.16
6.42
6.69 | 36551
39127
40065
40215
40819 | 1083
1517
552.51
88.35
355.77
106.03 | | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.2 | | 1938.0
1939.0
1940.0
1941.0
1942.0
1943.0
1944.0
1945.0
1946.0
1947.0 | 2.6
2.9
3.9
12.6
2.3
3.7
3.6
27.9 | 37.7
33.6
32.3
35.5
35.1
34.8
35.9
36.9 | 120
120
120
120
120
120
120 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 2.33
2.14
2.09
2.05
1.66
2.20
2.07
2.13
1.43
2.19 | 7.22
7.60
7.95
8.28
8.71
8.95
9.25
9.59 | 48809
51555
54049
55883
56455
59521
61467
63455
63713
65903 | 2269
1617
1469
1080
336.92
1806
1146
1171
151.97
1290 | 845
855
863
865
858,91
871
874
877
868,86 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.2 | | DEPTH | ROP | МОВ | RPM | MW | "d"c | HOURS | TURNS | ICOST | CCOST | рþ | FG | |--|---|--|--|---|--|--|--|--|--|---|--| | 1948.0
1949.0
1950.0
1951.0
1952.0
1953.0
1954.0
1955.0
1955.0 | 3.3
11.1
36.7
38.3
45.6
46.8
42.9
22.8
46.2 | 41.3
38.9
35.7
32.7 | 120
120
120
120
120
120
120
120 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | | 9.90
9.99
10.01
10.04
10.06
10.08
10.11
10.15
10.20 | 70061 | 110.74
93.07
90.71
98.96
186.13 | 864.25
855.82
847.38
839.10
831.09
824.19
816.43 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.2 | | 1958.0
1959.0
1960.0
1961.0
1962.0
1963.0
1964.0
1965.0
1966.0 | 17.1
28.1
32.7
44.4
37.5
37.9
53.7
28.1 | 34.4
33.1
30.9
31.6
28.5
29.3
29.6
31.9
33.7 | 120
110
97
120
120
120
120
120
120 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.29
1.51
1.29
1.32
1.18
1.25
1.25
1.16
1.39 | 10.22
10.28
10.32
10.35
10.37
10.40
10.42
10.44
10.48
10.50 | 70807
71013
71233
71395
71587
71777
71911 | 150.79
129.59
95.42
113.09
111.92
78.93
150.79 | 796.01
789.45
782.82
775.97
769.43
763.01
756.40 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.2 | | 1968.0
1969.0
1970.0
1971.0
1972.0
1973.0
1974.0
1975.0
1976.0 | 50.0
42.4
27.1
52.9
46.8
51.4
48.0
49.3 | 31.7
31.8
31.9
32.3
31.1
30.6
31.7
31.3
31.4 | 120
120
120
120
120
120
120
120 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.25
1.18
1.24
1.38
1.16
1.19
1.17
1.19
1.19 | 10.52
10.54
10.57
10.60
10.62
10.64
10.66
10.68
10.70 | 72493
72637
72807
73073
73209
73363
73503
73503
73799
73963 | 84.82
100.13
156.68
80.11
90.71
82.46
88.35
86.00 | 738.29
732.21
726.37
721.17
715.36
709.75
704.17
698.74
693.39
688.21 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.2 | | 1978.0
1979.0
1980.0
1981.0
1982.0
1983.0
1984.0
1985.0
1986.0 | 20.9
3.9
2.3
3.1
2.2
1.7
4.7
20.8 | 31.7
32.7
35.5
36.8
38.6
40.6
32.7
35.7
32.7 | 120
120
120
120
120
120
120
120 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.29
1.47
2.05
2.24
2.18
2.33
2.26
2.00
1.45 | 10.75
10.80
11.06
11.49
11.82
12.28
12.86
13.08
13.13 | 76377
79487
81815
85157
89341
90889
91235 | 1099
1832
1371
1969
2464
911.82
203.80 | 679.24
683 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.2
19.2
19.2
19.3
19.3
19.3
19.3 | | 1988.0
1989.0
1990.0
1991.0
1992.0
1993.0
1994.0
1995.0
1996.0 | 19.9
18.8
17.6
20.9
22.8
20.8
35.6
32.1 |
29.0
27.1
28.4
28.0
27.3
26.9
27.5
27.4
28.5 | 120
120
120
120
120
120
120 | 9,2
9,2
9,2
9,2
9,2
9,2 | 1.46
1.40
1.37
1.40
1.24 | 13.24
13.29
13.34
13.40
13.45
13.49
13.54
13.57
13.60
13.63 | 92435
92817
93225
93569
93885
94231
94433
94657 | 225.01
240.32
202.63
186.13
203.80
118.98
131.94 | 708.79
705.03
701.44
697.61 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3 | | HTGGG | ROP | MOB | RPM | MW | "d "c | HOURS | TURNS | rcost | CCOST | рþ | FG | |--|--|--|--|---|--|--|--|---|--|---|--| | 1998.0
1999.0
2000.0
2001.0
2002.0
2003.0
2064.0
2005.0
2006.0
2007.0 | 40.0
29.5
32.7
34.0
31.9
38.3
37.5
4.2 | 28.8
27.9
28.4
28.9
28.3
28.3
27.8
28.0
31.0
39.2 | 120
120
120
120
120
120
120 | 9.22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | 1.39
1.21
1.31
1.28
1.26
1.28
1.22
1.23
1.88
2.06 | 13.67
13.69
13.73
13.76
13.79
13.82
13.85
13.87
14.11 | 95337
95581
95801
96013
96239
96427
96419
97996 | 183.78
106.03
143.72
129.59
124.87
133.12
110.74
113.09
1003
1240 | 669.65
665.85
662.00
658.18
654.46
650.65
646.90 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.3
19.3
19.3
19.3
19.3
19.3
19.3 | | 2008.0
2009.0
2010.0
2011.0
2012.0
2013.0
2014.0
2015.0
2016.0 | 3.4
13.3
14.5
4.4
19.7
7.5
10.9
28.3 | 26.1 | 120
120 | 99999999999999999999999999999999999999 | 1.89
1.96
1.52
1.47
1.93
1.40
1.73
1.59 | 14.59
14.89
14.97
15.03
15.26
15.31
15.45
15.54
15.57 | 102259
102646
103000
104624
104990
105956
106614
106868 | 812.86
1262
318.08
292.16
956.58
215.58
569.00
387.58
149.61
272.13 | 659
656.34
653.90
655.91
653.00
652.45
650.73
647.48 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3 | | 2018.0
2019.0
2020.0
2021.0
2022.0
2023.0
2024.0
2025.0
2026.0
2027.0 | 3.8
3.7
4.2
3.0
3.4
4.1
48.0
50.1 | 33.1
32.4
34.8
31.2
33.3
39.6
38.7
30.1
35.0
32.7 | 120
90
90
90
90
90
120
120 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 2.02
2.00
1.96
1.86
2.01
2.07
1.99
1.18
1.22 | 15.90
16.17
16.44
16.68
17.01
17.31
17.55
17.55
17.59
17.68 | 115727
117317
118640
118790
118933 | 1122
1149
998.99
1433
1249
1039
88.35 | 651
654
656.53
661
665
667
663.77
660.25 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.3
19.3
19.3
19.3
19.3
19.3
19.3 | | 2028.0
2027.0
2030.0
2031.0
2032.0
2033.0
2034.0
2035.0
2036.0
2037.0 | 19.6
20.5
24.2
23.2
24.0
28.6
33.6 | 29.9
28.7 | 120
120
120
120
120
120
120
120 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.89
1.42
1.44
1.43
1.40
1.41
1.40
1.35 | 17.85
17.89
17.94
17.99
18.03
18.08
18.12
18.15
18.15 | 121087
121455
121807
122105
122415
122715
122967
123181 | 197,91
216,76
207,34
175,53 | 653.39
650.75
647.96
645.25
642.53
639.68
636.74 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.3
19.3
19.3
19.3
19.3
19.3
19.3 | | 2038.0
2039.0
2040.0
2041.0
2042.0
2043.0
2044.0
2045.0
2046.0
2047.0 | 33.3
38.7
44.4
32.1
27.5
40.4
41.9
27.3 | 33.2
32.5
32.7
31.6
31.5
31.5
30.8
32.4
32.7 | 120
120
120
120
120
120
120 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.37
1.38
1.28
1.22
1.32
1.37
1.25
1.23 | 18.24
18.27
18.30
18.32
18.35
18.35
18.41
18.44
18.47 | 123825
124011
124173
124397
124659
124837
125009
125273 | 144.90
127.23
109.56
95.42
131.94
154.33
104.85
101.31
155.50
147.26 | 628.11
625.20
622.25
619.53
616.97
614.16
611.36
608.89 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 19.3
19.3
19.3
19.3
19.3
19.3
19.3 | . . | DEPTH | ROP | MOB | RPM | MW | "d"c | HOURS | TURNS | ICOST | CCOST | РP | FG | |--|--|--|--|-------------------|------------------------------|--|--|---|--|--|--| | 2048.0
2049.0
2050.0
2051.0
2052.0
2053.0
2055.0
2055.0
2056.0 | 3.7
2.2
3.3
3.5
31.0
44.4
28.3
32.7 | 32.7
35.0
35.3
32.9
33.2
29.9
28.9
31.0
31.7 | 120
120
120
120
120
120
120
120 | | 2.06
2.05
1.31
1.19 | 18.55
18.82
19.28
19.58
19.87
19.90
19.93
19.96
19.99
20.04 | 125837
127777
131049
133257
135341
135573
135735
135989
136209
136533 | 184.95
1143
1927
1301
1228
136.65
95.42
149.61
129.59 | 604.14
607
614
618
621
618.32
615.60
613.19
610.70
608.56 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.3
19.4
19.4
19.4
19.4
19.4
19.4 | | 2058.0
2059.0
2060.0
2061.0
2062.0 | | 42.1 | 120
120
80
80
80 | 9.2
9.2
9.2 | •• • | 20.07
20.12
20.64
21.48
22.32 | 136781
137091
139603
143655
147694 | 146.08
182.60
2219
3580
3568 | 606.20
604.05
612
627
642 | | 19.4
19.4
19.4
19.4 | | BIT NUMBER 6 HTC J22 COST 6788.00 TOTAL HOURS 40.25 | SIZE
TRIP TIME | 517
12.250
7.3
180878 | INTERVAL
NOZZLES
BIT. RUN
CONDITION | 2062.0- 2477.6
15 15 15
415.6
T3 B3 G0.125 | |---|--|--|---|---| | DEPTH ROP WOE | RPM MW "d"c | HOURS | TURNS ICOST | CCOST PP FG | | 2063.0 4.5 21.9
2064.0 8.2 29.1
2065.0 7.0 33.7 | 78 9.2 1.58 | 0.22°
0.34
0.49 | 1014 941
1583 515
2292 604 | 38688 8.4 19.4
19602 8.4 19.4
13269 8.4 19.4 | | 2066.0 10.8 45.6 2067.0 31.3 46.0 2068.0 30.0 44.9 2069.0 31.3 43.0 2070.0 35.6 42.3 2071.0 24.7 40.4 2072.0 5.7 45.1 2073.0 6.9 45.2 2074.0 17.1 42.6 2075.0 42.4 43.0 | 92 9.2 1.40
91 9.2 1.40
80 9.2 1.32
82 9.2 1.27
81 9.2 1.38
69 9.2 1.89
63 9.2 1.79
59 9.2 1.42 | 0.58
0.61
0.64
0.68
0.70
0.74
0.92
1.07
1.12 | 2709 393 2886 135 3067 141 3219 135 3356 119 3553 172 4287 748 4837 613 5044 247 5131 100 | 10050 8.4 19.4
8067 8.4 19.4
6746 8.4 19.4
5802 8.4 19.4
5092 8.4 19.4
4545 8.4 19.4
4165 8.4 19.4
3842 8.4 19.4
3543 8.4 19.4
3278 8.4 19.4 | | 2076.0 20.7 45.2 2077.0 10.1 44.1 2078.0 40.4 42.2 2079.0 23.6 40.5 2080.0 46.2 46.6 2081.0 43.4 44.6 2082.0 11.4 44.6 2083.0 6.2 43.3 2084.0 5.0 38.6 2085.0 7.3 36.6 | 63 9.2 1.64
62 9.2 1.14
62 9.2 1.31
62 9.2 1.13
62 9.2 1.13
66 9.2 1.62
63 9.2 1.80
61 9.2 1.80 | 1.20
1.29
1.32
1.36
1.38
1.41
1.49
1.66
1.86 | 5311 205 5684 421 5777 105 5936 180 6016 92 6102 98 6449 371 7060 688 7298 852 8293 581 | 3058 8.4 19.4
2883 8.4 19.4
2709 8.4 19.4
2560 8.4 19.4
2423 8.4 19.4
2301 8.4 19.4
2204 8.4 19.4
2132 8.4 19.4
2074 8.4 19.4
2009 8.4 19.4 | | 2086.0 7.8 37.0 2087.0 10.2
36.6 2088.0 24.7 34.4 2089.0 25.2 35.2 2090.0 12.9 35.9 2091.0 12.9 36.2 2092.0 17.5 35.7 2093.0 16.2 36.2 2094.0 21.3 35.1 2095.0 22.8 35.0 | 60 9.2 1.53
60 9.2 1.21
59 9.2 1.22
60 9.2 1.44
60 9.2 1.45
60 9.2 1.34
65 9.2 1.40
61 9.2 1.28 | 2.12
2.22
2.26
2.30
2.38
2.45
2.57
2.57
2.66 | 8752 541 9105 416 9250 172 9391 168 9670 327 9948 329 10154 243 10393 262 10564 199 10725 186 | 1948 8.4 19.4
1886 8.4 19.4
1820 8.4 19.4
1759 8.4 19.4
1708 8.4 19.4
1661 8.4 19.4
1613 8.4 19.4
1570 8.4 19.4
1527 8.4 19.4
1486 8.4 19.4 | | 2096.0 29.3 34.6 2097.0 31.3 36.6 2098.0 55.4 33.2 2099.0 39.6 32.9 2100.0 46.8 33.0 2101.0 31.0 32.4 2102.0 19.1 36.6 2103.0 25.2 34.7 2104.0 21.1 36.3 2105.0 25.2 36.5 | 61 9.2 1.17
61 9.2 0.95
61 9.2 1.06
61 9.2 1.00
61 9.2 1.13
56 9.2 1.30
56 9.2 1.19
56 9.2 1.27 | 2.70
2.73
2.75
2.77
2.80
2.83
2.88
2.92
2.97 | 10849 145 10966 135 11031 77 11124 107 11202 91 11321 137 11497 221 11629 168 11790 201 11924 168 | 1447 8.4 19.4
1409 8.4 19.4
1372 8.4 19.4
1338 8.4 19.4
1305 8.4 19.4
1275 8.4 19.4
1249 8.4 19.4
1223 8.4 19.4
1198 8.4 19.4
1174 8.4 19.4 | | DEPTH | ROP | иов | RPM | MU | "d"c | HOURS | TURNS | ICOST | ccost | рþ | FG | |--|--|--|--|---|--|--|--|--|--|---|--| | 2106.0
2107.0
2108.0
2109.0
2110.0
2111.0
2111.0
2112.0
2113.0
2114.0
2115.0 | 29.5
32.1
26.5
27.9
24.3
33.0
32.1
26.1 | 35.7
36.3
35.8
36.8
35.5 | 56666555555555555555555555555555555555 | 9.222222
9.22222
9.2222 | 1.14
1.16
1.12
1.18
1.17
1.21
1.06
1.13
1.21 | 3.04
3.07
3.14
3.18
3.22
3.25
3.25
3.32
3.35 | 12032
12145
12249
12376
12497
12635
12719
12826
12959
13070 | 137
144
132
160
152
174
128
132
162.57 | 1151
1128
1107
1087
1067
1049
1031
1013
996.53 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.4
19.4
19.4
19.4
19.4
19.4
19.4
19.4 | | 2116.0
2117.0
2118.0
2119.0
2120.0
2121.0
2122.0
2123.0
2124.0
2125.0 | 38.3
22.8
23.1
20.6
15.1
29.3
36.7
40.9 | 35.2
35.1
36.0
36.7
38.1
37.1
35.3
33.7
33.7 | 58
58
58
58
58
57
61
61
61 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.15
1.07
1.25
1.25
1.30
1.39
1.18
1.09
1.05 | 3.38
3.41
3.45
3.50
3.55
3.61
3.67
3.70
3.73 | 13187
13277
13430
13581
13750
13977
14101
14201
14290
14395 | 110.74
186.13
183.78
206.16
280.38
144.90
115.45
103.67 | 899.40 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.4
19.4
19.4
19.5
19.5
19.5
19.5 | | 2126.0
2127.0
2128.0
2129.0
2130.0
2131.0
2132.0
2134.0
2135.0 | 47.4
47.4
35.6
35.3
28.1 | 36.2
34.9
35.7 | 57
56
58 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.06
1.00
1.00
1.09
1.11
1.17
1.56
1.79
1.57 | 3.75
3.77
3.79
3.82
3.85
3.89
4.00
4.26
4.38
4.43 | 14484
14561
14639
14742
14848
14966
15363
16225
16644
16811 | 89.53
89.53
118.98
120.16
150.79
490.07
1093
507.74 | 838.36
826.84
815.67
805.27
795.19
785.85
781.63
786
782.15
774.25 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5 | | 2136.0
2137.0
2138.0
2139.0
2140.0
2141.0
2142.0
2143.0
2144.0 | 21.3
27.1
32.4
22.8
26.9
5.0
25.5
41.9 | 34.5
34.2
33.8
34.0
32.6
34.8
34.8
27.7
26.7 | 57
57
53
60
64
90 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.22
1.25
1.16
1.11
1.18
1.19
1.75
1.25
1.09 | 4.47
4.55
4.55
4.63
4.66
4.86
4.90
4.95 | 18593
18721 | 199.09
156.68
130.76
186.13
157.86
842.31
166.11
101.31 | 766.22
758.66
750.74
742.69
735.55
728.24
729.66
722.71
715.13
707.76 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 19.5
19.5
19.5
19.5
19.5
19.5
19.5 | | 2146.0
2147.0
2148.0
2149.0
2150.0
2151.0
2152.0
2153.0
2154.0
2155.0 | 8.8
6.6
11.3
14.7
19.0
15.9
17.1 | 26.5
31.0
32.3
32.0
29.6
29.3
30.1
30.4
30.7 | 76
86
88
79
82
82
82
82 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1,56
1,41
1,34
1,40 | 4.97
5.08
5.23
5.32
5.39
5.44
5.51
5.63
5.69 | 20249
20718
21040
21299
21606
21892
22217 | 479.47
640.86
374.62
288.62
222.65
266.24
247.39
281.56 | 700.29
697.69
697.03
693.32
688.73
683.49
678.85
674.11
669.84
665.24 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5 | | DEPTH | ROP | acm | RPM | MW | "d "c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|--|--|--|---|--|--|--|--|--|---|--| | 2156.0
2157.0
2158.0
2159.0
2160.0
2161.0
2161.0
2163.0
2164.0
2165.0 | 15.6
39.6
35.6
32.1
34.6
32.4
42.9
40.4 | 30.7
30.5
28.1
27.6
26.6
25.5
26.2
27.6
27.2
28.4 | 82
81
80
81
82
82
82
82 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.34
1.41
1.10
1.12
1.14
1.11
1.14
1.07
1.08 | 5.74
5.80
5.83
5.86
5.99
5.95
5.95
5.97 | 22742
23055
23180
23314
23466
23761
23876
23997
24291 | 118.98
131.94
122.52
130.76
98.96
104.85 | | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5 | | 2166.0
2167.0
2168.0
2169.0
2170.0
2171.0
2172.0
2173.0
2174.0
2175.0 | 10.3
10.0
28.6
32.7
33.3
36.4
37.9
32.1 | 28.4
29.4
30.0
29.1
29.5
30.1
35.1
38.5
38.4
39.5 | 83
83
77
83
84
84
83
83 | 9.22
9.22
9.22
9.22
9.22
9.22 | 1.18
1.18
1.21
1.22 | 6.09
6.19
6.29
6.32
6.35
6.41
6.44
6.47 | 24477
24963
25424
25599
25753
25904
26042
26173
26329
26545 | 412.32
424.10
148.44
129.59
127.23
116.63
111.92
131.94 | 607.70
603.41
599.02
594.70
590.35
586.04 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5 | | 2176.0
2177.0
2178.0
2179.0
2180.0
2181.0
2182.0
2183.0
2184.0
2185.0 | 30.5
37.1
36.7
41.4
29.5
33.3
10.3
20.8 | 39.5
37.9
38.9
39.0
39.0
40.5
38.6
39.0 | 84
83
85
85
85
85
85
85
85
85 | 9,2
9,2
9,2
9,2 | 1.41
1.28
1.23
1.25
1.21
1.32
1.29
1.70
1.43 | 6.56
6.59
6.62
6.64
6.67
6.70
6.83
6.88
6.92 | 26927
27061
27199
27322
27495
27648
28151
28398 | 114.27
115.45
102.49
143.72 | 571.23
567.29
563.43
559.52
556.03
552.45
551.28
548.44 | 8.4
8.4
8.4
8.4
8.4 | 19.5
19.5 | | 2186.0
2187.0
2188.0
2189.0
2190.0
2191.0
2192.0
2193.0
2194.0
2195.0 | 23.4
25.9
26.9
29.8
46.2
38.7
7.1
8.3 | 38.3
38.1
39.1
38.3
37.6
36.7
36.7
39.8
38.9 | 83
83
83
84
85
84
82 | 9,2
9,2
9,2
9,2
9,2
9,2 | | 6.96
7.00
7.04
7.07
7.11
7.13
7.16
7.30
7.42
7.47 | 29016
29209
29395
29562
29672
29803
30518
31116 | 109.56
599.63 | 539.42
536.44
533.46
530.40
527.01
523.79
524.37
524.28 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.5
19.5
19.5
19.5
19.6
19.6
19.6
19.6 | | 2196.0
2197.0
2198.0
2199.0
2200.0
2201.0
2202.0
2203.0
2204.0
2205.0 | 5.9
5.5
5.0
9.9
4.7
5.4
4.6
6.0 | 38.8
40.1
38.7
39.3
38.7
36.7
38.8
40.1
39.2
36.6 | 84
84
84
84
83
85 |
9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.87
1.95 | 7.63
7.80
7.98
8.18
8.28
8.49
8.67
8.67
9.06 | 33037
33958
34971
35476
36539
37451
38554
39375 | | 524.55
526.37
528.74
528.00
530.64
532.41 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6 | And the second s | DEPTH | ROP | MOB | RPM | MW | "d"c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|--|--|--|---|--|--|--|--|--|---|--| | 2206.0
2207.0
2208.0
2209.0
2210.0
2211.0
2212.0
2213.0
2214.0
2215.0 | 5.8
4.1
5.3
4.9
5.0
7.0
8.2 | 38.4
38.9
38.7
35.7
37.0
38.9
39.1
39.0
38.4
37.3 | 86
86
85
76
84
85
85
85
85 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.47
1.77
1.86
1.89
1.86
1.92
1.91
1.79 | 9.14
9.27
9.44
9.69
9.88
10.08
10.29
10.43
10.55 | 40457
41337
42460
43422
44467
45487
46208
46832 | 874.12 | 531.43
532.81
536
538.10 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6 | | 2216.0
2217.0
2218.0
2219.0
2220.0
2221.0
2222.0
2223.0
2223.0
2224.0
2225.0 | 11.3
6.7
7.5
11.8
6.3
8.6
5.3 | 36.6
38.4
38.2
39.5
39.2
39.3
40.1
37.9
37.2 | 83
85
84
81
79
84
83
84
80 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.02
1.63
1.80
1.77
1.61
1.84
1.73
1.90
1.89 | 10.59
10.68
10.83
10.97
11.05
11.21
11.33
11.52
11.72 | 51635
52644 | 564.29
360.48
670.31
494.78 | 535.84
536.48
536.66
535.54
536.39
536.13
537.81
539.70 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6 | | 2226.0
2227.0
2228.0
2229.0
2230.0
2231.0
2232.0
2233.0
2233.0
2235.0 | 10.3
9.2
12.3
15.5
15.4
17.1
15.0
20.7 | | 74
81
83
83
83
83
81
79 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.59
1.52
1.52
1.44 | 12.05
12.15
12.26
12.34
12.41
12.47
12.53
12.60
12.64
12.70 | 54689
55228
55625
55946
56269
56559
56885
57114 | 460.62
345.17
274.49
275.67
247.39 | 541.09
540.60
539.43
537.86
536.30
534.60
533.13
531.22 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6 | | 2236.0
2237.0
2239.0
2240.0
2241.0
2242.0
2243.0
2244.0
2245.0 | 16.4
21.8
24.2
10.5
37.1
27.7
25.0
21.6 | 38.7
37.0
36.3
36.2
38.8
35.4
36.1
36.3
36.9 | 82 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.30 | 12.76
12.82
12.87
12.91
13.01
13.03
13.07
13.11
13.15 | 57996
58221
58425
58895
59027
59205
59395 | 257.99
194.38
175.53
404.07
114.27
153.15
169.64 | 527.99
526.45
524.56
522.59
521.92
519.64
517.61
515.68
513.93
512.10 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6 | | 2246.0
2247.0
2248.0
2249.0
2250.0
2251.0
2252.0
2253.0
2254.0
2255.0 | 21.3
26.5
27.3
18.4
28.8
27.1
34.0
28.3 | 36.8
37.1
37.0
36.8
37.9
37.5
38.2
37.2 | 83
83
83
83
83
84
85 | 9,2
9,2
9,2
9,2
9,2
9,2 | 1.31 | 13.24
13.28
13.32
13.36
13.41
13.45
13.49
13.51
13.55 | 60274
60463
60646
60919
61092
61276
61424 | 199.09
160.22
155.50
230.90
147.26
156.68
124.87 | 510.27
508.58
506.71
504.83
503.38
501.49
499.68
497.72
495.90
494.36 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6 | | DEPTH | ROP | MOB | RPM | MW | "d"c | HOURS | TURNS | ICOST | CCOST | PР | FG | |--|---|--|--|---|--|--|--|--|--|--|--| | 2256.0
2257.0
2258.0
2259.0
2260.0
2261.0
2262.0
2263.0
2264.0
2265.0 | 31.6
28.1
26.9
8.8
10.3
8.4
14.6 | 36.5
38.3
38.3
39.0 | 85
85
85
87
85
81
79
83 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.34
1.27
1.33
1.72
1.66
1.72
1.63
1.47 | 13.63
13.67
13.70
13.74
13.85
13.95
14.07
14.14 | 62039
62201
62382
62573
63159
63658
64240
64564
65020
65301 | 134.30
150.79
157.86
479.47
413.50
506.56
289.80 | 486.09
485.62 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.7 | | 2266.0
2267.0
2269.0
2269.0
2270.0
2271.0
2272.0
2273.0
2274.0
2275.0 | 5.8
7.7
6.8
7.4
6.1
7.0
12.8
13.5 | 39.8
41.6
39.9
40.9
40.5
40.6
39.8
40.4
35.0 | 81
87
87
87
87
80
84
80
64 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.84
1.91
1.79
1.84
1.81
1.87
1.80
1.60
1.58 | 14.45
14.62
14.75
14.90
15.04
15.34
15.42
15.42
15.58 | 67001
67683
68453
69158
70013 | 697.41
737.46
553.69
622.01
570.18
697.41
601.99
331.03
313.36
347.53 | 489.04
489.58
488.83
488.00 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.7
19.7
19.7
19.7
19.7
19.7
19.7 | | 2276.0
2277.0
2278.0
2279.0
2280.0
2281.0
2283.0
2283.0
2284.0
2285.0 | 13.8
13.8
18.2
6.3
12.5
11.0
14.6
15.5 | 35.8 | 63
62
62
76
69
66
65
65 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.51
1.43
1.45
1.34
1.78
1.49
1.53
1.43 | 15.67
15.74
15.82
15.87
16.03
16.11
16.20
16.27
16.33
16.39 | 72121
72393
72665
72869
73599
73930
74291
74562
74815
75049 | 407.61
307.47
307.47
233.26
676.20
338.10
385.22
290.98
273.31
253.28 | 485.31 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.7
19.7
19.7
19.7
19.7
19.7
19.7 | | 2286.0
2287.0
2289.0
2289.0
2290.0
2291.0
2293.0
2293.0
2295.0 | 6.8
7.3
6.7
5.6
10.1
11.5
7.9 | 35.2
36.3
36.4
36.9
32.0
32.2
31.4
31.3 | 65
62
56
71
91
88
88
65
65 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.39
1.67
1.61
1.72
1.86
1.59
1.55
1.67 | 16.46
16.61
16.74
16.89
17.07
17.17
17.26
17.38
17.46
17.55 | 75843
76303
76939
77909
78430
78889
79561
79879 | 266.24
627.90
581.96
636.15
755.13
418.21
368.78
538.37
345.17
364.02 | 480.76
481.21
481.89
483.09
482.80
482.31
482.55
481.96 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.7
19.7
19.7
19.7
19.7
19.7
19.7 | | 2296.0
2297.0
2298.0
2299.0
2300.0
2301.0
2302.0
2303.0
2304.0
2305.0 | 10.3
18.0
4.9
6.2
5.8
8.6
13.4
16.2 | 31.4
31.4
30.1
32.0
33.3
30.9
31.1
30.0
30.7 | 65
66
65
75
91
84
70
70
70 | 9.222222
9.22222
9.2222 | 1.45
1.48
1.29
1.77
1.78
1.73
1.56
1.40
1.35 | 17.64
17.73
17.79
17.99
18.16
18.33
18.44
18.52
18.58 | 80938
81154
82072
82953
83813
84301
84613
84870 | 372.27
409.96
235.61
863.51
683.27
725.68
491.25
315.72
261.53
227.36 | 480.68
479.65
481.27
482.11
483.13
483.17
482.47
481.56 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.7
19.7
19.7
19.7
19.7
19.7
19.7 | | DEPTH | ROP | wob | RPM | мы | "d "c | HOURS | TURNS | ICOST | CCOST | pр | FG | |--|---|--|---|---
--|--|--|--|--|--|--| | 2306.0
2307.0
2308.0
2309.0
2310.0
2311.0
2312.0
2313.0
2314.0
2315.0 | 13.9
6.3
15.9
6.1
24.8
22.9
23.0
21.2 | 30.1
30.1
31.9
31.0
34.2
40.8
41.0
39.7
41.2
41.4 | 101
102
102 | 9.2222
9.2222
9.222
9.222 | 1.35
1.39
1.71
1.44
1.81
1.45
1.48
1.47 | 18.69
18.77
18.93
18.99
19.15
19.19
19.24
19.28
19.33 | 85653
86422
86757
87682
87924
88188
88454
88745 | 263.88
305.12
675.03
267.42
699.77
170.82
185.20
184.37
200.27
226.19 | 478.91
479.71
478.85
479.74
478.50
477.33
476.16
475.07 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.7
19.7
19.7
19.7
19.7
19.7
19.7 | | 2316.0
2317.0
2318.0
2319.0
2320.0
2321.0
2322.0
2323.0
2324.0
2325.0 | 4.9
9.0
8.2
4.7
13.4
14.3
10.7 | 40,8 | 100
85
84
68
64
63
62
62
61
63 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.47
1.95
1.74
1.69
1.53
1.58
1.58 | 19.42
19.63
19.74
19.86
20.07
20.15
20.22
20.31
20.38
20.46 | 90374
90936
91433
92243
92523
92784
93134
93400 | 180.24
872.94
473.58
515.99
896.50
315.72
295.69
395.83
306.29 | 474.49
474.65
476.29
475.67
474.97
474.67
474.03 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.7
19.7
19.7
19.7
19.7
19.7
19.7
19.7 | | 2326.0
2327.0
2328.0
2329.0
2330.0
2331.0
2332.0
2333.0
2335.0 | 14.9
11.8
17.4
12.2
5.7
7.6
4.7 | 40.1
39.6
40.2
39.1
39.1
40.0
40.6
41.4
41.6
41.1 | 63
62
67
85
87
95
97
65 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.48
1.45
1.56
1.50
1.62
1.89
1.83
2.02
2.00
1.82 | 20.53
20.60
20.69
20.74
20.82
21.00
21.13
21.34
21.56
21.74 | 94212
94555
94848
95269
96182
96931
98191
99384 | 300.40
285.09
359.31
243.86
346.35
741.00
558.40
896.50
925.95
770.45 | 472.13
471.70
470.85
470.38
471.39
471.71
473.28
474.94 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.7
19.7
19.7
19.7
19.7
19.7
19.7 | | 2336.0
2337.0
2338.0
2339.0
2340.0
2341.0
2342.0
2343.0
2344.0 | 4.1
12.8
20.8
16.6
18.6
21.3
25.0
29.5 | 37.2 | 60
57
65
80
80
78
90
88
83 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.89
1.86
1.49
1.41
1.51
1.45
1.46
1.38
1.30 | 22.00
22.25
22.32
22.37
22.43
22.49
22.53
22.57
22.61
22.76 | 102397
102688
102941
103194
103406
103574 | 1046
332.21 | 478.80
477.99
477.10
476.11
475.02
473.84 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.7
19.7
19.8
19.8
19.8
19.8
19.8 | | 2346.0
2347.0
2348.0
2349.0
2350.0
2351.0
2352.0
2353.0
2354.0 | 17.1
8.0
15.1
10.0
9.3
4.3
4.8
6.7 | 40.7
40.7
37.8
36.4
37.8
36.5
39.2
45.0
43.8
43.6 | 68
66
72
83
84
83
86
89
83 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.77
1.44
1.68
1.50
1.66
1.66
1.97
2.03
1.88 | 22.91
22.97
23.10
23.16
23.26
23.37
23.60
23.81
23.96
24.07 | 105172
105713
106045
106549
107081
108274
109391
110143 | 656.18
248.57
531.30
281.56
424.10
455.91
978.96
888.25
637.33
485.36 | 474.26
474.46
473.79
473.62
473.55
475.30
476.72
477.27 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8 | . | DEPTH | ROP | мов | RPM | MW | "d "c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|--|--|--|--|--|--|--|--|--|--|--| | 2356.0
2357.0
2358.0
2359.0
2360.0
2361.0
2362.0
2363.0
2364.0 | 5.6
12.3
16.5
16.9
11.7
12.1
15.5 | | 83
69
73
82
90
71
71
72
72
82 | 9.2
9.2
9.2 | 1.84
1.85
1.61
1.53
1.53
1.56
1.48
1.49 | 24.22
24.40
24.48
24.54
24.60
24.68
24.76
24.83
24.89
24.95 | 112155
112510
112808
113129
113495
113848
114128 | 600.81
759.85
343.99
256.82
250.93
364.02
349.88
274.49
269.77
261.53 | 478.67
478.22
477.47
476.71
476.33
475.91
475.24
474.56 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8 | | 2366.0
2367.0
2368.0
2369.0
2370.0
2371.0
2372.0
2373.0
2374.0
2375.0 | 11.4
10.1
5.5
5.1
20.7
9.1
4.2 | 38.6
38.8
39.4
37.7
40.3
39.2
39.5 | 88
65
77
85
85
88
83
83 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.43
1.56
1.63
1.84
1.42
1.73
1.97
1.97 | 25.00
25.09
25.19
25.37
25.57
25.61
25.72
25.96
26.20
26.35 | 117638
118193
119390
120588 | 197.91
372.27
418.21
773.98
830.53
204.98
464.15
1015
1008
614.95 | 474.58
473.71
473.68
475
477 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8 | | 2376.0
2377.0
2378.0
2379.0
2380.0
2381.0
2382.0
2383.0
2384.0
2385.0 | 8.2
9.9
22.0
17.4
15.5 | 39.9
41.2
39.9
39.4
35.9
36.4 | 84
731
70
72
72
72
72
72 | 9.22
9.22
9.22
9.22
9.22
9.22
9.22 | 1.97
1.87
1.62
1.69
1.63
1.33
1.41
1.47 | 26.59
26.79
26.88
27.01
27.11
27.15
27.21
27.27
27.33
27.39 | 122563
123440
123831
124345
124771
124968
125216
125496
125751
125988 | 389.94
515.99
429.99
193.20
243.86
274.49
250.93 | 477.24 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.8
19.8
19.8
19.8
19.8
19.8
19.8 | | 2384.0
2387.0
2388.0
2389.0
2390.0
2391.0
2392.0
2393.0
2394.0
2395.0 | 10.7
6.3
10.9
15.7
12.4
13.4
11.0 | 41.6
42.4
43.8
44.0
43.2
44.2
43.8
44.1
46.5 | 71
72
72
74
73
73
73
64 | 9.2
9.2
9.2
9.2
9.2 | 1.47
1.64
1.85
1.66
1.53
1.62
1.59
1.66
1.56 | 27.45
27.54
27.70
27.79
27.86
27.94
28.01
28.10
28.18
28.25 | 126643
127334
127739
128020
128375
128700
129097
129430 | 248.57
395.83
675.03
388.76
269.77
341.64
316.90
384.05
323.97
306.29 | 475.53
476.14
475.87
475.25
474.84
474.36
474.09
473.64 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8 | | 2396.0
2397.0
2398.0
2399.0
2400.0
2401.0
2402.0
2403.0
2404.0
2405.0 | 17.7
6.5
9.9
11.4
14.5
13.8
12.8
15.3 | 47.5
44.8
43.5
43.4
42.9
43.4
41.6
41.3 | 64
64
65
66
65
65
65
65
65 | 9,2
9,2
9,2
9,2
9,2
9,2 | 1.53
1.56 | 28.31
28.36
28.52
28.62
28.71
28.78
28.85
28.93
28.99
29.04 | 130151
130747
131147
131492
131758
132040
132346 | 249.75
239.15
647.93
428.81
371.09
292.16
306.29
332.21
276.84
203.80 | 471.77
472.29
472.16
471.86
471.33
470.85
470.44
469.88 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8 | • | DEPTH | ROP | MOB | RPM | мш | "d "c | HOURS | TURNS | rcost | ccost | PP | FG | |--|--|--|--|---|--|--|--|--|---
--|--| | 2406.0
2407.0
2408.0
2409.0
2410.0
2411.0
2412.0
2413.0
2414.0
2415.0 | 15.6
16.2
18.9
16.7
15.3
12.9
10.1 | 41.7
42.8
43.4
42.6
42.9
42.7
43.0
42.9
41.8
42.6 | 64
65
64
64
64
64
65
66 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.47
1.48
1.47
1.41
1.46
1.48
1.55
1.63
1.62
2.13 | 29.10
29.17
29.23
29.28
29.34
29.41
29.49
29.58
29.68
30.10 | 133275
133513
133716
133947
134197
134496
134878 | 275.67
272.13
261.53
223.83
254.46
278.02
329.86
419.39
411.14
1786 | 467.97
467.37
466.67
466.06
465.52
465.13
465.00 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8 | | 2416.0
2417.0
2418.0
2419.0
2420.0
2421.0
2422.0
2423.0
2424.0
2425.0 | 9.1
15.0
13.1
12.1
15.8
7.7
2.8
3.4 | 42.5
41.8
40.8
41.5
41.0
40.9
42.2
42.1
40.7
39.5 | 66
62
72
66
63
64
72
85 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.95
1.65
1.46
1.56
1.71
2.10
2.06 | 30.35
30.46
30.53
30.61
30.69
30.75
30.88
31.24
31.54
31.69 | 138594
138921
139247
139486
139982
141543 | 1064
466.51
282.73
322.79
349.88
268.60
547.80
1533
1248
658.53 | 470
470.26
469.74
469.33
468.99
468.43
468.65
472
474
474.25 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9 | | 2426.0
2427.0
2428.0
2429.0
2430.0
2431.0
2432.0
2433.0
2433.0 | 18.5
17.3
16.9
12.8
11.6
2.6
3.3 | 39.2
40.5 | 83
84
82
81
84
83
69
65 | 9.22
9.22
9.22
9.22
9.22 | 1.57
1.49
1.48
1.51
1.49
1.60
1.63
2.07
1.96 | 31.77
31.82
31.88
31.94
31.99
32.07
32.16
32.54
32.54
32.85 | | 245.04
250.93
332.21 | 472.51
471.89 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9 | | 2436.0
2437.0
2438.0
2439.0
2440.0
2441.0
2442.0
2443.0
2444.0 | 3.3
3.6
3.2
3.7
4.5
10.3
9.8 | 39.3
39.4
39.7
39.8
39.3
39.5
37.8
37.8 | 68
66
67
65
64
64
65
65 | 9,2
9,2
9,2
9,2
9,2
9,2
9,2 | 1.95
1.97
1.95
1.99
1.93
1.58
1.58
1.57 | 33.38
33.69
33.96
34.28
34.54
34.77
34.87
34.97
35.07 | 156893
157285
157671 | 1173
1302
1170
1338
1137
949.51
411.14
433.52
422.92
387.58 | 488.31
488.14 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.9
19.9
19.9
19.9
19.9
19.9
19.9 | | 2446.0
2447.0
2448.0
2449.0
2450.0
2451.0
2452.0
2453.0
2454.0 | 10.6
9.2
9.7
9.6 | 35.8
36.8
36.0
36.4
36.3
38.0
38.7
37.3 | 64
64
65
64
64
65
67
92 | 9.2222
9.2222
9.2222
9.222 | 1.33
1.36
1.63
1.53
1.58
1.56
1.59
1.62
1.63 | 35.21
35.27
35.39
35.49
35.60
35.70
35.80
35.91
36.00
36.08 | 158440
158926
159288
159707
160104
160509
160940
161417 | 219.12
240.32
532.48
399.36
461.80
437.06
442.95
457.09
371.09
352.24 | 486.53
486.65
486.36
486.24
486.13
486.05
485.76 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.9
19.9
19.9
19.9
19.9
19.9
19.9 | | DEPTH | ROP | MOB | RPM | MW | "d "c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|-----------------------------|--|--|---|--|--|--|--|--|---|--| | 2456.0
2457.0
2458.0
2459.0
2460.0
2461.0
2462.0
2463.0
2464.0 | 5.4
10.9
17.2
13.3 | 38.8
37.4
38.6
40.1
39.4
39.5
39.3 | 928
777
775
781
81 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.88
1.62
1.45
1.55
1.61
1.43
1.42
1.94 | 36.26
36.45
36.54
36.60
36.67
36.76
36.81
36.86
37.09
37.25 | 163855
164280
164548 | 775.16
779.87
388.76
246.21
319.25
369.91
214.41
206.16
955.40
705.66 | 486.15
486.90
486.65
486.04
485.63
485.34
484.66
483.96
485.14
485.68 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9 | | 2466.0
2467.0
2468.0
2469.0
2470.0
2471.0
2472.0
2473.0
2473.0
2475.0 | 2,9
3,2
4,4 | 38.4
38.7
37.0
34.4
35.4
35.8
35.8 | 81
62
69
80
80
73
70
69
71 | 99.22222222222222222222222222222222222 | 2.07
1.95
1.86
1.74
1.67
1.84
1.57
1.59
1.68
2.04 | 37.59
37.90
38.13
38.29
38.41
38.61
38.71
38.82
38.96
39.36 | 169329
170480
171427
172173
172752
173656
174076
174522
175119
176816 | 1456
1306
970.72
660.89
512.45
871.76
426.46
454.73
605.52
1691 | 488
490
491.29
491.71
491.76
492.69
492.53
492.43
492.71
496 | 8.4
8.4
8.4
8.4
8.4
8.4 | 19.9
19.9
19.9
19.9
19.9
19.9
19.9 | | 2476.0
2477.0
2477.6 | 2.8 | 40.9
38.1
38.6 | 75
75
80 | 9.2 | 1.97
2.05
2.16 | 39.62
39.97
40.25 | 177946
179547
180878 | 1070
1510
1965 | 497
499
502 | 8.4 | 19.9
19.9
19.5 | 2477,6- 2636,0 517 INTERVAL 7 IADC CODE BIT NUMBER 15 15 15 12.250 NOZZLES SIZE HTC J22 158.4 BIT RUN 6788.00 TRIP TIME 7.6 COST T4 B8 G0.250 TOTAL HOURS 20.78 TOTAL TURNS 90559 CONDITION PP FG CCOST MW "d"c ICOST WOB RPM HOURS TURNS DEPTH ROP 19,9 0.26 783 2768 100317 8.4 9.2 1.76 1,5 19.8 50 2478.0 19.9 9.2 1.65 0.70 1975 1877 30003 8.4 45 2479.0 2.3 21.1 0,92 2691 931 17889 8,4 19,9 9.2 1.60 4,6 26.3 54 2480.0 1.05 536 12785 8.4 19.9 71 9.2 1.55 3229 7.9 28.3 2481.0 19.9 3729 491 9991 8.4 9.2 1.54 1.17 72 2482.0 8.6 29.1 19.9 390 8213 8.4 9.2 1.48 1.26 4146 76 2483.0 10.9 28.8 19.9 9.5 29.4 9.2 1.53 4627 444 6999 8.4 1.36 76 2484.0 19.9 1.45 5045 388 6106 8.4 76 9.2 1.49 2485.0 10.9 29.5 1.53 5420 8.4 19.9 5420 346 77 9.2 1.44 2486.0 12,2 28,5 19.9 233 4868 8.4 1.59 5672 9.2 1.32 2487.0 18.2 28.8 76 4426 8.4 19.9 15.9 28.6 9.2 1.36 1.65 5962 266 2488.0 77 8.4 19.9 4059 17.3 28.7 2489.0 76 9.2 1.34 1.71 6227 245 8.4 19.9 14.0 29.3 9.2 1.37 1.78 6519 304 3756 2490.0 68 1.84 6786 245 3494 8.4 19.9 2491.0 17.3 28.7 77 9.2 1.34 1.97 7342 561 3291 8.4 19.9 2492.0 7.6 30.0 70 9.2 1.58 29.7 1.40 2.04 296 3096 8.4 19.9 74 9.2 7650 14.3 2493.0 1.46 344 2928 8.4 19.9 76 9.2 2.12 8018 12.3 30,4 2494.0 2495.0 30.6 78 2.19 8322 277 2776 8.4 20.0 15.3 9.2 1.40 2.27 8691 342 2644 8.4 20.0 12.4 31.9 76 9.2 1.48 2496.0 1.77 2.46 9563 814 2549 8.4 20.0 2497.0 5.2 33.3 76 9.2 9.7 8,4 20.0 76 9.2 1,60 2.56 10037 439 2446 2498.0 34,8 35.1 75 10444 384 2350 8.4 20.0 11.0 9.2 1.55 2.66 2499.0 74 9.2 1.67 2.77 10967 502 2267 8,4 20,0 8.5 37.5 2500.0 2192 8.4 20.0 76 9,2 1,65 2.89 11507 505 2501.0 8.4 35.6 15.1 9.2 1.44 2.96 280 2113 8.4 20.0 2502.0 33.2 78 11815 77 9.2 1.48 3.03 319 2043 8.4 20.0 13.3 33.5 12162 2503.0 78 1,44 15.8 34.5 9.2 3.10 12457 269 1976 8.4 20.0 2504.0 76 1.45 1914 34.5 9.2 12761 283 8.4 20.0 2505.0 15.0 3.16 76 1,48 1857 20.0 2506.0 9.2 3,24 13096 312 8.4 13.6 34.4 76 1.42 266 3.30 1803 8.4 20.0 2507.0 15.9 33.1 9.2 13381 1.49 20.0 12.7 74 13730 333 1755 8.4 2508.0 9.2 3.38 33.8 72 1.40 14000 264 1707 8.4 20.0 2509.0 32.9 9.2 3.44 16.1 8,4 20.0 3.50 245 17.3 33.8 72 9.2 1.38 14251 1662 2510.0 297 1621 8.4 20.0 14.3 33.0 77 9.2 1.46 3.57 14576 2511.0 8.4 20.0 77 9.2 3,64 14900 297 1583 2512.0 14.3 33,3 1,46 8.4 14.5 77 9.2 292 1546 20.0 33.7 3.71 15219 2513.0 1.46 78 3,78 296 1512 8.4 20.0 1.45 15546 2514.0 14.3 33.4 9.3 343 1481 8.4 20.0 78 15924 2515.0 12.4 32.9 9.3 1.49 3.86 1454 8.4 20.0 9.1 31.5 78 9.3 1.56 3,97 16435 465 2516.0 8.4 77 1426 20.0 2517.0 12.1 32.2 9.3 1.48 4.05 16815 351 12.5 76 9.3 1,45 4.13 17180 338 1399 8.4 20.0 2518.0 31.0 1373 13.2 30.5 72 9.3 4.21 17507 322 8.4 20.0 2519.0 1.41 73 9.3 1.42 4,28 17842 324 1349 8.4 20.0 2520.0 13.1 31.0 | | | | · | | | | 1900 1 1 004 5 1 200 | | | m.m. | | |--------|------|------|-----|-----|-------|-------|----------------------|--------|----------|------|------| | DEPTH | ROP | MOB | RPM | MW | "d "c | HOURS | TURNS | ICOST | CCOST | PP | FG | | 2521.0 | 11.4 | 30.8 | 75 | 9.3 | 1.47 | 4,37 | 18236 | 373 | 1326 | 8.4 | 20.0 | | 2522.0 | | 31.4 | 76 | 9.3 | 1.44 | 4.45 | 18589 | 330 | 1304 | 8.4 | 20.0 | | 2523.0 | | 31.9 | 75 | 9.3 | 1.47 | 4.53 | 18967 | 356 | 1283 | 8.4 | 20.0 | | 2524.0 | | 31.8 | 75 | 9.3 | 1.46 | 4.61 | 19330 | 340 | 1263 | 8.4 | 20.1 | | 2525.0 | | 31.6 | 75 | | 1,46 | 4.70 | 19700 | 349 | 1243 | 8,4 | 20.0 | | 2526.0 | | 31.5 | 76 | | 1.42 | 4.77 | 20027 | 304 | 1224 | 8.4 | 20.0 | | 2527.0 | | 32.6 | 75 | 9.3 | 1.52 | 4,86 | 20461 | 409 |
1207 | 8.4 | 20.0 | | 2528.0 | 13.2 | 32.3 | 72 | 9.3 | 1,43 | 4.94 | 2078 9 | 320 | 1190 | 8.4 | 20.0 | | 2529.0 | 13.5 | 30.9 | 68 | 9.3 | 1.39 | 5.01 | 21092 | 315 | 1173 | | 20.0 | | 2530.0 | 10.9 | 31.2 | 74 | 9.3 | 1.49 | 5.10 | 21500 | 390 | 1158 | 8.4 | 20.0 | | 2531.0 | 12.2 | 31.8 | 74 | 9.3 | 1.46 | 5.19 | 21864 | 346 | 1143 | 8.4 | 20.0 | | 2532.0 | | 30.7 | 76 | | 1.45 | 5.27 | 22237 | 349 | 1128 | 8.4 | 20.0 | | 2533.0 | | 30.5 | 76 | | 1.45 | 5.35 | 22605 | 340 | 1114 | 8.4 | 20.0 | | 2534.0 | 12.1 | 33.1 | 76 | 9.3 | 1.49 | 5.43 | 22982 | 351 | 1100 | 8.4 | 20.0 | | 2535.0 | 3.1 | 36.5 | 76 | 9.2 | 1.99 | 5.75 | 24444 | 1354 | 1105 | 8.4 | 20.0 | | 2536.0 | 3.7 | 37.5 | 76 | 9.2 | 1.95 | 6.02 | 25685 | 1158 | 1106 | 8,4 | 20.0 | | 2537.0 | 3.4 | 33.8 | 76 | 9.2 | 1.92 | 6.32 | 27048 | 1262 | 1108 | 8.4 | 20.0 | | 2538.0 | 6.5 | 32.8 | 76 | 9.2 | 1.70 | 6.48 | 27753 | 655 | 1101 | 8.4 | 20.0 | | 2539.0 | 13.4 | 32.4 | 74 | | 1.46 | 6.55 | 28085 | 317 | 1088 | | 20.0 | | 2540.0 | 10.9 | 32.7 | 75 | 8.2 | 1.53 | 6.64 | 28497 | 389 | 1077 | 8.4 | 20.0 | | 2541.0 | 11.0 | 31.5 | 76 | 9.2 | 1.51 | 6.73 | 28908 | 384 | 1066 | 8.4 | 20.0 | | 2542,0 | | 32.6 | 76 | | 1.55 | 6.83 | 29355 | 415 | 1056 | 8.4 | 20.0 | | 2543.0 | | 33.8 | 76 | | 1.61 | 6.94 | 29857 | 465 | 1047 | 8.4 | 20.0 | | 2544.0 | | 32.3 | 76 | | 1.56 | 7.04 | 30328 | 437 | 1038 | 8,4 | 20.0 | | 2545.0 | 10.8 | 33.4 | 76 | 9.2 | 1.54 | 7.14 | 30749 | 392 | 1028 | 8.4 | 20.0 | | 2546.0 | 10.7 | 33.2 | 76 | | 1,54 | 7.23 | 31174 | 397 | 1019 | | 20.0 | | 2547.0 | 5.4 | 33.7 | 75 | | 1.76 | 7.41 | 32007 | 786 | 1015 | | 20.0 | | 2548.0 | 8.9 | 33.5 | 69 | | 1.57 | 7.53 | 32468 | 475 | 1008 | | 20.0 | | 2549.0 | 4.4 | 33.1 | 69 | | 1.80 | 7.75 | 33413 | 965 | 1007 | | 20.0 | | 2550.0 | 3.6 | 34.8 | 72 | 9.2 | 1.90 | 8.03 | 34599 | 1167 | 1009 | 8.4 | 20.0 | | 2551.0 | 5.9 | 34.3 | 76 | 9.2 | 1.75 | 8.20 | 35372 | 717 | 1005 | 8.4 | 20.0 | | 2552.0 | 10.7 | 32.3 | 77 | 9.2 | 1.54 | 8.29 | 35805 | 397.00 | 997.14 | 8.4 | 20.0 | | 2553.0 | 10.8 | 33.6 | 77 | 9.2 | 1.55 | 8.39 | 36234 | 393,47 | 989.13 | 8.4 | 20.0 | | 2554.0 | 2.3 | 36.7 | 74 | 9.2 | 2.09 | 8.83 | 38197 | 1881 | 1001 | | 20.0 | | 2555.0 | | 32.7 | 78 | 9.2 | 1.99 | 9.20 | 39964 | | 1008 | | 20.0 | | 2556.0 | 12.0 | 32.1 | 77 | | 1.50 | 9.29 | 40348 | 355 | 1000 | | 20.0 | | 2557.0 | | 40.5 | 59 | | 1.60 | 9.39 | | 446.48 | | | 20.0 | | 2558.0 | | 39.9 | 55 | | 1.66 | 9.53 | 41181 | | | | 20.0 | | 2559.0 | | 39.6 | 56 | | 1.61 | 9.66 | | 518.34 | | | 20.0 | | 2560.0 | 10.9 | 40.8 | 56 | 9,2 | 1.53 | 9.75 | 41896 | 387.58 | 975.18 | 8.4 | 20.0 | | 2561.0 | 3.5 | 42.5 | 67 | 9.2 | 2.00 | 10.03 | 43047 | 1208 | 978 | 8.4 | 20.0 | | 2562.0 | 4.5 | 42.8 | 67 | 9.2 | 1.92 | 10.25 | 43945 | 944.80 | 977.58 | 8.4 | 20.0 | | 2563.0 | 16.8 | 41.2 | 66 | 9.2 | 1.45 | 10.31 | | 252.10 | | 8.4 | 20.0 | | 2564.0 | | 41.8 | 67 | | 1.64 | 10.42 | | 434.70 | | 8.4 | 20.0 | | 2565.0 | | 42.9 | 67 | 9.2 | 2.03 | 10.72 | 45827 | 1297 | 967 | 8.4 | 20.0 | | 2566.0 | | 42.8 | 69 | | 1.26 | 10.96 | 46831 | 1025 | 967 | 8.4 | | | 2567.0 | | 37.4 | 25 | | 1.89 | 11.19 | | 966.01 | | | 20.0 | | 2568.0 | | 34.0 | 79 | | 1.98 | 11.53 | 49448 | 1429 | 972 | | 20.0 | | 2569.0 | | 38.0 | 78 | | 1.66 | 11.63 | | 446.48 | | | 20.0 | | 2570.0 | 16.2 | 38.3 | 79 | 9.2 | 1.49 | 11.70 | 50236 | 261.53 | APA ' 68 | 8.4 | 20.0 | | DEPTH | ROP V | JOB R | WM M9 | "d"c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|---|--|--|--|--|--|--|--|--|--| | 2572.0
2573.0
2574.0
2575.0
2576.0
2577.0
2578.0
2579.0 | 14.9 40
19.7 39
4.0 43
4.0 43 | 7.9
0.9
7.0
3.6
2.5
3.6
3.3 | 73 9.2
76 9.2
80 9.2
74 9.2
76 9.2 | 2.01
2.00
2.01
1.83 | 11.77
11.86
11.92
11.97
12.22
12.47
12.72
12.86
12.94
13.04 | 50576
50969
51274
51519
52625
53757
54875
55523
55907
56348 | 299.23
380.51
283.91
215.58
1059
1058
1046
599.63
354.59
408.79 | 945.96
939.02
931.52
933
934
935
931.88
926.19 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.0
20.0
20.0
20.0
20.1
20.1
20.1
20.1 | | 2582.0
2583.0
2584.0 | 12.7 4;
12.2 4;
12.1 4;
14.7 4;
11.6 4;
5.3 4;
3.6 4;
5.6 4;
6.1 4; | 4.0
3.8
3.1
3.2
3.6
4.5
2.9
3.3 | 73 9.2
71 9.2
69 9.2
80 9.2
83 9.2
82 9.2 | 1.61
1.53
1.62
1.94
2.10 | 13.12
13.20
13.28
13.35
13.44
13.63
13.90
14.08
14.25
14.42 | 58963
60343
61222
62045 | 334.57
346.35
351.06
288.62
365.20
805.79
1170
755.13
700.94
717.44 | 910.01
904.71
898.92
893.95
893.14
896
894.39
892.66 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.1
20.1
20.1
20.1
20.1
20.1
20.1
20.1 | | 2591.0
2592.0
2593.0
2594.0
2595.0
2596.0
2597.0
2599.0
2600.0 | 4.6 4 | 4.9
3.8
7.2
8.0
8.4
7.6
7.5 | 84 9.2
84 9.2
83 9.2
82 9.2
80 9.2
82 9.2
84 9.2 | 2.09
2.06
2.04
2.11
2.05 | 14.68
14.91
15.17
15.41
15.63
15.84
16.09
16.30
16.39
16.50 | 66715
67924
68990
69987
71256
72325
72761 | 1097
982.50
1117
1025
915.35
882.36
1090
896.50
372.27
446.48 | 898
898.38
894.04 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.1
20.1
20.1
20.1
20.1
20.1
20.1
20.1 | | 2602.0
260 3.0
260 4.0 | 17.0 4
12.9 4
15.2 4
15.5 4
12.5 4
16.6 4
4.1 4
4.1 4
6.0 4
5.5 5 | 6.9
7.3
6.6
6.1
6.7
8.2
8.6
0.2 | 69 9.2
74 9.2
80 9.2
82 9.2
73 9.2 | 1,68
1,61
1,63
1,52
2,05
2,10
1,97 | 16.56
16.63
16.70
16.78
16.84
17.09
17.33
17.50
17.68
17.87 | 73924
74237
74571
74819
75916
77104
77929
78727 | 249.75
329.86
279.20
338.10
255.64
1044
1046
708.01
769.27
782.23 | 875.93
871.68
866.84
868
870
868.36
867.60 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.1
20.1
20.1
20.1
20.1
20.1
20.1
20.1 | | 2614.0
2615.0
2616.0
2617.0
2618.0
2619.0 | 7.3 4'
8.7 5
12.4 4'
16.5 4
16.1 4
15.3 4'
24.3 4'
13.6 4
17.8 4'
17.6 4 | 0.1
9.4
6.0
7.1
6.6
5.9
4.4
5.5 | 78 9.2
76 9.2
62 9.2
60 9.2
58 9.2
65 9.2
73 9.2 | 1.69
1.48
1.49
1.50
1.36 | 18.00
18.12
18.20
18.26
18.32
18.39
18.43
18.50
18.56
18.61 | 80836
81204
81429
81652
81882
82042
82365
82617 | 578.43
488.89
342.81
256.82
263.88
278.02
174.35
312.18
237.97
216.76 | 862.00
858.16
853.75
849.46
845.33
840.52
836.76
832.52 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.1
20.1
20.1
20.1
20.1
20.1
20.1
20.1 | | DEPTH | ROP | MOB | RPM | MW | "d "c | HOURS | TURNS | ICOST | CCOST | рр | FG | |--|---|--|--|---|--|---|--|--|--|---|--| | 2622.0
2623.0
2624.0
2625.0 | 19.1
15.3
10.7
10.9
10.9
8.7
5.2
4.0 | 44.9
45.7
45.9
47.0
47.0
46.6
45.6
44.9 | 71
68
59
43
60
71
72
72
63
58 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1,42
1,46
1,49
1,50
1,63
1,69
1,77
1,94
1,95 | 18.65
18.71
18.77
18.86
18.96
19.05
19.16
19.36
19.61 | 83239
83470
83707
84036
84430
84930 | 389.94 | 819.61
815.87
813.00
810.13
807.29
805.15 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.1
20.1
20.1
20.1
20.1
20.1
20.1
20.1 | | 2631.0
2632.0
2633.0
2634.0
2635.0
2636.0 | 3.8
6.1
9.9
10.5 | 46.7
46.8
45.5
30.6
29.7
29.9 | 62
55
49
55
42
52 | 9.2
9.2
9.2
9.2 | 1.88
1.97
1.74
1.43
1.32 | 20.03
20.30
20.46
20.56
20.66
20.78 | 89114
89593
89923
90167 | 771.63
1123
695.05
426.46
405.25
531.30 | 810
809.45
807.00
804.45 | 8.4
8.4
8.4
8.4 | 20.1
20.1
20.1
20.1
20.1
20.1 | | BIT NUMBER
HTC J33
COST
TOTAL HOUR | 663 | 8
37.00
52.43 | 9
T | ADC C
IZE
RIP T
OTAL |
 537
12.250
8.2
214055 | NO. | TERVAL
ZZLES
T RUN
NDITION | | | 5 15
265.0 | | DEPTH | ROP | WOB | RPM | MW | "d"c | HOURS | TURNS | ICOST | CCOST | PP | FG | | 2637.0
2638.0
2639.0
2640.0 | 4.0
6.4 | 24.1
23.4
21.8
24.2 | 49
47
47
46 | 9.2
9.2 | 1,59
1,55
1,38
1,54 | 0.27
0.52
0.68
0.91 | 792
1500
1941
2602 | 1147
1058
660
1007 | 42560
21809
14759
11321 | 8.4
8.4 | 20.1
20.1
20.1
20.1 | | 2641.0
2642.0
2643.0
2644.0
2645.0
2646.0
2647.0
2648.0
2649.0
2650.0 | 6.8
4.7
12.7
3.6
3.1
3.0
2.9 | 26.9
29.9
30.5
38.0
35.3
33.7
33.9
42.4
44.3
46.0 | 57
59
59
62
61
64
54
63 | 9.22
9.22
9.22
9.22
9.22 | 1.61
1.55
1.68
1.50
1.86
1.86
1.90
2.00
2.00 | 1.12
1.27
1.48
1.56
1.84
2.16
2.49
2.83
3.17 | 3309
3821
4568
4875
5915
7114
8380
9518
10850
11862 | 876
627
894
333
1187
1381
1394
1421
1461
1127 | 9232
7798
6812
6002
5467
5058
4725
4450
4229 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.1
20.1
20.1
20.1
20.1
20.1
20.1
20.1 | | 2651.0
2652.0
2653.0
2654.0
2655.0
2656.0
2657.0
2658.0
2659.0
2660.0 | 3,3
4.6
6.5
5.9
8.1
8.6
9.3
7.6 | 45.4
45.3
46.0
47.9
48.5
50.5
48.1
48.4
46.6
47.7 | 61
64
70
69
71
54
62
62 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.97
2.03
1.94
1.88
1.91
1.84
1.69
1.73
1.73 | 3.69
4.00
4.21
4.37
4.54
4.66
4.78
4.89
5.02
5.15 | 12795
13907
14749
15399
16098
16624
17001
17416
17909
18410 | 1089
1288
922
657
716
523
492
457
558
574 | 3805
3648
3487
3330
3193
3059
2937
2824
2726
2636 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 20.1
20.1
20.1
20.1
20.1
20.1
20.1
20.2
20.2 | | DEPTH | ROP WO | BRPM | MW "d"c | HOURS | TURNS | ICOST | ccost | PР | FG | |--|---|--|--|--|--|--|--|--|--| | 2661.0
2662.0
2663.0
2664.0
2665.0
2667.0
2667.0
2669.0
2670.0 | 8.6 48.
10.3 46.
10.4 48.
12.3 46.
11.0 47.
11.4 46.
13.2 47.
12.5 48.
11.7 48.
11.0 48. | 9 72
2 66
7 68
0 68
8 69
3 67
4 67
7 73 | 9.2 1.78
9.2 1.71
9.2 1.69
9.2 1.63
9.2 1.66
9.2 1.66
9.2 1.60
9.2 1.71 | 5.27
5.37
5.46
5.54
5.63
5.88
5.88
5.95 | 18892
19314
19695
20026
20397
20759
21064
21386
21764
22165 | 491
412
406
345
386
371
320
338
364
386 | 2550
2468
2392
2319
2252
2189
2129
2073
2021
1973 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.2
20.2
20.2
20.2
20.2
20.2
20.2
20.2 | | 2671.0
2672.0
2673.0
2674.0
2675.0
2676.0
2677.0
2679.0
2679.0 | 8.6 49.
9.3 50.
15.3 50.
5.8 51.
3.4 51.
5.4 52.
14.8 51.
14.9 51. | 0 61
2 65
7 69
3 72
9 71
6 69
5 61
4 63 | 9.2 1.79
9.2 1.72
9.2 1.57
9.2 1.97
9.2 2.17
9.2 2.17
9.2 2.00
9.2 1.57
9.2 1.58
9.2 1.55 | 6.17
6.28
6.34
6.52
6.81
7.11
7.29
7.36
7.43
7.49 | 22650
23043
23300
24023
25310
26557
27328
27575
27828
28059 | 492
455
278
736
1265
1242
789
287
284
253 | 1931
1890
1846
1817
1803
1789
1764
1729
1696
1663 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.2
20.2
20.2
20.2
20.2 | | 2681.0
2682.0
2683.0
2684.0
2685.0
2687.0
2688.0
2689.0
2690.0 | 7.0 51.
7.3 49.
12.2 49.
9.2 49.
12.5 48.
12.7 50.
10.2 50.
11.1 50.
10.5 50.
11.4 49. | 7 66
1 68
0 71
8 71
1 69
3 68
1 69
5 70 | 9.2 1.84
9.2 1.84
9.2 1.66
9.2 1.77
9.2 1.66
9.2 1.66
9.2 1.73
9.2 1.71
9.2 1.74
9.2 1.69 | 7.63
7.77
7.85
7.96
8.04
8.12
8.22
8.31
8.40
8.49 | 28585
29131
29467
29933
30275
30604
31004
31377
31780
32143 | 606
584
348
462
339
335
417
383
404
373 | 1639
1616
1589
1566
1541
1517
1495
1474
1454 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.2
20.2
20.2
20.2
20.2
20.2
20.2
20.2 | | 2691.0
2692.0
2693.0
2694.0
2695.0
2697.0
2698.0
2699.0
2700.0 | 10.3 48.
12.0 48.
14.5 49.
16.3 49.
14.0 50.
5.0 51.
3.5 52.
7.3 51.
8.3 50.
4.3 51. | 7 67
1 69
7 67
3 68
9 69
8 67
1 69
9 65 | 9.2 1.71
9.2 1.65
9.2 1.60
9.2 1.55
9.2 1.62
9.2 2.02
9.2 2.14
9.2 1.87
9.2 1.80
9.2 2.06 | 8.59
8.67
8.74
8.80
8.87
9.07
9.35
9.49
9.61
9.85 | 32534
32869
33157
33403
33692
34519
35651
36216
36690
37641 | 413
355
293
260
303
843
1199
580
511
993 | 1415
1396
1377
1358
1340
1331
1329
1317
1304
1300 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.2
20.2
20.2
20.2
20.2
20.2
20.2
20.2 | | 2701.0
2702.0
2703.0
2704.0
2705.0
2706.0
2707.0
2708.0
2709.0
2710.0 | 3.0 52. 3.5 53. 3.7 53. 3.5 54. 3.1 55. 4.0 50. 4.2 52. 3.9 54. 3.1 53. | 3 74
4 77
4 77
4 78
6 78
6 80
5 77 | 9.2 2.24
9.2 2.19
9.2 2.19
9.2 2.23
9.2 2.28
9.2 2.12
9.2 2.15
9.2 2.15
9.2 2.25
9.2 2.25 | 10.18
10.47
10.74
11.02
11.34
11.59
11.83
12.09
12.41
12.74 | 39098
40373
41615
42953
44436
45596
46752
47937
49383
50831 | 1427
1215
1139
1220
1351
1052
1018
1089
1376
1390 | 1301
1300
1298
1297
1297
1294
1290
1287
1288 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.2
20.2
20.2
20.2
20.2
20.2
20.2
20.2 | | DEPTH | ROP | жож | RPM | MW | "d"c | HOURS | TURNS | ICOST | CCOST | pр | FG | |--|---|--|--|---|--|--|--|---|--|---|--| | 2711.0
2712.0
2713.0
2714.0
2715.0
2716.0
2717.0
2718.0
2719.0
2720.0 | 10.6
18.7
7.2
3.4
3.1
2.9
3.7 | 50.4
50.5
50.0
50.1
49.9
50.2 | 72
74
71
73
74
72
74
74
74
73 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.99
1.84
1.74
1.54
1.89
2.15
2.19
2.24
2.14 | 12.91
13.03
13.13
13.18
13.32
13.61
13.93
14.28
14.55 | 51574
52101
52506
52740
53353
54635
56052
57593
58806
59629 | 733
502
402
227
586
1252
1355
1469
1156
796 | 1282
1272
1261
1248
1239
1239
1241
1244
1242 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.2
20.2
20.2
20.2
20.2
20.2
20.2
20.2 | | 2721.0
2722.0
2723.0
2724.0
2725.0
2726.0
2727.0
2728.0
2729.0
2730.0 | 3.7
3.4
8.0
12.5
15.8
17.1
11.8 | 51.3
52.1
49.9
49.7
50.2
50.6 | 75
78
78
78
78
75
76
73
76 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 2.21
2.15
2.20
1.90
1.71
1.61
1.59
1.71
2.16
2.18 | 15.07
15.34
15.64
15.76
15.84
15.90
15.96
16.05
16.33
16.64 | 61131
62381
63777
64365
64738
65023
65292
65661
66967
68355 | 1409
1134
1263
530
338
269
249
359
1215
1290 | 1239
1238
1238
1230
1220
1210
1199
1190
1191 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.2
20.2
20.2
20.2
20.2
20.2
20.2
20.2 | | 2731.0
2732.0
2733.0
2734.0
2735.0
2736.0
2737.0
2738.0
2739.0
2740.0 | 3.4
3.0
3.1
9.0
10.4
3.1
3.6
3.2 | 50.1
49.7
50.3
50.4
49.2
49.5
48.9
49.8
52.3 | 78
74
75
80
84
72
70
63
65 | 9.22222
9.22222
9.2222
9.22 | 2.27
2.17
2.20
2.20
1.83
1.79
2.17
2.11
2.15
2.06 | 17.01
17.31
17.63
17.96
18.07
18.16
18.49
18.76
19.08
19.30 |
70123
71490
72954
74400
74936
75420
76840
77996
79175
80072 | 1593
1233
1392
1365
472
408
1388
1165
1318
971 | 1195
1196
1198
1200
1192
1184
1186
1188
1188 | 8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 20.2
20.2
20.2
20.2
20.2
20.2
20.2
20.2 | | 2741.0
2742.0
2743.0
2744.0
2745.0
2746.0
2747.0
2748.0
2749.0
2750.0 | 2.5
3.0
3.0
2.9
3.7 | 52.6 | 65
64
64
65
66
72
69
74
80 | 9.22
9.22
9.22
9.22
9.22
9.22 | 1.83
1.82
1.86
1.87
2.28
2.25
2.25
2.25
2.26
2.19 | 19.43
19.56
19.69
19.83
20.22
20.56
20.89
21.23
21.50
21.64 | 80565
81041
81564
82094
83621
84953
86377
87783
88992
89639 | 538
527
580
584
1668
1429
1395
1447
1160
575 | 1179
1173
1168
1162
1167
1169
1171
1174
1174 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.3
20.3
20.3
20.3
20.3
20.3
20.3
20.3 | | 2751.0
2752.0
2753.0
2754.0
2755.0
2756.0
2757.0
2758.0
2759.0
2760.0 | 9.3
10.2
9.8
8.6 | 53.0
53.2
53.4
53.8
53.8
53.2
53.1 | 79
80
81
80
80
77
74
79
77 | 9.22
9.22
9.22
9.22
9.22
9.22 | 1.77
1.85
1.87
1.83
1.85
1.88
1.81
1.80
1.74 | 21.73
21.83
21.94
22.04
22.14
22.26
22.36
22.45
22.53
22.62 | 90857
90557
91080
91546
92038
92575
93030
93463
93833
94238 | 372
442
458
415
434
491
432
389
342
371 | 1161
1155
1149
1143
1137
1132
1120
1114
1108 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.3
20.3
20.3
20.3
20.3
20.3
20.3
20.3 | | DEPTH | ROP | WOB | RPM | MW | "d"c | HOURS | TURNS | ICOST | CCOST | pр | FG | |--|--|--|--|---|--|--|--|---|--|--|--| | 2761.0
2762.0
2763.0
2764.0
2765.0
2766.0
2767.0
2768.0
2769.0
2770.0 | 14.1
3.4
3.4
2.9
2.6
3.6
3.0
5.1 | 52.7
52.4
54.2
53.8
53.7
53.9
53.0
53.1 | 83
84
62
62
64
49
48
48 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.78
1.71
2.26
2.14
2.20
2.26
2.03
2.10
1.89 | 22.70
22.77
23.07
23.36
23.70
24.08
24.36
24.36
24.89
24.89 | 94659
95011
96491
97576
98839
100332
101166
102137
102683
102858 | 359
300
1244
1231
1448
1609
1191
1434
835
258 | 1102
1095
1096
1097
1100
1104
1105
1107
1105
1099 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.3 | | 2771.0
2772.0
2773.0
2774.0
2775.0
2776.0
2777.0
2778.0
2778.0
2780.0 | 7.6
11.6
3.2
3.0
3.9
3.0
2.9
3.1 | 51.8
52.7
53.0
54.2
53.6
54.2
53.6
53.5
52.9 | 487
533
552
558
558
558 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.37
1.61
2.12
2.13
2.02
2.16
2.17
2.15
2.04 | 25.00
25.13
25.22
25.53
25.86
26.12
26.45
26.79
27.11
27.36 | 102999
103368
103631
104624
105669
106479
107601
108791
109916
110763 | 207
556
365
1332
1395
1096
1405
1438
1364
1031 | 1092
1088
1083
1085
1087
1087
1089
1092
1094
1093 | 8.4
8.4
8.4
8.4
8.4
8.4 | | | 2781.0
2782.0
2783.0
2784.0
2785.0
2786.0
2787.0
2789.0
2789.0 | 3.1
3.2
3.7
3.6
3.8
4.9
6.0
7.3 | 55.4
49.1
48.4
51.7 | 50
50
59
54
55
55
55
56
66 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 2.17
2.12
2.16
2.03
2.00
2.01
1.93
1.93
1.88
1.75 | 27.72
28.04
28.36
28.63
28.90
29.17
29.37
29.54
29.67
29.77 | 111858
112823
113909
114859
115759
116564
117180
117769
118298
118671 | 1553
1365
1321
1143
1185
1116
866
707
577
401 | 1096
1098
1100
1100
1101
1101
1099
1097
1093 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.3
20.3
20.3
20.3
20.3
20.3
20.3
20.3 | | 2791.0
2792.0
2793.0
2794.0
2795.0
2796.0
2797.0
2798.0
2799.0
2800.0 | 12.5
7.6
5.5
2.9
3.6
3.2 | 55.2
53.6
54.9
55.3
49.6
49.2
50.1
49.7 | 64
66
69
71
67
61
68
71
73 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.80
1.76
1.71
1.91
2.01
2.15
2.09
2.18
2.10 | 29.88
29.97
30.05
30.18
30.37
30.72
30.99
31.31
31.56
31.70 | 119082
119465
119794
120352
121077
122365
123485
124823
125944
126547 | 456
411
338
557
769
1488
1166
1336
1092
596 | 1085
1080
1076
1072
1070
1073
1074
1075
1075 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.3
20.3
20.3
20.3
20.3
20.3
20.3
20.3 | | 2801.0
2802.0
2803.0
2804.0
2805.0
2806.0
2807.0
2808.0
2809.0 | 4.9
6.2
10.6
6.3
18.1
7.1
13.8
10.2 | 51.3
51.6
51.2
51.2
50.6
48.2
49.4
48.4
47.2 | 72
72
72
67
67
69
67
68 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.96
2.04
1.95
1.74
1.91
1.42
1.60
1.60 | 31.87
32.08
32.24
32.33
32.49
32.55
32.69
32.76
32.86
32.95 | 127273
128156
128861
129254
129899
130078
130661
130951
131365
131747 | 710
868
689
402
677
234
600
307
417 | 1070
1069
1067
1063
1060
1056
1053
1049
1045 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.3
20.3
20.3
20.3
20.3
20.3
20.3
20.3 | | DEPTH | ROP | MOB | RPM | MW | "d"c | HOURS | TURNS | ICOST | ccost | pр | FG | |--|---|--|--|--|--|--|--|---|--|--|--| | 2811.0
2812.0
2813.0
2814.0
2815.0
2816.0
2817.0
2818.0
2819.0 | 2.8
2.9
2.7
3.1
4.8
2.9
3.5 | 48.4
48.6
50.0
49.7 | 70
71
72
65
73
73
72 | | 1.80
2.20
2.21
2.23
2.15
1.97
2.18
2.15
2.00 | 33.09
33.45
33.80
34.17
34.49
34.70
35.04
35.33
35.53 | 132298
133849
135379
136959
138296
139114
140581
141843
142701
143429 | 560
1539
1488
1555
1381
886
1457
1222
829
710 | 1038
1041
1044
1047
1049
1048
1050
1051
1050 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.3
20.3
20.3
20.3
20.3
20.3
20.3
20.3 | | 2821.0
2822.0
2823.0
2824.0
2825.0
2826.0
2827.0
2828.0
2829.0 | 8.8
10.2
2.6
3.5
9.5
5.9 | 51.9
51.8
51.8
53.2
54.0
53.6
53.9
51.5
42.9 | 70
62
64
70
65
69
71
67
75 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2 | | 35.81
35.92
36.02
36.26
36.65
36.93
37.04
37.21
37.33
37.46 | 143908
144327
144710
145722
147221
148401
148837
149551
150022
150617 | 482
479
425
1020
1626
1216
448
715
501
560 | 1045
1042
1038
1038
1041
1042
1039
1038
1035 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.3
20.3
20.4 | | 2831.0
2832.0
2833.0
2834.0
2835.0
2836.0
2837.0
2838.0
2839.0
2840.0 | 7.0
7.3
2.9
2.1
3.3
3.5
11.5 | 48.5
49.0
48.8 | 66
72
73
71
73
76
72
69 | 9.2
9.2
9.2
9.2
9.2 | 1.73
1.80
1.80
2.10
2.19
2.15
2.14
1.70
1.69 | 37.59
37.73
37.87
38.21
38.69
38.99
39.28
39.37
39.46
39.59 | 151136
151746
152347
153847
155880
157230
158544
158925
159304
159842 | 556
602
580
1445
2032
1302
1220
369
372
554 | 1030
1028
1025
1028
1033
1034
1035
1032
1028 | 8.4
8.4
8.4
8.4
8.4 | 20.4
20.4
20.4 | | 2841.0
2842.0
2843.0
2844.0
2845.0
2846.0
2847.0
2849.0
2850.0 | 8.6
6.1
2.3
2.8
5.7
9.2
11.5
8.5 |
47.5
49.4
47.1
45.1
45.1
45.8
44.7 | 68
65
67
70
66
61
60
58 | 9.2
9.2
9.2
9.2
9.2 | 1.72
1.77
1.87
2.22
2.16
1.87
1.67
1.69
1.69 | 39.69
39.81
39.97
40.41
40.76
40.94
41.05
41.14
41.25 | 160261
160719
161387
163130
164633
165328
165729
166042
166454
166782 | 436
495
700
1842
1513
750
461
368
501
558 | 1023
1021
1019
1023
1025
1024
1021
1018
1016 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.4
20.4
20.4
20.4
20.4
20.4
20.4
20.4 | | 2851.0
2852.0
2853.0
2854.0
2855.0
2856.0
2857.0
2858.0
2859.0 | 6.7
2.5
3.2
3.5
3.5
5.8
3.9 | 40.4
41.0
46.1
46.1
47.7
47.2
45.6
46.5 | 66
68
67
66
66
70
68
71
70
66 | 9.2
9.2
9.2
9.2
9.2
9.2 | 2.12 | 41.49
41.64
42.04
42.35
42.66
42.94
43.25
43.42
43.68
44.11 | 167208
167813
169400
170630
171860
173037
174314
175049
176116
177819 | 458
631
1681
1309
1314
1197
1323
734
1077
1825 | 1011
1009
1012
1014
1015
1016
1017
1016
1016 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.4
20.4
20.4
20.4
20.4
20.4
20.4
20.4 | | DEPTH | ROP | MOB | RPM | MW | "d"c | HOURS | TURNS | ICOST | CCOST | PР | FG | |---------|------|------|-----|--------|------|-------|--------|--------|--------|-----|------| | mm/ + 0 | 7 0 | 44.9 | 74 | 0 2 | 2.05 | 44.37 | 178992 | 1113 | 1020 | 8.4 | 20.4 | | 2861.0 | | 44,4 | 71 | 9.2 | 2.02 | 44.63 | 180103 | 1104 | 1021 | | 20.4 | | 2862.0 | | | | 9.2 | 1.84 | 44.80 | 180784 | 712 | 1019 | | 20.4 | | 2863.0 | | 43.8 | 68 | 9.2 | 1.68 | 44.90 | 181202 | 426 | 1017 | | 20.4 | | 2864.0 | | 44.1 | 69 | 9.2 | | 45.06 | 181890 | 683 | 1015 | | 20.4 | | 2865.0 | | 44.6 | 71 | | 1.86 | 45,33 | 183091 | 1159 | 1016 | | 20.4 | | 2866.0 | | 44.4 | 73 | | 2.05 | 45.53 | 183965 | 833 | 1015 | | 20.4 | | 2867.0 | 5.1 | | 74 | 9.2 | 1.94 | 45.94 | 185697 | 1723 | 1018 | | 20.4 | | 2868.0 | | 45.1 | 71 | | 2.18 | | 187201 | 1497 | 1020 | | 20.4 | | 2869.0 | | 44.6 | 71 | | 2.13 | 46,68 | 188781 | 1653 | 1023 | | 20.4 | | 2870.0 | 21.6 | 47.0 | 68 | 7 . 4. | 2.18 | 40,00 | 100001 | | | | | | 2871.0 | 3.7 | 45.0 | 71 | 9.2 | 2.04 | 46.95 | 189924 | 1143 | 1023 | | 20.4 | | 2872.0 | | 44.3 | 70 | 9.2 | 2.06 | 47.24 | 191161 | 1248 | 1024 | | 20.4 | | 2873.0 | 2.2 | 46.1 | 63 | 9.2 | 2.19 | 47.69 | 192854 | 1903 | 1028 | | 20.4 | | 2874.0 | 15.4 | 37.6 | 75 | 9.2 | 1.48 | 47.76 | 193145 | 276 | 1025 | | 20.4 | | 2875.0 | 12.3 | 43,2 | 75 | 9.2 | 1.62 | 47.84 | 193514 | 345 | 1022 | | 20.4 | | 2876.0 | 9.2 | 35.7 | 82 | 9.2 | 1.65 | 47,95 | 194048 | 463 | 1020 | | 20.4 | | 2877.0 | 6.0 | 35.1 | 83 | 9.2 | 1.78 | 48.11 | 194875 | 708 | 1019 | | 20.4 | | 2878.0 | 2.8 | 38.4 | 75 | 9.2 | 2.05 | 48.47 | 196450 | 1491 | 1020 | | 20.4 | | 2879.0 | 2.3 | 41.2 | 74 | 9.2 | 2.16 | 48.90 | 198375 | 1851 | 1024 | | 20.4 | | 5880.0 | 3.2 | 44.6 | 73 | 9.2 | 2.09 | 49.21 | 199742 | 1317 | 1025 | 8.4 | 20.4 | | 2881.0 | 5.3 | 43.6 | 72 | | 1.90 | 49.40 | 200558 | 796 | 1024 | | 20.4 | | 2882.0 | 6.8 | 44.7 | 59 | 9.2 | 1.76 | 49.55 | 201081 | 622 | 1023 | | 20.4 | | 2883.0 | 6.4 | 44,4 | 69 | 9.2 | 1.83 | 49.70 | 201721 | 660 | 1021 | | 20.4 | | 2884.0 | 3.5 | 42.2 | 78 | | 2.05 | 49.99 | 203070 | 1218 | 1022 | 8.4 | | | 2885.0 | 3.7 | 38.0 | 78 | 9.2 | 1,97 | 50.26 | 204334 | 1151 | 1022 | | 20.4 | | 2886.0 | 9.1 | 38.5 | 75 | 9.2 | 1.67 | 50.37 | 204831 | 468 | 1020 | | 20.4 | | 2887.0 | 13.2 | | 73 | 9.2 | 1.52 | 50.45 | 205166 | 322 | 1017 | | 20.4 | | 2888.0 | 6.9 | 36.8 | 76 | 9,2 | 1.74 | 50.59 | 205825 | 611 | 1016 | | 20.4 | | 2889.0 | 5.1 | 37.2 | 77 | 9.2 | | 50.79 | 206727 | 827 | 1015 | | 20.4 | | 2870.0 | 7.8 | 38.2 | 72 | 9.2 | 1.70 | 50.92 | 207285 | 547 | 1013 | 8.4 | 20.4 | | 2891.0 | 9.4 | | 67 | 9.2 | 1.60 | 51,02 | 207715 | 452 | 1011 | | 20.4 | | 2892.0 | 7.2 | 38.0 | 65 | 9.2 | 1.69 | 51.16 | 208259 | 588 | 1009 | | 20.4 | | 2893.0 | 6.4 | 38.9 | 7.0 | 9.2 | 1.76 | 51.32 | 208911 | 659 | 1008 | | 20.4 | | 2894.0 | | 38.9 | 73 | 9.2 | 1.75 | 51.46 | 209551 | 616 | 1006 | | 20.4 | | 2895.0 | 10.2 | 38.7 | 7.0 | 9.2 | 1.60 | 51.56 | 209961 | 416 | 1004 | | 20,4 | | 2896.0 | 12.9 | 39.0 | 77 | 9.2 | 1.56 | 51.64 | 210316 | 329 | 1002 | | 20.4 | | 2897.0 | | 38.9 | 79 | 9.2 | 1.58 | 51.72 | 210695 | | | | 20.4 | | 2898.0 | 10.3 | 40.6 | 77 | 9.2 | 1.66 | 51.81 | | 411.14 | | | 20.4 | | 2899.0 | 11.7 | 39.7 | 78 | 9.2 | 1.61 | 51.90 | | 364.02 | | | 20.4 | | 2900.0 | 6.6 | 40.7 | 79 | 9.2 | 1.82 | 52.05 | 212269 | 646.75 | 993.05 | 8.4 | 20.4 | | 2901.0 | 2.6 | 40.6 | 78 | 9.2 | 2.12 | 52.43 | 214055 | 1609 | 995 | 8.4 | 20.4 | | BIT NUMBER
HTC J33
COST
TOTAL HOUR | 663 | 9
87,00
22,14 | S | ADC C
IZE
RIP T
OTAL | TME | 537
12,250
8,4
92542 | NOZ
BIT | ERVAL
ZLES
RUN
DITION | | 0- 3021.0
15 15 15
120.0
B2 G0.000 | |--|--|--|--|---|--|--|--|---|--|--| | DEPTH | ROP | MOB | RPM | ми | "d"c | HOURS | TURNS | ICOST | CCOST | PP FG | | 2902.0
2903.0
2904.0 | 2.1 | 25.7
33.0
40.2 | 57
57
56 | 9.2 | 1.79
1.97
2.05 | | 1434
3071
4546 | 1767
2026
1850 | 44028
23027
15968 | 8.4 20.4
8.4 20.4
8.4 20.4 | | 2905.0
2906.0
2907.0
2908.0
2909.0
2910.0
2911.0
2912.0
2913.0 | 3.8
4.2
5.2
5.2
2.7
3.1
3.2 | 44.1
49.3
47.5
47.6
47.1
48.8
44.0
41.0
45.8
38.4 | 60
79
62
62
65
65
77
73 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.96
2.13
2.02
1.91
1.91
2.16
2.05
2.04
2.12
1.99 | 1.60
1.86
2.10
2.29
2.49
2.86
3.18
3.49
3.84 | 5503
6742
7719
8434
9159
10551
11798
13161
14552
15865 | 1136
1113
1020
814
821
1600
1354
1309
1471 | 12260
10031
8529
7427
6601
6045
5576
5188
4879
4601 | 8.4 20.4
8.4 20.4
8.4 20.4
8.4 20.4
8.4 20.4
8.4 20.4
8.4 20.4
8.4 20.4
8.4 20.5
8.4 20.5 | | 2915.0
2916.0 | 15.8
15.3
5.6
4.0
3.8
4.3
4.0 | 37.2
36.8
39.1
39.7
40.4
43.3
37.7
36.3 | 75
75
75
88
76
61
67
67 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 1.47
1.48
1.83
1.98
1.95
1.95
1.85
1.85
1.59 | 4.20
4.27
4.45
4.70
4.96
5.19
5.44
5.53 | 16150
16448
17255
18459
19544
20576
21465
21782
22121
22566 | 269
277
760
1065
1119
987
1054
356
358
468 | 4291
4024
3820
3658
3516
3383
3267
3129
3003
2893 | 8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5 | | 2925.0
2926.0
2927.0
2928.0
2929.0
2930.0
2931.0
2933.0
2933.0 | 8.8
9.0
8.8
9.9
8.8
9.3
9.8 | 34.3
35.4
34.5
34.6
34.5
35.5
35.5
35.8
36.1 | 67
67
67
63
64
63 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.56
1.68
1.58
1.59
1.55
1.57
1.57
1.58
1.58 | 5.83
5.94
6.05
6.16
6.27
6.38
6.49
6.59
6.70 | 22991
23454
23902
24360
24768
25197
25610
25996
26427
26790 | 443
482
470
482
430
479
457
432
479
401 | 2791
2698
2613
2534
2458
2390
2326
2265
2209
2154 | 8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5 | | 2935.0
2936.0
2937.0
2938.0
2939.0
2940.0
2941.0
2943.0
2944.0 | 8.3
6.6
5.1
4.5
3.9
5.1
12.5
10.0 | 35.9
36.4
36.2
36.7
40.0
40.0
40.2
40.2 | 71
69
68
68
74
70 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.63
1.65
1.72
1.81
1.89
1.93
1.84
1.57
1.63 | 6.91
7.03
7.19
7.38
7.60
7.86
8.06
8.14
8.24
8.30 | 27283
27800
28454
29280
30201
31244
32045
32397
32817
33110 | 502
509
647
825
944
1090
834
338
424
251 | 2106
2060
2021
1988
1961
1939
1911
1873
1838
1801 | 8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5
8.4 20.5 | | DEPTH | ROP | MOB | RPM | MW | "d "c | HOURS | TURNS | ICOST | CCOST | PP | FG | |--|--|--|--|---|--|--|--
--|--|--|--| | 2945.0
2944.0
2947.0
2948.0
2949.0
2950.0
2951.0
2953.0
2954.0 | 16.9
16.1
3.6
3.7
4.3
3.9
5.4 | 40.5
40.2
39.1
41.6
39.8
40.1
41.3
41.0
39.2
40.2 | 84
84
84
72
75
77
77 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | | 8.35
8.41
8.47
8.75
9.02
9.26
9.52
9.70
9.77 | 33389
33686
33998
35268
36451
37500
38657
39479
39764
40539 | 236
251
264
1175
1157
998
1098
792
270
713 | 1766
1732
1700
1689
1678
1664
1653
1636
1609
1592 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.5 | | 2955.0
2956.0
2957.0
2958.0
2959.0
2960.0
2961.0
2963.0
2964.0 | 8.7
12.8
10.3
5.7
4.5
4.5 | 41.5
40.8
40.6
39.3
44.1
44.6
46.5
46.4
46.7 | 775
772
667
776
776
775 | 9.2
9.2
9.2 | | 10.05
10.17
10.25
10.35
10.52
10.80
11.02
11.34
11.56 | 41084
41607
41953
42373
43099
44185
45073
46491
47507
48647 | 501
490
332
412
749
1159
933
1357
946
1073 | 1572
1553
1531
1511
1498
1492
1483
1481
1472
1466 | 8,4
8,4
8,4
8,4
8,4
8,4 | 20.5
20.5 | | 2965.0
2966.0
2967.0
2968.0
2969.0
2970.0
2971.0
2972.0
2973.0
2974.0 | 3.9
5.2
6.7
3.9
3.6
7.0 | 46.8
47.1 | 71
77
77
77
77
77
77
75 | 9.2
9.2
9.2
9.2
9.2
9.2 | 2.00
2.04
1.95
1.85
2.04
2.08
1.85
1.85 | 12.04
12.30
12.49
12.64
12.89
13.17
13.31
13.45
13.51 | 49618
50748
51610
52263
53353
54585
55215
55843
56089
56642 | 962
1096
808
633
1083
1171
609
593
245
521 | 1458
1452
1443
1431
1426
1422
1410
1399
1383
1371 | 8.4
8.4
8.4
8.4 | 20.5
20.5
20.5
20.5
20.5
20.5
20.5 | | 2975.0
2976.0
2977.0
2978.0
2979.0
2980.0
2981.0
2983.0
2983.0 | 6.9
4.5
5.9
6.6
5.1
8.9
17.2 | 47.6
47.7
47.5
48.2
48.3
48.0
47.7
42.9
44.0
43.4 | 70 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.85
1.86
2.02
1.92
1.87
1.76
1.76
1.48
1.52 | 13.77
13.91
14.14
14.31
14.46
14.65
14.77
14.82
14.89 | 57250
57879
58860
59574
60205
61024
61485
61735
61999
62244 | 569
616
952
721
639
834
477
246
264
251 | 1360
1350
1345
1337
1328
1322
1311
1298
1285
1273 | 8.4
8.4
8.4
8.4
8.4
8.4 | 20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5 | | 2985.0
2986.0
2987.0
2988.0
2989.0
2990.0
2991.0
2992.0
2993.0
2994.0 | 18.2
14.0
3.5
4.4
2.9
3.2
2.5
7.6 | 43.3
43.3
41.2
42.3
42.9
44.4
44.3
41.8 | 66
64
65
63
71
73
74
73 | 9.2
9.2
9.2
9.2
9.2
9.2 | 1.52
1.98
1.90
2.10
2.09 | 15.00
15.06
15.13
15.41
15.64
15.99
16.30
16.69
16.82
16.98 | 62484
62703
62978
64099
64962
66453
67811
69550
70125
70770 | 243
233
304
1213
967
1481
1308
1663
558
640 | 1261
1248
1237
1237
1234
1237
1238
1242
1235
1229 | 8.4
8.4
8.4
8.4
8.4
8.4 | | | DEPTH | ROP | MOB | RPM | MW | "d "c | HOURS | TURNS | ICOST | CCOST | pр | FG | |--------|------|------|-----|-----|-------|-------|-------|-------|-------|-----|------| | 2995.0 | 16.4 | 41.1 | 70 | 9.2 | 1.47 | 17.04 | 71025 | 259 | 1218 | | 20.5 | | 2996.0 | | 42.4 | 65 | 9.2 | 1.53 | 17.11 | 71311 | 310 | 1209 | 8.4 | 20.5 | | 2997.0 | | 42.8 | 70 | 9.2 | 1.90 | 17.31 | 72158 | 858 | 1205 | 8.4 | 20.5 | | 2998.0 | | 42.2 | 71 | 9.2 | 1.55 | 17.38 | 72468 | 310 | 1196 | 8.4 | 20.5 | | 2999.0 | | 43.4 | 71 | 9.2 | 1.81 | 17.53 | 73099 | 630 | 1190 | 8.4 | 20.5 | | 3000.0 | | 46.4 | 72 | 9.2 | 2.18 | 17.91 | 74707 | 1579 | 1194 | 8.4 | 20.6 | | 3001.0 | 3.9 | | 68 | 9.2 | 2.06 | 18.16 | 75754 | 1094 | 1193 | 8.4 | 20.6 | | 3002.0 | 11.7 | 44.0 | 72 | 9.2 | 1.63 | 18.25 | 76123 | 363 | 1185 | 8.4 | 20.6 | | 3003.0 | 19.0 | 44.8 | 74 | 9.2 | 1.48 | 18.30 | 76357 | 223 | 1175 | | 20.6 | | 3004.0 | 21.1 | 43.9 | 72 | 9.2 | 1.43 | 18.35 | 76562 | 201 | 1166 | 8.4 | 20.6 | | 3005.0 | 20.7 | 44.0 | 73 | 9.2 | 1.44 | 18.40 | 76772 | 205 | 1157 | 8.4 | 20.6 | | 3006.0 | 21.1 | | 73 | 9,2 | 1.44 | 18.44 | 76981 | 201 | 1147 | | 20.6 | | 3007.0 | 5.5 | 39.8 | 58 | 9.2 | 1,76 | 18.63 | 77612 | 772 | 1144 | | 20.6 | | 3008.0 | 2.8 | 45.1 | 70 | 9.2 | 2.14 | 18.99 | 79134 | 1533 | 1148 | | 20.6 | | 3009.0 | 3.8 | 48.5 | 72 | | 2.09 | 19.25 | 80269 | 1118 | 1147 | | 20.6 | | 3010.0 | 5.0 | 47.5 | 71 | | 1.97 | 19.45 | 81124 | 851 | 1145 | | 20.6 | | 3011.0 | 5.1 | 47.2 | 70 | 9.2 | 1.95 | 19.65 | 81948 | 832 | 1142 | | 20.6 | | 3012.0 | 3.8 | | 72 | 9.2 | 2.07 | 19.91 | 83087 | 1122 | 1142 | 8.4 | | | 3013.0 | 3.1 | | 72 | | 2.14 | 20.23 | 84468 | 1358 | 1143 | | 20.6 | | 3014.0 | 3.0 | 47.5 | 71 | 9.2 | 2.15 | 20.56 | 85882 | 1400 | 1146 | 8.4 | 20.6 | | 3015.0 | 3.4 | 48.2 | 71 | 9.2 | 2.11 | 20.86 | 87130 | 1251 | 1147 | | 20.6 | | 3016.0 | 2.5 | 49.0 | 70 | 9.2 | 2.24 | 21.26 | 88820 | 1701 | 1151 | 8.4 | | | 3017.0 | 3.1 | 48.1 | 69 | | 2.14 | 21.58 | 90148 | 1351 | 1153 | 8.4 | | | 3018.0 | 4.8 | | 74 | 9.2 | 2.03 | 21.79 | 91076 | 892 | 1151 | | 20.6 | | 3019.0 | 7.1 | 49.1 | 68 | 9.2 | 1.85 | 21.93 | 91652 | 600 | 1146 | | 20.6 | | 3020.0 | 11.0 | 49.7 | 68 | 9.2 | 1.70 | 22.02 | 92020 | 385 | 1140 | | 20.6 | | 3021.0 | 8.5 | 49.8 | 74 | 9.2 | 1.82 | 22.14 | 92542 | 498 | 1135 | 8.4 | 20.6 | ## (d). COMPUTER DATA LISTING : LIST B | INTERVAL | 10m averages. | |------------|--| | DEPTH | Well depth, in metres. | | ROP | Rate of penetration, in metres per hour. | | BIT RUN | Depth interval drilled by the bit, in metres. | | HOURS | Cumulative bit hours. The number of hours that the bit has actually been 'on bottom', recorded in decimal hours. | | TURNS | Cumulative bit turns. The number of turns made by the bit, while actually 'on bottom'. | | TOTAL COST | Cumulative bit cost, in A dollars. | | icost | . Incremental cost per metre, calculated from the drilling time, in A dollars. | | ccost | . Cumulative cost per metre, calculated from the drilling time, in A dollars. | | IC | ICOST minus CCOST, expressed as a positive
or negative sign. When the bit becomes worn,
(and therefore uneconomic), this should change
from negative to positive. | | BIT NUMBER
HTC OSC3AJ&2
COST | 6"H0 | ሰበ | TRTP | TTMF | 111
26.000
2.4 | RIT | ERVAL
ZLES
RUN | | | 18
5.0 | |---|----------------|--------------|-------|-------------------------|--------------------------------|----------------|----------------------|----------------|------------------------------------|------------| | TOTAL HOURS | 3. | 28 | TOTAL | . TURNS | 13555 | i 00% | OITEG | N T | 2 B5 G0. | 0 0 0 | | | | | | | | | | | | | | DEPTH | ROP | BIT RU | N I | 40URS | TURNS | TOTAL C | COST | ICOST | ccost | I-C | | 80.0 | 16.1 | 6. | 0 | 0.37 | 618 | 11759 | | 263 | 1960 | **** | | | 28.5 | 16. | | | 1706 | 13249 | | 149.02 | 828.09 | ••• | | 100.0 | 28.6 | 26. | 0 | 1.07 | 2987 | 14732 | 2.62 | 148.32 | 566.64 | •••• | | 110.0 | 56.4 | 36, | n | 1.25 | 3747 | 15484 | 1.73 | 75.21 | 430.13 | | | | 38.6 | 46. | | 1.51 | 5033 | 16582 | | 109.79 | 360.49 | **** | | | 16.5 | 56. | | 2.11 | 8030 | 19147 | 7,94 | 256.53 | 341.93 | | | | 80.4 | 66. | | 2.24 | 8639 | 19675 | | 52.78 | 298.12 | •••• | | 150.0 | 48.0 | 76. | | 2.45 | 9627 | 20559 | | 88.35 | 270.52 | *** | | 160.0 | 77.4 | 86. | | 2.58 | 10162 | 21106 | | 54.77 | 245.43 | ••• | | | 62.4 | 96. | | 2.74 | 10936 | 21786 | | 67.97 | 226.94 | | | 180.0 | 78.8 | 106. | | 2.86 | 11542 | 22325 | | 53.84
67.86 | 210.61
198.31 | **** | | | 62.5 | 116. | | 3.02 | 12325
12940 | | 8.58 | 57.23 | 187.11 | | | 200.0 | 74.1 | 126. | U | 3.16 | 12740 | 6.007 | 3.07 | W 1 L. W | 7 (3 / 1 7 7 | | | 209.0 | 72.2 | 135. | 0 | 3.28 | 13555 | 24104 | 4.19 | 58.70 | 178.55 | **** | | BIT NUMBER
HTC OSC3AJ
COST
TOTAL HOURS | 4442 | . 00 | TRIP | CODE
TIME
L TURNS | 111
17,500
3,7
106641 | BI | ZZLES
F RUN | ٠ | 9.0- 80
20 20
59
2 B2 G0. | 20
27.0 | | DEPTH | ROP | BIT RU | ו או | HOURS | TURNS | TOTAL (| COST | ICOST | CCOST | I-C | | 210.0 | 94.7 | 1. | 0 | 0.01 | 53 | 20178 | 3.47 | | 20178 | **** | | | 94.6 | 11. | 0 | 0.06 | 302 | 20390 | | 22 | 1854 | **** | | | 8.18 | 21. | | 0.12 | 568 | | 7.70 | | 982.37 | | | 240.0 | 53.7 | 31. | | 0.30 | 1490 | 21419 | | 78,93 | 69 0.94
53 5.8 3 | | | 250.0 | 77.1 | 41. | | 0.43 | 2325 | 21969
22260 | | 55.02
29.14 | 436,48 | •••• | | | 145.6 | 51.
61. | | 0.50
0.61 | 2943
3938 | 22729 | | 46.89 | 372.61 | **** | | 270.0
280.0 | 90.5 | 71. | | 0.68 | 4503 | 2300 | | 27.79 | 324.05 | | | | 37.9 | 81. | | 0.75 | 5112 | 2331 | | 30.75 | 287.84 | **** | | | | | | | | | | | | | | | 153.8 | 91. | | 0.82 | 5658 | 2359 | | 27.57 | 259.23 | **** | | | 171.4 | 101. | | 0.87 | 6148 | 2383 | | 24.74 | 236.02 | **** | | | 148.1 | 111. | | 0.94 | 6715
7328 | 2412/
2443: | | 28.63
30.91 | 217.33 | | | | 137.2
125.2 | 121.
131. | | 1.01
1.09 | 7928
7998 | 2477 | | 33.87 | 189.10 |
**** | | 350.0 | 45.9 | 141. | | 1.31 | 9828 | 2569 | | 92.36 | 182.24 | **** | | 360.0 | 45.8 | 151. | | 1.53 | 11661 | 2662 | | 92.54 | 176.30 | | | 370.0 | 69.9 | 161. | | 1.67 | 12862 | 2722 | | 60.67 | 169.11 | •••• | | 380.0 | 81.8 | 171. | | 1.79 | 13889 | 2774 | | 51.83 | 162.26 | | | 390.0 | 74.5 | 181. | 0 | 1.93 | 15016 | 2831 | 4.81 | 56.90 | 156.44 | **** | | | | | | | | | | | | | | DEPTH | ROP | BIT RUN | HOURS | TURNS | TOTAL COST | ICOST | CCOST | I-C | |---------------|------------|----------|-------|-------------|--|----------------|------------|-------------| | 400 0 | 7.ET 4 | 191.0 | 2.08 | 16307 | 28966.44 | 65.16 | 151.66 | | | 400.0 | 65.1 | | | | | | | | | 410.0 | 28.9 | 201.0 | 2.43 | 19216 | 30435,28 | 146,88 | 151,42 | | | 420.0 | 60.9 | 211.0 | 2,59 | 20595 | 31131.51 | 69.62 | 147.54 | •••• | | 430.0 | 86.5 | 221.0 | 2.71 | 21566 | 31621.58 | 49.01 | 143.08 | **** | | 440.0 | 81.1 | 231.0 | 2.83 | 22602 | 32144.64 | 52.31 | 139.15 | **** | | 450.0 | 61.5 | 241.0 | 2,99 | 23968 | 32834.39 | 68.98 | 136,24 | | | 460.0 | 52.4 | 251.0 | 3.19 | 25571 | 33643.71 | 80.93 | 134.04 | **** | | 470.0 | 67.3 | 261.0 | 3.33 | 26819 | 34273.97 | 63.03 | 131.32 | •••• | | 480.0 | 59.1 | 271.0 | 3.50 | 28240 | 34991.41 | 71.74 | 129,12 | | | 490.0 | 58.2 | 281.0 | 3,68 | 29684 | 35720.63 | 72.92 | 127.12 | | | | | | | | | | | | | 500.0 | 39.8 | 291.0 | 3.93 | 31797 | 36787,36 | 106.67 | 126,42 | •••• | | 510.0 | 61.6 | 301.0 | 4.09 | 33160 | 37475,34 | 68.80 | 124.50 | **** | | 520.0 | 55.1 | 311.0 | 4,27 | 34684 | 38244.61 | 76,93 | 122,97 | **** | | 530.0 | 47.7 | 321.0 | 4,48 | 36445 | 39134.04 | 88.94 | 121.91 | **** | | 540.0 | 69.4 | 331.0 | 4,62 | 37656 | 39745,45 | 61.14 | 120.08 | | | 550.0 | 81.4 | 341.0 | 4.75 | 38688 | 40266.58 | 52.11 | 118.08 | •••• | | | | | 4,95 | 40403 | 41132.10 | 86.55 | 117.19 | •••• | | 560.0 | 49.0 | 351.0 | | 42750 | 42317,23 | 118.51 | 117.22 | -+- | | 570.0 | 35.8 | 361.0 | 5.23 | | | | | .∳. | | 580.0 | 35.5 | 371.0 | 5.51 | 45116 | 43511.77 | 119.45 | 117.28 | | | 590.0 | 54.3 | 381.0 | 5.70 | 46664 | 44293.33 | 78.16 | 116.26 | **** | | 600.0 | 40.0 | 391.0 | 5.95 | 48762 | 45352.40 | 105.91 | 115.99 | | | 610.0 | 36.2 | 401.0 | 6.22 | 51083 | 46524.57 | 117.22 | 116.02 | .4. | | 620.0 | 36.8 | 411.0 | 6.49 | 53365 | 47676.70 | 115.21 | 116.00 | | | 630.0 | 44.7 | 421.0 | 6.72 | 55244 | 48625.04 | 94.83 | 115.50 | • | | | | | | | 49431.92 | 80.69 | 114,69 | | | 640.0 | 52.6 | 431.0 | 6.91 | 56842 | | | | | | 650.0 | 34.7 | 441.0 | 7.20 | 59263 | 50654.35 | 122.24 | 114.86 | + | | 660.0 | 33.6 | 451.0 | 7.49 | 61760 | 51914.87 | 126.05 | 115.11 | .\$- | | 670.0 | 25.2 | 461.0 | 7.89 | 65099 | 53600.67 | 168.58 | 116.27 | .4. | | 680. 0 | 24.0 | 471.0 | 8.31 | 68601 | 55368.93 | 176.83 | 117,56 | -\$- | | 690.0 | 28.4 | 481.0 | 8.66 | 71562 | 56863.88 | 149.50 | 118.22 | .∳∙ | | 700.0 | 31.0 | 491.0 | 8.98 | 74276 | 58233.96 | 137.01 | 118.60 | .4. | | 710.0 | 31.1 | 501.0 | 9.31 | 76980 | 59599.33 | 136.54 | 118.96 | ·
-{- | | | | | | | 61143.42 | 154,41 | | 4. | | 720.0 | 27.5 | 511.0 | 9.67 | 80038 | | | 119.65 | | | 730.0 | 29.0 | 521.0 | 10.01 | 82934 | 62605.39 | 146.20 | 120.16 | -\$- | | 740.0 | 27.2 | 531.0 | 10.38 | 86026 | 64166.31 | 156.09 | 120.84 | - †· | | 750.0 | 27.8 | 541.0 | 10.74 | 89051 | 65693.57 | 152.23 | 121.43 | -∳• | | 760.0 | 26.4 | 551.0 | 11.12 | 92308 | 67298.96 | 160.54 | 122.14 | ٠\$٠ | | 770.0 | 28.2 | 561.0 | 11.48 | 95395 | 68803.73 | 150.48 | 122.64 | + | | 780.0 | 28.3 | 571.0 | 11.83 | 98473 | 70304.18 | 150.05 | 123.12 | .4- | | 790.0 | 29.1 | 581.0 | 12.17 | 101465 | 71762,62 | 145.84 | 123.52 | .∳• | | 77 A A | /") A (**1 | E.U. 4 0 | am mm | 4 0 4 0 0 7 | יין אריים <i>ו</i> יין אריים | 4 177 4 127 75 | 473.4 7777 | | | 800.0 | 24.7 | 591.0 | 12.58 | 104983 | 73477.87 | 171.52 | 124.33 | .4. | | 806.0 | 31.5 | 597.0 | 12.77 | 106641 | 74286.01 | 134.69 | 124.43 | .4. | | | | | | | | | | | | BIT NUMBER
HTC X3A
COST
TOTAL HOURS | 2201
22 | SI
.00 TR | DC CODE
ZE
ZIP TIME
STAL TURNS | 114
12.250
5.7
196061 | NOZZLES
BIT RUN | | 6.0- 175
16 16
94
4 B6 G0. | 18
5.0 | |--|------------|--------------|---|--------------------------------|--------------------|--------|-------------------------------------|-----------| | DEPTH | ROP | BIT RUN | HOURS | TURNS | TOTAL COST | ICOST | CCOST | I-C | | 810.0 | 17.9 | 4.0 | 0.22 | 1200 | 27322.64 | 237 | 6831 | **** | | 820.0 | 20.3 | 14.0 | | 4780 | | 208 | 2101 | ••• | | 830.0 | 27.5 | 24.0 | 1.08 | 7689 | 30948.17 | 154 | 1290 | **** | | 840.0 | 28.9 | 34.0 | 1.42 | 10799 | 32413.67 | 146.55 | 953. 34 | | | 850.0 | 35,6 | 44.0 | 1.70 | 13324 | 33603.51 | 118.98 | 763.72 | **** | | 860.0 | 36.8 | 54.0 | 1.98 | 15766 | 34754,47 | 115.10 | 643.60 | | | 870.0 | 47.5 | 64.0 | 2.19 | 17661 | 35647,44 | 89.30 | 556,99 | •••• | | 880.0 | 47.7 | 74.0 | 2.40 | 19546 | 36535.69 | 88.83 | 493,73 | | | 890.0 | 47.4 | 84.0 | 2.61 | 21444 | 37429,84 | 89.41 | 445.59 | •••• | | 900.0 | 44.6 | 94.0 | 2.83 | 23464 | 38381.70 | 95,19 | 408.32 | •••• | | 910.0 | 48.8 | 104.0 | 3.04 | 25309 | 39251.11 | 86.94 | 377.41 | | | 920.0 | 45.0 | 114.0 | 3.26 | 27309 | 40193.55 | 94.24 | 352.58 | **** | | 930.0 | 38.7 | 124.0 | 3.52 | 29637 | 41290.52 | 109.70 | 332,9 9 | •••• | | 940.0 | 46.7 | 134.0 | 3.73 | 31564 | 42198.81 | 90.83 | 314.92 | •••• | | 950.0 | 43.1 | 144.0 | 3.96 | 33653 | 43183.07 | 98,43 | 299,88 | •••• | | 960.0 | 46.1 | 154.0 | 4.18 | 35604 | 44102.54 | 91.95 | 286.38 | | | 970.0 | 44.9 | 164.0 | 4.40 | 37607 | 45046.17 | 94.36 | 274.67 | ,,,,, | | 980.0 | 43.5 | 174.0 | 4.63 | 39674 | 46020.42 | 97,43 | 264,49 | *** | | 990.0 | 51.0 | 184.0 | 4.83 | 41437 | 46851.34 | 83.09 | 254.63 | •••• | | 1000.0 | 43.4 | 194.0 | 5.06 | 43510 | 47828.12 | 97,68 | 246.54 | **** | | 1010.0 | 48.0 | 204.0 | 5,27 | 45387 | 48712.43 | 88.43 | 238.79 | •••• | | 1020.0 | 47.6 | 214.0 | 5.48 | 47279 | 49604.22 | 89.18 | 231.80 | | | 1030.0 | 49.0 | 224.0 | 5.68 | 49117 | 50470.09 | 86.59 | 225.31 | | | 1040.0 | 51.1 | 234.0 | 5.88 | 50879 | 51300.62 | 83.05 | 219.23 | | | 1050.0 | 48.0 | 244.0 | 6,09 | 52754 | 52184.16 | 88.35 | 213.87 | | | 1060.0 | 52.2 | 254.0 | 6.28 | 54477 | 52995.84 | 81.17 | 208.65 | **** | | 1070.0 | 51,9 | 264.0 | 6.47 | 56209 | 53812,23 | 81.64 | 203.83 | **** | | 1080.0 | 44.7 | 274.0 | 6.69 | 58224 | 54761.74 | 94.95 | 199.86 | **** | | 1090.0 | 50.5 | 284.0 | 6.89 | 60006 | 55601,30 | 83.96 | 195.78 | •••• | | 1100.0 | 52,3 | 294.0 | 7.08 | 61726 | 56411.81 | 81.05 | 191.88 | **** | | 1110.0 | 50.6 | 304.0 | 7.28 | 63504 | 57249.40 | 83.76 | 188.32 | **** | | 1120.0 | 53.3 | 314.0 | 7.47 | 65194 | 58045.77 | 79.64 | 184.86 | **** | | 1130.0 | 52.0 | 324.0 | 7.66 | 66924 | 58860.98 | 81.52 | 181.67 | •••• | | 1140.0 | 44.2 | 334.0 | 7.89 | 68961 | 59821.00 | 96.00 | 179.10 | **** | | 1150.0 | 47.2 | 344.0 | 8.10 | 70866 | 60718.75 | 89.77 | 176.51 | | | 1160.0 | 48.8 | 354.0 | 8.30 | 72708 | 61586.98 | 86.82 | 173.97 | **** | | 1170.0 | 49.9 | 364.0 | 8.50 | 74512 | 62436.75 | 84.98 | 171.53 | •••• | | 1180.0 | 52.2 | 374.0 | 8.69 | 76237 | 63249.61 | 81,29 | 169.12 | **** | | 1190.0 | 41.0 | 384.0 | 8.94 | 78429 | 64282.76 | 103.32 | 167.40 | **** | | 1200.0 | 42.1 | 394.0 | 9.18 | 80567 | 65290.00 | 100.72 | 165.71 | **** | | 1210.0 | 41.7 | 404.0 | 9.42 | 82723 | 66305.85 | 101.59 | 164.12 | **** | | • 1220.0 | 42.2 | 414.0 | 9.65 | 84854 | 67310.34 | 100.45 | 162.59 | | | 1230.0 | 46.0 | 424.0 | 9.87 | 86813 | 68233.15 | 92.28 | 160.93 | | | DEPTH | ROP | BIT RUN | HOURS | TURNS | TOTAL COST | rcost | CCOST | 1-C | |------------------|--------------|----------------|----------------|--------------------|------------------------|------------------------|------------------|--------------| | 1240.0 | 43.9 | 434.0 | 10.10 | 88863 | 69199.16 | 96.60 | 159.45 | **** | | 1250.0 | 45.7 | 444.0 | 10.32 | 90830 | 70126.29 | 92.71 | 157.94 | •••• | | 1260.0 | 49.4 | 454.0 | 10.52 | 92650 | 70984.08 | 85.78 | 156.35 | *** | | 1270.0 | 50.1 | 464.0 | 10.72 | 94445 | 71829,92 | 84.58 | 154,81 | •••• | | 1280.0 | 51.2 | 474.0 | 10.91 | 96203 | 72658.10 | 82.82 | 153.29 | **** | | 1290.0 | 53.3 | 484.0 | 11.10 | 97890 | 73453.28 | 79.52 | 151.76 | | | 1300.0 | 59.6 | 494.0 | 11.27 | 99401 | 74165.12 | 71.18 | 150.13 | **** | | 1310.0 | 59.9 | 504.0 | 11.44 | 100904 | 74873.14 | 70.80 | 148.56 | | | 1320.0
1330.0 | 66,2
59,2 | 514.0
524.0 | 11.59
11.76 | 1.02264
1.03784 | . 75514.00
76230.26 | 64.09
71.63 | 146.91
145.48 | • | | 1340.0 | 59.4 | 534.0 | 11.92 | 105299 | 76944.16 | 71.39 | 144.09 | | | 1350.0 | 58.0 | 544.0 | 12.10 | 106851 | 77675.73 | 73.16 | 142.79 | *** | | 1360.0 | 55.6 | 554.0 | 12.28 | 108471 | 78439.11 | 76.34 | 141.59 | •••• | | 1370.0 | 54.7 | 564.0 | 12.46 | 110116 | 79214.27 | 77.52 | 140,45 | *** | | 1380.0 | 55.0 | 574.0 | 12.64 | 111751 | 79984.72 | 77.04 | 139.35 | **** | | 1390.0 | 50.6 | 584.0 | 12.84 | 113531 | 80823.49 | 83.88 | 138,40 | **** | | 1400.0 | 48.9 | 594.0 | 13.04 | 115371 | 81690.54 | 86.70 | 137.53 | **** | | 1410.0 | 53.2 | 604.0 | 13.23 | 117063 | 82487.81 | 79.73 | 136,57
135,52 | | | 1420.0 | 58.9 | 614.0 | 13,40 | 118590 | 83207.60
83970.98 | 71.98
76.3 4 | 134.57 | | | 1430.0 | 55.6 | 624.0 | 13.58 | 120210 | | | | | | 1440.0 | 46.7 | 634.0 | 13,79 | 122138 | 84879.26 | 90.83 | 133.88 | **** | | 1450.0 | 45.7 | 644.0 | 14.01 | 124107 | 85807.01 | 92.78 | 133.24 | **** | | 1460.0 | 43.2 | 654.0 | 14.25 | 126192 | 86789.51 | 98,25 | 132.71 | **** | | 1470.0 | 41.2 | 664.0 | 14.49 | 128377 | 87819.13
88759.04 | 102.96
93.99 | 132,26
131,69 | | | 1480.0 | 45.1
43.8 | 674.0
684.0 | 14.71 | 130371
132424 |
89726.22 | 96,72 | 131.18 | *** | | 1490.0
1500.0 | 45.6 | 694.0 | 15.16 | 134396 | 90655.71 | 92.95 | 130.63 | | | 1510.0 | 42.8 | 704.0 | 15.39 | 136501 | 91647.63 | 99.19 | 130,18 | | | 1520.0 | 47.1 | 714.0 | 15.60 | 138414 | 92548.84 | 90.12 | 129.62 | •••• | | 1530.0 | 53.5 | 724.0 | 15.79 | 140097 | 93341.99 | 79.31 | 128.93 | **** | | 1540.0 | 46.6 | 734.0 | 16.01 | 142030 | 94252.63 | 91.06 | 128.41 | | | 1550.0 | 44.1 | | CO to to O A | 144072 | 95215.10 | | | | | 1560.0 | 43.7 | 754.0 | 16.46 | 146130 | 96184.64 | 96.95 | 127.57 | - **** | | 1570.0 | 42.5 | 764.0
774.0 | 16.70 | 148247
150372 | 97182.45
98183.80 | 99.78
100.13 | 127.20
126.85 | | | 1580.0 | 42.4
42.7 | 784.0 | 16.93
17.17 | 152480 | 99176.90 | 99.31 | 126.50 | •••• | | 1590.0
1600.0 | 37.5 | 794.0 | 17.43 | 154878 | 100307.05 | 113.01 | 126.33 | **** | | 1610.0 | 35.8 | 804.0 | 17.71 | 157394 | 101492.54 | 118.55 | 126.23 | | | 1620.0 | 37,6 | 814.0 | 17.98 | 159789 | 102621.40 | 112.89 | 126.07 | **** | | 1630.0 | 37.6 | 824.0 | 18.24 | 162181 | 103748.45 | 112.70 | 125,91 | **** | | 1640.0 | 40,4 | 834.0 | 18.49 | 164406 | 104796.92 | 104.85 | 125.66 | •••• | | 1650.0 | 33.5 | 844.0 | 18.79 | 167096 | 106064.51 | 126.76 | 125.67 | -4- | | 1660.0 | 32.7 | 854.0 | 19.10 | 169849 | 107361.55 | 129.70 | 125.72 | + | | 1670.0 | 33.3 | 864.0 | 19.40 | 172549 | 108633.85 | 127.23 | 125.73 | + | | 1680.0 | 35.9 | 874.0 | 19.67 | 175056 | 109815.44 | 118.16 | 125.65 | | | 1690.0 | 37.1 | 884.0 | 19,94 | 177484 | 110959.33 | 114.39
126.05 | 125.52
125.53 | - ķ - | | 1700.0
1710.0 | 33.6
32.6 | 894.0
904.0 | 20.24
20.55 | 180159
182921 | 113521.60 | 130.18 | 125.58 | 4. | | 1720.0 | 30.8 | 914.0 | 20.87 | 185839 | 114896.39 | 137,48 | 125.71 | | | 1730.0 | 29.8 | 924.0 | 21.21 | 188859 | 116319.48 | 142.31 | 125.89 | -\$- | | | | | | | | | | | | DEPTH | ROP | BIT RUN | HOURS | TURNS | TOTAL COST | ICOST | CCOST | I-C | |--|----------------------|-------------------------|---------------------------------------|-------------------------------|-------------------------------------|----------------------------|------------------------------------|------| | 1740.0
1750.0
1751.0 | 28.8
28.1
10.3 | 934.0
944.0
945.0 | 21.56
21.91
22.01 | 191989
195191
196061 | 117794.41
119303.50
119713.46 | 147.49
150.91
409.96 | 126.12
126.38
126.68 | + | | BIT NUMBER
HTC J11
COST
TOTAL HOURS | 6788 .
7 . | .00 TR | DC CODE
ZE
IP TIME
TAL TURNS | 437
12.250
5.9
48632 | NOZZLES
BIT RUN | | 1.0- 183
16 16
8
1 B1 G0. | 36.0 | | DEPTH | ROP | BIT RUN | HOURS | TURNS | TOTAL COST | ICOST | CCOST | I-C | | | - 7.3 | 9.0 | 1.24 | 9674 | 37070.05 | 584 | 4119 | | | 1770.0 | 10.9 | 19.0 | 2.16 | 16182 | 40952.92 | 388 | 2155 | | | 1780.0 | 8.2 | 29.0 | 3.37 | 24218 | 46116.34
50571.74 | 516
446 | 1590
1297 | | | 1790.0 | 9.5 | 39.0 | 4,42
5,17 | 31152
36100 | 53751.32 | 318 | 1097 | •••• | | 1800.0
1810.0 | 13.3 | 49.0
59.0 | 5.92 | 41030 | 56919.11 | 316.78 | 964.73 | **** | | 1820.0 | 20.0 | 69.0 | 6.42 | 44337 | 59044.32 | 212.52 | 855.71 | **** | | 1830.0 | 19.2 | 79.0 | 6.94 | 47774 | 61253.17 | 220,89 | 775.36 | | | 1837.0 | 53.8 | 86.0 | 7.07 | 48632 | 61804.50 | 78.76 | 718.66 | **** | . | BIT NUMBER
CHRIS RC4
COST
TOTAL HOURS | 0.00
2.38 | IADC CODE
SIZE
TRIP TIME
TOTAL TURNS | 9,875
5,9
17130 | INTERVAL
NOZZLES
BIT RUN
CONDITION | 15 15 14
9.6 | |--|-------------------------------------|--|--|--|---| | DEPTH | ROP BIT | RUN HOURS | TURNS T | OTAL COST | ICOST CCOST I-C | | 1838.0
1840.0
1842.0 | 90.0
15.2
5.8 | 0.1 0.00
2.1 0.13
4.1 0.48 | 9
1036
3730 | 25026.61
25585.01
27050.12 | 47 250266
279 12183
733 6598 | | 1844.0
1846.0
1847.5 | 3.5
4.4
1.7 | 6.1 1.06
8.1 1.51
9.6 2.38 | 8242
11394
17130 | 29503.42
31427.18
35112.73 | 1227 4837 -
962 3880 -
2457 3658 - | | BIT NUMBER
CHRIS RC4
COST
TOTAL HOURS | 4
0.00
3.07 | IADC CODE
SIZE
TRIP TIME
TOTAL TURNS | 4
9.875
5.9
22329 | NOZZLES
BIT RUN | 15 15 14
9.0 | | DEPTH | ROP BIT | RUN HOURS | TURNS T | OTAL COST | ICOST CCOST I-C | | 1848.0
1850.0
1852.0
1854.0
1856.0
1856.5 | 9.9 1
13.6 1
18.3 1
13.9 1 | 0.1 2.42
2.1 2.62
4.1 2.77
6.1 2.88
8.1 3.02
8.6 3.07 | 17443
18953
20055
20876
21953
22329 | 35292.19
36146.28
36769.47
37233.62
37842.68
38055.51 | 353 3494 427 2987 312 2608 232 2313 305 2091 426 2046 | | BIT NUMBER
CHRIS RC4
COST
TOTAL HOURS | 4
0.00
7.47 | IADC CODE
SIZE
TRIP TIME
TOTAL TURNS | 9.875
5.9
54023 | INTERVAL
NOZZLES
BIT RUN
CONDITION | 15 15 14
5.1 | | DEPTH | ROP BIT | RUN HOURS | TURNS T | OTAL COST | ICOST CCOST I-C | | 1858.0 | 3.6 2 | 20.1 3.49 | 25347 | 39819.46 | 1185 1981 - | | 1860.0
1861.6 | | 22.1 5.79
23.7 7.47 | 41889
54023 | 49563.15
56710.42 | 4872 2243 +
4467 2393 + | | BIT NUMBER
HTC J11
COST
TOTAL HOURS | 6788.
22. | SI: | DC CODE
ZE
IP TIME
TAL TURNS | 43
12.25
6.
14769 | 0 NOZZLES
4 BIT RUN | | 1.6- 206
15 15
20
8 B4 G0. | 5 15
00.4 | |--|--------------|---------|---------------------------------------|----------------------------|------------------------|--------|-------------------------------------|--------------| | DEPTH | ROP | BIT RUN | HOURS | TURNS | TOTAL COST | ICOST | CCOST | I-C | | 1870.0 | 29.6 | 8.4 | 0.28 | - 2040 | . 35132.11 | 143 | 4182 | •••• | | 1880.0 | 18.4 | 18.4 | 0.83 | 5940 | 37438.75 | 231 | 2035 | | | 1890.0 | 30.0 | 28.4 | 1.16 | 8240 | 38852.41 | 141 | 1368 | | | 1900.0 | 9.3 | 38.4 | 2,24 | 15685 | 43427.98 | 458 | 1131 | •••• | | | 12.5 | 48.4 | 3.04 | 21212 | 46825,49 | 339.75 | 967.47 | **** | | 1920.0 | 8.9 | 58.4 | 4.17 | 28560 | 51607.22 | 478.17 | 883,69 | | | 1930.0 | 5.9 | 68.4 | 5.88 | 39127 | 58849,91 | 724.27 | 860.38 | •••• | | 1940.0 | 4.8 | 78.4 | 7.95 | 54049 | 67639.38 | 878.95 | 862.75 | + | | 1950.0 | 4.8 | 88.4 | 10.01 | 68921 | 76399,40 | 876.00 | 864,25 | | | 1960.0 | 33.1 | 98.4 | 10.32 | 71013 | 77682.30 | 128.29 | 789.45 | • | | 1970.0 | 40.1 | 108.4 | 10.57 | 72807 | 78739.02 | 105.67 | 726.37 | | | 1980.0 | 20.2 | 118.4 | 11.06 | 76377 | 80841.85 | 210.28 | 682.79 | | | 1990.0 | 4.4 | 128.4 | 13.34 | 92817 | 90525.46 | 968.36 | 705.03 | .4- | | 2000.0 | 26.0 | 138.4 | 13.73 | 95581 | 92153.54 | 162.81 | 665.85 | •••• | | 2010.0 | 8.1 | 148.4 | 14.97 | 102646 | 97400.60 | 524.71 | 656.34 | | | 2020.0 | 6.8 | 158.4 | 16.44 | 112631 | 103652.54 | 625.19 | 654.37 | | | 2030.0 | 6.6 | 168.4 | 17.94 | 121455 | 110030.36 | 637.78 | 653.39 | **** | | 2040.0 | 28.2 | 178.4 | 18.30 | 124011 | 111535.92 | 150.56 | 625.20 | **** | | 2050.0 | 10.2 | 188.4 | 19.28 | 131049 | 115681,49 | 414.56 | 614.02 | *** | | 2060.0 | 7.3 | 198.4 | 20.64 | 139603 | 121459.86 | 577,84 | 612.20 | **** | | 2062.0 | 1.2 | 200.4 | 22.32 | 147694 | 128608.30 | 3574 | 642 | + | | HTC J22 | 6788.
40.: | 00 TRI | C CODE
E
P TIME
AL TURNS | 517
12.250
7.3
180878 | NOZZLES
BIT-RUN | | 2.0- 247
15 15
41
3 B3 G0. | 5.6 | |--|--|---|---|--|--|--|--|-----| | DEPTH | ROP : | BIT RUN | HOURS | TURNS | TOTAL COST | ICOST | CCOST | I-C | | 2070.0
2080.0
2090.0 | 7.5
14.7
10.1 | 8.0
18.0
28.0 | 0.70
1.38
2.38 | 3356.
6016
9670 | 43393.59
46275.63
50489.54 | 565
288
421 | 5424
2571
1803 | | | 2100.0
2110.0
2120.0
2130.0
2140.0
2150.0
2160.0
2170.0
2180.0 | 23.9
26.2
27.1
32.9
12.9
13.1
20.2
21.4
31.9
22.7 | 38.0
48.0
58.0
68.0
78.0
98.0
108.0
118.0 | 2.80
3.18
3.55
3.85
4.63
5.39
5.89
6.35
6.47 | 11202
12497
13750
14848
17489
21040
23466
25753
27322
29562 | 52262.51
53883.52
55445.62
56734.41
60034.14
63269.08
65371.91
67355.76
68684.61
70553.00 | 177
162
156.21
128.88
329.97
323.49
210.28
198.38
132.88
186.84 | 1375
1123
955.96
834.33
769.67
718.97
667.06
623.66
582.07
551.20 | | | 2200.0
2210.0
2220.0
2230.0
2240.0
2250.0
2250.0
2260.0
2270.0
2280.0 | 8.5
6.3
7.4
16.7
24.5
8.5
10.6 | 138.0
148.0
158.0
168.0
178.0
198.0
208.0
218.0
228.0 | 8.28
9.88
11.05
12.41
13.01
13.41
13.85
15.04
16.03 | 35476
43422
49307
55946
58895
60919
63159
69158
73599
77909 | 75525.57
82300.57
87276.68
93020.88
95563.12
97296.04
99156.19
104173.53
108396.86 |
497.26
677.50
497.61
574.42
254.22
173.29
186.01
501.73
422.33 | 547.29
556.08
552.38
553.70
536.87
517.53
500.83
497.23
494.76 | + | | 2310.0
2320.0
2330.0
2340.0
2350.0
2360.0
2370.0 | 9.2
10.0
10.9
13.3
6.2
12.1
70.5
10.3
6.5
13.4 | 238.0
248.0
258.0
268.0
278.0
288.0
308.0
318.0
328.0 | 23.26 1
24.60 1
25.57 1
27.11 1 | 82953
87682
92243
95269
02688
06549
13129
17392
124771 | 117404.32
121637.08
125543.16
128723.91
135543.67
139062.53
144720.73
148833.32
155369.17 | 459.92
423.28
390.61
318.08
681.98
351.89
565.82
411.26
653.59
317.25 | 493.30
490.47
486.60
480.31
487.57
482.86
485.64
483.23
488.58
483.36 | | | 2400.0
2410.0
2420.0
2430.0
2440.0
2450.0
2460.0
2470.0 | 11.7
15.7
7.4
7.7
3.9
9.5
9.3
5.8 | 338.0
348.0
358.0
368.0
378.0
388.0
408.0
415.6 | 29.34 1
30.69 1
31.99 1
34.54 1
35.60 1
36.67 1
38.41 1 | 31492
33947
39247
45325
55656
59707
64896
72752 | 162151.24
164850.16
170560.20
176095.88
186912.79
191370.55
195940.23
203298.36
211106.51 | 360.96
269.89
571.00
553.57
1082
445.78
456.97
735.81
1027 | 479.74
473.71
476.43
478.52
494
493.22
492.31
498.28
508 | + | | BIT NUMBER
HTC J22
COST
TOTAL HOURS | 6788.00 | IADC CODE
SIZE
TRIP TIME
TOTAL TURNS | 517
12.250
7.6
90559 | NOZZLES
BIT RUN | 1 | 5 15
58.4 | |--|--|--|---|--|--|----------------------------| | DEPTH | ROP BIT | RUN HOURS | TURNS | TOTAL COST | ICOST CCOST | . I-C | | 2480.0
2490.0
2500.0 | 11.6 | 2.4 0.92
2.4 1.78
2.4 2.77 | 2691
6519
10967 | 42934.28
46578.00
50781.31 | 1631 17889
364 3756
420 2267 | , | | 2510.0
2520.0
2530.0
2540.0
2550.0
2560.0
2570.0
2580.0
2590.0 | 12.8 4
12.2 5
6.5 6
7.2 7
5.8 8
5.1 9
7.4 10
7.3 11 | 2.4 3.50
2.4 4.28
2.4 5.10
2.4 6.64
2.4 8.03
2.4 9.75
2.4 11.70
2.4 13.04
2.4 14.42
2.4 16.50 | 14251
17842
21500
28497
34599
41896
50236
56348
62898
73283 | 88619.27 8
94324.60 5
100159.51 5 | 308 1662 332 1349 349 1158 652 1077 588 1009 728.27 975.18 326.41 959.08 570.53 921.14 583.49 891.10 382.36 890.39 | 3
3
5
5
5
6 | | 2610.0
2620.0
2630.0
2636.0 | 13.5 146
8.1 15 | 2.4 17.87
2.4 18.61
2.4 19.85
3.4 20.78 | 79630
82831
87556
90559 | 117935.19 3
123198.74 5 | 580.19 866.96
315.01 828.20
526.36 808.39
558.73 802.72 | · | | BIT NUMBER
HTC J33
COST
TOTAL HOURS | 8
6637.00
52.43 | IADC CODE
SIZE
TRIP TIME
TOTAL TURNS | 537
12.250
8.2
214055 | NOZZLES
BIT RUN | 15 1
2 | 5 15
265.0 | | DEPTH | ROP BIT | RUN HOURS | TURNS | TOTAL COST | ICOST CCOST | I-C | | 2640.0
2650.0
2660.0
2670.0
2680.0
2690.0 | 5.8 2-
11.1 3-
7.0 4- | 4.0 0.91
4.0 3.44
4.0 5.15
4.0 6.05
4.0 7.49
4.0 8.49 | 2602
11862
18410
22165
28059
32143 | 45284.68
55986.14
63262.99
67084.60
73166.90
77417.33 | 968 11321
1070 3999
728 2636
382 1973
608 1663
425 1434 | - | | 2700.0
2710.0
2720.0
2730.0
2740.0
2750.0
2760.0
2770.0
2790.0 | 3.5 7.5.0 8.5.3 9.3.8 10.4.3 11.4.4.3 13.4.2 14.4 | 4.0 27.36 | 37641
50831
59629
68355
80072
89639
94238
102858
110763
118671 | 83168.59
95445.11
103922.41
111978.09
123283.89
133186.62
137331.61
147241.42
157431.60
167664.62 | 575 1300 1228 1290 848 1237 806 1191 1131 1185 990 1168 414 1108 991 1099 1019 1093 1023 1089 | | | DEPTH | ROP | BIT RUN | HOURS | TURNS | TOTAL COST | ICOST | ccost I | -c | |--|---|---|--|--|--|--|--|------------------------------| | 2800.0
2810.0
2820.0
2830.0
2840.0
2850.0
2860.0
2870.0
2880.0 | 5.2
8.6
5.7
5.7
5.7
5.7
5.9 | 164.0
174.0
184.0
194.0
204.0
214.0
224.0
234.0
254.0 | 31.70
32.95
35.70
37.46
39.59
41.38
44.11
46.68
49.21
50.92 | 126547
131747
143429
150617
159842
166782
177819
188781
-199742.
207285 | 175873.93
181174.00
192800.23
200271.46
209303.61
216926.81
228475.29
239379.37
250123.24
257344.72 | 821
530
1163
747
903
762
1155
1090
1074
722 | 1072
1041
1048
1032
1026
1014
1020
1023
1025
1013 |
+

+
+
+ | | 2900.0
2901.0 | 8.8
2.6 | 264.0
265.0 | 52.05
52.43 | 212269
214055 | 262165.32
263774.54 | 482.06
1609 | 993.05
995 |
· † | | BIT NUMBER
HTC J33
COST
TOTAL HOURS | 6637
22 | .00 TR | DC CODE
ZE
IP TIME
TAL TURN | 537
12.25(
8.4
IS 92542 | NOZZLES
BIT RUN | | 1.0- 3021
15 15
120
2 B2 G0.0 | 15
).(| | DEPTH | ROP | BIT RUN | HOURS | TURNS | TOTAL COST | ICOST | CCOST I | r-c | | 2910.0
2920.0
2930.0
2940.0
2950.0
2960.0
2970.0 | 3.1
4.3
8.4
6.7
6.5
4.2
6.7 | 9.0
19.0
29.0
39.0
49.0
59.0
69.0 | 2.86
5.19
6.38
7.86
9.26
10.80
13.17 | 10551
20576
25197
31244
37500
44185
54585
61024 | 54408.33
64283.97
69316.62
75601.55
81528.35
88044.17
98105.95
104403.83 | 1350
988
503
628
593
652
1006
630 | 6045
3383
2390
1939
1664
1492
1422
1322 | | | 2990.0
3000.0
3010.0
3020.0
3021.0 | 7.5
5.2
6.5
3.9
8.5 | 89.0
99.0
109.0
119.0
120.0 | 15.99
17.91
19.45
22.02
22.14 | 66453
74707
81124
92020
92542 | 110083.24
118197.68
124758.27
135649.40
136147.72 | 568
811
656
1089
498 | 1237
1194
1145
1140
1135 | | ## (e), COMPUTER DATA LISTING : LIST C | INTERVAL | | • | | | • | | 10m averages. | |-----------|------|---|---|---|---|---|--| | DEPTH | , , | | ı | | | • | Well depth, in metres. | | FLOW RATE | | • | • | , | • | : | Mud flow into the well, in gallons per minute. | | PSP | | • | | | | | Pump pressure, in pounds per square inch. | | PBIT | | • | | | | | Bit pressure drop, in pounds per square inch. | | %PSP | f 1 | • | | | • | • | Percentage of surface pressure dropped at the bit. | | н.н.р | | • | | , | | | Bit hydraulic horsepower. | | HHP/SQ IM | 1 | ı | , | | , | • | Bit hydraulic horsepower per square inch
of bit diameter. | | IMPACT FO | ORCE | | | · | • | r | Bit impact force, in foot-pounds per second squared. | | JET VELO | YTI | | • | | | | Mud velocity through the bit nozzles, in metres per second. | | BIT NUMBER | ? | 1 T | ADC CODE | 111 | INT | ERVAL | 74.0 | - 209.0 | |--
--|---|--|--|---|--|--|--| | HTC OSC3AJ | • | | IZE | 26.000 | | ZLES | | 18 18 18 | | COST | | | RIP TIME | 2.4 | | RUN | | 135.0 | | TOTAL HOUR | | | OTAL TURN | | | DITION | T2 E | 5 G0.000 | | | | | | | | | | | | | PT 011 | | • | | | 131175 7 | TMDACT | JET | | 75.177.177.1.1 | FLOW
RATE | nen | optr | %PSP | ННР | HHP/ | IMPACT | VELOCITY | | DEPTH | KHIE. | PSP | PRIT | AF OF | rinr | sqin | r on un | VELOCATI | | 80.0 | 363 | 306.0 | 187.8 | 61.4 | 40 | 0.07 | 253 | 47 | | 90.0 | 368 | 308.9 | 193.1 | 62.5 | 41 | 0.08 | 260 | 48 | | 100.0 | 394 | 365.9 | 220.8 | 60.3 | 51 | 0.10 | 297 | 51 | | 110.0 | 882 | 892.2 | 1109.8 | 124.4 | 571 | 1.08 | 1492 | 115 | | 120.0 | 863 | 951.0 | 1061.9 | 111.7 | 535 | 1.01 | 1428 | 113 | | 130.0 | 941 | 1086.7 | 1260.8 | 116.0 | 692 | 1.30 | 1695 | 123 | | 140.0 | 963 | 1154.7 | 1321.9 | 114.5 | 743 | 1.40 | 1778 | 126 | | 150.0 | 952 | 1183.5 | 1291.3 | 109.1 | 717 | 1.35 | 1736 | 125 | | 160.0 | 964 | 1253.4 | 1323.1 | 105.6 | 744 | 1.40 | 1779 | 126 | | 170.0 | 958 | 1209.1 | 1308.3 | 108.2 | 731 | 1.38 | 1759 | 125 | | 180.0 | 959 | 1222.9 | 1310.6 | 107.2 | 733 | 1.38 | 1762 | 125 | | 190.0 | 954 | 1215.3 | 1298.0 | 106.8 | 723 | 1.36 | 1745 | 125 | | 200.0 | 964 | 1235.6 | 1324.5 | 107.2 | 745 | 1.40 | 1781 | 126 | | | | | | | | | | 4 200,000 | | 209.0 | 970 | 1250.0 | 1339.8 | 107.2 | 758 | 1.43 | 1802 | 127 | BIT NUMBER | | | ADC CODE | 111 | | ERVAL | 209.0 | | | HTC OSC3AJ | ī | S | IZE | 17.500 | NOZ | ZLES | | 20 20 20 | | HTC OSC3AJ
COST | 4442 | .00 T | IZE
RIP TIME | 17.500
3.7 | NOZ
BIT | ZLES
RUN | | 20 20 20
597.0 | | HTC OSC3AJ | 4442 | .00 T | IZE | 17.500
3.7 | NOZ
BIT | ZLES | | 20 20 20 | | HTC OSC3AJ
COST | 4442 | .00 T | IZE
RIP TIME | 17.500
3.7 | NOZ
BIT | ZLES
RUN | | 20 20 20
597.0 | | HTC OSC3AJ
COST | 4442 | .00 T | IZE
RIP TIME | 17.500
3.7 | NOZ
BIT | ZLES
RUN | | 20 20 20
597.0 | | HTC OSC3AJ
COST | 7
4442
(S 12 | .00 T | IZE
RIP TIME | 17.500
3.7 | NOZ
BIT | ZLES
RUN
DITION | T2 E | 20 20 20
597.0
2 60.000 | | HTC OSC3AJ COST TOTAL HOUR DEPTH | FLOW RATE | .00 T
.77 T | IZE
RIP TIME
OTAL TURN:
PRIT | 17.500
3.7
S 106641
ZPSP | HHP | ZLES
RUN
DITION
HHP/
sqin | T2 E
IMPACT
FORCE | 20 20 20
597.0
2 G0.000
JET
VELOCITY | | HTC OSC3AJ COST TOTAL HOUR DEPTH 210.0 | FLOW
RATE | .00 T.77 T | IZE
RIP TIME
OTAL TURN:
PRIT
868.1 | 17.500
3.7
S 106641
%PSP
49.7 | NOZ
BIT
CON
HHP
488 | ZLES RUN DITION HHP/ sqin 2.03 | T2 E IMPACT FORCE 1441 | 20 20 20
597.0
2 G0.000
JET
VELOCITY | | HTC OSC3AJ COST TOTAL HOUR DEPTH 210.0 220.0 | FLOW
RATE
964
950 | PSP 1747.8 1730.5 | IZE
RIP TIME
OTAL TURN:
PRIT
868.1
843.2 | 17.500
3.7
S 106641
%PSP
49.7
48.7 | NOZ
BIT
CON
HHP
488
467 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94 | T2 E IMPACT FORCE 1441 1400 | 20 20 20
597.0
2 G0.000
JET
VELOCITY | | HTC OSC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0 | FLOW
RATE
964
939 | .00 T
.77 T
PSP
1747.8
1730.5
1680.2 | IZE
RIP TIME
OTAL TURN:
PRIT
868.1
843.2
824.5 | 17.500
3.7
S 106641
%PSP
49.7
48.7
49.1 | NOZ
BIT
CON
HHP
488
467
452 | ZLES RUN DITION HHP/ sqin 2.03 1.94 1.88 | T2 B IMPACT FORCE 1441 1400 1369 | 20 20 20
597.0
2 G0.000
JET
VELOCITY
102
101
100 | | HTC OSC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0 | FLOW
RATE
964
939
825 | PSP
1747.8
1730.5
1680.2
1396.5 | IZE
RIP TIME
OTAL TURN:
PRIT
868.1
843.2
824.5
635.9 | 17.500
3.7
S 106641
ZPSP
49.7
48.7
49.1
45.5 | NOZ
BIT
CON
HHP
488
467
452
306 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.27 | T2 E IMPACT FORCE 1441 1400 1369 1056 | 20 20 20
597.0
2 60.000
JET
VELOCITY
102
101
100 | | HTC 0SC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0 | FLOW
RATE
964
950
939
825
946 | .00 T
.77 T
PSP
1747.8
1730.5
1680.2
1396.5
1737.9 | IZE
RIP TIME
OTAL TURN:
PRIT
868.1
843.2
824.5
635.9
837.6 | 17.500
3.7
S 106641
ZPSP
49.7
48.7
49.1
45.5
48.2 | NOZ
BIT
CON
HHP
488
467
452
306
463 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.27
1.92 | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 | 20 20 20
597.0
2 G0.000
JET
VELOCITY
102
101
100
87
100 | | HTC 08C3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0
260.0 | FLOW
RATE
964
950
939
825
946 | PSP 1747.8 1730.5 1680.2 1396.5 1737.9 1802.5 | IZE
RIP TIME
OTAL TURN:
PRIT
868.1
843.2
824.5
635.9
837.6
868.8 | 17.500
3.7
S 106641
XPSP
49.7
48.7
49.1
45.5
48.2
48.2 | NOZ
BIT
CON
HHP
488
467
452
306
463
489 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.27
1.92
2.03 | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 | 20 20 20
597.0
2 G0.000
JET
VELOCITY
102
101
100
87
100
102 | | HTC 0SC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0
260.0 | FLOW
RATE
964
950
939
825
946
967 | PSP 1747.8 1730.5 1680.2 1396.5 1737.9 1802.5 1780.0 | IZE
RIP TIME
OTAL TURN:
PRIT
868.1
843.2
824.5
635.9
837.6
868.8
873.9 | 17.500
3.7
S 106641
%PSP
49.7
48.7
49.1
45.5
48.2
48.2
49.1 | NOZ
BIT
CON
HHP
488
467
452
306
463
489
493 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.27
1.92
2.03
2.05 | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 | 20 20 20
597.0
2 G0.000
JET
VELOCITY
102
101
100
102
102 | | HTC 08C3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0
260.0 | FLOW
RATE
964
950
939
825
946 | PSP 1747.8 1730.5 1680.2 1396.5 1737.9 1802.5 | IZE
RIP TIME
OTAL TURN:
PRIT
868.1
843.2
824.5
635.9
837.6
868.8 | 17.500
3.7
S
106641
XPSP
49.7
48.7
49.1
45.5
48.2
48.2 | NOZ
BIT
CON
HHP
488
467
452
306
463
489 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.27
1.92
2.03 | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 | 20 20 20
597.0
2 G0.000
JET
VELOCITY
102
101
100
87
100
102 | | HTC OSC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0
250.0
280.0
290.0 | FLOW
RATE
964
950
939
825
946
964
967
952 | S.00 T.77 T | IZE
RIP TIME
OTAL TURN:
PRIT
868.1
843.2
824.5
635.9
837.6
868.8
873.9
856.2
865.1 | 17.500
3.7
S 106641
XPSP
49.7
49.1
45.5
48.2
49.1
47.6
47.7 | NOZ
BIT
CON
HHP
488
467
452
306
463
489
478
478
485 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.27
1.92
2.03
2.05
1.99
2.02 | T2 B IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1421 1436 | 20 20 20
597.0
2 G0.000
JET
VELOCITY
102
101
100
102
102
101
102 | | HTC OSC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
290.0 | FLOW
RATE
964
950
939
825
946
967
957
962 | S.00 T.77 T | IZE RIP TIME OTAL TURN: PRIT 868.1 843.2 824.5 635.9 837.6 868.8 873.9 856.2 865.1 | 17.500
3.7
S 106641
ZPSP
49.7
49.1
45.5
48.2
49.1
47.6
47.7 | NOZ
BIT
CON
HHP
488
467
452
306
463
489
493
478
485 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.27
2.03
2.05
1.99
2.02 | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1421 1436 | 20 20 20
597.0
2 G0.000
JET
VELOCITY
102
101
100
102
102
101
102 | | HTC OSC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
290.0 | FLOW
RATE
964
9539
825
9464
957
952
964
967
967 | S.00 T.77 T | IZE RIP TIME OTAL TURN: PRIT 868.1 843.2 824.5 635.9 837.6 868.8 873.9 856.2 865.1 | 17.500
3.7
S 106641
XPSP
49.7
49.1
45.5
48.2
49.1
47.6
47.7 | NOZ
BIT
CON
HHP
488
467
452
306
463
489
493
478
485
484
463 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.27
2.05
1.92
2.05
1.99
2.02 | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1421 1436 | 20 20 20
597.0
2 G0.000
JET
VELOCITY
102
101
100
102
102
102
102
102 | | HTC OSC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
290.0 | FLOW
RATE
964
9539
825
964
967
967
962
964
967
967
962 | S.00 T.77 T | IZE RIP TIME OTAL TURN: PRIT 868.1 843.2 824.5 635.9 837.6 868.8 873.9 856.2 865.1 | 17.500
3.7
S 106641
XPSP
49.7
49.1
45.5
48.2
48.2
47.6
47.7
46.7 | NOZ
BIT
CON
HHP
488
467
452
306
463
489
493
478
485
484
463
466 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.27
2.05
1.92
2.05
1.99
2.02 | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1423 1436 | 20 20 20
597.0
2 G0.000
JET
VELOCITY
102
101
100
102
102
102
102
101
102 | | HTC OSC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
290.0
310.0
320.0
330.0 | FLOW RATE 953956447795 17945 | S.00 T.77 T | IZE RIP TIME OTAL TURN: PRIT 868.1 843.2 824.5 635.9 837.6 8638.9 856.2 865.1 863.5 838.4 841.3 870.0 | 17.500
3.7
3.7
5 106641
%PSP
49.7
49.1
45.5
48.2
49.1
47.6
47.7
46.7
46.4
46.8 | NOZ
BIT
CON
HHP
488
452
306
463
483
478
483
466
490 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.29
2.05
1.99
2.02
2.01
1.93
1.94
2.04 | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1421 1436 1434 1392 1397 1444 | 20 20 20
597.0
2 GO.000
JET
VELOCITY
102
101
100
102
102
102
102
101
102
100
101
101 | | HTC OSC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
290.0
310.0
320.0
330.0
340.0 | FA 12
FLAT 4095324647722
995324647722
99589956495956 | PSP 1747.8 1730.5 1680.2 1396.5 1737.9 1802.5 1780.0 1798.1 1813.4 1847.3 1781.0 1813.1 1860.0 1890.8 | IZE RIP TIME OTAL TURN: PRIT 868.1 843.2 824.5 635.9 837.6 868.8 873.9 856.2 865.1 863.5 838.4 841.3 870.0 857.6 | 17.500
3.7
106641
XPSP
49.7
49.1
45.2
48.2
49.1
47.7
46.7
47.7
46.8
46.8
45.4 | NOZ
BIT
CON
HHP
487
4526
4639
475
4836
4836
4836
4836
4836
487
487
487 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.22
2.05
1.99
2.02
2.01
1.94
2.04
1.99 | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1421 1436 1434 1392 1397 1444 1424 | 20 20 20
597.0
2 GO.000
JET
VELOCITY
102
101
100
102
102
102
102
100
102
101
102
101 | | HTC OSC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
290.0
310.0
320.0
330.0
340.0 | FA 12
FA 12
FA 9532564772
FA 9932564772
9944587
9947587 | PSP 1747.8 1730.5 1680.2 1396.5 1737.9 1802.5 1780.0 1798.1 1813.4 1847.3 1781.0 1813.1 1860.0 1890.8 1818.3 | IZE RIP TIME OTAL TURN: PRIT 868.1 843.2 824.5 635.9 837.6 8638.8 873.9 856.2 865.1 863.5 863.6 873.6 863.1 | 17.500
3.7
106641
XPSP
49.7
49.1
45.2
48.2
49.1
47.7
46.7
47.7
46.8
45.1 | NOZ
BIT
CON
HHP
487
452
306
463
487
478
483
484
466
499
448 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.22
2.05
1.99
2.02
2.03
1.99
2.04
1.99
1.86 | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1421 1436 1434 1392 1397 1444 1424 1361 | 20 20 20
597.0
2 G0.000
JET
VELOCITY
102
101
102
102
102
102
102
101
102
101
102
101
102 | | HTC OSC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
270.0
310.0
310.0
310.0
310.0
310.0 | FA 12
FA 12
FA 95325
FA | 9.00 T
.77 T
PSP
1747.8
1730.5
1680.2
1396.5
1737.9
1802.5
1780.0
1798.1
1813.4
1847.3
1781.0
1813.1
1860.0
1890.8
1818.3
1797.0 | IZE RIP TIME OTAL TURN: PRIT 868.1 843.2 824.5 635.6 825.6 863.9 856.2 865.1 863.4 841.3 870.6 857.6 820.1 825.5 | 17.500
7.3.41
10.6641
XPSP 79.15
49.15
49.15
48.2167
47.67
46.47
46.46
45.49
45.9 | NOZ
BION
CON
HHP
487
45263
487
453
487
487
483
483
483
483
483
483
483
483
483
483 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.22
2.05
1.99
2.05
1.99
2.04
1.99
1.88 | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1421 1436 1434 1392 1397 1444 1424 1361 1370 | 20 20 20
597.0
2 G0.000
JET
VELOCITY
102
101
102
102
102
102
101
102
100
101
102
101
102 | | HTC OSC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
270.0
310.0
310.0
310.0
310.0
310.0
310.0 | FA 12 FA 12 FA 12 FA 95325 FA 95325 FA 97532 97 | 9.00 T
7.77 T
PSP
1747.8
1730.5
1680.2
1396.5
1737.9
1802.5
1780.0
1798.1
1813.4
1847.3
1813.1
1860.0
1818.3
1890.8
1818.3
1797.0
1879.9 | IZE RIP TIME OTAL TURN: PRIT 868.1 843.2 824.5 635.6 8637.6 8673.2 865.1 8638.4 870.0 857.6 820.1 825.5 861.0 | 17.500
3.7
106641
X 106641
XPSP 77.1
49.15
49.45.2
49.45.4
47.7 71.4
46.47.47.46.45.4
45.49.45.8 | NOZ
BION
CON
HHP 487
452
467
452
483
483
483
483
483
483
483
483
483
483 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.887
1.92
2.05
1.99
2.05
1.99
2.04
1.99
1.88
1.99
1.88
2.00 | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1423 1436 1434 1367 1444 1361 1370 1429 | 20 20 20
597.0
2 G0.000
JET
VELOCITY
102
101
102
102
102
101
102
101
102
101
102
101
102
101 | | HTC OSC3AJ
COST
TOTAL HOUR
DEPTH
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
270.0
310.0
310.0
310.0
310.0
310.0 | FA 12
FA 12
FA 95325
FA | 9.00 T
.77 T
PSP
1747.8
1730.5
1680.2
1396.5
1737.9
1802.5
1780.0
1798.1
1813.4
1847.3
1781.0
1813.1
1860.0
1890.8
1818.3
1797.0 | IZE RIP TIME OTAL TURN: PRIT 868.1 843.2 824.5 635.6 825.6 863.9 856.2 865.1 863.4 841.3 870.6 857.6 820.1 825.5 | 17.500
7.3.41
10.6641
XPSP 79.15
49.15
49.15
48.2167
47.67
46.47
46.46
45.49
45.9 | NOZ
BION
CON
HHP
487
45263
487
453
487
487
483
483
483
483
483
483
483
483
483
483 | ZLES
RUN
DITION
HHP/
sqin
2.03
1.94
1.88
1.22
2.05
1.99
2.05
1.99
2.04
1.99
1.88 | T2 E IMPACT FORCE 1441 1400 1369 1056 1390 1442 1451 1421 1436 1434 1392 1397 1444 1424 1361 1370 | 20 20 20
597.0
2 G0.000
JET
VELOCITY
102
101
102
102
102
102
102
101
102
100
101
102
101
102 | | FLOW HHP/
DEPTH RATE PSP PBIT %PSP HHP sqin | IMPACT
FORCE |
JET
VELOCITY | |--|----------------------|-----------------| | 400.0 954 1884.1 851.2 45.2 474 1.97 | 1413 | 101 | | 410.0 974 1938.9 886.9 45.7 504 2.10 | 1472 | 103 | | 420.0 957 1927.4 856.5 44.4 478 1.99 | 1422 | 101 | | 430.0 966 1956.8 872.5 44.6 492 2.04 | 1448 | 102 | | 440.0 965 1946.5 870.7 44.7 490 2.04 | 1446 | 102 | | 450.0 961 1968.7 863.3 43.9 484 2.01 | 1433 | 102 | | 460.0 967 1976.6 874.9 44.3 494 2.05 | 1453 | 103 | | 470.0 972 2042.0 882.6 43.2 500 2.08 | 1465 | 103 | | 480.0 968 2006.9 876.8 43.7 495 2.06 | 1456 | 103 | | 490.0 946 1967.8 837.1 42.5 462 1.92 | 1390 | 100 | | 500.0 967 2032.0 884.4 43.5 499 2.07 | 1468 | 102 | | 510.0 966 2048.6 883.4 43.1 498 2.07 | 1467 | 102 | | 520.0 977 2035.0 913.6 44.9 521 2.17 | 1517 | 104 | | 530.0 962 2033.4 895.7 44.1 503 2.09 | 1487 | 102 | | 540.0 966 2064.7 903.6 43.8 509 2.12 | 1500 | 102 | | 550.0 969 2076.7 908.6 43.8 514 2.14 | 1508 | 103 | | 560.0 960 2099.7 891.0 42.4 499 2.07 | 1479 | 102 | | 570.0 941 2006.3 857.0 42.7 471 1.96 | 1423 | 100 | | 580.0 981 2120.1 930.7 43.9 533 2.21 | 1545 | 104 | | 590.0 972 2109.6 913.9 43.3 518 2.15 | 1517 | 103 | | 600.0 974 2118.7 918.2 43.3 522 2.17 | 1524 | 103 | | 610.0 969 2107.2 908.1 43.1 513 2.13 | 1508 | 103 | | 620.0 960 2134.9 891.0 41.7 499 2.07 | 1479 | 102 | | 630.0 960 2200.7 891.6 40.5 499 2.08 | 1480 | 102 | | 640.0 975 2150.0 919.1 42.7 523 2.17 | 1526 | 103 | | 650.0 953 2138.0 888.3 41.5 494 2.05 | 1475 | 101 | | 660.0 967 2155.7 915.7 42.5 517 2.15 | 1520 | 103 | | 670.0 940 2023.4 863.7 42.7 473 1.97 | 1434 | | | 680.0 965 2130.7 911.7 42.8 513 2.13
690.0 976 2201.5 931.3 42.3 530 2.20 | 151 <i>4</i>
1546 | 102
103 | | | | | | 700.0 966 2150.1 913.4 42.5 515 2.14 | 1516 | 102 | | 710.0 964 2144.6 909.8 42.4 512 2.13 | 1510 | 102 | | 720.0 969 2180.5 918.3 42.1 519 2.16 | 1525 | 103 | | 730.0 966 2140.7 913.6 42.7 515 2.14 | 1517 | 102 | | 740.0 966 2151.1 912.9 42.4 514 2.14 | 1516 | 102 | | 750.0 962 2170.3 905.7 41.7 508 2.11 | 1504 | 102 | | 760.0 934 2209.4 853.2 38.6 465 1.93 | 1416 | 99 | | 770.0 968 2213.2 916.9 41.4 518 2.15 | 1522 | 103 | | 780.0 954 2209.9 891.4 40.3 496 2.06 | 1480 | 101 | | 790.0 958 2230.8 897.5 40.2 501 2.08 | 1490 | 101 | | 800.0 958 2239.2 897.5 40.1 502 2.09 | 1490 | 101 | | 806.0 964 2250.7 909.7 40.4 512 2.13 | 1510 | 102 | SIZE 12.250 NOZZLES 16 16 18 HTC X3A 945.0 BIT RUN 2201.00 TRIP TIME 5.7 COST T4 B6 G0.000 CONDITION TOTAL HOURS 22,01 TOTAL TURNS 196061 JET IMPACT HHP/ FLOW FORCE VELOCITY HHP DEPTH RATE PSP PRIT %PSP sgin 1735 130 853 2523.5 1500.2 59.4 747 6.34 810.0 1708 130 856 2490.1 1476.6 59.3 737 6.26 820.0 2516.5 1526.3 60.7 775 6.57 1765 132 870 830.0 62.4 953 8,08 2026 142 932 2805.7 1751.8 840.0 7.90 1996 141 60.3 931 925 1725.4 2860.7 850.0 7,99 141 941 2010 1737.5 60.3 860.0 928 2882.8 8.02 946 2016 141 61.0 870.0 930 2856.0 1743.1 142 953 8.09 2026 61.0 880.0 932 2871.3 1752.1 140 7.83 1983 923 890.0 922 2859.4 1714.6 60.0 141 1997 7.91 900.0 925 2863.0 1726.6 60.3 932 7.80 1978 140 921 2866.4 1709.9 59.7 919 910.0 914 2809.2 1682.7 59.9 897 7.61 1946 139 920.0 930 7,89 1993 141 925 2800.0 1723.6 61.6 930.0 927 7.87 1990 141 924 2783.9 1720.4 61.8 940.0 921 7.81 1981 140 922 1712.5 60.9 2810.6 950.0 1724.6 7.90 1995 141 931 925 2791.1 61.8 960.0 7.91 1997 141 932 2871.6 1726.3 60.1 925 970.0 7.89 1994 141 61.5 930 1724.0 925 2803.7 980.0 7.76 1972 140 915 1705.0 60.2 990.0 920 2831.2 59.1 7.56 1937 139 891 1674.8 1000.0 911 2832.4 7.49 1926 138 57.5 883 1010.0 909 2896.3 1665.3 58.1 873 7,41 1911 138 1020.0 905 2845.0 1652.4 7.76 1972 140 915 920 2904.0 1705.3 58.7 1030.0 137 7.35 1902 57.5 867 1040.0 903 2861.7 1644.5 136 7.14 1865 894 2847,3 1612.2 56.6 841 1050.0 7.10 1859 136 893 2860.9 1607.3 56.2 837 1060.0 135 2871.7 1587.9 55.3 822 6.98 1837 1070.0 887 2878.5 1573.0 54.6 811 6.88 1819 134 1080.0 883 777 6.59 1769 132 871 2868.2 1529.2 53.3 1090.0 134 1100.0 54.3 802 6.81 1807 880 2876.3 1562.3 1785 54.0 788 6.69 133 875 2860.1 1543.5 1110.0 6,64 1777 54.1 783 133 873 2842.0 1536.8 1120.0 6.52 1755 132 2849.3 1517.8 53.3 768 868 1130.0 2850.0 734 6,23 1703 . 130 855 1472.6 51.7 1140.0 782 6.64 1776 133 2897.3 53.0 1150.0 873 1535.8 2895.3 6.50 1752 132 52,3 766 1160.0 867 1514.9 252 6.42 1738 131 1170.0 863 2872.8 1502.8 52.3 1522.7 772 6.55 1761 132 869 2838.6 53.6 1180.0 6.22 1701 130 2865.5 1470.4 51.3 733 1190.0 854 773 6.56 132 1523.7 52.5 1762 1200.0 869 2900.3 6.35 52.1 748 1724 131 860 2860.9 1491.0 1210.0 1752 6.50 132 2931.9 1514.8 51.7 766 1220.0 867 1699 51.2 6.21 130 854 2868.3 1469.0 732 1230.0 IADC CODE 3 BIT NUMBER INTERVAL 114 806.0- 1751.0 | DEPTH | FLOW
RATE | P 8 P | PBIT | %PSP | ннР | HHP/
sqin | IMPACT
FORCE | JET
VELOCITY | |------------------|--------------------|------------------|------------------|--------------|--------------------|--------------|-----------------|-----------------| | 1240.0 | 867
863 | 2907.5
2852.5 | 1514.0
1500.8 | 52.1
52.6 | 765
755 | 6.49
6.41 | 1751
1736 | 132
131 | | 1250.0
1260.0 | 871 | 2913.8 | 1530.8 | 52.5 | 778 | 6.60 | 1770 | 133 | | 1270.0 | 888 | 2859.6 | 1517.3 | 53.1 | 768 | 6.52 | 1755 | 132 | | 1280.0 | 869 | 2868.8 | 1523.8 | 53.1 | 773 | 6.56 | 1762 | 132 | | 1290.0 | 876 | 2937.2 | 1548.3 | 52.7 | 792 | 6.72 | 1791 | 133 | | 1300.0 | 870 | 2925.0 | 1524.7 | 52.1 | 774 | 6.56 | 1763 | 132 | | 1310.0 | 870 | 2954.8 | 1526.6 | 51.7 | 775 | 6.58 | 1766 | 132 | | 1320.0 | 865 | 2969.9 | 1506.9 | 50.7 | 760 | 6.45 | 1743 | 132 | | 1330.0 | 880 | 2936.0 | 1560.0 | 53.1 | 801 | 6.79 | 1804 | 134 | | 1340.0 | 872 | 2961.2 | 1531.6 | 51.7 | 779 | 6.61 | 1771 | 133 | | 1350.0 | 868 | 2992.6 | 1518.2 | 50.7 | 769 | 6.52 | 1756 | 132 | | 1360.0 | 863 | 2957.4 | 1500.5 | 50.7 | 755 | 6.41 | 1735 | 131
132 | | 1370.0 | 870 | 2957.2 | 1524.4 | 51.5 | 773 | 6.56 | 1763
1754 | 132 | | 1380.0 | 867 | 2981.1 | 1516.3 | 50.9 | 767
716 | 6.51
6.07 | 1675 | 129 | | 1390.0 | 847 | 2937.2
2921.4 | 1447.9
1448.1 | 49.3
49.6 | 716 | 6.08 | 1675 | 129 | | 1400.0 | 8 48
860 | 3020.9 | 1491.4 | 49.4 | 748 | 6.35 | 1725 | 131 | | 1410.0
1420.0 | 854 | 3033.7 | 1472.0 | 48.5 | 734 | 6.23 | 1702 | 130 | | 1430.0 | 860 | 2969.1 | 1490.4 | 50.2 | 748 | 6.34 | 1724 | 131 | | 1440.0 | 851 | 2987.4 | 1459.1 | 48.8 | 724 | 6.14 | 1687 | 129 | | 1450.0 | 845 | 2971.2 | 1440,4 | 48.5 | 710 | 6.03 | 1666 | 129 | | 1460.0 | 854 | 3040.1 | 1470.5 | 48.4 | 733 | 6.22 | 1701 | 130
127 | | 1470.0 | 834 | 2960.8 | 1402.1 | 47.4
48.3 | 682
68 4 | 5.79
5.81 | 1622
1625 | 127 | | 1480.0 | 835 | 2911.6 | 1405.2
1436.5 | 47.8 | 707 | 6,00 | 1661 | 128 | | 1490.0
1500.0 | 844
846 | 3006.6
3025.2 | 1443.6 | 47.7 | 713 | 6.05 | 1670 | 129 | | 1510.0 | 846 | 3039.5 | 1442.8 | 47.5 | 712 | 6,04 | 1669 | | | 1520.0 | 841 | 3019.2 | 1425.1 | 47.2 | 699 | 5.93 | 1648 | 128 | | 1530.0 | 840 | 3025.6 | 1423.9 | 47.1 | 698 | 5.92 | 1647 | 128 | | 1540.0 | 841 | 3090.3 | 1440.2 | 46.6 | 706 | 5,99 | 1666 | 128 | | 1550.0 | 844 | 3077.1 | 1450.5 | 47.1 | 714 | 6.06 | 1678 | 128 | | 1560.0 | 841 | 3027.3 | 1442.6 | 47.7 | 708 | 6.01 | 1668 | 128
127 | | 1570.0 | 838 | 3082.7 | 1431.0 | 46.4
46.5 | 700
699 | 5.94
5.93 | 1655
1654 | 127 | | 1580.0 | 837
835 | 3072.8
3070.3 | 1429.8
1419.9 | 46.2 | 691 | 5.87 | 1642 | 127 | | 1590.0
1600.0 | 817 | 2953.4 | 1362.1 | 46.1 | 650 | 5,51 | 1575 | 124 | | 1610.0 | 821 | 3032.9 | 1374.1 | 45.3 | 658 | 5.59 | 1589 | 125 | | 1620.0 | 818 | 2983.2 | 1365.2 | 45.8 | 652 | 5.53 | 1579 | 124 | | 1630.0 | 822 | 3007.5 | 1377.4 | 45.8 | 661 | 5.60 | 1593 | 125 | | 1640.0 | 816 | 3017.3 | 1373.6 | 45.5 | 654 | 5.55 | 1589 | 124 | | 1650.0 | 791 | 2826.0 | 1288.3 | 45.6 | 594 | 5.04 | 1490 | 120 | | 1660.0 | 824 | 3000.8 | 1397.9 | 46.6 | 672
442 | 5.70 | 1617
1569 | | | 1670.0 | 811 | 2937.8 | 1356.2 | 46.2
46.3 | 642
630 | 5.45
5.34 | 1548 | | | 1680.0 | 806
797 | 2890.7
2884.2 | 1338.8
1310.5 | 40.3
45.4 | 610 | 5.17 | 1516 | | | 1690.0
1700.0 | 809 | 2936.8 | 1347.4 | 45.9 | 636 | 5.39 | 1558 | | | 1710.0 | 803 | 2871.5 | 1329.2 | 46.3 | 623 | 5.28 | 1537 | | | 1720.0 | 802 | 2901.5 | 1324.8 | 45.7 | 620 | 5.26 | 1532 | 122 | | 1730.0 | 797 | 2937.4 | 1308.2 | 44,5 | 608 | 5.16 | 1513 | 121 | | | | | | | | | | | | DEPTH | FLOW
RATE | PSP | PRIT | %PSP | HHP | HHP/
sgin | IMPACT
FORCE | JET
VELOCITY | |----------------|--------------|--------|------------|--------|---|--------------|-----------------|-----------------| | A7 hai 111 | | | | ••• | • | | | | | 1740.0 | 791 | 2921.6 | 1288.2 | 44.1 | 594 | 5.04 | 1490 | 120 | | 1750.0 | 798 | 2919.6 | 1313.5 | 45.0 | 612 | 5.19 | 1519 | 121 | | 1751.0 | 796 | 2902.0 | 1307.0 | 45.0 | 607 | 5.15 | 1512 | 121 | | | | | | | | | | | | BIT NUMBER | | 4 I | ADC CODE | 437 | TNT | ERVAL. | 1751.0 | - 1837.0 | | HTC J11 | | | IZE | 12,250 | | ZLES | | 16 16 16 | | COST | 6788 | | RIP TIME | 5.9 | | RUN | | 86.0 | | TOTAL HOUR | | | OTAL TURNS | | | DITION | T1 B | 1 G0.000 | | | | | | | | | | | | | FLOW | | | | | HHP/ | IMPACT | JET | | DEPTH | RATE | PSP | PBIT | %PSP | ннр | sqin | FORCE | VELOCITY | | 1760.0 | 773 | 2926.6 | 1457.8 | 49.8 | 657 | 5.58 | 1549 | 128 | | 1770.0 | 767 | 2946.2 | 1436.1 | 48.7 | 643 | 5.45 | 1526 | 127 | | 1780.0 | 775 | 2954.2 | 1467.6 | 49.7 | 664 | 5.63 | 1559 | 128 | | 1790. 0 | 782 | 3002.4 | 1492.5 | 49.7 | 681 | 5.78 | 1586 | 129 | | 1800.0 | 777 | 2951.0 | 1473.4 | 49.9 | 668 | 5.67 | 1566 | 129 | | 1810.0 | 773 | 2844.6 | 1458.8 | 51.3 | 658 | 5.58 | 1550 | 128 | | 1820.0 | 774 | 2911.6 | 1463.6 | 50.3 | 661 | 5.61 | 1555 | 128 | | 1830.0 | 772 | 2888.1 | 1453.9 | 50.3 | 655 | 5.55 | 1545 | 128 | | 1837.0 | 770 | 2892.3 | 1448.5 | 50.1 | 651 | 5.52 |
1539 | 128 | | | | | | | | | | | · | BIT NUMBER
CHRIS RC4
COST
TOTAL HOURS | 0.0 | O TR | DC CODE
ZE
IP TIME
TAL TURNS | 4
9.875
5.9
17130 | NOZ:
BIT | ERVAL
ZLES
RUN
DITION | 1837.9- 1
15
TO BO (| 15 14
9.6 | |--|--|--|--|--|----------------------------------|--|--|----------------------------------| | DEPTH | FLOW
RATE | pSp | PRIT | %PSP | ннР | HHP/
sqin | IMPACT
FORCE VE | JET
OCITY | | 1838.0
1840.0
1842.0 | 240
209
264 | 510.7
470.8
629.0 | 198.6
150.9
241.0 | 38.9
32.1
38.3 | 28
18
37 | 0.36
0.24
0.49 | 178
135
215 | 47
41
52 | | 1844.0
1846.0
1847.5 | 267
271
280 | 638.8
696.0
707.7 | 246.3
253.5
271.3 | 38.6
36.4
38.3 | 38
40
44 | 0.50
0.52
0.58 | 220
227
242 | 53
53
55 | | BIT NUMBER
CHRIS RC4
COST
TOTAL HOURS | 0.0
3.0 | SI
O TR | DC CODE
ZE
IP TIME
TAL TURNS | 4
9.875
5.9
22329 | NOZ:
BIT | ERVAL
ZLES
RUN
DITION | 15 | 15 14
9.0 | | DEPTH | FLOW
RATE | p S p | PEIT | %PSP | ннР | HHP/
sqin | IMPACT
FORCE VE | JET
LOCITY | | 1848.0
1850.0
1852.0
1854.0
1856.0 | 335
318
278
227
215
218 | 812.9
845.8
725.7
593.2
549.8
524.1 | 386.4
349.2
265.9
178.1
159.1
164.4 | 47.5
41.3
36.6
30.0
28.9
31.4 | 25
65
43
24
20
21 | 0.98
0.85
0.56
0.31
0.26
0.27 | 345
312
238
159
142
142 | 66
63
55
45
42
43 | | BIT NUMBER
CHRIS RC4
COST
TOTAL HOURS | 0.0
3 7.4 | SI
OO TR | DC CODE
ZE
IP TIME
TAL TURNS | 9.875
5.9
54023 | NOZ
BIT | ERVAL
ZLES
RUN
DITION | 1856.5-
15
TO RO | 15 14
5.1 | | DEPTH | FLOW
RATE | PSP | PRIT | %P SP | ннр | HHP/
sqin | IMPACT
FORCE VE | JET
LOCITY | | 1858.0 | 284 | 707.8 | 277.5 | 39.2 | 46 | 0.60 | 248 | 56 | | 1860.0
1861.6 | 270
271 | 668.1
677.6 | 251.3
253.8 | 37.6
37.5 | 40
40 | 0.52
0.52 | : 225
227 | 53
53 | | BIT NUMBER | | | ADC CODE | 437 | | ERVAL. | 1861.6 | 5- 2062.0 | |------------------|-------------|---------|-------------|--------|------------|---------|-------------|-----------| | HTC J11 | | | IZE | 12,250 | | ZLES | | 15 15 15 | | COST | | | RIP TIME | 6.4 | | RUN | | 200.4 | | TOTAL HOUR | S 22 | .32 T | OTAL TURNS | 147694 | COM | NOITION | TBI | 34 G0.125 | | | | | | | | | | | | | am 1 m. 1 1 | | | | | HHP/ | IMPACT | JET | | 35 to be at 3 t | FLOW | nen | ייי אין אין | %PSP | ННР | | | VELOCITY | | DEPTH | RATE | 1, 521, | PBIT | Ar or | 1717 | sqin | r ONUE. | VELOUITI | | 1870.0 | 725 | 2954.0 | 1663.4 | 56.3 | 704 | 5.97 | 1553 | 137 | | 1880.0 | 704 | 2996.8 | 1566.0 | 52.3 | 643 | 5.46 | 1462 | 133 | | 1890.0 | 703 | 2972.6 | 1561.7 | 52.5 | 640 | 5.43 | 1458 | 132 | | | | | | | | | | | | 1900.0 | 706 | 2970.0 | 1577.1 | 53.1 | 650 | 5.51 | 1473 | 133 | | 1910.0 | 710 | 3023.3 | 1595.4 | 52.8 | 661 | 5.61 | 1490 | | | 1920.0 | 709 | 2990.4 | 1590.4 | 53.2 | 658 | 5.58 | 1485 | | | 1930.0 | 704 | 2924.7 | 1568.5 | 53.6 | 645 | 5.47 | 1465 | | | 1940.0 | 707 | 2943.7 | 1579.8 | 53.7 | 652 | 5.53 | 1475 | | | 1950.0 | 697 | 2922.8 | 1534.5 | 52.5 | 624 | 5.29 | 1433 | | | 1960.0 | 707 | 2910.4 | 1579.5 | 54.3 | 651 | 5.53 | 1475 | | | 1970.0 | 699 | 2876.6 | 1544.4 | 53.7 | 630 | 5.34 | 1442 | | | 1980.0 | 705 | 2933.5 | 1569.7 | 53.5 | 645 | 5.48 | 1466 | | | 1990.0 | 527 | 1754.5 | 877.7 | 50.0 | 270 | 2.29 | 820 | 99 | | 2000 | 700 | 2904.5 | 1550.6 | 53.4 | 634 | 5.38 | 1448 | 132 | | 2000.0
2010.0 | 700
702 | 2888.0 | 1558.5 | 54.0 | 638 | 5.42 | 1455 | | | | 704 | 2938.1 | 1566.9 | 53.3 | 644 | 5.46 | 1463 | | | 2020.0 | 521 | 1713.5 | 857.1 | 50.0 | 260 | 2.21 | 800 | | | 2030.0 | 708 | 2919.6 | 1585.1 | 54.3 | 655 | 5.56 | 1480 | | | 2040.0 | | 2927.3 | 1561.1 | 53.3 | 640 | 5,43 | 1458 | | | 2050.0 | 703
702 | 2936.5 | 1559.6 | 53.1 | 639 | 5,42 | 1456 | | | 2060.0 | 70Z
702 | 2941.6 | 1556.8 | 52.9 | 637
637 | 5.41 | 1454 | | | 2062.0 | 702 | C771.0 | 1990.0 | G£ € 7 | UU/ | 0,71 | I X (.) *** | A toffee | | BIT NUMBER
HTC J22
COST
TOTAL HOURS | 6788
3 40 | .00 T | ADC CODE
IZE
RIP TIME
OTAL TURNS | 517
12.250
7.3
180878 | NOZZ
BIT | ERVAL
(LES
RUN
)ITION | | 15 15
415.6 | |--|--|--|--|---|--|--|--|---| | DEPTH | FLOW
RATE | PSP | PBIT | %PSP | ннр | HHP/
sqin | IMPACT
FORCE VE | JET
LOCITY | | 2070.0
2080.0
2090.0 | 707
700
701 | 2958.8
2895.0
2909.6 | 1579.2
1550.6
1553.4 | 53.4
53.6
53.4 | 651
634
635 | 5.53
5.38
5.39 | 1475
1448
1451 | 133
132
132 | | 2100.0
2110.0
2120.0
2120.0
2130.0
2140.0
2150.0
2160.0
2170.0
2180.0
2190.0 | 706
704
702
704
706
636
647
706
699
700 | 2963.6
2916.7
2936.7
2945.1
2936.9
2457.1
2544.6
2976.7
2932.1 | 1576.9
1566.5
1557.9
1564.9
1573.7
1279.1
1323.9
1574.2
1545.2 | 53.2
53.0
53.1
52.1
52.9
52.7
52.7 | 650
643
638
642
648
475
500
648
630
633 | 5.51
5.46
5.41
5.50
4.03
4.24
5.33
5.33 | 1473
1463
1455
1461
1470
1194
1236
1470
1443 | 133
133
132
133
133
120
122
133
132 | | 2200.0
2210.0
2220.0
2230.0
2240.0
2250.0
2260.0
2270.0
2280.0 | 701
700
701
696
703
703
697
701
698 | 2923.3
2944.2
2928.6
2894.4
2938.4
2931.1
2946.4
2927.8
2920.2
2934.0 | 1552.3
1551.0
1551.5
1532.3
1562.5
1561.2
1535.4
1555.3
1534.6 | 53.1
52.7
52.0
52.9
53.3
52.1
52.1
52.5 | 635
634
634
622
641
640
624
636
627 | 5.38
5.38
5.28
5.44
5.43
5.40
5.29
5.32 | 1450
1448
1449
1431
1459
1458
1452
1433 | 132
132
131
132
132
131
132
131 | | 2300.0
2310.0
2320.0
2330.0
2340.0
2350.0
2360.0
2370.0
2380.0 | 700
699
692
696
697
702
699
693 | 2958.9
2939.9
2884.7
2910.8
2895.9
2943.5
2976.9
2949.5
2919.8
2971.4 | 1547.1
1544.5
1512.5
1529.3
1529.8
1534.4
1559.0
1542.5
1544.3 | 52.3
52.4
52.45
52.5
52.1
52.3
52.3
52.3
52.3
52.3
52.3 | 631
630
610
621
621
624
639
613
630 | 5.36
5.38
5.27
5.27
5.29
5.42
5.30
5.34 | 1445
1442
1412
1428
1429
1433
1456
1440
1416
1442 | 132
132
130
131
131
132
132
130
132 | | 2400.0
2410.0
2420.0
2420.0
2430.0
2450.0
2450.0
2470.0 | 693
694
549
698
701
710
721
704
692 | 2955.0
2958.6
1916.8
2967.5
2918.7
2884.8
2930.7
2938.1
2828.9 | 1519.1
1524.4
952.9
1538.3
1552.8
1593.0
1641.4
1568.0 | 51.4
51.5
49.7
51.8
53.2
55.2
56.8
53.4 | 614
618
305
626
635
660
690
644
612 | 5.21
5.24
2.59
5.39
5.45
5.47
5.20 | 1419
1424
890
1437
1450
1488
1533
1464
1415 | 131
133
133
131
132
134
136
133 | | BIT NUMBER
HTC J22
COST
TOTAL HOURS | 6788
3 20 | . 00 | TADC CODE
SIZE
TRIP TIME
TOTAL TURNS | 517
12.250
7.6
90559 | NOZŽ
BIT | RVAL
(LES
RUN
)ITION | 1! | 2636.0
5 15 15
158.4
G0.250 | |--|---|--|--|--|--|--|--|---| | DEPTH | FLOW
RATE | P S P | PRIT | %PSP . | ннр | HHP/
sqin | IMPACT
FORCE V | JET
ELOCITY | | 2480.0
2490.0
2500.0 | 67 4
683
683 | 2919.7
2882.6
2876.4 | 1435.6
1473.8
1475.1 | 49.2
51.1
51.3 | 564
587
588 | 4.79
4.98
4.99 | 1341
1376
1377 | 127
129
129 | | 2510.0
2520.0
2530.0
2540.0
2550.0
2560.0
2570.0
2580.0
2590.0 | 692
692
683
677
687
681
685
690
687 | 2879.4
2942.4
2846.8
2819.5
2861.5
2855.5
2855.5
2936.7
2913.6
2900.9 | 1512.8
1531.7
1488.6
1448.6
1490.1
1466.6
1481.2
1506.6
1491.8 |
52.5
52.1
52.3
51.4
52.1
51.4
51.4
51.3 | 611
619
593
572
597
583
592
607
598
603 | 5.18
5.25
5.85
5.06
4.95
5.15
5.15 | 1413
1430
1390
1353
1392
1370
1383
1407
1393
1401 | 130
130
129
128
129
128
129
130
129 | | 2610.0
2620.0
2630.0
2636.0 | 690
684
687
686 | 2881.5
2930.9
2916.2
2928.8 | 1504.1
1477.7
1490.0
1488.4 | 52.2
50.4
51.1
50.8 | 605
589
597
596 | 5.14
5.00
5.06
5.06 | 1405
1380
1391
1390 | 130
129
129
129 | | BIT NUMBER
HTC J33
COST
TOTAL HOURS | 6637
5 52 | .00 | IADC CODE
BIZE
TRIP TIME
TOTAL TURNS | 537
12.250
8.2
214055 | NOZZ
BIT | ERVAL
ZLES
RUN
DITION | 1 | 2901.0
5 15 15
265.0
G0.250 | | DEPTH | FLOW
RATE | m m m | | | | 11115 | TMDACT | .b. E A. | | | | PSP | PRIT | %PSP | ННР | HHP/
sqin | IMPACT
FORCE V | JET
ELOCITY | | 2640.0
2650.0
2660.0
2670.0
2680.0
2690.0 | 315
688
688
691
695
657 | 1620.4
3010.7
3022.2
3043.3
2968.8
2766.9 | | XPSP 19.4 49.7 49.5 49.5 51.4 49.2 | HHP 58 601 600 607 619 522 | | FORCE V | | | DEPTH | FLOW
RATE | PSP | PRIT | %PSP | ННЬ | HHP/
sqin | IMPACT
FORCE | JET
VELOCITY | |--|---|--|--|--|--|--|--|--| | 2800.0
2810.0
2820.0
2830.0
2840.0
2850.0
2860.0
2870.0 | 680
679
681
685
621
681
683
689
680 | 3026.4
2964.6
2991.9
2990.7
2463.0
3055.5
2988.4
3023.5
3016.1 | 1459.8
1456.7
1464.5
1484.5
1218.6
1464.4
1474.0
1498.8 | 48.2
49.1
48.9
49.6
49.5
47.9
49.3
49.6
48.4 | 579
577
582
593
441
587
602
579 | 4.91
4.90
4.93
5.04
3.75
4.98
5.11
4.92 | 1363
1360
1368
1386
1138
1367
1376
1400 | 128
128
128
129
117
128
129
130 | | 2870.0 | 691 | 3015.6 | 1508.7 | 50.0 | 608 | 5.16 | 1409 | 130 | | 2900.0
2901.0 | 683
683 | 2974.9
2981.9 | 1475.5
1472.9 | 49.6
49.4 | 588
587 | 4,99
4,98 | 1378
1375 | 129
129 | | BIT NUMBER
HTC J33
COST
TOTAL HOUR | 6637
S 22 | .00 T | ADC CODE
IZE
RIP TIME
OTAL TURNS | 537
12.250
8.4
92542 | NOZ
BIT | ERVAL
ZLES
RUN
DITION | | 0- 3021.0
15 15 15
120.0
02 G0.000 | | DEPTH | FLOW
RATE | PSP | тіщч | %PSP | ннр | HHP/
sqin | IMPACT
FORCE | JET
VELOCITY | | 2910.0
2920.0
2930.0
2940.0
2950.0
2960.0
2970.0 | 683
685
680
681
682
681
668 | 3015.9
3070.3
3043.3
3036.1
3032.1
3031.6
3028.2
2999.8 | 1474.8
1483.8
1462.3
1462.6
1464.7
1470.3
1464.0
1412.2 | 48.9
48.3
48.0
48.2
48.3
48.5
48.3 | 588
593
580
582
585
581
551 | 4.99
5.03
4.92
4.92
4.94
4.96
4.93 | 1377
1386
1365
1366
1368
1373
1367 | 129
129
128
128
128
128
128 | | 2990.0
3000.0
3010.0
3020.0
3021.0 | 534
670
681
533
532 | 2012.9
3022.7
2991.0
1947.2
1947.0 | 900.9
1420.8
1464.7
896.5
894.2 | 44.8
47.0
49.0
46.0
45.9 | 281
556
582
279
277 | 2.38
4.72
4.94
2.36
2.35 | 841
1327
1368
837
835 | 101
126
128
100
100 | ## (f), COMPUTER DATA LISTING : LIST D INTERVAL 10m averages. DEPTH Well depth, in metres. SPM1 Stroke rate per minute, for Pump no.1 SPM2 Stroke rate per minute, for Pump no.2. FLOW RATE Mud flow rate into the well, in gallons ## ANNULAR VELOCITIES : (in metres per minute) DC/OH - Between drill collars and the open hole. per minute. DC/CSG - Between drill collars and casing. HW/OH - Between heavyweight drill pipe and the open hole. HW/CSG - Between heavyweight drill pipe and casing. DP/OH - Between drill pipe and open hole. DP/CSG - Between drill pipe and casing. DP/RIS - Between drill pipe and riser. | DEPTH SPM1 SPM2 RATE OH CSG OH CSG RIS | BIT NUMBER
HTC OSC3A
COST
TOTAL HOUR | 0H" 85&T
0 | . 0 0 | IADC CODE
SIZE
TRIP TIME
TOTAL TUR | 24 | 5.000
2.4 | NOZZ
BIT | ERVAL
ZLES
RUN
DITION | | | 18 18
135. | |--|---|---------------|-------|---|-----|--------------|-------------|--------------------------------|-----|-------|----------------| | 90.0 74 0 368 4 4 4 100.0 52 27 374 5 5 110.0 105 72 882 11 10 120.0 89 84 863 11 10 130.0 98 90 941 11 11 140.0 100 93 963 12 11 150.0 99 92 952 12 11 11 160.0 99 94 964 12 11 11 110 11 11 120.0 89 98 90 941 11 11 150.0 99 92 952 12 11 11 160.0 99 93 959 12 11 11 170.0 99 93 959 12 11 11 180.0 99 93 959 12 11 11 190.0 97 94 964 12 11 11 11 200.0 99 94 964 12 11 11 11 200.0 99 94 964 12 11 11 11 209.0 100 94 970 12 11 11 BIT NUMBER 2 IADC CODE 111 INTERVAL 289.0-806.0 HTC OSC34J 51 51 52 52 52 52 60 60 CSG 0H | DEPTH | SPM1 | SPMZ | | | | | HW/
CSG | | | | | 100.0 52 27 374 5 5 5 | 80.0 | 73 | 0 | 363 | ·4 | | 4 | | | | | | 110.0 105 72 882 11 10 10 12 13 13 13 10 13 13 10 10 13 13 10 10 10 98 84 863 11 11 11 11 11 11 11 15 10 10 93 963 12 11 11 11 15 10 10 93 963 12 11 11 11 11 11 11 11 11 11 11 11 11 | | | | | 4 | | | | | | | | 120.0 89 84 863 11 10 11 11 11 13 140.0 100 93 963 12 11 11 11 150.0 99 97 92 952 12 11 11 11 11 150.0 99 97 92 952 12 11 11 11 11 11 11 11 11 11 11 11 11 | 100.0 | 52 | 27 | 394 | 5 | | 5 | | | | | | 130.0 | 110.0 | 105 | | 882 | | | | | | | | | 140.0 100 93 963 12 11 150.0 99 92 952 12 11 11 160.0 99 92 95 12 11 11 170.0 99 93 959 12 11 11 180.0 99 93 959 12 11 11 190.0 97 94 964 12 11 11 190.0 97 94 964 12 11 11 200.0 99 94 964 12 11 11 200.0 99 94 964 12 11 11 209.0 100 94 970 12 11 11 BIT NUMBER 2 IADC CODE 111 INTERVAL 209.0- 806.0 HTC OSC3AJ SIZE 17.500 NOZZLES 20 20 20 COST 4442.00 TRIP TIME 3.7 BIT RUN 5797.0 TOTAL HOURS 12.77 TOTAL TURNS 106641 CONDITION T2 B2 G0.000 FLOW DEPTH SPM1 SPM2 RATE OH CSG OH CSG OH CSG OH CSG RIS 210.0 99 94 964 24 21 21 17 230.0 96 92 939 29 24 21 21 17 240.0 85 80 825 25 20 18 18 18 15 250.0 97 93 946 29 24 21 21 17 240.0 85 80 825 25 20 18 18 18 15 250.0 97 93 946 29 24 21 21 17 240.0 85 80 825 25 20 18 18 18 15 250.0 97 93 946 29 23 21 21 17 240.0 100 94 967 30 24 21 21 17 240.0 100 97 98 94 964 29 23 21 21 17 240.0 100 94 967 30 24 21 21 17 250.0 100 97 93 946 29 23 21 21 17 260.0 100 94 967 30 24 21 21 17 270.0 100 92 962 30 24 21 21 17 280.0 100 94 967 30 24 21 21 17 280.0 100 97 969 30 24 21 21 17 280.0 100 97 969 30 24 21 21 17 280.0 100 98 91 947 29 23 21 21 17 280.0 100 99 91 947 29 23 21 21 17 280.0 100 99 91 947 29 23 21 21 17 280.0 100 99 91 947 29 23 21 21 17 360.0 98 91 947 29 23 25 21 21 17 360.0 96 92 940 29 25 25 25 21 17 360.0 96 92 940 29 25 25 25 21 17 360.0 96 92 940 29 25 25 25 21 17 360.0 96 92 940 29 25 25 25 21 17 | 120.0 | | | | | | | | | | | | 150.0 99 92 952 12 11 11 11 11 160.0 99 94 964 12 11 11 11 11 11 11 11 11 11 11 11 11 | | | | | | | | | | | | | 160.0 99 94 964 12 11 11 11 11 11 11 11 11 11 11 11 11 | | | | | | | | | 4 4 | | | | 170.0 99 93 958 12 11 11 11 11 180.0 99 93 959 12 11 11 11 11
11 12 11 12 12 10 0.0 97 94 954 12 11 11 11 11 11 11 11 11 11 11 11 11 | | | | | | | | | | | | | 180.0 99 93 959 12 11 11 11 12 190.0 97 94 954 12 11 11 11 11 11 11 11 11 11 11 11 11 | | | | | | | | | | | | | 170.0 97 94 964 12 11 11 11 11 11 11 11 11 11 11 11 11 | | | | | | | | | | | | | 200.0 97 94 964 12 11 11 BIT NUMBER 2 IADC CODE 111 INTERVAL 209.0—886.0 MOZZLES 20 20 20 20 20 20 20 20 20 20 20 20 20 | | | | | | | | | | | | | BIT NUMBER 2 IADC CODE 1111 INTERVAL 209.0- 806.0 HTC OSC3AJ 5IZE 17.500 NOZZLES 20 20 20 COST 4442.00 TRIP TIME 3.7 BIT RUN 597.0 TOTAL HOURS 12.77 TOTAL TURNS 106641 CONDITION T2 B2 G0.000 TOTAL HOURS 12.77 TOTAL TURNS 106641 CONDITION T2 B2 G0.000 TOTAL HOURS 12.77 TOTAL TURNS 106641 CONDITION T2 B2 G0.000 TOTAL HOURS 12.77 TOTAL TURNS 106641 CONDITION T2 B2 G0.000 TOTAL HOURS 12.77 TOTAL TURNS 106641 CONDITION T2 B2 G0.000 G0.0000 G0.00000 T2 G0.0000 T2 G0.0000 T2 G0.0000 T2 G0.0000 T2 G0.00000 T2 G0.0000 T2 G0.00 | | | | | | | | | | | | | HTC OSC3AJ | 209.0 | 100 | 94 | 970 | 12 | | 11 | | 11 | | | | DEPTH SPM1 SPM2 RATE OH CSG OH CSG OH CSG RIS 210.0 99 94 964 24 21 17 220.0 97 93 950 29 24 21 21 17 230.0 96 92 939 29 23 21 21 17 240.0 85 80 825 25 20 18 18 18 15 250.0 97 93 946 29 23 21 21 17 260.0 102 91 964 30 24 21 21 17 270.0 100 94 967 30 24 21 21 17 280.0 100 91 957 30 24 21 21 17 280.0 100 92 962 30 24 21 21 17 270.0 100 92 962 30 24 21 21 17 300.0 100 92 962 30 24 21 21 17 300.0 100 92 961 30 24 21 21 17 300.0 100 92 961 30 24 21 21 17 300.0 98 91 947 29 23 21 21 17 320.0 98 91 947 29 23 21 17 320.0 99 91 949 29 25 21 21 17 330.0 101 92 965 30 26 21 21 17 340.0 100 91 958 30 25 25 21 17 350.0 96 92 937 29 25 25 21 17 360.0 96 92 937 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 370.0 95 97 960 30 26 26 26 21 17 380.0 93 96 945 29 25 25 21 17 | HTC OSC3A
COST | J
4442 | . 0 0 | SIZE
TRIP TIME | 1. | 7.500
3.7 | NOZ:
BIT | ZLES
RUN | | 20 | 20 20
597.0 | | 220.0 97 93 950 29 24 21 21 17 230.0 96 92 939 29 23 21 21 17 240.0 85 80 825 25 20 18 18 15 250.0 97 93 946 29 23 21 21 17 260.0 102 91 964 30 24 21 21 17 270.0 100 94 967 30 24 21 21 17 280.0 100 91 957 30 24 21 21 17 290.0 100 92 962 30 24 21 21 17 290.0 100 92 962 30 24 21 21 17 310.0 98 91 947 29 23 21 21 17 320.0 99 91 949 29 25 21 21 17 330.0 101 92 965 30 26 21 21 17 330.0 101 92 965 30 26 21 21 17 330.0 100 91 958 30 26 21 21 17 330.0 100 91 958 30 25 25 21 17 330.0 96 92 937 29 25 25 21 17 360.0 96 92 937 29 25 25 21 17 370.0 95 97 960 30 26 26 26 21 17 370.0 95 97 960 30 26 26 26 21 17 380.0 93 96 945 29 25 25 21 17 | DEPTH | SPM1 | SPM2 | | | | | | | | | | 220.0 97 93 950 29 24 21 21 17 230.0 96 92 939 29 23 21 21 17 240.0 85 80 825 25 20 18 18 15 250.0 97 93 946 29 23 21 21 17 260.0 102 91 964 30 24 21 21 17 270.0 100 94 967 30 24 21 21 17 280.0 100 91 957 30 24 21 21 17 290.0 100 92 962 30 24 21 21 17 270.0 100 92 962 30 24 21 21 17 310.0 98 91 947 29 23 21 21 17 320.0 99 91 947 29 23 21 21 17 330.0 101 92 965 30 24 21 21 17 330.0 101 92 965 30 24 21 21 17 330.0 101 92 965 30 26 21 21 17 330.0 100 91 958 30 26 21 21 17 340.0 100 91 958 30 25 25 21 17 350.0 96 92 937 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 370.0 95 97 960 30 26 26 26 21 17 380.0 93 96 945 29 25 25 21 17 | 210.0 | 99 | 94 | 964 | | 24 | | 21 | | | 17 | | 230.0 96 92 939 29 23 21 21 17 240.0 85 80 825 25 20 18 18 15 250.0 97 93 946 29 23 21 21 17 260.0 102 91 964 30 24 21 21 17 270.0 100 94 967 30 24 21 21 17 280.0 100 91 957 30 24 21 21 17 290.0 100 92 962 30 24 21 21 17 310.0 98 91 947 29 23 21 21 17 320.0 99 91 947 29 23 21 21 17 330.0 101 92 965 30 26 21 21 17 340.0 100 91 958 30 25 25 21 17 | | | | 950 | 29 | | | | | 21 | 17 | | 240.0 85 80 825 25 20 18 18 15 250.0 97 93 946 29 23 21 21 17 260.0 102 91 964 30 24 21 21 17 270.0 100 94 967 30 24 21 21 17 280.0 100 91 957 30 24 21 21 17 290.0 100 92 962 30 24 21 21 17 310.0 100 92 961 30 24 21 21 17 310.0 98 91 947 29 23 21 21 17 320.0 99 91 947 29 25 21 21 17 330.0 101 92 965 30 26 21 21 17 340.0 100 91 958 30 25 25 21 17 | | | | | | | | 21 | | 21 | | | 260.0 102 91 964 30 24 21 21 17 270.0 100 94 967 30 24 21 21 17 280.0 100 91 957 30 24 21 21 17 290.0 100 92 962 30 24 21 21 17 300.0 100 92 961 30 24 21 21 17 310.0 98 91 947 29 23 21 21 17 320.0 98 91 947 29 23 21 21 17 320.0 99 91 949 29 25 21 21 17 330.0 101 92 965 30 26 21 21 17 340.0 100 91 958 30 25 25 25 21 17 350.0 96 92 937 29 25 25 25 | 240.0 | | | | | | | | | | | | 270.0 100 94 967 30 24 21 21 17 280.0 100 91 957 30 24 21 21 17 290.0 100 92 962 30 24 21 21 17 21 17 310.0 98 91 947 29 23 21 21 17 320.0 99 91 949 29 25 21 21 17 340.0 100 91 958 30 26 21 21 17 350.0 96 92 937 29 25 25 21 17 350.0 96 92 940 29 25 25 21 17 37 360.0 96 92 940 29 25 25 25 21 17 37 370.0 95 97 960 30 26 26 26 21 17 380.0 93 96 945 29 25 25 25 21 17 380.0 93 96 945 29 25 25 25 21 17 | | | | | | | | | | | | | 280.0 100 91 957 30 24 21 21 17 290.0 100 92 962 30 24 21 21 17 21 17 310.0 98 91 947 29 23 21 21 17 320.0 99 91 949 29 25 21 21 17 330.0 101 92 965 30 26 21 21 17 340.0 100 91 958 30 25 25 21 17 350.0 96 92 937 29 25 25 21 17 350.0 96 92 937 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 370.0 95 97 960 30 26 26 26 21 17 380.0 93 96 945 29 25 25 25 21 17 | | | | | | | | | | | | | 290.0 100 92 962 30 24 21 21 17 300.0 100 92 961 30 24 21 21 17 310.0 98 91 947 29 23 21 21 17 320.0 99 91 949 29 25 21 21 17 330.0 101 92 965 30 26 21 21 17 340.0 100 91 958 30 25 25 21 17 350.0 96 92 937 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 370.0 95 97 960 30 26 26 21 17 380.0 93 96 945 29 25 25 21 17 | | | | | | | | | | | | | 300.0 100 92 961 30 24 21 21 17 310.0 98 91 947 29 23 21 21 17 320.0 99 91 949 29 25 21 21 17 330.0 101 92 965 30 26 21 21 17 340.0 100 91 958 30 25 25 21 17 350.0 96 92 937 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 370.0 95 97 960 30 26 26 26 21 17 380.0 93 96 945 29 25 25 25 21 17 | | | | | | | | | | | | | 310.0 98 91 947 29 23 21 21 17 320.0 99 91 949 29 25 21 21 17 330.0 101 92 965 30 26 21 21 17 340.0 100 91 958 30 25 25 21 17 350.0 96 92 937 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 370.0 95 97 960 30 26 26 21 17 380.0 93 96 945 29 25 25 21 17 | 290.0 | 1 (1 (1 | 76 | 702 | 3.0 | 62.44 | | ez k | | az. I | 1.7 | | 320.0 99 91 949 29 25 21 21 17 330.0 101 92 965 30 26 21 21 17 340.0 100 91 958 30 25 25 21 17 350.0 96 92 937 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 370.0 95 97 960 30 26 26 21 17 380.0 93 96 945 29 25 25 21 17 | | | | | | | | | | | | | 330.0 101 92 965 30 26 21 17 340.0 100 91 958 30 25 25 21 17 350.0 96 92 937 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 370.0 95 97 960 30 26 26 21 17 380.0 93 96 945 29 25 25 21 17 | | | | | | 23 | ,, p | | | | | | 340.0 100 91 958 30 25 25 21 17 350.0 96 92 937 29 25 25 21 17 360.0 96 92 940 29 25 25 21 17 370.0 95 97 960 30 26 26 21 17 380.0 93 96 945 29 25 25 21 17 | | | | | | | | | | | | | 350.0 96 92 937 29 25 25 21 17
360.0 96 92 940 29 25 25 21 17
370.0 95 97 960 30 26 26 21 17
380.0 93 96 945 29 25 25 21 17 | | | | | | | | t X | 25 | | | | 360.0 96 92 940 29 25 25 21 17 370.0 95 97 960 30 26 26 21 17 380.0 93 96 945 29 25 25 21 17 | | | | | | | | | | | | | 370.0 95 97 960 30 26 26 21 17 380.0 93 96 945 29 25 25 21 17 | | | | | | | | | | | | | 380.0 93 96 945 29 25 25 21 17 | 26 | 21 | 17 | . | | | | FLOW | DCZ | DCZ | HW/ | HW/ | DP/ | DP/ | DP/ | |-------|------|-----------|-------------|-----|-----|-----|-----|----------|-------------|----------| | DEPTH | SPM1 | SPM2 | RATE | OH | csc | OH | CSG | ОН | CSG | RIS | | 400.0 | 97 | 94 | 954 | 29 | | 25 | | 25 | 21 | 17 | | 410.0 | 99 | 96 | 974 | 3.0 | | 26 | • | 26 | 21 | 17 | | 420.0 | 95 | 96 | 957 | 3.0 | | 25 | | 25 | 21 | 17 | | 430.0 | 97 | 96 | 966 | 3.0 | | 26 | | 26 | 21 | 17 | | 440.0 | 97 | 96 | 965 | 30 | | 26 | | 26 | 21 | 17 | | 450.0 | 96 | 96 | 961 | 30 | | 26 | | 26 | 21 | 17 | | 460.0 | 96 | 97 | 967 | 30 | | 26 | | 26 | 21 | 17 | | 470.0 | 97 | 97 | 972 | 30 | • | 26 | | 26 | 21 | 17 | | 480.0 | 96 | 98 | 968 | 30 | | 26 | | 26 | 21 | 17 | | 490.0 | 97 | 92 | 946 | 29 | | 25 | | 25 | 21 | 17 | | 500.0 | 96 | 97 | 967 | 30 | | 26 | | 26 | 21 | 17 | | 510.0 | 96 | 97 | 966 | 3.0 | | 56 | | 26 | 21 | 17 | | 520.0 | 98 | 97 | 977 | 30 | | 26 | | 26 | 21 | . 18 | | 530.0 | 96 | 96 | 962 | 30 | | 26 | | 26 | 21 | 17 | | 540.0 | 97 | 96 | 966 | 30 | | 26 | | 26 | 21 | 17 | | 550.0 | 96 | 98 | 969 | 30 | | 26 | | 26 | 21 | 17
17 | | 560.0 | 96 | 96 | 960 | 30 | | 26 | | 26 | 21 | 17 | | 570.0 | 96 | 22 | 941 | 29 | | 25 | | 25 | 21 | 18 | | 580.0 | 98 | 98 | 981 | 30 | | 26 | | 26
26 | 22
21 | 17 | | 590.0 | 97 | 98 | 972 | 30 | | 26 | | 20 | <i>a.</i> 1 | 1 / | | 600.0 | 97 | 98 | 974 | 30 | | 26 | | 26 | 21 | 18 | | 610.0 | 97 | 96 | 969 | 30 | | 26 | | 26 | 21 | 17 | | 620.0 | 96 | 96 | 960 | 30 | | 26 | | 26 | 21 | 17 | | 630.0 | 96 | <u>96</u> | 960 | 30 | | 26 | | 26 | 21 | 17 | | 640.0 | 98 | 97 | 925 | 30 | | 26 | | 26 | 21 | 18 | | 650.0 | 94 | 96 | 953 | 29 | | 25 | | 25 | 21 | 17 | | 660.0 | 96 | 98 | 967 | 30 | | 26 | | 26 | 21 | 17
17 | | 670.0 | 97 | 91 | 940 | 29 | | 25 | | 25 | 21 | | | 680.0 | 96 | 97 | 965 | 30 | | 26 | | 26 | 21 | 17
18 | | 690.0 | 97 | 78 | 976 | 30 | | 26 | | 26 | 21 | 7.43 | | 700.0 | 96 | 97 | 966 | 30 | | 26 | | 26 | 21 | 17 | | 710.0 | 96 | 97 | 964 | 30 | | 26 | | 26 | 21 | 17 | | 720.0 | 96 | 97 | 969 | 30 | | 26 | | 26 | 21 | 17 | | 730.0 | 96 | 97 | 966 | 30 | | 26 | | 26 | 21 | 17 | | 740.0 | 97 | 96 | 966 | 30 | | 26 | | 26 | 21 | 17 | | 750.0 | 96 | 96 | 962 | 30 | | 26 | | 26 | 21 | 17 | | 760.0 | 90 | 97 | 934 | 29 | | 25 | | 25 | 20 | 17 | | 770.0 | 96 | 97 | 968 | 30 | | 26 | | 26 | 21 | 17 | | 780.0 | 94 | 97 | 95 4 | 29 | | 25 | | 25
25 | 21 | 17 | | 790.0 | 95 | 97 | 958 | 30 | | 25 | | 25 | 21 | 17 | | 800.0 | 94 | 97 | 958 | 3.0 | | 25 | | 25 | 21 | 17 | |
806.0 | 96 | 96 | 964 | 30 | | 26 | | 26 | 21 | 17 | | | | | | | | | | | | | | | BIT NUMBER
HTC X3A
COST
TOTAL HOUR | 2201
S 22 | 3
.00
.01 | IADC CODE
SIZE
TRIP TIME
TOTAL TUR | 1 | 114
2.250
5.7
96061 | NOZZ
BIT | ERVAL
ZLES
RUN
DITION | | | 16 18
945.0 | |---|--|--|--|--|--|------------------------------|---|--|--|--|--| | | DEPTH | SPM1 | SPM2 | FLOW
RATE | DC/
OH | DC/ | HW/
HO | HW/
CSG | DP/
OH | DP/
CSG | DP/
RIS | | | 810.0
820.0
830.0 | 8 4
85
86 | 87
86
88 | 853
856
870 | 74
74
76 | 67
67
68 | | 48
48
48 | | 48
49
48 | 15
15
16 | | | 840.0
850.0
860.0
870.0
880.0 | 93
92
94
93
94 | 94
93
92
93
93 | 932
925
928
930
932 | 81
80
81
81
81 | 73
73
73
73
73 | | 52
52
52
52
52 | | 500055 | 17
17
17
17
17 | | | 890.0
900.0
910.0
920.0
930.0 | 94
93
93
92
94 | 91
92
91
91
91 | 922
925
921
914
925 | 80
80
80
79
80 | 72
73
72
72
73 | | 51
52
51
51
52 | | 51
52
51
51
52 | 17
17
17
16
17 | | | 940.0
950.0
960.0
970.0
980.0
990.0 | 93
92
93
93
94
92
93 | 92
92
92
92
91
92
90 | 924
922
925
925
926
911 | 80
80
80
80
80
80 | 73
72
73 | 55
55
54 | 51
51
52
52
52
51
51 | | 51
52
52
51
51 | 17
17
17
17
17
17 | | | 1010.0
1020.0
1030.0 | 92
90
93 | 90
91
91 | 909
905
920 | 79
79
80 | | 54
54
55 | 51
50
51 | | 51
50
51 | 16
16
17 | | | 1040.0
1050.0
1060.0
1070.0
1080.0
1100.0
1110.0
1120.0
1130.0 | 92
89
90
89
88
87
88
88 | 89
90
89
88
89
87
87
86
86 | 903
894
893
887
883
871
880
875
873
868 | 78
78
77
77
76
76
75 | | 4 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 50 | 53
53
53
52
52
52
52
52 | 50
50
50
49
49
49
49
49 | 16
16
16
16
16
16
16 | | • | 1140.0
1150.0
1160.0
1170.0
1180.0
1190.0
1200.0
1210.0
1220.0 | 87
87
87
88
87
88
87
87 | 84
88
87
86
86
83
86
85
86
84 | 855
873
867
863
869
854
869
867
854 | 74
76
75
75
75
75
75
74 | | 51
522
552
552
552
551 | | 51
52
52
52
51
51
51
51 | 48
49
48
48
48
48
48
48 | 15
16
16
16
16
15
16
15 | | DEPTH | SPM1 | SPM2 | FLOW
RATE | DC/
OH | pc/
csg | НW/
ОН | CSG
HW/ | NP/
HO | DP/
CSG | DP/
RIS | |------------------|----------|------------------|--------------|-----------|------------|-----------|------------|-----------|------------|------------| | | | | | | | | | 52 | 40 | 16 | | 1240.0 | 88 | 85 | 867
863 | 75
75 | | 52
52 | | 52
52 | 48
48 | 16 | | 1250.0 | 89
89 | 8 4
85 | 871 | 76
76 | | 52 | • | 52 | 49 | 16 | | 1260.0
1270.0 | 88 | 85 | 868 | 75
75 | | 52 | | 52 | 48 | 16 | | 1280.0 | 88 | 86 | 869 | 25 | | 52 | | 52 | 48 | 16 | | 1290.0 | 89 | 86 | 876 | 76 | | 52 | | 52 | 49 | 16 | | | 87 | 87 | 870 | 76 | | 52 | | 52 | 48 | 16 | | 1310.0 | 87 | 88 | 870 | 76 | | 52 | | 52 | 48 | 16 | | 1320.0 | 86 | 87 | 865 | 75 | | 52 | | 52 | 48 | 16 | | 1330.0 | 89 | 87 | 880 | 76 | | 53 | | 53 | 49 | 16 | | 1340.0 | 87 | 87 | 872 | 76 | | 52 | | 52 | 49 | 16 | | 1350.0 | 87 | 87 | 868 | 75 | | 52 | | 52 | 48 | 16 | | 1360.0 | 87 | 86 | 863 | 75 | | 52 | | 52 | 48 | 15 | | 1370.0 | 87 | 87 | 870 | 76 | | 52 | | 52 | 48 | 16 | | 1380.0 | 87 | 86 | 867 | 75 | | 52
51 | | 52
51 | 48
47 | 16
15 | | 1390.0 | 86 | 83
85 | 847
848 | 74
74 | | 5 i | | 51 | 47 | 15 | | 1400.0 | 85
86 | 86 | 860 | 75 | | 51 | | 51 | 48 | 15 | | 1410.0
1420.0 | 84 | 87 | 854 | 74 | | 51 | | 5 i | 48 | 15 | | 1430.0 | 86 | 86 | 860 | 75 | | 5 î | | 51 | 48 | 15 | | | | | | P A | | 51 | | 51 | 47 | 15 | | 1440.0 | 84 | 86 | 851
845 | 74
73 | | 51 | | 51 | 47 | 15 | | 1450.0 | 84
85 | 85
86 | 854 | 74 | | 51 | | 51 | 48 | 15 | | 1460.0
1470.0 | 83 | 84 | 834 | 72 | | 50 | | 50 | 46 | 15 | | 1480.0 | 84 | 83 | 835 | 73 | | 50 | | 50 | 47 | 15 | | 1490.0 | 84 | 85 | 844 | 23 | | 50 | | 50 | 47 | 15 | | 1500.0 | 84 | 85 | 846 | 73 | | 51 | | 51 | 47 | 15 | | 1510.0 | 84 | 85 | 846 | 73 | | 51 | | 51 | 47 | 15 | | 1520.0 | 84 | 84 | 841 | 73 | | 50 | | 50 | 47 | 15 | | 1530.0 | 84 | 84 | 840 | 73 | | 50 | | 50 | 47 | 15 | | 1540.0 | 83 | 85 | 841 | 73 | | 50 | | 50 | 47 | 15 | | 1550.0 | 84 | 85 | 844 | 73 | | 50 | | 50 | 47 | 15 | | 1560.0 | 84 | 85 | 841 | 73 | | 50
50 | | 50
50 | 47
47 | 15
15 | | 1570.0
1580.0 | 84
84 | 84
84 | 838
837 | 73
73 | | 50
50 | | 50 | 47 | 15 | | 1590.0 | 83 | 84 | 835 | 72 | | 50 | | 50 | 47 | 15 | | 1600.0 | 81 | 82 | 817 | 71 | | 49 | | 49 | 46 | 15 | | 1610.0 | 80 | 84 | 821 | 71 | | 49 | | 49 | 46 | 15 | | 1620.0 | 81 | 83 | 818 | 71 | | 49 | | 49 | 46 | 15 | | 1630.0 | 80 | 84 | 822 | 71 | | 49 | | 49 | 46 | 15 | | 1640.0 | 81 | 83 | 816 | 71 | | 49 | | 49 | 45 | 15 | | 1650.0 | 75 | 83 | 791 | 69 | | 47 | | 47 | 44 | 14 | | 1660.0 | 80 | 84 | 824 | 72 | | 49 | | 49 | 46 | 15 | | 1670.0 | 80 | 82 | 811 | 70 | | 48 | | 48 | 45
45 | 15 | | 1680.0 | 79
70 | 82 | 806 | 70
40 | | 48
48 | | 48
48 | 45
44 | 14
14 | | 1690.0
1700.0 | 79
80 | 80
82 | 797
809 | 69
70 | | 48 | | 48 | 45 | 15 | | 1710.0 | 80 | 81 | 803 | 70 | | 48 | | 48 | 45 | 14 | | 1720.0 | 78 | 82 | 802 | 70 | | 48 | | 48 | 45 | 14 | | 1730.0 | 78 | 81 | 797 | 69 | | 48 | | 48 | 44 | 14 | | | | | | | | | | | | | water to the grant of | vs. im rs. vrt l. l | CD M4 | SPM2 | FLOW
RATE | DC/
HO | DC/
CSG | HW/
OH | HW/
CSG | DP/
OH | DP/
CSG | DP/
RIS | |---------------------|-------|-------|--------------|--------------|------------|-----------|------------|-----------|------------|------------| | DEPTH | SPM1 | ar m. | 15 17 1 1 | 4.23.1 | 121212 | (2)11 | 121212 | V-11 | 101011 | | | 1740.0 | 78 | 80 | 791 | 69 | | 47 | | 47 | 44 | 14 | | 1750.0 | 79 | 81 | 798 | 69 | | 48 | | 48 | 44 | 14 | | 1751.0 | 79 | 80 | 796 | 69 | | 48 | | 48 | 44 | 14 | | | | | | | | | | | | | | BIT NUMBER | | 4 | TADO CODE | . | 437 | INTI | ERVAL. | 175 | 1.0- 18 | 337.0 | | HTC J11 | | | SIZE | | 2.250 | NOZZ | ZLES | | 16 | 16 16 | | COST | 6788 | . 0 0 | TRIP TIME | • | 5.9 | BIT | RUN | | | 86.0 | | TOTAL HOURS | s 7 | .07 | TOTAL TUR | | 48632 | CON | NOITION | T: | t B1 G | 0.000 | | | | | | | | | | | | | | | | | FLOW | DCZ | DCZ | HW/ | HW/ | DP/ | DP/ | DP/ | | DEPTH | SPM1 | SPMR | RATE | OH | CSG | OH | css | OH | CSG | RIS | | 1760.0 | 77 | 77 | 773 | 67 | | 46 | | 46 | 43 | 14 | | 1770.0 | 78 | 76 | 767 | 67 | | 46 | | 46 | 43 | 14 | | 1780.0 | 78 | 77 | 775 | 67 | | 46 | | 46 | 43 | 14 | | 1790.0 | 79 | 77 | 782 | 68 | | 47 | | 47 | 44 | 14 | | 1800.0 | 78 | 77 | 777 | 67 | | 46 | | 46 | 43 | 14 | | 1810.0 | 78 | 77 | 773 | 67 | | 46 | | 46 | 43 | 14 | | 1820.0 | 78 | 77 | 774 | 67 | | 46 | | 46 | 43 | 14 | | 1830.0 | 78 | 77 | 772 | 67 | | 46 | | 46 | 43 | 14 | | 1837.0 | 77 | 77 | 770 | 67 | | 46 | | 46 | 43 | 14 | • • | BIT NUMBER
CHRIS RC4
COST
TOTAL HOURS | | 4
00
38 | TADC CODE
SIZE
TRIP TIME
TOTAL TUR | | 4
9.875
5.9
17130 | NOZ:
BIT | ERVAL
ZLES
RUN
DITION | | 15 1
15 1
BO GO | 9.6 | |--|----------------------------------|-----------------------|---|-----------|----------------------------|----------------------------------|--------------------------------|----------------------------------|----------------------------------|-----------------------| | DEPTH | SPM1 | SPM2 | FLOW
RATE | DC/
OH | DC/
CSG | HW/
OH | HW/
CSG | DP/
OH | DP/
CSG | DP/
RIS | | 1838.0
1840.0
1842.0 | 0
0
0 | 48
42
53 | 240
209
264 | ٠ | | 25
22
27 | | 25
22
27 | 13
12
15 | 4
5 | | 1844.0
1846.0
1847.5 | 0
0
0 | 53
54
56 | 267
271
280 | | | 28
28
29 | | 28
28
29 | 15
15
16 | 5
5 | | BIT NUMBER
CHRIS RC4
COST
TOTAL HOUR | 0 | 4
. 00
. 07 | IADC CODE
SIZE
TRIP TIME
TOTAL TUR | • | 9.875
5.9
22329 | NOZ:
BIT | ERVAL
ZLES
RUN
DITION | | '.5- 18
15 :
BO GO | 15 14
9.0 | | DEPTH | SPM1 | SPM2 | FLOW
RATE | DC/
OH | | НW/
ОН | HW/
CSG | DP/
OH | DP/
CSG | DP/
RIS | | 1848.0
1850.0
1852.0
1854.0
1856.0 | 67
64
56
45
43
44 | 0
0
0
0
0 | | | | 34
33
29
23
22
22 | | 34
33
29
23
22
22 | 19
18
15
13
12
12 | 6
6
4
4
4 | | BIT NUMBER
CHRIS RC4
COST
TOTAL HOUR | | 4
.00
.47 | IADC CODF
SIZE
TRIP TIME
TOTAL TUR | | 4
9.875
5.9
54023 | NOZ
BII T | ERVAL
ZLES
RUN
DITION | | 3.5- 16
15
180 G | 15 14
5.1 | | DEPTH | SPM1 | SPM2 | FLOW
RATE | \ეთ
Н0 | | НW/
ОН | HW/
CSG | DP/
OH | DP/
CSG | DP/
RIS | | 1858.0 |
0 | 57 | 284 | | | 29 | | 29 | 16 | 5 | | 1860.0
1861.6 | 0 | 54
54 | 270
271 | | | 28
28 | | 28
28 | 15
15 | 5 | | BIT NUMBER
HTC J11
COST
TOTAL HOUR | 6788 | 5
.00
.32 | IADC CODE
SIZE
TRIP TIME
TOTAL TUE | 1 /
E | 437
2.250
6.4
47694 | NOZ:
BIT | ERVAL
ZLES
RUN
DITION | | | 15 15
200.4 | |---|------|-----------------|---|-----------|------------------------------|-------------|--------------------------------|-----------|------------|----------------| | DEPTH | SPM1 | SPM2 | FLOW
RATE | DC/
OH | DC/
CSG | HW/
OH | CSG
HW/ | DP/
OH | DP/
CSG | DP/
RIS | | 1870.0 | 75 | 70 | 725 | • | ٠ | 43 | | 43 | 40 | 13 | | 1880.0 | 71 | 70 | 704 | | | 42 | | 42 | 39 | 13 | | 1890.0 | 71 | 69 | 703 | | | 42 | | 42 | 39 | 13 | | 1900.0 | 73 | 68 | 706 | | | 42 | | 42 | 39 | 13 | | 1910.0 | 76 | 67 | 710 | | | 42 | | 42 | 40 | 13 | | 1920.0 | 73 | 69 | 709 | | | 42 | | 42 | 40 | 13 | | 1930.0 | 73 | 68 | 704 | | | 42 | | 42 | 39 | 13 | | 1940.0 | 73 | 68 | 707 | | | 42 | | 42 | 39 | 13 | | 1950.0 | 72 | 67 | 697 | | | 42 | | 42 | 39 | 13 | | 1960.0 | 74 | 68 | 707 | | | 42 | | 42 | 39 | 13 | | 1970.0 | 72 | 68 | 699 | | | 42 | ~ | 42 | 39 | 13 | | 1980.0 | 73 | 68 | 705 | | | 42 | | 42 | 39 | 13 | | 1990.0 | 0 | 105 | 527 | | | 31 | | 31 | 29 | 9 | | 2000.0 | 72 | 68 | 700 | | | 42 | | 42 | 39 | 13 | | 2010.0 | 72 | 68 | 702 | | | 42 | | 42 | 39 | 13 | | 2020.0 | 73 | 68 | 704 | | | 42 | | 42 | 39 | 13 | | 2030.0 | 0 | 104 | 521 | | | 31 | | 31 | 29 | 9 | | 2040.0 | 72 | 70 | 708 | | | 42 | | 42 | 39 | 13 | | 2050.0 | 73 | 68 | 703 | | | 42 | | 42 | 39 | 1.3 | | 2060.0 | 73 | 68 | 702 | | | 42 | | 42 | 39 | 13 | | 2062.0 | 73 | 67 | 702 | | | 42 | | 42 | 39 | 1.3 | | BIT NUMBER
HTC J22
COST
TOTAL HOUR | 6788 | | TADC CODE
SIZE
TRIP TIME
TOTAL TUR | 1.2
: | 517
2.250
7.3
30878 | NOZZ
BIT | RVAL
(LES
RUN
)ITION | | | 15 15
115.6 | |--|--|--|--|-----------|------------------------------|--|-------------------------------|--|--|--| | DEPTH | SPM1 | SPMR | FLOW
RATE | DC/
OH | DC/
CSG | HW/
OH | CSG
HW/ | DP/
OH | DP/
CSG | DP/
RIS | | 2070.0
2080.0
2090.0 | 73
73
73 | 68
67
67 | 707
700
701 | ٠ | ٠ | 42
42
42 | | 42
42
42 | 39
39
39 | 13
13
13 | | 2100.0
2110.0
2120.0
2130.0
2140.0
2150.0
2160.0
2170.0
2180.0 | 73
72
72
73
58
60
72
72
72 | 68
68
69
68
69
69
69
68 | 706
704
702
704
706
636
647
706
699
700 | | | 42
42
42
42
42
39
42
42
42 | | 42
42
42
42
42
42
42
42 | 39
39
39
39
35
35
36
39
39 | 13
13
13
13
13
11
12
13
13 | | 2200.0
2210.0
2220.0
2230.0
2240.0
2250.0
2260.0
2270.0
2280.0 | 72
73
73
72
73
73
73
72
73
73 | 68
67
67
68
68
67
68 | 701
700
701
696
703
703
697
701
697
698 | | | 42
42
42
42
42
42
42
42
42 | | 42
42
42
42
42
42
42
42
42 | 39
39
39
39
39
39
39
39 | 13
13
13
13
13
13
13 | | 2300.0
2310.0
2320.0
2330.0
2340.0
2350.0
2360.0
2370.0
2380.0 | 73
72
72
73
72
74
73
73
72
73 | 67
68
67
67
66
68
67
66 | 700
699
692
696
696
697
702
699 | | | 42
42
42
42
42
42
42
42
42 | | 42
42
42
42
42
42
42
42
42 | 39
39
39
39
39
39
39
39 | 13
12
12
12
13
13
13
12 | | 2400.0
2410.0
2420.0
2430.0
2440.0
2450.0
2450.0
2470.0 | 72
72
108
72
72
72
72
70 | 66
67
2
67
68
69
73
68 | 693
694
549
698
701
710
721
704
692 | | | 41
33
42
42
42
43
41 | | 41
33
42
42
43
44
41 | 39
39
39
39
40
40
39 | 12
10
13
13
13
13
13 | | BIT NUMBER
HTC J22
COST
TOTAL HOUR | 6788. | 0 0 | IADC CODE
SIZE
TRIP TIME
TOTAL TUR | 1.2 | 2,250 | NOZZ | RVAL
ZLES
RUN
DITION | | 15 1 | 5 15 | |--|--|---|--|------------|------------------------------|--|--------------------------------|--|--|---| | DEPTH | SPM1 | SPM2 | FLOW
RATE | DC/
OH | CSG | HW/
OH | HW/
CSG | DP/
OH | DP/
CSG | DP/
RIS | | 2480.0
2490.0
2500.0 | 65
67
66 | 69
70
70 | 674
683
683 | · | ٠ | 40
41
41 | | 40
41
41 | 38
38
38 | 12
12
12 | | 2510.0
2520.0
2530.0
2540.0
2550.0
2560.0
2570.0
2580.0
2590.0 | 67
66
68
67
68
66
69
69 | 71
72
69
69
70
69
69 | 692
692
683
677
687
681
685
690
687
689 | | | 41
41
40
41
41
41
41 | | 41
41
40
41
41
41
41 | 39
39
38
38
38
38
38
38
38 | 12
12
12
12
12
12
12
12 | | 2610.0
2620.0
2630.0
2636.0 | 70
70
70
70 | 68
67
67
68 | 684 | | | 41
41
41
41 | | 41
41
41
41 | 38
38
38
38 | 12
12
12
12 | | BIT NUMBER
HTC J33
COST
TOTAL HOUR | 6637. | 0 0 | IADC CODE
SIZE
TRIP TIME
TOTAL TUR | 1 ; | 537
2,250
8,2
14055 | BIL | ERVAL
ZLES
RUN
DITION | | .0- 29
15 1
2
3 88 GC | .5 15
265.0 | | DEPTH | SPM1 | SPMZ | FLOW
RATE | NOV
HO | DC/
CSG | HW/
OH | CSG
HW/ | DP/
OH | DP/
CSG | DP/
RIS | | 2640.0
2650.0
2660.0
2670.0
2680.0
2690.0 | 1
68
69
68
70
76 | 62
70
69
70
69
56 | 315
688
688
691
695
657 | | | 19
41
41
41
42
39 | | 19
41
41
41
42
39 | 18
38
38
38
39
37 | 6
12
12
12
12
12 | | 2700.0
2710.0
2720.0
2730.0
2740.0
2750.0
2760.0
2770.0
2780.0 | 69
37
71
69
69
69
87
69 | 68
83
67
103
69
68
69
27
68 | 687
599
689
514
687
687
684
574
686 | | | 41
36
41
41
41
41
41
41 | | 41
36
41
31
41
41
41
41
34 | 38
33
38
29
38
38
38
38
32
38 | 12
11
12
9
12
12
12
12
10 | , | | | | FLOW | BC/ | ኮሮ / | may | LH.i Z | np./ | ne / | np/ | |--|---|---|--|-----------|---------------------|--|----------------------|---|--|--| | DEPTH | SPM1 | SPM2 | RATE | DCY | DSS
CSG | HW/ | HW/
CSG | DP/
DH | ese | RIS | | 2800.0 | 68 | 68 | 680 | | | 41 | | 41 | 38 | 12 | | 2810.0 | 68 | 68 | 679 | | | 41 | | 41 | 38 | 12 | | 2820.0 | 68 | 68 | 681 | | | Y | - | 41 | 38 | 12 | | 2830.0 | 68 | 70 | 685 | | | 41 | | 41 | 38 | 12 | | 2840.0 | 79 | 45 | 621 | | | 37 | | 37 | 35 | 11 | | 2850.0 | 68 | 68 | 681 | | | 41 | | 41 | 38 | 12 | | 2860. 0 | 68 | 68 | 683 | | | 41 | | 41 | 38 | 12
12 | | 2870.0 | 69 | 68 | 689 | | | 41 | | 41
41 | 38
38 | 12 | | 2880.0 | 68 | 68 | 680 | • | • | 41 | | 41
41 | აი
38 | 12 | | 2890. 0 | 69 | 69 | 691 | | | 41 | | ~ 7 1. | 30 | 1 4 | | 2900.0 | 69 | 68 | 683 | | | 41 | | 41 | 38 | 12 | | 2901.0 | 68 | 68 | 683 | | | 41 | | 41 | 38 | 12 | | BIT NUMBER | | 9 | IADC CODE | 1 | 537
2.250 | INTI
NOZ | ERVAL. | 2901 | 1.0- 3
15 | 021.0
15 15 | | COST | 6637 | | TRIP TIME | | 8.4 | BIT | RUN | та | | 120.0 | | | | .00
.14 | | | | BIT | | TZ | | 120.0 | | COST | | | TRIP TIME | | 8.4 | BIT | RUN | T2 | DP/ | 120.0
0.000
DP/ | | COST | | | TRIP TIME
TOTAL TUR | МВ | 8.4
92542 | CON | RUN | | 2 B2 G | 120.0
0.000 | | COST
TOTAL HOUR
DEPTH | S 22
SPM1 | ,14
SPM2 | TRIP TIME
TOTAL TUR
FLOW
RATE | NS
NC/ | 8.4
92542
DC/ | HW/
COM | RUN
DITION
HW/ | DP/
OH | DP/
CSG | 120.0
0.000
DP/
RIS | | COST
TOTAL HOUR
DEPTH
2910.0 | S 22
SPM1
69 | .14
SPM2
68 | TRIP TIME
TOTAL TUR
FLOW
RATE
683 | NS
NC/ | 8.4
92542
DC/ | BIT
CON
HW/
OH
41 | RUN
DITION
HW/ | DP/
OH
41 | 2 B2 G
DP/
CSG
38 | 120.0
0.000
DP/
RIS | | COST
TOTAL
HOUR
DEPTH
2910.0
2920.0 | S 22
SPM1
69
70 | .14
SPM2
68
67 | TRIP TIME
TOTAL TUR
FLOW
RATE
683
685 | NS
NC/ | 8.4
92542
DC/ | BIT
CON
HW/
OH
41
41 | RUN
DITION
HW/ | DP/
OH
41
41 | DP/
CSG
38
38 | 120.0
0.000
DP/
RIS
12 | | COST
TOTAL HOUR
DEPTH
2910.0
2920.0
2930.0 | S 22
SPM1
69
70
69 | .14
SPM2
68
67
68 | TRIP TIME
TOTAL TUR
FLOW
RATE
683
685
680 | NS
NC/ | 8.4
92542
DC/ | BIT
CON!
HW/
OH
41
41
41 | RUN
DITION
HW/ | DP/
OH
41
41
41 | DP/
CSG
38
38
38 | 120.0
0.000
DP/
RIS
12
12 | | DEPTH 2910.0 2920.0 2930.0 2940.0 | S 22
SPM1
69
70
69
68 | .14
SPM2
68
67
68
68 | TRIP TIME
TOTAL TUR
FLOW
RATE
683
685
680
680 | NS
NC/ | 8.4
92542
DC/ | BIT
CON!
HW/
OH
41
41
41
41 | RUN
DITION
HW/ | DP/
OH
41
41
41
41 | DP/
CSG
38
38
38
38 | 120.0
0.000
DP/
RIS
12
12
12 | | DEPTH 2910.0 2920.0 2930.0 2940.0 2950.0 | S 22
SPM1
69
70
69
68
68 | .14
SPM2
68
67
68
68
68 | TRIP TIME
TOTAL TUR
FLOW
RATE
683
685
680
680
681 | NS
NC/ | 8.4
92542
DC/ | BIT
CON!
HW/
OH
41
41
41
41
41 | RUN
DITION
HW/ | DP/
OH
41
41
41
41
41 | DP/
CSG
38
38
38
38
38 | 120.0
0.000
DP/
RIS
12
12
12
12 | | DEPTH 2910.0 2920.0 2930.0 2940.0 2950.0 2960.0 | S 22
SPM1
69
70
69
68
68
69 | .14
SPM2
68
67
68
68
68 | FLOW RATE 683 685 680 681 682 | NS
NC/ | 8.4
92542
DC/ | BIT
CON!
HW/
OH
41
41
41
41
41 | RUN
DITION
HW/ | DP/
OH
41
41
41
41
41 | DP/
CSG
38
38
38
38
38
38 | 120.0
0.000
DP/
RIS
12
12
12
12 | | DEPTH 2910.0 2920.0 2930.0 2940.0 2950.0 2960.0 2970.0 | S 22
SPM1
69
78
69
68
68
69
68 | .14
SPM2
68
67
68
68
68 | TRIP TIME
TOTAL TUR
FLOW
RATE
683
685
680
680
681 | NS
NC/ | 8.4
92542
DC/ | BIT
CON!
HW/
OH
41
41
41
41
41 | RUN
DITION
HW/ | DP/
OH
41
41
41
41
41 | DP/
CSG
38
38
38
38
38 | 120.0
0.000
DP/
RIS
12
12
12
12 | | DEPTH 2910.0 2920.0 2930.0 2940.0 2950.0 2960.0 2970.0 2980.0 | S 22
SPM1
69
70
69
68
69
68
69
68 | .14
SPM2
68
67
68
68
68
68 | TRIP TIME
TOTAL TUR
FLOW
RATE
683
685
680
680
681
682
681
668 | NS
NC/ | 8.4
92542
DC/ | BIT
CON!
HW/
OH
41
41
41
41
41
41 | RUN
DITION
HW/ | DP/
OH
41
41
41
41
41
41 | DP/
CSG
38
38
38
38
38
38
38
38 | 120.0
0.000
DP/
RIS
12
12
12
12
12 | | DEPTH 2910.0 2920.0 2930.0 2940.0 2950.0 2960.0 2970.0 2980.0 | S 22 SPM1 69 70 69 68 68 69 68 67 68 | .14
SPM2
68
67
68
68
68
68
67 | TRIP TIME
TOTAL TUR
FLOW
RATE
683
685
680
681
682
681
668 | NS
NC/ | 8.4
92542
DC/ | BIT
CON!
HW/
OH
41
41
41
41
41
41
41 | RUN
DITION
HW/ | DP/
OH
41
41
41
41
41
41
41 | DP/
CSG
38
38
38
38
38
38
38
38
37 | 120.0
0.000
DP/
RIS
12
12
12
12
12
12 | | DEPTH 2910.0 2920.0 2930.0 2940.0 2950.0 2960.0 2970.0 2980.0 | S 22 SPM1 69 70 69 68 69 68 69 68 67 | .14
SPM2
68
67
68
68
68
67
0 | TRIP TIME
TOTAL TUR
FLOW
RATE
683
685
680
681
682
681
668
534
670 | NS
NC/ | 8.4
92542
DC/ | BIT
CON!
HW/
OH
41
41
41
41
41
41
40 | RUN
DITION
HW/ | DP/
OH
41
41
41
41
41
41
41
40 | DP/
CSG
38
38
38
38
38
38
38
37 | 120.0
0.000
DP/
RIS
12
12
12
12
12
12 | | DEPTH 2910.0 2920.0 2930.0 2940.0 2950.0 2960.0 2970.0 2970.0 3000.0 3010.0 | S 22
SPM1
69
70
69
68
69
68
66
107
67
69 | .14
SPM2
68
67
68
68
68
67
67 | TRIP TIME
TOTAL TUR
FLOW
RATE
683
685
680
681
682
681
668
534
670
681 | NS
NC/ | 8.4
92542
DC/ | BIT
CON!
HW/
OH
41
41
41
41
41
41
41
41
41 | RUN
DITION
HW/ | DP/
OH
41
41
41
41
41
41
40
32
40 | PP/
CSG
38
38
38
38
38
38
37
37
37 | 120.0
0.000
DP/
RIS
12
12
12
12
12
12 | | DEPTH 2910.0 2920.0 2930.0 2940.0 2950.0 2960.0 2970.0 2980.0 | S 22 SPM1 69 70 69 68 69 68 69 68 67 | .14
SPM2
68
67
68
68
68
67
0 | TRIP TIME
TOTAL TUR
FLOW
RATE
683
685
680
681
682
681
668
534
670 | NS
NC/ | 8.4
92542
DC/ | BIT
CON!
HW/
OH
41
41
41
41
41
41
40 | RUN
DITION
HW/ | DP/
OH
41
41
41
41
41
41
41
40 | DP/
CSG
38
38
38
38
38
38
38
37 | 120.0
0.000
DP/
RIS
12
12
12
12
12
12 | This is an enclosure indicator page. The enclosure PE603549 is enclosed within the container PE906175 at this location in this document. The enclosure PE603549 has the following characteristics: ITEM_BARCODE = PE603549 CONTAINER_BARCODE = PE906175 NAME = Drill Data Plot BASIN = GIPPSLAND PERMIT = VIC/P1 TYPE = WELL SUBTYPE = WELL_LOG DESCRIPTION = Drill Data Plot for Luderick-1 REMARKS = DATE_CREATED = 24/06/1983 DATE_RECEIVED = 06/09/1983 $W_NO = W819$ WELL_NAME = LUDERICK-1 CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD CLIENT_OP_CO = ESSO AUSTRALIA LIMITED This is an enclosure indicator page. The enclosure PE603550 is enclosed within the container PE906175 at this location in this document. The enclosure PE603550 has the following characteristics: ITEM_BARCODE = PE603550 CONTAINER_BARCODE = PE906175 NAME = Temperature Plot BASIN = GIPPSLAND PERMIT = VIC/P1 TYPE = WELL SUBTYPE = WELL_LOG DESCRIPTION = Temperature Plot for Luderick-1 REMARKS = DATE_CREATED = 24/06/1983 DATE_RECEIVED = 06/09/1983 $W_NO = W819$ WELL_NAME = LUDERICK-1 CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD CLIENT_OP_CO = ESSO AUSTRALIA LIMITED This is an enclosure indicator page. The enclosure PE603551 is enclosed within the container PE906175 at this location in this document. The enclosure PE603551 has the following characteristics: ITEM_BARCODE = PE603551 CONTAINER_BARCODE = PE906175 NAME = Pressure Plot BASIN = GIPPSLAND PERMIT = VIC/P1 TYPE = WELL SUBTYPE = WELL_LOG DESCRIPTION = Pressure Plot for Luderick-1 REMARKS = DATE_CREATED = 24/06/1983 DATE_RECEIVED = 06/09/1983 $W_NO = W819$ WELL_NAME = LUDERICK-1 CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD CLIENT_OP_CO = ESSO AUSTRALIA LIMITED This is an enclosure indicator page. The enclosure PE603552 is enclosed within the container PE906175 at this location in this document. The enclosure PE603552 has the following characteristics: ITEM_BARCODE = PE603552 CONTAINER_BARCODE = PE906175 NAME = Geoplot BASIN = GIPPSLAND PERMIT = VIC/P1 TYPE = WELL SUBTYPE = WELL_LOG DESCRIPTION = Geoplot for Luderick-1 containing rate of penetration, corrected ""d"" exponent, costs and pressure data. REMARKS = DATE_CREATED = 24/06/83 DATE_RECEIVED = 6/09/83 $W_NO = W819$ WELL_NAME = LUDERICK-1 CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD CLIENT_OP_CO = ESSO AUSTRALIA LIMITED GRAPHOLOG PE 603553 This is an enclosure indicator page. The enclosure PE603553 is enclosed within the container PE906175 at this location in this document. The enclosure PE603553 has the following characteristics: ITEM_BARCODE = PE603553 CONTAINER_BARCODE = PE906175 NAME = Grapholog (Mud Log) BASIN = GIPPSLAND PERMIT = VIC/P1 TYPE = WELL SUBTYPE = MUD_LOG DESCRIPTION = Grapholog (mud log) for Luderick-1 REMARKS = DATE_CREATED = 24/06/1983 DATE_RECEIVED = 06/09/1983 $W_NO = W819$ WELL_NAME = LUDERICK-1 CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD CLIENT_OP_CO = ESSO AUSTRALIA LIMITED