GSGGG

GENERAL DATA SHEET

Well:	Wasabi-1	Partners:	Apache Northwest Pty Ltd (Operator)
Well Type:	Exploration		
Basin:	Gippsland		
Tenement:	Vic-P58		
Status:	Plugged and Abandoned		
Spudded:	23:00 hrs 14 February, 2008	Latitude:	38° 29' 18.157" S
TD Reached:	05:30 hrs 1 March, 2008	Longitude:	147° 15' 49.147" E
Rig Released:	16:00 hrs 8 March, 2008	Northing:	5 739 963.350 mN
Total Depth:	-2086.0 mTVDAHD	Easting:	522 993.588 mE
	(2313.0 mMDRT)		
RT Elevation:	39.0 m above AHD	Datum:	GDA94
Water Depth:	27.0 m below AHD	Projection:	MGA94, UTM Zone 55° S CM 147° E
Drill. Contr.:	Seadrill		
Rig (Type):	West Triton (Jack-up)		

MWD/LWD Logs

Bit No.	Log Suite	Interval mTVDAHD (mMDRT)	Max °C	Hole Size (mm)	Remarks
1	GR-RES-Sonic (SLB)	-96.0 to -823.0 (135.0 to 862.0)	38.9	406	All data recovered. Poor quality sonic data due to large hole size.
2	GR-RES-Density- Porosity (SLB)	-823.0 to -1713.6 (862.0 to 1796.0)	53.4	311	POOH at 1796.0 mMDRT, unable to get tools steering in correct direction. All data recovered at surface.
3	GR-RES (SLB)/ BAT Sonic (Sperry)	-1713.6 to -1799.5 (1796.0 to 1900.0)	56.3	311	ADN tool removed. Poor quality GVR image acquired from 1200.0 to 1700.0 mMDRT. All Gamma, resistivity & sonic data acquired.
4	GR-RES (SLB)/ BAT Sonic (Sperry))	-1799.5 to -2086.0 (1900.0 to 2313.0)	60.0	311	
5	GR-RES-Density- porosity (SLB)/ BAT Sonic (Sperry)	-1666.3 to -2086.0 (1740.0 to 2313.0)	65.0	311	Wiper trip. POOH logging ADN from TD to 1740.0 MDRT.

Wireline Logs

wireii	ne Log	ys				
Suite	Run	Log Suite	Interval mTVDAHD (mMDRT)	BHT (°C)	Hrs *	Remarks
1	1	VSI	-31.1 to -1345.0 (70.1 to 1385.5)	60.0	20.82	Unable to pass 1390.0 mMDRT. Commenced survey from 1385.0 mMDRT at 15 m intervals to loss of signal.
	2	PEX-SP-MSIP	-27.0 to -1349.4 (66.0 to 1390.0)	59.0	30.48	Tool hung up whilst RIH at 1390.0 mMDRT. Logged up from 1390.0 mMDRT, all data acquired from this point.
	3	MDT	-1229.3 to -1398.1 (1268.5 to 1440.1)	60.0	28.98	13 pretests (9 good, 3 no seal, 2 flow line blockage). 3 samples taken at 1328.0 mMDRT.
	4	CST	-1210.9 to -1433.5 (1250.0 to 1477.2)	61.0	35.40	30 cores shot, 29 recovered, 1 empty.

5	VSI through drill	-1226.3 to -2077.3	NA	3.83	RIH open ended drill pipe
	pipe	(1265.5 to 2300.0)			and circulated for 3.5 hrs.
					Moved drill pipe every 30 min
					through logging operations to
					avoid becoming
					hydrostatically stuck.

^{*} Hours since circulation stopped.

Hole and Casing Details

Hole Size (mm)	Interval (mMDRT)	Interval (mTVDAHD)	Casing Size (mm)	Depth (mMDRT)	Depth (mTVDAHD)
660	66.0 to 135.0	-27.0 to -96.0			
406	135.0 to 862.0	-96.0 to -823.0	340 x 508	857.3	-818.0
311	862.0 to 2313.0	-823.0 to -2086.0			

Cement Plugs

Plug No.	Interval mTVDAHD (mMDRT)	Tagged
1	-1170.9 to -1230.8 (1210.0 to 1270.0)	
2	-758.0 to -845.0 (797.0 to 887.0)	
3	-37.0 to -82.0 (76.0 to 121.0)	

Testing: No testing carried out.

Coring: No conventional cores were cut. 29 percussion sidewall cores were

recovered from 30 shots.

Comments: The Wasabi-1 location is 14.86 m on a bearing of 179.88° (True) from the

intended surface location.

West Triton

For further information contact::

Simon Johnson, Marketing Manager Tel: +65 6411 5074 Fax: +65 6222 4578 Email: simon.johnson@seadrill.com

Ole F. Gaarden, Marketing Manager Tel: +65 6411 5075 Fax: +65 6222 4578 Email: ole.gaarden@seadrill.com

www.seadrill.com

GENERAL

Delivery Hull ID P2011 **Major Upgrades** Design

Previous Names Flag

Classification Agency Dimensions

Operating Draft

Transit draft Target VDL - Operating Target VDL - Survival Target VDL - Transit **Outfitted Max WD** Min WD

Leg Length - usable below hull Leg Spacing

Usable Deck Space Spudcan Diameter Max Drilling Depth

Cantilever Envelope **Max Combined Load** Quarters

Helideck Size **Helideck Capacity**

Helideck Certification

DRILLING PACKAGE Derrick (SHL) **Racking Capacity** Drawworks **Rotary Table** Top Drive - continuous torque Pipehandling

MUD SYSTEM Pressure Rating

Pumps **Solids Control** 01-Jan 2008

Baker Marine-375 Pacific Class

Seadrill 2 Singapore

ABS-CDS₩ Self Elevating Unit

236' x 224' x 27.9'

18.8 Ft 19.5 Ft 7,496 kips 6,500 kips 6,000 kips 375 Ft 30 Ft

506' (incl spudcan tip) 435 (incl spudcan tip) 155.2' transverse 145.3' longitudinal 32,722 Ft 2

55.446ft 30,000'

70' aft 30' transverse 2599 kips at 70' aft

115

75.5' diameter S61N or 20,500 lbs

CAP437

1,500 kips 30,000' x 5.5" dp NOV-D3000UE- 3450HP AC NOV-D 495 - API 7K

Hydralift Power Swivel HPS750

64,175 ft lbs @ 94 rpm Hydra Tong MPT-200

7.5M

3 x NOV 14-P-220 triplex 1 x dual gumbo box 4 x VSM 300

CAPACITIES

Diesel 3900bls Drillwater 4850-bbls 3,556 bbls **Bulk Product** 11,654 cu ft 5,000 sacks Base Oil 1,274 bbls 1310 Liquid Mud 4,727 bbls 8

WELL CONTROL

Diverter Annular Preventer High pressure BOP C&K Manifold

CRANES

Pedestal Cranes

API SWL-Short Tons

BOP Crane POWER

Main Engines **Total Power Main Generators Emergency Power**

OTHER **Mooring System** Conductor Tensioner

TUBULARS Drillpipe

FEATURES

Potable Water Sack Storage Brine

Mudpits (excl slug/mix)

49.5" KFDJ -500psi 1 x Hydril GX 18 3/4" 10M 2 x Hydril 18 3/4" 15M double 3 1/16" I.D.- 15M

3 ea Baker Marine (900 / 1600 / 2250) 7.8ST@100' / 25.0ST@20' 8.7ST@100' / 44.9ST@25'

17.0ST@120' / 55ST@25' 2 x 50MT

5 x CAT3516HD 10,750 hp 5 x Baylor SR4 1 x CAT3508

4 x Baker/Series 70 500 kips vertical

15750' x 5.5" x S-135 XT-57 tooljoints, Arnco 300XT

Helo refuelling system Single stage preload Coring Caisson

Wasabi-1 DAILY PROGRESS DEPTH (mTVDAHD) Spudded well _______Drilled 660 mi 200 400 I POOI 600 800 1000 1200 Drilled 311 mm hole 1400 1600 1800 2000 Set P & A plugs 2200 2400 2600 2800 3000 DAYS 38°29' 18.157" S 147°15' 49.147" E Spache LATITUDE : UTM: 5,739,963.35 mN LONGITUDE : Vic/P 58 GIPPSALND BASIN SPUD DATE: REACHED T.D.: ELEVATION R.T.: WATER DEPTH: SEA BED: STATUS: 14 February 2008 @ 23:00 hrs 1 March 2008 @ 05:30 hrs 39.0 m above (AHD) 27.0 m below (AHD) 66.0 m below R.T. Wasabi-1 Plugged & Abandoned West Triton 18 March 2008 @ 16:00 hrs **WELL HISTORY** RIG GDA RIG RELEASED :

APACHE CORPORATION Page 1 of 2 **Daily Drilling Report** WELL NAME DATE WASABI-1 29-01-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) OH 0.00(m)38.00 (m) RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 27.00 (m) (days) WELL SUPERVISOR SPUD DATE Rig Release **PBTMD** 09-02-2008 SHAUGHAN CORLESS / STEFAN G H SCHMIDT DISTRICT STATE / PROV **RIG PHONE NO RIG FAX NO** REGION AUSTRALIA **OFFSHORE** VICTORIA DAILY COSTS AFE # 067 08E43 AFE COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 11,816,036 DHC: DHC. DCC: DCC: DCC: CWC. CWC: cwc-Others: Others Others TOTAL 11,816,036 TOTAL TOTAL DEFAULT DATUM / ELEVATION LAST SAFETY MEETING FORMATION BHA HRS OF SERVICE **BLOCK** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CASING LAST CSG SHOE TEST (EMW) **NEXT CASING** INC 0.00° AZM 0.00° 38.00 (m) (sg) CURRENT OPERATIONS: Continue with 100% preload 24 HR SUMMARY: Take on100% preload and hold for 2 hours. skid out drilling package, lower texas deck and pick up and lower Bop's, off load 3rd party 24 HR FORECAST: **OPERATION SUMMARY** NPT CODES HRS Operation PT/NPT **ACTIVITY SUMMARY** From To Phase 0:00 12:00 12.00 R-MOB-DEM DEMOB PΡ Removed sea fastenings. Prepared for floating of rig from HLV MS Target. Ballasted OB down MS Target and attached work tugs. 12:00 13:00 1.00 R-MOB-DEM **DEMOB** PP Made fast rig to MV Hastings, MV Cooma, MV Tusker OB DEMOR Towed rig off HLV MV Target and towed rig to standby location. 13:00 14:30 1.50 R-MOB-DEM PP DEMOB PP Filled spud cans and secured hatches 14:30 16:30 2.00 R-MOB-DEM OB 16:30 17:30 R-MOB-DEM DEMOB PΡ 1.00 Jacked up rig to 2 metres air gap. Connected deepwell pumps. OB 17:30 18:00 0.50 R-MOB-DEM **DEMOB** PP Released tugs. OB 18:00 20:00 DEMOB 2.00 R-MOB-DEM Levelled rig and jacked down to 1 metre air gap. OB 20:00 0:00 4.00 R-MOB-DEM DEMOB PΡ Commenced taking on preload for 100% preload test. OB 24.00 = Total Hours Today 06:00 UPDATE 0000-0600 00:00 - 06:00am Continued taking on preload. Preload tank filling rate very slow due to load sharing problem of water supply between preload tanks, equipment cooling and chiller units. Prepared 130 joints of 5 1/2" drill pipe for back load. SURVEY **TYPE** MD DEG AZI TVD +N/-S +E/-W V.SECT D.L (m) (°) (m) (m) (m) (m) (°/30m) 38.00 0.00 38.00 0.00 0.00 0.00 0.00 Tie On 0.00 PERSONNEL DATA COMPANY HRS COMPANY QTY QTY HRS ADA 2 CATERING 8 46 SEA DRILL SEA DRILL SUBCONTRACTOR TOTAL PERSONNEL ON BOARD: 64

Printed: 25/03/2008 5:49:02PM

APACHE CORPORATION Page 2 of 2 **Daily Drilling Report** WELL NAME DATE WASABI-1 29-01-2008 API# 24 HRS PROG TMD REPT NO TVD ОН 0.00 (m) 0.00 (m) 38.00 (m) SUPPORT CRAFT TYPE REMARKS MATERIALS/CONSUMPTION UNITS USAGE ON HAND UNITS USAGE ON HAND ITEM ITEM BARITE BULK MT 0 CEMENT MT 0 BENTONITE MT 0 BARACARB МТ 0 WATER, POTABLE FUEL OIL MT 360 MT 120 WATER, DRILLING BASE OIL 0 MT bbl BRINE 0 bbl MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 5:49:02PM

APACHE CORPORATION Page 1 of 2 **Daily Drilling Report** WELL NAME DATE WASABI-1 30-01-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) OH 0.00(m)38.00 (m) RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 27.00 (m) (days) WELL SUPERVISOR SPUD DATE Rig Release PBTMD 09-02-2008 SHAUGHAN CORLESS / STEFAN G H SCHMIDT DISTRICT STATE / PROV **RIG PHONE NO** RIG FAX NO REGION AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC. DHC: 11,816,036 DHC: DCC: DCC: DCC: cwc. CWC. cwc-Others: Others Others TOTAL 11,816,036 TOTAL TOTAL LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE DEFAULT DATUM / FLEVATION ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** INC 0.00° 0.00° 38.00 (m) AZM CURRENT OPERATIONS: Split cement lines and install crossovers. Continue with pre-drilling test / training. 24 HR SUMMARY: Pick up 5 1/2" DP, HWDP and 8" drill collars. Test run equipment and crew training with rig equipment. 24 HR FORECAST: **OPERATION SUMMARY** NPT CODES From To HRS Phase Operation PT/NPT **ACTIVITY SUMMARY** 0:00 8:00 R-MOB-DEM MOB PP 8.00 Continued taking on preload. Preload tank filling rate very slow due to load sharing OB problem of water supply between preload tanks, equipment cooling and chiller units. Five out of ten preload tanks filled. Prepared 130 joints of 5 1/2" drill pipe for back load. 8:00 10:00 2.00 R-MOB-DEM MOB PP Opened main preload valve and completed taking on preload (restrictions to cooling water 10:00 12:00 2.00 R-MOB-DEM MOB PP Held preload. OB 12:00 14:00 R-MOB-DEM PP 2.00 MOB Dumped preload. Held helicopter landing training for new deck crew. OB 14:00 16:00 2.00 R-MOB-DEM MOB PP First helicopter landing. Shut down helicopter and conducted heli equipment audit. Departed with 5 PAX OB 16:00 17:30 1.50 R-MOB-DEM MOB PP Jacked down to zero airgap then back up to 4.9m airgap. OB 17:30 19:30 2.00 R-MOB-DEM MOB PP Offloaded equipment from MV Wrangler.

24.00 = Total Hours Today

MOB

OB

R-MOR-DEM

OB

19:30

0:00

4.50

06:00 UPDATE

deck

to drilling position and lowered CTU

Held prejob meeting with all crew. Prepared to skid out cantilever. Skidded out cantilever

00:00 - 06:00 - Continued to offload equipment from MV Wrangler to 02:00 hrs. Rigged up service lines. Secured ROV spread to aft deck.

Prepared tubulars for picking up. Offloaded mud chemicials from containers.

PP

PERSONNEL DATA

COMPANY	QTY	HRS	COMPANY	QTY	HRS
SEA DRILL	49		THIRD PARTY	10	
CATERING	8		SEA DRILL SUBCONTRACTOR	5	
ADA	4				

TOTAL PERSONNEL ON BOARD: 76

CII	DDA	$DT \cap$	RAFT

SOLI OKT CKALI								
TYPE	REMARKS							
PACIFIC WRANGLER								

Printed: 25/03/2008 5:49:56PM

			APACHE CO	ORPORATION			Page 2 of 2		
			Daily Dril	ling Report			Ç		
WELL NAME WASABI-1							DATE 30-01-2008		
API#	24 HRS PRO	OG	TMD		TVD		REPT NO		
ОН	0.00 (m)		0.00 (m)		38.00 (m)		2		
			SUPPOR	RT CRAFT					
TYPE REMARKS									
MV WRANGLER									
MV BATTLER PACIFIC WRANGLER									
. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			MATERIALS/0	CONSUMPTION					
ITEM	UNITS	USAGE	ON HAND	ITEM	UNITS	USAGE	ON HAND		
BARITE BULK	MT		0	CEMENT	MT		0		
BENTONITE	MT		0	BARACARB	MT		0		
FUEL OIL	MT	11	349	WATER, POTABLE	МТ	19	101		
WATER, DRILLING	MT		0	BASE OIL	bbl		0		
BRINE	bbl		0						
			DEC	KLOG		1	1		
MAX VDL	ACT V	/DL	AVG VDL	LEG PEN (BOV	V) LEG PEN	N (PORT)	LEG PEN (S BOARD)		
				1.20	0.5	50	1.30		
			MUD IN	VENTORY					
ITEM		UNIT		USAGE	Day Cost (\$)		ON HAND		

Printed: 25/03/2008 5:49:56PM

Page 1 of 2

						U	ally D	rilling	кер	ort							
WELL NAME																DAT	E
WASABI-1																31-0	01-2008
API#	2	4 HRS F	PROG		1	ΓMD					ΤV	D D				REP	T NO
ОН	0	.00 (m)	0.0			0.00 (r	n)				38.	.00 (m)				3	
RIG NAME NO		FIEI	LD NAME				AUT	H TMD	ı	PLANNED	DO DC	ow	DOL		DFS / KO		WATER DEPTH
WEST TRITON										15.98 (day	ys)				(days)		27.00 (m)
SPUD DATE Rig Rel	ease		WELL SU	JPERVIS	OR							OIM					PBTMD
09-02-2008			SHAUGH	HAN CO	RLESS / STI	EFAN (3 H SCHN	/IIDT									
REGION	DN DISTRICT			STATE / PROV				RIG			RIG PHONE NO		RIG FAX NO				
AUSTRALIA			OFFSHO	RE				VICTORIA	A								
AFE # 067 08E43			AFE	COSTS			DAILY COSTS				CUMULATIVE CO			ILATIVE CO	STS		
DESCRIPTION:			DHC:	:	11,816,036	DHC:			DHC:				ļ				
			DCC:	:					DCC:					DCC:			
			cwc	:				C	CWC:					CWC:			
			Other	rs:				C	Others:					Others	S :		
			TOTA	AL:	11,816,036			T	TOTAL:					TOTA	L:		
DEFAULT DATUM / ELEVA ROTARY TABLE / 38.00 (m			L	AST SA	FETY MEETII	NG	BLOCK				F	FORMATIO	N			ВНА	A HRS OF SERVICE
LAST SURVEY						LAS	ST CSG S	HOE TEST	(EMW)	LAST	CAS	SING		N	EXT CASING	3	·
MD 38.00 (m)	INC	0.00°		AZM	0.00°	(sg	3)										

CURRENT OPERATIONS: Training crew with iron roughneck and casing stabbing basket. Hydrotesting mud pits (Pits 1 to 3 complete).

24 HR SUMMARY: Reset PLC to allow operation of top drive functions and picking up of drill pipe. Continue with rig training / pre drilling tests.

24 HR FORECAST: Reset PLC to allow operation of top drive functions and picking up of drill pipe. Continue with rig training / pre drilling tests.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	7:00	7.00	R-MOB-DEM OB	МОВ	PP		Rigged up service lines. Continued to offload equipment from MV Wrangler to 02.00 hrs. Secured ROV spread to aft deck. Prepared tubulars for picking up. Offloaded mud chemicials from containers.
7:00	9:00	2.00	R-MOB-DEM OB	МОВ	PP		Attempted to move TDS/blocks to pick up pipe. Unable to release brake. Investigated problem.
9:00	13:00	4.00	R-MOB-DEM OB	МОВ	PP		Held JSA. Moved stairway from upper deck to main deck and installed same to CTU deck. Continued offloading chemicials from containers to sack store.
13:00	15:30	2.50	R-MOB-DEM OB	МОВ	PP		Rigged up chicksans from cement unit to fixed lines.
15:30	16:00	0.50	R-MOB-DEM OB	МОВ	PP		Held JSA for picking up drill pipe. Cleared rig floor.
16:00	20:30	4.50	R-MOB-DEM OB	МОВ	PP		Continued trouble shooting control problems with TDS/blocks and rotary table. Solved RT problem (closed hydraulic valve). Still unable to move TDS/blocks.
20:30	22:30	2.00	R-MOB-DEM OB	МОВ	PP		Held JSA. Lifted BOP's, moved to well centre and lowered BOP's to CTU deck.
22:30	0:00	1.50	R-MOB-DEM OB	МОВ	PP		Trained crew with iron roughneck.

24.00 = Total Hours Today

Printed: 25/03/2008 5:53:12PM

APACHE CORPORATION Page 2 of 2 **Daily Drilling Report WELL NAME** DATE WASABI-1 31-01-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) OH 0.00 (m) 38.00 (m) 3 06:00 UPDATE 0000-0600 00:00 - 01:00 - Held JSA. Picked up and racked back BOP's. 01:00 - 03:00 - Nippled up BOP's on test stump. 03:00 - 03:30 - Changed out auto elevators to manual elevators (auto elevators not functioning). 03:30 - 06:00 - Trained crew with iron roughneck and casing stabbing basket. Commenced sequentially filling mud pits with sea water for hydrotesting. Deck crew preparing bulk loading hoses and vent hoses. GENERAL NOTES: 1) Unable to operate Starboard crane as oil filter blocked, no spares onboard. 2) SAFETY CONCERN: BOP winches are rated to a total off 100 ton, BOP weight is 85 ton. Should one BOP winch fail we have no redunancy. Lifting system should incoperate a safety factor to support the weight of the Bop's should one winch fail. Personnel are required to be under Bop's to see it land on stump etc. 3) Drillers PA system on rig floor is very hard to hear and understand by crew menbers working on rig floor. Driller has to remove hand from joy stick to press numbers to activate talk back system. Should be foot activated system to allow driller to have both hands on controls. PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS ADA 3 SEA DRILL 49 SEA DRILL SUBCONTRACTOR CATERING 5 THIRD PARTY 10 **TOTAL PERSONNEL ON BOARD: 75**

SUPPORT CRAFT

TYPE	REMARKS
PACIFIC WRANGLER	
MV WRANGLER	
MV BATTLER	
DA OUELO LUIDANIOL ED	

MATERIALS/CONSUMPTION

ITEM	UNITS	USAGE	ON HAND	ITEM	UNITS	USAGE	ON HAND
BARITE BULK	MT		0	CEMENT	MT		0
BENTONITE	MT		0	BARACARB	MT		0
FUEL OIL	MT	11	338	WATER, POTABLE	MT	31	70
WATER, DRILLING	MT		38	BASE OIL	bbl		0
BRINE	bbl		0				

DECKLOG

MAX VDL	ACT VDL	AVG VDL	LEG PEN (BOW)	LEG PEN (PORT)	LEG PEN (S BOARD)
			1.20	0.50	1.30

MUD INVENTORY

ITEM	UNIT	USAGE	Day Cost (\$)	ON HAND

Printed: 25/03/2008 5:53:12PM

APACHE CORPORATION Page 1 of 2 **Daily Drilling Report WELL NAME** DATE WASABI-1 01-02-2008 API# 24 HRS PROG TMD TVD REPT NO 38.00 (m) 0.00 (m) 0.00 (m) OH RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR PBTMD 09-02-2008 SHAUGHAN CORLESS / STEFAN G H SCHMIDT STATE / PROV RIG PHONE NO RIG FAX NO REGION DISTRICT AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 11,816,036 DHC: DHC: DCC: DCC: DCC: cwc. CWC: CWC: Others: Others: Others TOTAL: 11,816,036 TOTAL TOTAL LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 38.00 (m) INC 0.00° AZM 0.00° (sg) CURRENT OPERATIONS: Commence pumping test with mud pumps. 24 HR SUMMARY: Commence pumping test with mud pumps. 24 HR FORECAST: Complete pumping test, layout tubullars from derrick, test mud mixing system and cement mixing system **OPERATION SUMMARY**

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	1:00	1.00	R-MOB-DEM OB	МОВ	PP		Held JSA. Picked up and racked back BOP's.
1:00	3:00	2.00	R-MOB-DEM OB	МОВ	PP		Nippled up BOP's on test stump.
3:00	3:30	0.50	R-MOB-DEM OB	МОВ	PP		Changed out auto elevators to manual elevators (auto elevators not functioning).
3:30	6:30	3.00	R-MOB-DEM OB	МОВ	PP		Trained crew with iron roughneck and casing stabbing basket. Commenced hydrotesting of mud pits.
6:30	8:30	2.00	R-MOB-DEM OB	МОВ	PP		Held JSA. Installed securing straps to top drive service loop and mud hoses. Completed hydrotesting of all mud pits.
8:30	11:30	3.00	R-MOB-DEM OB	МОВ	PP		Held JSA. P/U test joint with tugger rigged through back of derrick. Landed test joint in BOP's. M/U safety clamp and secured test joint.
11:30	12:00	0.50	R-MOB-DEM OB	МОВ	PP		Function tested BOP's.
12:00	13:30	1.50	R-MOB-DEM OB	МОВ	PP		Filled stack with water (problems with water supply).
13:30	18:00	4.50	R-MOB-DEM OB	МОВ	PP		Pressure tested rams, annular and choke and kill valves to 250 / 5000psi for 5 / 10 minutes.
18:00	23:30	5.50	R-MOB-DEM OB	МОВ	PP		Conducted cyber chair training with drillers by cyber chair instructor. Instructions given on block calibration and system set up of cyber chair.
23:30	0:00	0.50	R-MOB-DEM OB	МОВ	PP		Changed out 500 ton bails to 350 ton bails.

24.00 = Total Hours Today

06:00 UPDATE

0000-0600

00:00 - 06:00 - Held JSA. Picked up 3 stands 5 1/2" drill pipe using iron roughneck, 1 stand 5 1/2" HWDP using manual tongs and 1 stand 8 1/2" drill collars using iron roughneck.

Note:

Travelling blocks are operating in slow mode as upper most limit switch requires recalibrating

Printed: 25/03/2008 5:54:11PM

APACHE CORPORATION Page 2 of 2 **Daily Drilling Report** WELL NAME DATE 01-02-2008 WASABI-1 TVD API# 24 HRS PROG TMD REPT NO ОН 0.00 (m) 38.00 (m) 0.00 (m) PERSONNEL DATA COMPANY COMPANY QTY HRS QTY HRS SEA DRILL 49 ADA SEA DRILL SUBCONTRACTOR CATERING THIRD PARTY 16 **TOTAL PERSONNEL ON BOARD: 78** SUPPORT CRAFT REMARKS TYPE PACIFIC WRANGLER MV BATTLER PACIFIC WRANGLER MATERIALS/CONSUMPTION ITEM UNITS USAGE ON HAND ITEM UNITS USAGE ON HAND BARITE BULK МТ 23 CEMENT МТ 23 BENTONITE BARACARB MT 22 MT 0 **FUEL OIL** ΜT 327 WATER, POTABLE МТ 24 46 WATER, DRILLING MT 2 36 BASE OIL bbl 0 BRINE bbl **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.20 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 5:54:11PM

Page 1 of 2

WELL NAME DATE WASABI-1 02-02-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) 38.00 (m) 0.00 (m) OH RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR PBTMD 09-02-2008 SHAUGHAN CORLESS / STEFAN G H SCHMIDT STATE / PROV RIG PHONE NO REGION DISTRICT **RIG FAX NO** AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: 11,816,036 DHC: DHC: DHC: DCC: DCC: DCC: cwc: cwc. CWC: Others: Others: Others TOTAL: 11,816,036 TOTAL TOTAL LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 38.00 (m) INC 0.00° AZM 0.00° CURRENT OPERATIONS: Continue with testing of circulating system, circulate thru choke checking operation of chokes, flush and pump thru trip tank.

24 HR SUMMARY: Continue with testing of circulating system, circulate thru choke checking operation of chokes, flush and pump thru trip tank.

24 HR FORECAST: Mix 50 bbls mud in slug pit, check bulk mud transfer line to boat, continue with Cyber chair training.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	6:00	6.00	R-MOB-DEM OB	МОВ	PP		Held JSA. Picked up 3 stands 5 1/2" drill pipe using iron roughneck, 1 stand 5 1/2" HWDP using manual tongs and 1 stand 8 1/2" drill collars using iron roughneck.
6:00	7:30	1.50	R-MOB-DEM OB	МОВ	PP		Make TDS to string and preformed pumping tests on all drilling equipment.
7:30	15:00	7.50	R-MOB-DEM OB	MOB	PP		Staged up all mud pumps to 85 spm, 1540 gpm and rotate TDS at 85 rpm, all equipment good, deep well able to keep up with pumping rate
15:00	19:30	4.50	R-MOB-DEM OB	MOB	PP		Pumped sea water thru choke and kill manifold at 880 gpm, mud degasser, over shale shaker, solids control equipment and returned to mud pits. All good tests.
19:30	20:30	1.00	R-MOB-DEM OB	МОВ	PP		Break out TDS from string, layout x/o and one joint drill pipe stand back stand drill collars.
20:30	22:30	2.00	R-MOB-DEM OB	MOB	PP		Held JSA lower cement hose from derrick and with Halliburton mix 10 bbls cement at 16.00 ppg and pumped 5 bbls cement to rig floor into waste skip. All equipment operation. Flush cement lines and stowed cement hose in derrick.
22:30	0:00	1.50	R-MOB-DEM OB	МОВ	PP		Held JSA, layed out drill collars. Note: Travelling blocks are operating in slow mode as upper most limit switch requires recalibrating.

24.00 = Total Hours Today

06:00 UPDATE

0000-0600 00:00 - 03:00 - Held JSA, Layed out heavy weight and drill pipe from derrick.

03:00 - 06:00 - Continue with testing of circulating system, circulate thru choke checking operation of chokes, flush and pump thru trip tank.

Note:

Travelling blocks are operating in slow mode as upper most limit switch requires recalibrating. Lined up to mix

bentonite, unable to mix bentonite as fault in mixing panel, electrician to fault find in morning.

Off loaded drilling equipment, tools and Schlumberger wire line unit from the Pacific Wrangler.

Printed: 25/03/2008 5:54:54PM

APACHE CORPORATION Page 2 of 2 **Daily Drilling Report** WELL NAME DATE WASABI-1 02-02-2008 TVD API# 24 HRS PROG TMD REPT NO 0.00 (m) 38.00 (m) 5 ОН 0.00 (m) PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS ADA SEA DRILL SUBCONTRACTOR SEA DRILL 50 CATERING THIRD PARTY 15 **TOTAL PERSONNEL ON BOARD: 79** SUPPORT CRAFT REMARKS TYPE PACIFIC WRANGLER MV BATTLER PACIFIC WRANGLER MATERIALS/CONSUMPTION ITEM UNITS USAGE ON HAND ITEM UNITS USAGE ON HAND BARITE BULK МТ 45 CEMENT МТ 46 BENTONITE BARACARB MT 44 MT 0 **FUEL OIL** ΜT 316 WATER, POTABLE МТ 24 22 WATER, DRILLING MT 2 34 BASE OIL bbl 0 BRINE bbl **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.20 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 5:54:54PM

APACHE CORPORATION Page 1 of 2 **Daily Drilling Report** WELL NAME DATE WASABI-1 03-02-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) OH 0.00(m)38.00 (m) RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 27.00 (m) (days) WELL SUPERVISOR SPUD DATE Rig Release **PBTMD** 09-02-2008 SHAUGHAN CORLESS / STEFAN G H SCHMIDT DISTRICT STATE / PROV **RIG PHONE NO RIG FAX NO** REGION AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC. DHC: 11,816,036 DHC: DCC: DCC: DCC: CWC. CWC: cwc-Others: Others Others TOTAL 11,816,036 TOTAL TOTAL LAST SAFETY MEETING FORMATION BHA HRS OF SERVICE DEFAULT DATUM / FLEVATION **BLOCK** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** INC 0.00° AZM 38.00 (m) 0.00° CURRENT OPERATIONS: Current Ops @ 06:00 Secure decks and cantilever for rig move. 24 HR SUMMARY: Current Ops @ 06:00 Secure decks and cantilever for rig move. 24 HR FORECAST: Planned Operations Secure decks and cantilever for rig move and continue with Cyber chair training. **OPERATION SUMMARY** NPT CODES From To HRS Phase Operation PT/NPT **ACTIVITY SUMMARY** 0:00 3:00 R-MOB-DEM MOB PP 3.00 Held JSA, Layed out heavy weight and drill pipe from derrick. OB 3:00 6:00 MOB PP Continue with testing of circulating system, circulate thru choke checking operation of 3.00 R-MOB-DEM OB chokes, flush and pump thru trip tank 6:00 12:00 6.00 R-MOB-DEM MOB PP Re-calibrate travelling block height senator, NOV training with remote for Hydra tong. OB Installed blank flanges on Kill and Choke manifold, flushed through de-silter till clean, reinstated nozzles 12:00 22:00 10.00 R-MOB-DEM MOB PΡ Held JSA, removed service lines from cantilever to main deck, prepared cantilever for OB skidding into transit position. 22:00 MOB PP 0:00 2.00 R-MOB-DEM Held JSA and skidded cantilever to forward transit position. OB Note: Travelling blocks are operating at correct speed. 24.00 = Total Hours Today **06:00 UPDATE** 0000-0600 00:00 - 01:30 - Secured rig after skidding, installed cantilever wedges. 01:30 - 03:30 - Secured top drive service loops and mud hose, changed out rig tongs to HT-100 type. 03:30 - 06:00 - Prepare for rig move, move tubular and tie down equipment. Prepare drilling equipment. Note: Unable to operate Port crane, electrical fault and faulty starter solenoid. PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS CATERING 8 SEA DRILL SUBCONTRACTOR THIRD PARTY 13 ADA SEA DRILL 51 **TOTAL PERSONNEL ON BOARD: 79** SUPPORT CRAFT TYPF REMARKS PACIFIC WRANGLER MV BATTLER PACIFIC WRANGLER

Page 2 of 2

Daily D	rilling	Repo

 WELL NAME

 WASABI-1
 03-02-2008

 API #
 24 HRS PROG
 TMD
 TVD
 REPT NO

 OH
 0.00 (m)
 0.00 (m)
 38.00 (m)
 6

MATERIALS/CON	NSUMPTION :
---------------	-------------

ITEM	UNITS	USAGE	ON HAND	ITEM	UNITS	USAGE	ON HAND
BARITE BULK	MT		45	CEMENT	MT		43
BENTONITE	MT	8	36	BARACARB	MT		0
FUEL OIL	MT	13	303	WATER, POTABLE	MT	17	80
WATER, DRILLING	MT	5	29	BASE OIL	bbl		0
BRINE	bbl		0				

DECKLOG

MAX VDL	ACT VDL	AVG VDL	LEG PEN (BOW)	LEG PEN (PORT)	LEG PEN (S BOARD)
			1.20	0.50	1.30

MUD INVENTORY

ITEM	UNIT	USAGE	Day Cost (\$)	ON HAND

Printed: 25/03/2008 5:55:41PM

APACHE CORPORATION Page 1 of 2 **Daily Drilling Report WELL NAME** DATE WASABI-1 04-02-2008 API# 24 HRS PROG TMD TVD REPT NO ОН 0.00 (m) 38.00 (m) 0.00 (m) RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR PBTMD 09-02-2008 SHAUGHAN CORLESS / STEFAN G H SCHMIDT / BILL OPENSHAW DISTRICT STATE / PROV RIG PHONE NO RIG FAX NO REGION AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 11,816,036 DHC: DHC: DCC: DCC: DCC: CWC: CWC: CWC: Others: Others: Others: TOTAL: 11,816,036 TOTAL TOTAL LAST SAFETY MEETING BHA HRS OF SERVICE

LAST SURVEY 38.00 (m) INC **CURRENT OPERATIONS: BOP'S**

DEFAULT DATUM / ELEVATION ROTARY TABLE / 38.00 (m)

24 HR SUMMARY: BOP'S 24 HR FORECAST: Planned Operations Continue with Cyber chair training of crews.

0.00°

AZM

0.00°

OPERATION SUMMARY

LAST CSG SHOE TEST (EMW)

FORMATION

NEXT CASING

LAST CASING

BLOCK

(sg)

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	1:30	1.50	R-MOB-DEM OB	МОВ	PP		Secured rig after skidding, installed cantilever wedges.
1:30	3:30	2.00	R-MOB-DEM OB	МОВ	PP		Secured top drive service loops and mud hose, changed out rig tongs to HT-100 type.
3:30	6:30	3.00	R-MOB-DEM OB	МОВ	PP		Prepare for rig move, move tubular and tie down equipment. Prepare drilling equipment.
6:30	8:00	1.50	R-MOB-DEM OB	МОВ	PP		Secured Bop's and clean area.
8:00	9:30	1.50	R-MOB-DEM OB	МОВ	PP		NOV troubleshoot fault with rotary table, noise coming from hydraulic motor with rotating in forward and reverse at 20 rpm.
9:30	10:30	1.00	R-MOB-DEM OB	МОВ	PP		Held JSA and removed faulty derrickmans air winch from monkey board.
10:30	12:00	1.50	R-MOB-DEM OB	МОВ	PP		Prepare BHA for Wasabi, continue with fault finding of draworks and traveling blocks calibration.
12:00	15:00	3.00	R-MOB-DEM OB	МОВ	PP		Held JSA and remove Auger from cutting ditch in front of shale shakers.
15:00	18:00	3.00	R-MOB-DEM OB	МОВ	PP		Held JSA and install test joint and prepare to test Bop's
18:00	20:30	2.50	R-MOB-DEM OB	МОВ	PP		Fault find and correct fault with Bop test pump.
20:30	0:00	3.50	R-MOB-DEM OB	МОВ	PP		Tested lower, middle rams, kill and choke line valves 250/5000 psi 5/10 mins.
							Note:
							Lower pressure test pump leaking through NRV, no spares on rig.
							Carried safety inspection of Derrick and rig package.

24.00 = Total Hours Today

Printed: 25/03/2008 5:56:24PM

APACHE CORPORATION Page 2 of 2 **Daily Drilling Report WELL NAME** DATE WASABI-1 04-02-2008 API# 24 HRS PROG TMD TVD REPT NO OH 0.00 (m) 0.00 (m) 38.00 (m) **06:00 UPDATE** 0000-0600 00:00 - 03:00 - Rig move delayed due poor weather forecast for pinning rig on Wasabe location. Meanwhile while testing Bop's test mandrel moved upwards through Bops, stripped through safety clamp causing 2 dies to fall into Bop's. drain stack, run magnet and recover one die and spring, attempt to retrieve other die no success. Functioned rams, observed rams closing no die on top of rams. 03:00 - 06:00 - Held JSA and prepare to lift Bop's In conjunction drill crew working on closing out items from safety inspection. Design of test plug can allow upward movement of test joint and plug if seals are not sealing. Recommend that test joint be screw into test stump, at present test stump has no threads (box) machined into it. PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS SEA DRILL SEA DRILL SUBCONTRACTOR 48 ADA 4 THIRD PARTY 13 CATERING 8 TOTAL PERSONNEL ON BOARD: 75 SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION ITEM UNITS USAGE ON HAND ITEM UNITS USAGE ON HAND BARITE BULK 45 CEMENT МТ 43 MT BENTONITE BARACARB MT 36 MT 0 **FUEL OIL** МТ 6 297 WATER, POTABLE MT 37 43 BASE OIL WATER, DRILLING МТ 20 0 bbl **BRINE** 0 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.20 0.50 1.30 MUD INVENTORY

USAGE

Day Cost (\$)

UNIT

ITEM

Printed: 25/03/2008 5:56:24PM

ON HAND

Page 1 of 2

WELL NAME DATE WASABI-1 05-02-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) 0.00 (m) 38.00 (m) OH RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR **PBTMD** 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT STATE / PROV RIG PHONE NO REGION DISTRICT **RIG FAX NO** AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: 11,816,036 DHC: DHC: DHC: DCC: DCC: DCC: cwc. CWC: CWC: Others: Others: Others 11,816,036 TOTAL: TOTAL TOTAL LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 38.00 (m) INC 0.00° AZM 0.00° (sg)

CURRENT OPERATIONS: WOW, close out items from Drops/Safety inspection

24 HR SUMMARY: WOW, close out items from Drops/Safety inspection

24 HR FORECAST: WOW. Position satellite receiver to gain full communications

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	0:00	24.00	R-MOB-DEM OB	MOB	PN		Rig move delayed due poor weather forecast, due to wave height and period at Western Port. Meanwhile while testing Bop's test mandrel moved upwards through Bops, stripped through safety clamp causing 2 dies to fall into Bop's. drain stack, run magnet and recover one die and spring, attempt to retrieve other die no success. Functioned rams, observed rams closing no die on top of rams. Held JSA and prepared to lift Bop's, lifted Bop's and recovered second die, lowered Bop's and make Bop's to test stump. Drill crew working on closing out items from safety inspection/drops inspection. Continued with cyber chair training for crews. Preform house keeping on main deck and cantilever deck. Backloaded equipment to boat. Jacked rig down into water, turn rig heading to 127', jacked up to 1.50 meter air gap. Preload rig to 50%.

24.00 = Total Hours Today

06:00 UPDATE

0000-0600 00:00 - 06:00 -

Rig move delayed due poor weather forecast for pinning rig on Wasabi location.

Held preload for two hours, dumped preload, jack up rig to 5 meter air gap, release towing lines from work boats.

Held JSA and installed air winch at monkey board.

Drill crew working on closing out items from safety inspection/drops inspection.

Note:

Fuel Figures Reconciled at 24:00 hours.

PERSONNEL	$D \wedge T \wedge$
PERSONNEL	DAIA

COMPANY	QTY	HRS	COMPANY	QTY	HRS
CATERING	8		ADA	4	
SEA DRILL	48		SEA DRILL SUBCONTRACTOR	2	
THIRD PARTY	13				

TOTAL PERSONNEL ON BOARD: 75

Printed: 25/03/2008 5:57:01PM

APACHE CORPORATION Page 2 of 2 **Daily Drilling Report** WELL NAME DATE WASABI-1 05-02-2008 API# 24 HRS PROG TMD REPT NO TVD ОН 0.00 (m) 0.00 (m) 38.00 (m) 8 SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION USAGE ON HAND UNITS USAGE ON HAND ITEM UNITS ITEM BARITE BULK MT 45 CEMENT MT 43 BENTONITE BARACARB 0 MT 36 MT FUEL OIL МТ 13 284 WATER, POTABLE МТ 20 23 WATER, DRILLING 20 BASE OIL 0 MT bbl BRINE bbl DECKLOG MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.30 1.20 0.50 MUD INVENTORY USAGE ITEM UNIT Day Cost (\$) ON HAND

Printed: 25/03/2008 5:57:01PM

Page 1 of 2	Pag	e 1	of	2
-------------	-----	-----	----	---

									-								
WELL NAME																DA	ГЕ
WASABI-1																06-	02-2008
API#		24 HR	S PRO	G		TMD					TVI)				REF	PT NO
ОН		0.00 (1	m)			0.00 ((m)				38.0	00 (m)				9	
RIG NAME NO WEST TRITON		ı	FIELD N	AME	·		AUT	'H TMD		PLANNED 15.98 (day		W	DOL		DFS / KO (days)		WATER DEPTH 27.00 (m)
SPUD DATE 09-02-2008	Rig Release			LL SUPER	RVISOR SHAW / STEFAI	NGHS	SCHMIDT		1		(OIM					РВТМО
REGION			DIS	TRICT				STATE / F	PROV		Τ			RIG P	HONE NO		RIG FAX NO
AUSTRALIA			OFF	SHORE				VICTORIA	Α								
AFE # 067 08E43			ŀ	AFE COS	TS				DAILY CO	STS				сим	ULATIVE CO	STS	
DESCRIPTION:			ļ	DHC:	11,816,036	i		[DHC:					DHC			
			l	DCC:					DCC:					DCC			
			1	CWC:				C	CWC:					cwc	:		
			1	Others:				C	Others:					Othe	rs:		
				TOTAL:	11,816,036				TOTAL:					TOT	AL:		
DEFAULT DATUM ROTARY TABLE /				LAST	SAFETY MEET	TING	BLOCK				F	ORMATIO	N			ВН	A HRS OF SERVICE
LAST SURVEY						LA	AST CSG S	HOE TEST	(EMW)	LAST	CASI	ING		1	NEXT CASING	3	
MD 38.00	0 (m) II	NC 0.	00°	А	ZM 0.00°	(s	sg)										

CURRENT OPERATIONS: WOW, close out items from Drops/Safety inspection
24 HR SUMMARY: WOW, close out items from Drops/Safety inspection

24 HR FORECAST: WOW. Continue with cyber training.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	0:00	24.00	R-MOB-DEM OB	MOB	PN		Rig move delayed due poor weather forecast, due to wave height and period at Western Port
							Held preload for two hours, dumped preload, jack up rig to 5 meter air gap, release towing lines from work boats.
							Held JSA and installed air winch at monkey board.
							Drill crew working on closing out items from safety inspection/drops inspection.
							Fill Bop control unit reservoir with 2 bbls erifon CLS 25 fluid.
							Drill crew familiarization with break out and make up TDS saver sub. Continued with training of and use of Hydra tong, functioned tested power slips.
							Change out manual tongs hanging arms to short style arm.
							Preformed heli-deck fire training with Deck crews.
							General housekeeping and tie down loads for rig move.
							Note: Stop cards total figure adjusted to reflect cards submitted since the 01-01-2008.

24.00 = Total Hours Today

06:00 UPDATE

0000-0600 00:00 - 06:00 - Rig move delayed due po

Rig move delayed due poor weather forecast, due to wave height and period at Western Port

Adjusted counter weights for tongs.

Carried out familiarization with crew on shale shaker and mud pit room lines.

Greased skid beams for skidding cantilever into drilling position.

PERSONNEL DATA

COMPANY	QTY	HRS	COMPANY	QTY	HRS
SEA DRILL SUBCONTRACTOR	2		ADA	4	
THIRD PARTY	14		SEA DRILL	50	
CATERING	8				

TOTAL PERSONNEL ON BOARD: 78

Printed: 25/03/2008 5:57:38PM

APACHE CORPORATION Page 2 of 2 **Daily Drilling Report** WELL NAME DATE WASABI-1 06-02-2008 API# 24 HRS PROG TMD REPT NO TVD ОН 0.00 (m) 0.00 (m) 38.00 (m) 9 SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION USAGE ON HAND USAGE ON HAND ITEM UNITS ITEM UNITS BARITE BULK MT 45 CEMENT MT 43 BENTONITE BARACARB 0 MT 36 MT FUEL OIL МТ 5 279 WATER, POTABLE МТ 58 65 WATER, DRILLING 11 9 BASE OIL 0 MT bbl BRINE bbl DECKLOG MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.30 1.20 0.50 MUD INVENTORY USAGE ITEM UNIT Day Cost (\$) ON HAND

Printed: 25/03/2008 5:57:38PM

APACHE CORPORATION Page 1 of 2 **Daily Drilling Report WELL NAME** DATE WASABI-1 07-02-2008 API# 24 HRS PROG TMD TVD REPT NO 38.00 (m) 0.00 (m) 0.00 (m) OH 10 RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR PBTMD 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT DISTRICT STATE / PROV RIG PHONE NO RIG FAX NO REGION AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 11,816,036 DHC: DHC: DCC: DCC: DCC: CWC: CWC: CWC: Others: Others: Others TOTAL: 11,816,036 TOTAL TOTAL LAST SAFETY MEETING BHA HRS OF SERVICE BLOCK FORMATION **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 38.00 (m) INC 0.00° AZM 0.00° CURRENT OPERATIONS: WOW, close out items from Drops/Safety inspection, crew training with mud system. WOW, close out items from Drops/Safety inspection, crew training with mud system. 24 HR SUMMARY:

24 HR FORECAST: WOW. Coninue with Cyber chair training. Repair generator prior to leaving pressent location.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	0:00	24.00		MOB	PN	RO	Rig move delayed due to: Emergency generator down due to broken fan belt idler tensioner this requires repairing before West Triton can leave present location to Wasabi-1 as per SOLAS and ABS requirement. Adjusted counter weights for tongs. Carried out familiarization with crew on shale shaker and mud pit room lines. Greased skid beams for skidding cantilever into drilling position.
							Preform training with hydra tong. Break out and make up subs on top drive. Checked bolt tennsion on dead man anchor. Calibrate mud pits to SDI system with sea water.
							Sea fasten equipment on rig floor. Note: Damaged top drive saver sub while training crews, the 4 spares on board are 7cm too long and they do not allow the make up of tubulars to top drive. Require correct length spare saver subs ASAP Note: Unable to pressure test Bop's, IBOP'S, TIW valves, gray valves, stand pipe and choke and kill manifold due to test pump non operational on both low and high pressure pumps. No parts on board.

24.00 = Total Hours Today

Printed: 25/03/2008 5:58:20PM

APACHE CORPORATION Page 2 of 2 **Daily Drilling Report WELL NAME** DATE WASABI-1 07-02-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) ОН 0.00 (m) 38.00 (m) 10 06:00 UPDATE 0000-0600 00:00 - 06:00 -Rig move delayed due to: Emergency generator down due to broken fan belt idler tensioner this requires repairing before West Triton can leave present location to Wasabi-1 as per SOLAS and ABS requirement Continued with calibrating mud pits to SDI system with sea water. Paint and high light trip hazards around rig. Note: Shaft for emergency genarator arrived on rig at 00.30, shaft is incorrect size for bearings and also housing for bearings is damaged requiring repair at workshop. Sea Drill has arranged boat to come to rig to pick shafts, bearing etc at 06.00 this morning. PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS SEA DRILL ADA 51 CATERING 8 THIRD PARTY 12 SEA DRILL SUBCONTRACTOR TOTAL PERSONNEL ON BOARD: 77 SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION ITEM UNITS USAGE ON HAND ITEM UNITS USAGE ON HAND BARITE BULK 45 CEMENT МТ 43 MT BENTONITE BARACARB MT 36 MT 0 **FUEL OIL** МТ 4 275 WATER, POTABLE MT 29 36 BASE OIL WATER, DRILLING МТ 0 bbl **BRINE** 0 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.20 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 5:58:20PM

APACHE CORPORATION Page 1 of 2 **Daily Drilling Report WELL NAME** DATE WASABI-1 08-02-2008 API# 24 HRS PROG TMD TVD REPT NO 38.00 (m) 0.00 (m) 0.00 (m) OH RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR **PBTMD** 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT STATE / PROV RIG PHONE NO RIG FAX NO REGION DISTRICT AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 11,816,036 DHC: DHC: DCC: DCC: DCC: cwc. CWC: CWC: Others: Others: Others TOTAL: 11,816,036 TOTAL TOTAL LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 38.00 (m) INC 0.00° AZM 0.00°

CURRENT OPERATIONS: Current Ops @ 06:00 Prepare rig to tow to Wasabi-1.

24 HR SUMMARY: Current Ops @ 06:00 Prepare rig to tow to Wasabi-1.

24 HR FORECAST: Planned Operations Tow rig to Wasabi-1.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	20:30	20.50	R-MOB-DEM OB	МОВ	PN	RO	Rig move delayed due to: Emergency generator down due to broken fan belt idler tensioner this requires repairing before West Triton can leave present location to Wasabi-1 as per SOLAS and ABS requirements. Rebuilt bearing arrived on rig at 19:00, install same and test run generator all OK.
20:30	0:00	3.50	R-MOB-DEM OB	MOB	PP		Waiting on daylight / slack water to move rig from Westernport to Wasabi. Continued with calibrating mud pits to SDI system with sea water. Install hose and transfer seawater to trip tank and checked system. Pumped sea water from trip tank through MGS, taking returns via return ditch to trip tank. Good test. Paint and high light trip hazards around rig. Carried out inventory on fishing tools. Re-installed air winch on monkey board. Sea fastened equipment on rig floor. Note: Damaged top drive saver sub while training crews, the 4 spares on board are 7cm too long and they do not allow the make up of tubbulars to top drive. Require correct length spare saver subs ASAP Note: unable to pressure test Bop's, IBOP'S, TIW valves, gray valves, stand pipe and choke and kill manifold due to test pump non operational on both low and high pressure pumps. No parts on board.

24.00 = Total Hours Today

06:00 UPDATE

0000-0600 00:00 - 06:00 -

00:00 - 06:00 - Waiting on daylight / slack water to move rig from Westernport to Wasabi.

Carried out inventory on fishing tools.

Sea fastened equipment on rig floor and checked rig and prepared for jacking rig down.

Note:

Fault with Top Drive rotating system, system will not stop rotating when controls are operated correctly.

Printed: 25/03/2008 5:59:10PM

APACHE CORPORATION Page 2 of 2 **Daily Drilling Report** WELL NAME DATE 08-02-2008 WASABI-1 TVD API# 24 HRS PROG TMD REPT NO ОН 0.00 (m) 0.00 (m) 38.00 (m) 11 PERSONNEL DATA COMPANY QTY COMPANY QTY HRS SEA DRILL SUBCONTRACTOR THIRD PARTY 2 12 SEA DRILL 51 ADA CATERING 8 TOTAL PERSONNEL ON BOARD: 77 SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION USAGE USAGE ON HAND ITEM UNITS ON HAND ITEM UNITS BARITE BULK CEMENT МТ 45 МТ 43 BENTONITE BARACARB MT 36 MT 0 FUEL OIL MT 271 WATER, POTABLE МТ 28 58 WATER, DRILLING МТ 9 BASE OIL bbl 0 BRINE bbl **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.20 0.50 1.30 MUD INVENTORY USAGE ITEM UNIT Day Cost (\$) ON HAND

Printed: 25/03/2008 5:59:10PM

APACHE CORPORATION Page 1 of 2 **Daily Drilling Report** WELL NAME DATE WASABI-1 09-02-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) OH 0.00(m)38.00 (m) RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 0.58 (days) 27.00 (m) (days) WELL SUPERVISOR SPUD DATE Rig Release **PBTMD** 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT DISTRICT STATE / PROV **RIG PHONE NO RIG FAX NO** REGION AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC. DHC: 11,816,036 DHC: DCC: DCC: DCC: CWC. CWC: cwc-Others: Others Others TOTAL 11,816,036 TOTAL TOTAL LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE DEFAULT DATUM / FLEVATION ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** INC 0.00° AZM 0.00° 38.00 (m) CURRENT OPERATIONS: Rig in transit from Westernport to Wasabi-1 location. ETA 23:00 10 Feb 2008. Rig transferred to Apache from Bass Strait Consortium at 10:00 (1 km from standby location at Westernport). Rig underway to Wasabi-1 location. 24 HR SUMMARY: 24 HR FORECAST: Move rig onto Wasabi-1 location. Pin rig & commence pre-loading operations. **OPERATION SUMMARY** NPT CODES From To HRS Phase Operation PT/NPT **ACTIVITY SUMMARY** 10:00 0:00 14.00 R-MOB-DEM MOB PP Rig position 1km from standby location at Westernport and underway to Wasabi-1 OB location. Operatorship of rig transferred from Bass strait Consortium to Apache Energy Position at midnight: Heading 130' Longitude 38' South, Latitude 145' East, Speed 5 knots, total distance traveled 47 nautical. miles. ETA at Wasabi 23:00 10 Feb 2008 14.00 = Total Hours Today **06:00 UPDATE** 0000-0600 Rig in transit from Westernport to Wasabi-1 location. Heading 131' Longitude 146'08 South, Latitude 39' East, Speed 4 knots, total distance traveled 81 nautical miles. ETA at Wasabi 23:00 10 Feb 2008 Note: Mob/Demob(P1) 14 09 Feb 2008 09 Feb 2008 22.00 0.917 0.0m General Comments: 00:00 TO 24:00 Hrs ON 09 Feb 2008 Operational Comments Seadrill awaiting arrival of NOV technician to rectify various issues / problems with rig floor cyber control system. Operational Comments Test pump inoperable due to lack of spare parts. Operational Comments Awaiting delivery of saver subs for top drive. PERSONNEL DATA COMPANY COMPANY QTY HRS QTY HRS FURGO SERVICE SEA DRILL TAMBORITHA 16 CATERING 8 ADA MO47 CREW 5 TOTAL MARINE 35 NATIONAL OILWELL ABB VECTO BHI 2 **TOTAL PERSONNEL ON BOARD: 77** SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER

Printed: 25/03/2008 5:59:51PM

Page 2 of 2

WELL NAME				DATE
WASABI-1				09-02-2008
API#	24 HRS PROG	TMD	TVD	REPT NO
ОН	0.00 (m)	0.00 (m)	38.00 (m)	12

	MATERIAL	_S/CONSU	JMPT	ION
--	----------	----------	------	-----

ITEM	UNITS	USAGE	ON HAND	ITEM	UNITS	USAGE	ON HAND
BARITE BULK	MT		45	CEMENT	MT		40
BENTONITE	MT	8	28	BARACARB	MT		0
FUEL OIL	MT	4	267	WATER, POTABLE	MT		58
WATER, DRILLING	MT		9	BASE OIL	bbl		0
BRINE	bbl		0				

DECKLOG

MAX VDL	ACT VDL	AVG VDL	LEG PEN (BOW)	LEG PEN (PORT)	LEG PEN (S BOARD)		
			1.20	0.50	1.30		

MUD INVENTORY

ITEM	UNIT	USAGE	Day Cost (\$)	ON HAND

Printed: 25/03/2008 5:59:51PM

APACHE CORPORATION Page 1 of 2 **Daily Drilling Report WELL NAME** DATE WASABI-1 10-02-2008 API# 24 HRS PROG TMD TVD REPT NO 38.00 (m) 0.00 (m) 0.00 (m) OH 13 RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 1.58 (days) (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR **PBTMD** 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT STATE / PROV RIG PHONE NO REGION DISTRICT **RIG FAX NO** AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: 11,816,036 DHC: 628,872 DHC: DHC: 628,872 DCC: DCC: DCC: cwc. CWC: cwc: Others: Others: Others: TOTAL: 11,816,036 TOTAL: 628,872 TOTAL: 628,872 LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 38.00 (m) INC 0.00° AZM 0.00° (sg) CURRENT OPERATIONS: Continuing with 100% preloading of rig 24 HR SUMMARY: Towed rig to Wasabi-1 with Pacific Wrangler and Pacific Battler, pinned rig at Wasabi-1, confirmed and accepted heading and location. Jacked up rig to 1.5 meter air gap and comence preloading rig to 100%. 24 HR FORECAST: Complete 100% preload, hold preload for 6 hours, dump preload, jack up to drilling draft and skid out cantilever. **OPERATION SUMMARY**

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	21:00	21.00	R-MOB-DEM OB	MOB	PP		Rig in transit from Westernport to Wasabi-1 location.
			02				At 06:00, Heading 131' Longitude 146'08 South, Latitude 39' East, Speed 4 knots, total distance traveled 81 nautical miles. ETA at Wasabi 23:00 10 Feb 2008.
							At 18:00, Heading 27' Longitude 146'49.0 South, Latitude 39'11.3 East, Speed 5.5 knots, total distance traveled 115 nautical miles.
							At 21:00, Heading 119.5" Longitude 147'15.85 South, Latitude 38'39.32 East, total distance traveled 161 nautical miles
21:00	23:00	2.00	R-MOB-DEM OB	МОВ	PP		Start run in to Wasabi-1 1km from location, lower legs, soft pinned rig and confirmed and accepted rig postion.
							Provisional Rig Postion:
							(Position to be confirmed after preload is completed and rig jacked up to working
							height.) Latitude 38'29.18.1685 South
							Longitude 147'15.49.0843 East
							Rig Heading 119.51
							Rig postion is 15.27 meters ON A BEARING OF 185.55' T from intended location.
23:00	0:00	1.00		MOB	PP		Jacked up rig to 1.5 meter air gap and commenced 100% preload
			ОВ				

24.00 = Total Hours Today

06:00 UPDATE

0000-0600 00:00 - 06:00 - Continue with 100% preloading of rig.

Phase Data to 2400hrs, 10 Feb 2008:

Mob/Demob (P1) 09 Feb 2008 to 10 Feb 2008 38.00 1.583 0.0m

Printed: 25/03/2008 6:00:34PM

APACHE CORPORATION Page 2 of 2 **Daily Drilling Report** WELL NAME DATE WASABI-1 10-02-2008 TVD REPT NO API# 24 HRS PROG TMD ОН 0.00 (m) 0.00 (m) 38.00 (m) 13 PERSONNEL DATA COMPANY COMPANY QTY HRS QTY HRS TOTAL MARINE 35 SERVICE MO47 CREW 5 ADA NATIONAL OILWELL BHI 2 1 ABB VECTO TAMBORITHA 2 CATERING 8 SEA DRILL 16 FURGO TOTAL PERSONNEL ON BOARD: 77 SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION ITEM UNITS USAGE ON HAND ITEM UNITS USAGE ON HAND BARITE BULK МТ 45 CEMENT МТ 40 BENTONITE МТ 28 BARACARB MT 0 FUEL OIL WATER, POTABLE MT 10 257 МТ 43 15 WATER, DRILLING 9 BASE OIL bbl 0 MT BRINE bbl **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.20 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:00:34PM

Page 1 of 3

						J	ally D	/T 1111111;	g Kep	Ort							
WELL NAME															DAT	E	
WASABI-1															11-	02-2008	
API#		24 HRS	PROG		1	MD				1	ΓVD				REP	T NO	
ОН		0.00 (m)		c).00 (r	m)			3	38.00 (m)				14		
RIG NAME NO	<u></u>	FII	ELD NAI	ME			AUT	H TMD		PLANNED	DOW	DOL		DFS / KO		WATER DEPTH	_
WEST TRITON										15.98 (day	s)	2.58 (days)		(days)		27.00 (m)	
SPUD DATE	Rig Release		WELL	SUPERVIS	OR						OIM	•				PBTMD	
09-02-2008			BILL (OPENSHA	W / STEFAN	GHS	CHMIDT										
REGION			DISTR	RICT				STATE	/ PROV				RIG PI	HONE NO		RIG FAX NO	
AUSTRALIA			OFFSI	HORE				VICTOF	RIA								
AFE # 067 08E43			AF	FE COSTS					DAILY CO	STS			СПМГ	JLATIVE CO	STS		
DESCRIPTION:			DH	HC:	11,816,036				DHC:	426,466			DHC:	1,055,3	38		
			DO	CC:					DCC:				DCC:				
			CV	WC:					CWC:				CWC:				
			Ot	thers:					Others:				Others	s:			
			TC	OTAL:	11,816,036				TOTAL:	426,466			TOTA	L: 1,055,3	38		_
DEFAULT DATUM ROTARY TABLE /				LAST SA	FETY MEETIN	IG	BLOCK				FORMATIO	N			ВН	A HRS OF SERVIC	E
LAST SURVEY						LA	ST CSG S	HOE TES	ST (EMW)	LAST C	ASING		N	EXT CASING	;		
MD 38.00) (m) II	NC 0.00)°	AZM	0.00°	(s	g)										
CURRENT OPERAT	IONS: Jacking	up to oper	ational h	neight.	_						_	_		_		_	
A LID OLIMANA DV.	Drolood ria	to 600/ fo	ult final i	naraaaa in	water lavel in	tople 5	Coontinu	المانين المما	1000/ prole	adina Hali	d 1000/ prolo	ad					

24 HR SUMMARY: Preload rig to 60%, fault find increase in water level in tank 5C, continued with 100% preloading. Hold 100% preload.

24 HR FORECAST: Held 100% preload for 6 hours total, dump preload, jack up rig to operational height, skid out cantilever and attach and test service lines. Prepare to and

pick up drill pipe. Off load equipment fron Pacific Wrangler and offload bulkfrom Pacific Battler

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	8:00	8.00	R-MOB-DEM OB	МОВ	PP	l	Continue with 100% preloading of rig. Preloading stopped due to increase level in Drill water tank 5C (drill water tank). 55% preload achieved at this point.
8:00	11:30	3.50	R-MOB-DEM OB	МОВ	PN	RO	Investigate leak into Tank 5C, isolate lines to 5C.
11:30	21:30	10.00	R-MOB-DEM OB	МОВ	PP		Continued with 100% preload
21:30	0:00	2.50	R-MOB-DEM OB	МОВ	PP		Held preload.

24.00 = Total Hours Today

Printed: 25/03/2008 6:01:16PM

APACHE CORPORATION

Page 2 of 3

Daily Drilling Report

WELL NAME				DATE
WASABI-1				11-02-2008
API#	24 HRS PROG	TMD	TVD	REPT NO
OH	0.00 (m)	0.00 (m)	38.00 (m)	14

06:00 UPDATE

0000-0600

00:00 - 03:30 - Held 100% preload for total 6 hours. (6 hour period required due to leg settlement of

0.4m during preload) Final leg penetrations: Bow 1.95m, Port 1.65m, Starboard 1.65m.

03:30 - 06:00 - Dumped preload, release sea fastenings, held JSA jacked down to zero air gap to

confirm leg penetration, jacked up rig to operational height.

General Comments

00:00 TO 24:00 Hrs ON 11 Feb 2008

Preloading slow due to starboard deep well pump requiring repairs. Deep well pumps requires electrical cable re-attached. Operational Comments

Operational Comments List of rig items that require attention.

1. Dust extraction in mud mixing area require instillation.

'Copyright IDS 2007', 20071227, ADA_AU_drllg Page 1

Printed on 11 Feb 2008

- 2. Require more saver subs for top drive as only one on board and in use, no spares on board.
- 3. Bop test pump inoperable, unable to test Bops offline. No parts on board for test pump.
- 4. Bop spare parts are mininal, no spare ram blocks, bonnet bolts.
- 5. Bop test plug is of poor design, present design allows test plug and test joint to travel upwards if seals on test plug fail. Test stump requires thread machined into it to hold test joint.
- 6. Heat excahanger on mud pump cooling system not fitted, this are laying on floor in pump room, Modu inspection recommend instillation of these.
- 7. No hands free talk back for driller to crew, at present driller has to let go of control sticks and dial number and then speak into mircophone, crew menbers on rig floor are unable to hear what driller is saying. Contract states driller and derrickman to have hands free.
- 8. UHF radios require headphones and mirophones as stated in contract.
- 9. No mechanical mouse hole supplied, contract states mechanical mouse hole supplied for sizes's 2 7/8" to 10 3/4".
- 10. Derrick TV Camera System, only one camera fitted to derrick and one in shale shaker house, contract states two fitted in derrick and one at shakers with monitors located in the Drillers Cabin, Toolpushers and Company mans office no monitors in offices.
- 11. Fuel service pump#1 badly damaged, not in service, awaiting spare parts.

Operational Comments NOV IT tech arrived today to fault find and correct problems with NOV system.

PERSONNEL DATA

COMPANY	QTY	HRS	COMPANY	QTY	HRS
DRIL-QUIP	2		TOTAL MARINE	8	
SEA DRILL	15		APACHE	1	
FURGO	2		WEATHERFORD	2	
SCHLUMBERGER MWD/LWD	2		ADA	4	
SEA DRILL SERVICES	40		вні	4	
HALIBURTON	2		TAMBORITHA	2	

TOTAL PERSONNEL ON BOARD: 84

SUPPORT CRAFT

TYPE	REMARKS
PACIFIC WRANGLER	
MV BATTLER	

MATERIALS/CONSUMPTION

ITEM	UNITS	USAGE	ON HAND	ITEM	UNITS	USAGE	ON HAND
BARITE BULK	MT		45	CEMENT	MT		40
BENTONITE	MT		28	BARACARB	MT		0
FUEL OIL	MT	10	247	WATER, POTABLE	MT	43	83
WATER, DRILLING	MT		9	BASE OIL	bbl		0
BRINE	bbl		0				

DECKLOG

MAX VDL	ACT VDL	AVG VDL	LEG PEN (BOW)	LEG PEN (PORT)	LEG PEN (S BOARD)		
			1.20	0.50	1.30		

Printed: 25/03/2008 6:01:16PM

		A	PACHE CORPORATIO	N	Page 3 of
		ı	Daily Drilling Repor	t	·
VELL NAME VASABI-1					DATE 11-02-2008
PI#	24 HRS PROG	TMD		TVD	REPT NO
DH .	0.00 (m)	0.00		38.00 (m)	14
		'	MUD INVENTORY	'	'
ITE	М	UNIT	USAGE	Day Cost (\$)	ON HAND

Printed: 25/03/2008 6:01:16PM

Page 1 of 2

WELL NAME																DAT	Έ
WASABI-1																12-	02-2008
API#	24 HRS PROG T				TMD				TVI	D				REP	T NO		
ОН		0.00 (m) 0.0			0.00 (m	00 (m)			38.	.00 (m)				15			
RIG NAME NO	E NO FIELD NAME					AUT	H TMD		PLANNED	DO DO)W	DOL		DFS / KO		WATER DEPTH	
WEST TRITON										15.98 (da	ys)		3.58 (days)		(days)		27.00 (m)
SPUD DATE	Rig Release		WELL S	SUPERV	ISOR							OIM					PBTMD
09-02-2008			BILL O	PENSH	AW / STEFAN	G H SC	HMIDT										
REGION			DISTRI	СТ				STATE / I	PROV					RIG PH	ONE NO		RIG FAX NO
AUSTRALIA			OFFSH	ORE				VICTORI	Α								
AFE # 067 08E43			AFE	COST	3			[DAILY C	OSTS				сими	LATIVE CO	STS	
DESCRIPTION:			DHO	C:	11,816,036				DHC:	409,830				DHC:	1,465,1	168	
			DC	C:					DCC:					DCC:			
			cw	C:				C	CWC:					CWC:			
			Oth	ers:					Others:					Others	:		
			то	TAL:	11,816,036			1	TOTAL:	409,830				TOTAL	_: 1,465,1	168	
DEFAULT DATUM				LAST S	AFETY MEETII	NG	BLOCK				F	FORMATIO	N			BH.	A HRS OF SERVICE
ROTARY TABLE / 3	38.00 (m)																
LAST SURVEY						LAS	T CSG S	HOE TEST	(EMW)	LAST	CAS	ING		NE	XT CASING	3	
MD 38.00	(m) II	NC 0.00	0°	AZI	M 0.00°	(sg))										

CURRENT OPERATIONS: Picking up 5 1/2" drill pipe, mixing hi/vis mud and off loading Pacific Battler

24 HR SUMMARY: Held 100% preload for total 6 hours, dumped preload, checked leg penetrations, jacked up to operational height, skidded out cantilever, rigged up

texas deck and service lines, start mixing hi/vis mud and pick up 5 1/2" drill pipe

24 HR FORECAST: Pick up tubulars require for sectional TD, make up BHA, make up and rack back well head and running tool, mix hi/vis mud, off load equipment from

Pacific Wrangler and spud well.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	3:30	3.50	R-MOB-DEM OB	МОВ	PP	1	Held 100% preload for total 6 hours. (6 hour period required due to leg settlement of 0.4m during preload)
3:30	5:00	1.50	R-MOB-DEM OB	MOB	PP		Dumped preload.
5:00	6:30	1.50	R-MOB-DEM OB	MOB	PP		Held JSA and jacked down to zero air gap confirm leg penetrations and jacked up to 14.6 meter air gap. Final leg penetrations: Bow 1.95m, Port 1.65m, Starboard 1.65m.
6:30	9:00	2.50	R-MOB-DEM OB	МОВ	PP		Held JSA and skid cantilever out to 15ft mark.
9:00	11:00	2.00	R-MOB-DEM OB	MOB	PP		Rigged up texas deck for drilling operations.
11:00	12:00	1.00	R-MOB-DEM OB	МОВ	PP		Continued to skid out cantilever to 21ft mark.
12:00	13:00	1.00	R-MOB-DEM OB	МОВ	PP		Held JSA, installed gumbo hose and secure Texas deck.
13:00	14:00	1.00	R-MOB-DEM OB	МОВ	PP		Continued to skid out cantilever to drilling position.
14:00	16:00	2.00	R-MOB-DEM OB	МОВ	PP		Held JSA and install stairway to Texas deck from main deck
16:00	18:30	2.50	R-MOB-DEM OB	МОВ	PP		Held JSA lowered CTU and secure same on Texas deck.
18:30	22:00	3.50	R-MOB-DEM OB	МОВ	PP		Held JSA and installed service lines and flowline
22:00	8:25		S-DRL	DPIPE	PP		Held JSA and picked up 90 meters 5 1/2" drill pipe.

22.00 = Total Hours Today

Printed: 25/03/2008 6:02:22PM

Page 2 of 2

WELL NAME DATE							
WASABI-1							
API#	24 HRS PROG	TMD	TVD	REPT NO			
ОН	0.00 (m)	0.00 (m)	38.00 (m)	15			

06:00 UPDATE

0000-0600 00:00 - 02:30 - Pick up and make up 5 1/2" drill pipe, continue mixing hi/vis mud. Alarm for draworks activated.

02:30 - 03:00 - NOV fault find cause of alarm, checked draworks OK.

03:00 - 04:30 - Continue picking up 5 1/2" drill pipe.

04:30 - 06:00 - NOV IT fault finding alarm on draworks electrical system, drillers screen frozen, reset drillers screen

General Comments

00:00 TO 24:00 Hrs ON 12 Feb 2008

Operational Comments Preloading slow due to starboard deep well pump requiring repairs. Deep well pumps requires electrical cable re-attached.

Operational Comments Final rig position after jacking up to operational height.

Position is 15.01 meters @ 182.53' T from intended location.

Latitude 38'29.18.1620 South Longitude 147'15.49.1179 East

Operational Comments NOV IT tech corrected three faults with system today.

Operational Comments Pacific Battler stopped transferring of cement at 23.50 due to weather conditions, retieved bulk hose and sent vessel to anchor.

PERSONNEL DATA

COMPANY	QTY	HRS	COMPANY	QTY	HRS
ADA	4		SCHLUMBERGER MWD/LWD	2	
SEA DRILL SERVICES	38		MO47 CREW	5	
SEA DRILL	17		FURGO	2	
HALIBURTON	4		вні	4	
CATERING	9		DRIL-QUIP	2	
TAMBORITHA	2		WEATHERFORD	4	

TOTAL PERSONNEL ON BOARD: 93

SUPPORT CRAFT

TYPE	REMARKS
PACIFIC WRANGLER	
MV BATTLER	
HELICOPTER	

MATERIALS/CONSUMPTION

ITEM	UNITS	USAGE	ON HAND	ITEM	UNITS	USAGE	ON HAND
BARITE BULK	MT		126	CEMENT	MT		130
BENTONITE	MT	5	61	BARACARB	MT		0
FUEL OIL	MT	19	246	WATER, POTABLE	MT	31	176
WATER, DRILLING	MT	20	228	BASE OIL	bbl		0
BRINE	bbl		0				

WEATHER

TIME	SWELL HT/DIR/PER	WAVE HT/DIR/PER	WIND SPEED/DIR	GUST SPEED/DIR	TEMP
11:32	0.50/ /12	11	1	/210.00	

DECKLOG

MAX VDL	ACT VDL	AVG VDL	LEG PEN (BOW)	LEG PEN (PORT)	LEG PEN (S BOARD)
			1.20	0.50	1.30

MUD INVENTORY

ITFM	UNIT	USAGE	Day Cost (\$)	ON HAND
11-111				

Printed: 25/03/2008 6:02:22PM

Page 1 of 2

WELL NAME DATE WASABI-1 13-02-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) OH 0.00(m)38.00 (m) RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 4.58 (days) 27.00 (m) (days) SPUD DATE Rig Release WELL SUPERVISOR **PBTMD** 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT RIG PHONE NO DISTRICT STATE / PROV **RIG FAX NO** REGION AUSTRALIA **OFFSHORE** VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: DHC: 11,816,036 DHC: 425.656 1,890,824 DCC: DCC: DCC: CWC: cwc. cwc. Others: Others: Others: TOTAL: 11,816,036 TOTAL: 425,656 TOTAL: 1,890,824 LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 38.00 (m) INC 0.00° AZM 0.00° (sg) CURRENT OPERATIONS: Picking up 5 1/2" heavy weight drill pipe.

Picked up 33 stands 5 1/2" drill pipe, fault find alarms on draworks "C" motor, mix spud mud and install work platform for CTU on Texas deck. 24 HR SUMMARY:

24 HR FORECAST: Pick up 5 1/2" heavy weight drill pipe. Make up BHA, spud well, drill 26" to sectional TD, Pooh, Rih with 16" BHA and drill ahead.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY					
0:00	2:30	2.50	S-DRL	DPIPE	PP		Pick up and make up 5 1/2" drill pipe, continue mixing hi/vis mud. Alarm for draworks activated.					
2:30	3:00	0.50	S-DRL	DPIPE	PN	DW	NOV fault find cause of alarm, checked draworks OK.					
3:00	4:30	1.50	S-DRL	DPIPE	PP		Continue picking up 5 1/2" drill pipe.					
4:30	6:00	1.50	S-DRL	DPIPE	PN	DW	NOV IT fault finding alarm on draworks electrical system, drillers screen frozen, reset drillers screen.					
6:00	16:00	10.00	S-DRL	DPIPE	PP		Continue picking up 5 1/2" drill pipe. Pick up total 33 stands 5 1/2" drill pipe.					
16:00	20:00	4.00	S-DRL	RIGSER	PP		Held JSA and lower and install work platforn for CTU on Texas deck, while trouble shooting electrical fault with draworks "C" motor.					
20:00	22:00	2.00	S-DRL	RIGSER	PN	DW	Change out encoder on draworks "C" motor, motor still showing alarm. Disable and isolate draworks "C" motor.					
22:00	23:30	1.50	S-DRL	RIGSER	PP		Pick up and make up diverter running tool, pup joint and 2 joints drill pipe.					
23:30	0:00	0.50	S-DRL	RIGSER	PP		Engage diverter running tool into diverter and confirm with 4k overpull.					

24.00 = Total Hours Today

06:00 UPDATE

0000-0600

00:00 - 00:30 - Held JSA, pull diverter and rack back in derrick.

00:30 - 02:30 - Prepare drill quip well head and running tool and rig up 20" handling equipment.

02:30 - 05:30 - Pick up and makeup 18 5/8" wellhead to running tool and landing string, lower well head into CTU to confirm fit, all OK. POOH and rack

back 18 5/8" well head and running tool and rig down handling equipment. Measurement RT to top CTU 21.03 meters

05:30 - 06:00 - Pick up and make up 5 1/2" heavy weight drill pipe.

General Comments

00:00 TO 24:00 Hrs ON 13 Feb 2008

Operational Comments Pacific Wrangler attempted to come along side to discharge cargo, unable to hold station due to weather conditions, waiting for weather to ease to come along and discharge cargo.

Operational Comments Draworks encoder faulty, isolated draworks "C". No spare encoder on rig.

Printed: 25/03/2008 6:02:59PM

APACHE CORPORATION Page 2 of 2 **Daily Drilling Report WELL NAME** DATE WASABI-1 13-02-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) ОН 0.00 (m) 38.00 (m) 16 PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS DRIL-QUIP TAMBORITHA 2 SCHLUMBERGER MWD/LWD CATERING 9 ADA FURGO HALIBURTON 2 SEA DRILL 17 WEATHERFORD MO47 CREW SEA DRILL SERVICES 5 TOTAL PERSONNEL ON BOARD: 93 SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION UNITS ITEM UNITS USAGE ON HAND ITEM USAGE ON HAND BARITE BULK МТ 126 CEMENT МТ 130 BENTONITE 38 BARACARB MT 0 MT 23 FUEL OIL WATER, POTABLE MT 8 334 МТ 29 147 WATER, DRILLING 300 BASE OIL bbl MT 30 0 BRINE bbl **WEATHER** TIME **SWELL** WAVE WIND SPEED/DIR **GUST SPEED/DIR TEMP** HT/DIR/PER HT/DIR/PER 0.50//12 /210.00 00:00 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (S BOARD) LEG PEN (PORT) 1.20 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:02:59PM

Page 1 of 3

WELL NAME DATE WASABI-1 14-02-2008 API# 24 HRS PROG TMD TVD REPT NO 135.00 (m) 135.00 (m) OH 135.00 (m) RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 5.58 (days) 0.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR **PBTMD** 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT STATE / PROV RIG PHONE NO REGION DISTRICT **RIG FAX NO** AUSTRALIA **OFFSHORE** VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 2,561,384 DHC: 11,816,036 DHC: 670,560 DCC: DCC: DCC: CWC: cwc. cwc. Others: Others: Others: TOTAL: 670,560 TOTAL 11,816,036 TOTAL: 2,561,384 LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 38.00 (m) INC 0.00° AZM 0.00° (sg)

CURRENT OPERATIONS: Drilling ahead 26" hole to sectional TD at 135 meters.

24 HR SUMMARY: Pick up and rack back diverter, make up 20" casing running tool and well head, dummy run well head and checked land out in CTU, racked back well head

and running tool. Pick up and make up BHA. Spud Wasabi-1 @ 23.00 hours.

24 HR FORECAST: Drilli 26" hole to sectional TD @ 135 meters, displace to mud, POOH, make up 16" BHA, RIH and drill 16" hole.

OPERATION SUMMARY

L						OI LIVII	TOTA COMMINATOR
From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	0:30	0.50	S-NUP	WLHEAD	PP		Held JSA, pull diverter and rack back in derrick.
0:30	2:30	2.00	S-NUP	WLHEAD	PP		Prepare drill quip well head and running tool and rig up 20" handling equipment
2:30	5:30	3.00	S-NUP	WLHEAD	PP		Pick up and makeup 18 5/8" wellhead to running tool and landing string, lower well head into CTU to confirm fit, all OK. POOH and rack back 18 5/8" well head and running tool and rig down handling equipment. Measurement RT to top CTU 21.03 meters.
5:30	8:30	3.00	S-DRL	BHA	PP		Held JSA, picked up and make up 5 1/2" heavy weight drill pipe. Total 5 stands.
8:30	12:00	3.50	S-DRL	BHA	PN	RO	Held JSA and install saver sub onto top drive.
12:00	14:30	2.50	S-DRL	BHA	PP		Held JSA and pick up 9 1/2" and 8" drill collars.
14:30	15:00	0.50	S-DRL	BHA	PN	RO	Nov fault find trouble with pipe handler.
15:00	16:00	1.00	S-DRL	BHA	PP		Prepare to pick up 26" BHA.
16:00	19:30	3.50	S-DRL	вна	PP		Make up 26" BHA, picked up 2 x 9-1/2" drill collars, 26" bit, 16" stab. Near miss incident - Driller inadvertently released drawworks brake while leaning forward to access drill floor PA system. Travelling bock moved down 1 ft before brake was applied.
19:30	20:00	0.50	S-DRL	SFTY	PN	RO	Time out for safety,OIM, DSV held safety meeting with crews and drillers on rig floor.
20:00	23:00	3.00	S-DRL	ВНА	PP		Continued handling BHA and RIH. Tagged seabed at 66 meters.
23:00	0:00	1.00	S-DRL	DRLCPA	PP		Drill 26" hole from 66m - 69m
				·			

24.00 = Total Hours Today

06:00 UPDATE

0000-0600

00:00 - 02:00 - Drill 26" hole from 69 meters to 91 meters

02:00 - 03:00 - When going to make connection drillers screen frooze, unable to move travelling blocks, circulate @ 80 spm at 400 gpm while NOV IT

and electrian trouble shoot system. PLC not a communicating with Cyber chair, reboot system x 2 times.

03:00 - 06:00 - Drill 26" hole 91 meters to 135 meters. Pump 75 bbls hi/vis sweep prior making connections.

General Comments

00:00 TO 24:00 Hrs ON 14 Feb 2008

Operational Comments ROV checked spud cans on Port and Starbord legs.

Operational Comments Note: Adjustment in fuel figures from metric ton to cubic meters, fuel figures reconcilled at 24.00hrs to reflect usage in cubic

meters.

Printed: 25/03/2008 6:03:40PM

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 14-02-2008 API# 24 HRS PROG TMD TVD REPT NO 135.00 (m) 135.00 (m) OH 17 135.00 (m) **BIT DATA** BIT / RUN SIZE MANUFACTURER SERIAL JETS OR TFA **DEPTH IN / DATE IN** I-O-D-L-B-G-O-R TYPE (mm) NO 1/1 660.4 ROCK XR+C MZ1716 4x18 66.00 / 14-02-2008 1-1-WT-A-1-I-NO-TD **BIT OPERATIONS** BIT / RUN WOB RPM **FLOW PRESS** P BIT HRS 24 Hr PROG 24 HR ROP **CUM HRS CUM PROG CUM ROP** 1/1 4,012.54 6653 1.00 3.00 3.0 1.00 3.00 3.0 **MOTOR OUTPUT** ROTARY CURRENT: TOTAL RPM: RPG: MUD PROPERTIES LCM: MUD TYPE: pH/Pm VIS PV/YP **GELS** WL/HTHP FC/T.SOL OIL/WAT % SAND/MBT Pf/Mf CI Ca H2S KCL LGS (s/l) (cp)/(Pa) (Pa) (ml/30 min) (mm)/(%) (%) (%)/(sg) (mL) (mL) (ppm) (ppm) (%) (ppm) (%) PP DAILY COST 0 **CUM COST** 0 %OIL JAR S/N JAR HRS BIT вна **BHA / HOLE CONDITIONS BHA WT BELOW JARS** STRING WT UP STRING WT DN STRING WT ROT TORQUE/UNITS **BHA LENGTH** (tonne) (tonne) (tonne) (tonne) 4 (kN-m) 62.95 (m) ITEM DESCRIPTION NO JTS LENGTH O.D I.D **CONN SIZE** CONN TYPE Cross Over 0 1.20 241.30 76 20 Drill Collar 28.34 215.90 69.85 0 0 215.90 69.85 1.22 Crossover Drill Collar 0 9.44 241.30 76.20 Welded Blade Stabilizer 0 2.27 406.40 76.20 Drill Collar 0 18.59 241.30 76.20 Bit Sub 0 1.23 Tri-Cone Bit 0 0.66 MUD PUMPS/HYDRAULICS **SPR** STROKE SPM LINER FLOW SPP: SPM PPSR # 1 #2 #3 HP: 0.130 (kW/cm²) PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS **EXPRO** BHI CATERING 9 ADA SEA DRILL SERVICES 41 HALIBURTON (BAROID) WEATHERFORD **HALIBURTON** SEA DRILL 15 SCHLUMBERGER (WL) TAMBORITHA 2 RIGCOOL 2 APACHE DRIL-QUIP SCHLUMBERGER MWD/LWD 2 **TOTAL PERSONNEL ON BOARD: 99** SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER HELICOPTER

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report** WELL NAME DATE WASABI-1 14-02-2008 API# 24 HRS PROG REPT NO TMD TVD 135.00 (m) ОН 135.00 (m) 135.00 (m) 17 MATERIALS/CONSUMPTION USAGE ON HAND USAGE ON HAND ITEM UNITS ITEM UNITS CEMENT BARITE BULK MT 126 MT 130 BENTONITE MT 36 BARACARB МТ 0 WATER, POTABLE FUEL OIL MT 10 685 MT 28 269 WATER, DRILLING 322 BASE OIL bbl 0 BRINE 0 bbl **WEATHER** SWELL WAVE WIND SPEED/DIR **GUST SPEED/DIR** TEMP HT/DIR/PER HT/DIR/PER 00:00 0.50//12 /330.00 // / **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:03:40PM

Page 1 of 3

WELL NAME DATE WASABI-1 15-02-2008 API# 24 HRS PROG TMD TVD REPT NO 22.00 (m) 157.00 (m) 157.00 (m) OH 18 RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 6.58 (days) 1.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR PBTMD 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT STATE / PROV RIG PHONE NO RIG FAX NO REGION DISTRICT AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 11,816,036 DHC: 3,241,456 DHC: 680,072 DCC: DCC: DCC: cwc: cwc. CWC: Others: Others: Others: TOTAL: 11,816,036 TOTAL: 680,072 TOTAL: 3,241,456 LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 38.00 (m) INC AZM 0.00° (sg)

CURRENT OPERATIONS: Drilling 16" hole at 359m.

24 HR SUMMARY: Drill 26' hole to TD at 135m.Pump/ spot hi vis in hole and trip out for BHA change.

Pick up new 16" bit and logging tools and run back to sea bed. work bit into old hole and run to bottom of 26" hole section and drill 16" hole.

24 HR FORECAST: Continue to drill 16" hole to casing point at

911m.

Pump hi vis sweep and circulate hole clean prior to displacing to a 9.6ppg mud and pulling out of

hole to run 20" X 13-3/8" casing.

OPERAT	ΓΙΟN	SUMN	/IAR

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	2:00	2.00	S-DRL	DRLG	PP		Drill 26" hole from 69 meters to 91 meters
2:00	3:00	1.00	S-DRL	DRLG	PN	RO	When going to make connection drillers screen frooze, unable to move travelling blocks, circulate @ 80 spm at 400 gpm while NOV IT and electrian trouble shoot system. PLC not a communicating with Cyber chair, reboot system x 2 times.
3:00	6:00	3.00	S-DRL	DRLG	PP		Drill 26" hole 91 meters to 135 meters. Pump 75 bbls hi/vis sweep prior making connections.
6:00	6:30	0.50	S-DRL	CIRC	PP		Displace hole top 150bbls of Hi Vis mud.
6:30	10:00	3.50	S-DRL	TRIPBIT	PP		Pull out of hole from 135m.
10:00	10:30	0.50	S-DRL	ВНА	PP		Break and lay out 26' bit. Make up 16" bit. Run in hole to 35m.
10:30	11:00	0.50	S-DRL	ВНА	PP		BHI and Schlumberger calibrate draworks for depth tracking operations.
11:00	12:00	1.00	S-DRL	ВНА	PP		Pick up and make up Schlumberger Sonic / MWD collars.
12:00	16:00	4.00	S-DRL	вна	PP		Continue to make up 16" BHA and run in hole and tag seabed at 66m.
16:00	20:30	4.50	S-DRL	TRIPBIT	PN		Unable to re-enter 26" hole at seabed. ROV unable to make visual contact in strong current. Pull ROV. Make more blind attempts to re-enter hole. No go. Jump ROV at slack water, confirm hole proximity. pull ROV and work string into 26" hole.
20:30	22:00	1.50	S-DRL	TRIPBIT	PP		Continue to run in hole from 66m to 129m.
22:00	22:30	0.50	S-DRL	TRIPBIT	PP		Make up top drive and perform a shallow test on Schlumberger MWD tools. (585 GPM / 400psi.)
22:30	23:00	0.50	S-DRL	TRIPBIT	PP		Wash down from 129m and tag bottom at 135m. Pick up and establish drilling paramaters.
23:00	0:00	1.00	S-DRL	DRLG	PP		Drill 16" hole from 135m to 157m; pump hi vis sweeps at connections. Survey each connection.

24.00 = Total Hours Today

06:00 UPDATE

0000-0600 00:00 - 06:00 - Drill 16" hole 157 meters to 359 meters. Pump sweeps prior making connections.

Printed: 25/03/2008 6:04:37PM

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 15-02-2008 API# 24 HRS PROG TMD TVD REPT NO 22.00 (m) 157.00 (m) ОН 157.00 (m) 18 **BIT DATA** BIT / RUN SIZE MANUFACTURER SERIAL JETS OR TFA **DEPTH IN / DATE IN** I-O-D-L-B-G-O-R (mm) NO SSD7131 135.00 / 15-02-2008 406.4 REED T11CDH 1369484 2/1 1x16, 3x28 135.00 / 15-02-2008 1-2-WT-A-E-I-NO-TD 660.4 ROCK XR+C MZ1716 4x18, 4x18 66.00 / 14-02-2008 1-1-WT-A-1-I-NO-TD 1/1 **BIT OPERATIONS** BIT / RUN FLOW PRESS P BIT HRS 24 Hr PROG 24 HR ROP **CUM HRS CUM PROG CUM ROP** WOB RPM 2/1 60/80 3,975.00 11,100 1533 1.00 22.00 22.0 1.00 4,500.00 16,500 8337 1/1 5/5 80/80 3.00 44.00 14.7 6.00 69.00 11.5 MOTOR OUTPUT ROTARY CURRENT: 80 TOTAL RPM: RPG: LCM: **MUD PROPERTIES** MUD TYPE: VIS PV/YP GFLS WI /HTHP FC/T.SOL OIL/WAT % SAND/MBT pH/Pm Pf/Mf Ca H2S KCI LGS (s/l) (cp)/(Pa) (Pa) (ml/30 min) (mm)/(%) (%)/(sg) (mL) (mL) (%) (%) (%) (ppm) (ppm) (ppm) DAILY COST **CUM COST** 0 %OIL 09147 ВНА 2 JAR S/N **BHA / HOLE CONDITIONS** JAR HRS BIT **BHA WT BELOW JARS** STRING WT UP STRING WT DN STRING WT ROT TORQUE/UNITS **BHA LENGTH** 130.67 (m) (kN-m) (tonne) (tonne) (tonne) (tonne) ITEM DESCRIPTION NO JTS LENGTH O.D I.D CONN SIZE CONN TYPE Cross Over 0 1.22 215.90 73.15 Drill Collar 0 18.86 203.20 76.20 Drilling Jar 0 10.17 203.20 76.20 Drill Collar 47.24 209.55 0 69.85 Logging While Drilling 0 209 55 8 23 MWD Tool 0 8.49 209.55 Cross Over 0 0.48 241.30 76.20 0 0.69 228.60 Cross Over Integral Blade Stabilizer 0 2.73 230.12 69.85 Drill Collar 0 9.44 241.30 76.20 Integral Blade Stabilizer 0 2.64 242.82 76.20 Drill Collar 0 241.30 76.20 18.59 Bit Sub 0 1.23 Tri-Cone Bit 0 0.66 76.20 MUD PUMPS/HYDRAULICS SPR LINER STROKE SPM FLOW SPP: 11,100 (kPa) SPM **PPSR** # 1 #2 #3 HP: 0.078 (kW/cm²)

Printed: 25/03/2008 6:04:37PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report** WELL NAME DATE WASABI-1 15-02-2008 TVD API# 24 HRS PROG TMD REPT NO 22.00 (m) ОН 157.00 (m) 157.00 (m) 18 PERSONNEL DATA COMPANY COMPANY QTY HRS QTY HRS WEATHERFORD TAMBORITHA CATERING 9 HALIBURTON (BAROID) ADA 5 **EXPRO** APACHE HALIBURTON 4 вні 4 SCHLUMBERGER MWD/LWD SEA DRILL SERVICES RIGCOOL 41 SEA DRILL 15 DRIL-QUIP SCHLUMBERGER (WL) TOTAL PERSONNEL ON BOARD: 99 SUPPORT CRAFT REMARKS TYPE PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION ITEM UNITS USAGE ON HAND UNITS USAGE ON HAND **WEATHER** TIME SWELL WAVE WIND SPEED/DIR GUST SPEED/DIR TEMP HT/DIR/PER HT/DIR/PER 00:00 0.50//12 // /330.00 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 0.50 1.30 MUD INVENTORY USAGE ITEM UNIT Day Cost (\$) ON HAND

Printed: 25/03/2008 6:04:37PM

APACHE CORPORATION Page 1 of 3 **Daily Drilling Report** WELL NAME DATE WASABI-1 16-02-2008 API# 24 HRS PROG TMD TVD REPT NO 688.00 (m) 845.00 (m) OH 844.98 (m) 19 PLANNED DOW RIG NAME NO FIELD NAME AUTH TMD DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 7.58 (days) 2.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR **PBTMD** 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT DISTRICT STATE / PROV **RIG PHONE NO RIG FAX NO** REGION AUSTRALIA **OFFSHORE** VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: DHC: 11,816,036 DHC: 501,621 3.743.077 DCC: DCC: DCC: cwc. CWC: cwc. Others: Others: Others: TOTAL: TOTAL 11,816,036 501,621 TOTAL: 3,743,077 DEFAULT DATUM / ELEVATION LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 494.63 (m) INC 0.28° AZM 191.25° (sg) CURRENT OPERATIONS: Displacing well to 1.15sg gel mud. 24 HR SUMMARY: Drilling 16" hole from 157m to 845m. Survey as necessary and pump 75bbl sweeps per stand. 24 HR FORECAST: Pull out of hole with 16" BHA and rig up and run 13-3/8" casing. **OPERATION SUMMARY** NPT CODES HRS **ACTIVITY SUMMARY** From Tο Phase Operation PT/NPT 0:00 9:30 9.50 S-DRL DRLG PP Drill 16" hole from 157m to 506m; Pump 75bbl sweeps at connections. Survey as necessary. 9:30 10:30 1.00 S-DRL CIRC PΝ RO Circulate. Hold JSA with crew, loosen bolts on the top drive bale positioning cylinder clamps, Extend the cylinders to position the clamps and tighten and secure the bolts 10:30 1.50 S-DRL DRLG PΡ Drill 16" hole from 506m to 565m. Pump 75bbl sweeps before connections and survey. S-DRI CIRC 12:00 12:30 0.50 ΡN RΩ Circulate and rotate pipe (655gpm / 55rpm) off bottom while electrician repaired drillers 'joy stick' on the cyber-chair. DRLG 12:30 0.00 11.50 S-DRI PP Drill 16" hole from 565m to 845m, pumping 75bbls hi-vis sweeps and taking surveys at each connection 24.00 = Total Hours Today **06:00 UPDATE** 0000 0200 2.00 862.0m Drill 16" hole from 845m to 862m. 0200 0230 0.50 862.0m Pump 200bbl Hi Vis sweep. 0230 0400 1.50 862.0m Circulate.Schlumberger send down link to tool, and await response; Pump up survey to check tool settings. No sucess. Attempt same again. Failed. Programmed drilling

0000-0600

systems too slow for downlink.

0400 0500 1.00 862.0m Back ream / repeat log 2 stands from 862m to 800m as per programme.

0500 0600 1.00 862.0m Pump Hi Vis sweep; Displace hole to 1.15sg gel mud.

							E	BIT DA	TA								
BIT /	RUN	SIZE (mm)	ı	MANUFAC	TURER	TY	PE :	SERIAL NO	JET	S OR TFA		DEPTH IN / DATE IN			I-O-D-L-B-G-O-R		0-R
	0.44						S	SD7131					135.00 / 15-02-2008				
2 /	2 / 1 406.4 REED				T110	CDH ^	1369484	1x	1x16, 3x28 135.00 / 15-			/ 15-02-2	8008	1-2-\	NT-A-E-I-	NO-TD	
	BIT OPERATIONS																
BIT	RUN	WOB		RPM	FLOW	PRES	SS P	BIT	HRS	24 Hr PROG	24 HR	24 HR ROP CUM HE		I HRS	CUM PR	og (CUM ROP
:	2/1	3/10		60/100	4,012.5	13,79	90 1	1563	12.00	12.00 688.00 57.3			13	3.00	710.00)	54.6
LCM:						MU	JD PRO	PERTI	ES			MUI	D TYPE:				
VIS	PV/YP	GEI		WL/HT		C/T.SOL	OIL/W	AT S	% SAND/MBT	pH/Pm	Pf/M	f	CI	Ca	H2S	KCL	LGS
(s/l)	(s/l) (cp)/(Pa) (Pa) (ml/30 min) (mn					nm) / (%)	(%))	(%)/(sg)	(mL)	(mL)	(ppm)	(ppm)	(%)	(ppm)	(%)
							PP		l DA	ILY COST	0	CUM	COST	0	 %C)II	
										E1 0001	٠	COIVI		-	///	/'L	

Printed: 25/03/2008 6:05:17PM

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 16-02-2008 API# 24 HRS PROG TMD TVD REPT NO 688.00 (m) 845.00 (m) 844.98 (m) OH 19 09147 ВНА JAR S/N **BHA / HOLE CONDITIONS** JAR HRS BIT BHA WT BELOW JARS STRING WT DN STRING WT ROT TORQUE/UNITS BHA LENGTH STRING WT UP (tonne) (tonne) (tonne) (tonne) (kN-m) 130.67 (m) ITEM DESCRIPTION NO JTS LENGTH O.D I.D CONN SIZE CONN TYPE Cross Over 0 1.22 215.90 73.15 Drill Collar 0 18.86 203.20 76.20 Drilling Jar 0 10.17 203.20 76.20 Drill Collar 0 47.24 209.55 69.85 Logging While Drilling 0 8.23 209.55 MWD Tool 0 8 49 209 55 Cross Over O 0.48 241.30 76 20 Cross Over 0 0.69 228.60 69.85 Integral Blade Stabilizer 0 2.73 230.12 69.85 Drill Collar 0 9.44 241.30 76.20 Integral Blade Stabilizer 0 2.64 242.82 76.20 Drill Collar 0 18.59 241.30 76.20 Bit Sub 0 1.23 Tri-Cone Bit 0 0.66 76.20 **SURVEY** V.SECT TYPE TVD +E/-W MD DEG ΑZI +N/-S D.L (m) (m) (°/30m) (°) (°) (m) (m) (m) NORMAL 115.45 0.14 336.08 115.45 0.09 -0.04 0.09 0.05 NORMAL 142.86 0.18 296.21 142.86 0.14 -0.09 0.14 0.13 303.79 NORMAL 170.39 0.09 170.39 0.17 -0.15 0.17 0.10 130.71 NORMAL 201 95 0.09 201 95 0.16 -0.15 0.16 0.17 NORMAL 229.75 0.10 88.12 229.75 0.15 -0.11 0.15 0.08 NORMAL 494 63 0.28 191.25 494 63 -0.48 0.00 -0.48 0.04 MUD PUMPS/HYDRAULICS SPR STROKE SPM LINER **FLOW** SPM PPSR SPP: 13,790 (kPa) #2 HP: 0.081 (kW/cm²) PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS APACHE 4 ADA BHI 4 SEA DRILL 15 HALIBURTON (BAROID) SCHLUMBERGER (WL) 3 WEATHERFORD SEA DRILL SERVICES 41 4 DRIL-QUIP 2 TAMBORITHA **EXPRO** RIGCOOL HALIBURTON 4 CATERING SCHLUMBERGER MWD/LWD **TOTAL PERSONNEL ON BOARD: 99** SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report** WELL NAME DATE WASABI-1 16-02-2008 TMD API# 24 HRS PROG REPT NO TVD 688.00 (m) 844.98 (m) ОН 845.00 (m) 19 MATERIALS/CONSUMPTION USAGE ON HAND ITEM USAGE ON HAND ITEM UNITS UNITS WEATHER GUST SPEED/DIR TIME SWELL WAVE WIND SPEED/DIR TEMP HT/DIR/PER HT/DIR/PER 00:00 0.50//12 // /330.00 **DECKLOG** LEG PEN (BOW) LEG PEN (S BOARD) MAX VDL ACT VDL AVG VDL LEG PEN (PORT) 1.20 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE ON HAND Day Cost (\$)

Printed: 25/03/2008 6:05:17PM

APACHE CORPORATION

Page 1 of 3

Daily Drilling Report

WELL NAME									D	ATE
WASABI-1									1	7-02-2008
API# 2	4 HRS PROG	TN	/ID			TVD			R	EPT NO
OH 1	17.00 (m)	86	2.00 (m)			861.98 (m)			2	0
RIG NAME NO	FIELD NAM	E	AL	JTH TMD	PLANNE	D DOW	DOL		DFS / KO	WATER DEPTH
WEST TRITON					15.98 (da	ays)	8.58 (days)		3.04 (days)	27.00 (m)
SPUD DATE Rig Release	WELL S	SUPERVISOR				OIM				PBTMD
09-02-2008	BILL O	PENSHAW / STEFAN G	H SCHMIDT	Γ						
REGION	DISTRI	СТ		STATE / PROV				RIG PHO	NE NO	RIG FAX NO
AUSTRALIA	OFFSH	ORE		VICTORIA						
AFE # 067 08E43	AFI	E COSTS		DAILY	COSTS			CUMUL	ATIVE COST	s
DESCRIPTION:	DH	C: 11,816,036		DHC:	501,621			DHC:	4,244,698	;
	DC	C:		DCC:				DCC:		
	cw	C:		cwc:				CWC:		
	Oth	ers:		Others:				Others:		
	то	TAL: 11,816,036		TOTAL	501,621			TOTAL:	4,244,698	<u> </u>
DEFAULT DATUM / ELEVATION		LAST SAFETY MEETING	BLOCK	(FORMATIO	ON			BHA HRS OF SERVICE
ROTARY TABLE / 38.00 (m)										
LAST SURVEY			LAST CSG	SHOE TEST (EMW) LAST	CASING		NEX	CT CASING	
MD 886.60 (m) INC	0.20°	AZM 232.91°	(sg)							

CURRENT OPERATIONS: Picking up and running in hole with 16" BHA to

24 HR SUMMARY: Drill 16" hole to casing point at 862m.

Pump Hi-Vis sweep and circulate hole clean.

Pull a 2 stand sonic calibration wiper trip fm 862m to 800m. Pump a Hi-Vis sweep and displace hole to 9.6ppg gel mud. Pull out of hole; Make repairs on TDS pipe handler.

24 HR FORECAST: Pick up slick 16" BHA and RIH and ream past

bridge at 139m, pump hi vis sweep at +/- 150m. Run to bottom at 862meters and pump 200bbls

9.6ppg mud.

Pull out of hole and rig up and re-run 13-3/8" \boldsymbol{x}

20" casing.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	2:00	2.00	S-DRL	DRLG	PP		Drill 16" hole from 845m to 862m.
2:00	2:30	0.50	S-DRL	CIRC	PP		Pump 200bbl Hi Vis sweep while working pipe.
2:30	4:00	1.50	S-DRL	CIRC	PN		Circulate.Schlumberger send down link to tool, and await response; Pump up survey to check tool settings. No sucess. Attempt same again.Failed. Programmed drilling systems too slow for downlink . P4 P E5 0400 0500 1.00 862.0m Back ream / repeat log 2 stands from
4:00	5:00	1.00	S-DRL	RMCLN	PN	MW	Back ream / repeat log 2 stands from 862m to 800m as per programme.
5:00	5:30	0.50	S-DRL	CIRRUN	PP		Pump 300bbls Hi Vis sweep
5:30	6:30	1.00	S-DRL	CIRRUN	PP		Displace hole to 1.15sg gel mud.
6:30	9:00	2.50	S-DRL	TRIPBIT	PP		Pull out of hole from 862m to 128m
9:00	10:30	1.50	S-DRL	TRIPBIT	PN	TD	Top drive pipe handler failed to allow rotation. trouble-shoot with Mech and Electrician
10:30	11:30	1.00	S-DRL	TRIPBIT	PP		Pull out of hole 2 stands of drill collars
11:30	13:00	1.50	S-DRL	TRIPBIT	PN	TD	Continue to trouble shoot and work on pipe handler rotation problem.
13:00	17:30	4.50	S-DRL	ВНА	PP		Continue to pullout of hole from 71m to surface. Laid out Anadril tools and 16" stabilizers.
17:30	18:00	0.50	S-CSG	CSGRP	PP		Hold JSA. Rig up to run 13-3/8" casing.
18:00	19:30	1.50	S-CSG	CSGRP	PP		Pick up Float/Shoe and RIH, make up and Bakerlock next jt . Pump through to test float.OK.
19:30	20:00	0.50	S-CSG	CSGRP	PP		Continue to run 13-3/8" casing from 26m to sea-bed at 66m.Filling up string.Tag sea-bed.
20:00	20:30	0.50	S-CSG	CSGRP	PP		Work string and enter well bore at sea-bed.
20:30	21:30	1.00	S-CSG	CSGRP	PP		Continue to run in hole with 13-3/8" casing from 66m to 135m. Pipe filled as run in hole.
21:30	23:30	2.00	S-CSG	CSGRP	PN	CS	Entered 16" hole at 135m and observed 10k drag.Run in from 135m to 139m.Hang up. Work casing using full weight of string (26klbs) - no progress made.

Printed: 25/03/2008 6:05:55PM

APACHE CORPORATION

Page 2 of 3

Daily Drilling Report

WELL NAME				DATE				
WASABI-1 1								
API#	24 HRS PROG	TMD	TVD	REPT NO				
ОН	17.00 (m)	862.00 (m)	861.98 (m)	20				

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
23:30	0:00	0.50	S-CSG	CSGRP	PN	CS	Hold JSA rigfloor crew and deck crew on laying out casing.
							Rig up and pull out and lay out 13-3/8" casing from 139m to 127m.

24.00 = Total Hours Today

06:00 UPDATE

0000-0600

0000 0230 2.50 862.0m Continue to pull out and lay out 13-3/8" casing.

0230 0300 0.50 862.0m Hold JSA. Lay out double bakerlocked single /float shoe joint.

0300 0330 0.50 862.0m Rig down casing equipment and rig up for BHA.

0330 0600 2.50 862.0m Pick up slick 16" BHA and run into sea-bed.Re-enter wellbore no problem.Run in to

94m, hole tight. Rack back stand of DC's/jars and pick up HWDP.Prepare to wash and

ream past tight hole sections.

		ГΔ

BIT / RUN	SIZE (mm)	MANUFACTURER	TYPE	SERIAL NO	JETS OR TFA	DEPTH IN / DATE IN	I-O-D-L-B-G-O-R
				SSD7131		135.00 / 15-02-2008	
2/1	406.4	REED	T11CDH	1369484	1x16, 3x28	135.00 / 15-02-2008	1-2-WT-A-E-I-NO-TD
2RR / 2	406.4	REED	T11CDH	1369484	1x16, 3x28	862.00 / 18-02-2008	1-2-WT-A-E-I-NO-TD

BIT OPERATIONS

BIT / RUN	WOB	RPM	FLOW	PRESS	P BIT	HRS	24 Hr PROG	24 HR ROP	CUM HRS	CUM PROG	CUM ROP			
2/1	3/8	80/100	4,201.81	14,750	1713	1.40	17.00	12.1	14.40	727.00	50.5			

VIS	PV/YP	GELS	WL/HTHP	FC/T.SOL	OIL/WAT	% SAND/MBT	pH/Pm	Pf/Mf	CI	Ca	H2S	KCL	LGS
(s/l)	(cp) / (Pa)	(Pa)	(ml/30 min)	(mm) / (%)	(%)	(%)/(sg)	(mL)	(mL)	(ppm)	(ppm)	(%)	(ppm)	(%)

MUD PROPERTIES

(S/I)	(cp) / (Pa)	(Pa)	(mi/30 min)	(mm)	(%)	(%)	-	(%)/(sg)	+	(mL)	(m	L)	(ppm)	(ppm) (%)	(ppm)	(%)
						PP		DAIL	Y CC	OST	0	CUN	и COST	0		%OII		
ВНА	2	JAR S/N	09147		BHA / HOLE CONDITIONS						JAR HRS			BIT				
BHA W1	 T BELOW JARS	STR	I RING WT UP		STRIN	G WT DN	T	STRING W				TORQ	UE/UNITS			BHA	LENGI	TH
	(tonne)		(tonne)		(tonne)			(tonne)			(kN-m)				130.67 (m)			
	ITE	M DESCRIPTION	ON	•		NO JTS		LENGTH		0.0)		I.D	С	ONN SI	ZE	CON	NN TYPI
		Cross Over				0	Т	1.22	T	215.9	90		73.15					
		Drill Collar				0		18.86		203.2	20		76.20					
		Drilling Jar				0	T	10.17		203.2	20		76.20					
		Drill Collar				0	T	47.24 209.55			69.85							
	Log	gging While Drill	ing			0		8.23		209.	55							
		MWD Tool				0	T	8.49		209.	55							
		Cross Over				0	T	0.48		241.3	30		76.20					
		Cross Over				0		0.69		228.6	60		69.85					
	Inte	gral Blade Stabi	lizer			0	T	2.73		230.	12		69.85					
		Drill Collar				0	T	9.44		241.	30		76.20					
	Inte	gral Blade Stabi	lizer			0		2.64		242.8	32		76.20					
	Drill Collar					0	T	18.59		241.	30		76.20					
		Bit Sub				0		1.23										
		Tri-Cone Bit				0	T	0.66					76.20					

Printed: 25/03/2008 6:05:55PM

MUD TYPE:

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 17-02-2008 API# 24 HRS PROG TMD TVD REPT NO 862.00 (m) ОН 17.00 (m) 861.98 (m) 20 **SURVEY** TYPE MD DEG ΑZI TVD +N/-S +E/-W V.SECT D.L (m) (m) (m) (m) (m) (°/30m) NORMAL 553.43 0.48 178.29 553.43 -0.86 -0.02 -0.86 0.11 NORMAL 700.75 0.84 171.77 700.74 -2.55 0.15 -2.55 0.07 NORMAL 759.92 0.78 172.15 759.90 -3.38 0.27 -3.38 0.03 NORMAL 789.17 0.56 166.34 789.15 -3.71 0.33 -3.71 0.24 NORMAL 818.74 0.38 176.04 818.72 -3.95 0.37 -3.95 0.20 232.91 NORMAL 886.60 0.20 886.58 -4.25 0.29 -4.25 0.14 MUD PUMPS/HYDRAULICS **SPR** STROKE SPM LINER FLOW SPP: 14,750 (kPa) SPM **PPSR** # 1 #2 #3 HP: 0.093 (kW/cm²) PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS HALIBURTON (BAROID) 2 HALIBURTON 5 CATERING ADA SCHLUMBERGER MWD/LWD 2 SEA DRILL 15 APACHE 4 DRIL-QUIP TAMBORITHA 2 SCHLUMBERGER (WL) 3 EXPRO RIGCOOL вні 4 SEA DRILL SERVICES 41 WEATHERFORD **TOTAL PERSONNEL ON BOARD: 99** SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION USAGE ON HAND ITEM UNITS USAGE ON HAND ITEM UNITS **WEATHER** TIME WIND SPEED/DIR **GUST SPEED/DIR** TEMP **SWELL** WAVE HT/DIR/PER HT/DIR/PER 00:00 0.50//12 11 /330.00 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.20 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:05:55PM

Page 1 of 3

WELL NAME DATE WASABI-1 18-02-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) 862.00 (m) 21 OH 861.98 (m) RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 9.58 (days) 4.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR PBTMD 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT STATE / PROV RIG PHONE NO RIG FAX NO REGION DISTRICT AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 11,816,036 DHC: 4,746,179 DHC: 501,481 DCC: DCC: DCC: cwc: cwc. CWC: Others: Others: Others: 11,816,036 TOTAL: TOTAL: TOTAL: 4,746,179 501,481 LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** MD 886.60 (m) INC 0.20° AZM 232.91° (sg)

CURRENT OPERATIONS: Running in hole with 20" casing.

13-3/8" shoe at 774m

24 HR SUMMARY: Lay out 13-3/8" casing; Run in hole for clean out trip with 16"bit and wash and ream through thght spots; sweep with hi-vis and displace with 1.15sg

gel mud.Pull out 16" bit; Rig up and run 13-3/8" casing.

24 HR FORECAST: Cement 13-3/8" x 20" casing string.Pull cement

stinger and circulate casing clean.Pull out and

lay out stinger.

Pick up and lower DrillQuip fast lock connector

and install on wellhead. Nipple up BOP's

(offline work on TD and Seadrill systems.)

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	2:30	2.50	S-CSG	CSGRP	PN	CS	Continue to pull out and lay out 13-3/8" casing.
2:30	3:00	0.50	S-CSG	CSGRP	PN	CS	Hold JSA. Lay out double bakerlocked single /float shoe joint.
3:00	3:30	0.50	S-CSG	CSGRP	PN	cs	Rig down casing equipment and rig up for BHA.
3:30	6:00	2.50	S-CSG	CSGRP	PN	CS	Pick up slick 16" BHA and run into sea-bed.Re-enter wellbore no problem.Run in to 94m, hole tight. Rack back stand of DC's/jars and pick up HWDP.Wash and ream past tight hole section at 70m to 96m.
6:00	6:30	0.50	S-CSG	CSGRP	PN	cs	Rack back stand HWDP and pick up stand DC'c and jars and RIH with same
6:30	8:15	1.75	S-CSG	CSGRP	PN	CS	Wash and ream from 96m to 135m
8:15	10:00	1.75	S-CSG	CSGRP	PN	cs	Run in hole from 135m to 857m.Taged 5m of fill on bottom of 862m.
10:00	12:30	2.50	S-CSG	CSGRP	PN	cs	Pull out of hole from 857m to 142m
12:30	13:00	0.50	S-CSG	CSGRP	PN	cs	Make up Topdrive and pump 100bbls Hi-Vis, Displace with 400bbls of 9.6ppg gel mud
13:00	15:30	2.50	S-CSG	CSGRP	PN	CS	Observed 60-70kips overpull. Worked tight spot from 126m to 155m. Back ream several passes
15:30	16:30	1.00	S-CSG	CSGRP	PN	cs	Pull out of hole from 155m to 126m, Run back in from 126m to 155m.Hole OK.
16:30	17:00	0.50	S-CSG	CSGRP	PN	CS	Pump 100bbls Hi-Vis,displace with 400bbls 9.6ppg gel mud. ROV standby and observe / monitor mud returns at sea-bed
17:00	19:00	2.00	S-CSG	CSGRP	PN	CS	Pull out of hole from 155m to surface with BHA.
19:00	19:30	0.50	S-CSG	CSGRP	PN	cs	Hold JSA; Rig up for casing. Pick up double 13-3/8" casing joint/float,shoe joint.
19:30	20:00	0.50	S-CSG	CSGRP	PN	CS	Hold JSA on running casing with deck and floor crews
20:00	21:30	1.50	S-CSG	CSGRP	PN	CS	Run 13-3/8" casing from surface to 139m. Re-enter at seabed OK; hole sticky at 110m. work through and no further problems. Fill pipe while running in hole.
21:30	0:00	2.50	S-CSG	CSGRP	PP		Continue to pick up and run in hole 13-3/8" casing from 139m to 418m
		_	24 00 = Total Ho	ure Today			

24.00 = Total Hours Today

Printed: 25/03/2008 6:21:22PM

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 18-02-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) 862.00 (m) 21 OH 861.98 (m) **06:00 UPDATE** 0000-0600 0000 0330 3.50 862.0m Continue to run 13-3/8" casing from 418m to 733m. 0000 0330 3.50 0.0m Rig down 13-3/8" csg equipment and rig up 20" handling tools. 0330 0430 1.00 862.0m Pick up and make up 13-3/8" x 20" X/Over and run in to 739m. 0430 0600 1.50 862.0m Run 20" casing with 13-3/8" shoe from 739m to 774m **BIT DATA** SERIAL BIT / RUN SIZE MANUFACTURER TYPE JETS OR TFA **DEPTH IN / DATE IN** I-O-D-L-B-G-O-R NO (mm) 2RR / 2 406.4 REED T11CDH 1369484 1x16, 3x28 862.00 / 18-02-2008 1-2-WT-A-E-I-NO-TD **BIT OPERATIONS** BIT / RUN WOB **RPM FLOW PRESS** P BIT HRS 24 Hr PROG 24 HR ROP **CUM HRS CUM PROG CUM ROP** 2RR/2 0.00 0.0 0.00 LCM: **MUD PROPERTIES** MUD TYPE: OIL/WAT VIS PV/YP **GELS** WL/HTHP FC/T.SOL % SAND/MBT pH/Pm Pf/Mf CI Ca H2S KCL LGS (cp)/(Pa) (ml/30 min) (mm)/(%) (%) (s/l) (Pa) (%)/(sg) (mL) (mL) (ppm) (%) (%) (ppm) (ppm) PP DAILY COST %OIL **CUM COST** 0 09147 **BHA / HOLE CONDITIONS** JAR S/N JAR HRS BIT 2RR 3 **BHA WT BELOW JARS** STRING WT UP STRING WT DN STRING WT ROT TORQUE/UNITS **BHA LENGTH** (tonne) (tonne) (tonne) (tonne) (kN-m) 249.54 (m) ITEM DESCRIPTION NO JTS LENGTH ΙD CONN SIZE CONN TYPE OΠ Heavy Weight Drill Pipe 0 140.95 177.80 82.55 215.90 Cross Over 0 1.20 73.15 Drill Collar 0 209.55 76.20 18.86 Drilling Jar 0 10.17 203.20 73.15 Drill Collar 0 47.24 209.55 69.80 76.20 Cross Over 0 1.20 241.30 Drill Collar 0 9.44 241.30 76.20 Drill Collar 241.30 0 18.59 76.20 Bit Sub 0 1.23 0 0.66 76.20 MUD PUMPS/HYDRAULICS **SPR** STROKE SPM LINER FLOW SPP: SPM **PPSR** #2 HP: 0.000 (kW/cm2) PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS TAMBORITHA 2 **CATERING** BHI 4 SCHLUMBERGER MWD/LWD HALIBURTON (BAROID) 2 WEATHERFORD APACHE SEA DRILL 15 4 RIGCOOL ADA SEA DRILL SERVICES HALIBURTON 4 SCHLUMBERGER (WL) 3 DRIL-QUIP **EXPRO TOTAL PERSONNEL ON BOARD: 99**

Printed: 25/03/2008 6:21:22PM

			APA	ACHE COR	PORATION					Page 3 o
			Da	ily Drillir	ng Report					
ELL NAME									D	ATE
'ASABI-1									1	8-02-2008
PI#	24 HRS PI	ROG	TMD		TVD					EPT NO
Н	0.00 (m)		862.00 (m)		861.98	(m)		2	1
			5	SUPPORT	CRAFT					
TYPE					REI	MARKS				
CIFIC WRANGLER										
BATTLER			MATE	DIALS/CO	NSUMPTION					
ITEM	UNITS	USAGE		HAND	ITEM		UNITS	USAGE	1	ON HAND
11211	ONITO	GOAGE	. ON I	IIAND	II LW	_	OMITO	OUAGE		ONTIAND
			<u> </u>	WEATI	HER	<u> </u>				
TIME		WELL DIR/PER	WAVE HT/DIR/P		WIND SPEED/	DIR	GUST SPI	EED/DIR		TEMP
00:00		50/ /12	11				/330	.00		
				I DECKI			1			
								I		
MAX VDL	AC	T VDL	AVG VD)L	LEG PEN (BO	W)	LEG PEN		LE	G PEN (S BOARD)
					1.20		0.50	0		1.30
				MUD INVE	NTORY					
ITEM		UN	IT	l	JSAGE		Day Cost (\$)			ON HAND

Printed: 25/03/2008 6:21:22PM

Page 1 of 3

WELL NAME																	DA	TE	
WASABI-1																	19	-02-2008	
API#		24 HR	S PRC)G			TMD					T۱	VD				RE	PT NO	
ОН		0.00 (m)			;	862.0	0 (m)				86	61.98 (m)				22		
RIG NAME NO			FIELD N	NAME				AUT	'H TMD		PLANNE	D D	ow	DOL		DFS / KC)	WATER DEPTH	
WEST TRITON											15.98 (da	ays))	10.58 (days	i)	5.04 (da	ys)	27.00 (m)	
SPUD DATE	Rig Release		WE	LL SI	IPERVIS	OR		•					OIM					PBTMD	
09-02-2008			BIL	L OP	ENSHAV	W / STEFAN	GHS	SCHMIDT											
REGION			DIS	STRIC	Т				STATE	/ PROV					RIG PH	ONE NO		RIG FAX NO	
AUSTRALIA			OF	FSHC	RE				VICTOR	RIA									
AFE # 067 08E43				AFE	COSTS					DAILY CO	OSTS				СИМИ	LATIVE C	OSTS		
DESCRIPTION:				DHC	:	11,816,036				DHC:	1,265,60	07			DHC:	6,011	,786		
				DCC						DCC:					DCC:				
				cwc	:					CWC:					CWC:				
				Othe	rs:					Others:					Others	:			
				TOT	AL: ´	11,816,036				TOTAL:	1,265,60	07			TOTA	_: 6,011	,786		
DEFAULT DATUM				L	AST SAF	ETY MEETI	NG	BLOCK					FORMATION	N			BH	A HRS OF SERVI	Œ
ROTARY TABLE /	38.00 (m)																		
LAST SURVEY							L/	AST CSG S	HOE TES	ST (EMW)	LAST	CA	SING		NI	EXT CASI	1G		
MD 886.6	60 (m) II	NC 0.	.20°		AZM	232.91°	(s	sg)											
·	•												· · · · · · · · · · · · · · · · · · ·					·	

CURRENT OPERATIONS: Rig down cement circulating side-entry

assembly.

24 HR SUMMARY: Continued to run 13-3/8" casing and cross-over to 20" casing and wash down; Picked up DrillQuip wellhead and made up to 20" and washed down

and landed out on CTU with 13-3/8" casing shoe at 857m Disengaged running tool free of wellhead and pulled / layed

24 HR FORECAST: Pull out inner cement string and install fastlock connector. Nipple up BOP and lines

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
110111	10	TIINO	Tilase	Operation	1 1/141 1	IN TOODES	AOTIVITI GOMMANI
0:00	3:30	3.50	S-CSG	CSGRP	PP		Rig down 13-3/8" csg equipment and rig up 20" handling tools.
3:30	4:30	1.00	S-CSG	CSGRP	PP		Pick up and make up 13-3/8" x 20" X/Over and run in to 739m.
4:30	7:30	3.00	S-CSG	CSGRP	PP		Run 20" casing with 13-3/8" shoe from 739m to 809m. Filling each joint.
7:30	8:30	1.00	S-CSG	CSGRP	PN	RO	Hold JSA. Work on link cylinders and brackets on bails / topdrive.
8:30	10:30	2.00	S-CSG	CSGRP	PP		Continue to run 20" casing from 809m to 832m. Hole sticky from 825m.
10:30	11:00	0.50	S-CSG	CSGRP	PP		Rig down 20" casing equipment, Rig up 5-1/2" drilling equipment. Pick up 20" casing DrillQuip wellhead and make up to string
11:00	15:30	4.50	S-CSG	CSGRP	PP		Work and wash casing down from 832m to 857m. Work casing down while pumping at 450gpm with seawater. very slow progress from 832m to 837m. Land out wellhead on CTU. String weight prior to land out 130kips.
15:30	18:30	3.00	S-NUP	WLHEAD	PN	SO	Attempt to disengage DrillQuip running tool from wellhead. Backed out at x/over on running tool.trapped pressure released and tool dropped free and dogs engaged.
18:30	20:00	1.50	S-CSG	CSGRP	PP		Made up at x/over to running tool, disengaged running tool, pull to rig floor and lay out same.
20:00	0:00	4.00	S-CMT	CMTPRI	PP		Make up cement stinger and run in hole with 5-1/2" DP from surface to 825m. Rig equipment not functioning correctly. Iron roughneck disfunctional - had to chain-tong in tool joints. Draworks controls erratic, links on topdrive not calibrated

24.00 = Total Hours Today

Printed: 25/03/2008 6:22:15PM

APACHE CORPORATION

Page 2 of 3

Daily Drilling Report

WELL NAME				DATE
WASABI-1				19-02-2008
API#	24 HRS PROG	TMD	TVD	REPT NO
ОН	0.00 (m)	862.00 (m)	861.98 (m)	22

06:00 UPDATE

0000-0600 0000 - 0130 - Hold JSA.

Pick up and make up cement side entry sub circulating assembly and lay out same.

 $\,$ 0130 - 0200 $\,$ - $\,$ Pick up stand of drillpipe and runin hole from 825m to 845m.

Pick up cementing assembly and make up to topdrive.

Run inner string in, and sting into float with 12k down at 855m.

0200 - 0300 - Hold JSA .

Rig up cement line and valves.

Pump 5bbls dye water and break circulation with Halliburton Cement unit. Test line to

1000 psi and pump further 15bbls dye water.

Check for annulus flow. No flow.

Test lines to 1500psi.

0300 - 0515 - Mix and pump cement while ROV monitoring returns at seabed - observed traces of dye

water but no cement, observation difficult due to current.

Displace inner string with 62bbls of seawater. Back pressure on completion of

displacement 500psi (calculated pressure for cement to sea bed = 528psi) bleed off and check for back flow. No flow.

0515 - 0530 - Unsting from float at 855m and pull back to 845m. P4 P F4 0530 0600 0.50 862.0m Circulate bottoms up with rig pumps.

HSE Summary

Abandon Drill 1 2 Days Abandon rig drill prior rig move

Environmental Incident 0 54 Days

Lost Time Incident 0 54 Days 0 LTI since start of rig operations

Medical Treatment Case 0 7 Days IP sent to town for xrays, IP returning to rig next helicopter.

Near Miss 1 5 Days

MV BATTLER

Pre-Tour Meetings 2 0 Days Held pretour safety meetings with crews.

PTW issued 7 0 Days PTW issused for the day.

Safety Meeting 2 3 Days Weekly rig safety meeting.

STOP Card 12 0 Days Total for year to date 547 cards.

ToolBox Talk 12 0 Days Held Tool box talk with crews for related tasks.

MUD PUMPS/HYDRAULICS

SPR

			0.000	0.02.00		OFF					
	STROKE	SPM	LINER	FLOW	SPP:		SPM	PPSR			
# 1		63	165.10	0							
#2		63	165.10	0							
#3		63	165.10	0							

PERSONNEL DATA

COMPANY	QTY	HRS	COMPANY	QTY	HRS
BHI	4		SPERRI SUN	1	
ADA	5		DRIL-QUIP	2	
WEATHERFORD	2		SEA DRILL SERVICES	41	
APACHE	3		TAMBORITHA	2	
SCHLUMBERGER MWD/LWD	4		CATERING	9	
HALIBURTON	4		SEA DRILL	15	
HALIBURTON (BAROID)	2				

TOTAL PERSONNEL ON BOARD: 94

SUPPORT CRAFT

TYPE	REMARKS
PACIFIC WRANGLER	

MATERIALS/CONSUMPTION

	III/(IZA) ZZA ZZA ZZA ZZA ZZA ZZA ZZA ZZA ZZA											
ITEM	UNITS	USAGE	ON HAND	ITEM	UNITS	USAGE	ON HAND					
BARITE BULK	MT		167	CEMENT	MT		181					
BENTONITE	MT		26	BARACARB	MT		0					
FUEL OIL	MT		305	WATER, POTABLE	MT		287					
WATER, DRILLING	MT		322	BASE OIL	bbl		0					
BRINE	bbl		0									

Printed: 25/03/2008 6:22:15PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report** WELL NAME DATE WASABI-1 19-02-2008 API# 24 HRS PROG TMD REPT NO TVD 0.00 (m) 862.00 (m) ОН 861.98 (m) 22 WEATHER TIME SWELL WIND SPEED/DIR GUST SPEED/DIR TEMP WAVE HT/DIR/PER HT/DIR/PER 0.40//12 //120.00 00:00 /138.00 DECKLOG MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.20 1.30 0.50 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:22:15PM

Page 1 of 3

WELL NAME DATE WASABI-1 20-02-2008 API# 24 HRS PROG TMD TVD REPT NO 862.00 (m) 0.00 (m) OH 861.98 (m) 23 RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 11.58 (days) 6.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR PBTMD 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT STATE / PROV RIG PHONE NO RIG FAX NO REGION DISTRICT AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: DHC: 11,816,036 DHC: 262,735 6,274,521 DCC: DCC: DCC: cwc: CWC: CWC: Others: Others: Others: 11,816,036 TOTAL: TOTAL: 262,735 TOTAL: 6,274,521 LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 886.60 (m) INC 0.20° AZM 232.91° (sg)

CURRENT OPERATIONS: Make up slip joint and divertor. Continue to hammer up BOP / connector bolts.

24 HR SUMMARY: Cement 13-3/8" x 20" casing. Unsting from float and circulate casing volume clean. Pull out inner string and lay out stinger.

Install DrillQuip connector to wellhead. Pick up and make up BOP's

24 HR FORECAST: Body test BOP to 200psi / 2500psi. Test casing to 2000psi. Install wearbushing. Pick up Drill Pipe.

OPERATION SUMMARY

						OFERAI	ATION SUMMARY				
From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY				
0:00	1:30	1.50	S-CMT	CMTPRI	PP		Hold JSA. Pick up and make up cement side entry sub circulating assembly and lay out same.				
1:30	2:00	0.50	S-CMT	CMTPRI	PP		Pick up stand of drillpipe and run in hole from 825m to 845m. Pick up cementing assembly and make up to topdrive. Run inner string in, and sting into float with 12k down at 855m.				
2:00	3:00	1.00	S-CMT	CMTPRI	PP		Hold JSA . Rig up cement line and valves. Pump 5bbls dye water and break circulation with Halliburton Cement unit. Test line to 1500 psi and pump further 15bbls dye water. Check for annulus flow. No flow.				
3:00	5:15	2.25	S-CMT	CMTPRI	PP		Mix and pump cement while ROV monitoring returns at seabed - observed traces of dye water but no cement, observation difficult due to current. Pumped 740bbls lead slurry at 12.5ppg (220% OH excess), followed by 40bbls tail slurry. Displace inner string with 62bbls of seawater. Back pressure on completion of displacement 500psi (calculated pressure for cement to sea bed = 528psi) bleed off and check for back flow. No flow.				
5:15	5:30	0.25	S-CMT	CIRC	PP		Unsting from float at 855m and pull back to 845m.				
5:30	6:00	0.50	S-CMT	CIRC	PP		Circulate bottoms up with rig pumps.				
6:00	8:30	2.50	S-CMT	CMTPRI	PN		NOV tech and rig mechanic trouble shoot problem with cyber chair connection to draworks brakes and Hi / Low clutch commands. Lay out cementing side entry assembly, and pull out to 750m while fault finding.				
8:30	11:00	2.50	S-CMT	CMTPRI	PP		Pull out from 750m to surface. NOV monitoring system and alarm ststus while tripping. Lay out cement stinger.				
11:00	15:00	4.00	S-NUP	WLHEAD	PP		Hold JSA. Rig up long slings to top drive for running Fast Lock connector.Remove rotary master bushings and outer ring. Pick up the DrillQuip fastlock connector and lower to wellhead.DrillQuip make up to wellhead. Meanwhile break out BOP bolts from stump.				
15:00	18:30	3.50	S-NUP	BOPS	PP		JSA meeting. Lift BOP from setback stump,transfer to well centre. Lower BOP onto connector bolts. Due to alignment for Choke & Kill lines, lift BOP and orient to position and lower onto bolts. Make handrail adjustments to accomodate.				
18:30	20:30	2.00	S-NUP	BOPS	PP		Lower CTU work platform,for better access to make up BOP bolts to connector. Install nuts on BOP / Connector studs. Prep top annular bolts and ring groove for riser. Prep choke and kill lines				
20:30	22:30	2.00	S-NUP	BOPS	PP		Clear CTU. Pull master bushings and outer ring, lower BOP high pressure riser mandrel onto top of				
							District 05/00/0000 0.05 05DM				

Printed: 25/03/2008 6:25:35PM

APACHE CORPORATION

Page 2 of 3

Daily Drilling Report

 WELL NAME

 WASABI-1
 20-02-2008

 API #
 24 HRS PROG
 TMD
 TVD
 REPT NO

 OH
 0.00 (m)
 862.00 (m)
 861.98 (m)
 23

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY		
							BOP annular and land over studs. Secure nuts.Remove slings and pull to rig floor. Clear		
							CTU, and install outer ring and master bushings. Cover hole.		
22:30	0:00	1.50	S-NUP	BOPS	PP		Install remainder of studs and nuts to mandrel,and tighten.		
							Prepare hydraulic lines for slip joint.		
							Make up test lines to topdrive and prepare to test IBOP valves while working on BOP.		

24.00 = Total Hours Today

06:00 UPDATE

0000-0600

0000 - 0230 - Tighten nuts on BOP mandrel. Commence tightening / torquing BOP connector bolts. Flush cement line; Test lower and upper IBOP valves on topdrive to 250psi / 10min,

5000psi / 10min. Good test. lay out test tools. Prepare crane on slip joint and lift to rig floor.

0230 - 0430 - Rig up to run slip joint. Continue to hammer up BOP bolts. Pick up over shot riser joint and set in rotary

0430 - 0600 - Hold JSA. Rig down slings off bails and pick up elevators.

Pick up divertor and make up overshot riser joint .

Run overshot riser and divertor.

Abandon Drill 1 3 Days Abandon rig drill prior rig move

Environmental Incident 0 55 Days

Lost Time Incident 0 55 Days 0 LTI since start of rig operations

Medical Treatment Case 0 8 Days IP sent to town for xrays, IP returning to rig next helicopter.

Near Miss 1 6 Days

Pre-Tour Meetings 2 0 Days Held pretour safety meetings with crews.

PTW issued 7 0 Days PTW issused for the day.

Safety Meeting 2 4 Days Weekly rig safety meeting.

STOP Card 17 0 Days Total for year to date 547 cards.

ToolBox Talk 10 0 Days Held Tool box talk with crews for related tasks

PERSONNEL DATA

COMPANY	QTY	HRS	COMPANY	QTY	HRS
ADA	5		BHI	4	
DRIL-QUIP	2		SEA DRILL SERVICES	41	
SCHLUMBERGER MWD/LWD	4		TAMBORITHA	2	
HALIBURTON (BAROID)	2		HALIBURTON	4	
WEATHERFORD	2		SEA DRILL	15	
CATERING	9		SPERRI SUN	1	
APACHE	3				

TOTAL PERSONNEL ON BOARD: 94

SUPPORT CRAFT

TYPE	REMARKS						
HELICOPTER							
PACIFIC WRANGLER							
MV/ DATTLED							

MATERIALS/CONSUMPTION

ITEM	UNITS	USAGE	ON HAND	ITEM	UNITS	USAGE	ON HAND
BARITE BULK	MT	12	155	CEMENT	MT	80	101
BENTONITE	МТ		26	BARACARB	MT		0
FUEL OIL	МТ	12	293	WATER, POTABLE	MT	34	253
WATER, DRILLING	МТ	17	305	BASE OIL	bbl		0
BRINE	bbl		0				

WEATHER

TIME	SWELL HT/DIR/PER	WAVE HT/DIR/PER	WIND SPEED/DIR	GUST SPEED/DIR	TEMP
00:00	0.40//12	/ /120.00	1	/138.00	

Printed: 25/03/2008 6:25:35PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report** WELL NAME DATE WASABI-1 20-02-2008 API# 24 HRS PROG TMD TVD REPT NO 862.00 (m) 23 ОН 0.00 (m) 861.98 (m) **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.20 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:25:35PM

Page 1 of 2

WELL NAME										I	DATE
WASABI-1										2	21-02-2008
API# 24 HRS PROG TM							TVD			ı	REPT NO
ОН	0.00 (m)		862.00 (m)			861.98 (m)			2	24
RIG NAME NO	FIE	LD NAME		AUTH T	ΓMD	PLANNED	DOW	DOL		DFS / KO	WATER DEPTH
WEST TRITON						15.98 (day	rs)	12.58 (days))	7.04 (days)	27.00 (m)
SPUD DATE Rig Release		WELL SUPERVISOR					OIM				PBTMD
09-02-2008		BILL OPENSHAW / STEFA	N G H SCHM	IIDT							
REGION		DISTRICT		ST	TATE / PROV				RIG PHO	ONE NO	RIG FAX NO
AUSTRALIA		OFFSHORE		VI	ICTORIA						
AFE # 067 08E43		AFE COSTS		DAILY COSTS					CUMUL	ATIVE COST	rs
DESCRIPTION:		DHC: 11,816,036	3		DHC:	584,081			DHC:	6,858,60	2
		DCC:			DCC:				DCC:		
		CWC:			cwc:				CWC:		
		Others:			Others:				Others:		
		TOTAL: 11,816,036	3		TOTAL:	584,081			TOTAL	: 6,858,60	2
DEFAULT DATUM / ELEVATION		LAST SAFETY MEE	TING BLO	оск			FORMATIO	N			BHA HRS OF SERVICE
ROTARY TABLE / 38.00 (m)											
LAST SURVEY			LAST C	SG SHO	E TEST (EMW)	LAST C	ASING		NE	XT CASING	
MD 886.60 (m) IN	C 0.20°	° AZM 232.9	1° (sg)								

CURRENT OPERATIONS: Picking up 12-1/4" directional BHA.

24 HR SUMMARY: Nipple up BOP and lines. Perform BOP shell test and 13-3/8" casing test to 2000psi. (Choke line failed at target block - under repair)Test against HCR

test good.

Run wear bushing. Pick up / make up drillpipe and rack into derrick.

24 HR FORECAST: Make up BHA and shallow test same. Run in hole picking up drill pipe to 13-3/8" casing float. Pump 50bbl Hi Vis spacer and displace hole to 1.15sg

KCL/Polymer mud while drilling float shoe and 2 meters of new hole to 864m. Circulate and balance mud weight.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY				
0:00	2:30	2.50	S-NUP	BOPS	PP		Tighten nuts on BOP mandrel. Commence tightening / torquing BOP connector bolts. Flush cement line; Test lower and upper IBOP valves on topdrive to 250psi / 10min, 5000psi / 10min. Good test. lay out test tools. Prepare crane on slip joint and lift to rig floor.				
2:30	4:30	2.00	S-NUP	BOPS	PP		Rig up to run slip joint. Continue to hammer up BOP bolts. Pick up over shot riser joint and set in rotary				
4:30	6:00	1.50	S-NUP	BOPS	PP		Hold JSA. Rig down slings off bails and pick up elevators. Pick up divertor and make up overshot riser joint . Run overshot riser and divertor.				
6:00	8:00	2.00	S-NUP	BOPS	PP		Land divertor / slip joint over high pressure mandrel riser; Secure dogs, attach hoses in rotary.				
8:00	14:00	6.00	S-NUP	BOPS	PP		Nipple up choke and kill lines to BOP. Off line; Halliburton pressure test choke manifold.				
14:00	15:00	1.00	S-NUP	BOPS	PP		Install fittings for slip joint packer and connect hoses.Energise same.				
15:00	16:00	1.00	S-NUP	BOPS	PP		Break out divertor running tool; clear rig floor of excess equipment				
16:00	17:00	1.00	S-NUP	BOPS	PP		Function test BOP rams ; Line up to test casing.				
17:00	18:00	1.00	S-NUP	BOPS	PP		Fill BOP, flush lines, attempt to connector test BOP and casing to 2000psi. Failed. Leak on choke line.				
18:00	20:00	2.00	S-NUP	BOPS	PN		Continue with repairs to Draworks Motor 'C' encoder. Work blocks to confirm repair OK.				
20:00	20:30	0.50	S-NUP	BOPS	PP		Line up and test casing / BOP against HCR to 2000psi/15min. OK Repairs to choke line block ongoing.				
20:30	21:30	1.00	S-NUP	WLHEAD	PP		Lay out divertor running tool; Make up wearbushing running tool and run in and set wear bushing .				
21:30	22:30	1.00	S-NUP	WLHEAD	PP		Lay out wear bushing running tool and pup joint / Xover. Break down side entry pumping assembly.				
22:30	0:00	1.50	P-DRL	DPIPE	PP		Hold PJSM. Pick up 5½" drill pipe from deck, rabbit, make up and rack in derrick.				
	24.00 = Total Hours Today										

APACHE CORPORATION Page 2 of 2 Daily Drilling Report DATE 21-02-2008

TVD

861.98 (m)

06:00 UPDATE

0000-0600 00:00 - 04:30 - Continue to pick up drill pipe from deck, rabbit, make up and rack in derrick.Total 63 joints.

TMD

862.00 (m)

04:30 - 05:00 - Pick up Schlumberger sonic tool and break out battery. Lay out same.

05:00 - 06:00 - 862.0m Hold JSA. Pick up 121/4" BHA as per Schlumberger DD.

Abandon Drill 1 4 Days Abandon rig drill prior rig move

24 HRS PROG

0.00 (m)

Environmental Incident 0 56 Days

Lost Time Incident 0 56 Days 0 LTI since start of rig operations

Medical Treatment Case 0 9 Days IP sent to town for xrays, IP returning to rig next helicopter.

Near Miss 1 7 Days

WELL NAME

WASABI-1

API#

ОН

Pre-Tour Meetings 2 0 Days Held pretour safety meetings with crews.

PTW issued 10 0 Days PTW issused for the day.

Safety Meeting 2 5 Days Weekly rig safety meeting.

STOP Card 32 0 Days Total for year to date 547 cards.

ToolBox Talk 12 0 Days Held Tool box talk with crews for related tasks.

PERSONNEL DATA

COMPANY	QTY	HRS	COMPANY	QTY	HRS
HALIBURTON	2		SEA DRILL	13	
SEA DRILL SERVICES	43		DRIL-QUIP	2	
APACHE	4		вні	4	
SPERRI SUN	1		SCHLUMBERGER MWD/LWD	5	
TAMBORITHA	2		ADA	4	
CATERING	9		HALIBURTON (BAROID)	2	

TOTAL PERSONNEL ON BOARD: 91

REPT NO

24

SUPPORT CRAFT

TYPE	REMARKS
PACIFIC WRANGLER	
MV BATTLER	
HELICOPTER	

MATERIALS/CONSUMPTION

ITEM	UNITS	USAGE	ON HAND	ITEM	UNITS	USAGE	ON HAND
BARITE BULK	MT		155	CEMENT	MT		101
BENTONITE	MT		26	BARACARB	MT		0
FUEL OIL	MT	16	277	WATER, POTABLE	MT	33	220
WATER, DRILLING	MT	46	259	BASE OIL	bbl		0
BRINE	bbl		0				

WEATHER

TIME	SWELL HT/DIR/PER	WAVE HT/DIR/PER	WIND SPEED/DIR	GUST SPEED/DIR	TEMP
00:00	0.40/ /12	//120.00	1	/80.00	

DECKLOG

MAX VDL	ACT VDL	AVG VDL	LEG PEN (BOW)	LEG PEN (PORT)	LEG PEN (S BOARD)
			1.20	0.50	1.30

MUD INVENTORY

ITEM UNIT USAGE Day Cost (\$) ON HAN	AND
--------------------------------------	-----

Printed: 25/03/2008 6:26:13PM

Page 1 of 3

WELL NAME DATE WASABI-1 22-02-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) 862.00 (m) 861.98 (m) 25 OH RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 13.58 (days) 8.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR PBTMD 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT STATE / PROV RIG PHONE NO RIG FAX NO REGION DISTRICT AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 11,816,036 DHC: 7,564,219 DHC: 705,617 DCC: DCC: DCC: cwc. CWC: CWC: Others: Others: Others: TOTAL: 11,816,036 TOTAL: 705,617 TOTAL: 7,564,219 LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 886.60 (m) INC 0.20° AZM 232.91° (sg)

CURRENT OPERATIONS: Directional Drilling 121/4" hole to 940m

24 HR SUMMARY: Pick up 21stds 5½" drillpipe and rack in derrick. Make up BHA as per directional driller and run in hole. Run in hole picking up drill pipe and tag float at

Prepare to displace hole to 9.6ppg KCL/PHPA mud.

24 HR FORECAST: Directional Drill 121/4" hole as per Schlumberger directional driller

OPERATION SUMMARY

	OF EIGHTON GOWINACT												
From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY						
0:00	4:30	4.50	P-DRL	DPIPE	PP		Continue to pick up drill pipe from deck, rabbit, make up and rack in derrick. Total 63 joints.						
4:30	5:00	0.50	P-DRL	ВНА	PP		Pick up Schlumberger sonic tool and break out battery. Lay out same.						
5:00	10:30	5.50	P-DRL	BHA	PP		Hold JSA. Pick up 12¼" BHA as per Schlumberger DD and run in to 40m						
10:30	12:30	2.00	P-DRL	вна	PP		Hold JSA. Schlumberger commence loading Radio-Active source into tool. Problems with capability of loading tool.						
12:30	15:00	2.50	P-DRL	ВНА	PP		Continue running in hole with BHA from 40m to 259m.						
15:00	17:30	2.50	P-DRL	вна	PN		Trouble shoot problems with link tilt. Remove handles from V/V's on top drive. service top drive / traveling block.						
17:30	23:30	6.00	P-DRL	DPIPE	PP		Hold PJSM. Pick up 5½" drill pipe from deck, rabbit and run in hole to 851m Off line; Test choke manifold						
23:30	0:00	0.50	P-DRL	SFTY	PP		Hold JSA with all crews and 3rd party involved in mud displacement						

24.00 = Total Hours Today

Printed: 25/03/2008 6:26:55PM

APACHE CORPORATION

Page 2 of 3

Daily Drilling Report

WELL NAME								
WASABI-1								
API#	24 HRS PROG	TMD	TVD	REPT NO				
ОН	0.00 (m)	862.00 (m)	861.98 (m)	25				

06:00 UPDATE

0000-0600

0000-0030 Drill float and shoe and clean out rathole from 855m to 862m while displacing hole to 9.6ppg KCL / PHPA mud.

0030-0100 Drill 121/4" hole from 862m to 864m and work pipe while displacing to mud.

 ${\tt 0100\text{-}0130\ Circulate\ and\ condition\ mud\ to\ even\ weight. Pull\ back\ inside\ casing\ shoe}.$

0130-0230 Rig up Halliburton, break circulation to confirm lines, close upper pipe rams and perform

LOT. 925psi @ 9.6ppg with 857m shoe = 15 9ppg EMW.

Pumped max 1.9bbls at .3bbls/min. Back flow of 1.5bbls.

0230-0600 3.50 862.0m Drill 121/4" hole from 864m to 940m.

Abandon Drill 1 5 Days Abandon rig drill prior rig move

Environmental Incident 0 57 Days

Lost Time Incident 0 57 Days 0 LTI since start of rig operations

Medical Treatment Case 0 10 Days IP sent to town for xrays, IP returning to rig next helicopter.

Near Miss 1 8 Days

Pre-Tour Meetings 2 0 Days Held pretour safety meetings with crews.

PTW issued 7 0 Days PTW issused for the day.

Safety Meeting 2 6 Days Weekly rig safety meeting.

	STOP Card 13 0 Days Total for year to date cards. ToolBox Talk 14 0 Days Held Tool box talk with crews for related tasks.															
		· ·				BIT [DATA									
BIT /	RUN SIZ		MANUFACTURE	R	TY	PE SERIA		OR TFA		DEPT	H IN / DA1	TE IN	I-O-D-L-B-G-O-R)-R
3 /	1 311	.2	SMITH		Mi616	SVBPX SCC9	85 6x	:18		862.0	2-6	-BT-S	S-X-1-R	О-ВНА		
LCM:					M	UD PROPER	RTIES	TIES				MUD TYPE:				
VIS (s/l)	PV/YP (cp)/(Pa)	GELS (Pa)	WL/HTHP (ml/30 min)	FC/T.S (mm)/		OIL/WAT (%)	% SAND/MBT (%)/(sg)	pH/Pm (mL)	Pf/ (m		CI (ppm)	Ca (ppm	H2S		KCL ppm)	LGS (%)
					-		BAHA	- 000T		Louis	1 000T					
						PP	l l	COST	0	-	/ COST	0	'	%OIL	 	_
BHA	4	JAR S/					LE CONDITIO				RHRS			BIT		3
BHA W	/T BELOW JARS	STI	RING WT UP	+ :		G WT DN	STRING WT			TORQ	BHA LENGTH					
	(tonne)		(tonne)		(to	onne)	(tonne)			(K	:N-m)		259.84 (m)			
		M DESCRIPTI				NO JTS	LENGTH	0.0			I.D	С	ONN SIZE	=	CON	IN TYPE
	Heav	y Weight Drill	Pipe			0	140.95	184.	15	82.55						
		Cross Over			0		1.22	215.90		73.15				_		
		Drill Collar				0	18.90	209.	55	69.85						
		Drilling Jar				0	10.17	211.0	07	76.20						
		Drill Collar			0		47.20	209.	55	69.85						
		Cross Over				0	0.70	211.07		82.55						
	Log	ging While Dri	lling		0		6.37	209.55		69.85						
		Cross Over				0	0.34	0.34 214.38			76.20					
	Log	ging While Dri	lling			0	6.24	203.2	20		127.00					
		Saver Sub				0	0.62	209.	55		82.55					
		Cross Over				0	0.47	211.0	07		107.95					
		Saver Sub				0	0.47	214.3	38		107.95					
		MWD Tool			0	7.56	212.8	35		129.79						
		Saver Sub				0	0.47	214.3	38		107.95					
Logging While Drilling						0	3.88	3.88 212.85		99.06						
		Cross Over		0		0.37	0.37 203.20		76.20							
	Non	-Mag Pony Co	ollar		0		2.90	206.50			76.20	\perp		_		
		Float Sub				0	0.65	203.2	20		82.55					

Printed: 25/03/2008 6:26:55PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 22-02-2008 TVD API# 24 HRS PROG TMD REPT NO ОН 0.00 (m) 862.00 (m) 861.98 (m) 25 ITEM DESCRIPTION NO JTS CONN SIZE CONN TYPE LENGTH O.D I.D 9.99 237.74 Bent Housing 0 0 0.37 311.15 95.25 Polycrystalline Diamond Bit PERSONNEL DATA HRS COMPANY QTY COMPANY QTY HRS APACHE HALIBURTON вні 4 SCHLUMBERGER MWD/LWD SEA DRILL 13 TAMBORITHA 2 ADA 4 CATERING 9 HALIBURTON (BAROID) DRIL-QUIP 2 2 SEA DRILL SERVICES 43 **TOTAL PERSONNEL ON BOARD: 90** SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION ON HAND ITEM UNITS USAGE ITEM UNITS USAGE ON HAND **WEATHER** TIME SWELL WAVE WIND SPEED/DIR **GUST SPEED/DIR TEMP** HT/DIR/PER HT/DIR/PER 00:00 0.40//12 //120.00 /80.00 **DECKLOG** AVG VDL MAX VDL ACT VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.20 1.30 MUD INVENTORY Day Cost (\$) UNIT USAGE ON HAND ITEM

Printed: 25/03/2008 6:26:55PM

Page 1 of 3

WELL NAME																DA	TE	_
WASABI-1																23	-02-2008	
API# 24 HRS PROG TN						TMD				-	TVI	D		RE			PT NO	
OH 531.00 (m)						1,393	.00 (m)				1,3	91.40 (m)			26			
RIG NAME NO		FII	ELD NA	ME			AUT	H TMD		PLANNED	DO)W	DOL	DFS / KO			WATER DEPTH	
WEST TRITON										15.98 (day	s)		14.58 (days))	9.04 (day	rs)	27.00 (m)	
SPUD DATE	Rig Release		WELL	SUPERV	ISOR		'				1	OIM					PBTMD	
09-02-2008			BILL	OPENSH.	AW / STEFAN	I G H S	SCHMIDT											
REGION			DIST	RICT				STATE /	PROV					RIG PI	IONE NO		RIG FAX NO	
AUSTRALIA			OFFS	SHORE				VICTOR	RIA									
AFE # 067 08E43			А	FE COSTS	3				DAILY CO	STS				сими	LATIVE CO	OSTS		_
DESCRIPTION:			D	HC:	11,816,036				DHC:	605,290				DHC:	8,169,	509		
			D	CC:					DCC:					DCC:				
			С	WC:					cwc:					CWC:				
			0	thers:					Others:					Others	i:			
			T	OTAL:	11,816,036				TOTAL:	605,290				TOTA	L: 8,169,	509		
DEFAULT DATUM / ELEVATION LAST SAFETY MEET				NG	BLOCK				F	ORMATION	N			BH	HA HRS OF SERVICE			
ROTARY TABLE / :	38.00 (m)																	
LAST SURVEY						LA	AST CSG S	HOE TES	T (EMW)	LAST C	AS	ING		N	EXT CASIN	IG		
MD 1.388	3 32 (m) II	NC 11.2	2°	Δ71	vi 337.32°	(9	a)											

CURRENT OPERATIONS: Directionally drilling 311mm (121/4") hole to 1455m

24 HR SUMMARY: Directionally drilling 311mm (121/4") hole .

24 HR FORECAST: Directional drill 311mm (121/4") hole to section total depth.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	0:30	0.50	P-CMT	DOCMT	PP		Drill float and shoe and clean out rathole from 855m to 862m while displacing hole to 1.15sg (9.6ppg) KCL / polymer mud
0:30	1:00	0.50	P-DRL	DRLG	PP		Drill 311mm (121/4") hole from 862m to 864m and work pipe while displacing to mud
1:00	1:30	0.50	P-DRL	CIRC	PP		Circulate and condition mud to even weight. Pull back inside casing shoe.
1:30	2:30	1.00	P-CSG	LKOFF	PP		Rig up Halliburton, break circulation to confirm lines, close upper pipe rams and perform LOT. 925psi @ 9.6ppg with 857m shoe = 15 9ppg EMW. Pumped max 1.9bbls at .3bbls/min. Back flow of 1.5bbls.
2:30	12:00	9.50	P-DRL	DRLG	PP		Drill 311mm (121/4") hole from 864m to 1176mm
12:00	14:15	2.25	P-DRL	DRLG	PP		Drill 311mm (121/4") hole from 1176mm to 1215m
14:15	14:45	0.50	P-DRL	DRLG	PP		Directional drill 311mm (121/4") hole from 1215m to 1230m
14:45	15:00	0.25	P-DRL	DRLG	PP		Drill 311mm (121/4") hole from 1230m to 1235mm
15:00	15:15	0.25	P-DRL	DRLDIF	PN	MW	Trouble shoot MWD signal problems
15:15	15:30	0.25	P-DRL	DRLG	PP		Drill 311mm (121/4") hole from 1235mm to 1245m
15:30	16:15	0.75	P-DRL	DRLG	PP		Directional drill 311mm (121/4") hole from 1245m to 1263m
16:15	17:00	0.75	P-DRL	DRLG	PP		Drill 311mm (121/4") hole from 1263m to 1280m
17:00	18:00	1.00	P-DRL	DRLG	PP		Directional drill 311mm (121/4") hole from 1280m to 1291m
18:00	18:45	0.75	P-DRL	DRLG	PP		Drill 311mm (121/4") hole from 1291m to 1312m
18:45	19:30	0.75	P-DRL	DRLG	PP		Directional drill 311mm (121/4") hole from 1312m to 1319m
19:30	20:00	0.50	P-DRL	DRLG	PP		Drill 311mm (121/4") hole from 1319m to 1330m
20:00	20:30	0.50	P-DRL	DRLG	PP		Directional drill 311mm (121/4") hole from 1330m to 1336m
20:30	21:00	0.50	P-DRL	DRLDIF	PN		High sand content cause blinding off at shakers.Reduce pump strokes while shaker screens are changed out to coarser size. MWD unable to get detection under 1050gpm's
21:00	23:30	2.50	P-DRL	DRLG	PP		Drill 311mm (121/4") hole from 1336m to 1381m
23:30	0:00	0.50	P-DRL	DRLG	PP		Drill 311mm (121/4") hole from 1381m to 1393m

24.00 = Total Hours Today

Printed: 25/03/2008 6:27:31PM

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report** WELL NAME DATE WASABI-1 23-02-2008 API# 24 HRS PROG TMD TVD REPT NO 1,391.40 (m) OH 531.00 (m) 1,393.00 (m) 26 06:00 UPDATE 0000-0600 0000-0600 Directionally drilling 311mm (121/4") hole from 1391m to 1455m. Abandon Drill 1 6 Days Abandon rig drill prior rig move Environmental Incident 0 58 Days Lost Time Incident 0 58 Days 0 LTI since start of rig operations Medical Treatment Case 0 11 Days IP sent to town for xrays, IP returning to rig next helicopter. Near Miss 1 9 Days Pre-Tour Meetings 2 1 Day Held pretour safety meetings with crews. PTW issued 6 0 Days PTW issused for the day. Safety Meeting 2 0 Days Weekly rig safety meeting. STOP Card 15 0 Days Total for year to date cards. ToolBox Talk 8 0 Days Held Tool box talk with crews for related tasks. **BIT DATA** MANUFACTURER JETS OR TFA BIT / RUN SIZE TYPE SERIAL DEPTH IN / DATE IN I-O-D-L-B-G-O-R (mm) NO 3 / 1 311.2 SMITH Mi616VBPX SCC985 6x18 862.00 / 22-02-2008 2-6-BT-S-X-1-RO-BHA **BIT OPERATIONS** BIT / RUN WOB RPM **FLOW PRESS** P BIT 24 Hr PROG 24 HR ROP **CUM HRS CUM PROG CUM ROP** 3/1 10/12 0/40 4,088.24 19,050 3197 10.70 531.00 49.6 10.70 531.00 49.6 MOTOR OUTPUT **ROTARY CURRENT: 40** TOTAL RPM: RPG: 200 LCM: **MUD PROPERTIES** MUD TYPE: VIS OIL/WAT Pf/Mf LGS PV/YP **GELS** WL/HTHP FC/T.SQL % SAND/MBT pH/Pm CI Ca H2S KCL (ml/30 min (%) (s/l) (cp) / (Pa) (mm)/(%) (%) (%)/(sg) (mL) (ppm) (ppm (ppm PP DAILY COST 0 CUM COST 0 %OIL 09147 BHA JAR S/N **BHA / HOLE CONDITIONS** JAR HRS BIT 3 **BHA WT BELOW JARS** STRING WT UP STRING WT DN STRING WT ROT TORQUE/UNITS **BHA LENGTH** (tonne) (tonne) 7 (kN-m) 259.84 (m) (tonne) (tonne) ITEM DESCRIPTION NO JTS LENGTH O.D **CONN SIZE** CONN TYPE Heavy Weight Drill Pipe 0 140.95 184.15 82.55 Cross Over 0 1.22 215.90 73.15 Drill Collar 0 18 90 209.55 69 85 Drilling Jar O 10 17 211 07 76 20 Drill Collar 0 47.20 209.55 69.85 0 211.07 82.55 Cross Over 0.70 Logging While Drilling 0 6.37 209.55 69.85 Cross Over 0 0.34 214.38 76.20 Logging While Drilling 0 6 24 203.20 127.00 Saver Sub 0 0.62 209.55 82 55 0.47 211.07

0

0

0

0

0

0

0

0.47

7.56

0.47

3.88

0.37

2.90

214.38

212.85

214.38

212.85

203.20

206.50

Cross Over

Saver Sub

MWD Tool

Saver Sub Logging While Drilling

Cross Over

Non-Mag Pony Collar

Printed: 25/03/2008 6:27:31PM

107.95

107.95

129.79

107.95

99.06

76.20

76.20

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 23-02-2008 API# 24 HRS PROG TMD TVD REPT NO 531.00 (m) ОН 26 1,393.00 (m) 1,391.40 (m) ITEM DESCRIPTION NO JTS LENGTH O.D I.D **CONN SIZE** CONN TYPE 0.65 82.55 Float Sub 0 203.20 Bent Housing 0 9.99 237.74 0 0.37 311.15 95.25 Polycrystalline Diamond Bit **SURVEY** TYPE +N/-S MD DEG ΑZI TVD +E/-W V.SECT D.L (m) (°) (°) (m) (m) (m) (°/30m) (m) NORMAL 1,034.55 0.55 198.33 1,034.52 -5.08 -0.14 -5.08 0.08 NORMAL 1,180.90 0.38 233.51 1,180.87 -6.03 -0.75 -6.03 0.07 NORMAL 1,239.98 3.38 334.13 1,239.92 -4.58 -1.67 -4.58 1.76 NORMAL 1.270.01 6.32 334.23 1.269.83 -2.30 -2.77 -2.30 2.94 326 45 NORMAL 1 298 75 8 02 1 298 35 0.80 -4 57 0.80 2 04 NORMAL 1,328.72 8.15 333.60 1,328.02 4.45 -6.67 4.45 1.01 NORMAL 1,358.00 9.08 336.28 1,356.97 8.42 -8.52 8.42 1.04 NORMAL 1,388.32 11.22 337.32 1,386.82 13.33 -10.62 13.33 2.13 MUD PUMPS/HYDRAULICS **SPR** STROKE SPM LINER FLOW SPM SPP: 19,050 (kPa) **PPSR** # 1 #2 #3 HP: 0.287 (kW/cm²) PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS SCHLUMBERGER MWD/LWD 5 TAMBORITHA HALIBURTON 2 ВНІ HALIBURTON (BAROID) 2 SEA DRILL 13 CATERING 9 ADA 2 APACHE 4 DRIL-QUIP SEA DRILL SERVICES 43 **TOTAL PERSONNEL ON BOARD: 90** SUPPORT CRAFT REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION ITEM UNITS USAGE ON HAND ITEM UNITS USAGE ON HAND **WEATHER** TIME **SWELL** WAVE WIND SPEED/DIR **GUST SPEED/DIR TEMP** HT/DIR/PER HT/DIR/PER 00:00 0.40//12 //120.00 /80.00 **DECKLOG** LEG PEN (PORT) MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (S BOARD) 1.20 0.50 1.30 MUD INVENTORY USAGE ON HAND ITEM UNIT Day Cost (\$)

Printed: 25/03/2008 6:27:31PM

Page 1 of 3

Daily Drilling Report WELL NAME DATE WASABI-1 24-02-2008 API# 24 HRS PROG TMD TVD REPT NO 254.00 (m) OH 1,647.00 (m) 1,625.56 (m) 27 RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 15.58 (days) 10.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR PBTMD 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT STATE / PROV RIG PHONE NO REGION DISTRICT **RIG FAX NO** AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 8,800,963 DHC: 11,816,036 DHC: 631,454 DCC: DCC: DCC: cwc. CWC: cwc: Others: Others: Others: TOTAL: 11,816,036 TOTAL: 631,454 TOTAL: 8,800,963 LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 1,624.03 (m) INC 29.21° AZM 334.37° (sg) CURRENT OPERATIONS: Directional drill 311mm (121/4") hole to 1706m

24 HR SUMMARY: Directionally drilling 311mm (12½") hole from 1393m to 1647m

24 HR FORECAST: Directional drill 311mm (121/4") hole to section total depth.

OPERATION SUMMARY

	OI LIVITION GOIMIN, WY											
From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY					
0:00	12:00	12.00	P-DRL	DRLG	PP		Directionally drilling 311mm (12¼") hole from 1391m to 1500m.					
12:00	14:30	2.50	P-DRL	CUTDL	PP		Directionally drilling 311mm (121/4") hole from 1500m to 1526m					
14:30	15:00	0.50	P-DRL	DRLG	PP		Drill 311mm (121/4") from 1526m to 1529m.					
15:00	15:30	0.50	P-DRL	CUTDL	PP		Directionally drilling 311mm (12¼") hole from 1529m to 1533m					
15:30	16:00	0.50	P-DRL	DRLG	PP		Drill 311mm (121/4") from 1533m to 1540m					
16:00	19:00	3.00	P-DRL	CUTDL	PP		Directionally drilling 311mm (12¼") hole from 1540m to 1553m					
19:00	19:30	0.50	P-DRL	DRLG	PP		Drill 311mm (121/4") from 1553m to 1559m.					
19:30	20:00	0.50	P-DRL	CUTDL	PP		Directionally drilling 311mm (121/4") hole from 1559m to 1566m.					
20:00	20:15	0.25	P-DRL	DRLG	PP		Drill 311mm (121/4") from 1566m to 1572m					
20:15	20:30	0.25	P-DRL	CUTDL	PP		Directionally drilling 311mm (12¼") hole from 1572m to 1583m P7 P					
20:30	21:45	1.25	P-DRL	DRLG	PP		Drill 311mm (121/4") from 1583m to 1588m					
21:45	22:30	0.75	P-DRL	CUTDL	PP		Directionally drilling 311mm (12¼") hole from 1588m to 1590m					
22:30	22:45	0.25	P-DRL	DRLG	PP		Drill 311mm (121/4") from 1590m to 1603m.					
22:45	23:15	0.50	P-DRL	CUTDL	PP		Directionally drilling 311mm (12¼") hole from 1603m to 1608m					
23:15	0:00	0.75	P-DRL	DRLG	PP		Drill 311mm (121⁄4") from 1608m to 1647m					

24.00 = Total Hours Today

06:00 UPDATE

0000-0600

00:00 - 06:00 - Drill 311mm (121/4") from 1647m to 1706m

Abandon Drill 1 7 Days Abandon rig drill prior rig move

Environmental Incident 0 59 Days

Lost Time Incident 0 59 Days 0 LTI since start of rig operations

Medical Treatment Case 0 12 Days IP sent to town for xrays, IP returning to rig next helicopter.

Near Miss 1 10 Days

Pre-Tour Meetings 2 0 Days Held pretour safety meetings with crews.

PTW issued 3 0 Days PTW issused for the day. Safety Meeting 2 0 Days Weekly rig safety meeting. STOP Card 12 0 Days Total for year to date cards.

ToolBox Talk 6 0 Days Held Tool box talk with crews for related tasks.

Printed: 25/03/2008 6:28:16PM

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 24-02-2008 API# 24 HRS PROG TMD TVD REPT NO 254.00 (m) ОН 1,647.00 (m) 27 1,625.56 (m) **BIT DATA** BIT / RUN SIZE MANUFACTURER TYPE SERIAL JETS OR TFA **DEPTH IN / DATE IN** I-O-D-L-B-G-O-R NO (mm) 3 / 1 311.2 SMITH Mi616VBPX SCC985 6x18 862.00 / 22-02-2008 2-6-BT-S-X-1-RO-BHA **BIT OPERATIONS** 24 Hr PROG P BIT HRS BIT / RUN WOB **RPM FLOW PRESS** 24 HR ROP **CUM HRS CUM PROG CUM ROP** 3/1 3311 8/10 0/50 4,160.17 18,919 14.70 256.00 17.4 25.40 787.00 31.0 **MOTOR OUTPUT** RPG: ROTARY CURRENT: 40 TOTAL RPM: I CM MUD PROPERTIES MUD TYPE: VIS PV/YP **GELS** WL/HTHP FC/T.SOL OIL/WAT % SAND/MBT pH/Pm Pf/Mf H2S KCL LGS Ca (%) (s/l) (cp)/(Pa) (Pa) (ml/30 min) (mm)/(%) (%) (%)/(sg) (mL) (mL) (ppm) (ppm) (%) (ppm) PP DAILY COST CUM COST 0 0 %OIL вна JAR S/N 09147 **BHA / HOLE CONDITIONS** JAR HRS BIT 3 **BHA WT BELOW JARS** STRING WT UP STRING WT DN STRING WT ROT TORQUE/UNITS **BHA LENGTH** 11 (kN-m) 259.84 (m) (tonne) (tonne) (tonne) (tonne) ITEM DESCRIPTION NO JTS LENGTH I.D CONN SIZE **CONN TYPE** O.D 82.55 Heavy Weight Drill Pipe 0 140.95 184.15 0 Cross Over 1.22 215.90 73.15 Drill Collar 0 18.90 209.55 69.85 Drilling Jar 0 10.17 211.07 76.20 Drill Collar 0 47.20 209.55 69.85 Cross Over 0 0.70 211.07 82.55 Logging While Drilling 0 6.37 209.55 69.85 0 214.38 76.20 0.34 Cross Over Logging While Drilling 0 6.24 203.20 127.00 Saver Sub 0 0.62 209.55 82.55 Cross Over 0 0.47 211.07 107.95 Saver Sub 0 0.47 214.38 107.95 MWD Tool 0 7.56 212.85 129.79 Saver Sub 0 0.47 214.38 107.95 Logging While Drilling 0 212.85 99.06 3.88 0 0.37 203 20 76 20 Cross Over Non-Mag Pony Collar 0 2.90 206.50 76.20 Float Sub 0 0.65 203.20 82.55 Bent Housing 0 9.99 237.74 Polycrystalline Diamond Bit 0 0.37 311.15

Printed: 25/03/2008 6:28:16PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 24-02-2008 API# 24 HRS PROG TMD TVD REPT NO 254.00 (m) OH 1,647.00 (m) 1,625.56 (m) 27 **SURVEY** TYPE MD DEG ΑZI TVD +N/-S +E/-W V.SECT D.L (m) (m) (m) (m) (m) (°/30m) NORMAL 1.447.39 16.50 340.87 1,444,15 26.57 -15.59 26.57 2.71 NORMAL 1,476.79 18.71 341.36 1,472.17 34.98 -18.47 34.98 2.26 **NORMAL** 1,506.00 21.47 336.96 1,499.60 44.34 -22.06 44.34 3.23 NORMAL 1,535.79 23.81 336.52 1,527.09 54.88 -26.59 54.88 2.36 NORMAL 1,564.88 26.29 336.35 1,553.44 66.17 -31.51 66.17 2.56 NORMAL 1,594.25 28.63 333.72 1,579.50 78.44 -37.24 2.69 78.44 NORMAL 1.624.03 29.21 334.37 -43.54 91.38 1.605.57 91.38 0.66 MUD PUMPS/HYDRAULICS **SPR** STROKE SPM LINER FLOW SPM **PPSR** SPP: 18,919 (kPa) # 1 #2 #3 HP: 0.302 (kW/cm²) PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS BHI SEA DRILL SERVICES 4 43 TAMBORITHA CATERING 9 SCHLUMBERGER MWD/LWD 5 ADA HALIBURTON (BAROID) 2 SPERRI SUN APACHE 4 SEA DRILL 13 HALIBURTON DRIL-QUIP 2 **TOTAL PERSONNEL ON BOARD: 91** SUPPORT CRAFT TYPE REMARKS HELICOPTER PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION USAGE ON HAND ITEM USAGE ON HAND ITEM UNITS UNITS BARITE BULK ΜT 155 CEMENT МТ 101 BENTONITE BARACARB МТ 26 МТ 0 **FUEL OIL** 20 257 WATER, POTABLE МТ 26 194 BASE OIL WATER, DRILLING 259 bbl 0 MT BRINE bbl 0 **WEATHER** TIME WIND SPEED/DIR **GUST SPEED/DIR** TEMP SWELL WAVE HT/DIR/PER HT/DIR/PER 00:00 3.00//12 //120.00 /240.00 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (S BOARD) LEG PEN (PORT) 1.30 1.20 0.50 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:28:16PM

Page 1 of 3

WELL NAME DATE WASABI-1 25-02-2008 TMD API# 24 HRS PROG TVD REPT NO 150.00 (m) 1,797.00 (m) 1,753.16 (m) OH 28 RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 16.58 (days) 11.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR PBTMD 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT STATE / PROV RIG PHONE NO REGION DISTRICT **RIG FAX NO** AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 9,432,418 DHC: 11,816,036 DHC: 631,455 DCC: DCC: DCC: cwc. CWC: cwc. Others: Others: Others: TOTAL: 11,816,036 TOTAL: 631,455 TOTAL: 9,432,418 LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 1,624.03 (m) INC 29.21° AZM 334.37° (sg)

CURRENT OPERATIONS: Handle BHA.

24 HR SUMMARY: Drilled 12 1/4" hole to 1797m, pumped 50 bbls Hi/vis and circulated hole clean. POOH, 35k overpull at 1638m pumped out of hole to 1442m hole

good. Pumped slug and POOH to 851m.

24 HR FORECAST: Handle BHA, Pick up 15 joints 5 1/2" heavy weight and 12 joints 5 1/2" drill pipe and RIH. Drill 12 1/4" hole.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY							
0:00	16:00	16.00	P-DRL	DRLG	PP		Drill 311mm (12¼") from 1647m to 1797M.							
16:00	17:30	1.50	P-DRL	CIRC	PN		Pumped 50 bbls Hi Vis and circulated hole clean. Slight increase in cuttings on bottoms up with return of pill, the shakers came clean. Flow checked well.							
17:30	18:00	0.50	P-DRL	TRIPBIT	PN		POOH slowly with first stand of drill pipe while sorting out trip tank line up - actuator on hole fill valve was jammed in closed position, removed actuator & operated valve manually.							
18:00	20:30	2.50	P-DRL	TRIPBIT	PN	ВТ	POOH from 1979m - 1530m, 35k overpull at 1638m, pumped out of hole from 1638m - 1530m.							
20:30	21:00	0.50	P-DRL	TRIPBIT	PN	RO	Cyber chair screen locked up, no weight indicator reading, circulate and rotate string while reboot system.							
21:00	22:00	1.00	P-DRL	TRIPBIT	PN	BT	Continued pump out of hole from 1530m - 1442m, hole good at 1442m.							
22:00	0:00	2.00	P-DRL	TRIPBIT	PN	ВТ	Pumped slug and POOH to 851m							

24.00 = Total Hours Today

06:00 UPDATE

0000-0600 00:00 - 02:00 - Continued POOH to BHA.

02:00 - 06:00 - Handle BHA.

Abandon Drill 1 8 Days Abandon rig drill.

Environmental Incident 0 60 Days

First Aid Case 1 6 Days First aid case, bruised knee.

Lost Time Incident 0 60 Days 0 LTI since start of rig operations

Medical Treatment Case 1 13 Days IP sent to town for xrays. IP returned to rig after xrays.

Near Miss 1 11 Days

Pre-Tour Meetings 2 0 Days Held pretour safety meetings with crews.

PTW issued 6 0 Days PTW issused for the day.

Safety Meeting 2 2 Days Weekly rig safety meeting.

STOP Card 15 0 Days Total for year to date 559 cards.

ToolBox Talk 8 0 Days Held Tool box talk with crews for related tasks

	AT.	

BIT / RUN	SIZE (mm)	MANUFACTURER	TYPE	SERIAL NO	JETS OR TFA	DEPTH IN / DATE IN	I-O-D-L-B-G-O-R
3 / 1	311.2	SMITH	Mi616VBPX	SCC985	6x18	862.00 / 22-02-2008	2-6-BT-S-X-1-RO-BHA

Printed: 25/03/2008 6:28:54PM

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 25-02-2008 API# 24 HRS PROG TMD TVD REPT NO 150.00 (m) 1,797.00 (m) ОН 28 1,753.16 (m) **BIT OPERATIONS** BIT / RUN FI OW PRESS HRS 24 Hr PROG 24 HR ROP **CUM HRS** CUM PROG CUM ROP WOR **RPM** P BIT 150.00 3/1 0/40 4,160.17 18,919 3311 9.40 16.0 34.80 937.00 26.9 **MOTOR OUTPUT** RPG: **ROTARY CURRENT: 40** TOTAL RPM: 200 LCM: **MUD PROPERTIES** MUD TYPE: VIS PV/YP **GELS** WL/HTHP FC/T.SOL OIL/WAT % SAND/MBT pH/Pm Pf/Mf Ca H2S KCL LGS (cp)/(Pa) (Pa) (ml/30 min) (mm)/(%) (mL) (s/l) (%)/(sg) (mL) (%) (%) (ppm) (ppm) (ppm) PP CUM COST DAILY COST %OIL 0 0 JAR S/N 09147 **BHA / HOLE CONDITIONS** JAR HRS BHA 4 BIT 3 **BHA WT BELOW JARS** STRING WT UP STRING WT DN STRING WT ROT TORQUE/UNITS **BHA LENGTH** (tonne) 89 (tonne) 11 (kN-m) 259.84 (m) (tonne) (tonne) ITEM DESCRIPTION NO JTS LENGTH O.D I.D CONN SIZE CONN TYPE 0 140.95 184.15 82.55 Heavy Weight Drill Pipe Cross Over 0 1.22 215.90 73.15 Drill Collar 0 18.90 209.55 69.85 Drilling Jar 0 10.17 211.07 76.20 Drill Collar 0 47.20 209.55 69.85 Cross Over 0 0.70 211.07 82.55 Logging While Drilling 0 6.37 209.55 69 85 Cross Over 0 0.34 214.38 76.20 Logging While Drilling 0 6.24 203.20 127.00 Saver Sub 0 0.62 209.55 82.55 Cross Over 0 0.47 211.07 107.95 Saver Sub 0 0.47 214.38 107.95 MWD Tool 0 7.56 212.85 129.79 Saver Sub 0 0.47 214.38 107.95 Logging While Drilling 0 3.88 212.85 99.06 0 Cross Over 0.37 203.20 76.20 Non-Mag Pony Collar 0 2.90 206.50 76.20 Float Sub 0 0.65 203.20 82.55 Bent Housing 0 9.99 237.74 Polycrystalline Diamond Bit 0 0.37 311.15 95.25 MUD PUMPS/HYDRAULICS **SPR** STROKE SPM LINER FLOW **PPSR** SPP: 18,919 (kPa) SPM # 1 #2 #3 HP: 0.302 (kW/cm²)

Printed: 25/03/2008 6:28:54PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report** WELL NAME DATE WASABI-1 25-02-2008 API# 24 HRS PROG TMD TVD REPT NO 150.00 (m) 28 ОН 1,797.00 (m) 1,753.16 (m) PERSONNEL DATA COMPANY COMPANY QTY HRS QTY HRS SCHLUMBERGER MWD/LWD 12 HALIBURTON SEA DRILL SERVICES 41 CATERING SPERRI SUN 1 HALIBURTON (BAROID) 2 TAMBORITHA 2 SEA DRILL 17 APACHE 4 ВНІ ADA TOTAL PERSONNEL ON BOARD: 98 SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION ITEM UNITS USAGE ON HAND ITEM UNITS USAGE ON HAND BARITE BULK МТ 155 CEMENT МТ 101 BENTONITE МТ BARACARB MT 0 26 FUEL OIL WATER, POTABLE MT 257 МТ 194 WATER, DRILLING BASE OIL bbl MT 259 0 BRINE bbl **WEATHER** TIME **SWELL** WAVE WIND SPEED/DIR **GUST SPEED/DIR TEMP** HT/DIR/PER HT/DIR/PER 3.00//12 //120.00 /240.00 00:00 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (S BOARD) LEG PEN (PORT) 1.20 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:28:54PM

APACHE CORPORATION Page 1 of 2 **Daily Drilling Report** WELL NAME DATE WASABI-1 26-02-2008 API# 24 HRS PROG TMD TVD REPT NO 27.00 (m) OH 1.824.00 (m) 1.775.53 (m) 29 RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 17.58 (days) 12.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR **PBTMD** 09-02-2008 BILL OPENSHAW / STEFAN G H SCHMIDT DISTRICT STATE / PROV **RIG PHONE NO RIG FAX NO** REGION AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: DHC: 11,816,036 DHC: 654,183 10.086.601 DCC: DCC: DCC: CWC. CWC. cwc-Others: Others: Others: TOTAL 11,816,036 TOTAL: 654,183 TOTAL: 10,086,601 LAST SAFETY MEETING FORMATION BHA HRS OF SERVICE DEFAULT DATUM / FLEVATION **BLOCK** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 29.21° 334.37° 1,624.03 (m) INC AZM (sg) CURRENT OPERATIONS: Directional drill 12 1/4" hole 24 HR SUMMARY: POOH, changed out BHA and bit, picked up 15 joints 5 1/2" heavy weight drill pipe and 12 joints 5 1/2" drill pipe. RIH, washed 28m to bottom no fill. Directional drill 12 1/2" hole from 1797m - 1824m 24 HR FORECAST: Finish pumping hi-vis sweep. POOH to change BHA. TIH and continue drilling 12 1/4" hole to TD. **OPERATION SUMMARY** NPT CODES HRS Operation PT/NPT From To Phase **ACTIVITY SUMMARY** 0:00 2:00 2.00 P-DRL **TRIPBIT** PΝ ВТ Continued POOH to BHA. 2:00 4:30 2.50 P-DRL TRIPBIT ΡN вт POOH with BHA to 40m. 4:30 5:00 0.50 P-DRI TRIPRIT ΡN RT Held JSA and retrieve RA scoure. 5:00 8:30 3.50 P-DRL TRIPBIT ΡN Held JSA and layout BHA from 40m - surface. 8:30 9:00 0.50 P-DRL RIGSER PP Rig service, Top drive. 9:00 13:30 4.50 P-DRL BHA PΝ вт Pick up and make up BHA and new bit and RIH to 207m. 13:30 16:30 3.00 P-DRI BHA PΝ BT Adjusted link tilt and picked up 15 joints 5 1/2" heavy weight drill pipe and 12 joints 5 1/2" drill pipe P-DRL TRIPBIT 16:30 18:00 1.50 вт PΝ Adjusted link tilt and RIH to 857m 18:00 P-DRL TRIPBIT Break circulation, test MWD, good signal. 19:00 1.00 PΝ ВТ 19:00 21:30 2.50 P-DRL TRIPBIT PN ВТ Continued to RIH to 1767m. Hole good. 21:30 22:00 0.50 P-DRL RMWASH PΝ вт Break circulation, washed down 28m to bottom, no fill. 22:00 0:00 2.00 P-DRL DRLG PP Directional drill 12 1/4" hole from 1797m - 1824 m. Pumped 30 bbls H/Vis at 1797m observed increase of cutting at shakers, large amount of coal. 24.00 = Total Hours Today 06:00 UPDATE 0000-0600 Directional drill 12 1/4" hole from 1824m - 1887m (pumps need to be cycled on motor stalls due to MWD going out of sync). **BIT DATA** BIT / RUN SIZE MANUFACTURER SERIAL JETS OR TFA DEPTH IN / DATE IN I-O-D-L-B-G-O-R TYPE (mm) NO Mi616VHVPX SMITH SCC991 1.797.00 / 26-02-2008 2-4-CT-T-X-1-WT-BHA 5/1 311.2 9x14 Mi616VBPX SMITH SCC985 862.00 / 22-02-2008 2-6-BT-S-X-1-RO-BHA 3 / 1 311.2 6x18 I CM MUD PROPERTIES MUD TYPE VIS PV/YP **GELS** WL/HTHP FC/T.SOL OIL/WAT % SAND/MBT pH/Pm Pf/Mf Ca H2S KCL LGS (s/l) (cp)/(Pa) (Pa) (ml/30 min) (mm)/(%) (%) (%)/(sg) (mL) (mL) (ppm) (ppm) (%) (ppm) (%) DAILY COST 0 **CUM COST** 0 %OIL вна 5 JAR S/N 09147 **BHA / HOLE CONDITIONS** JAR HRS BIT 5

BHA WT BELOW JARS

(tonne)

STRING WT UP

(tonne)

STRING WT DN

(tonne)

STRING WT ROT

(tonne)

Printed: 25/03/2008 6:29:32PM

BHA LENGTH

348.79 (m)

TORQUE/UNITS

(kN-m)

APACHE CORPORATION Page 2 of 2 **Daily Drilling Report WELL NAME** DATE WASABI-1 26-02-2008 API# 24 HRS PROG TMD TVD REPT NO ОН 27.00 (m) 29 1,824.00 (m) 1,775.53 (m) ITEM DESCRIPTION NO JTS LENGTH O.D I.D CONN SIZE CONN TYPE Heavy Weight Drill Pipe 0 281.99 184.15 82.55 Cross Over 0 1.22 215.90 73.15 Drilling Jar 0 10.17 211.07 76.20 Drill Collar 0 18.89 209.55 69.85 Cross Over 0 0.70 203.20 82.55 Non-Mag Pony Collar 0 2.32 203.20 76.20 Logging While Drilling 0 6.24 203.20 127.00 Saver Sub 0 0.62 209.55 82.55 Cross Over 0 0.47 211.07 107.95 Saver Sub 0 0.47 214.38 107.95 MWD Tool 212.85 0 7.56 129.79 Saver Sub 0 0.47 214.38 107.95 Logging While Drilling 0 3.88 212.85 99.06 Cross Over 0 0.37 203.20 76.20 Non-Mag Pony Collar 0 2.90 206.50 76.20 Float Sub 0 0.65 203.20 82.55 0 9.50 237.74 Bent Housing Polycrystalline Diamond Bit 0 0.37 311.15 95.25 PERSONNEL DATA COMPANY HRS COMPANY HRS QTY QTY ADA SEA DRILL SERVICES APACHE 4 HALIBURTON (BAROID) HALIBURTON 2 SEA DRILL 17 вні SCHLUMBERGER MWD/LWD 12 4 CATERING TAMBORITHA 2 **TOTAL PERSONNEL ON BOARD: 97** SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION ON HAND ITEM ITEM UNITS USAGE UNITS USAGE ON HAND **WEATHER** TIME **SWELL** WAVE WIND SPEED/DIR **GUST SPEED/DIR TEMP** HT/DIR/PER HT/DIR/PER //120.00 00:00 3.00//12 /240.00 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (S BOARD) LEG PEN (PORT) 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:29:32PM

APACHE CORPORATION Daily Drilling Report

Page 1 of 3

WELL NAME DATE WASABI-1 27-02-2008 API# 24 HRS PROG TMD TVD REPT NO 76.00 (m) OH 1,900.00 (m) 1,838.18 (m) 30 RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 18.58 (days) 13.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR **PBTMD** 09-02-2008 BILL OPENSHAW / 0000 STATE / PROV RIG PHONE NO DISTRICT **RIG FAX NO** REGION AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 10,637,671 DHC: 11,816,036 DHC: 551,070 DCC: DCC: DCC: cwc. CWC: cwc: Others: Others: Others: TOTAL: 11,816,036 TOTAL: 551,070 TOTAL: 10,637,671 LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 34.34° AZM 324.56° 1,890.59 (m) (sg) CURRENT OPERATIONS: Directional Drill 12 1/4" hole from 1914m.

24 HR SUMMARY: Directional drilled 12 1/4" hole to 1900m, POOH, layout bit, make up bit # 6 and RIH to 851m. Test MWD, remove pipehandler from top drive. Change out

saver sub.

24 HR FORECAST: Drill ahead to section TD.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	9:00	9.00	P-DRL	DRLG	PP		Directional drill 12 1/4" hole from 1824m - 1900m (pumps need to be cycled on motor stalls due to MWD going out of sync).
9:00	10:00	1.00	P-DRL	TRIPBIT	CN		Pumped 50 bbls Hi/vis and circulated hole clean. No increase in cuttings with return of pill, hole came clean on bottoms up.
10:00	11:30	1.50	P-DRL	TRIPBIT	CN		Flow checked (Static) POOH wet from 1900m - 1523m. Hole good.
11:30	12:00	0.50	P-DRL	TRIPBIT	CN		Pumped slug.
12:00	14:30	2.50	P-DRL	TRIPBIT	CN		POOH from 1523m to BHA.
14:30	16:00	1.50	P-DRL	ВНА	CN		Handle BHA, layout Bat/Sonic to download memory, remove sleeve from motor and break out bit.
16:00	17:00	1.00	P-DRL	вна	CN		M/U bit #6, install 12.125" stabilizer sleeve on motor and check orientation.
17:00	18:00	1.00	P-DRL	ВНА	CN		Down load data from RAB-8 tool.
18:00	20:00	2.00	P-DRL	TRIPBIT	CN		P/U and M/U Bat/Sonic, handle BHA and RIH to 377m.
20:00	20:30	0.50	P-DRL	TRIPBIT	CN		Removed pipe handler from top drive.
20:30	21:30	1.00	P-DRL	TRIPBIT	CN		RIH to 851m.
21:30	22:00	0.50	P-DRL	TRIPBIT	CN		Break circulation and tested MWD, good test.
22:00	0:00	2.00	P-DRL	TRIPBIT	PN	RO	Continue repairs to pipehandler and change out saver sub on top drive

24.00 = Total Hours Today

06:00 UPDATE

0000-0600 00:00 - 00:30 - Change out saver sub on top drive. Pipe handler repiars still ongoing.

00:30 - 02:00 - RIH to 1619m Held up with 40k down

02:00 - 02:30 - Wash and ream from 1619m 1639m

 $02:30 - 03:30 \quad - \quad RIH, \ washed \ 28m \ to \ bottom \ No \ fill. \ Worked \ through \ hole \ from \ 1806m - 1816m \ with \ 20k \ down.$

03:30 - 06:00 - Directional drill 12 1/4" hole from 1900m - 1914m. Pumped 30 bbls H/vis at 1910m observed large amount of coal on bottoms up.

BIT DATA

BIT / RUN	SIZE	MANUFACTURER	TYPE	SERIAL	JETS OR TFA	DEPTH IN / DATE IN	I-O-D-L-B-G-O-R
	(mm)			NO			
6 / 1	311.2	HUGHES CHRISTENSEN	MXL-1X	6065524	3x24	1,900.00 / 27-02-2008	2-8-WT-A-4-16-CT-PR
5 / 1	311.2	SMITH	Mi616VHVPX	SCC991	9x14	1,797.00 / 26-02-2008	2-4-CT-T-X-1-WT-BHA

Printed: 25/03/2008 6:34:51PM

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 27-02-2008 API# 24 HRS PROG TMD TVD REPT NO 76.00 (m) ОН 1,900.00 (m) 30 1,838.18 (m) **BIT OPERATIONS** BIT / RUN WOB FI OW PRESS HPS 24 Hr PROG 24 HR ROP **CUM HRS** CUM PROG CUM ROP PPM P BIT 5/1 2/10 0/40 4,163.95 21,718 4028 9 50 103.00 10.8 9.50 103.00 10.8 **MOTOR OUTPUT** RPG: ROTARY CURRENT: 0 TOTAL RPM: 160 LCM: **MUD PROPERTIES** MUD TYPE: VIS PV/YP **GELS** WL/HTHP FC/T.SOL OIL/WAT % SAND/MBT pH/Pm Pf/Mf Ca KCL LGS (cp)/(Pa) (ml/30 min) (mm)/(%) (mL) (s/l) (Pa) (%)/(sg) (mL) (%) (%) (ppm) (ppm) (ppm) PP DAILY COST **CUM COST** %OIL 0 0 JAR S/N 09147 **BHA / HOLE CONDITIONS** JAR HRS BHA 6 BIT 6 **BHA WT BELOW JARS** STRING WT UP STRING WT DN STRING WT ROT TORQUE/UNITS **BHA LENGTH** (tonne) (kN-m) 348.79 (m) (tonne) (tonne) (tonne) ITEM DESCRIPTION NO JTS LENGTH O.D I.D CONN SIZE CONN TYPE 281.99 184.15 82.55 Heavy Weight Drill Pipe 0 Cross Over 0 1.22 215.90 73.15 Drilling Jar 0 10.17 211.07 76.20 Drill Collar 0 18.89 209.55 69.85 Cross Over 0 0.70 203.20 82.55 Non-Mag Pony Collar 0 2.32 203.20 76.20 Logging While Drilling n 6 24 203 20 127.00 82 55 Saver Sub 0 0.62 209.55 Cross Over 0 0.47 211.07 107.95 Saver Sub 0 0.47 214.38 107.95 MWD Tool 0 212.85 7.56 129.79 Saver Sub 0 0.47 214.38 107.95 Logging While Drilling 0 3.88 212.85 99.06 Cross Over 0 0.37 203.20 76.20 Non-Mag Pony Collar 0 2.90 206.50 76.20 0 203.20 Float Sub 0.65 82.55 Bent Housing 0 9.50 237.74 Tri-Cone Bit 0 0.37 311.15 95.25 SURVEY TYPE MD AZI TVD +N/-S +E/-W V.SECT D.L DEG (°/30m) (m) (°) (°) (m) (m) (m) (m) NORMAL 1,831.13 34.60 326.01 1,781.40 185.82 -98.34 185.82 1.01 **NORMAL** 1,860.48 34.24 324.51 1,805.62 199.45 -107.79 199.45 0.94 NORMAL 1,890.59 34.34 324.56 1,830.49 213.26 -117.63 213.26 0.10 MUD PUMPS/HYDRAULICS SPR STROKE SPM LINER FLOW SPM PPSR SPP: 21,718 (kPa) # 1 #2 #3 HP: 0.368 (kW/cm²)

Printed: 25/03/2008 6:34:51PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 27-02-2008 API# 24 HRS PROG TMD TVD REPT NO 76.00 (m) 30 ОН 1,900.00 (m) 1,838.18 (m) PERSONNEL DATA COMPANY COMPANY QTY HRS QTY HRS ADA SEA DRILL SERVICES 39 SEA DRILL 18 SCHLUMBERGER MWD/LWD 13 CATERING 9 BHI APACHE DRIL-QUIP 1 HALIBURTON (BAROID) 2 HALIBURTON 2 TAMBORITHA SPERRI SUN TOTAL PERSONNEL ON BOARD: 100 SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION ITEM UNITS USAGE ON HAND ITEM UNITS USAGE ON HAND BARITE BULK МТ 153 CEMENT МТ 101 2 BENTONITE BARACARB MT 0 MT 26 FUEL OIL WATER, POTABLE MT 16 241 МТ 29 175 WATER, DRILLING 228 BASE OIL MT 31 bbl 0 BRINE bbl **WEATHER** TIME **SWELL** WAVE WIND SPEED/DIR **GUST SPEED/DIR TEMP** HT/DIR/PER HT/DIR/PER 3.00//12 //120.00 /240.00 00:00 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (S BOARD) LEG PEN (PORT) 1.20 0.50 1.30 MUD INVENTORY

USAGE

Day Cost (\$)

ITEM

UNIT

Printed: 25/03/2008 6:34:51PM

ON HAND

APACHE CORPORATION Page 1 of 3 **Daily Drilling Report** WELL NAME DATE WASABI-1 28-02-2008 API# 24 HRS PROG TMD TVD REPT NO 221.00 (m) 1,995.84 (m) OH 2,121.00 (m) RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 19.58 (days) 14.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR **PBTMD** 09-02-2008 BILL OPENSHAW / 0000 DISTRICT STATE / PROV **RIG PHONE NO RIG FAX NO** REGION AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 11,816,036 DHC: 652.637 DHC: 11,290,308 DCC: DCC: DCC: CWC. CWC. cwc-Others: Others: Others: TOTAL 11,816,036 TOTAL: 652,637 11,290,308 TOTAL: LAST SAFETY MEETING FORMATION BHA HRS OF SERVICE DEFAULT DATUM / FLEVATION **BLOCK** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CASING LAST CSG SHOE TEST (EMW) **NEXT CASING** AZM 318.28° 2,096.38 (m) INC (sg) CURRENT OPERATIONS: Drilling 12 1/4" hole @ 2175m 24 HR SUMMARY: Install saver sub on top drive, RIH 1619m, washed and reamed from 1619m - 1639m. Continue RIH to 1900m. Directional drill 12 1/4" hole f/- 1900m -2121m. 24 HR FORECAST: Drill 12 1/4" hole to sectional TD. **OPERATION SUMMARY** NPT CODES HRS Operation **ACTIVITY SUMMARY** From To Phase PT/NPT 0:00 0:30 0.50 P-DRL **TRIPBIT** PΝ RO Change out saver sub on top drive. Pipe handler repairs still ongoing. 0:30 2:00 1.50 P-DRL TRIPBIT CN DD RIH to 1619m Held up with 40k down. 2.00 2:30 0.50 P-DRI RMCI N CN חח Wash and ream from 1619m 1639m TRIPBIT 2:30 3:30 1.00 P-DRL CN RIH, washed 28m to bottom No fill. Worked through hole from 1806m - 1816m with 20k 3:30 20.50 P-DRL DRLG PΡ Directional drill 12 1/4" hole from 1900m - 2121m. Pumped 30 bbls H/vis at 1910m observed large amount of coal on bottoms up 24.00 = Total Hours Today 06:00 UPDATE 0000-0600 **BIT DATA** BIT / RUN SIZE MANUFACTURER TYPE SERIAL JETS OR TFA **DEPTH IN / DATE IN** I-O-D-L-B-G-O-R (mm) NO **HUGHES CHRISTENSEN** MXL-1X 6065524 3x24 1,900.00 / 27-02-2008 2-8-WT-A-4-16-CT-PR 6/1 311.2 **BIT OPERATIONS** BIT / RUN WOB **RPM FLOW PRESS** P BIT HRS 24 Hr PROG 24 HR ROP **CUM HRS CUM PROG CUM ROP** 40/40 3,785.41 221.00 6/1 10/20 23,442 3560 18.50 11.9 18.50 221.00 11.9 MOTOR OUTPUT TOTAL RPM: RPG: **ROTARY CURRENT: 40** 160 **MUD PROPERTIES** LCM: MUD TYPE VIS PV/YP GELS WL/HTHP FC/T.SOL OIL/WAT % SAND/MBT pH/Pm Pf/Mf CI Ca H2S KCL LGS (ml/30 min) (s/l (cp) / (Pa) (Pa) (mm)/(%) (%) (%)/(sg) (mL) (mL) (%) (ppm) (%) (ppm (ppm DAILY COST **CUM COST** 0 %OII 09147 JAR S/N JAR HRS ВНА 6 **BHA / HOLE CONDITIONS** BIT 6 **BHA WT BELOW JARS** STRING WT UP STRING WT DN STRING WT ROT TORQUE/UNITS **BHA LENGTH** (tonne) (tonne) (tonne) (tonne) (kN-m) 348.79 (m)

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 28-02-2008 API# 24 HRS PROG TMD TVD REPT NO ОН 221.00 (m) 2,121.00 (m) 1,995.84 (m) 31 ITEM DESCRIPTION NO JTS LENGTH O.D I.D **CONN SIZE** CONN TYPE Heavy Weight Drill Pipe 0 281.99 184.15 82.55 Cross Over 0 1.22 215.90 73.15 Drilling Jar 0 10.17 211.07 76.20 Drill Collar 0 18.89 209.55 69.85 Cross Over 0 0.70 203.20 82.55 Non-Mag Pony Collar 0 2.32 203.20 76.20 Logging While Drilling 0 6.24 203.20 127.00 Saver Sub 0 0.62 209.55 82.55 Cross Over 0 0.47 211.07 107.95 Saver Sub 0 0.47 214.38 107.95 MWD Tool 0 7.56 212.85 129.79 Saver Sub 0 0.47 214.38 107.95 Logging While Drilling 0 212.85 3.88 99.06 0 0.37 203.20 76.20 Cross Over Non-Mag Pony Collar 0 2.90 206.50 76.20 Float Sub 0 0.65 203.20 82.55 0 9.50 237.74 Bent Housing Tri-Cone Bit 0 0.37 311.15 95.25 **SURVEY** TYPE MD DEG ΑZI TVD +N/-S +E/-W V.SECT D.L (°) (m) (m) (m) (°/30m) (m) (m) NORMAL 1,919.28 39.56 321.67 1,853.41 227.03 -128.00 227.03 5.75 NORMAL 1,948.88 41.97 319.68 1,875.83 241.98 -140.25 241.98 2.77 NORMAL 1,978.21 44.07 317.65 1,897.28 257.00 -153.47 257.00 2.57 317.25 272.54 NORMAL 45.45 -167.74 272.54 2,008.18 1,918.56 1.41 NORMAL 2.037.55 46 14 317.73 288 06 -181.97 288.06 1.939.03 0.79 NORMAL 2,066.69 46.95 318.03 1,959.08 303.75 -196.15 303.75 0.86 NORMAL 2,096.38 47.60 318.28 1,979.22 320.00 -210.70 320.00 0.68 MUD PUMPS/HYDRAULICS **SPR** STROKE SPM LINER FLOW PPSR SPP: 23,442 (kPa) SPM #2 #3 HP: 0.295 (kW/cm²) PERSONNEL DATA COMPANY HRS COMPANY OTY OTY HRS APACHE CATERING TAMBORITHA 2 SPERRI SUN ADA 4 SCHLUMBERGER MWD/LWD 13 HALIBURTON (BAROID) 2 18 SEA DRILL вні 5 SEA DRILL SERVICES 39 HALIBURTON **TOTAL PERSONNEL ON BOARD: 99** SUPPORT CRAFT REMARKS PACIFIC WRANGLER

Printed: 25/03/2008 6:35:26PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report** WELL NAME DATE WASABI-1 28-02-2008 API# 24 HRS PROG TVD TMD REPT NO ОН 221.00 (m) 31 2,121.00 (m) 1,995.84 (m) SUPPORT CRAFT TYPE REMARKS MV BATTLER MATERIALS/CONSUMPTION ITEM UNITS USAGE ON HAND UNITS USAGE ON HAND BARITE BULK CEMENT МТ 101 BENTONITE МТ 26 BARACARB МТ 0 FUEL OIL MT 14 227 WATER, POTABLE MT 26 149 WATER, DRILLING BASE OIL MT 13 215 bbl 0 BRINE 0 bbl **WEATHER** SWELL WAVE TIME WIND SPEED/DIR GUST SPEED/DIR TEMP HT/DIR/PER HT/DIR/PER 00:00 3.00//12 //120.00 /240.00 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.20 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:35:26PM

APACHE CORPORATION Daily Drilling Report

Page 1 of 3

WELL NAME DATE WASABI-1 29-02-2008 API# 24 HRS PROG TMD TVD REPT NO 2,286.00 (m) 165.00 (m) 2.106.50 (m) OH 32 PLANNED DOW RIG NAME NO FIELD NAME AUTH TMD DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 20.58 (days) 15.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR **PBTMD** 09-02-2008 BILL OPENSHAW / 0000 STATE / PROV RIG PHONE NO DISTRICT **RIG FAX NO** REGION AUSTRALIA **OFFSHORE** VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 12.074.521 DHC: 11,816,036 DHC: 784,213 DCC: DCC: DCC: cwc. CWC. cwc. Others: Others: Others: TOTAL: 11,816,036 TOTAL: 784,213 TOTAL: 12,074,521 LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE DEFAULT DATUM / FLEVATION ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 2,272.78 (m) 47.76° AZM 323.36° (sg)

CURRENT OPERATIONS: Circulating hole clean

24 HR SUMMARY: Drilled 12 1/4" hole from 2121m - 2286m. Unblocked flow line at 2263m due to coal and cuttings blocking same. Reamed and worked tight hole from

2237m - 2242m 40k overpull.

24 HR FORECAST: Circulate hole clean. POOH for wireline logs.

Ream interval from 1980m on trip out for LWD logs.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	16:30	16.50	P-DRL	DRLG	PP		Drill 12 1/4" hole from 2121m - 2247m. Drill string stalled out. Pumped 30 bbls H/Vis at 2128m, observed large amount of coal on bottoms up.
16:30	17:00	0.50	P-DRL	RMWASH	PN	HC	Ream and work tight hole from 2242m - 2237m 40k overpull.
17:00	19:30	2.50	P-DRL	DRLG	PP		Drill 12 1/4" hole from 2247m - 2263m Pumped 40 bbls H/vis at 2247m. Observed a slight increase in coal over shakers on bottoms up. Commenced increasing mud weight to 10ppg from 2260m due to increase in splintery coal cuttings.
19:30	20:00	0.50	P-DRL	DRLG	PN		Flow line blocked with coal and cuttings at 2263m causing approx 40bbls mud to overflow flowline onto main deck with approx 35bbls flowing to sea via drains. Cleared flowline.
20:00	0:00	4.00	P-DRL	DRLG	PP		Drill 12 1/4" hole from 2263m - 2286m

24.00 = Total Hours Today

06:00 UPDATE

0000-0600

0000-0530 Drill 12 1/4" hole from 2286m - 2315m. Pumped 10 bbls 15.80ppg pill at 2305m, observed increase of coal at bottoms up. 0530-0600 0.50 2121.0m Circulate hole clean.

Abandon Drill 5 Days Muster Drill - alternative muster points

BOP Drill 1 Day Trip Drill. Held trip drill with crew while RIH.

BOP Test 8 Days BOP test on nipple up

Environmental Incident 8 Days 159 litres Erifon BOP Fluid spilt to sea Hose not connected to diveter overshot when line was pressurized.

Lost Time Incident 64 Days 0 LTI since start of rig operations

Medical Treatment Case 17 Days IP sent to town for xrays. IP returned to rig after xrays.

Near Miss 1 Day Drop Object. Door damper fell off door to radio room falling to landing below. Landed approx 2 meters from person standing on landing.

Pre-Tour Meetings 2 0 Days Held pretour safety meetings with crews.

PTW issued 7 0 Days PTW issused for the day.

Safety Meeting 6 Days Weekly rig safety meeting.

STOP Card 18 0 Days Total for year to date 623 cards.

ToolBox Talk 6 0 Days Held Tool box talk with crews for related tasks

			_	וווט ווט	Λ.		
BIT / RUN	SIZE (mm)	MANUFACTURER	TYPE	SERIAL NO	JETS OR TFA	DEPTH IN / DATE IN	I-O-D-L-B-G-O-R
6 / 1	311.2	HUGHES CHRISTENSEN	MXL-1X	6065524	3x24	1,900.00 / 27-02-2008	2-8-WT-A-4-16-CT-PR

Printed: 25/03/2008 6:36:56PM

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 29-02-2008 API# 24 HRS PROG TMD TVD REPT NO 2,286.00 (m) OH 165.00 (m) 2,106.50 (m) 32 **BIT OPERATIONS** BIT / RUN FI OW PRESS 24 Hr PROG 24 HR ROP **CUM HRS** CUM PROG WOR PPM P BIT HRS CUM ROP 6/1 15/20 40/90 3,785.41 23,442 3560 10.00 165.00 16.5 28.50 386.00 13.5 **MOTOR OUTPUT** RPG: **ROTARY CURRENT: 40** TOTAL RPM: 240 I CM: **MUD PROPERTIES** MUD TYPE: VIS PV/YP GELS WL/HTHP FC/T.SOL OIL/WAT % SAND/MBT pH/Pm Pf/Mf CI Ca H2S KCL LGS (cp)/(Pa) (ml/30 min) (s/l ' (Pa) (mm)/(%) (%)/(sg) (mL) (%) (%) (mL) (ppm) (ppm) (ppm) PP DAILY COST 0 **CUM COST** 0 %OIL 09147 BHA 6 JAR S/N **BHA / HOLE CONDITIONS** JAR HRS BIT 6 **BHA WT BELOW JARS** STRING WT UP STRING WT DN STRING WT ROT TORQUE/UNITS **BHA LENGTH** (tonne) (kN-m) 348.79 (m) (tonne) (tonne) (tonne) ITEM DESCRIPTION NO JTS LENGTH O.D I.D CONN SIZE CONN TYPE 281.99 184.15 Heavy Weight Drill Pipe 0 82.55 0 1.22 215.90 73.15 Cross Over Drilling Jar 0 10.17 211.07 76.20 Drill Collar 0 18.89 209.55 69.85 Cross Over 0 0.70 203.20 82.55 Non-Mag Pony Collar 0 2.32 203.20 76.20 Logging While Drilling n 6 24 203 20 127.00 Saver Sub 0 0.62 209.55 82 55 0 Cross Over 0.47 211.07 107.95 Saver Sub 0 0.47 214.38 107.95 MWD Tool 0 212.85 7.56 129.79 0 0.47 214.38 107.95 Saver Sub Logging While Drilling 0 3.88 212.85 99.06 Cross Over 0 0.37 203.20 76.20 Non-Mag Pony Collar 0 2.90 206.50 76.20 Float Sub 0 0.65 203.20 82.55 0 9.50 237.74 Bent Housing Tri-Cone Bit 0 0.37 311.15 95.25 SURVEY MD AZI +E/-W V.SECT D.L TYPE DEG TVD +N/-S (°/30m) (m) (°) (°) (m) (m) (m) (m) NORMAL 2,125.42 47.49 318.95 1,998.82 336.07 -224.87 336.07 0.52 **NORMAL** 2,155.49 47.85 318.70 2,019.07 352.81 -239.50 352.81 0.40 NORMAL 2,185.00 47.98 319.61 2,038.85 369.37 -253.83 369.37 0.70 NORMAL 2,214.22 48.00 319.92 2,058.41 385.95 -267.85 385.95 0.24 -275.38 NORMAL 2.230.00 48.04 320.29 2.068.96 394.95 394.95 0.53 2.243.21 320.67 2.077.79 NORMAL 48.08 402.53 -281.63 402.53 0.65 NORMAL 2.272.78 47.76 323.36 2.097.61 419.82 -295.13 419.82 2.05

Printed: 25/03/2008 6:36:56PM

			AP	ACHE CO	DRPORATION					Page 3 of 3
			Da	aily Dril	ling Report					-
									DA ²	TE -02-2008
24 HPS P	POG		TMD			TVD				PT NO
)(m)			0 (m)			1110
)O (III)		2,100.50	0 (111)	ODD	32	
									-	
SPM	LINER		FLOW	SPP: 23,44	2 (kPa)			SPM		PPSR
				HP: 0.295 (kW/cm²)					
l.										
	T	QTY		HRS	COMPANY				QTY	HRS
		4		-		AROID)		2		
		9			APACHE			4		
		13			SEA DRILL			18		
		39			TAMBORITHA				AL PERSON	NNEL ON BOARD: 98
				SUPPOR	T CRAFT			1017	AL FERSO	NINEE ON BOARD. 90
						REMARKS				
			MAT	FRIALS/	CONSUMPTIO)N				
UNITS	Ιυ	ISAGE					UNITS	USAGE	<u> </u>	ON HAND
										-
					l					
				WEA	THER					
	WELL		WAV	′E	THER WIND SPE	ED/DIR	GUST SPI	EED/DIR		TEMP
	WELL DIR/PER		WAV HT/DIR/	′E		ED/DIR	GUST SPI	EED/DIR		TEMP
HT/I				/E /PER		ED/DIR	GUST SPI			ТЕМР
HT/I	DIR/PER		HT/DIR/	/E /PER	WIND SPE	ED/DIR				TEMP
HT//	DIR/PER		HT/DIR/	PER 000 DEC	WIND SPE			.00	LEG	TEMP PEN (S BOARD)
HT//	DIR/PER 00/ /12		/ /120.0	PER 000 DEC	wind spe	(BOW)	/240	.00 (PORT)	LEG	
HT//	DIR/PER 00/ /12		/ /120.0	PER 00 DEC	WIND SPE / KLOG LEG PEN ((BOW)	/240	.00 (PORT)	LEG	PEN (S BOARD)
HT//	DIR/PER 00/ /12	LIMIT	/ /120.0	PER 00 DEC	WIND SPE / / / / / / / / / / / / /	(BOW)	/240 LEG PEN	.00 (PORT)		PEN (S BOARD) 1.30
HT//	DIR/PER 00/ /12	UNIT	/ /120.0	PER 00 DEC	WIND SPE / KLOG LEG PEN ((BOW)	/240	.00 (PORT)		PEN (S BOARD)
	165.00 (m MUD P	SPM LINER	165.00 (m) MUD PUMPS/HYDRAUL SPM LINER QTY 4 9 13 2 39	24 HRS PROG 165.00 (m) 2,286.00	24 HRS PROG	24 HRS PROG 165.00 (m) 2,286.00 (m)	165.00 (m) 2,286.00 (m) 2,106.5	24 HRS PROG	24 HRS PROG	DA 29

Printed: 25/03/2008 6:36:56PM

APACHE CORPORATION Daily Drilling Report

Page 1 of 3

WELL NAME																		DAT	ГЕ
WASABI-1																		01-	03-2008
API#		24 HI	RS PI	ROG			TMD				ΤV	'D				REPT NO			
ОН		27.00) (m)				2,31	3.00 (m	1)				2,1	124.65 (m)				33	
RIG NAME NO			FIELD	ELD NAME				1	AUTI	H TMD	PLANNED			ow	DOL		DFS / KO		WATER DEPTH
WEST TRITON	WEST TRITON											15.98 (days) 21.58 (d			21.58 (days	s)	16.04 (da	ays)	27.00 (m)
SPUD DATE	Rig Release		v	WELL SUPERVISOR							'			OIM					PBTMD
09-02-2008			E	BILL OPENSHAW / 0000															
REGION		DISTRICT						STATE / PROV						RIG PI	ONE NO		RIG FAX NO		
AUSTRALIA			C	OFFSH	ORE		VICTORIA												
AFE # 067 08E43				AFE COSTS							DAILY CO	OSTS				CUML	JLATIVE C	OSTS	
DESCRIPTION:				DHC: 11,816,036						DHC:	718,226			DHC: 12,792,747					
				DCC	C:						DCC:					DCC:			
				cw	C:						CWC:					CWC:			
				Othe	ers:						Others:					Others	s:		
				TOT	TAL:	11,816,036					TOTAL:	718,226	3			TOTA	L: 12,79	2,747	
DEFAULT DATUM ROTARY TABLE /					LAST SAI	ETY MEET	ING	BLO	СК					FORMATION	N			ВН	A HRS OF SERVICE
LAST SURVEY							I	LAST CS	G SI	HOE TES	T (EMW)	LAST	CAS	SING		N	EXT CASIN	G	
MD 2,27	2.78 (m) II	NC 4	17.76°		AZM	323.36°	•	(sg)											
CURRENT ORERAT	IONE: Dun les	- #1 \/CI	D from	1205-	n Danth a	00,000 70	21.00	l lala laaa		in an atant	ina lonaina	- 0 E0 bble							

CURRENT OPERATIONS: Run log #1 VSP from 1395m. Depth at 06:00hrs 721m. Hole losses since starting logging 0.50 bbls.

24 HR SUMMARY: Drill 12 1/4" hole to 2313m, Circulate hole clean, POOH, logged sections 2270m - 2210m and 1980m -1780m. POOH, down load data from MWD.

Rigged up Schlumberger wireline.

24 HR FORECAST: Run logging program.

OPERATION SUMMARY

							
From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	5:30	5.50	P-DRL	DRLG	PP		Drill 12 1/4" hole from 2286m - 2313m. Pumped 10 bbls 15.80ppg pill at 2305m, observed increase of coal at bottoms up.
5:30	6:30	1.00	P-DRL	CIRC	PP		Circulate hole clean
6:30	7:30	1.00	P-DRL	TRIPBIT	PP		Flow check (Static) POOH to 2270m
7:30	9:00	1.50	P-DRL	RMWASH	PN	LP	Log up with LWD from 2270m - 2210m with 60rpm, 1080gpm, 60m/hr.
9:00	11:00	2.00	P-DRL	RMCLN	PN	HC	POOH from 2210m - 2186m, 40k overpull at 2186m, back ream from 2186m - 2041m
11:00	12:30	1.50	P-DRL	RMCLN	PN		Pump 10bbls 15.80ppg pill and contine back reaming from 2041m - 1980m. Tight spots at: 2186m, 2182, 2177m, 2148, 2115m 30k - 60k overpull
12:30	15:00	2.50	P-DRL	RMWASH	PN	LP	Log up from 1980m - 1777m with 60rpm, 1080gpm, 120 - 150m/hr.
15:00	19:00	4.00	P-DRL	TRIPBIT	PP		POOH from 1777m - 348M. Flow checked prior BHA at Bop's.
19:00	20:00	1.00	P-DRL	BHA	PP		Handle BHA to 38m.
20:00	21:00	1.00	P-DRL	ВНА	PN		Attempted to pull back stand 8 1/4" drill collar, wire line on air winch broke. Pulled drill collar into fingers with rig floor tugger and secure same.
21:00	22:00	1.00	P-DRL	BHA	PP		Handle BHA, layout Bat/Sonic and pony NMDC, drain motor and break out bit.
22:00	23:00	1.00	P-DRL	BHA	PP		Download data from RAB-8.
23:00	23:30	0.50	P-DRL	BHA	PP		Rack back stand (PDM / LWD).
23:30	0:00	0.50	PL-EVAL	SFTY	PP		Held JSA and rigged up Schlumberger wireline

24.00 = Total Hours Today

Printed: 25/03/2008 6:37:34PM

APACHE CORPORATION

Page 2 of 3

Daily Drilling Report

WELL NAME				DATE
WASABI-1				01-03-2008
API#	24 HRS PROG	TMD	TVD	REPT NO
ОН	27.00 (m)	2,313.00 (m)	2,124.65 (m)	33

06:00 UPDATE

0000-0600 00:00 - 01:00 - Held JSA and continued rigging up Schlumberger

01:00 - 02:00 - Pick up VSP tool string.
02:00 - 03:30 - RIH with log #1, VSP to HUD 1390m, 9 attempts to pass.

03:30 - 06:00 - Log up with VSP from 1385m.

00:00 TO 24:00 Hrs ON 01 Mar 2008

Operational Comments: 600kg Air winch on monkey board is too weak to pull 8 1/4" drill collars. Monkey board requires 2 x 1500kg air winches with remonte control unit. At pressent only one winch has remonte control. Rig has no spare parts for air winch's and no spare wire rope, only one wire rope for two winches.

Operational Comments: Interface between IBOP and PH rotating requires attention as at present it is in creep mode. Hence the longer times for handling BHA's.

Drillers instrutmention on screen still locking up, this has occurred in open hole while tripping and also while drilling.

Link tilt activating cylinder bent requires replacing. This is increasing the stress on the other cylinder. The latching and unlatching of the elevators is affected by this bent cylinder thus slowing down BHA handling times and tripping times.

Operational Comments: Jar hours (serial number 09147) = 145.5 hours.

				BIT DAT	A		
BIT / RUN	SIZE (mm)	MANUFACTURER	TYPE	SERIAL NO	JETS OR TFA	DEPTH IN / DATE IN	I-O-D-L-B-G-O-R
6/1	311.2	HUGHES CHRISTENSEN	MXL-1X	6065524	3x24	1,900.00 / 27-02-2008	2-8-WT-A-4-16-CT-PR

BIT OPERATIONS

BIT / RUN	WOB	RPM	FLOW	PRESS	P BIT	HRS	24 Hr PROG	24 HR ROP	CUM HRS	CUM PROG	CUM ROP
6/1	15/20	60/100	3.785.41	23,442	3650	4.50	27.00	6.0	33.00	413.00	12.5

						MOTOR	OUTPUT									
RPG:				ROTAI		RRENT: 80			TOTAL RPM: 200							
LCM:					MU	UD PROPEI	RTIES		MUD TYPE:							
VIS (s/l)	PV/YP (cp)/(Pa)	GELS (Pa)	WL/HTHP (ml/30 min)	FC/T.S (mm)/			% SAND/MBT (%)/(sg)			DH/Pm Pf/Mt (mL) (mL)		CI Ci (ppm) (ppi		H2S (%)	KCL (ppm)	LGS (%)
						PP	DAI			0	CUM	1 COST	0	%C	DIL	
ВНА	BHA 6 JAR S/N 09147					BHA / HC	LE CONDIT	IONS	3		JAR	HRS		ВІ	T	6
BHA V	VT BELOW JARS		STRING WT UP		STRING WT DN STRING WT ROT						TORQ	JE/UNITS		Bŀ	IA LENG	ГН
	(tonne) 111 (tonne)					tonne)	100 (to	nne)			20 (kN-m)		3	48.79 (m)	1
	ITE	M DESCRI	PTION			NO JTS	LENGTH		O.)		I.D	COI	NN SIZE	COI	NN TYPE
	Heavy Weight Drill Pipe					0	281.99		184.15		82.55					
		Cross Ov	er			0	1.22		215.90		73.15					
		Drilling Ja	ar			0	10.17		211.07			76.20				
		Drill Colla	ar		0		18.89		209.55			69.85				
		Cross Ov	er			0	0.70		203.20			82.55				
	No	n-Mag Pony	Collar		0		2.32		203.20		76.20					
	Log	ging While	Drilling			0	6.24	6.24 2		203.20		127.00				
		Saver Su	b		0		0.62		209.55		82.55					
		Cross Ov	er			0	0.47		211.07		107.95					
		Saver Su	b			0	0.47		214.	38	107.95					
		MWD To	ol			0	7.56		212.	85	129.79					
	Saver Sub					0	0.47		214.38		107.95					
	Logging While Drilling					0	3.88		212.85		99.06					
	Cross Over					0	0.37		203.20			76.20				

Printed: 25/03/2008 6:37:34PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 01-03-2008 API# 24 HRS PROG TMD TVD REPT NO ОН 27.00 (m) 2,124.65 (m) 33 2,313.00 (m) ITEM DESCRIPTION CONN SIZE NO JTS LENGTH O.D I.D CONN TYPE Non-Mag Pony Collar 2.90 206.50 76.20 0 0.65 82.55 Float Sub 0 203.20 Bent Housing 0 9.50 237.74 Tri-Cone Bit 0 0.37 311.15 95.25 MUD PUMPS/HYDRAULICS **SPR** STROKE SPM LINER FLOW SPP: 23,442 (kPa) SPM PPSR # 1 #2 #3 HP: 0.303 (kW/cm²) PERSONNEL DATA COMPANY COMPANY OTY HRS OTY HRS SCHLUMBERGER MWD/LWD 13 APACHE HALIBURTON 2 ADA TAMBORITHA 2 **CATERING** 9 ВНІ 5 SEA DRILL 18 SEA DRILL SERVICES HALIBURTON (BAROID) 2 **TOTAL PERSONNEL ON BOARD: 98** SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER MATERIALS/CONSUMPTION ON HAND ITEM ITEM UNITS USAGE UNITS USAGE ON HAND BARITE BULK CEMENT MT MT 101 153 BENTONITE МТ 26 BARACARB MT 0 WATER, POTABLE FUEL OIL MT 10 339 MT 33 116 WATER, DRILLING МТ 31 184 BASE OIL bbl 0 BRINE 0 bbl **WEATHER** TIME SWELL WAVE WIND SPEED/DIR **GUST SPEED/DIR** TEMP HT/DIR/PER HT/DIR/PER 00:00 3.00//12 //120.00 /240.00 **DECKLOG** AVG VDL LEG PEN (BOW) LEG PEN (S BOARD) MAX VDL ACT VDL LEG PEN (PORT) 1.20 1.30 MUD INVENTORY Day Cost (\$) ITEM UNIT USAGE ON HAND

Printed: 25/03/2008 6:37:34PM

APACHE CORPORATION

Page 1 of 3

Daily Drilling Report

WELL NAME																DA	ΤE
WASABI-1																02-	-03-2008
API#		24 HRS	PROG		-	TMD					T۱	VD				REF	PT NO
ОН		0.00 (m)			2	2,313	.00 (m)				2,	,124.65 (m)				34	
RIG NAME NO WEST TRITON		FIE	LD NAM	1E			AU	TH TMD		PLANNE 15.98 (da		, , ,	DOL 22.58 (days))	DFS / KO 17.04 (da		WATER DEPTH 27.00 (m)
SPUD DATE 09-02-2008	Rig Release			SUPERV PENSH	ISOR AW / RICHARI	D RED	DDINGS					OIM			·		PBTMD
REGION AUSTRALIA			DISTR I					STATE						RIG PH	ONE NO		RIG FAX NO
AFE # 067 08E43			AF	E COSTS	3				DAILY CO	OSTS				СИМИ	LATIVE CO	OSTS	
AFE # 067 08E43 DESCRIPTION:			DH DC CW	C:	11,816,036				DHC: DCC: CWC:	718,226	6			DHC: DCC: CWC:	13,510	0,973	
				ners: TAL:	11.816.036				Others: TOTAL:	718,226	3			Others		0.973	
DEFAULT DATUM / ELEVATION ROTARY TABLE / 38.00 (m)			110	_	AFETY MEETII	NG	BLOCK		1.0.ME.		_	FORMATION	I	1.3174			IA HRS OF SERVICE
-		•							•								-

LAST SURVEY

2,272.78 (m) INC 47.76° 323.36° (sg)

LAST CSG SHOE TEST (EMW)

LAST CASING

NEXT CASING

CURRENT OPERATIONS: RIH.

24 HR SUMMARY: Run log#1 VSP to 1390m. Unable to pass 1390m. Run VSP from 1385m to 66m. RIH log #2 PEX to 1390m. Unable to pass 1390m. Log up to 66m.

M/U BHA and RIH.

24 HR FORECAST: Continue RIH. Log up with LWD to 1740m. POOH. Run wireline logs.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	1:00	1.00	PL-EVAL	SFTY	PP		Held ICA and continued riggins up Cohlumberres
0.00	1.00	1.00	PL-EVAL	SFIT			Held JSA and continued rigging up Schlumberger.
1:00	2:00	1.00	PL-EVAL	LOG	PP		Pick up VSP tool string.
2:00	3:30	1.50	PL-EVAL	LOG	PP		RIH with log #1, VSP to HUD 1390m, 9 attempts to pass.
3:30	7:30	4.00	PL-EVAL	LOG	PP		Log up with VSP from 1385m - 66m
7:30	8:00	0.50	PL-EVAL	LOG	PP		Layout tool string.
8:00	10:30	2.50	PL-EVAL	LOG	CP		Pick up PEX-HRLA-MSIP tool string.
10:30	11:30	1.00	PL-EVAL	LOG	CP		Perform surface checks and install radioactive sources
11:30	16:00	4.50	PL-EVAL	LOG	CP		RIH with PEX-HRLA-MSIP to HUD at 1390m. Log SP and MSIP from 1390m - 1150m. Continue logging MSIP from 1150m - 66m.
16:00	18:00	2.00	PL-EVAL	LOG	CP		Lay out tools
18:00	18:30	0.50	PL-EVAL	LOG	PN		Change out elevators to 5 1/2". Install snubbing post in conjuction with NOV changing over valves on rotating head on top drive.
18:30	19:30	1.00	PL-EVAL	LOG	PN	LP	M/U bit # 7 and handle BHA.
19:30	21:00	1.50	PL-EVAL	LOG	PN	LP	Install radio active source into LWD.
21:00	23:00	2.00	PL-EVAL	LOG	PN	LP	RIH with BHA to 346m. Shallow test MWD
23:00	0:00	1.00	PL-EVAL	LOG	PN	LP	Continue RIH to 700m

24.00 = Total Hours Today

06:00 UPDATE

0000-0600

00:00 - 04:00 - Continued RIH to 1850m. Worked and wash hole from 1380m - 1383m. Worked hole from 1394m - 1396m, 1778m - 1780m, 1828m

-1830m with 20k - 40k overpull.

04:00 - 05:30 - Held up at 1850m with 40k down. Work pipe and jar up with up to 100k overpull five times, pipe free. Pump 30 bbls high vis and circulate hole clean while working pipe.

Large quantities of coal back over shakers.

05:30 - 06:00 - Continue RIH to 1930m

00:00 TO 24:00 Hrs ON 02 Mar 2008

Operational Comments: Interface between IBOP and PH rotating requires attention as at present it is in creep mode. Hence the longer times for handling BHA's.

Drillers instrutmention on screen still locking up, this has occurred in open hole while tripping and also while drilling. Link tilt activating cylinder bent requires replacing. This is increasing the stress on the other cylinder. The latching and unlatching of the elevators is affected by this bent cylinder thus slowing down BHA handling times and tripping times.

Operational Comments: Jar hours (serial number 09147) = 145.5 hours.

Printed: 25/03/2008 6:38:17PM

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 02-03-2008 API# 24 HRS PROG TMD TVD REPT NO 2,313.00 (m) ОН 0.00 (m) 2,124.65 (m) 34 **BIT DATA** BIT / RUN SIZE MANUFACTURER **TYPE** SERIAL JETS OR TFA **DEPTH IN / DATE IN** I-O-D-L-B-G-O-R (mm) NO 7 / 1 311.2 XR+CPS PF 5796 1x21, 3x24 2,313.00 / 02-03-2008 0-0-NO-A-0-I-NO-TD 6/1 311.2 HUGHES CHRISTENSEN MXL-1X 6065524 3x24 1,900.00 / 27-02-2008 2-8-WT-A-4-16-CT-PR **BIT OPERATIONS** BIT / RUN FLOW HRS 24 Hr PROG 24 HR ROP **CUM HRS CUM PROG CUM ROP** WOB RPM **PRESS** P BIT 0.00 0.00 0.0 MUD PROPERTIES LCM: MUD TYPE: LGS VIS PV/YP **GELS** WL/HTHP FC/T.SOL OIL/WAT % SAND/MBT pH/Pm Pf/Mf CI Ca H2S KCL (s/l) (cp) / (Pa) (Pa) (ml/30 min (mm)/(%) (%) (%)/(sg) (ppm) (ppm) (%) (ppm) (%) DAILY COST PP 0 CUM COST 0 %OIL 09147 JAR HRS JAR S/N 7 ВНА 7 **BHA / HOLE CONDITIONS** BIT **BHA WT BELOW JARS** STRING WT UP STRING WT DN STRING WT ROT TORQUE/UNITS **BHA LENGTH** (tonne) (tonne) (tonne) (tonne) (kN-m) 346.56 (m) ITEM DESCRIPTION NO JTS LENGTH O.D I.D **CONN SIZE CONN TYPE** Heavy Weight Drill Pipe 0 281.99 184.15 82 55 0 0.91 201.17 82.30 6 5/8 REG Cross Over Drilling Jar 0 211.07 10.17 76.20 2 Drill Collar 18.89 203.20 63.50 7 H-90 Cross Over 0 0.70 201.17 82.30 6 5/8 REG MWD Tool 0 6.37 203.20 76.20 6 5/8 REG Crossover 0 0.34 214.38 76.20 Crossover 0 0.47 211.07 107.95 0 0.47 209.55 107.95 Saver Sub MWD Tool 0 212.85 7.56 129.79 0 0.47 214.38 107.95 Saver Sub MWD Tool 0 203.20 6 5/8 REG 3.88 82.55 Cross Over 0 0.91 201.17 76.20 6 5/8 REG Non-Mag Pony Collar 0 2.90 206.50 76.20 Float Sub 0 0.65 203.20 82.55 Positive Displacement Motor 0 241.30 7 5/8 REG 9.50 95 25 Tri-Cone Bit 0 0.37 311.15 95.25 MUD PUMPS/HYDRAULICS **SPR** STROKE SPM LINER FLOW SPP: SPM PPSR #2 #3 HP: 0.000 (kW/cm²)

Printed: 25/03/2008 6:38:17PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 02-03-2008 TVD API# 24 HRS PROG TMD REPT NO 0.00 (m) ОН 2,313.00 (m) 2,124.65 (m) 34 PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS SEA DRILL 18 HALIBURTON HALIBURTON (BAROID) 2 CATERING SCHLUMBERGER MWD/LWD 13 SEA DRILL SERVICES 39 ВНІ TAMBORITHA 2 APACHE 4 ADA TOTAL PERSONNEL ON BOARD: 98 SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER HELICOPTER MATERIALS/CONSUMPTION ITEM UNITS USAGE ON HAND ITEM UNITS USAGE ON HAND BARITE BULK MT 153 CEMENT MT 101 BENTONITE BARACARB MT 26 МТ 0 **FUEL OIL** WATER, POTABLE MT 18 443 MT 28 88 WATER, DRILLING BASE OIL 0 МТ 8 176 bbl BRINE bbl 0 **WEATHER** TIME WIND SPEED/DIR **GUST SPEED/DIR** TEMP **SWELL** WAVE HT/DIR/PER HT/DIR/PER //120.00 00.00 3.00//12 /240.00 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.20 0.50 1.30 MUD INVENTORY

USAGE

Day Cost (\$)

UNIT

ITEM

ON HAND

Printed: 25/03/2008 6:38:17PM

APACHE CORPORATION Daily Drilling Report

Page 1 of 3

WELL NAME DATE WASABI-1 03-03-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) OH 2,313.00 (m) 2,124.65 (m) 35 RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 23.58 (days) 18.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR **PBTMD** 09-02-2008 BILL OPENSHAW / RICHARD REDDINGS STATE / PROV RIG PHONE NO DISTRICT **RIG FAX NO** REGION AUSTRALIA **OFFSHORE** VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 14,265,761 DHC: 11,816,036 DHC: 754,788 DCC: DCC: DCC: CWC: cwc. cwc. Others: Others: Others: TOTAL 11,816,036 TOTAL: 754,788 TOTAL: 14,265,761 LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 2,272.78 (m) 47.76° AZM 323.36° (sg)

CURRENT OPERATIONS: Layout BHA.

24 HR SUMMARY: RIH to 2313m. POOH logging up from 2313m - 1740m. Pumped 15bbls 15.8ppg pill and circulated hole clean. POOH to 1057m.

M/U BHA and RIH.

24 HR FORECAST: Run wireline logs. Commence plug and abandon program.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	4:00	4.00	PL-EVAL	LOG	PN		Continue RIH to 1850m. Worked and washed hole from 1380m - 1383m. Worked hole from 1394m - 1396m, 1778m - 1780m, 1828m -1830m with 20k - 40k down.
4:00	5:30	1.50	PL-EVAL	LOG	PN		Held up at 1850m with 40k down. Work pipe and jar up with up to 100k overpull five times, pipe free. Pump 30 bbls high vis and circulate hole clean while working pipe. Large quantities of coal back over shakers.
5:30	7:30	2.00	PL-EVAL	LOG	PN	LP	Continue RIH to 2167m.
7:30	9:30	2.00	PL-EVAL	LOG	PN	LP	Wash to bottom from 2167m to 2313. 4m fill on bottom.
9:30	10:00	0.50	PL-EVAL	LOG	PN	LP	Pump and displace 15 bbls of high vis 15.8 ppg pill from string.
10:00	20:30	10.50	PL-EVAL	LOG	PN		POOH logging from 2313m to 1740m at 120m/hr, 1100gpm. 60rpm. 1 - 6kft-lb tq. At 2146m pumped 15 bbls 15.8 ppg high vis pill. Tight spots at 2194 - 2193m, 2188m, 2182m, 2175m - 2172, 2166m, 2082m, 2006m, 1955m - 1953m, 1945m, 1847m, 1842m, 1837m. Average 5-10k overpull with drillstring torquing up.
20:30	21:30	1.00	PL-EVAL	LOG	PN		At 1740m pumped 15 bbls 15.8ppg high vis pill and circulated hole clean. Large quantities of coal back over shakers.
21:30	0:00	2.50	PL-EVAL	LOG	PN		Flow check (static). POOH wet from 1740m to 1440m. Pump and displace slug. Continue POOH from 1440m to 1057m

24.00 = Total Hours Today

06:00 UPDATE

0000-0600 00:00 - 02:30 - Continue POOH from 1057 to BHA.

02:30 - 03:00 - Retreive radioactive source from LWD.

03:00 - 04:00 - Lay out ADN-8.

04:00 - 05:00 - Unable to open elevators while laying out MWD. Remove link tilt pistons from bails.

05:00 - 06:00 - Continue layout MWD, RAB-8, Motor.

00:00 TO 24:00 Hrs ON 03 Mar 2008

Operational Comments: Interface between IBOP and PH rotating requires attention as at present it is in creep mode, hence the longer times for handling

BHA's. Drillers instrutmention on screen still locking up. This has occurred in open hole while tripping and also while drilling.

Link tilt activating cylinder bent requires replacing. This is increasing the stress on the other cylinder. The latching and

unlatching of the elevators is affected by this bent cylinder thus slowing down BHA handling times and tripping times.

Operational Comments: Jar hours (serial number 09147) = 145.5 hours.

Printed: 25/03/2008 6:38:56PM

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 03-03-2008 API# 24 HRS PROG TMD TVD REPT NO ОН 0.00 (m) 35 2,313.00 (m) 2,124.65 (m) **BIT DATA** BIT / RUN SIZE MANUFACTURER SERIAL JETS OR TFA **DEPTH IN / DATE IN** I-O-D-L-B-G-O-R TYPE (mm) NO 7 / 1 311.2 SMITH XR+CPS PF 5796 1x21, 3x24 2,313.00 / 02-03-2008 0-0-NO-A-0-I-NO-TD LCM: **MUD PROPERTIES** MUD TYPE: VIS PV/YP **GELS** WL/HTHP FC/T.SOL OIL/WAT % SAND/MBT pH/Pm Pf/Mf CI Ca H2S KCL LGS (s/l) (cp)/(Pa) (Pa) (ml/30 min) (mm)/(%) (%)/(sg) (mL) (mL) (ppm) (%) (ppm) (%) (%) (ppm) PP DAILY COST **CUM COST** 0 %OIL 09147 7 JAR S/N **BHA / HOLE CONDITIONS** JAR HRS **BHA WT BELOW JARS** STRING WT UP STRING WT DN STRING WT ROT TORQUE/UNITS **BHA LENGTH** (tonne) (tonne) (tonne) (kN-m) 346.56 (m) ITEM DESCRIPTION NO JTS LENGTH O.D I.D CONN SIZE CONN TYPE 0 281.99 184.15 82.55 Heavy Weight Drill Pipe Cross Over 0 0.91 201.17 82.30 6 5/8 REG Drilling Jar 0 10.17 211.07 76.20 Drill Collar 2 18.89 203.20 63.50 7 H-90 0 Cross Over 0.70 201.17 82 30 6 5/8 REG MWD Tool 0 6.37 203 20 76 20 6.5/8 RFG 0 0.34 214.38 76.20 Crossover 211.07 Crossover 0 0.47 107.95 0 0.47 209.55 Saver Sub 107.95 MWD Tool 0 212.85 129.79 7.56 Saver Sub 0 0.47 214.38 107.95 MWD Tool 0 3.88 203.20 82.55 6 5/8 REG Cross Over 0 0.91 201.17 76.20 6 5/8 REG Non-Mag Pony Collar 0 2.90 206.50 76.20 Float Sub 0 203.20 0.65 82.55 0 241.30 7 5/8 REG Positive Displacement Motor 9.50 95.25 Tri-Cone Bit 0 0.37 311.15 95.25 PERSONNEL DATA COMPANY COMPANY QTY HRS QTY HRS BHI SEA DRILL SERVICES 2 40 APACHE SEA DRILL 4 17 SCHLUMBERGER MWD/LWD HALIBURTON 13 ADA 5 TAMBORITHA 2 HALIBURTON (BAROID) WEATHERFORD 2 CATERING **TOTAL PERSONNEL ON BOARD: 97** SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER HELICOPTER PACIFIC VALKYRIE

Printed: 25/03/2008 6:38:56PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report** WELL NAME DATE WASABI-1 03-03-2008 API# 24 HRS PROG REPT NO TMD TVD 0.00 (m) ОН 2,313.00 (m) 2,124.65 (m) 35 MATERIALS/CONSUMPTION USAGE ON HAND USAGE ON HAND ITEM UNITS ITEM UNITS CEMENT BARITE BULK MT 153 MT 101 BENTONITE МТ 26 BARACARB МТ 0 WATER, POTABLE FUEL OIL MT 432 MT 19 169 11 WATER, DRILLING 99 BASE OIL bbl 0 BRINE 0 bbl **WEATHER** SWELL WAVE WIND SPEED/DIR **GUST SPEED/DIR** TEMP HT/DIR/PER HT/DIR/PER 00:00 3.00//12 //120.00 /240.00 / **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:38:56PM

APACHE CORPORATION

Page 1 of 3

Daily Drilling Report

WELL NAME																	DAT	ΓΕ	
WASABI-1																	04-	03-2008	
API#		24 HF	RS PR	OG		TI	MD					TV	'D				REF	PT NO	
ОН		0.00 ((m)			2,	313.	00 (m)				2,1	124.65 (m)				36		
RIG NAME NO			FIELD	NAME				AUT	H TMD		PLANNE	D DO	ow	DOL		DFS / KO		WATER DEP	TH
WEST TRITON	TRITON									15.98 (da	ays)	ſ	24.58 (days)		19.04 (da	ys)	27.00 (m)		
SPUD DATE	Rig Release		WE	ELL S	UPERVISO	R							OIM					PBTMD	
09-02-2008			ВІ	LL OF	PENSHAW	/ RICHARD	RED	DINGS											
REGION DISTRICT								STATE	/ PROV					RIG PI	IONE NO		RIG FAX NO		
AUSTRALIA			OF	FSHO	ORE				VICTOR	RIA									
AFE # 067 08E43				AFE	COSTS					DAILY CO	OSTS				сими	LATIVE CO	STS		
DESCRIPTION:				DHC): 1°	1,816,036				DHC:	658,690)			DHC:	14,924	,451		
				DCC	:					DCC:					DCC:				
				cwo	0:					CWC:					CWC:				
				Othe	ers:					Others:					Others	s:			
				тот	AL: 1	1,816,036				TOTAL:	658,690)			ТОТА	L: 14,924	,451		
DEFAULT DATUM / ROTARY TABLE / 3				ı	LAST SAFE	TY MEETING	3	BLOCK				1	FORMATION	1			ВН	A HRS OF SEF	RVICE
RUIART IABLE /	36.00 (111)																		
LAST SURVEY							LA	ST CSG S	HOE TES	ST (EMW)	LAST	CAS	SING		N	EXT CASING	G		
MD 2,272	2.78 (m) II	NC 4	7.76°		AZM	323.36°	(s	g)											

CURRENT OPERATIONS: RIH with open ended drill pipe to 2310m.

24 HR SUMMARY: POOH, layout MWD tool. R/U Schlumberger and Run log #2 MDT to HUD at 1499m, log as per program. Run log #4 to HUD 1500m and take shots as

per program. POOH with wire line.

24 HR FORECAST: Run VSI logs in drill pipe. POOH wire line and rig down same. Commence P&A program.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	2:30	2.50	PL-EVAL	LOG	PN	LP	Continued POOH from 1057m to BHA.
2:30	3:00	0.50	PL-EVAL	LOG	PN	LP	Retreived radioactive source from LWD.
3:00	4:00	1.00	PL-EVAL	LOG	PN	LP	Layed out ADN-8.
4:00	5:00	1.00	PL-EVAL	LOG	PN	RO	Unable to open elevators while laying out MWD. Removed link tilt pistons from bails.
5:00	6:30	1.50	PL-EVAL	LOG	PN	LP	Continued layout MWD, RAB-8, Motor.
6:30	8:00	1.50	PL-EVAL	LOG	PP		Held JSA and rigged up Schlumberger wireline equipment and MDT tools.
8:00	8:30	0.50	PL-EVAL	LOG	PP		Surface tested and calibrate MDT equipment.
8:30	10:00	1.50	PL-EVAL	LOG	PP		Run in hole with Schlumberger MDT to total depth 1499m.
10:00	17:00	7.00	PL-EVAL	LOG	PP		Logging with MDT.
17:00	18:00	1.00	PL-EVAL	LOG	PP		Layed down Schlumberger MDT tools.
18:00	20:00	2.00	PL-EVAL	LOG	CP		Make up Schlumberger CST tool string.
20:00	23:30	3.50	PL-EVAL	LOG	СР		Run in hole with CST tool string unable to pass 1500m . Take shots as per program Shot points at 1477.2m . 1448.1m . 1438.4m .1417.5m . 1410.4m . 1406.3m . 1379.3m . 1374.2m . 1354.1m . 1350m . 1344.4m . 1331m . 1329.5m . 1329m . 1328.5m . 1327.3m . 1319.2m . 1314.4m . 1303m . 1298.2m . 1295.2m . 1288m . 1276.8m . 1264.5m . 1262.9m . 1261.3m . 1259.3m . 1258.1m . 1256.4m . 1250m
23:30	0:00	0.50	PL-EVAL	LOG	CP		POOH with schlumberger CST tools

24.00 = Total Hours Today

06:00 UPDATE

0000-0600 00:00 - 01:00 - Continued POOH with CST tool and layed out same. 30 shots fired. 29 shots recovered.

01:00 - 01:30 $\,$ - Rigged down Schlumberger and clear rig floor.

01:30 - 02:30 - Change out elevators, picked up 6 jt's drill pipe, make up x/o, double box sub to drill pipe.

02:30 - 06:00 - RIH with open end drill pipe.

00:00 TO 24:00 Hrs ON 04 Mar 2008

Operational Comments: Interface between IBOP and PH rotating requires attention as at present it is in creep mode, hence the longer times for handling

BHA's.

Drillers instrutmention on screen still locking up. This has occurred in open hole while tripping and also while drilling. Link tilt activating cylinder bent requires replacing. This is increasing the stress on the other cylinder. The latching and

unlatching of the elevators is affected by this bent cylinder thus slowing down BHA handling times and tripping times.

Operational Comments: Jar hours (serial number 09147) = 145.5 hours.

Operational Comments: Note: Fuel figures reflect reconciliation of input error on previous report.

Printed: 25/03/2008 6:39:30PM

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 04-03-2008 API# 24 HRS PROG TMD TVD REPT NO 2,313.00 (m) ОН 0.00 (m) 36 2,124.65 (m) **BIT DATA** BIT / RUN SIZE MANUFACTURER SERIAL JETS OR TFA **DEPTH IN / DATE IN** I-O-D-L-B-G-O-R TYPE (mm) NO 7 / 1 311.2 SMITH XR+CPS PF 5796 1x21, 3x24 2,313.00 / 02-03-2008 0-0-NO-A-0-I-NO-TD **BIT OPERATIONS** BIT / RUN WOB RPM **FLOW PRESS** P BIT HRS 24 Hr PROG 24 HR ROP **CUM HRS CUM PROG CUM ROP** 7/1 4,163.95 22,063 0.00 0.00 0.0 LCM: **MUD PROPERTIES** MUD TYPE: **GELS** WL/HTHP FC/T.SOL OIL/WAT % SAND/MBT Ca H2S KCL LGS pH/Pm Pf/Mf CI (s/l) (cp) / (Pa) (Pa) (ml/30 min) (mm)/(%) (%) (%)/(sg) (mL) (ppm) (ppm) (%) (ppm) (%) DAILY COST **CUM COST** %OIL 0 0 JAR S/N 09147 JAR HRS BHA 7 BIT 7 **BHA / HOLE CONDITIONS BHA WT BELOW JARS** STRING WT UP STRING WT DN STRING WT ROT TORQUE/UNITS **BHA LENGTH** (tonne) (tonne) (tonne) (tonne) (kN-m) 346.56 (m) CONN SIZE CONN TYPE ITEM DESCRIPTION NO JTS LENGTH O.D I.D Heavy Weight Drill Pipe 0 281.99 184.15 82.55 0 201.17 82.30 6 5/8 REG Cross Over 0.91 Drilling Jar 0 211.07 76.20 10.17 Drill Collar 2 18.89 203.20 63.50 7 H-90 Cross Over 0 0.70 201.17 82.30 6 5/8 REG MWD Tool 0 6.37 203.20 76.20 6 5/8 REG 0.34 76 20 Crossover 0 214.38 Crossover 0 0 47 211 07 107.95 Saver Sub 0 0.47 209.55 107.95 MWD Tool 0 212.85 7.56 129.79 0 0.47 214.38 107.95 Saver Sub MWD Tool 0 3.88 203.20 6 5/8 REG Cross Over 0 0.91 201.17 76.20 6 5/8 REG Non-Mag Pony Collar 0 2.90 206.50 76.20 Float Sub 0 0.65 203.20 82.55 Positive Displacement Motor 0 9.50 241.30 95.25 7 5/8 REG Tri-Cone Bit 0 0.37 311.15 95.25 MUD PUMPS/HYDRAULICS **SPR** STROKE SPM LINER FLOW SPP: 22,063 (kPa) SPM PPSR # 1 #2 #3 HP: 0.000 (kW/cm²)

Printed: 25/03/2008 6:39:30PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 04-03-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) 36 ОН 2,313.00 (m) 2,124.65 (m) PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS ВНІ 2 APACHE ADA 4 CATERING HALIBURTON 2 WEATHERFORD HALIBURTON (BAROID) 2 SEA DRILL SERVICES 40 PROTECH SEA DRILL 17 1 SCHLUMBERGER MWD/LWD TAMBORITHA 13 **TOTAL PERSONNEL ON BOARD: 98** SUPPORT CRAFT TYPE REMARKS HELICOPTER PACIFIC WRANGLER HELICOPTER MV BATTLER PACIFIC VALKYRIE MATERIALS/CONSUMPTION USAGE ON HAND ITEM UNITS ON HAND ITEM UNITS USAGE CEMENT BARITE BULK МТ МТ 101 153 BENTONITE MT 26 BARACARB MT 0 WATER, POTABLE FUEL OIL MT 421 МТ 169 11 WATER, DRILLING BASE OIL bbl 0 MT 99 BRINE bbl **WEATHER** TIME **SWELL** WAVE WIND SPEED/DIR **GUST SPEED/DIR TEMP** HT/DIR/PER HT/DIR/PER 00:00 1.80/ /12 //120.00 /100.00 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (S BOARD) LEG PEN (PORT) 1.20 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:39:30PM

APACHE CORPORATION Daily Drilling Report

Page 1 of 3

WELL NAME																	DATI	E
WASABI-1																	05-0	3-2008
API#		24 HRS	PROG	÷	Т	MD					TV	D					REP	Г NO
ОН		0.00 (m	1)		2	313.0	00 (m)			:	2,1	24.65 (m)					37	
RIG NAME NO		FI	ELD NA	ME	·		AUT	H TMD		PLANNED	DC)W	DOL		DFS	s / KO		WATER DEPTH
WEST TRITON										15.98 (day	/s)		25.58 (days))	20.0	04 (days	s)	27.00 (m)
SPUD DATE	Rig Release		WELL	SUPERVIS	SOR							OIM						PBTMD
09-02-2008			BILL	OPENSHA	W / RICHARD	REDE	DINGS											
REGION			DIST	RICT				STATE / P	ROV					RIG PI	IONE	NO		RIG FAX NO
AUSTRALIA			OFFS	SHORE				VICTORIA	Ą									
AFE # 067 08E43			А	FE COSTS				D.	AILY CO	STS				CUMU	JLATI	VE COS	TS	
DESCRIPTION:			D	HC:	11,816,036			D	HC:	610,883				DHC:	•	15,535,3	334	
			D	CC:				D	CC:					DCC:				
			C	:WC:				C	WC:					CWC:				
			0	thers:				0	thers:					Others	3:			
			T	OTAL:	11,816,036			T(OTAL:	610,883				TOTA	.L: ´	15,535,3	334	
DEFAULT DATUM ROTARY TABLE /				LAST SA	AFETY MEETIN	G	BLOCK				F	FORMATION	N				ВНА	HRS OF SERVICE
LAST SURVEY						LAS	ST CSG S	HOE TEST	(EMW)	LAST C	AS	ING		N	EXT (CASING		
MD 2,27	2.78 (m) II	NC 47.	76°	AZM	323.36°	(sg)											

CURRENT OPERATIONS: Cement plug #1 at 1270m - 1210m.

24 HR SUMMARY: RIH DP , rig up schlumberger , log with VSP tools..

24 HR FORECAST: Plug and abandon well.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	1:00	1.00	PL-EVAL	LOG	PP		Continued POOH with CST tool and layed out same. 30 shots fired. 29 shots recovered.
1:00	1:30	0.50	PL-EVAL	LOG	PP		Rigged down Schlumberger and clear rig floor.
1:30	2:30	1.00	PL-EVAL	TRIPBIT	PP		Change out elevators, picked up 6 jt's drill pipe, make up x/o, double box sub to drill pipe.
2:30	8:00	5.50	PL-EVAL	TRIPBIT	PP		RIH with open end drill pipe to 1927m. Held up with 20k down.
8:00	8:30	0.50	PL-EVAL	RMWASH	PN	LP	Washed down from 1927m to 1951m with 180spm at 800psi.
8:30	9:30	1.00	PL-EVAL	TRIPBIT	PN	LP	Continued to RIH from 1951m to 2310m.
9:30	10:30	1.00	PL-EVAL	CIRC	PN		Circulate hole clean. Concurrent operation change out elevators and bails in readiness for logging.
10:30	13:00	2.50	PL-EVAL	LOG	PN		Install schlumberger sheave at crown while circulating. Held toolbox meeting and conduct JSA prior to job.
13:00	14:30	1.50	PL-EVAL	LOG	PN	LP	Picked up Schlumberger VSP tools.
14:30	21:00	6.50	PL-EVAL	LOG	PP		Schlumberger RIH and conduct VSP logging as per program.
21:00	22:00	1.00	PL-EVAL	LOG	PN	LP	Layed down Schlumberger VSP tool string.
22:00	23:30	1.50	PL-EVAL	LOG	PN		Riggged down Schlumberger wireline and remove sheave from crown. Held pre job safety meeting.
23:30	0:00	0.50	PL-EVAL	LOG	PN	DW	Draworks fault, no control to draworks , troubleshoot draworks B encoder fault.

24.00 = Total Hours Today

Printed: 25/03/2008 6:40:05PM

APACHE CORPORATION

Page 2 of 3

Daily Drilling Report

WELL NAME				DATE
WASABI-1				05-03-2008
API#	24 HRS PROG	TMD	TVD	REPT NO
ОН	0.00 (m)	2,313.00 (m)	2,124.65 (m)	37

06:00 UPDATE

0000-0600 00:00 - 00:30 - Trouble shooting problem with draworks, fault appears to be encoder on draworks "B" drive motor.

00:30 - 01:00 - Unable to use 500 ton long bails as link tilt piston bent and unable to attach same to bails. Changed out bails and elevators. 01:00 - 03:00 - POOH.

03:00 - 03:30 - Fire alarm , secure well, rig to muster stations.

Fire alarm was false alarm caused by cement dust in "P" tank area.

03:30 - 05:00 - Continue to POOH to 1330m.

05:00 - 05:30 - At 1330m pumped and displaced 30 bbls hi-vis pill.

05:30 - 06:00 - POOH 1330m to 1270m and rig up for cement plug #1 at 1270m - 1210m.

00:00 TO 24:00 Hrs ON 05 Mar 2008

Operational Comments: Interface between IBOP and PH rotating requires attention as at present it is in creep mode, hence the longer times for handling

BHA's.

Drillers instrutmention on screen still locking up. This has occurred in open hole while tripping and also while drilling. Link tilt activating cylinder bent requires replacing. This is increasing the stress on the other cylinder. The latching and slowing down BHA handling times and tripping times.

unlatching of the elevators is affected by this bent cylinder thus

Operational Comments: Jar hours (serial number 09147) = 145.5 hours.

Operational Comments: Note: Fuel figures reflect reconciliation of input error on previous report.

									BIT DA	ATA										
BIT /	RUN	SIZE (mm		MA	NUFACTURE	₹	TY	/PE	SERIAL NO		JETS C	OR TFA		DEPT	H IN / DA	TE IN		I-O-D	-L-B-G-	O-R
7 /	′ 1	311.2			SMITH		XR+	-CPS	PF 5796		1x21,	3x24	丁	2,313.	00 / 02-03	3-2008	T	0-0-N	O-A-0-I-	NO-TD
LCM:							М	UD PR	OPERI	TIES				N	IUD TYPE	≣:				
VIS (s/l)	PV/YF (cp) / (P		GELS (Pa)		WL/HTHP (ml/30 min)	FC/T.			/WAT %)	% SAND/ (%)/(s		pH/Pm (mL)		Pf/Mf (mL)	CI (ppm)	Ca (ppm		H2S (%)	KCL (ppm)	LGS (%)
				\Box																
								PP			DAILY		0		M COST	0	- 1	%OI		
BHA								BHA	A / HOLI	E CONI	DITIO	NS		JAF	RHRS			BIT		7
BHA V	BHA WT BELOW JARS STRING WT UP						STRIN	G WT DN		STR	ING WT	ROT			UE/UNITS	3			LENG	
	(tonne) (tonne)							onne)			(tonne)			(1	(N-m)			34	6.56 (m)
	ITEM DESCRIPTION							NO JTS	3	LENG	TH	0.	D		I.D	С	ONN	SIZE	CO	NN TYPE
	Heavy Weight Drill Pipe							0		281.9	99	184	.15		82.55					
			Cross Ov	er er				0		0.91	ı	201	.17		82.30				6 5	5/8 REG
			Drilling J	ar				0		10.1	7	211	.07		76.20					
			Drill Coll	ar				2		18.8	9	203	.20		63.50				7	7 H-90
			Cross Ov	er er				0		0.70)	201	.17		82.30				6 5	5/8 REG
			MWD To	ol				0		6.37	7	203	.20		76.20				6 !	5/8 REG
			Crossov	er				0		0.34	1	214	.38		76.20					
			Crossov	er				0		0.47	7	211	.07		107.95					
			Saver Su	ıb				0		0.47	7	209	.55		107.95					
			MWD To	ol				0		7.56	3	212	.85		129.79					
			Saver Su	ıb				0		0.47	7	214	.38		107.95					
	MWD Tool							0		3.88	3	203	.20		82.55				6 5	5/8 REG
	Cross Over							0		0.91	I	201	.17		76.20				6 5	5/8 REG
		Non-	Mag Pon	y Collar				0		2.90)	206	.50		76.20					
			Float Su	b				0		0.65	5	203	.20		82.55					
	Positive Displacement Motor							0		9.50)	241	.30		95.25				7 !	5/8 REG
	Tri-Cone Bit							0		0.37	7	311	.15		95.25					

Printed: 25/03/2008 6:40:05PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 05-03-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) 37 ОН 2,313.00 (m) 2,124.65 (m) PERSONNEL DATA COMPANY QTY COMPANY QTY HRS CATERING SEA DRILL 17 SEA DRILL SERVICES SCHLUMBERGER MWD/LWD 38 APACHE DRIL-QUIP 2 3 HALIBURTON HALIBURTON (BAROID) 2 2 TAMBORITHA 2 BHI 2 Q-TECH 1 ADA WEATHERFORD 4 TOTAL PERSONNEL ON BOARD: 94 SUPPORT CRAFT REMARKS TYPE PACIFIC WRANGLER HELICOPTER MV BATTLER PACIFIC VALKYRIE MATERIALS/CONSUMPTION ITEM ON HAND ITEM UNITS USAGE ON HAND UNITS USAGE CEMENT BARITE BULK МТ МТ 101 153 BENTONITE MT 26 BARACARB MT 0 WATER, POTABLE FUEL OIL 401 МТ 21 208 MT 20 WATER, DRILLING BASE OIL bbl 0 MT 19 170 BRINE bbl **WEATHER** TIME **SWELL** WAVE WIND SPEED/DIR **GUST SPEED/DIR TEMP** HT/DIR/PER HT/DIR/PER 00:00 1.80//12 //120.00 /100.00 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (S BOARD) LEG PEN (PORT) 1.20 0.50 1.30

ITEM

UNIT

 MUD INVENTORY
 Day Cost (\$)
 ON HAND

Printed: 25/03/2008 6:40:05PM

APACHE CORPORATION Daily Drilling Report

Page 1 of 3

						C	Daily D	rilling	g Rep	ort								
WELL NAME																DA	TE	Ī
WASABI-1																06-	-03-2008	
API#		24 HRS	PROG			TMD					T۱	VD				RE	PT NO	
ОН		0.00 (m))			2,313	.00 (m)				2,	124.65 (m)				38		
RIG NAME NO WEST TRITON		FIE	LD NAM	IE			AUT	'H TMD		PLANNE 15.98 (da		,	DOL 26.58 (days	- 1	DFS / KO 21.04 (da		WATER DEPTH 27.00 (m)	
SPUD DATE 09-02-2008	·		SUPERV PENSH	ISOR AW / RICHAF	RD RED	DDINGS					OIM		·			PBTMD		
REGION AUSTRALIA			DISTRI OFFSH					STATE /						RIG PHO	NE NO		RIG FAX NO	
AFE # 067 08E43			AF	E COST	S			I	DAILY CO	OSTS				CUMUL	ATIVE CO	OSTS		
AFE#067 08E43 DESCRIPTION:			DH DC CW	C: /C:	11,816,036			ı	DHC: DCC: CWC:	588,915	5			DHC: DCC: CWC:	16,12	4,249		
				ers: TAL:	11,816,036				Others: TOTAL:	588,915	5			Others:	16,12	4 249		
DEFAULT DATUM / ELEVATION ROTARY TABLE / 38.00 (m)			ļī U		AFETY MEET	ING	BLOCK			223,010	_	FORMATION	I	1.31712	.0,12		IA HRS OF SERVIC	Ē
AST SURVEY						LA	AST CSG S	HOE TEST	T (EMW)	LAST	CAS	SING		NE	XT CASIN	IG		

CURRENT OPERATIONS: Nippling down diverter and Bop's.

INC 47.76°

2,272.78 (m)

24 HR SUMMARY: RIH and set cement plugs, 1270-1210m, 1150m - 887m, 121m - 76m. Test cement plug #2 to 1350 psi 10 minutes good test.

323.36°

24 HR FORECAST: Nipple down Bops, retrieve 20"casing and layout same. Prepare rig for rig move.

AZM

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	0:30	0.50	P-DRL	TRIPBIT	PN	RO	Trouble shooting problem with draworks, fault appears to be encoder on draworks "B" drive motor.
0:30	1:00	0.50	P-DRL	TRIPBIT	PN	RO	Unable to use 500 ton long bails as link tilt piston bent and unable to attach same to bails. Changed out bails and elevators.
1:00	3:00	2.00	P-DRL	TRIPBIT	PP		РООН.
3:00	3:30	0.50	P-DRL	TRIPBIT	PN	E	Fire alarm , secure well, rig to muster stations. Fire alarm was false alarm caused by cement dust in "P" tank area.
3:30	6:30	3.00	P-DRL	TRIPBIT	PP		Continue to POOH to 1330m.
6:30	7:30	1.00	P-DRL	CIRC	PP		Circulate and condition mud, spot 30 bbls Hi/vis pill at 1330m. POOH to 1270m.
7:30	9:00	1.50	P-CMT	RURDCU	PP		Rig up cement head, test lines 1000psi, mix and pump cement 47 bbls "G" cement. Plug #1 from 1270m - 1210m.
9:00	9:30	0.50	P-CMT	BPLUG	PP		Rig down cement head and POOH from 1330m to 1150m.
9:30	10:00	0.50	P-CMT	CIRC	PP		Reverse circulate 2 x drill pipe volumes, no cement returns.
10:00	10:30	0.50	P-CMT	CIRC	PP		Spot 202 bbls Hi/vis pill at 1150m.
10:30	11:30	1.00	P-CMT	CIRC	PP		POOH from 1150m to 887m.
11:30	12:30	1.00	P-CMT	RURDCU	PP		Rig up cement head, test lines 1000psi, mix and pump cement 44 bbls "G" cement. Plug #2 from 887m - 797m.
12:30	13:00	0.50	P-CMT	CIRC	PP		POOH from 887m to 737m.
13:00	13:30	0.50	P-CMT	CIRC	PP		Reverse circulate 2 x drill pipe volumes, no cement returns.
13:30	14:00	0.50	P-CMT	CIRC	PP		Pipe back flowing , make up TDS and circulate and balance mud.
14:00	15:30	1.50	P-CMT	RIGSER	PP		POOH from 737m to surface.
15:30	16:00	0.50	P-CMT	RIGSER	PP		Held JSA and tidy rig floor.
16:00	17:30	1.50	P-CMT	RIGSER	PN	RO	Wait on rig , unable to latch elevator on stand of drill collars at monkey board due to bent link tilt piston on top drive.
17:30	18:30	1.00	P-CMT	RIGSER	PP		Lay down BHA 1 x drilling jar , 2 x 8 1/4" drill collars.
18:30	19:00	0.50	P-CMT	RIGSER	PP		RIH open end drill pipe to 121m.
19:00	20:00	1.00	P-CMT	woc	PP		Flush diverter system with sea water.
20:00	21:00	1.00	PL-EVAL	HLPREP	PP		Pressure test cement plug #2 to 1350psi (500 psi over Leak Pressure at 13 3/8" casing shoe.) for10 minutes, good test. Note: the DPI (David Wong) approved pressure testing only, i.e. no tag for this plug.
21:00	22:30	1.50	PL-EVAL	HLPREP	PP		Rig up cement head, test lines 1000psi, mix and pump cement 50.5 bbls "G" cement. Plug #3 from 121m - 76m.
22:30	23:00	0.50	P-CMT	RURDCU	PP		Lay down cement head and POOH from 121m to 75m.
23:00	0:00	1.00	P-CMT	CIRC	PP		Reverse circulate 2 x drill pipe volumes, no cement returns. Continue resverse circulate

Printed: 25/03/2008 6:41:10PM

APACHE CORPORATION

Page 2 of 3

38

Daily Drilling Report

 WELL NAME
 DATE

 WASABI-1
 06-03-2008

 API #
 24 HRS PROG
 TMD
 TVD
 REPT NO

2,313.00 (m) 2,124.65 (m)

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
							annulus to sea water.

24.00 = Total Hours Today

0.00 (m)

06:00 UPDATE

0000-0600 00:00 - 01:00 - POOH from 76m.

ОН

01:00 - 02:30 - Make up 20" casing cutter and RIH. 02:30 - 03:00 - Cut 20" casing at 67m RKB.

03:00 - 04:00 - POOH with casing cutter assy and rack in derrick.

04:00 - 04:30 - Make up running tool, retreive wear bushing, layout running tool. Wear on aft lip of wear bushing.

04:30 - 06:00 - Nipple down and lay out diverter.

00:00 TO 24:00 Hrs ON 06 Mar 2008

Operational Comments: Interface between IBOP and PH rotating requires attention as at present it is in creep mode, hence the longer times for handling

BHA's.

Drillers instrutmention on screen still locking up. This has occurred in open hole while tripping and also while drilling.

Link tilt activating cylinder bent requires replacing. This is increasing the stress on the other cylinder. The latching and

unlatching of the elevators is affected by this bent cylinder thus slowing down BHA handling times and tripping times.

Operational Comments: Jar hours (serial number 09147) = 145.5 hours.

ΙT	DAT	

BIT /	BIT / RUN SIZE MANUFACTURER (mm)				₹	TYPE SERIA NO			JETS (OR TFA		DEPTH IN / DATE IN				I-O-D-L-B-G-O-R			
7 / 1 311.2 SMITH						XR+	(R+CPS PF 5796 1x21, 3x24 2,313.00 / 02-03-2008 0-0-NO-A-0							-0-I-NO-TE)				
LCM: MUD PROPERTIES MUD TYPE:																			
VIS (s/l)	PV/Y (cp) / (I		GEl (Pa		WL/HTHP (ml/30 min)	FC/T.S (mm)/			_/WAT [%)	% SAND/MBT (%)/(sg)	pH/Pm (mL)		Pf/Mf CI (mL) (ppm)		Ca (ppm	H25		CL LGS	
								PP		DAILY	COST	0	T CUI	и COST	0		%OIL		
5					09147						<u> </u>	0	-	RHRS				<u> </u>	
ВНА		7	J	IAR S/N						E CONDITIC							BIT	7	_
BHA V	VT BELOW	/ JARS			NG WT UP			G WT DN	1	STRING WT				UE/UNITS			BHA LI		
	(tonne)			(tonne)		(to	onne)		(tonne)	1		(1	(N-m)		346.56 (m)			
		ITI	EM DESC	CRIPTIO	N			NO JT	S	LENGTH	1.0)		I.D	С	ONN SIZ	E	CONN TY	PE
		Hea	avy Weigh	ht Drill P	ipe			0		281.99	184.	15		82.55					
			Cross	Over				0		0.91	201.	201.17 82.30				6 5/8 REG			
			Drilling	g Jar			0			10.17	211.	211.07		76.20					
			Drill C	ollar			2			18.89	203.	203.20 63.						7 H-90	
			Cross	Over				0		0.70 201.17 82.30					6 5/8 RE	G			
			MWD	Tool			0			6.37	203.20		76.20					6 5/8 REG	
			Cross	over			0			0.34	214.	38		76.20					
			Cross	over				0		0.47 211.07			107.95						
			Saver	Sub				0		0.47 209.55			107.95						
			MWD	Tool			0			7.56 212.85		85	129.79						
Saver Sub							0			0.47 214.38		38	107.95						
MWD Tool							0			3.88 203.20		20	82.55					6 5/8 RE	G
Cross Over								0		0.91	201.	201.17 76.20		76.20				6 5/8 RE	G
Non-Mag Pony Collar							0		2.90	206.	50	76.20							
Float Sub						0			0.65	203.	20	82.55							
		Positiv	ve Displac	cement I	Motor			0		9.50	241.30		95.25					7 5/8 RE	G
			Tri-Cor	ne Bit				0		0.37	311.	15		95.25					

Printed: 25/03/2008 6:41:10PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 06-03-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) 38 ОН 2,313.00 (m) 2,124.65 (m) PERSONNEL DATA COMPANY QTY COMPANY QTY HRS CATERING 9 HALIBURTON (BAROID) 2 SEA DRILL SERVICES 40 FURGO 2 Q-TECH DRIL-QUIP 2 HALIBURTON 2 WEATHERFORD SCHLUMBERGER MWD/LWD 3 SEA DRILL 13 TAMBORITHA 2 APACHE 2 ADA **TOTAL PERSONNEL ON BOARD: 88** SUPPORT CRAFT REMARKS TYPE PACIFIC WRANGLER MV BATTLER PACIFIC VALKYRIE MATERIALS/CONSUMPTION ITEM UNITS USAGE ON HAND UNITS USAGE ON HAND BARITE BULK МТ 153 CEMENT МТ 81 BENTONITE MT 26 BARACARB МТ 0 **FUEL OIL** ΜT 394 WATER, POTABLE МТ 20 188 WATER, DRILLING МТ 40 130 BASE OIL bbl 0 **BRINE** bbl 0 **WEATHER** TIME SWELL WAVE WIND SPEED/DIR **GUST SPEED/DIR** TEMP HT/DIR/PER HT/DIR/PER 00:00 1.80//12 //120.00 /100.00 **DECKLOG**

MAX VDL	ACT VDL	AVG VDL	LEG PEN (BOW)	LEG PEN (PORT)	LEG PEN (S BOARD)						
			1.20	0.50	1.30						

MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:41:10PM

APACHE CORPORATION Daily Drilling Report

Page 1 of 3

WELL NAME DATE WASABI-1 07-03-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) 2,124.65 (m) OH 2,313.00 (m) 39 RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DOL DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 27.58 (days) 22.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR PBTMD 09-02-2008 BILL OPENSHAW / RICHARD REDDINGS DISTRICT STATE / PROV RIG PHONE NO RIG FAX NO REGION AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 11,816,036 DHC: DHC: 16,698,777 574,528 DCC: DCC: DCC: CWC: CWC: CWC: Others: Others: Others: TOTAL: 11,816,036 <u>16,698,</u>777 TOTAL: 574,528 TOTAL: LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 2,272.78 (m) INC 47.76° AZM 323.36° (sg) CURRENT OPERATIONS: Skid cantilever into transit position.

24 HR SUMMARY: Cut casing at 67m, POOH with cutting assy. Nippled down diverter system, nipple down and racked Bop's. Recovered wellhead and 20" casing .

preparing rig for skidding and jacking.

24 HR FORECAST: Skid rig in and jack down, tow to new location.

OPERATION SUMMARY

From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY
0:00	1:00	1.00	P-CMT	TRIPBIT	PP		POOH from 76m.
1:00	2:30	1.50	P-CMT	TRIPBIT	PP		Make up 20" casing cutter and RIH.
2:30	3:00	0.50	P-CSG	CSGRP	PP		Cut 20" casing at 67m RKB.
3:00	4:00	1.00	P-CSG	TRIPBIT	PP		POOH with casing cutter assy and rack in derrick.
4:00	5:00	1.00	P-NUP	WLHEAD	PP		Make up running tool, retreived wear bushing, layed out running tool. Wear on aft lip of wear bushing.
5:00	11:00	6.00	P-NUP	WLHEAD	PP		Rigged to pull diverter, lay out diverter insert, lay out divrter overshot ,diverter asssy/bell nipple. Removed choke line, lift and racked back Bop's in set back area.
11:00	11:30	0.50	P-NUP	WLHEAD	PP		Layed out Bop's slings, make up wellhead retreiving tool.
11:30	12:00	0.50	P-NUP	WLHEAD	PP		Engaged wellhead retreiving tool to wellhead.
12:00	12:30	0.50	P-NUP	WLHEAD	PP		Removed side out let valves from wellhead.
12:30	13:00	0.50	P-NUP	WLHEAD	PP		Pull wellhead to rigfloor and rack back 1 std drill pipe.
13:00	13:30	0.50	P-CSG	CSGRP	PP		Cleared rig floor snd conduct JSA for laying down wellhead and 20" casing.
13:30	17:00	3.50	P-CSG	CSGRP	PP		Layed down wellhead, running tool,20" casing. Unable to break out one joint, cut of same and lay down.
17:00	17:30	0.50	P-CSG	CSGRP	PP		Rigged down weatherford casing equipment.
17:30	18:30	1.00	P-CSG	RIGSER	PP		Breaked down and layout casing cutter assy.
18:30	20:00	1.50	R-MOB-DEM OB	MOB	PP		Rigged up Bop slings, Remove work platform from Texas deck.
20:00	21:30	1.50	R-MOB-DEM OB	MOB	PP		Removed CTU from from Texas deck and set on stump.
21:30	0:00	2.50	R-MOB-DEM OB	МОВ	PP		Hanged choke line, clear texas deck, remove stair's from Texas deck.

24.00 = Total Hours Today

Printed: 25/03/2008 6:41:44PM

APACHE CORPORATION

Page 2 of 3

Daily Drilling Report

WELL NAME								
WASABI-1				07-03-2008				
API#	24 HRS PROG	TMD	TVD	REPT NO				
ОН	0.00 (m)	2,313.00 (m)	2,124.65 (m)	39				

06:00 UPDATE

0000-0600

00:00 - 04:30 - Continued preparing rig package for skidding into transit position.

Install slings from blocks to Texas deck, removed rig floor service lines. 04:30 - 06:00 - Skidded in 3 feet and remove gumbo shaker overboard line.

00:00 TO 24:00 Hrs ON 07 Mar 2008

Operational Comments: Interface between IBOP and PH rotating requires attention as at present it is in creep mode, hence the longer times for handling

BHA's.

Drillers instrutmention on screen still locking up. This has occurred in open hole while tripping and also while drilling.

Link tilt activating cylinder bent requires replacing. This is increasing the stress on the other cylinder. The latching and

unlatching of the elevators is affected by this bent cylinder thus slowing down BHA handling times and tripping times.

Operational Comments: Jar hours (serial number 09147) = 145.5 hours.

Operational Comments: ROV carried out sea bed survey, no debris etc on sea bed.

BIT DATA																				
BIT /	BIT / RUN SIZE MANUFACTURER (mm)				TY	PE S	ERIAL NO				DEPTH IN / DATE IN				I-O-D-L-B-G-O-R					
7 /	1	311.	2	SMITH			XR+	-CPS P	PF 5796	1x21, 3x24			2,313.00 / 02-03-2008				0-0-NO-A-0-I-NO-TD			
LCM:							М	UD PROI	PER	TIES				MUD TYPE	≣:					
VIS (s/I)	PV/YF (cp) / (F		GELS (Pa)		WL/HTHP (ml/30 min)	FC/T.S (mm)/		OIL/WA	ΑT	% SAND/MBT (%)/(sg)	pH/Pm (mL)		Pf/Mf C (mL) (ppr		Ca (ppm		H2S (%)	KCL (ppm)	LGS (%)	
								PP		DAILY	COST	0	C	UM COST	0		%OII	<u> </u>		
BHA		7	JAR	S/N	09147			BHA /	HOL	E CONDITIC	NS		J	AR HRS			BIT		7	
BHA W	T BELOW	JARS	;	STRING	WT UP		STRIN	G WT DN		STRING WT	ROT		TOF	QUE/UNITS	3		BHA	LENG	гн	
	(tonne)			(ton	nne)		(to	onne)		(tonne))			(kN-m)			34	6.56 (m)	١	
		ITE	M DESCRII	PTION				NO JTS		LENGTH	(O.D		I.D	С	ONN	SIZE	COI	NN TYPE	
		Heav	y Weight D	rill Pipe	•			0		281.99	18	34.15		82.55						
			Cross Ove	er			0			0.91	20)1.17		82.30					6 5/8 REG	
			Drilling Ja	ır			0 10.17 211.07 76.20													
			Drill Colla	r				2		18.89 203.20 63.50					7	' H-90				
			Cross Ove	er				0	0.70 201.17 82.30						6.5	i/8 REG				
			MWD Too	ol			0			6.37	20	3.20		76.20				6.5	i/8 REG	
			Crossove	r			0			0.34	2	14.38		76.20						
			Crossove	r				0 0.47 211.07			107.95									
			Saver Su	b			0			0.47 209.55				107.95						
MWD Tool						0			7.56		212.85		129.79							
Saver Sub							0		0.47	2	14.38		107.95							
MWD Tool						0 3.88 203.20 82.55			6 5/8 REG		i/8 REG									
Cross Over							0		0.91	20)1.17		76.20				6 5	i/8 REG		
Non-Mag Pony Collar							0		2.90	20	206.50		76.20							
			Float Sub)			0			0.65	20	203.20		82.55						
		Positive	Displacem	nent Mo	tor			0		9.50	24	11.30		95.25				7.5	i/8 REG	
			Tri-Cone E	Bit				0		0.37	3′	11.15		95.25						

Printed: 25/03/2008 6:41:44PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 07-03-2008 API# 24 HRS PROG TMD TVD REPT NO 39 0.00 (m) ОН 2,313.00 (m) 2,124.65 (m) PERSONNEL DATA COMPANY QTY HRS COMPANY QTY HRS HALIBURTON (BAROID) TAMBORITHA 2 SCHLUMBERGER MWD/LWD 1 APACHE WEATHERFORD CATERING 9 FURGO 2 DRIL-QUIP 2 SEA DRILL SERVICES 40 HALIBURTON 2 SEA DRILL 13 TOTAL PERSONNEL ON BOARD: 83 SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER PACIFIC VALKYRIE MATERIALS/CONSUMPTION UNITS ON HAND ITEM UNITS USAGE ON HAND ITEM USAGE CEMENT МТ 81 BARITE BULK МТ 153 BENTONITE MT 26 BARACARB МТ 0 FUEL OIL МТ 10 384 WATER, POTABLE МТ 40 158 WATER, DRILLING MT 130 BASE OIL bbl 0 BRINE 0 bbl **WEATHER** TIME **SWELL** WAVE WIND SPEED/DIR **GUST SPEED/DIR** TEMP HT/DIR/PER HT/DIR/PER 1.80//12 //120.00 /100.00 00:00 **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 1.20 0.50 1.30 MUD INVENTORY USAGE ON HAND ITEM UNIT Day Cost (\$)

Printed: 25/03/2008 6:41:44PM

APACHE CORPORATION

Page 1 of 3

Daily Drilling Report WELL NAME DATE WASABI-1 08-03-2008 API# 24 HRS PROG TMD TVD REPT NO 0.00 (m) OH 2,313.00 (m) 2,124.65 (m) RIG NAME NO FIELD NAME AUTH TMD PLANNED DOW DFS / KO WATER DEPTH WEST TRITON 15.98 (days) 29.58 (days) 24.04 (days) 27.00 (m) SPUD DATE Rig Release WELL SUPERVISOR **PBTMD** 09-02-2008 BILL OPENSHAW / RICHARD REDDINGS STATE / PROV RIG PHONE NO DISTRICT **RIG FAX NO** REGION AUSTRALIA OFFSHORE VICTORIA AFE # 067 08E43 AFE COSTS DAILY COSTS **CUMULATIVE COSTS** DESCRIPTION: DHC: 17,079,153 DHC: 11,816,036 DHC: 380,376 DCC: DCC: DCC: cwc. CWC: cwc-Others: Others: Others: 17,079,153 TOTAL: 380,376 11,816,036 TOTAL: TOTAL: LAST SAFETY MEETING BLOCK FORMATION BHA HRS OF SERVICE **DEFAULT DATUM / ELEVATION** ROTARY TABLE / 38.00 (m) LAST SURVEY LAST CSG SHOE TEST (EMW) LAST CASING **NEXT CASING** 2,272.78 (m) INC 47.76° AZM 323.36° (sg) **CURRENT OPERATIONS:**

24 HR SUMMARY: Skidded in jacked down , commenced tow a 16.00 hr's

24 HR FORECAST: Operation finished. Move to Coelacanth-1.

OPERATION SUMMARY

	5. 2. 3 5. 1 Gentle 14. 1										
From	То	HRS	Phase	Operation	PT/NPT	NPT CODES	ACTIVITY SUMMARY				
0:00	4:30	4.50	R-MOB-DEM OB	МОВ	PP		Continued preparing rig package for skidding into transit position. Install slings from blocks to Texas deck, removed rig floor service lines.				
4:30	6:00	1.50	R-MOB-DEM OB	МОВ	PP		Skidded in 3 feet and remove gumbo shaker overboard line.				
6:00	9:30	3.50	R-MOB-DEM OB	МОВ	PP		Skid cantilever in and secure . Secure texas deck				
9:30	11:00	1.50	R-MOB-DEM OB	МОВ	PP		Continue sea fastening , secure drill pipe and drill collars in derrick . Hang of TDS Held pre job PJSA				
11:00	11:30	0.50	R-MOB-DEM OB	МОВ	PP		Hold pre rig move meeting with all crews				
11:30	12:00	0.50	R-MOB-DEM OB	МОВ	PP		Commence jacking rig down				
12:00	12:30	0.50	R-MOB-DEM OB	МОВ	PP		Held pre job safety meeting for leg jacking operations				
12:30	13:00	0.50	R-MOB-DEM OB	МОВ	PP		Continue with rig jacking operations				
13:00	13:30	0.50	R-MOB-DEM OB	МОВ	PP		Reposition deepwater at bow leg and port leg				
13:30	14:00	0.50	R-MOB-DEM OB	МОВ	PP		Continue jacking operations to 2 metre draft level				
14:00	15:00	1.00	R-MOB-DEM OB	МОВ	PP		Conduct water integrity test				
15:00	16:00	1.00	R-MOB-DEM OB	МОВ	PP		Continue to jack legs clear of seabed and comence tow				

16.00 = Total Hours Today

06:00 UPDATE

0000-0600 00:00 TO 24:00 Hrs ON 08 Mar 2008

Operational Comments: Interface between IBOP and PH rotating requires attention as at present it is in creep mode, hence the longer times for handling

BHA's.

Drillers screen still locking up. This has occurred in open hole while tripping and also while drilling.

Link tilt activating cylinder bent requires replacing. This is increasing the stress on the other cylinder. The latching and

unlatching of the elevators is affected by this bent cylinder thus slowing down BHA handling times and tripping times.

Operational Comments: Jar hours (serial number 09147) = 145.5 hours.

Operational Comments: ROV carried out sea bed survey, no debris etc on sea bed.

Printed: 25/03/2008 6:42:19PM

APACHE CORPORATION Page 2 of 3 **Daily Drilling Report WELL NAME** DATE WASABI-1 08-03-2008 API# 24 HRS PROG TMD TVD REPT NO 2,313.00 (m) ОН 0.00 (m) 2,124.65 (m) 40 **BIT DATA** BIT / RUN SIZE MANUFACTURER **TYPE** SERIAL JETS OR TFA **DEPTH IN / DATE IN** I-O-D-L-B-G-O-R (mm) NO 7 / 1 311.2 SMITH XR+CPS PF 5796 1x21, 3x24 2,313.00 / 02-03-2008 0-0-NO-A-0-I-NO-TD LCM: **MUD PROPERTIES** MUD TYPE: VIS PV/YP **GELS** WL/HTHP FC/T.SOL OIL/WAT % SAND/MBT pH/Pm Pf/Mf CI Ca H2S KCL LGS (s/l) (cp)/(Pa) (Pa) (ml/30 min) (mm)/(%) (%)/(sg) (mL) (mL) (ppm) (%) (ppm) (%) (%) (ppm) PP DAILY COST **CUM COST** 0 %OIL 09147 7 JAR S/N **BHA / HOLE CONDITIONS** JAR HRS **BHA WT BELOW JARS** STRING WT UP STRING WT DN STRING WT ROT TORQUE/UNITS **BHA LENGTH** (tonne) (tonne) (tonne) (kN-m) 346.56 (m) ITEM DESCRIPTION NO JTS LENGTH O.D I.D CONN SIZE CONN TYPE 0 281.99 184.15 82.55 Heavy Weight Drill Pipe Cross Over 0 0.91 201.17 82.30 6 5/8 REG Drilling Jar 0 10.17 211.07 76.20 Drill Collar 2 18.89 203.20 63.50 7 H-90 0 Cross Over 0.70 201.17 82 30 6 5/8 REG MWD Tool 0 6.37 203 20 76 20 6.5/8 RFG 0 0.34 214.38 76.20 Crossover 211.07 Crossover 0 0.47 107.95 0 0.47 209.55 Saver Sub 107.95 MWD Tool 0 212.85 129.79 7.56 Saver Sub 0 0.47 214.38 107.95 MWD Tool 0 3.88 203.20 82.55 6 5/8 REG Cross Over 0 0.91 201.17 76.20 6 5/8 REG Non-Mag Pony Collar 0 2.90 206.50 76.20 Float Sub 0 0.65 203.20 82.55 0 241.30 7 5/8 REG Positive Displacement Motor 9.50 95.25 Tri-Cone Bit 0 0.37 311.15 95.25 PERSONNEL DATA COMPANY COMPANY QTY HRS QTY HRS SEA DRILL SERVICES 40 **FURGO** CATERING вні 9 SCHLUMBERGER MWD/LWD SEA DRILL 13 DRIL-QUIP 2 HALIBURTON 2 APACHE HALIBURTON (BAROID) 2 WEATHERFORD 4 **TAMBORITHA** ADA 4 **TOTAL PERSONNEL ON BOARD: 83** SUPPORT CRAFT TYPE REMARKS PACIFIC WRANGLER MV BATTLER PACIFIC VALKYRIE

Printed: 25/03/2008 6:42:19PM

APACHE CORPORATION Page 3 of 3 **Daily Drilling Report** WELL NAME DATE WASABI-1 08-03-2008 API# 24 HRS PROG TMD REPT NO TVD 0.00 (m) ОН 2,313.00 (m) 2,124.65 (m) 40 MATERIALS/CONSUMPTION UNITS USAGE ON HAND USAGE ON HAND ITEM ITEM UNITS CEMENT BARITE BULK MT 153 MT 81 BENTONITE МТ 26 BARACARB МТ 0 WATER, POTABLE FUEL OIL MT 10 374 MT 20 138 WATER, DRILLING 0 130 BASE OIL bbl BRINE 0 bbl **WEATHER** SWELL WAVE WIND SPEED/DIR **GUST SPEED/DIR** TEMP HT/DIR/PER HT/DIR/PER 00:00 1.80/ /12 //120.00 /100.00 / **DECKLOG** MAX VDL ACT VDL AVG VDL LEG PEN (BOW) LEG PEN (PORT) LEG PEN (S BOARD) 0.50 1.30 MUD INVENTORY ITEM UNIT USAGE Day Cost (\$) ON HAND

Printed: 25/03/2008 6:42:19PM

Date:13 February 2008Rig:West TritonReport Number:4Bit Diameter:No bit in hole

Report Period: 06:00 - 06:00 Hours Last Casing: N/A

Spud Date:Wasabi-1 not spudIntegrity Test:N/ADays From Spud:0Mud Weight:Mud conditioning in progress

Depth @ 0600 Hrs: 0.0 mMDRT

-0.0 mTV/DAHD

-0.0 mTVDAHD **Mud Type:** Sea water w/ Hi-Vis PHG sweeps

Lag Depth:0.0 mMDRTMud Chlorides:Mud conditioning in progress

Last Depth: N/A
Progress: 0 m
Water Depth: 37.0 m

Water Depth: 37.0 m Last Survey: N/A

RT: 75.0 m **Deviation**:

OPERATIONS SUMMARY

24 HOUR SUMMARY: Held 100% pre-load for total 6 hours, dumped pre-load, checked leg

penetrations and jacked up to operational height. Skidded out cantilever, rigged up texas deck and service lines. Commenced mixing Hi-Vis mud and picking up

5 1/2" drill pipe.

NEXT 24 HOURS: Pick up drill pipe, make up 660 mm BHA, make up and rack back well head and

running tool, continue to mix Hi-Vis mud, off load equipment from Pacific

Wrangler and spud well.

CURRENT OPERATION @ 06:00 HRS (13-Feb-2008): Continue to pick up 5 1/2" drill pipe, mix Hi-Vis

mud.

GEOLOGICAL SUMMARY

REMARKS

This is the first Daily Geological Report for Wasabi-1and is numbered as DGR04 in keeping with the Daily Drilling Report.

The West Triton came on hire for Wasabi-1 when the rig was 1 km from the proposed location at 21:00 hrs, 10/02/2008. The rig was pinned at a wellhead location of;

Latitude: 38 deg 29' 18.162" S Easting: 522 992.896m E Longitude: 147 deg 15' 49.1179" E Northing: 5 739 963.235mN

This is 15.01 m at 185.6 deg (T) from the intended location. The final rig heading is 182.53 deg.

Rig elevation:

RT to AHD 75.0 m Water Depth 37.0 m RT to Seabed 112.0 m

The rig was pre-loaded and jacked up to the final drilling elevation of 75.0 m above AHD. The cantilever deck was skidded out and the texas deck installed.

WELLSITE GEOLOGIST

Adam Cruickshank

Date: 14 February 2008 West Triton Rig: **Report Number:** Bit Diameter: No bit in hole 5

06:00 - 06:00 Hours **Report Period:** Last Casing: N/A Spud Date: Wasabi-1 not spud **Integrity Test:** N/A

Mud Weight: Days From Spud: N/A Mud conditioning in progress

Depth @ 0600 Hrs: ECD:

Mud Type: Sea water w/ Hi-Vis PHG sweeps **Mud Chlorides:** Mud conditioning in progress

Lag Depth: Last Depth: N/A

Progress: Water Depth: 37.0 m N/A **Last Survey:**

RT: 75.0 m **Deviation:**

0 m

OPERATIONS SUMMARY

Picked up and made up 5 1/2" drill pipe and continued mixing hi-vis mud. 24 HOUR SUMMARY:

Made up and racked back well head and running tool.

20" casing and ancillary equipment discharged from Pacific Wrangler.

NEXT 24 HOURS: Continue to make up 5 1/2" drill pipe, 5 1/2" HWDP and 8" collars. Spud well

with 26" bit to 135mRT, POH rack back BHA and break off bit. Make up 16" bit and BHA with LWD. Discharge 13 3/8" casing and additional equipment from

Pacific Wrangler.

CURRENT OPERATION @ 06:00 HRS (14-Feb-2008): Making up and racking back 5 1/2" drill pipe.

GEOLOGICAL SUMMARY

REMARKS

1500bbls sweep mud and 1500bbls displacement mud mixed and ready to go. Visean Engineer waiting on LWD to complete rig up prior to system testing. LWD waiting on equipment from supply boat to complete rig up. BHI mudloggers are rigged up.

WELLSITE GEOLOGISTS

Adam Cruickshank / Hamish Little

Created 2/14/2008 9:14 AM Page 1 of 1

Date:15 February 2008Rig:West TritonReport Number:6Bit Diameter:660 mm (26")

 Report Period:
 06:00 - 06:00 Hours
 Last Casing:
 N/A

 Spud Date:
 14-Feb-2008 23:00 Hours
 Integrity Test:
 N/A

 Days From Spud:
 0.3
 Mud Weight:
 1.03 sg

 Depth @ 0600 Hrs:
 135.0 mMDRT
 ECD:

-97.0 mTVDAHD **Mud Type:** SPUD / PHG Sweeps

Lag Depth: 135.0 mMDRT Mud Chlorides:

Last Depth: N/A
Progress: 135.0 m
Water Depth: 28.0 m

Nater Depth: 28.0 m Last Survey: No surveys taken

RT: 38.0 m Deviation: Inc.° Az.°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Continued to make up 5 1/2" drill pipe and collars. Spud Wasabi-1 @ 23.00 hrs

14/02/08. Drilled to 135.0 mMDRT.

NEXT 24 HOURS: Circulate hole clean & displace to PHG mud. POH, break off 660mm (26") bit

and M/U 406mm (16") bit with BHA containing LWD. RIH and drill ahead 406

mm (16") hole from 135.0 mMDRT.

CURRENT OPERATION @ 06:00 HRS (15-Feb-2008): Circulating 660 mm (26") hole clean at section TD

135.0 mMDRT

GEOLOGICAL SUMMARY

REMARKS

Picked up and racked back diverter, made up 20" casing running tool and well head, dummy run well head and checked land out in CTU, racked back well head and running tool. A 660 mm (26") bit was made up to the BHA and run in hole, tagging the seabed at 66.0 mMDRT.

The 660mm hole was drilled to 135.0 mMDRT with Hi/Vis PHG sweeps.

WELLSITE GEOLOGISTS

Date:16 February 2008Rig:West TritonReport Number:7Bit Diameter:406 mmReport Period:06:00 - 06:00 HoursLast Casing:N/ASpud Date:14-Feb-2008 23:00 HoursIntegrity Test:N/A

Spud Date: 14-Feb-2008 23:00 Hours Integrity Test: N/A
Days From Spud: 1.3 Mud Weight: 1.0

 Days From Spud:
 1.3
 Mud Weight:
 1.06 sg

 Depth @ 0600 Hrs:
 359.0 mMDRT
 ECD:

-320.8 mTVDAHD Mud Type: SPUD / PHG Sweeps

Lag Depth: 359.0 mMDRT Mud Chlorides: 1100.00 mg/L

Last Depth: 135.0 mMDRT
Progress: 224.0 m

 Water Depth:
 27.2 m
 Last Survey:
 229.75 mMDRT

 RT:
 38.8 m
 Deviation:
 Inc. 0.10°

Az. 88.12°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Circulated hole and displaced to PHG mud. POOH and M/U 406mm (16") bit

with BHA and LWD tools. RIH and drilled ahead 406mm (16") hole from 135.0

to 359.0 mMDRT.

NEXT 24 HOURS: Drill ahead 406mm surface hole to section TD (~900.0 mMDRT). Circulate hole

clean, displace to mud and POOH to surface. Run and cement 508mm x 340mm

surface casing.

CURRENT OPERATION @ 06:00 HRS (16-Feb-2008): Drilling ahead 406mm (16") surface hole at 359.0

mMDRT per hour.

GEOLOGICAL SUMMARY

MWD

Incorrect BHA tally given to Schlumberger MWD/LWD, hence tool offsets incorrect by +0.83m. All data will be adjusted at section TD.

REMARKS

At section TD the hole was circulated clean and displaced to 1.03 sg pre hydrated gel / sea water (150 bbls). The 660mm (26") bit and drilling assembly was pulled from the hole and laid out. A 406 mm (16") drilling assembly was made up consisting of a DBS rock bit and LWD tools for the acquisition of gamma ray, sonic and directional data. The assembly was then run in hole and shallow tested prior to drilling ahead to 359.0 mMDRT.

WELLSITE GEOLOGISTS

Date:17 February 2008Rig:West TritonReport Number:8Bit Diameter:406 mmReport Period:06:00 - 06:00 HoursLast Casing:N/ASpud Date:14-Feb-2008 23:00 HoursIntegrity Test:N/A

Spud Date: 14-Feb-2008 23:00 Hours Integrity Test: N/A
Days From Spud: 2.3 Mud Weight: 1.06 sg

Depth @ 0600 Hrs: 862.0 mMDRT **ECD:**

-835.0 mTVDAHD **Mud Type:** SPUD / PHG Sweeps **Lag Depth:** 862.0 mMDRT **Mud Chlorides:** 2000.00 mg/L

Last Depth: 359.0 mMDRT Mud Chlorides: 2000.00 mg

 Progress:
 503.0 m

 Water Depth:
 27.2 m
 Last Survey:
 818.74 mMDRT

 RT:
 38.8 m
 Deviation:
 Inc. 0.38°

Az. 163.08°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Drilled ahead 406 mm (16") hole from 359.0 m to 862.0 mMDRT. Attempts to

downlink to LWD tool failed and abandoned. Performed two stand wiper trip and

displaced hole to mud. Commenced POOH

NEXT 24 HOURS: Continue to POOH to surface. Retrieve LWD data. Rack back 406mm BHA for

wiper trip if required. Run and cement 508mm x 340mm surface casing.

CURRENT OPERATION @ 06:00 HRS (17-Feb-2008): Displacing hole to 1.15sg gel mud

GEOLOGICAL SUMMARY

MWD

Incorrect BHA tally given to SLB, tool offsets incorrect by +0.83m. All data to be adjusted prior to handover. SLB experienced problems with tool downlink due to difficulties with pump controls.

REMARKS

Drilled ahead 406 mm (16") hole from 359.0 mMDRT to TD at 862.0 mMDRT. Attempts to downlink to LWD tool failed and reprogramming was abandoned. A two stand wiper trip was performed and the hole was wept with pre-hydrated gel displaced with seawater. The hole was then displaced with 1.15sg pre-hydrated gel.

WELLSITE GEOLOGISTS

Date:18 February 2008Rig:West TritonReport Number:9Bit Diameter:406 mm (16")

 Report Number:
 9
 Bit Diameter:
 406 mm (16°)

 Report Period:
 06:00 - 06:00 Hours
 Last Casing:
 N/A

 Spud Date:
 14-Feb-2008 23:00 Hours
 Integrity Test:
 N/A

 Days From Spud:
 3.3
 Mud Weight:
 1.06 sg

 Depth @ 0600 Hrs:
 862.0 mMDRT
 ECD:
 1.08 sg

-835.0 mTVDAHD Mud Type: SPUD / PHG Sweeps

Lag Depth:862.0 mMDRTMud Chlorides:2000.00 mg/L

Last Depth: 862.0 mMDRT
Progress: 0 m

 Water Depth:
 27.0 m
 Last Survey:
 818.74 mMDRT

 RT:
 39.0 m
 Deviation:
 Inc. 0.38°

Az. 163.08°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Continued to displace to 1.15sg gel mud and POH, rack back BHA and lay out

MWD/LWD. Rig up for running casing. Commence RIH 340mm (13 3/8") casing. Hung up at 139.0 mMDRT, POH 340mm casing and commence making

up and RIH BHA for wiper trip.

NEXT 24 HOURS: Continue to make up 406mm (16") BHA and RIH for wiper trip to TD at 862.0

mMDRT. Check fill and circulate if necessary. POH, rack back BHA and rig up

and run 508mm x 340mm (with cross over) casing.

CURRENT OPERATION @ 06:00 HRS (18-Feb-2008): Making up BHA with 406mm (16") bit for wiper trip.

GEOLOGICAL SUMMARY

MWD

LWD recorded sonic data downloaded once tools laid out. Data has been forwarded to Schlumberger town base for further processing.

WELLSITE GEOLOGISTS

Date: 19 February 2008 West Triton Rig: **Report Number:** Bit Diameter: 10 406 mm **Report Period:** 06:00 - 06:00 Hours Last Casing: N/A Spud Date: 14-Feb-2008 23:00 Hours **Integrity Test:** N/A

Days From Spud: 4.3 **Mud Weight:** 1.06 sg

Depth @ 0600 Hrs: 862.0 mMDRT **ECD:** 1.08 sg

-835.0 mTVDAHD **Mud Type:** SPUD / PHG Sweeps **Lag Depth:** 862.0 mMDRT **Mud Chlorides:** 2000.00 mg/L

Last Depth: 862.0 m MDRT

Progress: 0 m
Water Depth: 27.0 m Last Survey: 863.00 mMDRT

RT: 39.0 m **Deviation:** Inc. 0.38° Az. 163.08°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Ran in hole with 406 mm BHA for wiper trip. POOH and commenced running

casing.

NEXT 24 HOURS: Continue to RIH 508mm (20") casing to landing point. RIH inner string. Rig up

and cement casing. Start nipple up of BOP's.

CURRENT OPERATION @ 06:00 HRS (19-Feb-2008): Running in 508mm (20") casing. 340mm (13 3/8")

casing shoe @ 739.0 m to 774.0 mMDRT.

GEOLOGICAL SUMMARY

LITHOLOGY

No new formation drilled.

REMARKS

Continued making up 406 mm (16") wiper trip BHA and ran in hole to 857.0 mMDRT, tagging 5m of fill in bottom of hole. Pulled out of hole from 857.0 mMDRT to 142.0 mMDRT and worked tight spot. Continued to POOH. Rigged up and ran in 340 mm (13 3/8") casing to 733.0 mMDRT. Rigged up and ran 508 mm (20") casing with 340 mm (13 3/8") casing shoe @ 739.0 m to 774.0 mMDRT.

WELLSITE GEOLOGISTS

Date: 20 February 2008 Rig: West Triton **Report Number:** Bit Diameter: 406 mm 11 **Last Casing:** Report Period: 06:00 - 06:00 Hours N/A

Spud Date: 14-Feb-2008 23:00 Hours **Integrity Test:** N/A Mud Weight: Days From Spud: 5.3 1.06 sg

Depth @ 0600 Hrs: 862.0 mMDRT ECD: -835.0 mTVDAHD Mud Type: SPUD / PHG Sweeps

0.0 mMDRT Mud Chlorides: 2000.00 mg/L Lag Depth: 862.0 mMDRT

Last Depth:

Progress: 0 m

Water Depth: 27.0 m Last Survey: 862.00 mMDRT **Deviation:** Inc. 0.38° RT: 39.0 m

Az. 163.08°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Completed running and setting casing.

NEXT 24 HOURS: POH cement stinger and commence nippling up BOP's.

CURRENT OPERATION @ 06:00 HRS (20-Feb-2008): Circulating bottoms up.

GEOLOGICAL SUMMARY

LITHOLOGY

No new lithology drilled.

REMARKS

Continued to RIH 508 mm (20") casing, pick up and make up well head and land out in CTU on Texas deck. Unlatch running tool and RIH cement stinger, pump cement job, pull back stinger and circulate bottoms up.

WELLSITE GEOLOGISTS

Adam Cruickshank / Hamish Little

Created 2/20/2008 8:38 AM Page 1 of 1

Date:21 February 2008Rig:West TritonReport Number:12Bit Diameter:406 mm

Report Period: 06:00 - 06:00 Hours Last Casing: 340mm (13 3/8") Surface

Casing @ 857.0 mMDRT

Spud Date: 14-Feb-2008 23:00 Hours

Days From Spud: 6.3

Depth @ 0600 Hrs: 862.0 mMDRT

-835.0 mTVDAHD **Mu**e

Lag Depth:862.0 mMDRTLast Depth:862.0 mMDRT

Progress: 0 m

Water Depth: 27.0 m RT: 39.0 m Integrity Test: N/A
Mud Weight: 1.06 sg
ECD: 1.08 sg

Mud Type: SPUD / PHG Sweeps

Mud Chlorides: 2000.00 mg/L

Last Survey: 818.74 mMDRT Deviation: Inc. 0.38°

Az. 163.08°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Pulled out of hole with cement stinger & commenced nippling up BOP.

NEXT 24 HOURS: Continue nippling up BOP. Pressure test BOP & surface equipment. Pick up 21

stands 5 1/2" drill pipe and rack back.

CURRENT OPERATION @ 06:00 HRS (21-Feb-2008): Nippling up BOP.

GEOLOGICAL SUMMARY

Lithology

No new lithology drilled.

REMARKS

Repaired cyber chair connections to draw works. Picked up fast lock connector and positioned on well head, picked up BOP stack and fixed down. Picked up riser and fixed to BOP. Made up test lines to top drive and tested IBOP (good test). Prepared and installed slip joint, picked up and installed overshot riser.

WELLSITE GEOLOGISTS

Date: 22 February 2008 West Triton Rig: Bit Diameter: **Report Number:** 13 406 mm

Report Period: 13 3/8" Surface Casing @ 857.0 m 06:00 - 06:00 Hours **Last Casing: MDRT**

Spud Date: 14-Feb-2008 23:00 Hours **Integrity Test:** N/A 1.06 sg

Days From Spud: 7.3 **Mud Weight:** Depth @ 0600 Hrs: 862.0 mMDRT ECD:

SPUD / PHG Sweeps -823.0 mTVDAHD Mud Type:

N/A mMDRT Mud Chlorides: 2000.00 mg/L Lag Depth:

Last Depth: 862.0 mMDRT

Progress: 0 m Water Depth: 27.0 m 818.74 mMDRT Last Survey: 39.0 m **Deviation:** Inc. 0.38° RT:

Az. 163.08°

OPERATIONS SUMMARY

Pressure tested BOP, pick up 5 1/5" drill pipe. 24 HOUR SUMMARY:

Make up 311mm (12 1/4") BHA, pick up 57 joints drill pipe, RIH, drill out shoe **NEXT 24 HOURS:**

and 3m formation, LOT and drill ahead 311mm (12 1/4") hole.

CURRENT OPERATION @ 06:00 HRS (22-Feb-2008): Picking up 311mm (12 1/4") BHA.

GEOLOGICAL SUMMARY

Lithology

No new lithology drilled.

REMARKS

Pick up and run divertor and over shot riser joint, nipple up choke and kill lines and pressure test manifold. Function test BOP rams and line up and test BOP connectors and casing, fail on choke line. Line up and test BOP/casing against HCR to 2000psi/15min, OK. Make up and run wear bushing Repairs to choke line ongoing. Pick up and rack back 5 1/2" drill pipe.

WELLSITE GEOLOGISTS

Date:23 February 2008Rig:West TritonReport Number:14Bit Diameter:311 mm

 Report Period:
 06:00 - 06:00 Hours
 Last Casing:
 340 mm @ 857.0 m MDRT

 Spud Date:
 14-Feb-2008 23:00 Hours
 FIT:
 1.91 sg EMW @ 857.0 m MDRT

 Days From Spud:
 8.3
 Mud Weight:
 1.15 sg

 Depth @ 0600 Hrs:
 940.0 mMDRT
 ECD:
 1.25 sg

 -901.0 mTVDAHD
 Mud Type:
 Gel Polymer

 Lag Depth:
 928.0 mMDRT
 Mud Chlorides:
 60000.00 mg/L

Last Depth: 862.0 m MDRT

Progress: 78.0 m

 Water Depth:
 27.0 m
 Last Survey:
 886.00 mMDRT

 RT:
 39.0 m
 Deviation:
 Inc. 0.20°

Az. 232.91°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Made up 311mm (12 1/4") BHA and LWD tools, ran in hole, drilled out shoe,

displaced mud, conducted FIT and drilled ahead.

NEXT 24 HOURS: Drill ahead 311mm (12 1/4") hole.

CURRENT OPERATION @ 06:00 HRS (23-Feb-2008): Drilling ahead 311mm (12 1/4") hole.

GEOLOGICAL SUMMARY

LITHOLOGY

INTERVAL: 862.0 to 928.0 m MDRT (-865.0 to -920.0 m TVDAHD)

ROP (Range): 11.0 to 80.0 m/h

Av. ROP: 42.0 m/h

Interbedded CALCARENITE and CALCILUTITE.

CALCARENITE (70 to 80%): Off white, light to medium grey, light brownish grey in part, arenaceous, common pale grey argillaceous matrix, abundant fossils, common very coarse frosted and iron stained quartz grains, trace nodular pyrite, rare glauconite specks, moderately hard aggregates, tight visible porosity, trace mineral fluorescence.

CALCILUTITE (20 to 30%): Light to medium grey, off white to pale grey, trace grey, argillaceous, trace microcrystalline, minor micro fossils, soft to dispersive, moderately hard in part, sub-blocky.

GAS SUMMARY

Background Gas										
INTERVAL	Total Gas	C1	C2	C3	iC4	nC4	C5			
(mMDRT)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)			
862.0 - 968.0	0.0	0	0	0	0	0	0			

SAMPLE QUALITY

Samples have been caught mostly at a ten metre interval due to the rapid ROP.

MUDLOGGING EQUIPMENT / PERSONNEL

No gas is being registered by equipment. Carbide checks indicate system functioning properly.

MWD

Incomplete real time gamma ray and resistivity data, thought due to pump harmonics. Particularly evident when pump 2 used, though not great with 1 and 3 also, ring resistivity is sending no signal at this time.

REMARKS

The BOP was nippled up and pressure tested. The 311 mm drilling assembly was then made up consisting of a Smith Mi616VBPX PDC bit and LWD tools for the acquisition of gamma ray, resistivity, neutron density, neutron porosity, sonic and directional data. The LWD tools were shallow tested whilst running in hole.

The drilling assembly tagged cement at 854.0 mMDRT. The casing shoe was drilled out and the well displaced to 1.15sg KCl/Polymer mud with clay seal additive. 2.0 m of new formation was drilled to 864.0 mMDRT while the well was displaced to mud. Circulation continued to weight up mud and a Formation Integrity Test (FIT) was performed to 1.91 sg (EMW). 311 mm hole was then drilled to the 06:00 depth of 940.0 mMDRT.

WELLSITE GEOLOGISTS

Date: 24 February 2008 Rig: West Triton Report Number: Bit Diameter: 311 mm 15

Report Period: 06:00 - 06:00 Hours Last Casing: 340 mm @ 857.0 m MDRT Spud Date: 14-Feb-2008 23:00 Hours 1.91 sg EMW @ 857.0 m MDRT FIT:

Days From Spud: Mud Weight: 93 1.15 sg Depth @ 0600 Hrs: 1455.0 mMDRT ECD: 0.38 sg -1412.1 mTVDAHD Mud Type: Gel Polymer 60000.00 ma/L

Mud Chlorides: Lag Depth: 1455.0 mMDRT Last Depth: 940.0 m MDRT

Progress: 515.0 m

Water Depth: 27.0 m Last Survey: 1388.32 mMDRT **Deviation:** RT: 39.0 m Inc. 11.22°

Az. 337.32°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Continued to drill ahead 311mm (12 1/4") hole from 940.0 to 1455.0 mMDRT.

Commenced programmed angle build from 1245.0 mMDRT.

Continue to directionally drill ahead 311mm (12 1/4") section. **NEXT 24 HOURS:**

CURRENT OPERATION @ 06:00 HRS (24-Feb-2008): Drill ahead 311mm (12 1/4") hole.

GEOLOGICAL SUMMARY

LITHOLOGY

INTERVAL: 928.0 to 1255.0 m MDRT (-881.0 to -1215.8 m TVDAHD)

ROP (Range): 15.0 to 99.0 m/h

Av. ROP: 77.0 m/h

Interbedded CALCARENITE, CALCISILTITE and CALCILUTITE.

CALCARENITE (20 to 60%): Off white, light to medium grey, light brownish grey in part, locally arenaceous, common pale grey argillaceous matrix, abundant fossils, common very coarse frosted & iron stained quartz grains, trace nodular pyrite, rare glauconite specks, trace rounded brown-red lithics, moderately hard aggregates, tight visible porosity, trace mineral fluorescence.

CALCISILTITE (20 to 50%): Light to medium grey, off white to pale grey, trace grey, argillaceous, minor micro fossils, soft to firm, moderately hard in part, sub-blocky, locally grading to CALCILUTITE and CALCARENITE.

CALCILUTITE (20 to 50%): Light to medium grey, off white to pale grey, trace grey, argillaceous, trace microcrystalline, minor micro fossils, soft to dispersive, moderately hard in part, sub-blocky.

INTERVAL: 1255.0 to 1382.0 m MDRT (-1215.8 to -1341.5 m TVDAHD)

ROP (Range): 11.0 to 168.0 m/h

Av. ROP: 76.0 m/h

SANDSTONE with SILTSTONE and COAL interbeds.

SANDSTONE (70 to 100%): Clear to translucent, pale to medium brown grey, very fine to coarse, poorly sorted, angular to sub-angular, minor weak calcareous cement, locally common light brown grey argillaceous matrix where fine grained and grading to arenaceous siltstone, common carbonaceous laminations and specks, generally loose grains, moderately hard fine grained aggregates, locally common carbonaceous specks, locally disseminated and nodular pyrite, poor visible porosity, fair to good inferred porosity, no hydrocarbon fluorescence.

SILTSTONE (5 to 25%): Medium to dark grey, argillaceous, common carbonaceous material and locally

Created 2/24/2008 9:15 AM Page 1 of 2

grading to coal stringers, minor micaceous flecks, moderately hard to hard, sub-blocky to sub-fissile. COAL (0 to 5%): Dark grey to black, sub-vitreous, dull to earthy in part, common silty laminations and locally grading to carbonaceous siltstone, friable to moderately hard, sub-fissile to sub-blocky, locally sub-conchoidal fracture.

INTERVAL: 1382.0 to 1455.0 m MDRT (-1341.5 to -1412.1 m TVDAHD)

ROP (Range): 7.0 to 111.0 m/h

Av. ROP: 36.0 m/h

Interbedded SANDSTONE and SILTSTONE with COAL stringers and minor CLAYSTONE interbeds.

SANDSTONE (5 to 90%): Light grey brown, translucent, fine to coarse, poor sorted, sub-angular to sub-rounded, minor moderately strong calcareous cement, minor nodular pyrite, generally loose grains, fair to good inferred porosity, no hydrocarbon fluorescence.

SILTSTONE(5 to 45%): Dark brown grey, dark grey, argillaceous, abundant carbonaceous material and laminations, common grading to coal, occasional siderite cement, hard to very hard, sub-fissile.

COAL (0 to 80%): Black, dark grey, vitreous to sub-vitreous, silty in part and locally grd to very dark brown carbonaceous siltstone, hackly in part, friable to moderately hard, conchoidal to sub-conchoidal fracture, sub-blocky in part.

CALCAREOUS CLAYSTONE (0 to 10%): Pale bluish grey, siliceous, common to abundant calcareous material, hard to very hard, sub-fissile.

GAS SUMMARY

Background Ga	Background Gas											
INTERVAL (m MDRT)	Total Gas (%)	C1 (ppm)	C2 (ppm)	C3 (ppm)	iC4 (ppm)	nC4 (ppm)	C5 (ppm)					
928.0 - 1255.0	25	14	0	0	0	0	0					
1255.0 - 1382.0	26	9	0	0	0	0	0					
1382.0 - 1455.0	17	6	0	0	0	0	0					

No gas peaks recorded.

SAMPLE QUALITY

Samples have been caught mostly at a ten metre interval due to the rapid ROP.

MUDLOGGING EQUIPMENT / PERSONNEL

Trace to 26 ppm gas being registered by equipment. Carbide checks at gas trap and in flow line indicate system functioning properly.

MWD

Incomplete real time gamma ray and resistivity data, thought due to pump harmonics. Ring resistivity is sending no signal at this time.

REMARKS

Steady drilling in both orientating (from 1245.0 mMDRT) and rotary modes.

WELLSITE GEOLOGISTS

Date: 25 February 2008 West Triton Rig: Bit Diameter: **Report Number:** 16 311 mm (12 1/4")

340 mm (13 3/8") Surface Casing **Report Period:** 06:00 - 06:00 Hours Last Casing:

@ 857.0 m MDRT

N/A

1.91 sg EMW @ 857.0 m MDRT Spud Date: 14-Feb-2008 23:00 Hours FIT:

Days From Spud: 10.3

Mud Weight: 1.15 sg Depth @ 0600 Hrs: 1706.0 mMDRT ECD: 1.30 sg KCL Polymer -1637.7 mTVDAHD Mud Type: 50000.00 mg/L Mud Chlorides:

1705.0 mMDRT Lag Depth: 1455.0 mMDRT Last Depth:

Progress: 251.0 m

1710.00 mMDRT Water Depth: 27.0 m Last Survey: 39.0 m **Deviation:** Inc. 30.00° RT: Az. 331.00°

OPERATIONS SUMMARY

Continued to drill 311mm (12 1/4") hole from 1455.0 mMDRT in both slide and 24 HOUR SUMMARY:

rotary modes.

NEXT 24 HOURS: Continue to drill 311mm (12 1/4") hole.

CURRENT OPERATION @ 06:00 HRS (25-Feb-2008): Drilling 311mm (12 1/4") hole.

GEOLOGICAL SUMMARY

LITHOLOGY

INTERVAL: 1455.0 to 1500.0 mMDRT (-1412.3 to -1454.9 mTVDAHD)

ROP (Range): 3.0 to 159.0 m/h

Av. ROP: 41.0 m/h

SANDSTONE with interbedded COAL, minor CLAYSTONE

SANDSTONE (10 to 100%): dominantly white, minor transparent, loose, coarse to very coarse, dominantly very coarse, very well sorted, sub angular to rounded, dominantly rounded, spherical, good to very good inferred porosity, no shows. Localised, 20% white to off white, fine to medium, dominantly fine, angular, well sorted, weakly calcareous cemented aggregates, trace very light grey argillaceous matrix, commonly fractured aggregates creating loose quartz angular grains, poor to moderate inferred porosity

COAL (10 to 90%): Black, blocky, sub conchoidal to conchoidal fracture, sub bituminous

CLAYSTONE (Nil to 5%): light blue to medium blue grey, firm to moderately hard, blocky, moderately calcareous.

1500.0 to 1705.0 mMDRT (-1454.9 to -1636.8 mTVDAHD) INTERVAL:

ROP (Range): 4.0 to 173.0 m/h

Av. ROP: 61.0 m/h

Dominantly SANDSTONE interbedded with CLAYSTONE, minor SILTSTONE and trace COAL.

SANDSTONE (45 to 100%): dominantly white, minor transparent, loose, coarse to very coarse, dominantly very coarse, very well sorted, sub angular to rounded, dominantly rounded, spherical, good to very good inferred porosity, no shows.

CLAYSTONE (Nil to 100%): medium brown, medium orange brown, very dark brown grey, trace arenaceous in part, trace calcareous material, common carbonaceous material where very dark brown grev. firm to hard, dispersive to sub-blocky, sub-fissile in part.

COAL (Nil to 10%): black, very dark grey, vitreous, sub vitreous in part, minor silty laminations and locally grading to carbonaceous siltstone, firm to hard, brittle in part, conchoidal to sub-conchoidal fracture, subblocky in part.

SILTSTONE (Nil to 20%): dark brownish grey, dark grey, hard to very hard, sub fissile, argillaceous,

abundant carbonaceous material, commonly grading to COAL.

GAS SUMMARY

No significant gas peaks Background gas between 20-100ppm C1

SAMPLE QUALITY

Samples have been of excellent quality at 5m intervals

MUDLOGGING EQUIPMENT / PERSONNEL

Trace gas to maximum 100ppm being registered by equipment. Carbide checks in flowline and gas trap indicate system functioning properly.

MWD

Real time data recovery has improved with depth

REMARKS

Bit tending to walk right of line so corrective slides to adjust.

WELLSITE GEOLOGISTS

Date:26 February 2008Rig:West TritonReport Number:17Bit Diameter:311 mm

Report Period: 06:00 - 06:00 Hours Last Casing: 340 mm Surface Casing @ 857.0 m

MDRT

Normal

Spud Date: 14-Feb-2008 23:00 Hours **LOT:** 1.91 sg EMW @ 857.0 mMDRT

 Days From Spud:
 11.3
 Mud Weight:
 1.15 sg

 Depth @ 0600 Hrs:
 1797.0 mMDRT
 ECD:
 1.32 sg

 -1714.4 mTVDAHD
 Mud Type:
 KCL Polymer

Lag Depth: 1797.0 mMDRT Mud Chlorides: 52000.00 mg/L

Last Depth: 1706.0 mMDRT

Progress: 91.0 m

 Water Depth:
 27.0 m
 Last Survey:
 1770.80 mMDRT

 RT:
 39.0 m
 Deviation:
 Inc. 32.50°

 Az. 328.20°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Continued to drill 311mm hole from 1706.0 mMDRT in both rotary and slide

modes to 1797.0 mMDRT. Circulate hi-vis pill and POOH

NEXT 24 HOURS: Make up BHA, RIH and drill 311mm (12 1/4") hole

CURRENT OPERATION @ 06:00 HRS (26-Feb-2008): Racking back and laying out BHA

GEOLOGICAL SUMMARY

LITHOLOGY

INTERVAL: 1705.0 to 1797.0 mMDRT (-1636.5 to -1714.4 mTVDAHD)

ROP (Range): 1.0 to 180.0 m/h

Av. ROP: 51.0 m/h

Dominantly clean SANDSTONE with thin interbedded stringers of SILTSTONE and CLAYSTONE

SANDSTONE (5 to 100%): off white, white, translucent, bi-modal, fine to medium, angular to subangular, dominantly subangular, moderately to well sorted, greater than very coarse grains, sub-round to round, very well sorted, rare nodular pyrite, rare coral fragments, rare shell fragments, nil visible cement, moderate visible porosity.

SILTSTONE (Nil to 95%): off white, off white to pale grey, occasional light blue grey, hard to very hard, sub-blocky to sub-fissile, locally arenaceous, very fine Sand grains, locally argillaceous, trace lithics fragments, trace carbonaceous material.

CLAYSTONE (Nil to 20%): pale blue grey, light grey, firm to moderately hard, blocky, slightly calcareous, SILTSTONE (10% to 30%): medium grey to dark grey, greenish grey, firm, blocky, sub-fissile in part, arenaceous in part, moderately calcareous.

HYDROCARBON FLUORESCENCE

No Shows

GAS SUMMARY

Background Gas										
INTERVAL Total Gas C1 C2 C3 iC4 nC4 C5										
(m MDRT)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)			
1706.0 - 1797.0	0.0035	14	0	0	0	0	0			

SAMPLE QUALITY

Loggers have been catching 5m samples as per program

MUDLOGGING EQUIPMENT / PERSONNEL

Trace gas to maximum 76ppm being registered by equipment. Carbide checks in flowline and gas trap indicate system functioning properly.

REMARKS

Difficulty experienced maintaining programmed well path. Pulled out of hole to reconfigure BHA before running in to drill ahead.

WELLSITE GEOLOGISTS

Date: 27 February 2008 West Triton Rig: Bit Diameter: **Report Number:** 18 311 mm

Report Period: 06:00 - 06:00 Hours Last Casing: 13 3/8" Surface Casing @ 857.0 m

MDRT

1.15 sg

LOT: Spud Date: 14-Feb-2008 23:00 Hours 1.91 sg EMW @ 857.0 mMDRT

Days From Spud: 12.3 **Mud Weight:** Depth @ 0600 Hrs: 1887.0 mMDRT ECD:

1.19 sg KCL Polymer -1788.9 mTVDAHD Mud Type: 49000.00 mg/L 1878.0 mMDRT Mud Chlorides:

Lag Depth: 1797.0 mMDRT Last Depth:

Progress: 90.0 m

Normal 1875.71 mMDRT Water Depth: 27.0 m Last Survey: **Deviation:** Inc. 33.73° RT: 39.0 m

Az. 325.79°

OPERATIONS SUMMARY

Continued to POOH. Reconfigured BHA for 311mm hole and ran in. Drilled 24 HOUR SUMMARY:

ahead directional hole from 1797.0 mMDRT.

NEXT 24 HOURS: Continue to drill 311mm directional hole.

CURRENT OPERATION @ 06:00 HRS (27-Feb-2008): Drilling 311mm directional hole @ 1887.0 mMDRT

GEOLOGICAL SUMMARY

LITHOLOGY

INTERVAL: 1797.0 to 1885.0 mMDRT (-1714.3 to -1787.2 mTVDAHD)

ROP (Range): 1.0 to 77.0 m/h Av. ROP: 32.0 m/h

Interbedded SANDTONE, SILTSTONE and CLAYSTONE with minor COAL

SILTSTONE (5 to 10%): medium brown, medium grey, arenaceous and common grading to very fine sandstone, commonly micromicaceous, common lithics and carbonaceous laminations, hard to very hard, sub-blocky.

Massive Sandstone with interbedded Claystone and thin Coal stringers.

SANDSTONE (50 to 90%): translucent, clear, frosted, fine to very coarse, poorly sorted, angular to subangular, common weak calcareous cement, locally pale grey brown argillaceous matrix, occasional coal laminations, minor nodular pyrite, generally loose clean grains, good inferred porosity.

CALCAREOUS CLAYSTONE (Nil to 50%): (localised) light bluish grey, green grey, siliceous, occasional micro fossils, commonly micromicaceous, locally carbonaceous material, common to abundant calcareous cement, trace nodular pyrite, hard to very hard, sub-blocky to sub-fissile.

CALCAREOUS SANDSTONE (Nil to 60%): (localised) Off white to pale brown, translucent to clear, very fine to very coarse, poorly sorted, angular to sub-angular, sub-rounded where fine grained, common moderately strong calcareous cement, locally common pale brown grey argillaceous matrix where fine grained, common rock flour, generally loose grains, very hard fine grained aggregates, poor visible porosity, fair inferred porosity where coarse.

COAL (Nil to 5%): black, vitreous, very hard, conchoidal fracture.

GAS SUMMARY

No gas data recorded from 1797.0 m to 1887.0 mMDRT due to broken gas line for detection equipment

MWD

Schlumberger LWD Tools Run 1 memory 64% full Sperry Bat Sonic LWD Tool Run 1 memory 85% full

WIRELINE

Crew on board and preparing all available tools for running

REMARKS

Pulled out of hole with BHA laying out AND (SLB Density/Neutron tool). Downloaded all recorded data and re-initialised LWD tools (GVR8 and BatSonic) for next run in 311mm hole section. Made up BHA and ran in hole to 857.0 mMDRT, broke circulation and tested MWD. Continued to run in hole to 1767.0 mMDRT, then washed to bottom at 1797.0 mMDRT. Continued to drill 311mm directional hole.

WELLSITE GEOLOGISTS

Date:28 February 2008Rig:West TritonReport Number:19Bit Diameter:311 mm

Report Period: 06:00 - 06:00 Hours Last Casing: 340mm Surface Casing @ 857.0

mMDRT

Normal

Spud Date: 14-Feb-2008 23:00 Hours **LOT:** 1.91 sg EMW @ 857.0 mMDRT

 Days From Spud:
 13.3
 Mud Weight:
 1.16 sg

 Depth @ 0600 Hrs:
 1914.0 mMDRT
 ECD:
 1.21 sg

 -1811.2 mTVDAHD
 Mud Type:
 KCL Polymer

Lag Depth: 1912.0 mMDRT Mud Chlorides: 50000.00 mg/L

Last Depth: 1887.0 mMDRT

Progress: 27.0 m

 Water Depth:
 27.0 m
 Last Survey:
 1890.59 mMDRT

 RT:
 39.0 m
 Deviation:
 Inc. 34.34°

 Az. 324.56°
 Az. 324.56°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Continued to drill 311mm directional hole from 1887.0 m to 1900.0 mMDRT.

POH, replaced bit and motor sleeve on BHA and RIH, drilled ahead 311mm hole

from 1900.0 mMDRT.

NEXT 24 HOURS: Continue to drill directional 311mm hole.

CURRENT OPERATION @ 06:00 HRS (28-Feb-2008): Drilling 311mm directional hole at 1914.0 mMDRT

GEOLOGICAL SUMMARY

LITHOLOGY

INTERVAL: 1885.0 to 1912.0 mMDRT (-1787.3 to -1809.5 mTVDAHD)

ROP (Range): 4.0 to 65.0 m/h **Av. ROP:** 14.0 m/h

Interbedded SANDSTONE, SILTSTONE AND CLAYSTONE with CLAYSTONE increasing with depth

SANDSTONE (20 to 50%): off white to pale brown, translucent, dominantly loose, very fine to very coarse, poorly sorted, angular to sub-rounded, minor weak calcareous cement, common pale brown silty matrix where fine grained and locally grading to arenaceous siltstone, occasional coal laminations, dominantly carbonaceous, poor visible porosity, fair inferred porosity.

SILTSTONE (40 to 55%): light grey to medium grey, brownish grey, blocky, moderately hard to hard, very fine grained arenaceous, carbonaceous, micromicaceous, rare Foraminifera and shell fragments

CLAYSTONE (5 to 40%): light bluish grey, green grey, moderately hard to hard, sub-blocky to blocky, rare sub-fissile, siliceous, minor micromicaceous, localised trace carbonaceous material, minor calcareous material, trace nodular pyrite.

GAS SUMMARY

No significant peaks recorded

Background Gas										
INTERVAL	Total Gas	C1	C2	C3	iC4	nC4	C5			
(m MDRT)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)			
1885.0 - 1912.0	0.003	22	0	0	0	0	0			

MUDLOGGING EQUIPMENT / PERSONNEL

Gas system thoroughly checked and reported fully operational

MWD

Schlumberger LWD Tools Run 2 memory 16% full Sperry Bat Sonic LWD Tool Run 2 memory 26% full

WIRFLINE

Dummy ran cable to drill floor to test placement of shieves.

REMARKS

Continued to drill 311mm directional hole from 1887.0 m to 1900.0 mMDRT. Assembly not building inclination quick enough. CBU and pulled wet to 1593.0 mMDRT, hole good. Pumped slug and POH. Laid out Bat Sonic for memory dump, broke off bit and motor sleeve and made up same with new replacements, NB#6. Downloaded RAB8 tool, picked up and made up Bat Sonic with BHA and RIH. Continued to drill ahead deviated 311mm hole to 1914.0 mMDRT.

WELLSITE GEOLOGISTS

Date:29 February 2008Rig:West TritonReport Number:20Bit Diameter:311 mm

Report Period: 06:00 - 06:00 Hours Last Casing: 340mm Surface Casing @ 857.0

m MDRT

1.18 sg

Spud Date: 14-Feb-2008 23:00 Hours **LOT:** 1.91 sg EMW @ 857.0 mMDRT

Days From Spud:14.3Mud Weight:Depth @ 0600 Hrs:2175.0 mMDRTECD:

rs: 2175.0 mMDRT ECD: 1.18 sg -1993.5 mTVDAHD Mud Type: KCL Polymer 2174.0 mMDRT Mud Chlorides: 50000.00 mg/L

Lag Depth: 2174.0 mMDRT

Last Depth: 1914.0 m **Progress:** 261.0 m

 Water Depth:
 27.0 m
 Last Survey:
 2125.42 mMDRT

 RT:
 39.0 m
 Deviation:
 Inc. 47.49°

 Az. 318.95°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Drilled ahead 311mm deviated hole from 1914.0 mMDRT to 2175.0 mMDRT.

NEXT 24 HOURS: Continue drilling ahead intersecting Campian Volcanics and the primary

objective, Golden Beach Formation. POH.

CURRENT OPERATION @ 06:00 HRS (29-Feb-2008): Drilling ahead 311mm hole at 6m/hr.

GEOLOGICAL SUMMARY

LITHOLOGY

INTERVAL: 1995.0 to 2040.0 mMDRT (-1870.6 to -1902.1 mTVDAHD)

ROP (Range): 7.0 to 51.0 m/h **Av. ROP:** 22.0 m/h

Interbedded SANDSTONE & SILTSTONE with minor COAL stringers.

SANDSTONE (60 to 100%): pale grey to off white, clear to translucent, very fine to very coarse, dominantly fine to medium, poorly sorted, sub-angular to sub-rounded, angular where coarse grained, common moderate calcareous cement, minor pale grey argillaceous matrix & locally grading to arenaceous siltstone, minor carbonaceous laminations, occasional disseminated and nodular pyrite, generally loose grains, fair to good inferred porosity.

SILTSTONE (10 to 30%): medium grey, light to medium brown grey, arenaceous and generally grading to very fine sandstone, common coal laminations, occasional nodular pyrite, firm, sub-blocky.

CLAYSTONE (30 to 40%): medium grey to brownish grey, medium dark grey, very soft to firm, dominantly soft, amorphous to blocky, dominantly sub blocky, dispersive in part, non calcareous, minor grading to SILTSTONE.

COAL (Trace to 5%): very dark grey, black, hard, blocky, dull vitreous lustre, dominantly sub-conchoidal fracture, rare conchoidal fracture.

INTERVAL: 2040.0 to 2085.0 mMDRT (-1902.1 to -1932.9 mTVDAHD)

ROP (Range): 8.0 to 58.0 m/h **Av. ROP:** 31.0 m/h

Massive SANDSTONE with minor SILTSTONE interbeds.

SANDSTONE (85 to 95%): clear to translucent, off white to pale grey, very fine to very coarse, poorly sorted, sub-angular to sub-rounded, angular where coarse, minor weak calcareous cement, localised pale grey argillaceous matrix and occasionally grading to arenaceous siltstone, trace coal laminations, minor nodular and disseminated pyrite, common rock flour, generally loose grains, good inferred porosity.

SILTSTONE (5 to 15%): light to medium grey, light to medium brown grey, arenaceous and generally grading to very fine sandstone, occasional calcareous material, trace flakey micas, minor coal laminations,

occasional nodular pyrite, firm, sub-blocky.

INTERVAL: 2085.0 to 2174.0 mMDRT (-1932.9 to -1992.8 mTVDAHD)

ROP (Range): 5.0 to 51.0 m/h

Av. ROP: 16.0 m/h

Interbedded SILTSTONE & SANDSTONE with minor COAL stringers.

SANDSTONE (70 to 95%): clear to translucent, off white to pale grey, very fine to very coarse, dominantly fine to medium, poor to moderately sorted, angular to sub-angular, minor weak calcareous cement, localised pale grey argillaceous matrix and occasionally grading to arenaceous siltstone, trace coal laminations, minor nodular and disseminated pyrite, common rock flour, generally loose grains, good inferred porosity.

SILTSTONE (5 to 25%): medium grey, light to medium brown grey, argillaceous in part, generally arenaceous and grading to very fine sandstone, occasional calcareous material, common micromicaceous, common carbonaceous material, occasional nodular pyrite, firm, sub-blocky.

CLAYSTONE (Trace to 5%): pale green grey, light blue grey, siliceous, hard to very hard, sub-fissile to sub-blocky.

COAL (Trace to 5%): black, dark grey, vitreous to sub-vitreous, locally silty and grading to carbonaceous siltstone, firm to moderately hard, fissile in part, sub-conchoidal.

GAS SUMMARY

No significant gas peaks

Background Gas										
INTERVAL	Total Gas	C1	C2	C3	iC4	nC4	C5			
(m MDRT)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)			
1912.0 - 2174.0	0.01	25	0	0	0	0	0			

MUDLOGGING EQUIPMENT / PERSONNEL

Gas system readings remain low to anticipation, though function tests indicate fully operational.

MWD

Medium button resistivity data indicates a faulty sensor.

REMARKS

Directionally drilled 311mm hole from 1914.0 m to 2121.0 mMDRT and rotary drilled to 2175.0 mMDRT.

WELLSITE GEOLOGISTS

Date:01 March 2008Rig:West TritonReport Number:21Bit Diameter:311 mm

Report Period: 06:00 - 06:00 Hours Last Casing: 340mm Surface Casing @ 857.0

m MDRT

Normal

Spud Date: 14-Feb-2008 23:00 Hours **LOT:** 1.91 sg EMW @ 857.0 mMDRT

 Days From Spud:
 15.3
 Mud Weight:
 1.18 sg

 Depth @ 0600 Hrs:
 2313.0 mMDRT
 ECD:
 1.23 sg

 -2086.0 mTVDAHD
 Mud Type:
 KCL Polymer

 Lag Depth:
 2313.0 mMDRT
 Mud Chlorides:
 48000.00 mg/L

Last Depth: 2175.0 mMDRT

Progress: 138.0 m

 Water Depth:
 27.0 m
 Last Survey:
 2272.78 mMDRT

 RT:
 39.0 m
 Deviation:
 Inc. 47.76°

 Az. 323.36°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Drilled 311mm hole from 2175.0 mMDRT to 2313.0 mMDRT.

NEXT 24 HOURS: Complete circulating hole clean, POOH from 2313.0 mMDRT, reaming interval

from 1980.0 mMDRT for GVR Image data on way out of hole. Rig up to run

wireline or LWD wiper trip.

CURRENT OPERATION @ 06:00 HRS (01-Mar-2008): Circulating hole clean in preparation for POOH

GEOLOGICAL SUMMARY

LITHOLOGY

INTERVAL: 2174.0 to 2207.0 mMDRT (-1992.8 to -2014.9 mTVDAHD)

ROP (Range): 4.0 to 29.0 m/h **Av. ROP:** 13.0 m/h

Dominantly SILTSTONE with interbedded SANDSTONE and CLAYSTONE

SILTSTONE (50 to 70%): light to medium grey, medium brown grey, soft to firm, dominantly soft, amorphous to blocky, dominantly blocky, arenaceous and commonly grading to very fine sandstone, slightly calcareous, common carbonaceous laminations and specks, commonly micromicaceous, rare glauconite CLAYSTONE (10 to 30%): pale greenish grey, light blue grey, siliceous, hard to very hard, sub-fissile to sub-blocky, slightly to moderately calcareous, becoming partly medium grey, soft and amorphous with depth through interval.

SANDSTONE (10 to 30%): clear to translucent, frosted, very fine to very coarse, dominantly very fine to medium, poorly sorted, angular to sub-rounded, trace weak calcareous cement, common pale grey argillaceous matrix, minor nodular pyrite, generally loose grains, fair inferred porosity.

INTERVAL: 2207.0 to 2230.0 mMDRT (-2014.9 to -2030.3 mTVDAHD)

ROP (Range): 5.0 to 29.0 m/h **Av. ROP:** 10.0 m/h

Interbedded SANDSTONE and SILTSTONE

SANDSTONE (40 to 60%): clear to translucent, frosted, very fine to very coarse, dominantly fine to medium, poorly to moderately sorted, angular to sub-rounded, trace weak calcareous cement, common pale grey argillaceous matrix, trace nodular pyrite, generally loose grains, fair to good inferred porosity.

SILTSTONE (40 to 50%): light to medium grey, medium brown grey, firm to moderately hard, dominantly moderately hard, sub-blocky to blocky, dominantly blocky, arenaceous and commonly grading to very fine sandstone, slightly calcareous, common carbonaceous laminations and specks, minor micromicaceous, becoming very dark grey, brownish black, soft to firm, sub-blocky, slightly calcareous, very fine arenaceous, carbonaceous, minor nodular pyrite

Created 3/1/2008 10:13 AM Page 1 of 3

INTERVAL: 2230.0 to 2250.0 mMDRT (-2030.3 to -2043.7 mTVDAHD)

ROP (Range): 7.0 to 22.0 m/h

Av. ROP: 12.0 m/h

Dominantly SANDSTONE with minor SILTSTONE, WEATHERED VOLCANICS and CLAYSTONE

SANDSTONE (50 to 80%): clear to translucent, frosted, loose, dominantly very fine to fine, common medium, rare coarse to very coarse, poorly to moderately sorted, well sorted in part, angular to sub-angular, minor sub-rounded, trace nodular pyrite, trace mica, fair inferred porosity.

VOLCANIC (5 to 10%): off white to pale grey, very pale green grey, argillaceous, weathered, minor dark minerals, trace siliceous, moderately hard to hard, very hard where siliceous, sub-blocky.

CLAYSTONE (Nil to 5%): pale greenish grey, light blue grey, hard to very hard, sub-blocky to blocky, moderately calcareous.

SILTSTONE (10 to 20%): medium brown, light to medium brown grey, medium grey in part, arenaceous and locally grading to very fine sandstone, common carbonaceous laminations and specks, hard, sub-blocky, locally sub-fissile.

INTERVAL: 2250.0 to 2313.0 mMDRT (-2043.7 to -2086.0 mTVDAHD)

ROP (Range): 3.0 to 24.0 m/h

Av. ROP: 10.0 m/h

Thick VOLCANICS with thin beds CLAYSTONE and increasing SANDSTONE with depth

VOLCANIC (5 to 50%): Tuffite, pale grey green, off white to pale green, light to medium blue green, minor dark green, siliceous groundmass, common feldspars, occasional dark green minerals (olivine?) argillaceous where weathered, localised reworked carbonaceous fragments, angular, sub-blocky where weathered.

CLAYSTONE 10%: medium brown, reddish brown, minor carbonaceous material, firm, sub-blocky, dispersive.

CLAYSTONE 10%: pale grey, light to medium grey, siliceous, minor silty and locally grading to argillaceous siltstone, trace carbonaceous material, occasionally micromicaceous, moderately hard to hard, sub-blocky to sub-fissile.

CLAYSTONE 70%: off white, pale brown grey, very pale green grey, very pale blue grey, trace disseminated pyrite, trace chert fragments, firm to hard in part, sub-blocky, dispersive. (Probable weathered tuff).

SANDSTONE (10 to 80%): clear to translucent, pale very fine to very coarse, dominantly medium, moderately sorted, sub-angular to sub-rounded, angular where coarse, minor weak calcareous cement, trace pale grey argillaceous matrix, occasional calcareous fragments, trace nodular pyrite, occasional carbonaceous material, loose, fair to good inferred porosity.

GAS SUMMARY

No significant gas peaks

Background Ga	Background Gas											
INTERVAL Total Gas C1 C2 C3 iC4 nC4 C												
(m MDRT)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)					
2174.0 - 2207.0	0.003	18	0	0	0	0	0					
2207.0 - 2230.0	0.012	46	0	0	0	0	0					
2230.0 - 2250.0	0.013	56	0	0	0	0	0					
2250.0 - 2313.0	0.006	26	0	0	0	0	0					

MWD

Medium button resistivity data indicates a faulty sensor.

WIRELINE

Wireline crew ready to run all available tools.

REMARKS

Rotary drilled ahead 311mm hole from 2175.0 mMDRT pumping regular high viscosity sweeps to clean excess cutting in hole. Slide drill from 2247.0 mMDRT to 2253.0 mMDRT to reduce inclination. Continued rotary drilling to 2313.0 mMDRT and circulated hole clean.

WELLSITE GEOLOGISTS

Date:02 March 2008Rig:West TritonReport Number:22Bit Diameter:311 mm

Report Period: 06:00 - 06:00 Hours Last Casing: 340mm Surface Casing @ 857.0 m

MDRT

Spud Date: 14-Feb-2008 23:00 Hours **LOT:** 1.91 sg EMW @ 857.0 m MDRT

Days From Spud: 16.3 Mud Weight: 1.18 sg

Depth @ 0600 Hrs: 2313.0 mMDRT **ECD:**

-2086.0 mTVDAHD **Mud Type:** KCL Polymer 2313.0 mMDRT **Mud Chlorides:** 49000.00 mg/L

Lag Depth: 2313.0 mMDRT **Last Depth:** 2313.0 mMDRT

Progress: 0 m

 Water Depth:
 27.0 m
 Last Survey:
 2272.78 mMDRT

 RT:
 39.0 m
 Deviation:
 Inc. 47.76°

 Az. 323.36°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Continued to circulate hole clean at TD 2313.0 mMDRT, POOH logging up with

GVR-8 LWD over various intervals. Continued to POOH to surface. Rig up to run wireline and run in hole wireline run 1, VSI. Held up at 1390.0 mMDRT. Log

up VSI.

NEXT 24 HOURS: Continue to log VSI to surface, rig down VSI, rig up Run 2 PEX-MSIP-SP and

RIH to TD. Log up PEX to 1740.0 mMDRT, MSIP to mud-line and SP to 1150.0

mMDRT. Rig down.

CURRENT OPERATION @ 06:00 HRS (02-Mar-2008): Logging out of hole VSI.

GEOLOGICAL SUMMARY

LITHOLOGY

No new lithology drilled

GAS SUMMARY

No Gas Data

MWD

Bat Sonic and GVR-8 recorded data downloaded and field processed. Good initial impressions of data except medium button resistivity.

WIRELINE

Rig up and RIH Run 1, VSI, held up at 1390.0 mMDRT, log up 13 stations with top shuttle at 540.0 mMDRT

WATER BASED MUD DATA

	E MUD IECK	MUD TYPE	MW (sg)	рН	KCI (%)	CI (mg/L)	Barite (%)	Rm (ohm.m)	Rmf (ohm.m)	Rmc (ohm.m)
01-Ma	ar-2008	KCL Polymer	1.15	8.7	10	49000	4.4	0.08	0.07	0.09

REMARKS

Continued to circulate hole clean at TD 2313.0 mMDRT, POOH to 2270.0 mMDRT and log up with LWD to 2210.0 mMDRT. Continued to POOH washing and reaming tight spots to 1980.0 mMDRT. Log up LWD to 1777.0 mMDRT. Continued to POOH to 348.0 mMDRT. POOH BHA, lay out BAT Sonic, download data from GVR-8 and rack back. Rig up to run wireline and run in hole VSI. Held up at 1390.0 mMDRT. Log up VSI to top shuttle depth of 540.0 mMDRT.

WELLSITE GEOLOGISTS

Date:03 March 2008Rig:West TritonReport Number:23Bit Diameter:311 mm

Report Period: 06:00 - 06:00 Hours Last Casing: 340mm Surface Casing @

857.0 m MDRT

Spud Date: 14-Feb-2008 23:00 Hours **LOT:** 1.91 sg EMW @ 857.0 m MDRT

 Days From Spud:
 17.3
 Mud Weight:
 1.18 sg

 Depth @ 0600 Hrs:
 2313.0 mMDRT
 ECD:

-2086.0 mTVDAHD **Mud Type:** KCL Polymer **Lag Depth:** 2313.0 mMDRT **Mud Chlorides:** 48000.00 mg/L

Last Depth: 2313.0 m MDRT

Progress: 0 m

 Water Depth:
 27.0 m
 Last Survey:
 2272.78 mMDRT

 RT:
 39.0 m
 Deviation:
 Inc. 47.76°

 Az. 323.36°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Rigged up wireline for Run#1, VSI and RIH to 1390.0 mMDRT, hung up,

attempted to pass, log out to surface, laid out. Rigged up Run#2, PEX-SP-MSIP and RIH, hung up 1390.0 mMDRT. Logged out and rigged down, made up

LWD (ADN, BAB-8) wiper trip assembly with 311mm bit and RIH.

NEXT 24 HOURS: Continue RIH LWD wiper assembly to TD at 2313.0 mMDRT, POOH logging

ADN from TD to 1740.0 mMDRT, POOH. Lay out ADN, RAB-8, rig up and RIH

wireline run no.3 MDT.

CURRENT OPERATION @ 06:00 HRS (03-Mar-2008): Continue to RIH for LWD wiper trip.

GEOLOGICAL SUMMARY

LITHOLOGY

No new lithology drilled

GAS SUMMARY

No Gas Data

WIRELINE

Rig up and RIH VSI, held up at 1390.0 mMDRT, log up 13 stations with top shuttle at 540.0 mMDRT

WATER BASED MUD DATA

DATE MUD	MUD TYPE	MW	рН	KCI	CI	Barite	Rm	Rmf	Rmc
CHECK		(sg)		(%)	(mg/L)	(%)	(ohm.m)	(ohm.m)	(ohm.m)
01-Mar-2008	KCL Polymer	1.15	8.7	10	49000	4.4	0.08	0.07	0.09

RUN SUMMARY

Run #	Tool String	Log From Depth (m)	Log To Depth (m)	Repeat From Depth (m)	Repeat To Depth (m)	Comments
1	VSI	1385.5	70.1	792.0	0.0	Plan: VSI 15 m intervals from TD to loss of signal. Tools hung up at 1390.0 mMDRT, log to surface from there. Check shot at 792.0 mMDRT

2	PEX-SP-MSIP	1390.0	66.0	1350.0	1250.0	PEX-SP-MSIP - PEX-MSIP from TD to 1740 m (50 m above where ADN tool taken out of the string) - SP log from TD to 1150 m MDRT (100 m above the top of the Latrobe coarse clastics picked at 1250.8 m MDRT (~ -1212 m TVDAHD) - Tool hung up on RIH at 1390.0 mMDRT. Log up as per above criteria sonic from TD to surface - If we can't get to TD with the PEX-DSI, log out from whatever depth we reach.
3	MDT	0.0	0.0	0.0	0.0	MDT (program to be given by reservoir engineer after we have full set of quad combo data)
4	MSCT	0.0	0.0	0.0	0.0	MSCT (program TBA – 20-25 cores)

VSP and Environmental Mitigation Measures

Start date/time of whale observation prior to start of seismic	01/03/08 14:00hrs, intermittent
source (at least 15 mins)	throughout rest of day
Start date/time seismic source	02/03/08 03:30
Was soft start used?	Yes, 500psi build up over 10 minutes
Were whales seen within 3 km prior to VSP starting?	No
Did whales move in within 3 km once VSP started?	No
Did VSP stop due to whales?	No
End date/time seismic source	02/03/08 07:30
Whale sighting sheet filled in?	None sighted
Weather & visibility	Calm, poor visibility at night time
Additional comments	Nil

TEMPERATURE DATA

Date Mud Checked: 01-Mar-2008

Date Time Circulation Stopped: 01-Mar-2008 06:45 AM

Circulation Time: 1.00 h

Run #	Run Date	Tool String	Max BHT (℃)	Max BHT Depth (m)	Date Time Logger on Bottom	Time Since Circ. Stopped (h)
1	3/1/2008	VSI	60.00	1326.0	02-Mar-2008 03:34	20.82
2	3/2/2008	PEX-SP-MSIP	59.00	1390.0	02-Mar-2008 13:14	30.48
3	3/2/2008	MDT	0.00	0.0		
4	3/3/2008	MSCT	0.00	0.0		

REMARKS

Rigged up wireline logging Suite 1 - Run #1: VSI and RIH to 1390.0 mMDRT where tools unable to pass, 7 attempts made. Commenced seismic survey from 1385.0mMDRT to 66.0 mMDRT. Rigged down run#1and RIH run#2 PEX-SP-MSIP to 1390.0 mMDRT, again unable to pass. Commence log up, MSIP to mud-line and SP to 1150.0 mMDRT. Rig down wireline and M/U LWD wiper assembly with ADN, RAB-8 and straight motor BHA and RIH. Worked and wash hole from 1380m - 1383m, 1394m - 1396m, 1778m - 1780m, 1828m -1830m with 20k - 40k. Held up at 1850m with 40k down. Work pipe and jar up with up to 100k overpull five times, pipe free. Pump 30 bbls high vis and circulate hole clean while working pipe, continue RIH to 1930.0 mMDRT.

Large quantities of coal back over shakers.

WELLSITE GEOLOGISTS

Date:04 March 2008Rig:West TritonReport Number:24Bit Diameter:311 mm

Report Period: 06:00 - 06:00 Hours Last Casing: 340mm Surface Casing @

857.0 mMDRT

Spud Date: 14-Feb-2008 23:00 Hours **LOT:** 1.91 sg EMW @ 857.0 mMDRT

 Days From Spud:
 18.3
 Mud Weight:
 1.24 sg

 Depth @ 0600 Hrs:
 2313.0 mMDRT
 ECD:

 Depth @ 0600 Hrs:
 2313.0 mMDRT
 ECD:

 -2086.5 mTVDAHD
 Mud Type:
 KCL Polymer

 Lag Depth:
 2313.0 mMDRT
 Mud Chlorides:
 49000.00 mg/L

Lag Depth:2313.0 mMDRTLast Depth:2313.0 mMDRT

Progress: 0 m

 Water Depth:
 27.0 m
 Last Survey:
 2272.78 mMDRT

 RT:
 39.0 m
 Deviation:
 Inc. 47.76°

 Az. 323.36°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Continued RIH wiper trip assembly from 1930.0 mMDRT to 2167.0 mMDRT.

Washed to TD at 2313.0 mMDRT, rotated out whilst LWD logging to 1740.0

mMDRT and continued POOH, racked back BHA and laid out LWD.

NEXT 24 HOURS: Rig up and RIH wireline run#3 MDT.

CURRENT OPERATION @ 06:00 HRS (04-Mar-2008): Breaking down wiper trip BHA.

GEOLOGICAL SUMMARY

LITHOLOGY

No new lithology drilled

GAS SUMMARY

No trip gas recorded and no significant gas peaks whilst circulating.

MWD

RIH with LWD (ADN-GVR-MWD) wiper assembly to TD at 2313.0 mMDRT, POOH logging ADN from TD to 1740.0 mMDRT at 120m/hr.

RUN SUMMARY

Run #	Tool String	Log Log From To		Repeat From	Repeat To	Comments	
"		Depth ()	Depth ()	Depth ()	Depth ()		
5	ADN – GVR-8	2313.0	1740.0	1759.0	1710.0	Run 5 overlap Run 2 for repeat	

REMARKS

Continued from 1930.0 mMDRT RIH wiper trip assembly with ADN and GVR-8, washed and reamed from 2167.0 to 2313.0 mMDRT. Rotate out of hole at 120m/hr to 1740.0 mMDRT. Tight spots at 2194-2193, 2188, 2182, 2175-2172, 2166, 2082, 2006, 1955-1953, 1945, 1847, 1842, 1837.0 mMDRT. Continued POOH to surface. Retrieved RA source and laid out and downloaded ADN, laid out GVR-8.

WELLSITE GEOLOGISTS

Adam Cruickshank / Hamish Little

Created 3/4/2008 7:28 AM Page 1 of 1

Date:05 March 2008Rig:West TritonReport Number:25Bit Diameter:311 mm

Report Period: 06:00 - 06:00 Hours Last Casing: 340 mm (13 3/8") Surface Casing

@ 857.0 m MDRT

1.23 sg

Spud Date: 14-Feb-2008 23:00 Hours **LOT:** 1.91 sg EMW @ 857.0 m MDRT

Days From Spud: 19.3 Mud Weight:

Depth @ **0600 Hrs**: 2313.0 mMDRT **ECD**:

-2086.5 mTVDAHD **Mud Type:** KCL Polymer 2313.0 mMDRT **Mud Chlorides:** 50000.00 mg/L

Lag Depth:2313.0 mMDRTLast Depth:2313.0 mMDRT

Progress: 0 m

 Water Depth:
 27.0 m
 Last Survey:
 2272.78 mMDRT

 RT:
 39.0 m
 Deviation:
 Inc. 47.76°

 Az. 323.36°

OPERATIONS SUMMARY

24 HOUR SUMMARY: POOH and laid out LWD tools. Rigged up and RIH wireline run#3 MDT, logged

in pretests and samples from 1268.5 mMDRT to 1440.1 mMDRT as per program. POOH and rigged up wireline run#4 CST. RIH and performed 30

shots. POOH with wireline.

NEXT 24 HOURS: Run VSI logs in drill pipe as per program. POOH and rig down wire line.

Commence P&A program.

CURRENT OPERATION @ **06:00 HRS (05-Mar-2008)**: RIH with open ended drill pipe to 2310 mMDRT for VSI logs.

GEOLOGICAL SUMMARY

LITHOLOGY

No new lithology drilled

GAS SUMMARY

No trip gas recorded and no significant gas peaks whilst circulating.

MWD

LWD tools laid out and ready to be dispatched to town for service.

WIRELINE

RUN SUMMARY

Run #	Tool String	Log From Depth (m)	Log To Depth (m)	Repeat From Depth (m)	Repeat To Depth (m)	Comments
1	VSI	1385.5	70.1	792.0	0.0	Plan: VSI at 15 m intervals from TD to loss of signal. Tools hung up at 1390.0 mMDRT, log to surface from there. Total of 13 stations with top shuttle at 540.0 mMDRT. Check shot at 792.0 mMDRT
2	PEX-SP-MSIP	1390.0	66.0	1350.0	1250.0	PEX-SP-MSIP -Tool hung up on RIH at 1390.0

						mMDRT. Log up as per OOWL Sonic from hang point to surface
3	MDT	1440.1	1268.5	0.0	0.0	Preliminary logging program - 13 pre tests (1440m-1268.5m) 2 sample points - 3 sample chambers used. Last on bottom circulation time 10:20 am 03/03/2008 Last circulation time following ADN logs at 1740.0 mMDRT - 21:30 03/03/2008 MDT 13 pretests completed. 9 Good tests - 3 no seal & 2 flow line blockages. 3 x sample chambers taken at 1328m.
4	CST	1477.2	1250.0	0.0	0.0	CST: 30 cores, 29 recovered.

REMARKS

Run#3: MDT-GR was rigged up and run into hole. The tool became hung up and unable to pass 1500.0 mMDRT. A total of 13 pretests were then attempted. (9 Good tests, 3 Seal failure & 2 aborted tests due to plugging) Three samples were then acquired at 1328.0 mMDRT. A sample was also attempted at 1440.0 mMDRT however the test was aborted due to sand plugging the tool sampler line. The MDT tool was then pulled from hole and laid out. The fluid samples were retrieved on surface - Petrotec tests indicating recovery of water only.

Run#4 CST-GR was rigged up and run in hole to the hold up point at 1500.0 mMDRT. 30 shots were taken from 1477.2 mMDRT to 1250.0 mMDRT. The CST tool was then pulled out of hole and laid out. 29 samples were retrieved with 1 sample left in the hole.

WELLSITE GEOLOGISTS

Adam Cruickshank

Date:06 March 2008Rig:West TritonReport Number:26Bit Diameter:No bit in hole

 Report Period:
 06:00 - 06:00 Hours
 Last Casing:
 340 mm @ 857.0 m MDRT

 Spud Date:
 14-Feb-2008 23:00 Hours
 LOT:
 1.91 sg EMW @ 857.0 m MDRT

Days From Spud: 20.3 Mud Weight: 1.23 sg

Depth @ 0600 Hrs: 2313.0 mMDRT

2313.0 mMDRT **ECD:**-2086.5 mTVDAHD **Mud Type:** KCL Polymer
2313.0 mMDRT **Mud Chlorides:** 50000.00 mg/L

Lag Depth: 2313.0 mMDRT Me

Last Depth: 2313.0 mMDRT

Progress: 0.0 m

 Water Depth:
 27.0 m
 Last Survey:
 2272.78 mMDRT

 RT:
 39.0 m
 Deviation:
 Inc. 47.76°

 Az. 323.36°

OPERATIONS SUMMARY

24 HOUR SUMMARY: Ran in hole to TD with open ended drill pipe. Rigged up Schlumberger sheaves

at crown and ran wireline in hole for Run 5 (VSI). Completed logging operations as per program and rigged down tools. Pulled out of hole to 1270.0 mMDRT for

plug and abandonment program.

NEXT 24 HOURS: Continue plug and abandonment program.

CURRENT OPERATION @ 06:00 HRS (06-Mar-2008): Performing plug and abandonment program.

Setting cement plug #1 from 1270 to 1210 mMDRT.

GEOLOGICAL SUMMARY

WIRELINE

WATER BASED MUD DATA

DATE MUD CHECK	MUD TYPE	MW (sg)	рН	KCI (%)	CI (mg/L)	Barite (%)	Rm (ohm.m)	Rmf (ohm.m)	Rmc (ohm.m)
04-Mar-2008	KCL / Polymer	1.23	8.5	10	50000	5	0.091	79	109

RUN SUMMARY

Run #	Tool String	Log From Depth (m)	Log To Depth (m)	Repeat From Depth (m)	Repeat To Depth (m)	Comments
5	VSI through Drill Pipe.	2300.0	1265.5	0.0	0.0	RIH open ended drill pipe and circulated for 3.5 hours. Last circulation 13:10pm 05/03/2008. Move drill pipe every 30mins during logging operations to avoid becoming hydrostatically stuck.

Created 3/6/2008 7:34 AM Page 1 of 2

Date Mud Checked: 04-Mar-2008

Date Time Circulation Stopped: 05-Mar-2008 01:10 PM

Run #	Run Date	Tool String	Max BHT (°C)	Max Depth (m)	Date Time Logger on Bottom	Time Since Circ. Stopped (h)
5	5/03/2008	VSI through Drill Pipe.	N/A	2299.9	05-Mar-2008 17:00	3.83

REMARKS

Ran in hole to TD with open ended drill pipe, washing and reaming as required. Circulated hole clean whilst changing out elevators and bails for installation of Schlumberger sheaves at crown. Picked up and ran in hole with VSI tool on wireline for Run 5. Commenced logging operations as per program. Logged 17 stations from 2299.9 to 1279.7 mMDRT. Pulled out of hole with wireline and rigged down Schlumberger wireline equipment. Pulled back with drill pipe to 1330.0 mMDRT. Pumped and displaced a Hi-Vis pill and continued to pull out of hole to 1270.0 mMDRT. Rigged up and prepared for plug and abandonment program. Began setting cement plug #1 from 1270.0 to 1210.0 mMDRT.

WELLSITE GEOLOGIST

Adam Cruickshank

Created 3/6/2008 7:34 AM Page 2 of 2

	COR	PORATI	ON																	
	ERATO		APACH			COUNTRY:	AUSTRALIA		ATE:		TERN AUS					١٨	/asal	hi 1		
CON	ITRACT	OR:	STENA	DRILL	ING	RIG NAME:	West Triton	DATE P	PULLED:		15/02/20	800				V 1	asai	<u> </u>		
							RU	N INFO	RMATI	ON										
PROD	Bit Size	Bit Mfg	Bit Type	IADC	Serial #	NOZZLES (32n	nd's) Depti	Depth Out	Meters Drilled	HOURS	ROPs V	VOB Mot		Rot	DEV	Pump Press	Volume	MW	PV	H.S.I
PROD	(in)	Bit wing	витуре	Code	Seriai #	N1 N2 N3 N4 N5 N6	6 N7 N8 N9 (m)	(m)	(m)	HOURS	(m/hr) (l	klbs) RPI	A TOTAL RPIN	Туре	(°)	(psi)	(gpm)	(sg)	YP	H.S.I
PDC	26.00	STC	XR+C	115	MZ1716	28 28 28 TFA = 1.804	66	135	69	6	11.5 53.2	N/A	N/A	RS		N/A	N/A			N/A
							DU	ILL BIT	PHOTO	os										
					OS N LABL															
	BOTTOM HOLE ASSEMBLY COMMENTS																			
				Pe	ndulum															
							IA	DC DUL	L GRAI	DE										
				CUT	TING STRU	CTURE					BEARIN	GS				R	EMARKS			
INSI	IDE	OU	ITSIDE			DULL	LOCA	TION	1		2		3	G/	AGE	OTHE	R	RE	EASON	J
														1						

2

WT

Bit Performance Summary

	COR	PORATI	ION												_							
	PERATO		APACH			COUNTRY:	AUSTRA		STA			TERN A		LIA				W	/asa	bi 1		
CON	NTRACT	OR:	STENA	DRILL	.I NG	RIG NAME:	West Tri	iton [DATE P	ULLED:		17/02/	/2008						usu	<u> </u>		
								RUN I	NFOF	RMATI	ON											
PROD	Bit Size	Bit Mfg	Dia Toma	IADC	Serial #	NOZZLES ((32nd's)	Depth In	Depth Out	Meters Drilled	HOURS	ROPs	WOB	Motor	Total RPM	Rot	DEV	Pump Press	Volume	MW	PV	H.S.I
PROD	(in)	Bit wing	Bit Type	Code	Seriai #	N1 N2 N3 N4 N5	N6 N7 N8 N9	(m)	(m)	(m)	HOURS	(m/hr)	(klbs)	RPM	TOTAL RPIVI	Туре	(°)	(psi)	(gpm)	(sg)	ΥP	н.э.і
PDC	16.00	R/HYC	T11CDH	115	1369484	28 28 28		135	862	727	25.5	28.5	16		97	RS	0.4		1110		7	0.79
. 50	10.00	10,1110	1110511	110	1007404	TFA = 1.80	04	103	002	,,,,	20.0	94.4	16		97	No	0.4		1110	1.04	6	0.77
								DULL	BIT	PHOTO	OS											
	PHOTOS NOT AVAILABLE																					
	BOTTOM HOLE ASSEMBLY Pendulum														c	OMMEN	ITS					
								IADC	: DULI	L GRAI	DE											
									BEAR	INGS					R	EMARKS						
INS	IDE	OL	JTSIDE			DULL		LOCATIO	ON	1		2	2		3	GA	GE	ОТНЕ	R	RI	EASON	V

Е

NO

TD

OPERATOR:	APACHE ENERGY	COUNTRY:	AUSTRALIA	STATE:	WESTERN AUSTRALIA
CONTRACTOR:	STENA DRILLING	RIG NAME:	West Triton	DATE PULLED:	25/02/2008

Wasabi 1

	RUN INFORMATION																				
PROD	Bit Size	Bit Mfg	Bit Type	I ADC Code	Serial #	NOZZLES (32nd's)	Depth In	Depth Out	Meters Drilled	HOURS	ROPs	WOB	Motor RPM	Total RPM	Rot	DEV	Pump Press	Volume	MW	PV	H.S.I
	(in)		•	Code		N1 N2 N3 N4 N5 N6 N7 N8 N9	(m)	(m)	(m)		(m/hr)	(klbs)	RPIVI		Type	(°)	(psi)	(gpm)	(sg)	YP	
PDC	12.25	STC	Mi616VBPX	M223	SCC985	18 18 18 18 18 18	862	1797	935	61.25	15.3	19	121	121	RS	32.0		1099	1 15	20	2.41
PDC	12.25	310	WIIOTOVBPA	IVIZZ3	300985	TFA = 1.491	802	1797	935	61.25	65.9	19	121	161	кэ	32.0		1099	1.15	26	2.01

BOTTOM HOLE ASSEMBLY

Steerable

COMMENTS

HEAVY BLADE CONTACT - SHOULDER.

			IADC DUL	L GRADE							
		CUTTING STRUCTURE			BEARINGS			REMARKS			
INSIDE	OUTSIDE	DULL	LOCATION	1	2	3	GAGE	OTHER	REASON		
2	2 6 BT S X X X I RO BHA										

OPERATOR:	APACHE ENERGY	COUNTRY:	AUSTRALIA	STATE:	WESTERN AUSTRALIA
CONTRACTOR:	STENA DRILLING	RIG NAME:	West Triton	DATE PULLED:	27/02/2008

Wasabi 1

							RUN	INFO	RMATI	ON											
PROD		Bit Type	I ADC Code	Serial #	NOZZLES (32nd's)	Depth In	Depth Out	Meters Drilled	HOURS	ROPs	WOB	Motor RPM	Total RPM	Rot	DEV	Pump Press	Volume	MW	PV	H.S.I	
	(in)	•	• •	Code		N1 N2 N3 N4 N5 N6 N7 N8 N9	(m)	(m)	(m)		(m/hr)	(klbs)	RPIVI		туре	(°)	(psi)	(gpm)	(sg)	ΥP	
PDC	12.25	STC	Mi616VHBPX	M223	SCC991	14 14 14 14 14 14	1797	1900	103	11	9.4	10	121	121	PS	47.5		1099	1 15	18	2 17
PDC	12.25	310	MIGIOVHEPA	IVIZZ3	300991	TFA = 0.902	1797	1900	103	11	24.09	10	121	161	ĸs	47.5		1099	1.15	35	3.17

DULL BIT PHOTOS

BOTTOM HOLE ASSEMBLY

Steerable

COMMENTS

CUTTERS IN GOOD CONDITION. NO MAJOR WEAR CHARACTERISTIC

			IADC DUL	L GRADE							
		CUTTING STRUCTURE			BEARINGS			REMARKS			
INSIDE	OUTSIDE	DULL	LOCATION	1	2	3	GAGE	OTHER	REASON		
2	2 4 BT S X X X I CT BHA										

	PORATI													Ì	r						
OPERATO		APACH			COUNTRY:		STRALIA		ATE:		TERN AL		LIA				\/	/asal	hi 1		
CONTRACT	OR:	STENA	DRILL	ING	RIG NAME:	Wes	t Triton	DATE P	ULLED:		1/03/2	800			Ĺ		v	asai	<u> </u>		
							RUN	INFO	RMATI	ON											
Dia Cina					NO77LES	(22-41-)	Depth	Depth	Meters		DOD-	WOD			I I	DEV	Duman Duana	Values	D.43.07	DV	
PROD Bit Size	Bit Mfg	Bit Type	I ADC Code	Serial #	NOZZLES (In	Out	Drilled	HOURS	ROPs	WOB	Motor RPM	Total RPM	Rot Type	DEV	Pump Press	Volume	MW	PV	H.S.I
(in)			0000		N1 N2 N3 N4 N5	N6 N7 N	N9 (m)	(m)	(m)		(m/hr)	(klbs)			. , po	(°)	(psi)	(gpm)	(sg)	YP	
PDC 12.25	нсс	MXL1	117	6065524	24 24 24		1900	2313	413	49	8.4	40	110	110	RS	48.1		1000	1.21	20	2.62
					TFA = 1.3	325					16.3	40		150						31	
							DUL	L BIT	PHOTO	OS											
		A\	/AII	OS NO LABLI	E									C	OMMEN	ιτs					
			St	teerable																	
							IAD	C DUI	L GRAI	DE											
			CUT	TING STRUC	CTURE		IAD	JUL	LORA		BEARI	NGS					D	EMARKS			
INSIDE	OU													3	GA	GE					

16

PR

WT

HALLIBURTON

Fluid Systems

BAROID FLUID SERVICES RECAP

APACHE ENERGY LTD
Wasabi-1
BASS STRAIT, VICTORIA

Prepared by: Mike Flexmore, James Munford,

Eugene Edwards, Brad Jackson

Date: March, 2008

Table Of Contents

- 1. WELL SUMMARY
- 2. COST SUMMARY
- 3. PERFORMANCE SUMMARY
- 4. INTERVAL 1 (26" x 16" Hole)
- 5. INTERVAL 2 (12.25" Hole)
- 6. Plug and Abandon
- 7. POST WELL AUDIT

Well Summary
Total Cost Breakdown
Net Well Cost Breakdown
Interval Summary
Interval Cost Breakdown
Interval Inventory Report
Fluid Volume Record
Interval Chemical Concentrations
Fluid Property Recap
Fluid Program Exceptions Report
Operations Log Recap
Well Deviation (Actual)

Bit & Hydraulic Record

8. DAILY MUD REPORTS

1. <u>WELL SUMMARY</u>

1.1 Well Data

Well Name : Wasabi-1

Operator : Apache Energy Ltd
Well Type : Deviated/Exploration

Bottom Hole Temperature : 60°C (Dynamic)

Maximum Inclination : 48 deg @ 2243 m MD, 2078m TVD

Location : Wasabi Field, La Trobe Basin, Victoria

 Contractor/Rig
 : West Triton

 Start Date (Rig)
 : 12/02/2008

 Baroid On Location
 : 31/01/2008

 Drill Out Date
 : 14/02/2008

RT to Mudline : 75 m

Total Depth : 2313 m MD, 2125 m TVD

Date TD Reached : 01/03/2008 (05:30 Hrs)

Total Days Actual Drilling : 8 Days

Date Released : 08/03/2008

Total Days on Well : 26 Days

Drilling Cuttings Volume : 1464 bbls

1.2 Formation Tops

Formation	MDRT (m)	TVDRT (m)	Length (m MD)
Gippsland	66	66	-
Lakes Entrance	1002	1002	936
Gurnard Formation	1255	1254	253
Burong (upper Latrobe)	1382	1380	127
M. Diversus (upper Latrobe)	1709	1674	382
Volcanics (Campanian)	2207	2053	498
Golden Beach	2230	2069	23
Total Depth	2313	2125	2247

1.3 Casing Program

20 x 13 ³ / ₈ "	Surface Casing	@	857 m MDRT
	Production Casing	@	Not planned

1.4 Personnel

Drilling Supervisors	:	Bill Openshaw	Stefan Schmidt	Shaughn Corless
	:	Richard Reading		
Baroid Field Service Reps.	:	Mike Flexmore Brad Jackson	James Munford	Eugene Edwards

2. <u>COST SUMMARY</u>

2.1 Drilling Fluid Costs

	Drilling Fluid	Hole Size	MD From	MD To	Cost USD \$
1.	Seawater & Sweeps	26" x 16"	66 m	862 m	50,101.46
2.	KCL/POLYMER	12 ¼"	862 m	2313 m	217,741.91
Mud	Materials Used For Drilling			USD \$	267,843.37
Prod	ducts Lost / Damaged			USD \$	3,269.08
Tota	ıl Materials			Total USD \$	267,843.37

2.2 Engineering Costs

Service Representatives	From (date)	To (date)	Days
Mike Flexmore	31/01/08	14/02/08	15
James Munford (Intvl 1)	11/02/08	22/02/08	12
James Munford (Intvl 2)	23/02/08	27/02/08	5
Eugene Edwards (Intvl 1)	15/02/08	22/02/08	8
Eugene Edwards (Intvl 2)	23/02/08	08/03/08	15
Brad Jackson (Intvl 2)	28/02/08	08/03/08	10
Total Days:			65
Service Cost	@ USD \$ 1250	USD \$	81,250.00
Total Cost of Materials & Engine	USD \$	352,362.45	

PERFORMANCE SUMMARY

3.1 Comments

3.

The West Triton was commissioned and the first well for Apache, Wasabi-1, was spud on 14/02/2008. The first top hole intervals, 26" x 16", was drilled from 66 m – TD at 862 m. The 13.375" casing could not be run passed 139m and was pulled out the hole.

A wiper trip was run to 857m, with tight hole being reamed, from 94m to 135m, on the way in and from 155m to 126m, on the way out.

The 13.375" casing was run to 733m, then the 20" crossover and casing run to 809m. The casing was washed down from 809m to 857m and cemented in place as per program.

The 12 1/4" interval was drilled to TD at 2313 m. The final target depth was changed during drilling and was 235m shallower then the programmed TD of +/- 2548m.

The hole angle was increased, from a programmed 28 degrees at 1490-2211m, to 48 degrees at 2243m. Wire line logs could not be run passed 1390m. MWD and LWD logs were run with the drill string, with additional wire line logs run after.

The hole was plugged and abandoned with 3 cement plugs set at 1270m to 1210m, 887m to 827m and 121m to 76m.

3.2 Performance Indicators

Int	terval 1. (66 m - 862 m) - 26" x 16" Hole	Program	Actual	Achieved (+/- 10 %)
•	Drilled, m	825	796	Yes
•	Volume Built, bbl	4330	5888	No
•	Dilution Rate, bbl/m	n/a	n/a	n/a
•	Consumption Rate, bbl/m	n/a	7.4	No
•	Mud Cost / bbl, US\$	7.32	8.5	No
•	Mud Cost / m, US\$	38.43	62.94	No
•	Interval Mud Cost, US\$ **	31,703	50,101.66	No

Interval 2. (862 m - 2313 m) - 12 1/4" Hole	Program	Actual	Achieved (+/- 10 %)
 Drilled, m 	1752	1451	no
Volume Built, bbl	4098	4740	no
 Dilution Rate, bbl/m 	1.75	1.9	yes
 Consumption Rate, bbl/m 	2.34	3.2	no
 Mud Cost / bbl, US\$ 	44.96	43.70	yes
Mud Cost / m, US\$	105.19	142.76	no
 Interval Mud Cost, US\$ ** 	184,285.00	207,146.87	no

3.3 Explanation of Non-Conformance

Interval 1:

- Make up costs were higher, due to contaminated drill water, used in the makeup of the spud mud. The use of costly BARAZAN-D+ was necessary to achieve the desired viscosity of all mud and barite suspension of the Displacement/Kill mud.
- An unplanned wiper trip was carried out tog et casing down. A greater volume of mud was used, because of an additional 758bbls, of Hi Vis sweeps. These were pumped while reaming tight spots, on the wiper trip. An additional displacement of 800bbls, 1.15sg mud was also required, due to the unplanned wiper trip.

Interval 2:

- The total mud costs, for the 12.25" interval, was \$22861.87 higher then programmed. The program did not include any costs for the use of EZ mud (\$1630.77), Circal 60/16 (\$4033.37), Circal Y (\$1946.68), Bara defoam W300 (\$3084.40).
- The usage was higher for Potassium Hydroxide (75 @ \$3373.50) then programmed (15 x Caustic Soda) and Aldacide G (21 actual @ \$1834.77, vs 2 programmed).
- The actual volume built was 4740 bbls, which comprised of 4340 bbls of KCL/Polymer mud and 400 bbls of PHB reserve mud. The PHB reserve mud was built as contingency volume, when the boats were unable to offload chemicals and drill water, during bad weather. The actual volume of KCL/Polymer mud built was 4340bbls, 242bbls higher then the 4098 bbls programmed.
- The average hole wash out, was 17.3%. The programmed open hole volume, at 2548m was 652 bbls. While the actual open hole volume at 2313m was 935 bbls. This is 283 bbls more open hole mud volume, despite being 235m shallower.
- The dilution rate is slightly higher than programmed. Generally the seepage losses while drilling were 10bbls /hr. there were occasional increases to this rate, the most severe being shortly after entering the Latrobe sands. The losses peaked at 30bbls / hr and 50 bbls of a 40ppb Calcium Carbonate LCM pill, was transferred into the active. The losses retreated to 7 bbls /hr after the treatment. Due to the 17.3% hole wash out, the dilution rate and losses are not entirely accurate and will include a component required to displace the washed out hole.

4. <u>INTERVAL - 1</u>

4.1 SUMMARY

26"x16" Hole From 66 m To 862 m In 5 Days

Drilling Fluid Seawater & Sweeps

Formations Gippsland.

The 26" interval was drilled, using seawater and unweighted hi-vis, spud mud sweeps, from 66 m to 135 m. Open hole was then displaced to hi-vis spud mud. The next run was made using 16" bit and drilling continued to section TD at 862m using seawater and hi-vis spud mud sweeps. At TD the open hole was displaced to 960bbls spud mud weighted to 1.15 sq.

The 13 3/8" casing hung up at 139m. The casing was pulled and a 16" BHA picked up and reamed from 70m to 135m. The BHA was run in to 857m, with 5m of fill. On the way out the hole, a tight spot from 155m to 126m was worked, pumping Hi-vis sweeps.

The 20" x 13 3/8" tapered casing string was run to 809m, washed down to setting depth, at 857m and cemented as per program.

The time from spud, to running 13 3/8" casing was almost 72 hours, with rig repair and a BHA change contributing to the time taken. The displacement fluid had no inhibitive properties.

Prior to spud, mud properties were generally lower than programmed, due to the chloride contamination of the drill water. This was rectified with additions of 1.15ppb Barazan D plus to those pits that were contaminated and then by using low chloride drill water, when it was available. All mud checks while drilling the 26" and 16" hole conformed to the programmed specifications.

Properties Programmed Actual (Typical Drilling)

Floperiles	Fiogra	IIIIII e u	Actual (1 yp	<u> </u>	
	Min	Max	Min	Max	Conformance
Mud Weight, sg	1.03	1.15	1.03	1.15	Yes
6 rpm, lb/100 ft ²	40		15	81	Partial
YP, lbs/100ft ²	50		28	103	Partial
Viscosity, sec/qt	100		60	300	Partial
рН	9	10	9	9.5	Yes
Plastic Viscosity, cp	ALAP		6	15	Yes
Gel 10s, lbs/100ft2	>40		10	80	Partial
Gel 10m, lbs/100ft2	>40		17	110	Partial
Displacement Fluid					
6 rpm, lb/100 ft ²	>25		29	30	Yes
Gel 10s, lbs/100ft2	>20		21	27	Yes
Gel 10m, lbs/100ft2	>20		44	45	Yes

Explanation of Non-Conformance

Partial success was met with the rheological properties of the system due to the makeup drill
water being contaminated with 6-5% seawater in the rig's port side bulk storage tank.
BARAZAN D+ had to be incorporated into the prehydrated bentonite to promote additional
viscosity for hi-vis sweeps and suspension of barite used in the displacement mud.

Page 6

Maintenance

- All bentonite used was first prehydrated in drill water at a concentration of 35-40 ppb. This was then cut back to 20 ppb using seawater. BARAZAN D+ was added at 1.1 ppb to all the displacement mud for viscosity due to the poor quality drill water. Lime was added prior to use to enhance viscosity.
- Caustic soda was used to obtain required alkalinity.
- Pit #5 was used for seawater for drilling. The hi-vis sweeps were contained in pits 1, 2, 3 and 6. All 1.15 sg weighted displacement mud was kept in pits 4, 7 and 8.
- A total of 5888 bbls bbls of spud mud was prepared for top hole. Of this, 1200 bbls was prepared, as weighted displacement mud. An additional application, of the displacement fluid, was as Kill Mud, as a precaution against shallow gas.

4. <u>INTERVAL - 2</u>

4.1 SUMMARY

12 1/4" Hole From 892 m To 2313 m In 8 Days

Drilling Fluid KCI/Polymer

Formations Lakes Entrance, Latrobe Group.

The 12.25" section was drilled using a KCL/Polymer drilling fluid system.

There were some issues relating to hole conditions, which was evidenced by cuttings at the shakers and tight spots, when tripping for BHA changes and attempting to run wire line logs in the well.

Intermittent coal seams were drilled from 1390m to 1500m, 1580m, 1670m,1800m to 1860m and 2090m to 2140m. There were coal pieces visible at the shakers from 1390m to TD, ranging in size from less then a ¼" to a maximum of 7", shortly after 2040m.

Seepage losses for the 12.25" section ranged from 0 to 3bbls an hour at a minimum and +30bbls an hour at a maximum, when entering the Latrobe at 1390m. This was treated and healed with sized calcium carbonate additions to the active, reducing seepage losses to 7 to 10 bbls / hour.

The average washout for the 12.25" hole was 17.3% or 14.37" hole. The maximum washout was in the Latrobe sands, with 19" hole at 1390m. The wire line logs could not be run passed this point.

After evidence of large coal splinters / caving's, the required minimum mud weight was increased to 1.12sg, by 2286m.

Properties Programmed Actual (Typical Drilling)

	Min	Max	Min	Max	Conformance
Mud Weight, sg		1.15	1.15	1.23	
PV, cp	ALAP		16	22	Yes
YP, lbs/100 ft ²	25		19	49	Partial
6 rpm, lbs/100 ft ²	12	15	8	18	Partial
Gels, lbs/100 ft ²	12	20	8	17	Partial
рН		10	8.5	9.6	Yes
KCL, wt%	10	12	9	12	Partial
API WL, mL/30 min	3	5	4	5.6	Partial
MBT, ppb		15	0	2.5	Yes

Explanation of Non-Conformance

• The mud weight was easily kept to 1.15sg, to a depth of 1797m, using unweighted premix additions. After this depth, the weight continued to creep up to 1.18sg, by 2250m.

The increase in weight was due to a combination of events. Two 30bbl, 1.39sg slugs added to the active system while tripping, to change the BHA at 1797m and 1900m.

The use of unweighted premix additions for weight control became limited, when building enriched KCL content premixes (1.13 -1.15sg), to maintain the active KCL content at 10% (could not add directly to the active).

At 2286m the mud weight was increased to 1.2 after evidence of splintering coal at the shakers. The maximum mud weight was 1.23 sg, following the introduction of slugs, 10–15 bbl 1.9sg hole cleaning sweeps and circulating the hole clean prior to and during the logging runs.

- The highest YP and 6rpm readings occurred when EZ mud (PHPA) was added directly to the active system, from 1800m. These were only temporary increases.
- KCL content dropped below 10% occasionally. There was no way of adding KCL directly to the active system. It could only be added via enriched premixes. This is not an efficient method, taking longer and using excessive quantities of premixed mud, to treat only one mud property. This needs to be addressed for the next well.
- MBT remained low for the entire well, with a maximum reading of 2.5ppb equivalent.

Maintenance

- Barablok was added to the active at 4ppb at 950m. An additional 1.5ppb was added at 1550m to maintain concentration after dilution. Increased coal cuttings were observed at 1830m and an additional 4ppb Barablok was added to the active, for prevention. A Hivis sweep was concurrently pumped, to clean the hole, with additional (25%) cuttings observed at the shakers.
- From 1900m, 1.9sg Hivis sweeps were used, to ensure the hole was clean, while building angle to 45 degrees. Sweeps pumped at 2227m and 2242m showed only none to marginal increase in cuttings at the shakers. A 1.9sg sweep pumped after TD, at 2300m, increased the cuttings at the shakers by 100%.
- EZ-Mud was added from 1800m, at 0.6 ppb, in anticipation, of clay stone formations and to improve the lubricity of the mud, while building hole angle.
- The initial 6rpm readings were below the programmed 12 -15. This was primarily due to building new unsheared, mud between 0.8 and 1ppb, to enable circulation and mixing with the mix pumps / hoppers. The 6rpm was raised by 0.5ppb Barazan D additions, to 12-16.
- The KCL content was maintained by building enriched premixes of 12-15%, since it could not be added directly to the active.

Solids Control Equipment

- The 4 VSM 300 shakers were dressed with 89 mesh screens for the displacement of the hole to the new KCL /Polymer mud. They were fined up to 145's and 255's while circulating rates were -900gpm. Once circulations increased to +1100gpm, the 89 screens were reinstalled. Three shakers were upgraded to 255 mesh screens by 1700m. One shaker was dressed with 89's, incase the flow rates and cuttings volume, were too excessive for the shakers to handle. The majority of the mud returns were directed over the 255 screens.
- By 2000m, 2 shakers were dressed with 280 mesh screens and 2 shakers a combination of 255's and 280 mesh screens.
- The desilter was not used. It is installed over shaker 4 and its discharge chute is onto the screens of shaker 4. There is no overboard discharge, making the unit completely redundant. Any discharge would be removed from the circulating system, only if it could not pass through the shaker screens. In this case 280 mesh any finer particle sizes would be reincorporated into the mud.
- The degasser was test run several times prior to drilling any potential permeable / porous formations.
- The centrifuges are not rigged up and available for use.

EVALUATION 6.2

Comments

The KCL /Polymer drilling fluid performed well, with good properties regarding MBT 2ppb, sand content 1% and LGS <2.7%.

There were some issues regarding the intermittent coal sections, with fragments and splinters of coal visible at the shakers for much of the 12.25" section. Apache's coal, drilling fluid guide lines were followed, keeping fluid loss low, adding Barablok, pH below 9 and pumping 10-15bbl, 1.9sq sweeps for hole cleaning.

There are significant limitations on mixing, mud cleaning and circulating operations, due to rig design. These limitations have been identified in the West Triton Appraisal document and should be addressed for future operations.

Problems, Causes, Remedial Action Taken or Recommended

Hole Conditions

Problem Coal splinters and cavings (< 0.25" to 7") present from drilling coal seems in Burong 1)

formation, until TD.

Cause Unstable coal seams, pressure fluctuations, time dependant exposure

Action Pumps should be staged up and down, to minimize the change in ECD.

BARABLOK, regular additions made once coal encountered. Increased 6rpm and yield point, to improve carrying capacity and remove any coal

cavings as they occur. 1.9sg sweeps were pumped with varying degrees of

success, from 100% increase in cuttings to zero.

The recommended product of choice according to the Apache coal drilling guide lines, is Soltex. This product is at present unable to be imported into Australia. Keep the pH below 9 to prevent any solublisation, which may increase borehole

instability.

There are two schools of thought, whether weighing up helps borehole stability or invades and decreases borehole stability. It should be considered, that when coal cavings are evidenced at the shakers/surface, the coal beds are already unstable and a greater mud weight will increase the penetration into the formation and fractures. The correct mud weight for stability should be selected prior to drilling.

2) Problem Moderate losses drilling 1450-1647m.

Cause Drilling new permeable formation.

Action Pumped 40bbls, 40ppb LCM sweep. Healed losses.

3) Problem Occasional moderate losses drilling 1900 – 2100m.

Cause Drilling new permeable formation.

Action Introduced 50bbls of 40ppb LCM pill into the active. Healed losses to 7bbls/hr

immediately.

Drilling Fl	uı	d
--------------------	----	---

1) Problem Poor hydration of the prehydrated bentonite spud mud.

Cause Rig's drill water supply was contaminated with 65% seawater.

Action BARAZAN D+ polymer was added to the spud mud to improve viscosity.

2) Problem Poor hydration of prehydrated bentonite spud mud

Cause Total hardness in the rig's contaminated drill water supply and the lack of soda ash

due to logistics issues.

Action Caustic soda was used to suppress some hardness prior to mixing.

3) Problem Unable to unload chemicals from the boat due to bad weather.

Cause Bad weather

Action Guar Gum was mixed for a Hivis sweep. 400bbls of PHB was mixed for volume.

There is limited storage on the rig to carry significant stocks of contingency products. However, if the shaker screens and some rig equipment are removed form the sack room. Greater amounts of contingency products can be stored in the

sack room.

Solids Control and Mud Mixing Equipment

1) Problem Mixing pumps losing or failing to prime, rig's drillwater pumps losing prime,

overfilling of surge tanks causing clouds of vented bulk, incorrect valve usage, bulk

movement problems, overflowing hoppers

Cause New rig and new crews, undergoing teething problems.

Action Learning curve for the crews, which will improve with experience on the West

Triton.

2) Problem Significant design faults in mixing, mud cleaning and auxiliary equipment.

Cause Unknowledgeable engineering, short cuts in design and incomplete work.

Action See West Triton Appraisal document

3) Problem Unable to get bulk bags mixed as required (crane operation).

Cause Bad weather stopped crane and boat operations.

Action Send a combination of sacked and bulk chemicals to the rig, reducing the

dependence on the crane.

4) Problem Cuttings blocking up the header boxes and flow line.

Cause Large fragments of coal and cuttings coming from the well.

Action Run the gumbo buster at all times while drilling. Minimizing large cuttings to the

shakers will also improve screen life and ability to handle higher flow.

5) Problem Unable to add bulk products to all pits (only pit7)

Cause Deck hopper discharges into pit 7 only

Action KCL brine has been mixed while logging for the next hole.

A supply of sacked Calcium Carbonate should also be supplied for the next well.

6) Problem No or minimal gas readings by BHI gas sensor, in the header box

Cause Possibly due to the length of the flow line allowing gas breakout.

Action Relocate to the flow line before the gumbo box

6.3 RECOMMENDATIONS FOR IMPROVEMENT

Hole Conditions

• The 6rpm figure should be kept on the high side of the 12-15 range, or slightly over this to ensure any coal cavings are removed as they occur. High weight / vis sweeps should be pumped at least each tour.

Drilling Fluid

 All drillwater from the supply vessel's, is to be checked for chloride contamination, by the mud engineer. This has already been enforced on the West Triton, following the initial contamination.

Solids Control and Mud Mixing Equipment

- Human error seems to be the cause of some equipment issues. Being a new rig and new crews, this will be overcome in time, as a learning curve.
- Also see the West Triton Appraisal

Plug and Abandon

7.1 SUMMARY

P and A In 1 Days

The hole was plugged and abandoned with 3 cement plugs set at 1270m to 1210m, 887m to 827m and 121m to 76m.

Properties	Progra	ammed			
	Min	Max	Min	Max	Conformance
Hi Vis -Viscosity				175	Yes

Explanation of Non-Conformance

• All properties were maintained in the programmed range.

Maintenance

- 420 bbls of Hivis was mixed and spotted prior to each cement plug.
- 1200 bbls of KCL /Polymer mud was treated with 0.375ppb Aldacide G for backload onto a boat and use on Coelacanth 1.
- 800 bbls KCL brine mixed and back loaded onto a boat, for Coelacanth 1.

Solids Control Equipment

• Circulation did take place over the shakers, which were being cleaned of mud residue.

POSTWELL AUDIT

Well Name Wasabi - 1
Operator Apache
Contractor Seadrill
Rig No West Triton
Unit System Apache

Well Summary Report

Well Data

Spud Date		02/14/2008	Fluids/Products: Drilling Cost	\$	267,843.37
TD Date		03/01/2008	Fluids/Products: Completion Cost	\$	0.00
Project			Solids Control/Waste Management Cost	\$	0.00
Days on Well		26	Fluids/Products: Cementing Cost	\$	0.00
From Date		02/12/2008	Prod Lost/Damaged Cost	\$	3,216.72
To Date		03/08/2008	Engineer Services Cost	\$	81,250.00
Drilling Days		13	Equipment Cost	\$	0.00
Rotating / Drilling Hours		161.5/154.5	Transport/Packaging	\$	0.00
Average ROP	m/hr	14.5	Other Cost	\$	52.36
Maximum Density	SG	1.24	Total Well Cost	\$	352,362.45
Total Measured Depth	m	2,313	Planned Cost	\$	0.00
True Vertical Depth	m	2,251	Fluid Cost Per Fluid Volume	\$/bbl	21.62
Distance Drilled	m	2,247	Fluid Cost Per Length Drilled	\$/m	119.20
Maximum Deviation	deg	21.46	Fluid Cost/Vol of Hole Drilled	\$/bbl	139.09
Max. Horz. Displacement	m	49	Total Additions/Hole Drilled	bbl/bbl	6.433
Bottom Hole Temp			Total Additions/Length Drilled	bbl/m	5.513

Casing Design

Description	Set Date & Time	Top MD m	Top TVD m	End MD m	End TVD m	CSG OD in	CSG ID in	Max. Hole Size in	Hole MD m	Hole TVD m
20 X-56 129.3	02/20/2008 6:00	66	66	135	135	20.000	19.120	27.000	135	135
13.375 L-80 68.0	02/20/2008 6:00	135	139	857	857	13.375	12.415	16.000	862	862

Fluid Program

Int#	Fluid Type	Interval Days	BHT Deg C	Max. Dens SG	Whole fluid + Mix products	Other material charges	Other charges	Tota	l Interval Cos	st \$
								Plan	Actual	Variance
1	Seawater	9		1.15	50,101.66	0.00	38,750.00		88,851.66	
'	Spud Mud	3		1.10	30,101.00	0.00	30,730.00		00,001.00	
2	Seawater	17		1.24	217,741.71	3,269.08	42,500.00		263,510.79	
	KCI/Polymer	17		1.24	211,141.11	3,209.00	4 2,300.00		203,310.79	
Total V	Vell Cost \$				267,843.37	3,269.08	81,250.00		352,362.45	352,362.45

Australia

Wasabi - 1 Vic-58P Victoria **Baroid Fluid Services**

Page 1 of 1 Printed: 26/03/2008

Well Name Wasabi - 1
Operator Apache
Contractor Seadrill
Rig No West Triton
Unit System Apache

Total Cost Breakdown

	Unit Size	Quantity	Total Cost
Engineering/Services	<u> </u>		
Drilling Fluids Engineer	day(s)	38.00	47,500.00
Drilling Fluids Engineer 2	day(s)	27.00	33,750.00
-		SubTotal	\$ 81,250.00
Fluid/Product: Lost Damage			
bentonite	1000 kg bulk	6.500	3,216.72
	•	SubTotal	\$ 3,216.72
Other			
Kwikseal Fine	40 lb bag	1.00	52.36
	•	SubTotal	\$ 52.36
Fluids/Products: Drilling Cost			
ALDACIDE G	25 I can	21.00	1,834.77
BARABLOK	50 lb bag	220.00	6,685.80
BARA-DEFOAM W300	5 gal can	5.00	3,084.40
BARAZAN D PLUS	25 kg bag	218.00	33,188.32
barite	1000 kg bulk	107.000	50,812.16
bentonite	1000 kg bulk	62.700	31,028.98
caustic soda	25 kg pail	42.00	1,855.98
Circal 60/16	1200 kg bag	11.00	4,033.37
Circal Y	1200 kg bag	4.00	1,946.68
citric acid	25 kg bag	2.00	92.48
CLAYSEAL PLUS	216 kg drum	64.00	61,224.96
EZ-MUD	25 kg pail	19.00	1,630.77
guar gum	25 kg bag	32.00	2,717.76
KCI/Polymer	bbl	1.00	
lime	20 kg bag	4.00	26.20
PAC-L	25 kg bag	260.00	21,286.20
potassium chloride	1000 kg bag	96.00	 42,380.16
potassium hydroxide	25 kg bag	81.00	 3,643.38
soda ash	25 kg bag	28.00	371.00
		SubTotal	\$ 267,843.37
		Total Well Cost:	\$ 352,362.45

Australia Wasabi - 1 Vic-58P Victoria

Baroid Fluid Services

Page 1 of 1 Printed: 26/03/2008 Well
Operator
Contractor
Rig No
Unit System

Wasabi - 1 Apache Seadrill West Triton Apache

Net Well Cost Breakdown

Cost Breakdown I \$	Interval 01	Interval 02	Total
Fluid/Product: Drilling	50,101.66	217,741.71	267,843.37
Fluid/Product: Comp/Filtration			
Solids Control/Waste Management Cost			
Fluids/Products: Cementing Cost			
Engineering Services	38,750.00	42,500.00	81,250.00
Fluid/Product: Lost Damage		3,216.72	3,216.72
Other Cost		52.36	52.36
Equipment Cost			
Transport/Packaging Cost			
Total Cost	88,851.66	263,510.79	352,362.45

Cost Breakdown II \$	Interval	Interval	Total
	01	02	
Total Products Cost	50,101.66	221,010.79	271,112.45
Total Fluids Cost			
Total Charges Cost	38,750.00	42,500.00	81,250.00
Allocated To / From Other Interval		0.00	
Total Cost	88,851.66	263,510.79	352,362.45
Planned Cost			
Variance			

Volume Breakdown bbl	Interval 01	Interval 02	Total
Total Base Fluids Addition			
Total Chemical Addition	149.2	539.2	688.4
Total Barite Addition	32.2	128.1	160.3
Total Water Addition	6,137.9	4,920.9	11,058.8
Total Fluid Built	6,319.3	5,588.3	11,907.6
Total Fluid Received	480.0		480.0
Total Influx Addition			
Not Used In Interval		0.0	
Total Fluid Volume	6,799.3	6,399.9	12,387.6

Wasabi - 1 Vic-58P Victoria **Baroid Fluid Services**

Page 1 of 1 Printed: 26/03/2008

Australia

Well Name Wasabi - 1
Operator Apache
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Summary

Interval # 1	Max Bit	Size: 26.000 in	Hole Size Avg/Max		17.100 / 27.000 in	
Interval Start Date		02/12/2008	Planned Cost	\$	0.00	
Interval End Date		02/20/2008	Total Interval Cost	\$	88,851.66	
Interval TD Date		02/18/2008	Program Variance	\$	88,851.66	
Drilling Days		5.00	Other material charges	\$	0.00	
Rotating/Hours		38.00 / 31.00	Total Fluids Cost	\$	50,101.66	
Interval Top MD/TVD	m	66.0 / 66.0	Total Charges Cost	\$	38,750.00	
Interval End MD/TVD	m	862.0 / 862.0	Total Cementing Cost	\$	0.00	
Footage	m	796.0	Fluid Cost Per Vol Unit	\$/bbl	7.37	
Average ROP	m/hr	25.7	Fluid Cost/Hole Drilled	\$/m	62.94	
Max Hole Angle	degrees	0.00	Fluid Cost/Vol Drilled	\$/bbl	67.54	
Casing Size	in	13.375	Fluid Built	bbl	6,319.3	
Casing Shoe MD	m	857.0	Total Additions/Vol Drilled	bbl/bbl	9.17	
Casing Length	m	791.0	Total Additions/Hole Drilled	bbl/m	8.54	
Bottom Hole Temp			Fluid Loss/Vol Drilled	bbl/bbl	7.49	
Max Fluid Density	SG	1.150	Fluid Loss/Hole Drilled	bbl/m	6.98	

Interval Product and Base Fluids Usage and Cost

Product Function / Name	Drilling Fluid	Packaging	Quantity Used	Product Cost
Weighting Material				
barite	Spud Mud	1000 kg bulk	21.500	10,209.92
			Total	\$ 10,209.92
Viscosifier/Suspension Agent				
BARAZAN D PLUS	Spud Mud	25 kg bag	60.000	9,134.40
bentonite	Spud Mud	1000 kg bulk	55.000	27,218.40
guar gum	Seawater	25 kg bag	27.000	2,293.11
			Total	\$ 38,645.91
Alkalinity Control				
caustic soda	Spud Mud	25 kg pail	27.000	1,193.13
lime	Spud Mud	20 kg bag	4.000	26.20
soda ash	Spud Mud	25 kg bag	2.000	26.50
			Total	\$ 1,245.83

Wasabi - 1 Vic-58P Victoria Baroid Fluid Services

HALLIBURTON | Fluid Systems

Australia

Well Name Wasabi - 1
Operator Apache
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Summary

Interval # 2	Max Bit	Size: 16.000 in	Hole Size Avg/Max	,	16.000 / 16.000 in	
Interval Start Date		02/21/2008	Planned Cost	\$	0.00	
Interval End Date		03/08/2008	Total Interval Cost	\$	263,510.79	
Interval TD Date		03/01/2008	Program Variance	\$	263,510.79	
Drilling Days		8.00	Other material charges	\$	3,269.08	
Rotating/Hours		123.50 / 123.50	Total Fluids Cost	\$	217,741.71	
Interval Top MD/TVD	m	862.0 / 862.0	Total Charges Cost	\$	42,500.00	
Interval End MD/TVD	m	2,313.0 / 2,250.7	Total Cementing Cost	\$	0.00	
Footage	m	1,451.0	Fluid Cost Per Vol Unit	\$/bbl	34.02	
Average ROP	m/hr	11.7	Fluid Cost/Hole Drilled	\$/m	150.06	
Max Hole Angle	degrees	21.46	Fluid Cost/Vol Drilled	\$/bbl	183.92	
Casing Size	in	13.375	Fluid Built	bbl	5,588.3	
Casing Shoe MD	m	857.0	Total Additions/Vol Drilled	bbl/bbl	5.41	
Casing Length	m	791.0	Total Additions/Hole Drilled	bbl/m	4.41	
Bottom Hole Temp			Fluid Loss/Vol Drilled	bbl/bbl	1.84	
Max Fluid Density	SG	1.240	Fluid Loss/Hole Drilled	bbl/m	1.50	

Interval Product and Base Fluids Usage and Cost

Product Function / Name	Drilling Fluid	Packaging	Quantity Used		Product Cost
Bactericides					
ALDACIDE G	KCI/Polymer	25 I can	21.00	00	1,834.77
			Tota	ıl \$	1,834.77
Defoamer					
BARA-DEFOAM W300	KCI/Polymer	5 gal can	5.000)	3,084.40
			Tota	ıl \$	3,084.40
Filtration Control					
BARABLOK	KCI/Polymer	50 lb bag	220.0	000	6,685.80
PAC-L	KCI/Polymer	25 kg bag	260.0	000	21,286.20
			Tota	ıl \$	27,972.00
Weighting Material					
barite	KCI/Polymer	1000 kg bulk	85.50	00	40,602.24
			Tota	ıl \$	40,602.24
Viscosifier/Suspension Agent					
BARAZAN D PLUS	Brine	25 kg bag	3.000)	456.72
BARAZAN D PLUS	KCI/Polymer	25 kg bag	155.0	000	23,597.20
bentonite	KCI/Polymer	1000 kg bulk	7.700)	3,810.58
bentonite	No Fluid	1000 kg bulk	6.500)	3,216.72
guar gum	KCI/Polymer	25 kg bag	4.000)	339.72
guar gum	Seawater	25 kg bag	1.000)	84.93
			Tota	ıl \$	31,505.87
Alkalinity Control					
caustic soda	KCI/Polymer	25 kg pail	15.00	00	662.85
citric acid	KCI/Polymer	25 kg bag	2.000)	92.48
potassium hydroxide	KCI/Polymer	25 kg bag	81.00	00	3,643.38
soda ash	KCI/Polymer	25 kg bag	26.00	00	344.50
			Tota	ıl \$	4,743.21
Shale Control					

Australia

Wasabi - 1 Vic-58P Victoria Baroid Fluid Services

Page 2 of 3 Printed: 26/03/2008

Well Name Operator Contractor Rig No Unit System Wasabi - 1 Apache Seadrill West Triton Apache

Interval Summary

EZ-MUD	KCI/Polymer	25 kg pail	19.000	1,630.77
potassium chloride	Brine	1000 kg bag	24.000	10,595.04
potassium chloride	KCI/Polymer	1000 kg bag	72.000	31,785.12
CLAYSEAL PLUS	KCI/Polymer	216 kg drum	64.000	61,224.96
			Total	\$ 105,235.89
Lost Circulation/Bridging Agent				
Kwikseal Fine	No Fluid	40 lb bag	1.000	52.36
Circal Y	KCI/Polymer	1200 kg bag	4.000	1,946.68
Circal 60/16	KCI/Polymer	1200 kg bag	11.000	4,033.37
			Total	\$ 6,032.41
Whole Fluid				
KCI/Polymer	KCI/Polymer	bbl	1.000	0.00
			Total	\$ 0.00

Wasabi - 1 Vic-58P Victoria

Page 3 of 3

Baroid Fluid Services

Printed: 26/03/2008

Australia

Well Name Wasabi - 1
Operator Apache
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Cost Breakdown

Interval # 01		From Date	02/12/2008 Top of Interval	66.0 m
Max. Hole Size / Bit Size	27.000 / 26.000 in	To Date	02/20/2008 Bottom of Interval	862.0 m

Material	Unit Size	Quantity	Total Cost
Engineering/Services	·		
Drilling Fluids Engineer	day(s)	21.00	26250.00
Drilling Fluids Engineer 2	day(s)	10.00	12500.00
		SubTotal	\$ 38,750.00
Fluids/Products: Drilling Cost			
BARAZAN D PLUS	25 kg bag	60.00	9134.40
barite	1000 kg bulk	21.500	10209.92
bentonite	1000 kg bulk	55.000	27218.40
caustic soda	25 kg pail	27.00	1193.13
guar gum	25 kg bag	27.00	2293.11
lime	20 kg bag	4.00	26.20
soda ash	25 kg bag	2.00	26.50
		SubTotal	\$ 50,101.66
		Interval Total Cost	\$ 88,851.66
	Charged To/From Other	· Interval	\$
	Net Description Total Co	ost	\$ 88,851.66
	Programmed Cost		\$ 0.00
	Program Variance		\$ 88,851.66

Wasabi - 1 Vic-58P Victoria Baroid Fluid Services

HALLIBURTON | Fluid Systems

Australia

Page 1 of 2 Printed: 26/03/2008

Well Name Wasabi - 1
Operator Apache
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Cost Breakdown

Interval # 02		From Date	02/21/2008 Top of Interval	862.0 m
Max. Hole Size / Bit Size	16.000 / 16.000 in	To Date	03/08/2008 Bottom of Interval	2,313.0 m

Material	Unit Size	Quantity		Total Cost
Engineering/Services	Unit Size	Quantity		Total Cost
	day(s)	17.00	٦	21250.00
Drilling Fluids Engineer	day(s)			21250.00
Drilling Fluids Engineer 2	uay(s)	SubTotal	<u> </u>	42,500.00
Fluid/Draduct. Lost Damage		SubTotal	4	42,500.00
Fluid/Product: Lost Damage	1000 kg bulk	6.500	<u></u>	3216.72
bentonite	1000 kg bulk		<u> </u>	3,216.72
Othor		SubTotal	4	3,210.72
Other Kwikseal Fine	40 lb bag	1.00		52.36
NWINSEALT IIIE	40 lb bag		\$ \$	52.36
Fluida/Duaduata, Duillina, Cast		SubTotal	4	32.30
Fluids/Products: Drilling Cost	25 I can	21.00	1	1834.77
ALDACIDE G			-	6685.80
BARABLOK	50 lb bag			
BARA-DEFOAM W300	5 gal can			3084.40
BARAZAN D PLUS	25 kg bag			24053.92
barite	1000 kg bulk			40602.24
bentonite	1000 kg bulk		+	3810.58
caustic soda	25 kg pail			662.85
Circal 60/16	1200 kg bag			4033.37
Circal Y	1200 kg bag			1946.68
citric acid	25 kg bag			92.48
CLAYSEAL PLUS	216 kg drum)	61224.96
EZ-MUD	25 kg pail)	1630.77
guar gum	25 kg bag	5.00)	424.65
KCI/Polymer	bbl	1.00	D	
PAC-L	25 kg bag	260.00	D	21286.20
potassium chloride	1000 kg bag	96.00)	42380.16
potassium hydroxide	25 kg bag	81.00)	3643.38
soda ash	25 kg bag	26.00)	344.50
		SubTotal	\$	217,741.71
		Interval Total Cost	\$	263,510.79
	Charged To/From Other	r Interval	\$	0.00
	Net Description Total C	ost	\$	263,510.79
	Programmed Cost		\$	0.00
	Program Variance		\$	263,510.79

Australia

Wasabi - 1 Vic-58P Victoria **Baroid Fluid Services**

Page 2 of 2 Printed: 26/03/2008

Well Name Wasabi - 1
Operator Apache
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Inventory Report

Interval # 01	From Date	02/12/2008		Top of Interval		66.0	m
Max. Hole Size / Bit Size 27.000 / 26.000 in	To Date	02/20/2008		Bottom of Interval		862.0	m
Product Name	Units	Starting	Received	Used	Returned I	Ending	Weight Ib
ALDACIDE G	25 I can		32.0			32.0	1,938.80
BARABLOK	50 lb bag		250.0			250.0	12,500.00
BARA-DEFOAM W300	5 gal can		8.0			8.0	292.90
BARAZAN D PLUS	25 kg bag		150.0	60.0		90.0	4,960.40
barite	1000 kg bulk		103.000	21.500		81.500	179,676.74
bentonite	1000 kg bulk		83.000	55.000		28.000	61,729.43
calcium chloride flake 77%	25 kg bag		10.0			10.0	551.16
caustic soda	25 kg pail		140.0	27.0		113.0	6,228.06
Circal 60/16	1200 kg bag		20.0			20.0	52,910.94
Circal Y	1200 kg bag		13.0			13.0	34,392.11
citric acid	25 kg bag		40.0			40.0	2,204.62
CLAYSEAL PLUS	216 kg drum		52.0			52.0	24,762.32
guar gum	25 kg bag		36.0	27.0		9.0	496.04
Kwikseal Fine	40 lb bag		80.0			80.0	3,200.00
lime	20 kg bag		45.0	4.0		41.0	1,807.79
PAC-L	25 kg bag		300.0			300.0	16,534.67
potassium chloride	1000 kg bag		12.0			12.0	26,455.47
potassium hydroxide	25 kg bag		168.0			168.0	9,259.41
soda ash	25 kg bag		80.0	2.0		78.0	4,299.01
sodium bicarbonate	25 kg bag		35.0			35.0	1,929.04
				Total Weight of Proc	lucts in Stock Ib		446,128.92
			Total V	Veight of Products in St	ock, Metric Tons		202.36

Wasabi - 1 Vic-58P Victoria Baroid Fluid Services

Australia

Well Name Wasabi - 1
Operator Apache
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Inventory Report

Interval # 02	From Date	02/21/2008		Top of Interval		862.0	m	
Max. Hole Size / Bit Size 16.000 / 16.000 in	To Date	03/08/2008		Bottom of Interval		2,313.0	m	
Product Name	Units	Starting	Received	Used	Returned	Ending	Weight	lb
ALDACIDE G	25 I can	32.0		21.0	11.0			
BARABLOK	50 lb bag	250.0		220.0	30.0			
BARA-DEFOAM W300	5 gal can	8.0		5.0	3.0			
BARAZAN D PLUS	25 kg bag	90.0	97.0	158.0	29.0			
barite	1000 kg bulk	81.500	81.000	85.500	77.000			
BAROFIBRE FINE	25 lb bag		50.0		50.0			
bentonite	1000 kg bulk	28.000	7.000	14.200	20.800			
calcium chloride flake 77%	25 kg bag	10.0	84.0		94.0			
caustic soda	25 kg pail	113.0		15.0	98.0			
Circal 60/16	1200 kg bag	20.0		11.0	9.0			
Circal Y	1200 kg bag	13.0	2.0	4.0	11.0			
citric acid	25 kg bag	40.0		2.0	38.0			
CLAYSEAL PLUS	216 kg drum	52.0	20.0	64.0	8.0			
EZ SPOT	55 gal drum		8.0		8.0			
EZ-MUD	25 kg pail		32.0	19.0	13.0			
guar gum	25 kg bag	9.0		5.0	4.0			
Kwikseal Fine	40 lb bag	80.0		1.0	79.0			
lime	20 kg bag	41.0			41.0			
N-DRIL HT PLUS	50 lb bag		90.0		90.0			
NO-SULF	17 kg pail		48.0		48.0			
Omyacarb 5	25 kg bulk		48.000		48.000			
PAC-L	25 kg bag	300.0		260.0	40.0			
potassium chloride	1000 kg bag	12.0	88.0	96.0	4.0			
potassium hydroxide	25 kg bag	168.0		81.0	87.0			
soda ash	25 kg bag	78.0		26.0	52.0			
sodium bicarbonate	25 kg bag	35.0			35.0			
STEELSEAL	25 kg sack		60.0		60.0			

Australia Wasabi - 1 Vic-58P Victoria

Baroid Fluid Services

Page 2 of 2 Printed: 26/03/2008

Company Apache
Well Name Wasabi - 1
Contractor Seadrill
Rig No West Triton
Unit System Apache

Fluid Volume Record Report

															1					
							Addition						Losses					Volu		
Report No	Date	Initial Volume	Received	Mixed	Base	Water	Barite	Chemicals	Other	Daily Total	SCE	Downhole	Misc	Mixed	Returned	Daily Total	Hole Volume	Active Pit Volume	Reserve Volume	Final Volume
		bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl
Interva	al# 01																			
Fluid I	Name:	Seawa	ter																	
002	13/02/2008		480.0							480.0									480.0	480.0
003	14/02/2008	480.0									52.6					52.6	7.5	420.0		427.5
004	15/02/2008	427.5		1,055.5						1,055.5	881.8					881.8	161.2	440.0		601.2
005	16/02/2008	601.2		1,665.3						1,665.3	1,192.9					1,192.9	693.6	380.0		1,073.6
006	17/02/2008	1,073.6		888.9						888.9	1,382.5		200.0			1,582.5		380.0		380.0
009	20/02/2008	380.0				431.7				431.7							431.7	380.0		811.7
Cumulativ	e Volume		480.0	3,609.7		431.7				4,521.4	3,509.8		200.0			3,709.8				
Fluid I	Name:	Spud I	Mud																	
002	13/02/2008					2,653.5		81.5		2,735.0									2,735.0	2,735.0
003	14/02/2008	2,735.0				421.2	32.2	6.6		460.0									3,195.0	3,195.0
004	15/02/2008	3,195.0				900.0		25.5		925.5				1,055.5		1,055.5			3,065.0	3,065.0
005	16/02/2008	3,065.0				850.0		20.3		870.3				1,665.3		1,665.3			2,270.0	2,270.0
006	17/02/2008	2,270.0												888.9		888.9	781.1		600.0	1,381.1
007	18/02/2008	1,381.1				450.0		12.8		462.8	1,082.8					1,082.8	723.1		38.0	761.1
800	19/02/2008	761.1									38.0					38.0	723.1			723.1
009	20/02/2008	723.1									723.1					723.1				
Cumulativ	e Volume					5,274.7	32.2	146.7		5,453.6	1,843.9			3,609.7		5,453.6				
Fluid I	Name:	guar g	um																	
007	18/02/2008					431.5		2.5		434.0									434.0	434.0
009	20/02/2008	434.0											434.0			434.0				
Cumulativ	e Volume					431.5		2.5		434.0			434.0			434.0				

Australia Wasabi - 1 Vic-58P
Victoria

Page 1 of 3 Printed: 26/03/2008

Baroid Fluid Services

Company Apache
Well Name Wasabi - 1
Contractor Seadrill
Rig No West Triton
Unit System Apache

Fluid Volume Record Report

							Addition	าร			Losses						Volumes			
Report No	Date	Initial Volume	Received	Mixed	Base	Water	Barite	Chemicals	Other	Daily Total	SCE	Downhole	Misc	Mixed	Returned	Daily Total	Hole Volume	Active Pit Volume	Reserve Volume	Final Volume
		bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl
Interva	l# 02																			
Fluid N	ame:	Seawa	ter																	
010	21/02/2008	811.7				7.4				7.4							439.1	380.0		819.1
012	23/02/2008	819.2											819.2			819.2				
Cumulative	Volume					7.4				7.4			819.2			819.2				
Fluid N		KCI/Pc	lymer																	
012	23/02/2008					2,760.0	27.7			3,038.4	255.7		35.0			290.7	859.7	510.0	1,378.0	
013	24/02/2008	2,747.7				560.0		35.4		595.4	433.1		86.0			519.1	1,054.0	486.0	1,284.0	,
014	25/02/2008	2,824.0				410.0	12.0			448.1	155.0					155.0	1,217.1	423.0	1,477.0	
015	26/02/2008	3,117.1				197.1		46.0		243.1							1,194.2	513.0	1,653.0	3,360.2
016	27/02/2008	3,360.2				8.0	3.0			17.7							1,305.8	488.0	1,584.0	-
017	28/02/2008	3,377.8				50.0	1.5			53.8	60.0	97.4				157.4	1,421.1	503.0	1,350.0	
018	29/02/2008	3,274.1				200.6		23.8		224.4	72.8		40.0			112.8	1,555.8	444.0	1,386.0	
019	1/03/2008	3,385.8				0.1	30.0			92.6	174.7	1.0				175.7	1,699.6	430.0	1,173.0	3,302.6
020	2/03/2008	3,302.6						0.3		0.3	14.7					14.7	1,642.9	406.3	1,239.0	,
021	3/03/2008	3,288.2					25.5	0.6		26.1	85.7					85.7	1,640.6	496.0	1,092.0	3,228.6
022	4/03/2008	3,228.6									9.9					9.9	1,699.6	390.0	1,129.0	,
023	5/03/2008	3,218.6					22.5	4.0		00.0	87.5		0.40.0			87.5	1,568.2	508.0	1,055.0	3,131.2
024	6/03/2008	3,131.2					28.5	1.3		29.8	440 =		349.3		4.400.0	349.3	1,699.6		1,112.0	,
025	7/03/2008	2,811.6									143.7		2.0		1,100.0	1,243.7	1,568.0			1,568.0
026	8/03/2008	1,568.0				4.470.0	100.0	400.0		4 700 7	4 400 0	00.4	3.2		1 100 0	3.2	1,568.0			1,568.0
Cumulative	volume					4,178.6	128.2	462.9		4,769.7	1,492.8	98.4	513.5		1,100.0	3,204.7				
Fluid N	ame:	guar g	um																	
019	1/03/2008							0.1		0.1	0.1					0.1				
Cumulative	Volume							0.1		0.1	0.1					0.1				

Australia Wasabi - 1 Vic-58P Baroid Fluid Services Victoria

Page 2 of 3 Printed: 26/03/2008

Company Apache
Well Name Wasabi - 1
Contractor Seadrill
Rig No West Triton
Unit System Apache

Fluid Volume Record Report

			Additions							Losses						Volumes				
Report No	Date	Initial Volume	Received	Mixed	Base	Water	Barite	Chemicals	Other	Daily Total	SCE	Downhole	Misc	Mixed	Returned	Daily Total	Hole Volume	Active Pit Volume	Reserve Volume	Final Volume
		bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl

Fluid Name: KCL Brine

022	4/03/2008			734.9	76.1	811.0						811.0	811.0
023	5/03/2008	811.0			0.3	0.3			763.3	763.3		48.0	48.0
024	6/03/2008	48.0					48.0			48.0			
Cumulativ	ve Volume			734.9	76.4	811.3	48.0		763.3	811.3			

Australia Wasabi - 1 Vic-58P Baroid Fluid Services Victoria

Page 3 of 3 Printed: 26/03/2008

Well Name
Operator
Contractor
Rig No
Unit System

Wasabi - 1 Apache Seadrill West Triton Apache

Interval Chemical Concentration

Interval # 01		From Report Date	02/12/2008	Top of Interval	66.0 m
Max. Hole Size / Bit Size	27.000 / 26.000 in	To Report Date	02/20/2008	Bottom of Interval	862.0 m

Fluid Name: Seawater			
Material	Average ppb	Minimum ppb	Maximum ppb
BARAZAN D PLUS	0.55	0.29	0.62
barite	7.94	4.14	8.85
bentonite	18.27	9.88	21.11
caustic soda	0.24	0.13	0.27
lime	0.03	0.02	0.04

Fluid Name: Spud Mud			
Material	Average ppb	Minimum ppb	Maximum ppb
BARAZAN D PLUS	0.64	0.47	1.04
barite	9.20	6.71	14.84
bentonite	22.71	21.98	25.79
caustic soda	0.28	0.23	0.38
lime	0.04	0.03	0.04
soda ash	0.06	0.06	0.06

Fluid Name: guar gum			
Material	Average ppb	Minimum ppb	Maximum ppb
guar gum	3.43	3.43	3.43

Australia

Wasabi - 1 Vic-58P Victoria **Baroid Fluid Services**

Page 1 of 3 Printed: 26/03/2008

Baroid Fluid Services

Well Name
Operator
Contractor
Rig No
Unit System

Wasabi - 1 Apache Seadrill West Triton Apache

Interval Chemical Concentration

Interval # 02		From Report Date	02/21/2008	Top of Interval	862.0 m
Max. Hole Size / Bit Size	16.000 / 16.000 in	To Report Date	03/08/2008	Bottom of Interval	2,313.0 m

Fluid Name: Seawater			
Material	Average ppb	Minimum ppb	Maximum ppb
BARAZAN D PLUS	0.29	0.29	0.29
barite	4.10	4.10	4.10
bentonite	9.80	9.79	9.80
caustic soda	0.12	0.12	0.12
lime	0.02	0.02	0.02

Fluid Name: KCI/Polymer			
Material	Average ppb	Minimum ppb	Maximum ppb
ALDACIDE G	0.20	0.14	0.32
BARABLOK	2.24	1.65	2.45
BARA-DEFOAM W300	0.03	0.01	0.05
BARAZAN D PLUS	1.67	1.26	1.96
barite	27.84	11.03	50.76
bentonite	3.76	1.09	4.78
caustic soda	0.18	0.16	0.27
Circal 60/16	6.09	4.32	6.44
Circal Y	2.28	1.24	2.72
citric acid	0.03	0.03	0.03
CLAYSEAL PLUS	6.49	6.19	7.29
EZ-MUD	0.23	0.03	0.29
guar gum	0.05	0.05	0.07
PAC-L	2.94	2.61	3.12
potassium chloride	31.40	20.59	36.61
potassium hydroxide	0.84	0.25	1.18
soda ash	0.30	0.27	0.32

Fluid Name: guar gum			
Material	Average ppb	Minimum ppb	Maximum ppb
guar gum	551.16	551.16	551.16

Fluid Name: KCL Brine			
Material	Average ppb	Minimum ppb	Maximum ppb
BARAZAN D PLUS	0.20	0.20	0.20

Australia Wasabi - 1 Vic-58P Victoria

Baroid Fluid Services

Page 2 of 3 Printed: 26/03/2008

Baroid Fluid Services

Well Name Wasabi - 1
Operator Apache
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Chemical Concentration

potassium chloride	65.23	65.22	65.24

Australia

Wasabi - 1 Vic-58P Victoria **Baroid Fluid Services**

Page 3 of 3 Printed: 26/03/2008

Operator Apache
Well Name Wasabi - 1
Contractor Seadrill
Rig No West Triton
Unit System Apache

Fluid Property Recap: Water-Based Fluid

Depth	FL	Density	Funn	R	heolog	ју	49 De	eg C		Fil	tration					Filtrat	te Anal	ysis		MBT	Sand	F	Retort Ar	nalysis	RI	neom	eter D	ial Re	adinç	js
	Tellip		VISC	PV		lbs/10	00 ft2		API	HTHP	Cake API	Cake HTHP	Temp	рН	Pm	Pf	Mf	CI	Total Hardness	F	% by		% by	vol	600	300	200	100	6	3
m	Deg C	SG	sec/qt	сР	YP	108	10M	30M	ml/30 min	ml/30 min	32n	d in	Deg C		ml	ml	ml	mg/l	mg/l	рро Еq.	vol	Corr Solid								
1									From Dat	e			02/12/2	800					Top of I	nterval			66.0	m						
ze / Bit S	ize 2	7.000 / 26	.000 in						To Date				02/20/2	800					Bottom	of Interv	al		862.0	m						
0		1.060	300	15	103	80	110	113						9.20								3.96	3.993	95.8	133.0	118.0	111.0	105.0	81.0	77.0
0		1.030	60	15	28	10	17	18						9.20								2.06	2.055	97.7	58.0	43.0	36.0	28.0	15.0	10.0
135		1.060	270	15	103	80	90	110						9.40				1,200				3.71	3.657	96	133.0	118.0	113.0	106.0	81.0	75.0
135		1.060	180	15	82	48	57	68						9.40				1,100				3.72	3.661	96	112.0	97.0	76.0	68.0	48.0	39.0
500		1.060	124	6	88	65	80	90	13.0		3			9.00	0.90	0.08	0.30	2,000	40			3.66	3.622	96	100.0	94.0	90.0	85.0	60.0	55.0
855		1.060	120	12	86	48	63	78	13.0		3			9.20	0.80	0.05	0.40	2,000	80			3.66	3.622	96	110.0	98.0	81.0	69.0	49.0	41.0
862		1.150	95	16	69	21	45	64	14.0		3			9.20	0.90	0.60	0.30	2,000	80			4.66	0.003	95	101.0	85.0	68.0	55.0	29.0	21.0
862		1.150	96	15	70	27	44	57	14.0		3			•	0.80	0.20	0.50	2,000				4.66		95	100.0	85.0	67.0	55.0	30.0	22.0
										te									•					m						
	ize 1	6.000 / 16	5.000 in		-		-						03/08/2						1	1	al									
											1																			
					_	-		_			1	2						,									-			
						9	11				1	2									- 1-									
						7	9	-				1						,												
											1	2																		
								_			1	2						,												
						Ů		-			1	2																		
						-		_			1	1						,												
											1	1																		
					_	Ū					1	2																		
,						6					1	2						,												
	72					10					1	1																		
											1	2						,												
			71	-		11					1	2						,									-			
	m 1 ze / Bit S 0 0 135 135 500 855 862 862 2	m Deg C 1 ze / Bit Size 2 0 0 135 135 500 855 862 862 862 2 ze / Bit Size 1 862 862 862 909 38 1,036 40 1,235 41 1,337 48 1,425 42 1,455 41 1,549 41 1,549 41 1,549 41 1,585 41 1,750 1,797	Temp m Deg C SG 1 2e / Bit Size 27.000 / 26 0 1.060 0 1.030 135 1.060 500 1.060 855 1.060 862 1.150 862 1.150 2 2e / Bit Size 16.000 / 16 862 1.145 862 1.145 862 1.145 862 1.145 862 1.145 862 1.145 862 1.145 862 1.150 1,036 40 1.150 1,235 41 1.150 1,235 41 1.150 1,337 48 1.150 1,425 42 1.150 1,455 41 1.150 1,549 41 1.150 1,549 41 1.150 1,549 41 1.150 1,585 41 1.150 1,585 41 1.150 1,585 41 1.150 1,570 42 1.160 1,750 1.150	Temp Visc Market Visc New Deg C SG Sec/qt 1 Ze / Bit Size 27.000 / 26.000 in 0	Temp Visc PV PV PV PV PV PV PV P	Temp Deg C SG sec/qt cP YP 1 2e / Bit Size 27.000 / 26.000 in 0 1.060 300 15 103 0 1.030 60 15 28 135 1.060 270 15 103 135 1.060 180 15 82 500 1.060 124 6 88 855 1.060 120 12 86 862 1.150 95 16 69 862 1.150 96 15 70 2 2e / Bit Size 16.000 / 16.000 in 862 1.145 92 17 26 862 1.145 90 18 24 909 38 1.150 69 11 19 1,036 40 1.150 75 17 22 1,235 41 1.150 74 13 29 1,337 48 1.150 74 13 25 1,425 42 1.150 65 14 22 1,455 41 1.150 61 16 23 1,549 41 1.150 63 20 25 1,585 41 1.150 69 18 29 1,750 1.150 69 18 29 1,750 1.150 69 18 29 1,750 1.150 69 18 29	Temp Deg C SG sec/qt cP YP 10S 1 2e / Bit Size 27.000 / 26.000 in 0 1.060 300 15 103 80 0 1.030 60 15 28 10 135 1.060 270 15 103 80 135 1.060 180 15 82 48 500 1.060 124 6 88 65 855 1.060 120 12 86 48 862 1.150 95 16 69 21 862 1.150 96 15 70 27 2e / Bit Size 16.000 / 16.000 in 862 1.145 92 17 26 9 862 1.145 90 18 24 9 909 38 1.150 69 11 19 7 1,036 40 1.150 75 17 22 8 1,235 41 1.150 74 13 29 11 1,337 48 1.150 74 13 25 9 1,425 42 1.150 65 14 22 10 1,455 41 1.150 61 16 23 9 1,549 41 1.150 63 20 25 9 1,549 41 1.150 67 15 24 8 1,670 42 1.160 62 14 20 6 1,750 1.150 69 18 29 10 1,797 1.150 69 18 29 10	Temp Deg C SG sec/qt cP YP 10S 10M 1	Temp Deg C SG sec/qt cP YP 10S 10M 30M 10	Temp	Temp PV	Temp	Temp	Temp Deg C SG Sec/qt CP YP 10S 10M 30M ml/30 min ml/30 ml	Temp	Temp Deg C SG Sec/qt CP VP 10S 10M 30M m/30 min m/30 min 32nd in Deg C Deg C m/1	Temp Post Post	Temp Visc PV Ibs/100 ft2	Temp Post Post	Temp Post Post Post Dest Orac Post Dest Orac Dest Dest Orac Post Dest Dest Orac Dest Dest	Temp	Temp	Temp Property Pr		Temp Page Page	Paris Pari	Temp Property Pr	Temp File File	Temp Part Part	Temp Part Part

Australia Wasabi - 1 Vic-58P Baroid Fluid Services Victoria

Page 1 of 2 Printed: 26/03/2008

Operator Apache
Well Name Wasabi - 1
Contractor Seadrill
Rig No West Triton
Unit System Apache

Fluid Property Recap: Water-Based Fluid

Date	Depth	FL Temp	Density	Funn Visc	R	heolog	ЭУ	49 D	eg C		Fi	tration					Filtra	te Ana	lysis		MBT	Sand	F	Retort A	nalysi	is	R	heom	eter D	ial Re	ading	js
		. ор		1.00	PV		lbs/10	00 ft2		API	HTHP	Cake API	Cake HTHP	Temp	рН	Pm	Pf	Mf	CI	Total Hardness	ppb Eq.	% by		% by	/ vol		600	300	200	100	6	3
	m	Deg C	SG	sec/qt	сР	YP	108	10M	30M	ml/30 min	ml/30 min	32n	d in	Deg C		ml	ml	ml	mg/l	mg/l	ppo ⊑q.	vol	Corr Solid	LGS	NAP Base	Water						
02/26/2008	1,794		1.150	70	16	38	13	19	24	5.0	14.0	1	2	149	9.10	0.30	0.30	1.70	48,000	160	2.5	0.80	4.1	2.458		92	70.0	54.0	46.0	35.0	14.0	11.0
02/26/2008	1,794		1.150	68	18	35	13	19	24	4.9	14.0	1	2	149	9.00	0.30	0.40	2.00	45,000	160	2.5	1.00	4.36	2.735		92	71.0	53.0	46.0	35.0	14.0	11.0
02/27/2008	1,883	40	1.160	64	18	38	15	20	24	4.9	14.0	1	2	149	8.60	0.20	0.40	1.70	40,000	160	2.5	0.80	4.78	2.561		92	74.0	56.0	48.0	37.0	16.0	14.0
02/27/2008	1,900	41	1.155	75	22	38	16	20	22	5.0	14.0	1	1	149	8.80	0.20	0.45	2.00	50,000	200	2.0	0.80	3.93	1.959		92	82.0	60.0	50.0	38.0	15.0	12.0
02/28/2008	1,905	41	1.170	65	18	34	13	17	21	5.4	14.6	1	2	149	8.90	0.20	0.40	2.00	49,000	200	2.5	0.80	4.02	1.115		92	70.0	52.0	44.0	33.0	14.0	12.0
02/28/2008	1,989	48	1.180	76	22	49	17	21	24	4.0	14.0	1	1	149	8.90	0.30	0.40	1.90	50,000	280	2.0	1.00	3.93	0.396		92	93.0	71.0	59.0	48.0	18.0	15.0
02/28/2008	2,030	50	1.175	75	19	41	16	19	21	4.0	14.0	1	1	149	8.90	0.30	0.40	1.80	50,000	280	2.0	0.75	3.93	0.709		92	79.0	60.0	50.0	38.0	16.0	13.0
02/29/2008	2,180	51	1.185		16	30	12	16	18	4.6		1	1	149	8.50	0.15	0.20	1.15	48,000	200	2.0	0.75	6.19	4.361					39.0			
02/29/2008	2,240	53	1.185		16	28	11	15	19	4.2	14.0	1	1	149			0.20		48,000	200	1.5			2.316					37.0			
02/29/2008	2,250	54	1.175		16	39	14	18	22	5.0	14.0	1	1		9.00		0.30	2.00		200				0.896					45.0			
03/01/2008	2,313	43	1.210		18	32	12	18	22	5.0	14.0	1	1	149			0.16		49,000	240				0.661					41.0			
03/01/2008	2,313		1.210		20	31	14	20		4.8	12.8	1		149					51,000	160				2.524					42.0			
03/02/2008	2,313		1.200		17	33	12	17	21	5.0	14.0	1	1		8.60		0.15		49,000	240				1.286					41.0			
03/02/2008	2,313		1.210		17	35	14	19		4.6	13.6	1		149					-,	160				2.707					42.0			
03/03/2008	2,313		1.235		16	36	13	_		5.0	13.8	1	1	149					49,000	200				1.145					41.0			
03/03/2008	2,313	59	1.240		19	32	12	19		4.0	12.8				8.50				51,000	120				2.697					43.0			
03/04/2008	2,313		1.230		19	31	13	-		4.6	13.0	1	1	149					50,000	120				1.366					43.0			-
03/05/2008	2,313		1.230		19	30	12	18		4.6	13.0	1	1	149					50,000	120				1.366					43.0			
03/06/2008	2,312		1.235	65	19	31	13	21		5.0	13.0			149	8.50	0.10	0.05	0.70	48,000	120	2.5	0.50	7.23	3.281		89	69.0	50.0	41.0	29.0	13.0	12.0

Australia Wasabi - 1 Vic-58P Baroid Fluid Services Victoria

Page 2 of 2 Printed: 26/03/2008

Company Apache
Well Name Wasabi - 1
Contractor Seadrill
Rig Name West Triton
Unit System Apache

Fluid Program Exception Report

Report No	Date	Time	Depth m	Property Name	Unit System	Actual Value	Exception	Program Min	Program Max
006	02/17/2008	13:00	862	API Filtrate	ml/30 min	14.0	High	3.0	5.0
006	02/17/2008	20:00	862	API Filtrate	ml/30 min	14.0	High	3.0	5.0
006	02/17/2008	13:00	862	Gel, 10 seconds	lbs/100 ft2	21	High	12	20
006	02/17/2008	20:00	862	Gel, 10 seconds	lbs/100 ft2	27	High	12	20
006	02/17/2008	13:00	862	Yield Point	lbs/100 ft2	69	High	25	60
006	02/17/2008	20:00	862	Yield Point	lbs/100 ft2	70	High	25	60
010	02/21/2008	13:00	862	API Filtrate	ml/30 min	6.0	High	3.0	5.0
011	02/22/2008	13:00	862	API Filtrate	ml/30 min	6.0	High	3.0	5.0
011	02/22/2008	22:00	862	API Filtrate	ml/30 min	6.0	High	3.0	5.0
011	02/22/2008	13:00	862	Gel, 10 seconds	lbs/100 ft2	9	Low	12	20
011	02/22/2008	22:00	862	Gel, 10 seconds	lbs/100 ft2	9	Low	12	20
011	02/22/2008	22:00	862	Yield Point	lbs/100 ft2	24	Low	25	60
012	02/23/2008	4:40	909	API Filtrate	ml/30 min	5.7	High	3.0	5.0
012	02/23/2008	4:40	909	Gel, 10 seconds	lbs/100 ft2	7	Low	12	20
012	02/23/2008	4:40	909	Yield Point	lbs/100 ft2	19	Low	25	60
012	02/23/2008	8:30	1,036	API Filtrate	ml/30 min	5.6	High	3.0	5.0
012	02/23/2008	8:30	1,036	Gel, 10 seconds	lbs/100 ft2	8	Low	12	20
012	02/23/2008	8:30	1,036	Yield Point	lbs/100 ft2	22	Low	25	60
012	02/23/2008	15:00	1,235	API Filtrate	ml/30 min	5.5	High	3.0	5.0
012	02/23/2008	15:00	1,235	Gel, 10 seconds	lbs/100 ft2	11	Low	12	20
012	02/23/2008	21:00	1,337	API Filtrate	ml/30 min	5.5	High	3.0	5.0
012	02/23/2008	21:00	1,337	Gel, 10 seconds	lbs/100 ft2	9	Low	12	20
013	02/24/2008	3:30	1,425	API Filtrate	ml/30 min	5.6	High	3.0	5.0
013	02/24/2008	3:30	1,425	Gel, 10 seconds	lbs/100 ft2	10	Low	12	20
013	02/24/2008	3:30	1,425	Yield Point	lbs/100 ft2	22	Low	25	60
013	02/24/2008	6:00	1,455	Gel, 10 seconds	lbs/100 ft2	9	Low	12	20
013	02/24/2008	6:00	1,455	Yield Point	lbs/100 ft2	23	Low	25	60
013	02/24/2008	17:30	1,549	Gel, 10 seconds	lbs/100 ft2	9	Low	12	20
013	02/24/2008	21:00	1,585	Gel, 10 seconds	lbs/100 ft2	8	Low	12	20

Australia Wasabi - 1 Vic-58P Baroid Fluid Services Victoria

Page 1 of 2 Printed: 26/03/2008

Company Apache
Well Name Wasabi - 1
Contractor Seadrill
Rig Name West Triton
Unit System Apache

Fluid Program Exception Report

Report No	Date	Time	Depth m	Property Name	Unit System	Actual Value	Exception	Program Min	Program Max
013	02/24/2008	21:00	1,585	Yield Point	lbs/100 ft2	24	Low	25	60
014	02/25/2008	3:00	1,670	API Filtrate	ml/30 min	5.5	High	3.0	5.0
014	02/25/2008	3:00	1,670	Gel, 10 seconds	lbs/100 ft2	6	Low	12	20
014	02/25/2008	3:00	1,670	Yield Point	lbs/100 ft2	20	Low	25	60
014	02/25/2008	9:45	1,750	Gel, 10 seconds	lbs/100 ft2	10	Low	12	20
014	02/25/2008	16:00	1,797	Gel, 10 seconds	lbs/100 ft2	10	Low	12	20
014	02/25/2008	21:00	1,797	Gel, 10 seconds	lbs/100 ft2	11	Low	12	20
017	02/28/2008	4:40	1,905	API Filtrate	ml/30 min	5.4	High	3.0	5.0
017	02/28/2008	11:30	1,989	Density	SG	1.180	High	1.140	1.170
017	02/28/2008	16:30	2,030	Density	SG	1.175	High	1.140	1.170
018	02/29/2008	3:00	2,180	Density	SG	1.185	High	1.140	1.170
018	02/29/2008	11:15	2,240	Density	SG	1.185	High	1.140	1.170
018	02/29/2008	11:15	2,240	Gel, 10 seconds	lbs/100 ft2	11	Low	12	20
018	02/29/2008	17:30	2,250	Density	SG	1.175	High	1.140	1.170
019	03/01/2008	20:00	2,313	Density	SG	1.210	High	1.140	1.170
019	03/01/2008	8:30	2,313	Density	SG	1.210	High	1.140	1.170
020	03/02/2008	10:00	2,313	Density	SG	1.200	High	1.140	1.170
020	03/02/2008	23:00	2,313	Density	SG	1.210	High	1.140	1.170
021	03/03/2008	20:00	2,313	Density	SG	1.240	High	1.140	1.170
021	03/03/2008	12:00	2,313	Density	SG	1.235	High	1.140	1.170
022	03/04/2008	10:00	2,313	Density	SG	1.230	High	1.140	1.170
023	03/05/2008	9:45	2,313	Density	SG	1.230	High	1.140	1.170
024	03/06/2008	23:59	2,312	Density	SG	1.235	High	1.140	1.170

Australia Wasabi - 1 Vic-58P Baroid Fluid Services Victoria

Page 2 of 2 Printed: 26/03/2008

Well Name Operator Contractor Rig No Unit System Wasabi - 1 Apache Seadrill West Triton Apache

Interval		01		From Date	001	Top of Interval	66.0	m
Max. Hole Size	/ Bit Size	27.000 / 2	6.000 in	To Date	009	Bottom of Interval	862.0	m
For Report	# 001	On	02/12/2008	Operation at Depth)	66.0 m		
Rig Activity Activity				for drilling operation texas deck. Comme	. Cont. ski nce install	Jack up to 46 ft. Skid rig 15 ft. d rig to 21 ft to drilling location. C.T.U to deck. Install service I DP and rack up same.	Install access sta	
,				<u> </u>				
Fluid Treatment	t			Engineering charges Engineer #1: 31 Jan Engineer #2: 11 Feb	ı - 12 Feb : o - 12 Feb	= 2 days	icialite d. probydrati	o d
				bentonite in progres Mud". Drillwater test	s. Also beg in both Pi	ite from Battler. Preparing unw gin preparing 1500 bbls of 1.15 it 2 & 3: chlorides = 12,000 mg. mination with 63-65% seawate	5 sg displacement /L and total hardne	"Kill
For Report	# 002	On	02/13/2008	Operation at Depth	1	66.0 m		
Rig Activity				"c". Motor electrical Reset and cont. pick	system isc	5 1/2" DP. NOV IT fault finding blated. Inspect Draw-works "c" P. DWC drive motor troubles. Teter running tool. Remove mast	motor and drive c roubleshoot. Insta	hains. II
Activity				Rig up				
Fluid Treatment	t			mud in progress. Po all. Starboad drillwa	rt drillwate ter tank un	bls spud mud and 1500 bbls 1. er tank contaminated with 63-6: icontaminated. Received chem ion therefor no mud check for i	5% seawater, use nicals from Pacific	
For Report	# 003	On	02/14/2008	Operation at Depth)	69.0 m	•	
Rig Activity				Rig up 20" handling Perform dummy run BHA, 9 1/2" DC and	equipmen . Install ne RIH. Incid) 38.82m.	errick. Drillquip prepared 20" w t, install csg bushing. Set 20" v w saver sub onto top drive. Pro dent with draw works, moveme Tag sea bed @ 66m. Spud hol	wellhead in rotary. epare to pick up 2 nt with 9 1/2" DC i	6" n
Activity				Drilling 26" Hole				
Fluid Treatment	t			cut back to 20 ppb F to contaminated drill and barite suspension weighted to 1.15 sg drillwater (pit 1), mu	PHB & cau I water. Ba on to displants using 78 p d check #2	prehydrated bentonite. To this stic added for pH. Resultant visurazan-D+ was added at 1.15 pacement mud. The 1400 bbls copb barite. Mud check #1 = 40 2 = 20 ppb spud mud in s/w col(pit 2). Spud 26" hole @ 23:00	scosities were poo opb to promote rhe of displacement m ppb PHB in clean ntaminated drillwa	or due eology ud was
For Report	# 004	On	02/15/2008	Operation at Depth		157.0 m		
Rig Activity				Cyber screen froze Cont. drill from 91m mud. POOH and lay Tag seabed at 66m. locate wellbore. RIH	with alarm to 135m ro out 26" B Made sev and wash	n to 91m pumping 75bbls swee for VFD "B" motor drive fault. eaching section TD. Displace h HA. Make up 16" BHA. Calibra reral attempts to enter wellbore a and tag bottom @ 135m. Beg hi-vis sweeps every stand.	Troubleshoot sam nole with 150 bbl I ate draw works and e. ROV went down	e. Hi-Vis d RIH. ı to
Activity				Drilling				

Australia Bass Strait Wasabi - 1 Vic-58P Victoria **Baroid Fluid Services**

Page 1 of 8 Printed: 03/26/2008

Well Name Operator Contractor Rig No Unit System Wasabi - 1 Apache Seadrill West Triton Apache

Interval		01		From Date	001	Top of Interval	66.0	m
Max. Hole Size	e / Bit Size	27.000 / 26.0	00 in	To Date	009	Bottom of Interval	862.0	m
Fluid Treatmen	t			New Mud Built: 925 Total Mud Built: 412				
				displaced open hole Drill 16" hole using a	e to 150 bbl s/w and 50-	ibbl hi-vis sweeps as required. At s of Hi-Vis mud. .75 bbl hi-vis sweeps. uously at 25 ppb Bentonite as req		
For Report	# 005	On 02	2/16/2008	Operation at Depth	1	845.0 m		
Rig Activity						m to 565m, pumping 75 bbl sweep survey after each connection. Co		
Activity				Drilling				
Fluid Treatmen	t			New Mud Built: 87 Total Mud Built: 499				
				Building hi-vis spud	mud contin	.75 bbl hi-vis sweeps. luously at 25 ppb Bentonite as req se for viscosity boost.	uired.	
For Report	# 006	On 02	2/17/2008	Operation at Depth	1	862.0 m		
Rig Activity				@30rpm. Schlumbe Backream from 862 hi-vis mud. Displace Troubleshoot pipe h float. RIH with 13 3/	erger attemp m to 800m. e well with 9 nandler rota 8" casing to	to 862m TD. Pump 200 bbl hi-vis vot to send signal to tool 1st & 2nd to Run back down to bottom @ 862 bbl of 9.6ppg bentonite mud. For tion. Cont. POOH and lay out tools of 135m. Work down to 139m, hung to success. Hold JSA and rig up & For tools of 150 bbl.	ime failed. m and pump 3 OOH to 128n s. Pick up & te g up. Cont. wo	n. est orking
Activity				Run casing and cen				
Fluid Treatmen	t			New Mud Built: Total Mud Built: 499	0 bbl 00.8 bbl			
				Reached section TE	O 862 m @	02:00.		
For Report	# 007	On 02	2/18/2008	Operation at Depth		862.0 m		
Rig Activity				16" BHA, enter 26" again. Wash and ro 857m tagged botton displaced with 1.15 spot from 126m to 1	hole at 66m tate 30rpm n with 5m fi sg bentonit l55m. Back	from 127m to surface. R/d csg equols. String tagged @94m, wash dow 750gpm from 70m to 135m. RIH followed from 857m to 142. Pumple mud. Observed 60-70 klbs overly ream few passes. Pumped 100bbe mud. POOH to surface and rig upper stream few passes.	n to 94m. Tigh ree frmo 135n ped 100bbl hi- pull. Worked t Il hi-vis and	nt n to vis & ight
Activity			<u></u>	Run casing and cen	nent			
	t			New Mud Built: 89				
Fluid Treatmen	•			Total Mud Built: 588	וטט ס. זיס			
Fluid Treatmen				Built 434 bbl of Gua	ır gum swee	eps as contingency. d for use in sweeps during tight sp	ots observed	from
Fluid Treatmen	•			Built 434 bbl of Gua Built 462.8 bbl of be 126m to 155m.	r gum swee entonite mud		ots observed	from

Australia Bass Strait Wasabi - 1 Vic-58P Victoria **Baroid Fluid Services**

Page 2 of 8 Printed: 03/26/2008

Well Name Operator Contractor Rig No Unit System Wasabi - 1 Apache Seadrill West Triton Apache

Interval	01		From Date	001	Top of Interval	66.0	m			
Max. Hole Size / Bit Size	27.000 / 26.000	in	To Date	009	Bottom of Interval	862.0	m			
Rig Activity			RIH to 739m. RIH to disengage run	H with 20" cas ning tool from	ing from 733m to 809m. Wash d wellhead. Backed out at crosso	lown to 857m. Aver running tool.	ttempt			
Activity			Run casing and o	ement						
Fluid Treatment			Cont. running 13 3/8" casing from 418m to 733m. Rig up for 13 3/8" X 20" crossover RIH to 739m. RIH with 20" casing from 733m to 809m. Wash down to 857m. Attempt to disengage running tool from wellhead. Backed out at crossover running tool. Make up cement head stringer and RIH with 5 1/2" DP from surface to 825m. Run casing and cement New Mud Built: 0 bbl Total Mud Built: 5887.6 bbl Cont. building polymer mud for the 12 1/4" interval. Operation at Depth 862.0 m Cont. making up cementing joint. Connect line to side entry sub. Test lines to 1500p Mix and pump cement as to HALLIBURTON program. Displace cement from drill string. Unsting cement stinger. Pick up and circ. bottoms up. POOH to surface. Brea out BOP bolts from stump. Position BOP over quick connector. Nipple up BOP.							
For Report # 009	On 02/20/2	2008		•						
Rig Activity			Mix and pump ce string. Unsting ce out BOP bolts fro	ment as to HA ment stinger.	ALLIBURTON program. Displace Pick up and circ. bottoms up. Po	e cement from dr OOH to surface.	rill Break			
Activity			Nipple up B.O.P.							
Fluid Treatment				,	er mud for 12.25" section. opb Calcium Carbonate into mud	l.				

Well Name Operator Contractor Rig No Unit System Wasabi - 1 Apache Seadrill West Triton Apache

Interval		02		From Date	010	Top of Interval	862.0	m	
Max. Hole Size	e / Bit Size	16.000 / 1	6.000 i	n To Date	026	Bottom of Interval	2,313.0	m	
For Report	# 010	On	02/21/2008	Operation at Dep	oth	862.0 m	est lower and upper BOP values on the ary. Rig up 5 1/2" elevators. Pick up erter over BOP mandreal. Nipple up vershot packer and connect hose. Fill BOP, flush lines, test casing to up runniong tool and set wearbushing. back. 5" section. Inbonate into mud. 1.15 sg. ck. Pick up and service break Anadrill om surface to 40m. Commence loadibreshoot loading tool. Cont. running BHA in Link tilt. Hold PJSM, service derrick and RIH from 259m to 851m. displacement. 5" section. 1.15 sg and prepare mud for ement. Displace well to 12% at float/shoe and clean out rat hole to 864m. Reciprocate sting and condition test with EMW of 15.9ppg. Drill ahead ls. Cont. drilling 12 1/4" hole from screens. Cont. drill from 1334m to S to improve low end rheology. Added any mans request at 950 MD. pill on stand-by. mix and at shakers. illiation with barge reports.		
Rig Activity				top drive. Pick up diverter, make up choke and kill line Function test BOF 2000psi. Lay out of	overshot jo overshot jo s to BOP. I rams from diverter runi	int and set in rotary. Rig up 5 1/2 int, RIH with diverter over BOP m nstall fitting for overshot packer a remote stations. Fill BOP, flush I	" elevators. Pick of mandreal. Nipple of nd connect hose ines, test casing	up up to	
Activity				Tripping	·				
Fluid Treatmen	t			Total Mud Built: 58	887.6 bbl fo	or 1st Interval.			
				Begin adding 12%	KCL and	ner mud for 12.25" section. oppb Calcium Carbonate into muc polymer mud to 1.15 sg.	d.		
For Report	# 011	On	02/22/2008			862.0 m			
Rig Activity				sonic tool. Hold JS of radioactive sou from 40m to 259m TDS/travelling blo	SA. Pick up rce into BH n. Troublesh ck. Pick up	BHA and RIH from surface to 40 A string. Troubleshoot loading too noot problems on Link tilt. Hold P	m. Commence lo ol. Cont. running JSM, service	adibng BHA	
Activity				Safety meeting					
Fluid Treatmen	t			Total Mud Built: 58	887.6 bbl fc	or 1st Interval.			
						ner mud for 12.25" section. polymer mud to 1.15 sg and prep	pare mud for		
For Report	# 012	On	02/23/2008	Operation at Dep	oth	1,393.0 m			
Rig Activity				KCL/Polmer/CLA\ 862m. Cont. drill r mud in prep. for le from 864m to 123 1235m to 1334m. 1393m as per DD	SEAL much new formation eak off test. 5m. Trouble Losses at s s instruction	on from 862m to 864m. Reciproca Perform leak off test with EMW o eshoot MWD tools. Cont. drilling o shakers, change screens. Cont. d	clean out rat hole ate sting and con of 15.9ppg. Drill a 12 1/4" hole from	dition head	
Activity				Drilling 12 1/4" Ho	ole				
Fluid Treatmen	t			BARABLOK into a Mixed 240 bbl of 4 Ran out of drill wa	038.3 bbl I @ 00:10. stem with B active @ 4p IOppb Mixe ster using se	ARAZAN D PLUS to improve low pb as per company mans reques d Cal.Carb LCM pill on stand-by. eawater in 1 premix and at shake ed was a reconciliation with barge	t at 950 MD.	dded	
For Report	# 013	On	02/24/2008	Operation at Dep	oth	1,647.0 m			
Rig Activity						/4" hole from 1393m to 1647m as nd. GPM 1070, SPM - 188, WOB			

Australia Bass Strait Wasabi - 1 Vic-58P Victoria **Baroid Fluid Services**

Page 4 of 8 Printed: 03/26/2008

Well Name Operator Contractor Rig No Unit System Wasabi - 1 Apache Seadrill West Triton Apache

Interval		02		From Date	010	Top of Interval	862.0	m				
Max. Hole Siz	e / Bit Size	16.000 / 16.0	000 in	To Date	026	Bottom of Interval	2,313.0	m				
Activity				Drilling								
Fluid Treatmen	nt			Total Mud Built: 36 Treated active with maintain propertie Attempted fine up Unable to unload of Mixed 170bbls Presidents	33.7 bbl Aldacide, Sos and concent shaker screer chemicals and -hydrated Ber	acide, Soda Ash,KOH and additional 1.5 ppb Barablok to d concentrations. Ser screens. Adjusted to suit circulating conditions. Sincials and drill water from boat, due to weather. Itrated Bentonite to help build volume. of 40ppb Cal.Carb / Guar Gum sweep with improved cutting stand. GPM 1076, SPM - 189, WOB 5-10K, Pressure - 1814, pump 50 bbl hi vis sweep & circulate out. Flowcheck 1530m. Pump out of hole from 1638m to 1530m. Hook load beboot. Cont. pump out of hole from 1530m to 1442m. Pump out of hole from 1530m to 1442m. Pump out of hole from 1442m to 851m. I bbl B bbl Ind drill water from boat. ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to tration +10% (unable to mix BB's directly to active). Maintate eighted premix. 40ppb CaCo3 LCM, to active. In reserve. Itrip out of hole. 1,824.0 m om 851m to 259m. Flowcheck & cont. POOH to surface an etrieve radio active source and make safe. Service top driv ollers. Pick up and make up new 12 1/4" BHA. RIH to shoe in the surface and make safe. Service top driv ollers. Pick up and make up new 12 1/4" BHA. RIH to shoe in the surface and make safe. Service top driv ollers. Pick up and make up new 12 1/4" BHA. RIH to shoe in the surface and make safe. Service top driv ollers. Pick up and make up new 12 1/4" BHA. RIH to shoe in the surface and make safe. Service top driv ollers. Pick up and make up new 12 1/4" BHA. RIH to shoe in the surface and make safe. Service top driv ollers. Pick up and make up new 12 1/4" BHA. RIH to shoe in the surface and make safe. Service top driv ollers. Pick up and make up new 12 1/4" BHA. RIH to shoe in the surface and make safe. Service top driv ollers. Pick up and make up new 12 1/4" BHA. RIH to shoe in the surface and make safe. Service top driv ollers. Pick up and make up new 12 1/4" BHA. RIH to shoe in the surface and make safe. Service top driv ollers. Pick up and make up new 12 1/4" BHA. RIH to shoe in the surface and make safe. Service top driv ollers. Pick up and make up new 12 1/4" BHA. RIH to shoe in the surface and mak						
For Report	# 014	On 0	2/25/2008	returned. 8 Operation at Depth 1,797.0 m Cont. drilling and sliding 12 1/4" hole from 1647m to 1797m as per directior instuctions. Survey every stand. GPM 1076, SPM - 189, WOB 5-10K, Press 3050psi. Rack back a stand, pump 50 bbl hi vis sweep & circulate out. Flow POOH from 1797m to 1530m. Pump out of hole from 1638m to 1530m. Holecked up on screen, reboot. Cont. pump out of hole from 1530m to 1442m weighted slug and pull out of hole from 1442m to 851m. Tripping New Mud Built: 448.1 bbl Total Mud Built: 4081.8 bbl Unloaded chemicals and drill water from boat. Treated active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premi maintain active concentration +10% (unable to mix BB's directly to active).								
Rig Activity				Drilling New Mud Built: 595.4 bbl Total Mud Built: 3633.7 bbl Treated active with Aldacide, Soda Ash,KOH and additional 1.5 ppb Barablok maintain properties and concentrations. Attempted fine up shaker screens. Adjusted to suit circulating conditions. Unable to unload chemicals and drill water from boat, due to weather. Mixed 170bbls Pre-hydrated Bentonite to help build volume. Swept hole with 40 bbl of 40ppb Cal.Carb / Guar Gum sweep with improved or returned. 8 Operation at Depth 1,797.0 m Cont. drilling and sliding 12 1/4" hole from 1647m to 1797m as per directional instructions. Survey every stand. GPM 1076, SPM - 189, WDB 5-10K, Pressur 3050psi. Rack back a stand, pump 50 bbl hi vis sweep & circulate out. Flowch POOH from 1797m to 1530m. Pump out of hole from 1638m to 1530m. Hook locked up on screen, reboot. Cont. pump out of hole from 1530m to 1442m. Presided as and pull out of hole from 1442m to 851m. Tripping New Mud Built: 448.1 bbl Total Mud Built: 4081.8 bbl Unloaded chemicals and drill water from boat. Treated active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, 1 morporated 210 bbls 40ppb CaCo3 LCM, to active. Premix with PHB kept in reserve. Made 11.7 ppg slug to trip out of hole. Cont. building volume. Cont. building volume. Cont. pull out of hole from 851m to 259m. Flowcheck & cont. POOH to surface lay out 12 1/4" BHA. Retrieve radio active source and make safe. Service top. PIP handler and dolly rollers. Pick up and make up new 12 1/4" BHA. Retrieve radio active source and make safe. Service top. PIP handler and dolly rollers. Pick up and make up new 12 1/4" BHA. Retrieve radio active source and make safe. Service top. PIP handler and dolly rollers. Pick up and make up new 12 1/4" BHA. Retrieve radio active source and make safe. Service top. PIP handler and dolly rollers. Pick up and make up new 12 1/4" BHA. Petrieve radio active source and make safe. Service top. PIP handler and dolly rollers. Pick up and make up new 12 1/4" BHA. Petrieve radio active source and make saf				eck, oad				
Activity				Tripping	Mud Built: 595.4 bbl Mud Built: 3633.7 bbl ed active with Aldacide, Soda Ash,KOH and additional 1.5 ppb Barablok tain properties and concentrations. he to unload chemicals and drill water from boat, due to weather. d 170bbls Pre-hydrated Bentonite to help build volume. thole with 40 bbl of 40ppb Cal.Carb / Guar Gum sweep with improved cuthed. ation at Depth drilling and sliding 12 1/4" hole from 1647m to 1797m as per directional of citions. Survey every stand. GPM 1076, SPM - 189, WOB 5-10K, Pressure psi. Rack back a stand, pump 50 bbl hi vis sweep & circulate out. Flowche H from 1797m to 1530m. Pump out of hole from 1638m to 1530m. Hook ld up on screen, reboot. Cont. pump out of hole from 1638m to 1530m. Hook ld up on screen, reboot. Cont. pump out of hole from 1530m to 1442m. Puted slug and pull out of hole from 1442m to 851m. ling Mud Built: 448.1 bbl Mud Built: 4081.8 bbl added chemicals and drill water from boat. ed active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to tain active concentration +10% (unable to mix BB's directly to active). Main weight, using unweighted premix. porated 210 bbls 40ppb CaCo3 LCM, to active. ix with PHB kept in reserve. building volume. ation at Depth 1,824.0 m Pull out of hole from 851m to 259m. Flowcheck & cont. POOH to surface at 12 1/4" BHA. Retrieve radio active source and make safe. Service top diandler and dolly rollers. Pick up and make up new 12 1/4" BHA. RIH to sh. Test MWD tools @ 1885m, 1100gpm. Cont. RIH from 857m to 1767m. from 1767m to 1797m, pump 50bbl Hi-Vis. Cont. drill and slide 12 1/4" hole Mud Built: 243.1 bbl Mud Built							
Fluid Treatmen	nt			Drilling New Mud Built: 595.4 bbl Total Mud Built: 3633.7 bbl Treated active with Aldacide, Soda Ash,KOH and additional 1.5 ppb Barablok to maintain properties and concentrations. Attempted fine up shaker screens. Adjusted to suit circulating conditions. Unable to unload chemicals and drill water from boat, due to weather. Mixed 170bls Pre-hydrated Bentonite to help build volume. Swept hole with 40 bbl of 40ppb Cal.Carb / Guar Gum sweep with improved cut returned. Operation at Depth 1,797.0 m Cont. drilling and sliding 12 1/4" hole from 1647m to 1797m as per directional di instuctions. Survey every stand. GPM 1076, SPM - 189, WOB 5-10K, Pressure 3050psi. Rack back a stand, pump 50 bbl hi vis sweep & circulate out. Flowcher POH from 1797m to 1530m. Pump out of hole from 1633m to 1530m. Hook lo locked up on screen, reboot. Cont. pump out of hole from 1530m to 1442m. Pur weighted slug and pull out of hole from 1442m to 851m. Tripping New Mud Built: 448.1 bbl Total Mud Built: 448.1 bbl Total Mud Built: 4081.8 bbl Unloaded chemicals and drill water from boat. Treated active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to maintain active concentration + 10% (unable to mix BB's directly to active). Main mud weight, using unweighted premix. Incorporated 210 bbls 40ppb CaCo3 LCM, to active. Premix with PHB kept in reserve. Made 11.7 ppg slug to trip out of hole. Cont. building volume. Operation at Depth 1,824.0 m Cont. pull out of hole from 851m to 259m. Flowcheck & cont. POOH to surface a lay out 12 1/4" BHA. Retrieve radio active source and make safe. Service top drived to the surface of the sur								
				Treated active with maintain active co mud weight, using Incorporated 210 the Premix with PHB is Made 11.7 ppg slu	n 0.5 ppb Bara ncentration +1 unweighted p bbls 40ppb Ca cept in reserve g to trip out of	azan D to raise 6 rpm. Built 15% I 0% (unable to mix BB's directly premix. aCo3 LCM, to active.	Ash,KOH and additional 1.5 ppb Barablok to ons. Adjusted to suit circulating conditions. Il water from boat, due to weather. hite to help build volume. I.Carb / Guar Gum sweep with improved cut of M 1076, SPM - 189, WOB 5-10K, Pressure 50 bbl hi vis sweep & circulate out. Flowcher p out of hole from 1638m to 1530m. Hook lo pump out of hole from 1530m to 1442m. Pur om 1442m to 851m. In D to raise 6 rpm. Built 15% KCL premix, to (unable to mix BB's directly to active). Main hix. In LCM, to active. Ide. 1829. 1824.0 m 1829. 1839. 1840. 1859. 1860					
For Report	# 015	On 0	2/26/2008	Drilling New Mud Built: 595.4 bbl Total Mud Built: 3633.7 bbl Treated active with Aldacide, Soda Ash,KOH and additional 1.5 ppb Barabl maintain properties and concentrations. Attempted fine up shaker screens. Adjusted to suit circulating conditions. Unable to unload chemicals and drill water from boat, due to weather. Mixed 170bbls Pre-hydrated Bentonite to help build volume. Swept hole with 40 bbl of 40ppb Cal.Carb / Guar Gum sweep with improver returned. Operation at Depth Cont. drilling and sliding 12 1/4" hole from 1647m to 1797m as per direction instructions. Survey every stand. GPM 1076, SPM - 189, WOB 5-10K, Presi 3050psi. Rack back a stand, pump 50 bbl hi vis sweep & circulate out. Flow weighted slug and pull out of hole from 1638m to 1530m. Holocked up on screen, reboot. Cont. pump out of hole from 1530m to 1442m weighted slug and pull out of hole from 1442m to 851m. Tripping New Mud Built: 448.1 bbl Total Mud Built: 4081.8 bbl Unloaded chemicals and drill water from boat. Treated active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premi maintain active concentration +10% (unable to mix BB's directly to active). mud weight, using unweighted premix. Incorporated 210 bbls 40ppb CaCo3 LCM, to active. Premix with PHB kept in reserve. Made 11.7 ppg slug to trip out of hole. Cont. building volume. Operation at Depth Cont. building volume. Operation at Depth 1,824.0 m Cont. Bill from 851m to 259m. Flowcheck & cont. POOH to surf lay out 12 1/4" BHA. Retrieve radio active source and make safe. Service to PIP handler and dolly rollers. Pick up and make up new 12 1/4" BHA. RIH to 847m. Test MWD tools @ 188spm, 1100gpm. Cont. RIH from 857m to 176 down from 1767m to 1797m, pump 50bbl Hi-Vis. Cont. drill and slide 12 1/4 per directional drillers intructions, from 1797m to 1824m. Drilling 12 1/4" Hole New Mud Built: 4324.9 bbl Took drill water from boat. Began treating active with EZ-MUD as per instructions from Apache. Maintained mud weight, using concentrated unweighted premix as Hi-Vis s Mixe								
Rig Activity				Drilling New Mud Built: 595.4 bbl Total Mud Built: 3633.7 bbl Treated active with Aldacide, Soda Ash,KOH and additional 1.5 ppb Barablok to maintain properties and concentrations. Attempted fine up shaker screens. Adjusted to suit circulating conditions. Unable to unload chemicals and drill water from boat, due to weather. Mixed 170bbls Pre-hydrated Bentonite to help build volume. Swept hole with 40 bbl of 40ppb Cal.Carb / Guar Gum sweep with improved cut returned. Operation at Depth 1,797.0 m Cont. drilling and sliding 12 1/4" hole from 1647m to 1797m as per directional dri instructions. Survey every stand. GPM 1076, SPM - 189, WOB 5-10K, Pressure 3050psi. Rack back a stand, pump 50 bbl hi vis sweep & circulate out. Flowcher POOH from 1797m to 1530m. Pump out of hole from 1530m to 1530m. Hook lo locked up on screen, reboot. Cont. pump out of hole from 1530m to 1442m. Pur weighted slug and pull out of hole from 1442m to 851m. Tripping New Mud Built: 448.1 bbl Total Mud Built: 448.1 bbl Total Mud Built: 4081.8 bbl Unloaded chemicals and drill water from boat. Treated active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to maintain active concentration +10% (unable to mix BB's directly to active). Main mud weight, using unweighted premix. Incorporated 210 bbls 40ppb CaCo3 LCM, to active. Premix with PHB kept in reserve. Made 11.7 ppg slug to trip out of hole. Cont. building volume. Operation at Depth 1,824.0 m Cont. pull out of hole from 851m to 259m. Flowcheck & cont. POOH to surface a lay out 12 1/4" BHA. Retrieve radio active source and make safe. Service top of PIP handler and dolly rollers. Pick up and make up new 12 1/4" BHA. Rill to she 847m. Test MWD tools @ 188spm, 1100gpm. Cont. Rill from 857m to 1767m. down from 1767m to 1797m, pump 50bbl H-1/sis. Cont. drill and slide 12 1/4" hole per directional drillers intructions, from 1797m to 1824m. Drilling 12 1/4" Hole New Mud Built: 243.1 bbl Total Mud Built: 4324.9 bbl Took drill water from boat. Began treating active with EZ-MUD as				rive, noe at Wash				
Activity				Drilling 12 1/4" Ho	d Built: 595.4 bbl active with Aldacide, Soda Ash,KOH and additional 1.5 ppb Barablok to properties and concentrations. ad fine up shaker screens. Adjusted to suit circulating conditions. to unload chemicals and drill water from boat, due to weather. 70bbls Pre-hydrated Bentonite to help build volume. ole with 40 bbl of 40ppb Cal.Carb / Guar Gum sweep with improved cul. on at Depth 1,797.0 m Illing and sliding 12 1/4" hole from 1647m to 1797m as per directional d ms. Survey every stand. GPM 1076, SPM - 189, WOB 5-10K, Pressure Rack back a stand, pump 50 bbl hi vis sweep & circulate out. Flowche rom 1797m to 1530m. Pump out of hole from 1638m to 1530m. Hook lc pp on screen, reboot. Cont. pump out of hole from 1530m to 1442m. Pu d slug and pull out of hole from 1442m to 851m. d Built: 448.1 bbl d d chemicals and drill water from boat. active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active with 1.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active with 1.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active with 1.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active with 1.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active with 1.5 ppb Barazan D to raise 6 rpm. Built 15% KCL premix, to active concentration +10% (unable to mix BB's directly to active). Mair ght, using unweighted premix and to the foliation of the serve. The properties of the serve of the serve of the serve of the s							
Fluid Treatme	nt			Total Mud Built: 43 Took drill water from Began treating act Maintained mud with Mixed 250 bbl of 4	324.9 bbl m boat. ive with EZ-M eight, using co 0ppb Mixed C	oncentrated unweighted premix Cal.Carb LCM pill on stand-by.		ps.				
For Report	# 016	On 0	2/27/2008		_							
Rig Activity		maintain properties and concentrations. Attempted fine up shaker screens. Adjusted to suit circulating conditions. Unable to unload chemicals and drill water from boat, due to weather. Mixed 170bbls Pre-hydrated Bentonite to help build volume. Swept hole with 40 bbl of 40ppb Cal.Carb / Guar Gum sweep with improve returned. On 02/25/2008 Operation at Depth 1,797.0 m Cont. drilling and sliding 12 1/4" hole from 1647m to 1797m as per direction instuctions. Survey every stand. GPM 1076, SPM - 189, WOB 5-10K, Pres 3050psi. Rack back a stand, pump 50 bbl hi vis sweep & circulate out. Flov POOH from 1797m to 1530m. Pump out of hole from 1638m to 1530m. Pum ben yet of hole from 1638m to 1530m to 1442m weighted slug and pull out of hole from 1442m to 851m. Tripping New Mud Built: 448.1 bbl Total Mud Built: 448.1 bbl Total Mud Built: 448.1 bbl Total Mud Built: 4081.8 bbl Unloaded chemicals and drill water from boat. Treated active with 0.5 ppb Barazan D to raise 6 rpm. Built 15% KCL prem maintain active concentration +10% (unable to mix BB's directly to active). mud weight, using unweighted premix. Incorporated 210 bbls 40pb CaCo3 LCM, to active. Premix with PHB kept in reserve. Made 11.7 ppg slug to trip out of hole. Cont. building volume. Cont. building volume. Cont. building volume. Cont. build of hole from 851m to 259m. Flowcheck & cont. POOH to surf lay out 12 1/4" BHA. Retrieve radio active source and make safe. Service. PIP handler and dolly rollers. Pick up and make up new 12 1/4" BHA. Rel 1847m. Test MWD tools @ 188spm, 1100gpm. Cont. Rell from 857m to 176 down from 1767m to 1797m, pump 50bbl Hi-Vis. Cont. drill and slide 12 1/4 per directional drillers intructions, from 1797m to 1824m. Drilling 12 1/4" Hole New Mud Built: 4324.9 bbl Took drill water from boat. Began treating active with EZ-MUD as per instructions from Apache. Maintained mud weight, using concentrated unweighted premix as Hi-Vis s Mixed 250 bbl of 40ppb Mixed Cal.Carb LCM pill on stand-by. Premix with PHB kept in reserve.				nen POOH wet	to					

Australia Bass Strait Wasabi - 1 Vic-58P Victoria **Baroid Fluid Services**

Page 5 of 8 Printed: 03/26/2008

Well Name Operator Contractor Rig No Unit System Wasabi - 1 Apache Seadrill West Triton Apache

Interval		02			From Date	010	Top of Interval	862.0	m
Max. Hole Size	e / Bit Size	16.000 / 10	6.000	in	To Date	026	Bottom of Interval	2,313.0	m
Activity					motor, check orie	entation. Downl	ace. Lay out BHA and make up load data from RAB-8 tool. P/up air pipe handler and change out	Bat sonic tool 8	
					Name March Double	47.7			
Fluid Treatmer	it				Added Caustic P Noticed coal at s used concentrate	ith EZ-MUD, in otash to mainta hakers @ 1830	preparation of claystone format ain pH.) MD, cont. treating mud with 4p nix as a Hi-Vis sweep, brought u	pb BARABLOK	
					coals. Mixed 250 bbl of Premix with PHB		Cal.Carb LCM pill on stand-by. e.		
For Report	# 017	On	02/28/2	800	Operation at De	pth	2,121.0 m		
Rig Activity					Washed and rea and continued to Drilled ahead from performed every ROP has genera Large sized coal approximately 1-	med from 1,61 RIH to bottom m 1,900 m to 2 stand. Illy been 10- 20 pieces are occ 7 inch in diam by changing to	2,121 m as per DD instructions of m hour casionally observed on shakers eter. Mud weight creep through finer shaker screens and dilution	. Took weight (2 with surveys ranging from today's drilling I	0 klbs) nas
Activity					Drilling				
Fluid Treatmer	nt				Caustic Potash. Added 50 bbls of after entering Lat after treatment. I predominantly sa consolidated and are marginal indi	4,396.4bbls. C Added enriched 40ppb LCM (s trobe formation Dressed shaker andstone with c inhibited indic cations of dela	Continued to treated active with 0 d premix to maintain properties sized calcium carbonate) to active Initial seepage losses 30bbl/hr. is # 2,3 and 4 with 280 mesh. Discasional coal stringers. Cutting ating adequate hole cleaning are ayed cuttings transportation to subtine 10 more abnormal increasing trees.	And make up bit. Install sleeved AB-8 tool. P/up Bat sonic tool & and change out saver sub. It aystone formations. In g mud with 4ppb BARABLOK reep, brought up additional amount on stand-by. It took weight at 1,619 m (40 klt RIH to 1,806 m. Took weight (20 processes) It on stand-by. It took weight at 1,619 m (40 klt RIH to 1,806 m. Took weight (20 processes) It on stand-by. It took weight at 1,619 m (40 klt RIH to 1,806 m. Took weight (20 processes) It is to 1,806 m. Took weight (20 processes) It is to 2 ppb EZ-MUD the active seens and dilution of the active seens and dilution of the active seens and before the active as losses approposes 30bbl/hr, down to 7-10 bith 280 mesh. Drilling through the tringers. Cuttings are generally ole cleaning and KCI content. The apportation to surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Increasing trend in torque observed to active as losses approposes and the surface (10% Incr	
For Report	# 018	On	02/29/2	800	Operation at De	pth	2,286.0 m		
Rig Activity					hour. 40 klbs over viscosity sweep. unplugged.Pump drilling to 2,286 at Treatments and Cuttings still general delayed cuttings at shakers. Incre	erpull at 2,242 r Drilled to 2,263 ed 10 bbls 1.9 at midnight. Observations (or erally consolidat transport to su ased Mud Wei	1/4" hole to 2,286 m at midnighm and reamed through tight spo 3 m. Flowline plugged with coal. ppg pill at 2,277 m and circulate cont'd) ated and inhibited. As per yester face. Continued presence of la ght to 10.0 ppg at midnight to acred or time dependent cavings)	t. Pumped 40 bl Stopped drilling ed out. Continue rday marginal si rge coal peices ddress signs of	ol high g and ed gns of seen

Australia Bass Strait Wasabi - 1 Vic-58P Victoria

Baroid Fluid Services

Page 6 of 8 Printed: 03/26/2008

Well Name Operator Contractor Rig No Unit System Wasabi - 1 Apache Seadrill West Triton Apache

Interval		02		From Date	010	Top of Interval	862.0	m			
Max. Hole Siz	e / Bit Size	16.000 / 16.000	0 in	To Date	026	Bottom of Interval	2,313.0	m			
Activity				Drilling							
Fluid Treatme	nt			Cut back creeping ppb Pac L to mainta Pumped 50 bbl 1.1 observed at shaker stringers.	620.8bbls. d active with mud weight ain fluid los 3 sg Hivis (s. Predomi	t with additions of drill water and swith dilution. Vis 100+ seconds) with margina nantly drilling through sand with	I premix. Added 0 al increase in cutt coal and quartz	ings			
For Report	# 019	On 03/	01/2008	Operation at Dept	h	2,313.0 m					
Rig Activity				Continued drilling ahead to 2,313 m as per DD instructions. Low ROP of 1-10 m/hou Circulated hole clean. Flowcheck and POOH wet. Backreamed at 3ft/min for logging from 2,270 m to 2,210 m. COntinued POOH wet from 2,210 m to 2,186 m. Tight spot 30-40k drag up. Backreamed 2,186 m to 2,041 m. Pumped 10 bbl hivis/weight pill at continued to backreamfrom 2,041 m to 1,980 m. Tight spots at 2,186 m, 2,182 m, 2,177 m, 2,148 m and 2,115 m. Backreamed and logged at 7' minute from 1,980 m to 1,780 m. Pumped slug. POOH and racked back BHA. Prepare to wireline log. Wire Line logs Added 2 ppb Barablock to active system. Ran Gumbo catcher. Dumped sandtrap. Pumped 1.9 SG pill at 2,300 m with considerable amount of additional cuttings observed at shakers (>100%)							
Activity				Wire Line logs							
Fluid Treatme	nt			Pumped 1.9 SG pill	at 2,300 n	Abbls 20.8bbls. active with 0.3 ppb EZ-MUD and Caustic Potash. ud weight with additions of drill water and premix. Added 0.75 in fluid loss with dilution. sg Hivis (Vis 100+ seconds) with marginal increase in cuttings Predominantly drilling through sand with coal and quartz 6.G sweep at 2,227 m. Marginal increase in cuttings observed at 2,313.0 m ead to 2,313 m as per DD instructions. Low ROP of 1-10 m/hour. i. Flowcheck and POOH wet. Backreamed at 3ff/min for logging 0 m. Continued POOH wet from 2,210 m to 2,186 m. Tight spot creamed 2,186 m to 2,041 m. Pumped 10 bbl hivis/weight pill and mfrom 2,041 m to 1,980 m. Tight spots at 2,186 m, 2,182 m, dd 2,115 m. ged at 7' minute from 1,980 m to 1,780 m. Pumped slug. POOH A. Prepare to wireline log. ck to active system. Ran Gumbo catcher. Dumped sandtrap. at 2,300 m with considerable amount of additional cuttings (>100%) 2,313.0 m reger wireline. RIH to 1,393 m and tool hung up. POOH and surface. Broke out and laid out toolstring. Rigged up new ex logging tool. Unable to pass 1,390 m. Logged out of hole. icked up BHA and RIH. Made up R.A source and RIH to 0.3 bbls 13.4 bbbls. b Barazan-D high viscosity sweep. 2,313.0 m this spots at 1,380 - 1,384 m. and 1,394 to 1,396 m. Tight spot at with 100k overpull. Pumped 30 bbls high viscosity weighted piull is up. (Large amount of coal seen at surface) Continued to RIH ed to 2,309 m. 4m of fill. Washed to 2,313 m.Pumped 15 bbl 9 s.g. Logged out of hole to 1,740 m. Pumped 1.9 s.g weighted lout. Flow check and POOH wet to 1,440 m. Pumped and H to 1,057 m at midnight.					
For Report	# 020	On 03/	02/2008	Operation at Dept	h	2,313.0 m					
Rig Activity Activity				logged on the way toolstring. RIH with	o surface. Pex loggin	Broke out and laid out toolstring g tool. Unable to pass 1,390 m.	 Rigged up new Logged out of ho 				
Fluid Treatme	nt			New mud built:	0.3 bbls	<u>, </u>					
Tidia Treatifie				Total mud built: 4,	713.4 bbbl	S.					
F D	" 004	0	00/0000								
For Report Rig Activity	# 021	On 03/	03/2008	Operation at Dept		· ·	1 306 m Tight	enot at			
ray Activity				1,850 m. Freed pip and circulated botto to 2,309 m and was weighted sweep at sweep and circulate	e with 100k oms up. (Lashed to 2,3 1.9 s.g. Lo ed out. Flov	overpull. Pumped 30 bbls high arge amount of coal seen at surf 09 m. 4m of fill. Washed to 2,31 gged out of hole to 1,740 m. Pu w check and POOH wet to 1,440	viscosity weighte ace) Continued to 3 m.Pumped 15 l mped 1.9 s.g wei	ed piull o RIH obbl ghted			
Activity				Tripping	•						
Fluid Treatme	nt			New Mud Built: Total Mud Built: 4,	26.1 bbls 739.5 bbls						
				,		• •	,				
				Hi-weight sweeps h	ought hack	k 10-50% increase in coal caving	ne to curface				

Australia Bass Strait Wasabi - 1 Vic-58P Victoria **Baroid Fluid Services**

Page 7 of 8 Printed: 03/26/2008

Well Name Operator Contractor Rig No Unit System Wasabi - 1 Apache Seadrill West Triton Apache

Interval		02			From Date	010	Top of Interval	862.0	m			
Max. Hole Size	e / Bit Size	16.000 /	16.000	in	To Date	026	Bottom of Interval	2,313.0	m			
For Report	# 022	On	03/04/2	800	Operation at Dept	h	2,313.0 m					
Rig Activity					Continued to pull of wireline. RIH to 1,4 to pass 1,500 m. P	99 m - Hur	ng Up. POOH and laid out. RIH (chlumberger MD CST on wireline.	T Unable			
Activity					Wire Line logs							
Fluid Treatmen	t				Continued to prepa	re 800 bbl	s 15% KCl brine for next well.					
For Report	# 023	On	03/05/2	800	Operation at Dept	h	2,313.0 m					
Rig Activity					to 1,927 m. Tight sp to 2,310 m. Made u Installed VSI toolstr program. POOH wi	oot. Made ip top drive ring and TI	up top drive and washed to 1,95 and circulated hole clean. at 1,	7 m. Continued to 100 gpm. erform log as per	RIH			
Activity					Wire Line logs							
Fluid Treatmen	t				Viscosified mud in program. Transferred 800 bb			Plug and Abando	n			
For Report	# 024	On	03/06/2	800	Operation at Dept	h	2,313.0 m					
Rig Activity					Rigged up per cem circulated 2 x DP vi 2nd plug cement jo volume. POOH to s	ent job and olume and b as per pr surface . La	d cemented first plug. POOH to spotted 202 bbls hi-vis pill. POC rogram. POOH to 737 m. Revers	1,150 m. Reverse OH to 887 m. Perf se circulated 2 x I	ormed OP			
Activity					Plug and abandon							
Fluid Treatmen	t				No cement seen at Pumped out mud fr Treated 1200 bbls, storage.	surface whom sand to KCL / Poly	hile reversing @ 767m. raps, dump and clean same. ymer mud, with 0.375ppb Aldaci	de G prior to boa				
For Report	# 025	On	03/07/2	800	Operation at Dept	h	2,313.0 m					
Rig Activity					Cut casing, nipple of Prepare for rig mov Mud engineers sen	e, to Coela						
Activity					Rig up and rig dow							
Fluid Treatmen	t				Backload 1100bbls Dump and clean pit		KCL Polymer mud. To be used o	on Coelacanth 1.				
For Report	# 026	On	03/08/2	800	Operation at Dept		2,313.0 m	d down BHA. Rigged up Schlumberger MDT POOH and laid out. RIH CST on wireline. Unal midnight. KCI brine for next well. 313.0 m o surface. Made up x-over BHA on 5.5" DP. RIF of drive and washed to 1,957 m. Continued to RIF circulated hole clean. at 1,100 gpm. RIH VSI toolstring and perform log as per own Schlumberger wireline. n of Barazan-D for use in Plug and Abandon essel. 313.0 m Rug. POOH to 1,330 m. Spotted 30 bbl hi-vis pill ented first plug. POOH to 1,150 m. Reverse ed 202 bbls hi-vis pill. POOH to 887 m. Perform. POOH to 737 m. Reverse circulated 2 x DP (x-Overs. RIH with OEDP. Pumped 3rd cement aced to seawater. atted mud, while reverse circulating @1150m. versing @ 767m. dump and clean same. nud, with 0.375ppb Aldacide G prior to boat used to build Brine for Coelacanth-1) 313.0 m ieve well head. 1-1.				
Rig Activity					Continued to rig do Rig released 1600		igged down BHA. Rigged up Schlumberger MDT Up. POOH and laid out. RIH CST on wireline. Unal e at midnight. 2,313.0 m ine to surface. Made up x-over BHA on 5.5" DP. RIF to top drive and washed to 1,957 m. Continued to RIF and circulated hole clean. at 1,100 gpm. V/V. RIH VSI toolstring and perform log as per ed down Schlumberger wireline. dition of Barazan-D for use in Plug and Abandon to vessel. 2,313.0 m obl slug. POOH to 1,330 m. Spotted 30 bbl hi-vis pill cemented first plug. POOH to 1,150 m. Reverse potted 202 bbls hi-vis pill. POOH to 887 m. Perform gram. POOH to 737 m. Reverse circulated 2 x DP drout X-Overs. RIH with OEDP. Pumped 3rd cement displaced to seawater. aminated mud, while reverse circulating @1150m. le reversing @ 767m. ps, dump and clean same. ner mud, with 0.375ppb Aldacide G prior to boat BB, used to build Brine for Coelacanth-1) 2,313.0 m retrieve well head. anth-1. nove. CL Polymer mud. To be used on Coelacanth 1.					
Activity					rig released							

Australia Bass Strait Wasabi - 1 Vic-58P Victoria **Baroid Fluid Services**

Page 8 of 8 Printed: 03/26/2008

Well Name Wasabi - 1
Operator Apache
Contractor Seadrill
Rig No West Triton
Unit System Apache

Deviation Actual

Survey Date	MD m	TVD m	Angle	Direction	Horiz Displ. m
02/24/2008	202	202	0.09	130.7	
02/24/2008	760	760	0.78	172.1	
02/24/2008	1,181	1,181	0.38	233.5	
02/24/2008	1,358	1,357	9.08	335.2	11.9
02/24/2008	1,506	1,500	21.46	336.9	48.6

Australia

Wasabi - 1 Vic-58P Victoria **Baroid Fluid Services**

Page 1 of 1 Printed: 26/03/2008

Baroid Fluid Services

Company Apache
Well Name Wasabi - 1
Contractor Seadrill
Rig No West Triton
Unit System Apache

Bit Record Report

Run No	Bit No	Bit Size	Bit Manufacturer	Bit Type	Bit Style	IADC Code	Serial Number	Jet or TFA	Depth Out	Run Length	ROP	WOB	Bit	Pump Press	Pump OutPut	Fluid Type	Fluid Weight	Hole Angle	Bit Grading	Reason Pulled
		in						sq-in	m	m	m/hr	lb	RPM	psi	gpm		SG			
4	4	12.250	SMITH	Mi616VBPX	FC		SCC985	6x18	1,797.0	935.0	19.8	15,000.0	172	2,800.0	1,100	KCI/Polymer	1.150	32	2-6-CT-S-X- I-RO-BHA	BHA - Change BHA
5	5	12.250	SMITH	Mi616VBPX	FC		SCC991	9x14	1,900.0	103.0	12.2	10,000.0	172	3,200.0	1,100	KCI/Polymer	1.150	32	2-4-CT-T-X- I-WT-BHA	BHA - Change BHA

Australia Wasabi - 1 Vic-58P Baroid Fluid Services Victoria

Page 1 of 1 Printed: 26/03/2008

DAILY MUD REPORTS

Daily Dr	ily Dr	illi	ng Flu	Report For		. 0-1					Date Spud Date	02/14/200 Well Name)	Depth Rig Activity	Rig ı	66.0 m up	1
				Bill Opensh Report For	naw/Stefar	Schmidt						Wasabi - Rig Name	7	Unit System	1		
				Carlos Car	vajal							West Trite		Apache			
		State/Province Victoria	e/Region			Geograph Bass Stra		County				Field or BI Wasabi -	ock 1 Vic-58P				
it Information				g (in) / (m)		in (Casing					Circ	ulation/Hydı				
	in		OD	ID	Length	OD	Set	MD	Mod	del e in			4-P-220 .500	Nat 14-F 6.50		Nat 14-F 6.50	
									Stro	kes i	n	14	4.000	14.00	00	14.00	00
	sq-in m/sec								Eff(97 .139	97 0.13		97 0.13	
orce	lbf								SPI				0	0.13	.5	0.13	, ,
. ⊕ Dit	hhp/in2									n bbl/r al GP			AV. Riser		Circ Pres	e nei	
pp @ Bit	psi m								Tota	al Circ	Time		AV, Risei AV min DP		Tot Pres		
sg Shoe	SG									Time			AV max DC		Press Dre Press Dre		
it Properties	SG	1	2		3	4		Ta	rgets	al Stro		gram	BU Strokes		reatment		
													Fluid Type				
m								-	+				Engineering Engineer #1	•	2 Eab = 1	13 days	
Deg C													Engineer #1 Engineer #2				
Deg C SG C sec/qt									-							•	
C cP													Received bu				
lbs/100 ft2 lbs/100 ft2							-		-				Preparing un progress. Al				
100/100/10													sg displacer				
							-						Pit 2 & 3: ch		, ,		al
ml/30 min													hardness = contamination			•	
eg C ml/30 min													Contamination	511 WILLI 05-0	JO 70 SCAV	vater.	
THP 32nd in % by Vol																	
er % by Vol														Dia	Δ ctivity.		
% by vol ppb Eq.													Jack down r		Activity ir gap. Ja	ick up to 4	16 ft.
С													Skid rig 15 f	-			
Pm Pf/Mf								-	+-				operation. C				
mg/l													location. Ins Commence				
ess mg/l % by Vol								-	+-				lines and flo				
ppb													DP and rack	c up same.		•	
SG								-	-								
Properties																	
Product Name		Jnits	Ctort	Rec	llog d	End		ost			ę,	lide Cont	rol Equipme	ant .		Tim	ΙΑ
Fluids Engineer		day(s)	Start	Rec	Used 13		0.4.0	ost 3,250.0	0		Shaker	nus Cont	Scre		Hrs	Drilling	
iids Engineer 2		day(s)			2			2,500.0	0 VSM							Circulating	9
G	1	25 I can 000 kg bulk		32 103.000		32 103.000				1-300 1-300						Trips Rig	
		000 kg bulk		52.000		52.000				1-300					;	Surveys	
da 6		25 kg pail 200 kg bag		140 17		140 17			-							Fishing Run Casin	20
16		20 kg bag		45		45									(Coring	15
hydrovida		25 kg bag		300		300			_	1,,,,,,,,,	ovolone	Cana	Cor-	one		Reaming Testing	
hydroxide		25 kg bag		168		168				1 yaro 1600	cyclone	Cones 16 4	Scre	CIIS		Logging	
											00 Degasser				l l	Dir Work	
									\dashv							Repair Other	24.0
										Cent	rifuge	Speed	Feed	Rate	Hrs	Total	24.0
												<u></u>				Rotating ROP	
									1							ROP Dil Rate	0.00
									Flui		lume Brea		A 1				
									Ann	Ac Iulus	tive	bbl	Additions Base	bbl	Loss Fluid Dur		bbl
									Pipe	е Сар			Drill Water		Transferr		
										ve Pit al Hol			Dewatering Sea Water		SCE Evaporat	ion	
										ai Hoi al Circ			Whole Mud		Evaporat Trips	1011	
									Res	erve			Barite		Other	foor	
										v Vol Char	nae		Chemicals Other		Total Sur Downhol		
										al Vol			Total	-	Total Los	ses	
cts Cost		\$0.00	Total Dai	ly Cost			¢10	3,750.0	0	I	Fluid Type	es	Vol bbl		riation In	formation	
Products Cost		\$0.00	Total Cur	mulative Co				3,750.0 3,750.0						Survey TVI			m m
esentatives	Mike Fle	exmore		James Mui	nford	61.00	0504	7555	7					Angle			Deg
90 Talinga se c/o of Esso					Telephone Telephone		<u>-9581-7</u> 6-881-		+					Direction Horiz Displ	ı.		m

Baroid Fluid Services

Report No 001

	Da	ily Drilli	ng Flu	uid Rer	oort						Date Spud Date	02/14/200	02/13/2008 ns	Depth Rig Activity		1 0.68	m
or		,		Report For		0-1						Well Name)	<u> </u>	KI	g up	
tor				Bill Opensi Report For	naw/Stefar	n Schmidt						Wasabi - Rig Name	7	Unit Syster	m		
		Ctata/Duavina	/Di	Carlos Car	vajal	l C		10 a				West Trite		Apache			
y lia		State/Province Victoria				Geograph Bass Str	ait						1 Vic-58P				
Bit Information	in		Orill String	g (in) / (m) ID		in	Casing Set	y m MD	Mode	اد			ulation/Hydi 4-P-220	raulics Da Nat 14-		Nat 14-	_D_220
Type	III		OD	טו	Length	OD	Set	טועו	Bore			6	5.500	6.5	00	6.5	00
	sq-in								Strok Eff(%		n	14	4.000 97	14.0 97		14.0 9	
elocity	m/sec								bbl/st	trk		0	.139	0.1	39	0.1	39
oact Force SI	lbf hhp/in2								SPM gpm		min		0 I	0	l	0)
Drop @ Bit	psi								Total	GPI	М	II.	AV, Riser		Circ Pro		
epth @ Csg Shoe	m SG								BU T		Time , min		AV min DP AV max DC		Tot Pre Press D	s Loss Drop DP	
@ Bit	SG	1	2		2	4		T	Total		okes	aram	BU Strokes	Eluid 1	Press [
Properties		1			3	4		18	rgets		Proj	gram	Fluid Type	Fluid	Seawa		
													Continue mi	•			
m Deg C								_	+				1500 bbls 1 progress. Po	• .			
y @ Deg C SG													63-65% sea				eu witii
Deg C sec/qt Deg C cP													drillwater ta				
lbs/100 ft2													chemicals fr preparation		_		
00													Propulation		,uu U	.551. 101 16	port.
00									+				1				
ilt ml/30 min								\Rightarrow]				
P @ Deg C ml/30 min API/HTHP 32nd in								+	+	_			1				
Solid % by Vol)				
/Water % by Vol									+					Rig	Activity		
ppb Eq.													Cont. to picl	•			
D Deg C Mud Pm								_	+				fault finding electrical sy				
Filt Pf/Mf rides mg/l													"c" motor ar				
Hardness mg/l													picking up D				
S/HGS % by Vol S/HGS ppb								-	+				Troubleshood diverter runi				
S SG													RIH latch or	-			Ū
itional Properties									+								
								\Rightarrow	\blacksquare]				
Product Name		Jnits	Start	Rec	Used	End		Cost			Sc	olids Cont	rol Equipme	ent		Tin	ne
ng Fluids Engineer 2		day(s)		.100	1		\$	1,250.0			Shaker	JUIIL	Scre		Hrs	Drilling	
ng Fluids Engineer onite	1	day(s) 000 kg bulk	52 000		32.000				0 VSM-3 6 VSM-3							Circulatin Trips	ng
tic soda	<u> </u>	25 kg pail	140		12	128			8 VSM-3	300						Rig	
ACIDE G AZAN D PLUS		25 I can 25 kg bag	32	80		32 80			VSM-3	300						Surveys Fishing	
е		000 kg bulk	103.000	30		103.000			1							Run Casi	inç
al 60/16		1200 kg bag 20 kg bag	17 45			17 45			-							Coring Reaming	.
i-L		25 kg bag	300			300					cyclone	Cones	Scre	ens	Hrs	Testing	
ssium hydroxide		25 kg bag	168			168			ATL-1 Vacu-F		00 Degasser	16 4 0 0				Logging Dir Work	
												0 0				Repair	
							-		(Cent	rifuge	Speed	Feed	Rate	Hrs	Other Total	24. 24.
																Rotating	- "
									\dashv							ROP Dil Rate	0.0
									Fluid		lume Brea			Seawater			
									Annu		tive	bbl	Additions Base	bbl	Lo Fluid D	sses	bbl
									Pipe	Сар			Drill Water		Transfe		
									Activ Total				Dewatering Sea Water		SCE Evapor	ation	
									Total	Circ			Whole Mud	480.0	Trips	-uo11	
									Rese Prev			480.0	Barite Chemicals		Other Total S	urface	
									Net C	Chan	ige		Other		Downh	ole	
									Total		- -luid Type		Total Vol bbl		Total L	osses Informatio	n
Products Cost		\$16,366.44	Total Dai	ly Cost					4 Spud					Survey MI	D	ormano	m
lative Products Cost I Representatives	Mike Fle	\$16,366.44 exmore		nulative Co James Mu			\$3	7,616.4	4					Survey T\ Angle	/D		m Deg
e 90 Talinga	Rd Mell	oourne		-aoo iviu	Telephon		-9581-		1					Direction			
rehouse c/o of Ess	o Austral	ıa Ltd			Telephon	e 61-3-	56-881	-445						Horiz Disp	ol.		m

Baroid Fluid Services

Report No 002

Baroid Flu	.iu 36	vice											Date		02/14/2008	Report N Depth	0	003 69.0 m	1
		Da	ily Drilli	ng Flu	uid Rep	ort							Spud Date	02/14/20		Rig Activit		26" Hole	
Operator Apache					Report For Bill Opensi	aaw/Stofar	. Schmidt							Well Name Wasabi -	Э				
Contractor					Report For		1 Ochimiat							Rig Name		Unit Syste	m		
Seadrill Country			State/Province	ce/Region	Carlos Car	vajal	Geograph	ic Area	ı/Cou	nty				West Trit Field or B		Apache			
Australia Rit Info	ormation		Victoria	rill Strine	g (in) / (m)		Bass Stra	ait Casing	n m		I				1 Vic-58P	raulics Da	ıta		
Bit Size	26.000			OD	İD	Length		Set		1D	Mode			Nat 1	14-P-220	Nat 14	-P-220	Nat 14-F	
Make/Type Jets	DBS/Ro 4x1		Drill Pipe Drill Collar	5.000 8.250	3.000 2.750	7.3 28.3					Bore Strok	e in kes ii	n		3.500 4.000	6.5 14.0		6.50 14.00	
TFA Jets Velocity	0.994 49.4	sq-in m/sec	Drill Collar	9.500	3.000	33.4					Eff(%				97).139	9 0.1		97 0.13	
Jet Impact Force	10.1	lbf									SPM	1	!		43	4	3	0	,,,
Bit HHSI Press Drop @ Bit		hhp/in2 psi									Tota	bbl/r GPI	М	503	5.99 AV, Riser		5.99 Circ Pro		
Bit Depth ECD @ Csg Shoe	69.0	m SG	Open Hole	26.000		3.2							Time , min		AV min DP AV max DC		Tot Pre		
ECD @ Bit Propertion		SG	1	2		3	4			Tar	Tota gets	l Stro		2,999 gram	BU Strokes		Press [
Source			Pit # 1	Pit #	2	<u> </u>	-			I all	geta		1105	Ji aiii	Fluid Type		Seawa	ter	
Time Depth	m	<i>'</i>	15:00 0	15:2											Prepared 19 bentonite. T				
FL Temp Density @ Deg C	Deg C SG	1.06	60 @ 20	1.030 (ര 20					Х			1.031	1.160	back to 20 p	opb PHB &	caustic	added for p	
FV @ Deg C	sec/qt	30	0 @ 20	60 @	20				Х				100		Resultant v				added
PV @ Deg C YP	cP lbs/100 ft2		5 @ 20 103	15 @ 28											at 1.15 ppb	to promote	e rheolog	y and barite	е
GELS 600/300	lbs/100 ft2		110/113 .0/118.0	10/17 58.0/4					Х	*			40/40/-		suspension of displacer				
200/100 6/3			.0/105.0 .0/77.0	36.0/2 15.0/											using 78 pp	b barite. M	lud chec	k #1 = 40 pp	pb PH
API Filt	ml/30 min	01	.0/11.0	10.0/	10.0										in clean dril spud mud ir				
HTHP @ Deg C Cake API/HTHP	ml/30 min 32nd in														adding 1.1				
Corr Solid NAP/Water	% by Vol % by Vol	-	4.0 /95.8	2. <i>^</i>											23:00				
Sand MBT	% by vol														Diok up 9 re		Activity		uuin
pH @ Deg C	ppb Eq.	9.2	0 @ 20	9.20 @	20								9.00	10.00	Pick up & ra prepared 20				
ALK Mud ALK Filt	Pm Pf/Mf														handling eq	juipment, ii	nstall cso	bushing. S	Set 20"
Chlorides Tot. Hardness	mg/l mg/l														wellhead in new saver s			•	
LGS/HGS	% by Vol		.0/0.0 39/-0.45	2.1/0 18.73/											26" BHA, 9 works, mov				
LGS/HGS ASG	ppb SG		2.588	2.60											sea @ 38.8				
															@ 500 gpm	and drill 2	:6" hole f	rom 66m to	69m.
Additional Proper	rties																		
															1				
5 1 (1)															1			T =:	
Product No. 10 Drilling Fluids Engi			Jnits day(s)	Start	Rec	Used 1	End		Cost 1,25	0.00			Shaker	olias Cont	trol Equipme Scre		Hrs	Tim Drilling	0.
Drilling Fluids Engi barite	ineer	1	day(s) 000 kg bulk			21.500					VSM-							Circulating Trips	3.
BARAZAN D PLUS	3		25 kg bag	80		60	20		9,13	4.40	VSM-	300						Rig	0.
caustic soda ALDACIDE G			25 kg pail 25 l can	128 32		10	32		\$44	1.90	VSM-	300						Surveys Fishing	
BARA-DEFOAM W bentonite	V300	1	5 gal can 000 kg bulk		8		20.000											Run Casin Coring	ารู
calcium chloride fla	ake 77%		25 kg bag 1200 kg bag	17	10		10 17				L	vdro	cyclone	Conso	Scre	ono	Lira	Reaming Testing	
Circal 60/16 citric acid			25 kg bag		40		40				ATL-1	1600		Cones 16 4	3016	C115	Hrs	Logging	
CLAYSEAL PLUS guar gum		2	216 kg drum 25 kg bag		16 36		16 36				Vacu-l	Flo 12	00 Degasser	00				Dir Work Repair	
lime PAC-L			20 kg bag 25 kg bag	45 300			45 300				<u> </u>	Cont	rifuge	Speed	Feed	Data	Hrs	Other Total	20. 24.
potassium hydroxid	de		25 kg bag 25 kg bag	168			168					Cent	illuge	Speed	i eeu	rate	1115	Rotating	0.
																		ROP Dil Rate	6. 0.0
											Fluid		lume Brea	kdown bbl	Additions	Seawate bbl		sses	bbl
											Annı	ulus		-4.0	Base	DDI	Fluid D	umped	DDI
												Cap e Pit			Drill Water Dewatering		Transfe SCE	erred	-52.
											Tota Tota				Sea Water Whole Mud		Evapor Trips	ation	
											Rese	erve	-		Barite		Other		
											Prev Net (Chan	ige		Chemicals Other		Total S Downh		
											Tota		-luid Type	417.9	Total Vol bbl	De	Total L	osses Information	-52.
Daily Products Cos			\$19,786.22 \$36,152.66			ot					Spuc					Survey M	D		m
Cumulative Product Baroid Representa	atives	Mike Flo		rotal Cu	Mulative Co James Mul	nford	1			2.66	l					Survey T	νD		m Deg
Office Warehouse	90 Talinga					Telephon Telephon					ł					Direction Horiz Dis	pl.		m
																-			

Baroid Flu	uid Se	rvice	s								Date		02/15/2008	Report No	0	004 157.0 m	ı
		Da	ily Drilli	ng Flւ	uid Rep	ort					Spud Date	02/14/20	08	Rig Activity	y Dril	ling	
Operator Apache					Report For Bill Opens	naw/Paul (Gallagher					Well Name Wasabi -					
Contractor					Report For Carlos Car		zaag.ro.					Rig Name West Trit		Unit Syster Apache	n		
Seadrill Country			State/Province		Carlos Car	vajai		ic Area/Cou	ınty			Field or Bl	lock	Араспе			
	ormation		Victoria	rill String	g (in) / (m)		Bass Stra	ait Casing m				Circ	1 Vic-58P ulation/Hyd	raulics Da	ta		
Bit Size Make/Type Jets TFA Jets Velocity Jet Impact Force Bit HHSI Press Drop @ Bit		ock Bit 1x16	Drill Pipe Drill Collar Drill Collar	5.500 8.250 9.500	4.670 2.750 3.000	27.1 94.5 35.4		Set M	ИD_	Model Bore in Strokes Eff(%) bbl/strk SPM gpm bb Total Gi	in I/min	6 14 0 398	6.500 4.000 97 0.139 68 9.48 AV, Riser	Nat 14- 6.5 14.0 97 0.1: 68 398	00 000 7 39	Nat 14-F 6.50 14.00 97 0.13 68 398 9.	0 00 9
Bit Depth ECD @ Csg Shoe ECD @ Bit	157.0		Open Hole Open Hole	27.000 16.000		69.2 22.0				Total Ci BU Tim Total St	irc Time e , min trokes	21 5 4,286	AV min DP AV max DC BU Strokes	53.8 1,092	Tot Pres Press D Press D	rop DP rop An	
Propertie Source	es	F	1 Pit # 1	2 Pit #		3	4		Tar	gets	Pro	gram	Fluid Type	Fluid T	reatmer Seawat		
Time Depth FL Temp Density @ Deg C FV @ Deg C PV @ Deg C YP GELS 600/300 200/100 6/3 API Filt HTHP @ Deg C Cake API/HTHP Corr Solid NAP/Water Sand MBT pH @ Deg C ALK Mud ALK Filt Chlorides Tot. Hardness LGS/HGS LGS/HGS ASG	m Deg C SG sec/qt cP lbs/100 ft2 lbs/100 ft2 lbs/100 ft2 ml/30 min ml/30 min 32nd in % by Vol % by vol ppb Eq. Pm Pf/Mf mg/l mg/l mg/l sG	1.00 277 15 800 133 113 81 - 9.4	20:00 135 50 @ 20 0 @ 20 5 @ 20 103 190/110 .0/118.0 .0/106.0 .0/75.0 3.7 /96.0 0 @ 20 1,200 .7/0.1 32/0.78 2.623	20:2 138 1.060 (180 @ 15 @ 48/57 112.0/4 76.0/6 48.0/3 3.7 -/96. 9.40 @ 1,10 3.7/0 33.36/4 2.62	20 20 20 20 20 20 20 20 20 20 20 20 20 2			X	X *		1.031 100 40/40/-		New Mud Bi Total Mud B Total Mud B Drilled 26" u as required. to 150 bbls. Drill 16" hols sweeps. Building hi-N Bentonite as Cont. to drill 75bbls swee froze with al Troubleshod reaching se Hi-Vis mud. up 16" BHA seabed at 6 wellbore. Ro and wash at 16" hole froi vis sweeps	Riggl 26" hole for poor to same. Cotion TD. Co. Calibrate 6m. Made ov went dond tag botte.	Activity Tom 69m program D "B" mo ont. drill bisplace I d lay out draw wo several a bwn to loo 0 (137m pt	to 91m purme. Cyber sotor drive fafrom 91m to hole with 15 26" BHA. Mrks and Rillattempts to cate wellbooks.	mping screer screer sult. o 135r 60 bbl Make 4.1. Tag enter re. RIH drilling
Product Na	ame		Jnits	Stort	Rec	Hood	End	Cost			80	olide Cont	rol Equipme	ant		Time	Δ
Drilling Fluids Engi Drilling Fluids Engi bentonite caustic soda ALDACIDE G BARA-DEFOAM W BARAZAN D PLUS barite calcium chloride fla Circal 60/16	ineer 2 ineer /300	1	day(s) day(s) 000 kg bulk 25 kg pail 25 l can 5 gal can 25 kg bag 000 kg bulk 25 kg bag	20.000 118 32 8 20 81.500		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.000 114 32 8 20 81.500 10	\$1,25 \$1,25 \$4,94 \$17	50.00 50.00 18.80	VSM-300 VSM-300 VSM-300 VSM-300	Shaker	Cones	Scre	ens	Hrs	Drilling Circulating Trips Rig Surveys Fishing Run Casin Coring Reaming Testing	6.0 6.8
Circal Y citric acid CLAYSEAL PLUS guar gum lime PAC-L potassium hydroxic sodium bicarbonate			1200 kg bag 25 kg bag 216 kg drum 25 kg bag 20 kg bag 25 kg bag 25 kg bag 25 kg bag	16 36 45 300 168	35		11 40 16 36 45 300 168 35			Cei	1200 Degasser ntrifuge	Speed	Feed		Hrs	Logging Dir Work Repair Other Total Rotating ROP Dil Rate	1.0 10.0 24.0 6.9 14.7
										Annulus Pipe Ca Active F Total Ho Total Ci Reserve Prev Vo Net Cha	ap Pits ole irc e ol	bbl 152.1 5.2 440.0 157.3 597.3 417.9 173.7	Additions Base Drill Water Dewatering Sea Water Whole Mud Barite Chemicals Other	bbl 1055.5	Fluid Du Transfe SCE Evapora Trips Other Total Su Downho	rred ation urface ble	-881.8
										Total Vo	Fluid Type		Total Vol bbl		Total Loviation I	osses nformation	-881.8 1
Daily Products Cos Cumulative Product Baroid Representa Office	cts Cost	Rd Mell		Total Cur		nford Telephon		\$67,52 -9581-755	28.22 5	Spud M			3065.0		D /D		m m Deg
Warehouse	U/U UI ESS	o Austidi	ια Lιü			Telephon	e 61-3-5	56-881-44)					I IUIIZ DIS	л.		m

Baroid Flu	aiu b ei	vice									Ţ	Date		02/16/2008	Report No Depth	0	005 845.0	m_
		Da	ily Drilli	ng Flu	ıid Rep	ort						Spud Date	02/14/20		Rig Activity		lling	
Operator Apache					Report For Bill Opensl	naw/Paul G	Sallanher						Well Name Wasabi -	9			<u> </u>	
Contractor					Report For		Janagrici						Rig Name		Unit System	m		
Seadrill Country			State/Province		Carlos Car		Geographi		ounty				West Trit	lock	Apache			
Australia Bit Info	ormation		Victoria D	rill String	ı (in) / (m)		Bass Stra	ait Casing n	1					1 Vic-58P ulation/Hyd	raulics Da	ta		
Bit Size Make/Type Jets TFA Jets Velocity	16.000 DBS/Ro 3x28 1 2.000 53.9	ock Bit lx16 sq-in m/sec	Drill Pipe Drill Collar Drill Collar	OD 5.500 8.250 9.500	ID 4.670 2.750 3.000	Length 715.1 94.5 35.4			MD	Mode Bore Strok Eff(% bbl/st	in es in	l	6 1	14-P-220 3.500 4.000 97 0.139	Nat 14- 6.5 14.0 97 0.1	00 000 7 39	6.5 14. 9 0.1	
Jet Impact Force Bit HHSI Press Drop @ Bit Bit Depth	845.0	lbf hhp/in2 psi m	Open Hole	27.000		69.2				SPM gpm Total Total	GPN		1,106	63 8.78 AV, Riser AV min DP	11.8	8.78 Circ Pre Tot Pre	369 ess psi s Loss	3 8.78
ECD @ Csg Shoe ECD @ Bit		SG SG	Open Hole	16.000		710.0				BU T Total				AV max DC BU Strokes		Press D		
Propertie Source	es		1 Pit # 1	2 Pit #		3	4		Tai	gets		Prog	gram	Fluid Type	Fluid 1	reatme Seawat		
Time Depth Depth FL Temp Density @ Deg C FV @ Deg C PV @ Deg C YP GELS 600/300 200/100 6/3 API Filt HTHP @ Deg C Cake API/HTHP Corr Solid NAP/Water Sand MBT ph @ Deg C ALK Mud ALK Filt Chlorides Tot. Hardness LGS/HGS ASG	m Deg C SG sec/qt cP Ibs/100 ft2 Ibs/100 ft2 Ibs/100 min 32nd in % by Vol % by Vol pb Eq. Pm Pf/Mf mg/I mg/I % by Vol ppb SG	1.00 12:66 65:100 90 60 9.0 0.0 2	0:00 500 60 @ 20 4 @ 20 @ 20 88 88 1/80/90 1.0/94.0 1.0/95.0 13.0 3/- 3.7 13.0 0 @ 20 0.90 0	23:0 855 1.060 (6 120 (2) 86 48/63, 110.0/5 81.0/6 49.0/4 13.0 3/- 3.7 -/96. 9.20 (2) 0.05/0 2,00 3.6/0 3.01/6 2.61	0 20 20 20 20 78 98.0 9.0 1.0 0 0 .40 0 .0 .0			>> >> >> >> >> >> >> >> >> >> >> >> >>	X X			1.031 100 40/40/-		New Mud B Total Mud B	e using s/w vis spud mi s required. dded just p Rig g 16" hole 6 b bbl sweep 100 pgm. Ti	3 bbl 8 bbl 7 and 50- ud continuity rior to us Activity from 156 as every ake surv	-75 bbl hi- nuously at se for visco sm to 565r stand at 1 rey after ea	25 ppb osity n, 00 rpm, ach
Additional Properi			Jnits	Start	Rec	Used	End	Cos	st			So	olids Cont	rol Equipme	ent		Tir	me
Drilling Fluids Engil Drilling Fluids Engil bentonite lime ALDACIDE G BARABLOK BARA-DEFOAM W BARAZAN D PLUS barite calcium chloride flat caustic soda Circal 60/16 Circal Y citric acid CLAYSEAL PLUS	/300 S	1	day(s) day(s) 000 kg bulk 20 kg bag 25 I can 50 lb bag 5 gal can 25 kg bag 000 kg bulk 25 kg bag 25 kg pail 1200 kg bag 25 kg bag 25 kg bag	10.000 45 32 8 20	3 2 8		2.000	\$1,2 \$3,9	959.04	VSM-3 VSM-3 VSM-3 VSM-3 ATL-10 Vacu-F	300 300 300 300 /droc 600 Flo 120	Shaker eyclone 10 Degasser	Cones 16 4 0 0	Scre	eens	Hrs	Drilling Circulatir Trips Rig Surveys Fishing Run Cas Coring Reaming Testing Logging Dir Work Repair Other Total	inç J
guar gum PAC-L potassium hydroxic soda ash	de		25 kg bag 25 kg bag 25 kg bag 25 kg bag	36 300 168	80		36 300 168 80			Fluid	l Voli	ume Brea	ıkdown		Seawater	•	Rotating ROP Dil Rate	22.5 30.6 0.00
sodium bicarbonate	е		25 kg bag	35			35			Annu Pipe Active Total Total Rese Prev Net C	Act lus Cap e Pits Hole Circ rve Vol Chang Vol	s e	52.8 380.0 694.1 1074.1 597.3 472.4 1074.1		1665.3	Fluid Di Transfe SCE Evapora Trips Other Total Si Downho	erred ation urface ole osses	-1192.9 -1192.9
Daily Products Cos Cumulative Produc Baroid Representa Office Warehouse	cts Cost	Rd Melk		Total Cun)13.46 55	Spud	Mud	luid Type	9 S	Vol bbl 2270.0	Survey Mi Survey T\ Angle Direction Horiz Disp	D /D	759 0.1	0.9 m 0.9 m 78 Deg 72 m

Telephone 61-3-56-881-445

Baroid Flu	ııa s ei	rvice	5								Date		02/17/2008	Report No Depth	006 862.0	0 m
		Dai	ly Drilli	ng Flւ	ıid Rep	ort					Spud Date	e 02/14/20		Rig Activity	casing and cer	
Operator Apache					Report For Bill Opensl	naw/Paul (Sallagher					Well Name Wasabi -			-	
Contractor Seadrill					Report For Carlos Car							Rig Name West Trit		Unit System Apache		
Country Australia			State/Province Victoria		041100 041	7 0 10 1	Geograph Bass Stra		unty			Field or B				
Bit Info	rmation		D		j (in) / (m)		in (Casing m				Circ	ulation/Hyd	raulics Data		
Bit Size Make/Type	13.375 CASING/13 3	3/8 Casing	Drill Pipe	OD 13.375	1D 12.415	Length 127.0	OD	Set	MD	Model Bore in		6	14-P-220 3.500	Nat 14-P- 6.500	. 6	14-P-220 3.500
lets □FA	3x1 0.331									Stroke: Eff(%)			4.000 97	14.000 97		4.000 97
lets Velocity let Impact Force	310.4	m/sec lbf								bbl/strk SPM	k	().139 60	0.139 60	C).139 60
Bit HHSI Press Drop @ Bit		hhp/in2 psi								gpm bb			8.36 AV, Riser	351 8.	.36 35°	1 8.36
Bit Depth	127.0	m	Open Hole	27.000		69.2				Total C	Circ Time ne , min	22	AV min DP	14.3 To	ot Pres Loss ress Drop DP	
CD @ Csg Shoe CD @ Bit		SG SG	Open Hole	16.000		727.0			_	Total S	Strokes	3,945	AV max DC BU Strokes	770 P	ress Drop An	
Propertie Source	es	Р	1 it # 4	2 Pit #		3	4		Tai	rgets	Pro	gram	Fluid Type	Fluid Tre S	eatments pud Mud	
ime Depth	m		3:00 862	20:0 862									New Mud B		bbl	
L Temp Density @ Deg C	Deg C SG		50 @ 20	1.150 @							1,140	1.170	ļ			
V @ Deg C	sec/qt	95	@ 20	96 @	20						1.140	1.170	Reached se	ection TD 862	2 m @ 02:00.	
V @ Deg C P	cP lbs/100 ft2		@ 20 69	15 @ 70				Х			25					
GELS 00/300	lbs/100 ft2	101	/45/64 .0/85.0	27/44/ 100.0/8	35.0			X	*		12/-/	- 20/-/-				
00/100 /3			.0/55.0 .0/21.0	67.0/5 30.0/2												
PI Filt THP @ Deg C	ml/30 min ml/30 min		14.0	14.0)			Х	Х		3.0	5.0				
Cake API/HTHP	32nd in		3/- 4.7	3/- 4.7												
IAP/Water	% by Vol		95.0	-/95.										D: A	-4:-::	
Sand MBT	% by vol ppb Eq.														845m to 862m	
H @ Deg C LK Mud	Pm		0 @ 20 0.90	9.00 @ 0.80								10.00			e rotating @30 send signal to	
LK Filt Chlorides	Pf/Mf mg/l		0/0.30 2,000	0.20/0 2,00									& 2nd time	failed. Backre	eam from 862r	n to 800m
ot. Hardness .GS/HGS	mg/l % by Vol	0.	80 .0/4.7	40 0.0/4											n @ 862m and ace well with 9	
.GS/HGS	ppb SG	0.0	3/68.56	0.03/68	3.56								9.6ppg bent	tonite mud. P	OOH to 128m	
NSG	36	4	. 199	4.13	5										er rotation. Co & test float. F	
dditional Proper	ties												U		rk down to 139 with 20k wt do	, ,
														0 0	ig up & POOH	
Product Na Prilling Fluids Engi		ι	Jnits day(s)	Start	Rec	Used 1	End	\$1,2	50.00)	Shaker		trol Equipme Scre		Hrs Drilling	Fime 2.0
rilling Fluids Engi LDACIDE G			day(s) 25 I can	32		1		\$1,2	50.00	VSM-30 VSM-30			•		Circula Trips	
BARABLOK BARA-DEFOAM W	1200		50 lb bag 5 gal can	50			50 8			VSM-30 VSM-30	0				Rig Survey	
BARAZAN D PLUS			25 kg bag	20			20			V 3IVI-3U	U				Fishing	3
entonite			000 kg bulk 000 kg bulk	81.500 2.000			81.500 2.000			-					Run Ca Coring	asinę 4.5
alcium chloride fla austic soda	ake 77%		25 kg bag 25 kg pail	10 114			10 114			Hvd	Irocyclone	Cones	Scre	ens	Reaming Testing	
Circal 60/16 Circal Y			200 kg bag 200 kg bag	20			20			ATL-160		16 4			Loggin Dir Wo	g 0.5
itric acid			25 kg bag	40			40			Vacu-110	1200 Degassei	00			Repair	2.0
LAYSEAL PLUS uar gum		2	16 kg drum 25 kg bag	24 36			24 36			Ce	entrifuge	Speed	Feed	Rate	Other Hrs Total	5.5 24.0
me PAC-L			20 kg bag 25 kg bag	41 300			41 300								Rotatin ROP	ng 3.0 8.5
otassium hydroxic	de		25 kg bag 25 kg bag	168 80			168 80			Fluid \	Volume Bre	akdown		Spud Mud	Dil Rat	
odium bicarbonate	е		25 kg bag 25 kg bag	35			35				Active	bbl	Additions	bbl	Losses	bbl
										Annulu Pipe C	ар	62.4	Base Drill Water	T	luid Dumped ransferred	-888.9
										Active Total F			Dewatering Sea Water		CE vaporation	
										Total C	Circ	549.7	Whole Mud	T	rips Other	
										Prev V	ol .	2270.0	Barite Chemicals	Te	otal Surface	
										Net Ch Total V	/ol	1761.4		T-	ownhole otal Losses	-888.9
aily Products Cos	st		\$0.00	Total Dail	y Cost			\$2.5	00.00	Seawa	Fluid Typ		Vol bbl	Devia Survey MD	ation Informa	tion 59.9 m
umulative Productions aroid Representa	ts Cost		\$45,263.46 Edwards	Total Cur				\$76,5			-		300.0	Survey TVD Angle	7:	59.9 m 0.78 Deg
Office	90 Talinga	Rd Melb	ourne		Janios IVIUI	Telephon		-9581-755		1				Direction		172
Varehouse	c/o of Esso	Australi	a LIU			Telephone	e 61-3-5	6-881-44	5					Horiz Displ.		m

Baroid Flu	061	*106								Date		02/18/2008			007 862.0	m
		Dai	ily Drilli	ng Flu	ıid Rep	ort				Spud Date	02/14/20	08	Rig Activity Rui		and ceme	ent
Operator Apache					Report For Bill Opensh	naw/Paul (Gallagher				Well Name Wasabi -			_		
Contractor Seadrill					Report For Carlos Car		g				Rig Name West Trit		Unit System Apache	m		
Country			State/Province		Carios Car	vajai		c Area/County			Field or Bl	ock	траспе			
	rmation		Victoria D		J (in) / (m)			asing m			Circ	1 Vic-58P ulation/Hyd				
Bit Size Make/Type Jets TFA Jets Velocity	13.375 CASING/13 3 3x1 0.331 258.7	3/8 Casing 2 sq-in m/sec	Drill Pipe	OD 13.375	1D 12.415	<u>Length</u> 862.0		Set MD	Model Bore in Strokes Eff(%) bbl/strk SPM		14	14-P-220 5.500 4.000 97 1.139 50	Nat 14- 6.5 14.0 97 0.1	00 000 7 39	Nat 14 6.5 14.0 9 0.1	500 000 7
Jet Impact Force Bit HHSI Press Drop @ Bit Bit Depth	862.0		Open Hole	27.000		69.2			gpm bbl Total Gl Total Ci	PM rc Time	878 53	6.97 AV, Riser AV min DP	11.9	6.97 Circ Pre Tot Pre	293 ess psi s Loss	
ECD @ Csg Shoe ECD @ Bit		SG SG	Open Hole	16.000		727.0			BU Time Total St	rokes	7,919	AV max DC BU Strokes	2,153	Press D		
Propertie Source	es		1	2		3	4	Tar	gets	Pro	gram	Fluid Type	Fluid 1	reatme Spud N		
Time Depth FL Temp Density @ Deg C FV @ Deg C PV @ Deg C YP GELS 600/300 200/100 6/3 API Filt HTHP @ Deg C Cake API/HTHP Corr Solid NAP/Water Sand MBT pH @ Deg C ALK Mud ALK Filt Chlorides Tot. Hardness LGS/HGS LGS/HGS ASG	m Deg C SG sec/qt cP Ibs/100 ft2 Ibs/100 f											New Mud B Total Mud E Built 434 bb contingency Built 462.8 sweeps dur to 155m. Cont. buildi interval. Cont. lay do surface. R/o BHA, enter @94m, was and rotate 3 RIH free frn 5m fill. POC hi-vis & disp Observed 6 from 126m Pumped 10 bentonite m RIH with 13	Rigown 13 3/8" d csg equip 26" hole at the down to 80 rpm 750g no 135m to 0H from 85" do 155m. B 0bbl hi-vis and. POOH	Activity ' casing ment an 66m. Si 94m. Tiggpm from 857m ta 1.15 sg overpull. ack rear and disp to surfar	from 127m d RIH with tring tagge ght again. 1 70m to 1 agged bott 12. Pumpe bentonite Worked tig n few passiolaced with ce and rig	126m 4" 4" Wash 35m. om with d 100bb mud. ght spot
Product Na Drilling Fluids Engir		Į	Jnits day(s)	Start	Rec	Used 1	End	Cost \$1,250.00		Shaker	olids Cont	rol Equipme Scre		Hrs	Tir Drilling	ne
Drilling Fluids Engir bentonite quar qum caustic soda soda ash ALDACIDE G BARABLOK BARA-DEFOAM W BARAZAN D PLUS barite calcium chloride fla	1300		day(s) 000 kg bulk 25 kg bag 25 kg pail 25 kg bag 25 l can 50 lb bag 5 gal can 25 kg bag 000 kg bulk	2.000 36 114 80 32 50 8 20 81.500	31.000	5.000 27 1 2	28.000 9 113	\$1,250.00 \$2,474.40 \$2,293.11	VSM-300 VSM-300 VSM-300 VSM-300 Hydr ATL-1600	ocyclone	Cones 16 4	Scre		Hrs	Circulatir Trips Rig Surveys Fishing Run Cas Coring Reaming Testing Logging	9.0 inç 8.5 I 5.5
Circal 60/16 Circal Y citric acid CLAYSEAL PLUS Kwikseal Fine lime PAC-L		1	200 kg bag 200 kg bag 25 kg bag 216 kg drum 40 lb bag 20 kg bag 25 kg bag	20 13 40 24 41 300	4 80		20 13 40 28 80 41 300		Cei	ntrifuge	Speed	Feed	Rate Spud Mu	Hrs	Repair Other Total Rotating ROP Dil Rate	24.0 5.8 0.00
potassium hydroxid sodium bicarbonate			25 kg bag 25 kg bag	168 35			168 35		Annulus Pipe Ca Active F Total Ho	ctive s p Pits ole	300.0 423.4 380.0 723.4	Additions Base Drill Water Dewatering Sea Water	450.0	Lo Fluid D Transfe SCE Evapor	erred	-1082.8
									Total Ci Reserve Prev Vo Net Cha Total Vo	e Il ange	38.0 1381.4 -620.0 1141.4		12.8 462.8	Trips Other Total S Downho	ole	-1082.8
Daily Products Cost Cumulative Product Baroid Representat Office	ts Cost tives 90 Talinga	Eugene Rd Melb	\$4,838.20 \$50,101.66 Edwards courne ia Ltd	Total Cun				\$7,338.20 \$83,851.66 9581-7555 6-881-445		m			Survey MI Survey T\ Angle Direction Horiz Disp	D /D	759 759 0.7	0.9 m 0.9 m 78 Deg 72 m

Baroid Flu	uid Se	rvice	s												Report N	0	008	
	erator ache ntractor adrill				uid Re	port						Date Spud Da	ate 02/14/20	02/19/2008 08	Rig Activit		862.0 n	
Operator			•		Report For		2 11 1						Well Name	е	IXu	ii casiiig	and ceme	111
Apache Contractor					Report For		<i>S</i> allagher						Wasabi - Rig Name		Unit Syste	m		
Seadrill Country			State/Province	ce/Region	Carlos Ca	rvajal	Geograph	ic Area/	/Coun	ity			West Trit Field or B		Apache			
Australia			Victoria				Bass Str	ait		-,			Wasabi -	1 Vic-58P	veulies De	4-		
Bit Info Bit Size Make/Type Jets TFA	3x1	3/8 Casing	Drill Pipe	OD 13.375	i g (in) / (m ID 12.415	Length 862.0	OD	Casing Set	ME		Model Bore in Strokes Eff(%)		Nat 6	culation/Hyd 14-P-220 5.500 4.000 97	Nat 14- 6.5 14.0 9	-P-220 600 000	Nat 14- 6.50 14.0 97	00 000
Jets Velocity Jet Impact Force Bit HHSI Press Drop @ Bit	0.00	m/sec lbf hhp/in2 psi									bbl/strk SPM gpm bb	ıl/min	(0.139 0 AV, Riser	0.1 C	39	0.13 0 	39
Bit Depth ECD @ Csg Shoe ECD @ Bit	862.0		Open Hole Open Hole	27.000 16.000		69.2 727.0						irc Time ie , min		AV min DP AV max DC BU Strokes	:	Tot Pre Press D	s Loss Prop DP	
Propertie	es		1	2	2	3	4			Tar	gets	P	rogram	Fluid Tune	Fluid	Treatme		
Source Time														Fluid Type New Mud B	uilt: 0 bb		iuu	
Depth FL Temp	m Deg C								\dashv		+			Total Mud E	Built: 5887.	6 bbl		
Density @ Deg C FV @ Deg C PV @ Deg C YP	SG sec/qt cP lbs/100 ft2	2												Cont. buildii interval.	ng polymer	r mud for	the 12 1/4	."
GELS 600/300 200/100 6/3	lbs/100 ft2																	
API Filt HTHP @ Deg C Cake API/HTHP Corr Solid	ml/30 min ml/30 min 32nd in % by Vol																	
NAP/Water	% by Vol														Di-	A -tiit		
Sand MBT	% by vol ppb Eq.													Cont. runnir		Activity casing fr	om 418m t	:0
pH @ Deg C ALK Mud	Pm								-					733m. Rig ι	•			
ALK Filt	Pf/Mf													739m. RIH Wash down				
Chlorides Tot. Hardness	mg/l mg/l													running tool	I from wellh	nead. Ba	cked out at	t
LGS/HGS LGS/HGS ASG	% by Vol ppb SG													crossover ru stringer and 825m.				
Additional Proper	ties																	
									-									
Product Na		l	Units	Start	Rec	Used	End		ost					trol Equipme			Tim	ne
Drilling Fluids Engi Drilling Fluids Engi			day(s) day(s)			1 1			1,250 1,250		VSM-300	Shake	er	Scre	ens	Hrs	Drilling Circulatin	g
ALDACIDE G BARABLOK BARA-DEFOAM W BARAZAN D PLUS	/300		25 I can 50 lb bag 5 gal can 25 kg bag	32 50 8 60			32 50 8 60				VSM-300 VSM-300 VSM-300))					Trips Rig Surveys Fishing	4
barite bentonite calcium chloride fla caustic soda	ake 77%	1	000 kg bulk 000 kg bulk 25 kg bag 25 kg pail				81.500 28.000 10 113				Hyd	rocyclone	Cones	Scre	ens	Hrs	Run Casin Coring Reaming Testing	
Circal 60/16 Circal Y citric acid CLAYSEAL PLUS		,	1200 kg bag 1200 kg bag 25 kg bag 216 kg drum	20 13 40 28			20 13 40 28				ATL-160 Vacu-Flo	0 1200 Degas:	16 4 ser 0 0				Logging Dir Work Repair Other	1 0
guar gum Kwikseal Fine lime			25 kg bag 40 lb bag 20 kg bag	9 80 41			9 80 41				Се	ntrifuge	Speed	Feed	Rate	Hrs	Total Rotating ROP	24
PAC-L potassium hydroxid	de		25 kg bag 25 kg bag	300 168			300 168						reakdown		Spud Mu		Dil Rate	0.0
soda ash sodium bicarbonate	е		25 kg bag 25 kg bag	78 35			78 35				Annulu	Active	300 0	Additions Base	bbl	Fluid D	sses	bbl
bodiam bloarbonat											Pipe Ca	ар	423.4	Drill Water Dewatering		Transfe SCE		-38
											Total H Total C	ole	723.4	Sea Water Whole Mud		Evapora Trips	ation	
											Reserv Prev Vo	е		Barite Chemicals		Other Total S	urface	
											Net Ch	ange	-38.0	Other		Downho	ole	
											Total V	ol Fluid Ty	1103.4 /pes	Total Vol bbl	De	Total Lo	nformatio	-38 n
Daily Products Cos Cumulative Produc			\$0.00 \$50,101.66	Total Da		oet					guar gu Seawa	ım		434.0	Survey M Survey T\	D	759.	.9 m .9 m
Baroid Representa	itives		Edwards	i olai Ul	James Mu	ınford	1				ocawa	(C)		360.0	Angle	v D	0.7	'8 Deg
Office Warehouse	90 Talinga c/o of Ess					Telephon Telephon		- <u>9581-7</u> 56-881-							Direction Horiz Disp	pl.	17	'2

Baroid Fluid Se	rvice	s													Report N	o	009	
	Da	ily Drilli	ng Fl	uid Rep	ort							Date Spud Date	02/14/20	02/20/2008	Rig Activit		862.0 up B.O.P.	m
Operator				Report For									Well Name)	<u></u>	Nippie 0	ір в.О.г.	
Apache Contractor				Bill Opens Report For	haw/Paul (Gallagher							Wasabi - Rig Name	1	Unit Syste	m		
Seadrill Country		State/Province	ce/Region	Carlos Car	vajal	Geograph	ic Area	a/Cou	ntv				West Trit		Apache			
Australia		Victoria				Bass Str	ait		,				Wasabi -	1 Vic-58P	D-	4-		
Bit Information Bit Size	in	L	OD OD	ı g (in) / (m) ID	Length	OD	Casing Set		1D	Mode	el			ulation/Hyd 14-P-220	Nat 14		Nat 14	I-P-220
Make/Type Jets						20.000 13.375				Bore Stroke		า		6.500 4.000	6.5 14.0			500 .000
TFA	sq-in						œ.	_		Eff(%)	-		97	9	7	9	97
Jets Velocity Jet Impact Force	m/sec lbf									bbl/sti SPM	IK).139 _94	0.1 9	4		139 0
Bit HHSI Press Drop @ Bit	hhp/in2 psi									gpm t Total				13.10 AV, Riser	550	13.10 Circ Pre	ess psi	
Bit Depth ECD @ Csg Shoe	m SG	Open Hole	16.000)	5.0						Circ	Time		AV min DP AV max DC		Tot Pre		
ECD @ Bit	SG									Total		kes		BU Strokes		Press E	Drop An	
Properties Source		1		2	3	4			Tar	gets		Prog	gram	Fluid Type		Treatme Seawa		
Time														Continued t				r 12.25'
Depth m FL Temp Deg C														section. Begin addir	na 12% KC	l and 5r	oph Calciu	ım
Density @ Deg C SG FV @ Deg C sec/qt														Carbonate i	•	_ aa op	, p. 0 0 a.o.a	
PV @ Deg C cP														1				
YP lbs/100 ft2 GELS lbs/100 ft2																		
600/300 200/100																		
6/3														1				
API Filt ml/30 min HTHP @ Deg C ml/30 min														j				
Cake API/HTHP 32nd in Corr Solid % by Vol																		
NAP/Water % by Vol															Die	Activity		
Sand % by vol MBT ppb Eq.														Cont. makir			nt. Conne	ct line t
pH @ Deg C ALK Mud Pm											_			side entry s				
ALK Filt Pf/Mf Chlorides mg/l														pump ceme Displace ce				
Tot. Hardness mg/l														stinger. Pick	•			
LGS/HGS % by Vol LGS/HGS ppb											_			surface. Bre Position BC				
ASG SG														BOP.	-			•
														1				
Additional Properties																		
]				
Product Name		Jnits	Ctout	Rec	Haad	End		Cost				9,	lide Cont	rol Equipme	ont		Т:	me
Drilling Fluids Engineer 2	,	day(s)		Nec	Used 1		\$	1,25	0.00			Shaker	nius Cont	Scre		Hrs	Drilling	
Drilling Fluids Engineer ALDACIDE G		day(s) 25 I can			1	32		31,25	0.00	VSM-3 VSM-3							Circulatii Trips	ng 2
BARABLOK		50 lb bag	50	200		250				VSM-3	00						Rig	
BARA-DEFOAM W300 BARAZAN D PLUS		5 gal can 25 kg bag				90				VSM-3	00						Surveys Fishing	
barite bentonite		000 kg bulk 000 kg bulk				81.500 28.000											Run Cas Coring	sing 6
calcium chloride flake 77%	· ·	25 kg bag	10)		10											Reaming	g
caustic soda Circal 60/16	,	25 kg pail 1200 kg bag				113 20				Hy ATL-16		cyclone	Cones 16 4	Scre	ens	Hrs	Testing Logging	
Circal Y		1200 kg bag 25 kg bag	13	В		13 40				Vacu-FI	lo 120	00 Degasser					Dir Work Repair	
citric acid CLAYSEAL PLUS	2	216 kg drum	28	24		52											Other	1 14
guar gum Kwikseal Fine		25 kg bag 40 lb bag				80				С	Cent	rifuge	Speed	Feed	Rate	Hrs	Total Rotating	24
lime		20 kg bag	41			41											ROP	
PAC-L potassium chloride		25 kg bag 1000 kg bag		12		300				Fluid	Vol	ume Brea	akdown		Seawater	r	Dil Rate	0.0
potassium hydroxide soda ash		25 kg bag 25 kg bag				168 78				Annul		tive	bbl	Additions Base	bbl	Lo	sses umped	bbl
sodium bicarbonate		25 kg bag 25 kg bag				35				Pipe (Сар			Drill Water		Transfe		
							-			Active Total				Dewatering Sea Water		SCE Evapor	ation	
										Total	Circ			Whole Mud		Trips		
										Reser Prev \	Vol			Barite Chemicals		Other Total S		
										Net C Total		ge		Other Total	/31 7	Downho Total Lo		
		40.00	T · · · =					0.50	0.00	, Jiai		luid Type	S 010.9	Vol bbl	De	viation	Information	
Daily Products Cost Cumulative Products Cost		\$0.00 \$50,101.66	Total Da Total Cu		ost			32,50 38,85	0.00 1.66						Survey M Survey T\		759	9.9 m 9.9 m
Baroid Representatives Office 90 Talinga		Edwards		James Mu	nford Telephon	e 61-03	-9581-	755	5						Angle Direction			.78 Deg 72
Warehouse c/o of Esso					Telephon		-936 1- 56-881								Horiz Dis	pl.	<u> </u>	m

Baroid Fluid Se	rvices													00/04/0000	Report N	0	010	
	Daily	Drilli	na Flu	ıid Rep	ort						-	Date Spud Date		02/21/2008	Rig Activity		862.0	m
Operator				Report For							_		02/14/200 Well Name			ı rıp	ping	
Apache Contractor				Bill Opensh Report For	aw/Paul (Gallagher							Wasabi - Rig Name	1	Unit Syster	m		
Seadrill	- I-			Carlos Car	/ajal	I							West Trite		Apache			
Country Australia		te/Provinc toria	e/Region			Geographic Bass Strain		County	у				Field or BI Wasabi -					
Bit Information	in	D	rill String	(in) / (m) ID	Longth		asing	m MD		Model				ulation/Hyd 4-P-220	raulics Da Nat 14-		Not 1/	1-P-220
Bit Size Make/Type	in		OD	טו	Length	20.000 @		135	5.0	Bore	in		6	.500	6.5	00	6.	500
Jets TFA	sq-in					13.375 @	20	857		Stroke Eff(%)		1		1.000 97	14.0 97			.000 97
Jets Velocity	m/sec									bbl/str				.139	0.1	39	0.1	139
Jet Impact Force Bit HHSI	lbf hhp/in2									SPM apm/b	bl/n	nin		0 	0	Ì		0
Press Drop @ Bit	psi	on Holo	16.000		F 0				Ī	Total (GP۱	Л		AV, Riser		Circ Pre		
Bit Depth ECD @ Csg Shoe	SG	en Hole	16.000		5.0					BU Ti				AV min DP AV max DC		Press D	Prop DP	
ECD @ Bit Properties	SG 1		2		3	4		Т		Total S	Stro		gram	BU Strokes		Press E		
Source	Pit#	3				-		T	ai g	JC13		110	Ji di II	Fluid Type		Seawa	ter	
Time Depth m	13:0 862							+	+	-	_			Total Mud E	Built: 5887.6	6 bbl for	1st Interv	al.
FL Temp Deg C								#						Continued to	o mix KCL	/ Polyme	er mud for	r 12.25"
Density @ Deg C SG FV @ Deg C sec/qt	1.145 @	20 16						+	\dashv	-		1.140	1.170	section.	400/ 1/01			
PV @ Deg C cP YP lbs/100 ft2								-	\exists					Begin addin Carbonate i	-	L and 5p	pp Calciu	ım
GELS lbs/100 ft2														Weigh up di		nt KCL p	olymer m	ud to
600/300 200/100								+	+	-	-			1.15 sg.				
6/3	6.0							v	#									
API Filt ml/30 min HTHP @ Deg C ml/30 min								Х	_			3.0	5.0					
Cake API/HTHP 32nd in Corr Solid % by Vol	1/- 3.1								4									
NAP/Water % by Vol	-/92.																	
Sand % by vol MBT ppb Eq.								+	+	-	\dashv			Cont. makin		Activity Flush c	ement line	es. Test
pH @ Deg C	9.60 @ 0.60								4				10.00	lower and u	pper BOP	values o	n the top	drive.
ALK Mud Pm ALK Filt Pf/Mf	0.65/1	.55												Pick up ove 1/2" elevato	•			• .
Chlorides mg/l Tot. Hardness mg/l	60,00 80							-	+	-				overshot joi	•			
LGS/HGS % by Vol	1.6/1	.4												mandreal. N				
LGS/HGS ppb ASG SG	14.79/2 3.35							+	+	-				Install fitting hose. Funct				
									\exists					stations. Fill	I BOP, flusi	h lines, t	est casing	g to
Additional Properties														2000psi. La runniong too	,		0	
KCL % % by vol	12.0	0						+	+	-	-			1/2" DP fror			U	
									-									
Product Name	Unit		Start	Rec	Used	End		ost	20				lids Cont	rol Equipme				me
Drilling Fluids Engineer 2 Drilling Fluids Engineer		day(s) day(s)			1 1			,250.0		VSM-30	00	Shaker		Scre	ens	Hrs	Drilling Circulati	ng
ALDACIDE G		25 I can 0 Ib bag	32			32 250				VSM-30 VSM-30				20 89 20 89			Trips Rig	1.
BARABLOK BARA-DEFOAM W300	5	gal can	250 8			8				VSM-30				20 89			Surveys	
BARAZAN D PLUS barite		5 kg bag) kg bulk	90 81 500	72.500		90 154.000			\dashv								Fishing Run Cas	sinc
bentonite	1000	kg bulk	28.000			28.000											Coring	1
calcium chloride flake 77% caustic soda		5 kg bag 5 kg pail	10 113			10 113			+	Hyd	droc	cyclone	Cones	Scre	ens	Hrs	Reaming Testing	g 5.
Circal 60/16 Circal Y		0 kg bag 0 kg bag	20 13			20 13				ATL-16		00 Degasser	16 4				Logging Dir Work	
citric acid		5 kg bag	40			40				vacu-rii	0 120	io Degassei	0 0				Repair	2.
CLAYSEAL PLUS guar gum		kg drum 5 kg bag	52 9	20		72 9			4	С	`entr	rifuge	Speed	Feed	Rate	Hrs	Other Total	15. 24.
Kwikseal Fine	4	0 lb bag	80			80			Ţ		Cita	nago	Орсси	1 000	rato	1113	Rotating	
lime PAC-L		0 kg bag 5 kg bag	41 300			300			-								ROP Dil Rate	0.0
potassium chloride		0 kg bag	12	28		40 168			1	Fluid		ume Brea		A 1 1'4'	Seawater			bbl
potassium hydroxide soda ash		5 kg bag 5 kg bag	168 78			78				Annul		live	bbl	Additions Base	bbl	Fluid D		DDI
sodium bicarbonate	25	5 kg bag	35			35				Pipe C Active		\$	380 0	Drill Water Dewatering		Transfe SCE	erred	
										Total I	Hole	•	435.9	Sea Water		Evapor	ation	
										Total (Reser			380.0	Whole Mud Barite		Trips Other		
										Prev \	√ol			Chemicals		Total S		
										Net Cl Total \		ge	7.4 815.9	Other Total	7.4	Downho Total Lo		
Daily Products Cost		\$0.00	Total Dail	v Cost			e o	2,500.0				luid Type		Vol bbl		viation	Informati	on 9.9 m
Cumulative Products Cost		0,101.66	Total Cur	nulative Co				,351.0							Survey T\		759	9.9 m
Baroid Representatives Office 90 Talinga	Rd Melbour			James Mur	nford Telephon	e 61-03-9	9581-7	555	\dashv						Angle Direction			.78 Deg 72
onice of Face	Australia I	+4			T 1 1	04.0.50	2004	4.45	-						Horiz Dia	s.I	1 '	

Baroid Fluid Services

Baroid Flu	iia Sei	rvice	:5									ſ	Date		02/22/2008	Report N Depth	lo 	011 862.0	m
		Dai	ily Drilli	ng Flu	uid Rep	ort							Spud Date	02/14/20		Rig Activit		meeting	
Operator Apache					Report For Bill Opensi	naw/Paul (Gallagher							Well Name Wasabi -		•			
Contractor Seadrill					Report For Carlos Car		<u> </u>							Rig Name West Trit		Unit Syste Apache	m		
Country Australia			State/Provine Victoria	ce/Region	Canob Can	vajai	Geograph Bass Stra		ea/Cou	nty				Field or Bl		1. 1			
Bit Info	rmation				g (in) / (m)		in (Casir	ng m	_	Maril	-1		Circ	ulation/Hyd			NI=+ 4.4	D 000
Bit Size Make/Type Jets TFA Jets Velocity Jet Impact Force Bit HHSI Press Drop @ Bit Bit Depth	12.250 SMITH/Mi6 6x1 1.491	s16VBPX 18 sq-in m/sec lbf hhp/in2 psi	Drill Pipe Drill Pipe Drill Collar Motor	OD 5.500 5.500 8.250 9.625	3.250 3.500 0.000	591.0 142.0 108.0 10.0	20.000 13.375		1			in (es in (6) trk bbl/n	nin	6 1	14-P-220 5.500 4.000 97 1.139 0 AV, Riser AV min DP	Nat 14 6.5 14.0 9 0.1	500 000 7 39	6.5 14. 9 0.1 (ess psi	P-220 500 000 97 139 0
ECD @ Csg Shoe ECD @ Bit	031.0	SG SG	Орентые	10.000		5.0	-				BU T	ime ,	, min		AV max DC BU Strokes		Press D	rop DP	
Propertie	es		1	2		3	4			Tar	gets	1 5110		gram		Fluid	Treatme	nts	
Source Time		1	Pit # 3 13:00	Pit #	00										Fluid Type Total Mud E	Built: 5887.	Seawat 6 bbl for		al.
Depth FL Temp Density @ Deg C FV @ Deg C PV @ Deg C PV @ Deg C Y GELS 600/300 200/100 6/3 API Fiit HTHP @ Deg C Cake API/HTHP Corr Solid NAP/Water Sand MBT pH @ Deg C ALK Mud ALK Filt Chlorides Tot. Hardness LGS/HGS ASG	m Deg C SG sec/qt cP lbs/100 ft2 lbs/100 ft2 ml/30 min ml/30 min 32nd in % by Vol % by vol ppb Eq. Pm Pf/Mf mg/l mg/l % by Vol ppb SG	1.14 92 17 9,60 34 10 9.6 9.6 0.6 6	862 45 @ 16 2 @ 16 7 @ 49 26 10/43.0 10/25	86: 1.145 (90 @ 18 @ 24 9/11. 60.0/ 33.0/2 9.0/8 6.0 1/2 2.3 -/92 9.60 @ 0.65/ 60,0 80 0.2/2 1.67/3 4.07	@ 16				X	X *			1.140 25 12/-/- 3.0	5.0	Continued to section. Weigh up did 1.15 sg and 1.15 sg	Rig nd m/u 5 1.1 l service br Pick up BH. nence load ring. Troub A from 40n n Link tilt. I ng block. I	nt KCL pronud for di Activity /2" DP ar reak Ana A and RI libring of ra bleshoot I in to 259r Hold PJS Pick up 5	nd rack in drill sonic H from su adioactive oading too n. Trouble M, service 1/2" DP f	derrick. tool. rface to e source ol. Cont eshoot e
Additional Propert KCL %	ties % by vol		12.0	12.	.0										with all crew				
Product Na		Ų	Jnits day(s)	Start	Rec	Used 1	End		Cost \$1,25	0.00			Shaker	lids Cont	rol Equipme Scre		Hrs	Tin Drilling	me
Drilling Fluids Engine ALDACIDE G BARABLOK BARA-DEFOAM W BARAZAN D PLUS barite bentonite calcium chloride flacaustic soda Circal 60/16 Circal Y citric acid CLAYSEAL PLUS guar gum Kwikseal Fine lime PAC-L potassium chloride	7300 S ake 77%	1 1 2	day(s) 25 I can 50 Ib bag 5 gal can 25 kg bag 000 kg bulk 000 kg bulk 25 kg bag 25 kg pail 1200 kg bag 2200 kg bag 25 kg bag 25 kg bag 26 kg bag 27 kg bag 28 kg bag 29 kg bag 20 kg bag 20 kg bag 20 kg bag 20 kg bag	32 250 8 90 154.000		1	32 250 8 90 154.000 28.000 10 113 20 13 40 72 9 80 41 300 40		\$1,25		VSM-3 VSM-3 VSM-3 ATL-1 Vacu-F	ydroc 600 Flo 120	cyclone 00 Degasser rifuge ume Brea	Speed	Scre	ens	Hrs	Circulatii Trips Rig Surveys Fishing Run Cas Coring Reaming Testing Logging Dir Work Repair Other Total Rotating ROP Dil Rate	18.3 0.8 3 3 5.1 24.0
potassium hydroxid soda ash			25 kg bag 25 kg bag	168 78			168 78				Annu	Act	tive	bbl	Additions Base	bbl		sses	bbl
sodium bicarbonate	e		25 kg bag 25 kg bag	35			35				Pipe Activ Total Total Rese Prev Net C	Cap le Pits l Hole l Circ erve Vol Chan	s e ge	38.9 435.1 380.8 808.8 815.9	Drill Water Dewatering Sea Water Whole Mud Barite Chemicals Other Total		Transfe SCE Evapora Trips Other Total So Downho	ation urface ole osses	
Daily Products Cos				Total Da					\$2,50	0.00		F	luid Type	S	Vol bbl	Survey M	D		9.9 m
Cumulative Produc Baroid Represental Office Warehouse	ts Cost	Eugene Rd Melb	\$50,101.66 Edwards courne					-9581		5						Survey TV Angle Direction Horiz Dis	VD	759 0.	9.9 m 78 Deg 72 m

Telephone 61-03-9581-7555 Telephone 61-3-56-881-445

Baroid Flu	.iu 381			_	–								Date		02/23/2008			012 1,393.0 n	n
Operator		Dai	ly Drilli	ng Fl	uid Re	-							Spud Date	02/14/200		Rig Activity D		1/4" Hole	
Apache Contractor						shaw/Paul (Gallagher							Wasabi - Rig Name		Unit Syster	m		
Seadrill			01-1-10	(D!	Carlos C		la		- 10					West Trite		Apache	"		
Country Australia			State/Provine Victoria				Geograph Bass Str	ait		nty					1 Vic-58P				
Bit Info	12.250	in		Orill Strin	g (in) / (n ID	n) Length		Casin Set		1D	Mode	el			ulation/Hyd 4-P-220	raulics Dat Nat 14-		Nat 14-	P-220
Make/Type Jets TFA Jets Velocity Jet Impact Force Bit HHSI Press Drop @ Bit	821.6 1.32 304	8 sq-in m/sec lbf hhp/in2 psi	Drill Pipe Drill Collar Motor	5.500 5.500 8.250 9.625	3.250 3.500 0.000	1,133.0 142.0 108.0 10.0	13.375				Bore Strok Eff(% bbl/s SPM gpm] Total	(es ir (6) trk bbl/r GPI	min M	14 0 439 878	5.500 4.000 97 5.139 75 10.45 AV, Riser	19.6	000 7 39 5 10.45 Circ Pre		000 7 39
Bit Depth ECD @ Csg Shoe ECD @ Bit	1,393.0 1.171 1.167	SG	Riser Open Hole	19.120 16.000		66.0 536.0		_	_	_	BU T Total	ime	kes	38 9,807	AV min DP AV max DC BU Strokes	34.9 5,671	Tot Pres Press D Press D	rop DP rop An	2016 988 35
Propertie Source	es	Р	1 it # 6	Flow	2 Line	3 Pit # 6	Hyd Flow L			Tar	gets		Prog	jram	Fluid Type		reatmer KCI/Pol		
Time Depth FL Temp Density @ Deg C FV @ Deg C PV @ Deg C YP GELS 600/300 200/100 6/3 API Filt HTHP @ Deg C Cake API/HTHP Corr Solid NAP/Water Sand MBT pH @ Deg C ALK Mud ALK Filt Chlorides Tot. Hardness LGS/HGS LGS/HGS ASG Additional Propert KCL %	m Deg C SG Sec/qt cP Ibs/100 ft2 Ibs/100 ft2 Ibs/100 min 32nd in % by Vol % by Vol ppb Eq. Pm Pf/Mf mg/l mg/l mg/l SG % by Vol	1.118 755 177 8/ 566 322 111 12.0 9.55 0.3 1.55 4	8:30 ,036 40 10 @ 16 @ 16 @ 49 22 11/1/4 0/39.0 0/23.0 .0/9.0 5.6 0 @ 149 1/2 2.5 0 @ 25 0.40 10/0.50 9,000 80 2/2.3 9/34.48 .089	4:4 90 38 1.150 69 @ 11 @ 7/99 41.0/2 24.0/ 5.5 14.0 @ -/-/ 2.1 2.3 9.50 @ 80 80 80 90 14.0 @ 14.0 @ 15.0 @ 16.0	9 3 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	15:00 1,235 41 1.150 @ 30 74 @ 30 13 @ 49 29 11/14/16 55.0/42.0 33.0/26.0 11.0/9 5.5 13.0 @ 149 1/2 2.7 -/92.3 0.20 2.5 9.40 @ 25 0.40/0.70 60,000 80 0.7/2.1 6.32/30.19 3.796	21:0 1,33 48 1.150 (74 @ 13 @ 25 9/11/1 51.0/3 31.0/2 10.0/6 5.5 14.0 @ 1/2 2.7 -/92 0.33 0.20 60,00 80 0.7/2 6.32/3 3.79	7 2 30 3 30 4 49 15 8 .0 4 .0 149 3 3 0 2 25 0 10 00 11 00 11 00 12 00 13 00 14 00 14 00 15 00 16 00 17 00 18 00 	X	X	X	X	1.140 25 12/-/- 3.0 12.0	5.0 15.0		Built: 3038.3 interval @ 0 ive system v end rheolo @ 4ppb as 050 MD. 050 MD. 050 MD. drill water u iters. onite/Barite on with barg in from 851m splace well r/CLAYSEA and clean our mation from e sting and the Perform le irill ahead fro ot MWD too 235m to 13 eens. Cont.	3 bbl 20:10. with BAF 20y. Addiper comp b Mixed 0 sing sea received ge reports Activity n to 854n to 12% AL mud w ut rat holin n 862m t condition eak off te om 864n bls. Cont (34m. Lo: drill fron	ed BARAB pany mans Cal.Carb L water in 1 was a s. n, tag top o vhilst drillin e to 862m. o 864m. n mud in pr est with EN n to 1235m c drilling 12 sses at sh. n 1334m to	BLOK B. CM pill premix of ng out Cont. rep. for MW of 1. 2 1/4" akers,
Product Na	ame		Jnits	Start	Rec	Used	End		Cost				So	lids Cont	rol Equipme	ant		Tim	10
Drilling Fluids Engi Drilling Fluids Engi CLAYSEAL PLUS potassium chloride BARAZAN D PLUS PAC-L barite bentonite BARABLOK	neer 2 neer	2 1	day(s) day(s) day(s) 16 kg drum 000 kg bag 25 kg bag 25 kg bag 000 kg bulk 000 kg bulk	72 40 90 300 154.000 28.000	8.50 7.00	1 42 40 90 144 0 18.500	30 156 144.000 27.000 150	\$4	\$1,25 \$1,25 40,17 17,65 13,70 11,78 \$8,78 \$3,95 \$3,03	0.00 0.00 8.88 8.40 1.60 9.28 5.28 9.04 9.00	VSM-: VSM-: VSM-:	300 300	Shaker	nus oon	20 89 20 89 20 89 20 255		24.0 24.0	Drilling Circulatin Trips Rig Surveys Fishing Run Casi Coring Reaming	21.0 g 1.5 nç
Circal 60/16 Circal Y caustic soda BARA-DEFOAM W ALDACIDE G	/300		200 kg bag 200 kg bag 25 kg pail 5 gal can 25 l can	13 113 8 32		7 2 15 1 7	11 98 7 25		\$66 \$61 \$61	3.34 2.85 6.88 1.59	ATL-1 Vacu-f	600 Flo 120	00 Degasser		Scre		Hrs	Testing Logging Dir Work Repair Other	1.5
soda ash calcium chloride fla	ake 77%		25 kg bag 25 kg bag	10		15	10		Φ18	8.75		centi	rifuge	Speed	Feed	Rate	Hrs	Total Rotating	24.0
citric acid guar gum			25 kg bag 25 kg bag	9			40 9											ROP Dil Rate	25.3 0.00
Kwikseal Fine lime			40 lb bag 20 kg bag				80 41				Fluic		ume Brea tive	kdown bbl	Additions	KCI/Polyr		sses	bbl
potassium hydroxic sodium bicarbonate			25 kg bag 25 kg bag				168 35				Annu Pipe Activ Total Total	Cap e Pit Hole Circ	s e	510.0 856.5 1366.5	Base Drill Water Dewatering Sea Water Whole Mud	400.0	Fluid Du Transfel SCE Evapora Trips	rred	-255.7
											Rese Prev Net (Total	Vol Chan	ge	1378.0 2747.6 2744.5	Chemicals Other	250.6	Other Total Su Downho Total Lo	ole	-15.0 -20.0 -290.7
Daily Products C	·+	•	104 744 50	Total D-	ily Cost			C 11	07,24	1 50	· Oldi		luid Type		Vol bbl	De	viation I	nformatio	n
Daily Products Cos Cumulative Produc Baroid Representa Office	ts Cost	\$ Eugene	104,741.58 154,843.24 Edwards ourne				e 61-03	\$2	01,09	3.24						Survey MI Survey TV Angle Direction		33	.0 m)8 Deg 35
Warehouse	c/o of Esso					Telephon										Horiz Disp	ol.		.9 m

Baroid Flu	uid Se	rvice	s								I	Date		02/24/2008	Report No	0	013	n
		Dai	ily Drilli	ng Flu	uid R	eport						Spud Date	02/14/200		Rig Activity	/ Dril	,	11
Operator Apache					Report F	For enshaw/Paul (Sallagher				'		Well Name Wasabi -	1				
Contractor Seadrill					Report F		.						Rig Name West Trito	on	Unit Syster Apache	n		
Country Australia			State/Province Victoria	e/Region	Odilo3	<u>Odi vajdi</u>	Geograph Bass Stra		a/Cou	nty			Field or Bl		, ipacc			
Bit Info	rmation			rill String	/	` '	in (Casin					Circ	ulation/Hydı				5.000
Bit Size Make/Type Jets Jets Jets Jets Velocity Jet Impact Force Bit HHSI Press Drop @ Bit Bit Depth	72.7 1318.2 2.69 488 1,647.0	s16VBPX 18 sq-in m/sec lbf hhp/in2 psi m	Drill Pipe Drill Collar Motor Riser	OD 5.500 5.500 8.250 9.625	4.000 3.250 3.500 0.000	0 142.0 0 108.0 0 10.0 66.0	20.000 13.375		1	35.0 57.0	Model Bore in Strokes in Eff(%) bbl/strk SPM gpm bbl/n Total GPn Total Circ	min M c Time	6 14 0 556 1,112 58	4-P-220 .500 4.000 97 .139 95 13.24 AV, Riser AV min DP	24.8 25.9	00 100 7 39	s Loss	00 7 39 3000 3146
ECD @ Csg Shoe ECD @ Bit Propertion	1.171 1.166		Open Hole	16.000		790.0	Hyd	_			BU Time Total Stro gets	kes		AV max DC BU Strokes	6,974	Press D Press D reatmen	rop An	1706 38
Source Time Depth FL Temp Density @ Deg C FV @ Deg C PV @ Deg C YP GELS 600/300 200/100 6/3 API Filt HTHP @ Deg C Cake API/HTHP Corr Solid NAP/Water Sand MBT pH @ Deg C ALK Mud ALK Filt Chlorides Tot. Hardness LGS/HGS ASG	m Deg C SG sec/qt cP lbs/100 ft2 lbs/100 ft2 lbs/100 min 30 min 32nd in % by Vol % by vol ppb Eq. Pm Pf/Mf mg/l mg/l % by Vol ppb SG	1.15 65 14 2 100 500 300 10 14.6 8.9 0.4 5	w Line 3:30 ,425 42 40 @ 35 6 @ 35 6 @ 36 0/22.0 0/22.0 0.0/7.0 5.6 6 @ 149 1/2 3.6 0.025 2.5 0.030 0.025 2.5 0.030 0.071 0.056 0.030 0.056 0.030 0.071 0.056 0.030 0.03	Pit # 6:00 1,44 411 1.150 (61 @ 16 @ 23 9/12; 55.0/3 33.0/2 8.0/7 5.0/3 1/- 3.8 -/922 0.2 2.5 8.80 @ 0.2 0.54/- 52,0 32 2.1/1 18.98/2 3.3	# 6 0 0 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Pit # 6 17:30 1,549 41 1.150 @ 37 63 @ 37 20 @ 49 25 9/14/16 65.0/45.0 38.0/28.0 9.0/7.0 4.0 14.0 @ 149 1/1 3.9 -/92.0 0.70 2.5 9.50 @ 28 0.50 0.56/2.20 50,000 120 2.3/1.7 20.70/24.45 3.276	Flow L 21:0 1,58 41 1.150 @ 57 @ 15 @ 24 8/11/ 54.0/3 32.0/2 8.0/6 6.50 14.5 @ 1/2 2.5 9.00 @ 0.55/1 50,00 160 2.3/1 20.70/2 3.27	ine 0 0 5 5 35 35 49 35 49 114 9.0 4.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x	X	X * *	1.140 25 12/-/- 3.0 12.0	1.170 60 20/-/- 5.0 15.0		uilt: 595.4 Built: 3633.7 Ive with Ald 5 ppb Bara nd concent ine up shak ng conditio nload chem weather. bls Pre-hyce with 40 bbl with impro Rig g and slidin 647m as pe Survey eve	KCI/Pol bbl bbl bbl bbl bbl bbl bbl bbl bbl b	lymer looda Ash,K maintain lens. Adjust d drill wate entonite to b Cal.Carb ings return " hole from onal drillers I. GPM 107	ered to er from help / Guarned.
KCL % Potassium Ion	% by vol mg/l		11.0 5,000	10. 55,0		10.0 55,000	10.0 55,00											
Product National Produc	neer 2 neer	2	day(s) day(s) day(s) 16 kg drum 25 kg bag 50 lb bag 000 kg bulk 25 kg bag 25 kg bag 25 l can 25 kg bag	30 156 150 27.000 168 9 25 63		1 1 1 1 1 1 3 3 4 8 4 8 5 5 0 1 1 6 0 0 1 5 4 3 3 6 6	17 108 100 25.400 153 5 22	\$1	12,43 \$3,92 \$1,51 \$79 \$67 \$33	0.00 6.32 9.76	VSM-300 VSM-300 VSM-300 VSM-300	So Shaker	lids Cont	rol Equipme Scre 10 255 10 89 10 145 10 89	ens	24.0 24.0	Tin Drilling Circulatin Trips Rig Surveys Fishing Run Casi Coring Reaming Testing	24.0 g
BARA-DEFOAM W barite calcium chloride fla caustic soda Circal 60/16			5 gal can 000 kg bulk 25 kg bag 25 kg pail 200 kg bag	7 144.000 10 98 13			7 144.000 10 98 13				ATL-1600 Vacu-Flo 12	00 Degasser	16 4	Feed	Rate	Hrs	Logging Dir Work Repair Other Total	24.0
Circal Y citric acid			200 kg bag 25 kg bag	11 40			11 40										Rotating ROP	24.0 10.6
Kwikseal Fine ime			40 lb bag 20 kg bag	80 41			80 41				Fluid Vo	lume Brea	kdown		KCI/Polyr	mer	Dil Rate	0.00
sodium bicarbonate	e		25 kg bag	35			35				Annulus Pipe Cap	tive	971.7 79.0	Drill Water	bbl	Los Fluid Do Transfe		bbl
											Active Pit Total Hol Total Circ	е	1050.7 1536.7	Dewatering Sea Water Whole Mud	410.0	SCE Evapora Trips	ation	-433.1 -12.0
											Reserve Prev Vol Net Char	ige	76.2	Chemicals Other		Other Total Su Downho	ole	-74.0
			A00.005	-					00 =	0 1-	Total Vol	luid Type	2820.7 s	Total Vol bbl	De		nformatio	
Daily Products Cos Cumulative Produc Baroid Representa	ts Cost tives	\$ Eugene	\$20,033.42 5174,876.66 Edwards		mulative	Munford	24.5	\$22	22,53 23,62	6.66					Survey MI Survey TV Angle			.6 m l6 Deg
Office Warehouse	90 Talinga					Telephon Telephon					•				Direction Horiz Disp	ol.	33 48.	87 .6 m

Jets	P-220 Nat 14-P-220 0 6.500 00 14.000 97
Report For Bill Openshaw/Stefan Schmidt	P-220 Nat 14-P-220 0 6.500 00 14.000 97 9 0.139 0
Report For Carlos Carvajal Carlos C	P-220 Nat 14-P-220 0 6.500 0 14.000 97 9 0.139 0 Circ Press psi Tot Pres Loss Press Drop DP
State Properties 1	P-220 Nat 14-P-220 0 6.500 00 14.000 97 9 0.139 0
Australia Victoria Bass Strait Wasabi - 1 Vic-58P	P-220 Nat 14-P-220 0 6.500 00 14.000 97 9 0.139 0
Bit Size 12.250 in Make/Type SMITH/Mid1etVBPX Drill Pipe 5.500 4.000 591.0 20.000 @ 135.0 Bore in 6.500 6.500 dets 6.500 dets 6.501 for in Pipe 5.500 3.250 142.0 13.375 @ 857.0 Strokes in 14.000 14.	P-220 Nat 14-P-220 0 6.500 00 14.000 97 9 0.139 0
Jets Sat B	00 14.000 97 9 0.139 0
TFA	97 9 0.139 0 Circ Press psi Tot Pres Loss Press Drop DP
SPM	O Circ Press psi Tot Pres Loss Press Drop DP
Rit Hrist	Tot Pres Loss Press Drop DP
Riser	Tot Pres Loss Press Drop DP
Properties 1 2 3 Hyd 4 Targets Program Fluid Trg	
Properties	
Time 3:00 9:45 16:00 21:00 New Mud Built: 448.1 Depth m 1,670 1,750 1,797 1,797 Total Mud Built: 448.1 FL Temp Deg C 42 Density @ Deg C SG 1.160 @ 35 1.150 @ 38 1.150 @ 30 1.150 @ 30 FV @ Deg C sec/qt 62 @ 35 69 @ 38 69 @ 30 71 @ 30 FV @ Deg C cP 14 @ 49 18 @ 49 19 @ 49 20 @ 49 FP libs/100 ft2 20 29 26 26 X 25 60 GELS lbs/100 ft2 6/10/12 10/13/14 10/15/21 11/16/21 X * * * 12/ 20/ 600/300 48.0/34.0 65.0/47.0 64.0/45.0 66.0/46.0 200/100 28.0/21.0 38.0/28.0 39.0/39.0 38.0/28.0 API Filt ml/30 min 5.5 4.0 4.2 4.0 X 3.0 5.0 HTHP @ Deg C ml/30 min 14.6 @ 149 13.0 @ 149 13.5 @ 149 13.0 @ 149 HTHP @ Deg C ml/30 min 14.6 @ 149 13.0 @ 149 13.5 @ 149 13.0 @ 149 Cake API/HTHP 32nd in 1/2 1/1 1/2 1/2 Corr Solid % by Vol 4.3 4.1 4.1 4.1 NAP/Water % by Vol -/92.0 -/92.0 -/92.0 -/92.0 Sand % by vol 1.00 1.00 1.00 1.00 MBT ppb Eq. 2.5 3.0 2.5 2.5 MET ppb Eq. 2.5 3.0 2.22 9.20 9.20 MET ppb Eq. 2.7	reatments
Depth m 1,670 1,750 1,797 1,797 1,797 Telm Deg C 42	KCI/Polymer bbl
Density @ Deg C	
FV @ Deg C	d drill water from hoat
YP Ibs/100 ft2 20 29 26 26 X 25 60 rpm. Built 15% KCL pred GELS Ibs/100 ft2 6/10/12 10/13/14 10/15/21 11/16/21 X * * * * * 12/-/- 20/-/- 20/-// 20/-// 20/-// 20/-// 20/-// 20/-/// 20/-/// 20/-//// 20/-///// 20/-//////////	ppb Barazan D to raise 6
600/300	
6/3 7.0/5.0 10.0/8.0 12.0/8.0 13.0/9.0 Incorporated 210 bbls 40 active. API Filt ml/30 min 5.5 4.0 4.2 4.0 X 3.0 5.0 HTHP @ Deg C ml/30 min 14.6 @ 149 13.0 @ 149 13.5 @ 149 13.0 @ 149 12.0 15.0 Incorporated 210 bbls 40 active. Cake API/HTHP 32nd in 1/2 1/1 1/2 1/2 I/2 I/2 I/2 I/2 I/2 I/2 I/2 I/2 I/2 I	•
API Filt ml/30 min 5.5 4.0 4.2 4.0 X 3.0 5.0 HTHP @ Deg C ml/30 min 14.6 @ 149 13.0 @ 149 13.5 @ 149 13.0 @ 149 12.0 15.0 Premix with PHB kept in Cake API/HTHP 32nd in 1/2 1/1 1/2 1/2 1/2 Premix with PHB kept in Made 11.7 ppg slug to to MAP/Water % by Vol -/92.0 -/92.0 -/92.0 -/92.0 Cont. building volume. Sand % by vol 1.00 1.00 1.00 1.00	Onnh CaCa2 LCM to
Cake API/HTHP 32nd in 1/2 1/1 1/2 1/2 Premix with PHB kept in	Uppb CaCo3 LCM, to
NAP/Water % by Vol wol -/92.0 -/92.0 -/92.0 Cont. building volume. Sand % by vol wol 1.00 1.00 1.00 1.00 1.00 1.00 Rig A MBT ppb Eq. 2.5 3.0 2.5 2.5 15.0 Cont. drilling and sliding pH @ Deg C 8.90 @ 28 9.10 @ 28 9.20 @ 28 9.10 @ 28 10.00 1647m to 1797m as per	
Sand % by vol 1.00 1.00 1.00 1.00 Rig A MBT ppb Eq. 2.5 3.0 2.5 2.5 15.0 Cont. drilling and sliding ph @ Deg C pH @ Deg C 8.90 @ 28 9.10 @ 28 9.20 @ 28 9.10 @ 28 10.00 1647m to 1797m as per	rip out of hole.
pH @ Deg C 8.90 @ 28 9.10 @ 28 9.20 @ 28 9.10 @ 28 10.00 1647m to 1797m as per	Activity
ALK Eilt Df/Mf 0.40/1.80 0.26/2.00 0.20/1.00 0.20/2.00 Illistactions. Survey ever	ry stand. GPM 1076, SPM
Chlorides mg/l 46,000 48,000 48,000 1-189, WOB 5-10K, Pres	•
Tot. Hardness mg/l 160 160 160 160 back a stand, pump so the	•
	le from 1638m to 1530m.
pump out of hole from 1	,
Additional Proportion	out of hole from 1442m to
Additional Froperties 851m. 851m.	
Fotassium for migri 49,000 32,000 32,000 32,000	
Product Name Units Start Rec Used End Cost Solids Control Equipment	Time
Drilling Fluids Engineer 2 day(s) 1 \$1,250.00 Shaker Screens Drilling Fluids Engineer day(s) 1 \$1,250.00 VSM-300 10 89	Hrs Drilling 16.0
CLAYSEAL PLUS 216 kg drum 17 7 10 \$6,696.48 VSM-300 10 255	22.0 Trips 5.5
barite 1000 kg bulk 144.000 8.000 136.000 \$3,799.04 VSM-300 10.255 BARAZAN D PLUS 25 kg bag 97 15 82 \$2,283.60 VSM-300 10.255	22.0 Rig 22.0 Surveys
bentonite 1000 kg bulk 25.400 4.600 20.800 \$2,276.45	Fishing
PAC-L 25 kg bag 108 24 84 \$1,964.88 BARA-DEFOAM W300 5 gal can 7 1 6 \$616.88	Run Casinç Coring
potassium hydroxide 25 kg bag 153 8 145 \$359.84 citric acid 25 kg bag 40 2 38 \$92.48 Hydrocyclone Cones Screens	Reaming Hrs Testing
ALDACIDE G 25 I can 22 1 21 \$87.37 ATL-1600 16 4	Logging
soda ash 25 kg bag 57 2 55 \$26.50 Vacu-Flo 1200 Degasser 0 () BARABLOK 50 lb bag 100 100	Dir Work Repair 0.5
calcium chloride flake 77% 25 kg bag 10 84 94	Other
caustic soda 25 kg pail 98 98 Centrifuge Speed Feed Rate Circal 60/16 1200 kg bag 13 13	Hrs Total 24.0 Rotating 16.0
Circal Y 1200 kg bag 11 2 13	ROP 9.4 Dil Rate 0.00
EZ-MUD 25 kg pail 32 32 guar gum 25 kg bag 5 Fluid Volume Breakdown KCl/Polymon	
Kwikseal Fine 40 lb bag 80 Active bbl Additions bbl lime 20 kg bag 41 41 Annulus 405.0 Base F	Losses bbl Fluid Dumped
N-DRIL HT PLUS 50 lb bag 90 90 Pipe Cap 38.9 Drill Water 410.0	Transferred
	SCE -155.0 Evaporation
sodium bicarbonate 25 kg bag 35 Total Circ 866.9 Whole Mud	Trips
Reserve 1477.0 Barite 12.0 Prev Vol 2820.7 Chemicals 26.0	Jiner
Net Change 293.0 Other I	Total Surface
Fluid Types Vol bbl Devi	Total Surface Downhole
Daily Products Cost \$18,203.52 Total Daily Cost \$20,703.52 Survey MD Cumulative Products Cost \$193,080.18 Total Cumulative Cost \$244,330.18	Total Surface Downhole Total Losses -155.0 iation Information
Baroid Representatives Eugene Edwards James Munford Angle	Total Surface Downhole Total Losses -155.0 iation Information 1,506.0 m
Office90 Talinga Rd MelbourneTelephone61-03-9581-7555DirectionWarehousec/o of Esso Australia LtdTelephone61-3-56-881-445Horiz Displ.	Total Surface Downhole Total Losses -155.0 iation Information 1,506.0 m

Baroid Flu	961		_								Į	Date		02/26/2008			015 1,824.0	m
		Dai	ily Drilli	ng Fl		•						Spud Date	02/14/20		Rig Activit		2 1/4" Hole)
Operator Apache						nshaw/Stefar	n Schmidt						Well Name Wasabi -					
Contractor Seadrill					Report For Carlos C		•						Rig Name West Trite		Unit Syster Apache	m		
Country Australia			State/Province Victoria				Geograph Bass Str	ait						1 Vic-58P				
Bit Info	rmation 12.250	in	D	Orill Strin	g (in) / (I ID	m) Length		Casin Set	g m MD	Mode	el			ulation/Hyd 4-P-220	raulics Da Nat 14-		Nat 14	-P-220
Make/Type lets FFA lets Velocity let Impact Force Bit HHSI	SMITH/Mi6 9x1 1.353 79.3 1422.2 3.16	16VBPX 4 sq-in m/sec lbf hhp/in2	Drill Pipe Drill Pipe Drill Collar Motor	5.500 5.500 8.250 9.625	4.000 3.250 2.750 0.000	1,484.7 281.9 47.4	20.000 13.375	@		Bore Strok Eff(% bbl/st SPM gpm	es in) trk bbl/n	nin	14 0 550	.500 4.000 97 .139 94 13.10		000 7 39 4 13.10	0.1 (000 7 39)
Press Drop @ Bit Bit Depth ECD @ Csg Shoe ECD @ Bit	580 1,824.0 1.182 1.175	m SG	Riser Open Hole	19.120 16.000		66.0 967.0				Total Total BU T Total	Circ ime	Time , min	65 42	AV, Riser AV min DP AV max DC BU Strokes	25.6 43.7	Circ Pre Tot Pre Press D Press D	s Loss Prop DP	3200 3613 2062 64
Propertie Source			1 Pit # 6	Hyd Pit #		3	4		Ta	gets		Prog		Fluid Type		reatme	nts	
Fime Depth	m	1	4:00	21:0	00									New Mud B Total Mud E		1 bbl	.y	
FL Temp Density @ Deg C PV @ Deg C PV @ Deg C PV @ Deg C YP GELS 6000/300 2000/100 6/3 API Filt HTHP @ Deg C Cake API/HTHP Corr Solid NAP/Water Sand MBT DH @ Deg C ALK Mud ALK Filt Chlorides Tot. Hardness LGS/HGS ASG	Deg C SG Sec/qt cP Ibs/100 ft2	70 16 13 70 46 14. 14.C 9.11 0.3 41	50 @ 25 (@ 25 (@ 49 38 /19/24 0/54.0 0/54.0 0/11.0 5.0 0/11.0 5.0 0/11.0 5.0 0/24.1 4.1 /92.0 0.80 0.80 0.80 0.30 80/7.70 88,000 160 160 160 160 160 160 160	1.150 68 @ 18 @ 35 13/19 71.0/4 4.0/ 4.9 14.0 @ 11/2 4.4 -/92 1.0 0.3 0.40/2 45.0 16 2.7/ 24.92/2 3.119	300 49 56 57/24 53.0 55.0 111.0 9 144 1.0 0 0 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0							1.140 25 12/-/- 3.0 12.0	5.0 15.0	Began treat instructions Maintained unweighted Mixed 250 t on stand-by	rom Apac mud weigh premix as abl of 40pp PHB kept Rig ut of hole fi & cont. PO A. Retrieve Service top Pick up al a shoe at 8 00gpm. Co sh down fin Hi-Vis. Co	with EZ-Ne. he. it, using the Vis so by Mixed in reserved. Activity rom 8511 OH to suradio ac o drive, Fond make 47m. Tee, ont. RIH: om 1767 ent. drill a	m to 259m frace and titve source PIP handle up new 1 st MWD tc from 857m m to 1797 and slide 1	n. lay out e and er and 2 1/4"
Additional Propert KCL % Potassium Ion	% by vol mg/l		9.0 3,000	9.0 49,0										1797m to 18		uilleis i	nu ucuons	, IIOIII
Product Na Drilling Fluids Engir Drilling Fluids Engir potassium chloride Circal 60/16 Circal Y EZ-MUD Kwikseal Fine ALDACIDE G BARABLOK	neer 2	1	day(s) day(s) day(s) 000 kg bag 200 kg bag 200 kg bag 25 kg pail 40 lb bag 25 l can 50 lb bag	40 13 13 32 80 21	Rec	Used 1 1 10 3 2 2 1	30 10 11 30		Cost \$1,250.00 \$1,250.00 \$4,414.60 \$1,100.01 \$973.34 \$171.66 \$52.36	VSM-3 VSM-3 VSM-3 VSM-3	300 300	So Shaker	lids Cont	Tol Equipme Scre 10 89 10 255 10 255 10 255		6.0 6.0	Drilling Drilling Drilling Circulatir Trips Rig Surveys Fishing Run Cas Coring Reaming	20.0 0.5
BARA-DEFOAM W BARAZAN D PLUS barite bentonite calcium chloride fla			5 gal can 25 kg bag 000 kg bulk 000 kg bulk 25 kg bag	82 136.000 20.800 94			6 82 136.000 20.800 94			ATL-1 Vacu-F	600 To 120	cyclone 00 Degasser	Cones 16 4 0 0	Scre		Hrs	Testing Logging Dir Work Repair Other	0.5
caustic soda citric acid			25 kg pail 25 kg bag				98 38				Centr	rifuge	Speed	Feed	Rate	Hrs	Total Rotating	24.0
CLAYSEAL PLUS guar gum		2	16 kg drum 25 kg bag				10 5										ROP Dil Rate	13.5
ime N-DRIL HT PLUS			20 kg bag 50 lb bag				41 90			Fluid		ume Brea tive	kdown bbl	Additions	KCI/Polyi		sses	bbl
NO-SULF PAC-L potassium hydroxid soda ash sodium bicarbonate			17 kg pail 25 kg bag 25 kg bag 25 kg bag 25 kg bag 25 kg bag	48 84 145			48 84 145 55 35			Annu Pipe Active Total Total Rese Prev Net C	lus Cap e Pits Hole Circ rve Vol	s e	1105.2 85.7 513.0 1190.9 1703.9 1653.0 3113.8	Base Drill Water Dewatering Sea Water Whole Mud Barite Chemicals Other	197.1 46.0	Fluid Do Transfe SCE Evapora Trips Other Total So Downho Total Lo	umped erred ation urface ole	
Daily Products Cost			\$6,711.97	Total Da	ly Cost				\$9,211.97			luid Type		Vol bbl		viation I	nformatio	on 5.0 m
Cumulative Product Baroid Representat Office	ts Cost ives		199,792.15 Edwards					\$29 -9581	53,542.15 -7555						Survey T\ Angle Direction Horiz Disp	/D	1,499 21.4 33	

Baroid Flu	uid Se	rvice	es									Date		02/27/2008	Report No	0	016 1,900.0	m
		Da	ily Drilli	na Fl	uid Re	port						Spud Date			Rig Activity			111
Operator			.,		Report Fo	•						J	02/14/20 Well Name			кера	air Rig	
Apache					Bill Open	shaw/Stefa	n Schmidt						Wasabi -		lu va			
Contractor Seadrill					Report For Carlos Ca								Rig Name West Trit	on	Unit Syster Apache	m		
Country			State/Proving	ce/Region			Geograph		ea/County				Field or B	lock				
Australia Bit Info	rmation		Victoria	Orill Strin	g (in) / (m	1)	Bass Str in	ait Casir	na m					1 Vic-58P ulation/Hyd	Iraulics Da	ta		
Bit Size	12.250			OD	İD	Length	OD	Set	MD	Mod			Nat 1	14-P-220	Nat 14-	-P-220		4-P-220
Make/Type Jets	HTC/N 3x2		Drill Pipe Drill Pipe	5.500 5.500		502.7 290.9	20.000 13.375			0 Bor 0 Stro		in		3.500 4.000	6.50 14.0			500 .000
TFA		sq-in	Drill Collar	8.250	2.750	47.4		0		Eff(%)			97	97	7	g	97
Jets Velocity Jet Impact Force		m/sec lbf	Motor	9.625	0.000	10.0				SPI	strk VI			0.139 0	0.13 0			139 0
Bit HHSI		hhp/in2									n bbl/					Oire De		
Press Drop @ Bit Bit Depth	851.0	psi m	Riser	19.120		66.0					al GP al Cir	'M c Time		AV, Riser AV min DP	ı	Circ Pre		
ECD @ Csg Shoe		SG	Open Hole	16.000		1,043.0						, min		AV max DO		Press D		
ECD @ Bit Propertie	es	SG	1		2	3	4		Ta	argets	al Str		gram	BU Strokes	Fluid T	Press D	nts	
Source			Pit # 6	Pit #										Fluid Type		KCI/Po	lymer	
Time Depth	m		5:00 1,883	11: 1,9						+				New Mud E	3uilt: 17.7 Built: 4342.6	7 bbl 6 bbl		
FL Temp	Deg C	1.1	40 60 @ 30	4.455								4 4 4 4	4 470	ļ	Julii. 1012.0	0 001		
Density @ Deg C FV @ Deg C	SG sec/qt		4 @ 30	1.155 75 @						+-		1.140	1.170	rreated ac	tive with EZ	-MUD, ir	n preparat	tion of
PV @ Deg C	cР		3 @ 49	22 @								25	60	claystone for Added Cau		to main	tain nH	
YP GELS	lbs/100 ft2 lbs/100 ft2		38 5/20/24	38 16/20						+		25 12/-/-		Noticed co				nt.
600/300			.0/56.0 3.0/37.0	82.0/ 50.0/										_	d with 4ppb			
200/100 6/3			5.0/37.0	15.0/						+-					ed 1.15sg pi additional a			sweep
API Filt	ml/30 min ml/30 min	14	4.9 0 @ 149	5. 14.0 @								3.0 12.0		Mixed 250	bbl of 40ppl			LCM p
HTHP @ Deg C Cake API/HTHP	32nd in	14.	1/2	1/	1							12.0	15.0	on stand-by	•			
Corr Solid NAP/Water	% by Vol % by Vol		4.8 -/92.0	3. -/92										Premix with	h PHB kept i	ın reser\	/e.	
Sand	% by vol		0.80	3.0	30											Activity		
MBT pH @ Deg C	ppb Eq.	8 6	2.5 60 @ 28	8.80 (-				Cont. drill a directional				24 00 40
ALK Mud	Pm		0.20	0.2	20								10.00		mp 50 bbl h			
ALK Filt Chlorides	Pf/Mf mg/l		40/1.70 ·0,000	0.45/						+				up. Flow ch	neck, then P	POOH we	et to 1532	2m. Pur
Tot. Hardness	mg/l		160	20	0										and chase v			
LGS/HGS LGS/HGS	% by Vol		2.6/2.2 34/32.63	2.0/2 17.85/2						+-					n to 851m. I ny out BHA a			
ASG	SG		3.342	3.4										sleeve on r	notor, check	k orienta	ition. Dow	nload
										+					RAB-8 tool. I est MWD to			
Additional Propert			8.5	10	0										e out saver :		ali pipe ii	iaiiuiei
KCL % Potassium Ion	% by vol mg/l	4	4,000	55,0										1				
]				
Product Na			Units	Start	Rec	Used	End		Cost				olids Cont	rol Equipm				ime
Drilling Fluids Engil Drilling Fluids Engil			day(s) day(s)			1 1			\$1,250.0 \$1,250.0		1-300	Shaker		10 89	eens	Hrs	Drilling Circulati	ing 1
BARABLOK	ileei		50 lb bag			50	50		\$1,519.5	0 VSN	1-300			10 255		12.0	Trips	9
barite potassium chloride			000 kg bulk 1000 kg bag	136.000 30		2.000	134.000		\$949.7 \$882.9					10 255 10 255		12.0	Rig Surveys	. 2
potassium hydroxic			25 kg bag	145		6	139		\$269.8	8	1 300			10 233		12.0	Fishing	
ALDACIDE G BARA-DEFOAM W	/300		25 I can 5 gal can	21		1	20		\$87.3	7							Run Cas Coring	sinç
BARAZAN D PLUS			25 kg bag	82			82										Reaming	g
bentonite calcium chloride fla	rko 77%	1	000 kg bulk 25 kg bag	20.800 94		-	20.800				-1600	cyclone	Cones 16 4	Scre	eens	Hrs	Testing Logging	1
caustic soda	INC 11/0		25 kg pail	98			98					200 Degasser					Dir Work	
Circal 60/16 Circal Y			1200 kg bag 1200 kg bag	10 11			10			4							Repair Other	
citric acid			25 kg bag				38				Cen	trifuge	Speed	Feed	l Rate	Hrs	Total	24
CLAYSEAL PLUS EZ-MUD		2	216 kg drum 25 kg pail	10 30			10 30										Rotating ROP	9 8
guar gum			25 kg bag	5			5										Dil Rate	
Kwikseal Fine			40 lb bag 20 kg bag	79 41			79 41			Flu		olume Brea		Additions	KCI/Polyr		sses	bbl
lime N-DRIL HT PLUS			50 lb bag	90			90			Anr	nulus		412.1	Additions Base	bbl	Fluid D		וטטו
NO-SULF			17 kg pail	48			48 84				e Cap ive Pi		36.5	Drill Water		Transfe SCE	erred	
PAC-L soda ash			25 kg bag 25 kg bag	84 55		+	55				ive Pi al Ho			Dewatering Sea Water		Evapora	ation	
sodium bicarbonate	е		25 kg bag	35			35			Tota	al Cir	С	936.6	Whole Muc	t l	Trips		
						+					serve v Vol			Barite Chemicals		Other Total S	urface	
										Net	Cha	nge	17.7	Other		Downho	ole	
						-				Tot	al Vol	l Fluid Type	3374.6 es	Total Vol bbl		Total Lo	osses Information	on
Daily Products Cos			\$3,709.43			\4			\$6,209.4						Survey MI	D	1,506	6.0 m
Cumulative Product Baroid Representation			\$203,501.58 Edwards	i otai Cu	James M		<u> </u>	\$2	59,751.5	0					Survey TV Angle	עט	21.	9.6 m .46 Deg
Office	90 Talinga	Rd Mel	bourne	_		Telephon			1-7555	7					Direction	al	3	837 8.6 m
Warehouse	c/o of Ess	บ คนรูเเล	ııd Llü			Telephon	e 61-3-	ახ-88	1-445						Horiz Disp	JI.	48	o.o m

Baroid Flu	uid Sei			ne Fl-	ים אנו	nert						Date Spud Date		02/28/2008	Report No.		017 2,121.0 r	m
Daily Drilling Fluid Operator Rep					Report F	-						opuu Date	02/14/200 Well Name		Drilling			
Apache					Bill Ope	nshaw/Stefa	n Schmidt						Wasabi -		Illmit Conta			
Contractor Seadrill					Report For								Rig Name West Trite		Unit Syster Apache	ın		
Country Australia			State/Proving Victoria	ce/Region			Geograph Bass Stra		a/County				Field or BI Wasabi -	ock 1 Vic-58P				
Bit Info	12.250	in		Orill String	g (in) / (ID	m) Length		Casin Set	g m MD	_	Model			ulation/Hyd 4-P-220	raulics Da Nat 14-		Nat 14-	-P-220
Make/Type Jets	HTC/M 3x2	IXL-1	Drill Pipe Drill Pipe	5.500 5.500	4.000 3.250		20.000	@	135.	.O E	Bore in Strokes in	n		.500 1.000	6.5 14.0	00	6.5 14.0	00
TFA	1.325	sq-in	Drill Collar	8.250	2.750	47.4		w	007.	E	Eff(%)	•		97	9	7	9	7
Jets Velocity Jet Impact Force		lbf	Motor	9.625	0.000	10.0				5	bl/strk SPM		0	.139 0	0.1 0		0.1 0	
Bit HHSI Press Drop @ Bit		hhp/in2 psi									gpm bbl/r Fotal GPl			AV, Riser		Circ Pr	ess psi	3600
Bit Depth ECD @ Csg Shoe	2,121.0 1.170		Riser Open Hole	19.120 16.000		66.0 1,264.0					Fotal Circ 3U Time			AV min DP AV max DC		Tot Pre Press [s Loss Drop DP	
ECD @ Bit Propertie	1.170 es		lyd 1	2		3	4		l Ta	arge	Total Stro		gram	BU Strokes	Fluid 1	Press [reatme	Orop An	
Source		Flo	w Line 4:40	Pit #	6	Pit # 6 16:30								Fluid Type		KCI/Po		
Time Depth	m		1,905	1,98	39	2,030				#				New mud be Total mud b			Continued	to
FL Temp Density @ Deg C	Deg C SG		41 70 @ 32	48 1.180 @	@ 38	50 1.175 @ 39			Х		X	1.140	1.170	treated active Potash. Add				
FV @ Deg C PV @ Deg C	sec/qt cP		5 @ 32 8 @ 49	76 @ 22 @	49	75 @ 39 19 @ 49				+				properties a	ind mud we	eight. Ac	lded 50 bb	ls of
YP GELS	lbs/100 ft2	13	34 /17/21	49 17/21		41 16/19/21				\mp		25 12/-/-		40ppb LCM as losses a				
600/300 200/100		70	.0/52.0 .0/33.0	93.0/7 59.0/4	'1.0	79.0/60.0 50.0/38.0				7				formation.In	itial seepa	ge losse	s 30bbl/hr,	down
6/3 API Filt	ml/30 min		.0/12.0	18.0/1 4.0	5.0	16.0/13.0			Х	#		3.0		to 7-10 bbl/l 2,3 and 4 w	ith 280 me	sh. Drilli	ng through	I
HTHP @ Deg C	ml/30 min	14.6	6 @ 149	14.0 @	149	14.0 @ 149				#		12.0		predominan stringers. C	-			
Cake API/HTHP Corr Solid	32nd in % by Vol		4.0	3.9)	3.9				#				and inhibite	d indicating	gadequa	ate hole cle	eaning
NAP/Water Sand	% by Vol % by vol		/92.0 0.80	-/92. 1.00	0	-/92.0 0.75				+				and KCI cor	Rig	Activity		
MBT pH @ Deg C	ppb Eq.	8.9	2.5 0 @ 28	2.0 8.90 @		2.0 8.90 @ 38				+				RIH from 85 Took weigh				
ALK Mud ALK Filt	Pm Pf/Mf		0.20 10/2.00	0.30		0.30 0.40/1.80				Ŧ				reamed fror	n 1,619 m	to 1,639	m. RIH to	1,806
Chlorides Tot. Hardness	mg/l mg/l		9,000 200	50,00 280		50,000 280				Ŧ				m. Took we bottom. No	• .	s) and d	continuea t	o RIH to
LGS/HGS LGS/HGS	% by Vol	1	.1/2.9 16/42.74	0.4/3 3.61/52	3.5	0.7/3.2 6.46/47.45				#				Drilled ahea				
ASG	SG		3.756	4.03		3.912				#				stand.	ono with ot	л тоуо р	orioninou o	vory
														ROP has ge	enerally be	en 10- 2	0 m hour	
Additional Propert	% by vol		10.0	10.0		10.0				\pm				Large sized				
Potassium Ion	mg/l	5	5,000	55,00	00	55,000				+				observed or				ximatel
Product Na	ame	U	Jnits	Start	Rec	Used	End		Cost			Sc		1- 7 inch in rol Equipme		Mud wei	ght creep t Tin	
Drilling Fluids Engi Drilling Fluids Engi			day(s) day(s)			1			\$1,250.0 \$1,250.0		/SM-300	Shaker		Scre 10 280 255	ens	Hrs 22 (Drilling Circulatin	22.0
EZ-MUD barite		1	25 kg pail 000 kg bulk	30		9			\$772.4	7 ∖	/SM-300 /SM-300			10 280 10 280		22.0	Trips Rig	2.0
potassium hydroxid	de		25 kg bag	139		8	131		\$359.8	4 ∖	/SM-300			10 255 280) Surveys	
ALDACIDE G BARABLOK			25 I can 50 lb bag	20 50		1	50		\$87.3	'							Fishing Run Casi	inç
BARA-DEFOAM W BARAZAN D PLUS			5 gal can 25 kg bag				6 82										Coring Reaming	
bentonite calcium chloride fla	ake 77%	1	000 kg bulk 25 kg bag	20.800 94			20.800			P	Hydro ATL-1600	cyclone	Cones 16 4	Scre	ens	Hrs	Testing Logging	
caustic soda Circal 60/16		1	25 kg pail 1200 kg bag	98 10			98 10			٧	acu-Flo 12	00 Degasser					Dir Work Repair	
Circal Y			1200 kg bag	11			11			1	Cont	rifuao	Canad	Food	Doto	Llro	Other Total	24.6
citric acid CLAYSEAL PLUS		2	25 kg bag 16 kg drum	38 10			10			t	Cent	rifuge	Speed	Feed	Rale	Hrs	Rotating	24.0
guar gum Kwikseal Fine			25 kg bag 40 lb bag	5 79			5 79										ROP Dil Rate	10.0 0.00
lime N-DRIL HT PLUS			20 kg bag 50 lb bag	41 90			90	-		F		ume Breative	kdown bbl	Additions	KCI/Polyi		sses	bbl
NO-SULF PAC-L			17 kg pail 25 kg bag				48 84				Annulus Pipe Cap		1317.4			Fluid D Transfe	umped	
potassium chloride		1	1000 kg bag				28 55			_/	Active Pit	S	503.0	Dewatering	00.0	SCE Evapor		-60.0
soda ash sodium bicarbonate	е		25 kg bag 25 kg bag	35			35			רן⊑	Total Circ		1920.9	Sea Water Whole Mud		Trips	alion	
										∏ F	Reserve Prev Vol			Chemicals		Other Total S		
											Net Char Γotal Vol	ge	-103.6 3270.9	Other Total	53.8	Downh Total L	ole osses	-97.4 -157.
Daily Products Cos	st		\$1,694.56	Total Dai	ly Cost				\$4,194.5			luid Type		Vol bbl		viation	Informatio	n
Cumulative Products Baroid Representa	ts Cost		205,196.14 Edwards	Total Cur					53,946.1						Survey T\ Angle		1,499	
Office	90 Talinga	Rd Melk	ourne		ומני טמים	Telephon				\sharp					Direction	al.	33	37
Warehouse	c/o of Esso	Austrai				Telephon This report, the softwere, a	e 61-3-5 ny data contained in this repo	ort and any interp	1-445 retations based on this i	report are	offered "AS-IS" and "W	HERE-IS." THERE ARE NO	REPRESENTATIONS OR WA	RRANTIES, EXPRESSED OR INM	Horiz Disp	VI.	CHANTABILITY AND/OR FITE	.6 m

Baroid Flu	iiu se	VICE	:3										Date		02/29/2008	Report N Depth	0	018 2,286.0	m
		Da	ily Drill	ing Fl	uid R	eport							Spud Date	02/14/20		Rig Activit		lling	
					Report F	or nshaw/Stefa	n Schmidt	ŀ						Well Name Wasabi -	ne				
ontractor				Report F	or	T Octimid							Rig Name	Unit System					
Seadrill Country	ountry State/Province/Region			Carlos C	zarvajai	ea/Cour	nty				West Trit								
Australia Bit Info	Australia Victoria Bit Information Drill Strin			g (in) / (m)	Bass Str in	ait Casir	ng m						1 Vic-58P ulation/Hyd	raulics Da	ta			
Bit Size Make/Type	12.250 HTC/N		Drill Pipe	OD 5.500	İD	Length	OD 20.000	Set	M		Mod Bore				4-P-220 5.500	Nat 14- 6.5			-P-220 500
Jets TFA Jets Velocity Jet Impact Force Bit HHSI	3x2	24 sq-in m/sec lbf hhp/in2	Drill Pipe Drill Collar Motor	5.500 5.500 8.250 9.625	3.250 2.750	290.9 47.4	13.375			57.0	Strol Eff(% bbl/s SPM gpm	kes ir %) strk I bbl/r	min	14	4.000 97 1.139 0	0.5 14.0 9 0.1 0	000 7 39 1	14.0 9 0.1 (000 17 139 0
Press Drop @ Bit Bit Depth ECD @ Csg Shoe	2,121.0 1.185		Riser Open Hole	19.120 16.000		66.0 1,429.0					Tota BU 1	I GPI I Circ Time I Stro	Time , min		AV, Riser AV min DP AV max DC BU Strokes				
ECD @ Bit Propertie	es	ŀ	lyd 1	2		3	4			Tar	gets	Suc		gram		Fluid	Treatme	nts	
Source Time Depth FL Temp Density @ Deg C FV @ Deg C PV @ Deg C YP GELS 600/300 200/100 6/3 API Filt HTHP @ Deg C Cake API/HTHP Corr Solid NAP/Water Sand MBT pH @ Deg C ALK Mud ALK Filt Chlorides Tot. Hardness LGS/HGS LGS/HGS ASG	m Deg C SG sec/at cP Ibs/100 ft2 Ibs/100 ft2 Ibs/100 min 32nd in % by Vol % by Vol % by Vol ppb Eq. Pm Pf/Mf mg/l mg/l mg/l SG	1.18 600 16 12 62 39 13 13.5 - - 8.5 0.2 4	Pit # 6 3:00 3:00 5:10 3:51 35 @ 40 0 @ 40 6 @ 30 0 /16/18 .0/46.0 .0/31.0 .0/31.0 .0/11.0 4.6 5 @ 149 1/1 6.2 //90.0 0.75 2.0 0 @ 40 0.15 2.0/1.15 8,000 200 4/1.8 4/1.8 4/1.8	Pit # 11:: 12:: 2,24: 55: 1.185: 57 @ 1.185: 57 @ 1.185: 57 @ 1.185: 57 @ 1.185: 57 @ 1.185: 57 @ 1.185: 57 @ 1.185: 57. 60: 5	15 40 33 3 40 9 40 9 40 9 40 9 40 9 40 9 4	Flow Line 17:30 2,250 54 1.175 @ 41 50 @ 41 16 @ 49 39 14/18/22 71.0/55.0 45.0/34.0 15.0/12.0 5.0 14.0 @ 149 1/1 4.1 -/92.0 0.75 2.0 9.00 @ 40 0.20 0.30/2.00 48,000 200 0.9/3.2 8.16/47.22 3.851			X	X *	X		1.140 25 12/-/- 3.0 12.0	5.0 15.0	Pumped 10 Marginal inc shakers. Continued t m at midnig overpull at 2 spot. Pump Drilled to 2, Stopped dri 1.9 ppg pill Continued c	puilt: 4,620 or treated at Potash. eeping mund premix. did loss with bbl 1.13 stall increase edominant artz stringe bbl 1.9 S. crease in community of the cr	O.8bbls. ctive with discovery with Added (in A	with addit 0.75 ppb P Vis 100+ s ags observed a at 2,227 r bserved a 2 1/4" hole m hour. 4 d through suspensive week out of the suspensive wheek out and the suspensive wheek out and the suspensive wheek out and the suspensive wheek out and the suspensive wheek	tions of Pac L to seconds yed at sand with the to 2,28 0 klbs tight pp. 1 coal. 10 bbls
Additional Propert KCL % Potassium Ion	ties % by vol mg/l	5	9.5 5,000	9.0		9.0 50,000									Treatments Cuttings stil inhibited. As delayed cut	l generally s per yeste tings trans	consolic rday ma port to si	lated and rginal sign urface. Co	ntinued
Product Na Drilling Fluids Engir Drilling Fluids Engir KCI/Polymer potassium chloride PAC-L EZ-MUD BARAZAN D PLUS ALDACIDE G BARABLOK BARA-DEFOAM W	neer 2 neer	1	Jnits day(s) day(s) bbl 000 kg bag 25 kg bag 25 kg pail 25 kg bag 25 l can 50 lb bag 5 gal can	28 84 21 82 19 50 6		Used 1 1 1.0 1.0 6 20 8 4	22 64 13		Cost \$1,250 \$1,250 \$2,648 \$1,637 \$686 \$608	3.76 7.40 3.64	VSM- VSM- VSM- VSM-	300 300 300	Shaker Shaker	olids Cont	presence of rol Equipme Scre Scre 10 280 255 10 280 10 255 280 Scre ent ens	Hrs 24.0		ng 24.	
barite bentonite calcium chloride fla caustic soda Circal 60/16 Circal Y citric acid CLAYSEAL PLUS	ake 77%	1	000 kg bulk 000 kg bulk 25 kg bag 25 kg pail 1200 kg bag 1200 kg bag 25 kg bag	20.800 94 98 10 11 38			133.000 20.800 94 98 10 11 38					Flo 120	00 Degasser rifuge	16 4 0 0	Feed	Rate	Hrs	Logging Dir Work Repair Other Total Rotating ROP Dil Rate	24.
guar gum Kwikseal Fine			25 kg bag 40 lb bag	5			5 79				Fluid		ume Brea	akdown bbl	Additions	KCI/Poly		sses	bbl
KWIKSEAI FINE lime N-DRIL HT PLUS NO-SULF potassium hydroxid soda ash sodium bicarbonate			20 kg bag 50 lb bag 17 kg pail 25 kg bag 25 kg bag 25 kg bag	41 90 48 131 55		11	41 90 48		\$494	1.78	Active Total Total Research Previous Net	ulus Cap /e Pit I Hole I Circ erve Vol Chan	s e :	1317.4 100.5 444.0 1552.5 1861.9 1386.0 3270.9 111.6	Base Drill Water Dewatering Sea Water Whole Mud Barite Chemicals Other	200.6	Fluid D Transfe SCE Evapor Trips Other Total S Downho	umped erred ation urface ole	-72. -40.
											rota	l Vol F	luid Type	3382.5 es	Total Vol bbl	De		Informatio	
Daily Products Cos Cumulative Produc Baroid Representat Office Warehouse	ts Cost	Eugene Rd Melt		Total Da Total Cu	ily Cost mulative Brad Ja			\$2 3-958	\$8,576 272,522 1-7555 31-445	2.68						Survey M Survey T\ Angle Direction Horiz Dis	/D	1,499 21.4	3.0 m 9.6 m 46 Deg 37 3.6 m

Baroid Representatives Eugene Edwards
Office 90 Talinga Rd Melbourne
Warehouse c/o of Esso Australia Ltd

Baroid Flu	uid Sei											Date		03/01/2008			019 2,313.0 r	m	
	uid Report For	ort						Spud Date	02/14/20		Rig Activity Wire Line logs								
Operator Apache	Operator Apache						an Schmid	dt					Well Name Wasabi -						
Contractor					Report For								Rig Name		Unit Syste	m			
Seadrill Country			State/Province	ce/Region	Michael Ba	аггу	Geograph	ic Area	/Cou	nty			West Trite Field or BI		Apache				
Australia	ormation		Victoria	Orill Strin	g (in) / (m)		Bass Stra	ait Casing	ım					1 Vic-58P	raulice Da	ita			
Bit Size	12.250			OD	İD	Length	OD	Set	М	D	Model		Nat 1	14-P-220	Nat 14	-P-220	Nat 14-		
Make/Type Jets	HTC/M 3x2		Motor	9.625	0.000	1.0	20.000 13.375				Bore in Strokes			3.500 4.000	6.5 14.0		6.5 14.0		
TFA		sq-in						•			Eff(%)			97	9	7	9	7	
Jets Velocity Jet Impact Force		m/sec lbf									bbl/strk SPM		0	0.139 0	0.1		0.1 0		
Bit HHSI		hhp/in2									gpm bb Total G			AV, Riser		Circ Pre	nee nei		
Press Drop @ Bit Bit Depth		psi m	Riser	19.120		66.0					Total Ci	irc Time		AV min DP		Tot Pre	s Loss		
ECD @ Csg Shoe ECD @ Bit	1.210	SG SG	Open Hole	16.000		1,456.0					BU Tim Total St			AV max DC BU Strokes	;	Press D			
Propertie	es	ŀ	lyd 1		2	3	4			Tar			gram	DO Strokes	Fluid	Treatme	nts		
Source Time			Pit # 6 20:00	Pit #										Fluid Type Added 2 pp	h Barahlas	KCI/Po		Don	
Depth	m		2,313	2,3	13									Gumbo cato					
FL Temp Density @ Deg C	Deg C SG	12	10 @ 30	1.210					Х	X		1.140	1.170	SG pill at 2,					
FV @ Deg C	sec/qt	54	@ 30	50 @	9 40				^			1.110	1.170	additional c	uttings obs	served at	shakers (>100%	
PV @ Deg C YP	cP lbs/100 ft2		0 @ 49 31	18 @								25	60	ł					
GELS	lbs/100 ft2	1	4/20/-	12/18	3/22							12/-/-		1					
600/300 200/100			.0/51.0 .0/33.0	68.0/ 41.0/										1					
6/3	!/20	14	.0/12.0	13.0/								2.0	5.0	1					
API Filt HTHP @ Deg C	ml/30 min ml/30 min	12.8	4.8 3 @ 149	5. 14.0 @					\dashv			3.0 12.0		1					
Cake API/HTHP	32nd in		1/- 5.9	1/ 5.	1]					
Corr Solid NAP/Water	% by Vol % by Vol	-	/90.0	-/91															
Sand MBT	% by vol ppb Eq.		0.70 2.5	0.8									15.0	Continued of		Activity	12 m ac n	or DD	
pH @ Deg C	рро Ец.		0 @ 40	8.70 (instructions					
ALK Mud ALK Filt	Pm Pf/Mf		0.20 25/0.90	0.16/	1 25									hole clean.					
Chlorides	mg/l	5	1,000	49,0	000									Backreame to 2,210 m.			-		
Tot. Hardness LGS/HGS	mg/l % by Vol		.5/3.4	0.7/-										to 2,186 m.				.,21011	
LGS/HGS	ppb	23.0	00/50.24	6.03/6	64.78									Backreame	,	,		ed 10	
ASG	SG		3.520	3.9	91				\dashv					bbl hivis/we backreamfr	• .			spots	
Additional Proper	tion													at 2,186 m,			_		
KCL %	% by vol		9.5	10										2,115 m.	d and laga	od at 7' r	minuto fron	~ 1 00 <i>0</i>	
Potassium Ion	mg/l	5	2,000	53,0	000									Backreame m to 1,780					
Dun donat No		Ι.	In it a	·			F. d							back BHA. I		wireline			
Product Na Drilling Fluids Engil			Jnits day(s)	Start	Rec	Used 1	End		Cost 1,250	0.00		Shaker	onds Cont	rol Equipme Scre		Hrs	Tin Drilling	ne 5.	
Drilling Fluids Engi		1	day(s)			1					VSM-300						Circulatin	ng 1.	
barite BARAZAN D PLUS	3	<u>'</u>	000 kg bulk 25 kg bag			43	113.000				VSM-300 VSM-300						Trips Rig	4.	
potassium chloride	:	· ·	1000 kg bag			14			6,180 1,96		VSM-300						Surveys		
PAC-L CLAYSEAL PLUS		2	25 kg bag 216 kg drum			24			1,90								Fishing Run Casi	ing	
BARA-DEFOAM W			5 gal can 25 kg bag			27			1,850 1,21								Coring Reaming		
potassium hydroxic BARABLOK	je e		50 lb bag			20				7.80	Hydr	ocyclone	Cones	Scre	ens	Hrs	Testing		
Circal 60/16			1200 kg bag 25 kg bag			1					ATL-1600) 1200 Degasser	16 4				Logging Dir Work		
guar gum soda ash			25 kg bag 25 kg bag			3				9.75	Vacu-1 10	1200 Degasser	0 0				Repair		
ALDACIDE G BAROFIBRE FINE			25 I can 25 lb bag		50		19 50				Co	ntrifuge	Speed	Feed	Data	Hrs	Other Total	13. 24.	
bentonite		1	000 kg bulk				20.800				Ce	nunuge	Speeu	i eeu	Nate	ПІЗ	Rotating	5.	
calcium chloride fla	ake 77%		25 kg bag 25 kg pail				94 98										ROP Dil Rate	4.	
caustic soda Circal Y		·	1200 kg bag				11				Fluid V	olume Brea	akdown		KCI/Poly	mer	Dii Kale	0.0	
citric acid			25 kg bag				38					Active	bbl	Additions	bbl	Lo:	sses	bbl	
EZ SPOT EZ-MUD			55 gal drum 25 kg pail		8		13				Annulus Pipe Ca			Base Drill Water	0.1	Transfe			
Kwikseal Fine			40 lb bag	79			39				Active F	Pits	430.0	Dewatering		SCE	ation	-174.	
lime N-DRIL HT PLUS			20 kg bag 50 lb bag				41 90				Total Ci			Sea Water Whole Mud		Evapora Trips	auui		
NO-SULF			17 kg pail	48			48				Reserve	е	1173.0	Barite	30.0	Other	urface		
Omyacarb 5 sodium bicarbonate	e		25 kg bulk 25 kg bag		48.000		48.000 35				Prev Vo Net Cha			Chemicals Other	62.5	Total Some		-1.	
STEELSEAL			25 kg sack		60		60				Total Vo	ol	3299.4	Total		Total Lo	osses	-175.	
Daily Products Cos	st		\$30,266.77						2,76			Fluid Type	:5	Vol bbl	Survey M	D	nformatio 1,506		
Cumulative Produc	ts Cost		241,539.45		mulative Co				5,289						Survey T		1,499		
Baroid Representation Office	90 Talinga	Rd Mell			Brad Jacks	son Telephon	e 61-03	-9581-	7 <u>55</u> 5	;					Angle Direction		33	37	
Warehouse	c/o of Ess	o Austral	ia Ltd		-	Telephon		6-881							Horiz Dis	pl.	48	.6 m	

Baroid Flu	uid Se		s ily Drilli	ng Fl	uid Rep	oort						Date Spud Date	e 02/14/20	03/02/2008	Report No.	у	020 2,313.0 r	m
Operator Apache Contractor Seadrill				_	Report For Shaugn Co Report For Michael Ba		an Schmi	dt					Well Name Wasabi - Rig Name West Trit	e 1	Unit Syster			
Country Australia			State/Province Victoria	ce/Region		y	Geograph Bass Str		a/Cou	nty			Field or B					
Bit Info	ormation				g (in) / (m)		in	Casin					Circ	ulation/Hyd				5 000
Bit Size Make/Type Jets TFA Jets Velocity Jet Impact Force Bit HHSI Press Drop @ Bit	12.250 HTC/M 3x2 1.325	XL-1 sq-in m/sec lbf hhp/in2 psi		OD 5.500 5.500 8.250 9.625	2.750	Length 499.7 290.9 47.4 10.0		@	1		Model Bore in Strokes Eff(%) bbl/strk SPM gpm bb Total G	in <u>I/min</u> PM	14	14-P-220 5.500 4.000 97 0.139 0	Nat 14- 6.5 14.0 97 0.1	00 000 7 39) Circ Pr		00 000 7 39
Bit Depth ECD @ Csg Shoe	848.0	SG	Riser Open Hole	19.120 16.000		66.0 1,456.0					BU Tim			AV min DP AV max DC	:	Press [es Loss Orop DP	
ECD @ Bit Propertie	es	SG	1	2	2	3	4			Tar	Total St gets		gram	BU Strokes	Fluid 1	reatme	Orop An Ints	
Source			Pit # 6 10:00	Pit #										Fluid Type	:14.	KCI/Po		
Time Depth	m		2,313	2,3										New mud b Total mud b		0.3 bbls 3.4 bbbls		
FL Temp Density @ Deg C FV @ Deg C PV @ Deg C	Deg C SG sec/qt cP	54	00 @ 27 1 @ 27 7 @ 49	1.2° 65 17 @	5				Х	X		1.140	1.170	ļ				scosity
YP GELS 600/300	lbs/100 ft2	12 67	33 2/17/21 .0/50.0 .0/31.0	35 14/1 69.0/5 42.0/3	5 9/- 52.0							25 12/-/						
200/100 6/3			2.0/9.0	13.0/	11.0									1				
API Filt HTHP @ Deg C Cake API/HTHP Corr Solid	ml/30 min ml/30 min 32nd in % by Vol	14.0	5.0 0 @ 149 1/1 5.1	4.6 13.6 @ 1/- 6.1	149							3.0 12.0						
NAP/Water Sand	% by Vol % by vol		/91.0 0.70	-/90 0.8											Ria	Activity	,	
MBT pH @ Deg C ALK Mud	ppb Eq.		2.0 60 @ 27	9.50 (0.2	5 D) 27									Rigged up S m and tool I way to surfa	Schlumberg hung up. P	ger wirel OOH an	ine. RIH to d logged o	n the
ALK Filt Chlorides	Pf/Mf mg/l		15/1.22 9,000	0.15/0 49,0										Rigged up r				
Tot. Hardness	mg/l		240	16	0									tool. Unable hole. Laid o				
LGS/HGS LGS/HGS ASG	% by Vol ppb SG	11.7	.3/3.8 72/55.57 3.793	2.7/3 24.67/5 3.49	50.01									Made up R.				
Additional Proper			10.0	9.0														
Potassium Ion	% by vol mg/l		2,000	48,0										į				
Product Na Drilling Fluids Engi		U	Units day(s)	Start	Rec	Used 1	End		Cost \$1,25	0 00		Shaker		trol Equipme Scre		Hrs	Tin Drilling	ne
Drilling Fluids Engi BARAZAN D PLUS ALDACIDE G BARABLOK BARA-DEFOAM W barite BAROFIBRE FINE	neer S /300		day(s) 25 kg bag 25 l can 50 lb bag 5 gal can 000 kg bulk 25 lb bag	35 19 30 3 113.000 50		1 3	32 19 30 3 113.000 50	\$	\$1,25	0.00	VSM-300 VSM-300 VSM-300 VSM-300			00	O.I.C	1110	Circulatin Trips Rig Surveys Fishing Run Casi Coring	6. inç
bentonite calcium chloride fla	ake 77%	ı	000 kg bulk 25 kg bag	94			20.800 94				Hydr	ocyclone	Cones	Scre	ens	Hrs	Reaming Testing	
caustic soda Circal 60/16 Circal Y citric acid			25 kg pail 1200 kg bag 1200 kg bag 25 kg bag	9 11			98 9 11 38				ATL-1600 Vacu-Flo) 1200 Degassei	16 4 r 0 0				Logging Dir Work Repair Other	18.
CLAYSEAL PLUS EZ SPOT			216 kg drum 55 gal drum	8 8			8				Ce	ntrifuge	Speed	Feed	Rate	Hrs	Total Rotating	24.
EZ-MUD guar gum			25 kg pail 25 kg bag				13 4										ROP Dil Rate	0.0
Kwikseal Fine lime			40 lb bag 20 kg bag				39 41					olume Bre Active	akdown bbl	Additions	KCI/Polyr		sses	bbl
N-DRIL HT PLUS			50 lb bag	90			90				Annulus	3	410.9	Base	DD.		umped	
NO-SULF Omyacarb 5			17 kg pail 25 kg bulk	48.000			48 48.000				Pipe Ca Active F	Pits	406.3	Drill Water Dewatering		SCE		-14.
PAC-L potassium chloride	:		25 kg bag 1000 kg bag				40 28				Total H			Sea Water Whole Mud		Evapor Trips	ration	
potassium hydroxic soda ash			25 kg bag 25 kg bag	93			93 52				Reserve Prev Vo	е	1239.0	Barite Chemicals		Other Total S	urface	
soda asır sodium bicarbonatı STEELSEAL	е		25 kg bag 25 kg sack	35			35 60				Net Cha Total V	ange ol	-14.4 3285.0	Other Total	0.3	Downh Total L	ole osses	-14.
Daily Products Cos Cumulative Produc	ts Cost		241,996.17	Total Da Total Cu	mulative Co				\$2,95 08,24			Fluid Typ	es	Vol bbl	Survey MI Survey T\	D	1,506 1,499	.0 m .6 m
Baroid Representa Office	90 Talinga	Rd Mell			Brad Jack	Son Telephon	e 61-03	- <u>958</u> 1	-7 <u>55</u> 5	5	l				Angle Direction		33	
Warehouse	c/o of Ess	Austral	ia Ltd			Telephon									Horiz Disp	ol.	48.	.6 m

											Date		03/03/2008			021 2,313.0 m	n
		Da	ily Drilli	ng Flւ	uid Re	port					Spud Date	02/14/20	08	Rig Activity	y Trip	ping	
Operator					Report For							Well Name	9				
Apache Contractor					Report For	Corless/Stef	an Schmid	π				Wasabi - Rig Name		Unit Syster	m		
Seadrill			State/Province	o/Bogion	Michael E	Barry	Geograph	io Aroo/C	County			West Trit		Apache			
Country Australia			Victoria				Bass Stra		Jounty				1 Vic-58P				
Bit Info	ormation 12.250	in	D	orill String	g (in) / (m ID	Length		Casing Set	m MD	Model			ulation/Hyd 14-P-220	raulics Da Nat 14-		Nat 14-l	D-220
Make/Type	HTC/M	IXL-1	Drill Pipe	5.500	4.000	544.7	20.000	@	135.0	Bore i		6	3.500	6.5	00	6.50	00
Jets TFA	3x2 1.325		Drill Pipe Drill Collar	5.500 8.250	3.250 2.750	290.9 47.4		@	857.0	Stroke Eff(%)	s in	1.	4.000 97	14.0 97		14.0 97	
Jets Velocity	1.020	m/sec	Motor	9.625	0.000	10.0				bbl/strl	k	C).139	0.1	39	0.13	39
Jet Impact Force Bit HHSI		lbf hhp/in2								SPM apm bl	hl/min		0 I	0	ı	0	
Press Drop @ Bit		psi								Total C	SPM	1	AV, Riser		Circ Pre		
Bit Depth ECD @ Csg Shoe	893.0	m SG	Riser Open Hole	19.120 16.000		66.0 1,456.0					Circ Time ne , min		AV min DP AV max DC		Tot Pres Press D		
ECD @ Bit		SG								Total S	Strokes		BU Strokes		Press D	rop An	
Propertie Source	es	Flo	ow Line	2 Pit #		3	4		Ta	gets	Pro	gram	Fluid Type	Fluid 1	reatmer KCI/Pol		
Time			12:00	20:0	00								New Mud B	uilt: 26	.1 bbls	yiiioi	
Depth FL Temp	m Deg C		2,313	2,31 59					_				Total Mud E	Built: 4,739	.5 bbls		
Density @ Deg C	SG		1.235	1.24	10				ХХ		1.140	1.170	Treated act	ive system	with 0 1	nnh Causti	ic
FV @ Deg C PV @ Deg C	sec/qt cP	16	57 6 @ 49	61 19 @					_				Potash to m	aintain flui	d alkalini	ty.	
YP	lbs/100 ft2	2	36	32							25		High viscos			th 4 ppb Ba	arazan
GELS 600/300	lbs/100 ft2		3/18/- .0/52.0	12/1 70.0/5							12/-/-	20/-/-	D. Barite for	r 1.9 s.g sw	eeps.		
200/100			.0/31.0	43.0/3									Hi-weight s	weeps bou	ght back	10-50% in	crease
6/3 API Filt	ml/30 min		5.0	13.0/1							3.0	5.0	in coal cavir	ngs to surfa	ace.		
HTHP @ Deg C	ml/30 min	13.	8 @ 149 1/1	12.8 @	149						12.0	15.0]				
Cake API/HTHP Corr Solid	32nd in % by Vol		6.1	7.0)								ł				
NAP/Water Sand	% by Vol % by vol		/90.0 0.80	-/89 0.7										Dia	Activity		
MBT	ppb Eq.		2.0	2.5	5								Continued t	o RIH. Tigh	nt spots a		
pH @ Deg C ALK Mud	Pm	9.0	0 @ 27 0.20	8.50 @ 0.1								10.00	and 1,394 to				
ALK Mud ALK Filt	Pf/Mf		15/0.80	0.05/0	0.60								Freed pipe high viscosi				
Chlorides Tot. Hardness	mg/l mg/l	4	9,000 200	51,0 120									bottoms up.		•		
LGS/HGS	% by Vol		.1/5.0	2.7/4	1.3								surface) Co		,		
LGS/HGS ASG	ppb SG		43/73.01 3.900	24.58/6 3.58									washed to 2 m.Pumped	,			
			5.000	0.00									Logged out	-	•		-
Additional Proper	ties								_				weighted sv				check
KCL %	% by vol		10.0	9.0									and POOH displaced sl			•	iaht
Potassium Ion	mg/l	5	2,000	48,0	00								1	ug. 1 0011	.,		.9
Product Na	ame		Units	Start	Rec	Used	End	C	ost		9/	olide Cont	rol Equipme	ant		Tim	10
Drilling Fluids Engi			day(s)	Start	Nec	1 Useu			,250.00		Shaker	Jilus Colli	Scre		Hrs	Drilling	ic .
Drilling Fluids Engi barite	ineer	1	day(s) 000 kg bulk	112 000		17.000				VSM-30 VSM-30						Circulating Trips	g 13.
potassium hydroxid	de	'	25 kg bag	93		17.000				VSM-30						Rig	13.
ALDACIDE G BARABLOK			25 I can 50 lb bag	19 30			19 30			VSM-30	0					Surveys Fishing	
BARA-DEFOAM W	V300		5 gal can	30			3			j						Run Casir	าดู
BARAZAN D PLUS BAROFIBRE FINE			25 kg bag 25 lb bag	32 50			32 50			ļ						Coring Reaming	
bentonite		1	000 kg bulk				20.800			Hyd	Irocyclone	Cones	Scre	ens	Hrs	Testing	
calcium chloride fla caustic soda	ake 77%		25 kg bag 25 kg pail	94 98			94			ATL-160	00 1200 Degasser	16 4				Logging Dir Work	10.
Circal 60/16			1200 kg bag	9			9			Vacu-110	7 1200 Dega33ci	0 0				Repair	
Circal Y citric acid			1200 kg bag 25 kg bag	11 38			11 38			C	entrifuge	Speed	Feed	Dato	Hrs	Other Total	24.
CLAYSEAL PLUS		2	216 kg drum	8			8				entinage	Speeu	1 660	Nate	1115	Rotating	24.
EZ SPOT			55 gal drum	8			13			ļ						ROP Dil Rate	0.00
EZ-MUD guar gum			25 kg pail 25 kg bag	13 4			4			Fluid \	Volume Brea	akdown		KCI/Polyr	ner	Dii Kale	0.0
Kwikseal Fine			40 lb bag	39			39 41			Annulu	Active	bbl	Additions	bbl	Los Fluid Du	sses	bbl
lime N-DRIL HT PLUS			20 kg bag 50 lb bag	41 90			90			Pipe C			Base Drill Water		Transfe		
NO-SULF			17 kg pail	48			48			Active	Pits	496.0	Dewatering		SCE		-85.
Omyacarb 5 PAC-L			25 kg bulk 25 kg bag	48.000 40		-	48.000 40			Total F Total C			Sea Water Whole Mud		Evapora Trips	auon	
potassium chloride)		1000 kg bag	28			28			Reserv	ve .	1092.0	Barite	25.5	Other		
soda ash sodium bicarbonat	e		25 kg bag 25 kg bag	52 35		1	52 35			Prev V Net Ch			Chemicals Other	0.6	Total Su		
STEELSEAL	-		25 kg sack	60			60			Total V	/ol	3225.4	Total		Total Lo	sses	-85.
Daily Products Cos	st	-	\$8,342.84	Total Dai	ly Cost	1		\$10	,842.84		Fluid Type	es	Vol bbl	Survey Mi		nformation 1,506.	
Cumulative Produc	cts Cost		250,339.01		mulative C				,089.01	1				Survey T\		1,499.	6 m
Baroid Representa Office	ntives 90 Talinga		Edwards bourne		Brad Jack	rson Telephon	e 61-03-	-9581-7	555	†				Angle Direction		21.4	6 Deg 7
Warehouse	c/o of Ess					Telephon		6-881-4						Horiz Disp	ol.		6 m

Baroid Flu	36												Date		03/04/2008			022 2,313.0 r	n
		Da	ily Drilli	ng Flu	uid Re	port						8	Spud Date	02/14/20	08	Rig Activi		ine logs	
Operator Apache					Report For Shaugn C	orless/Stef	an Schmi	dt						Well Name Wasabi -					
Contractor Seadrill					Report For Michael B									Rig Name West Trit		Unit Syste Apache	em		
Country			State/Province	ce/Region	IVIICITAEL D	ally	Geograph		a/Cour	ity				Field or B	lock	Араспе			
Australia Bit Info	ormation		Victoria	rill Strin	g (in) / (m		Bass Str in	ait Casin	a m						1 Vic-58P ulation/Hyd	raulics Da	ata		
Bit Size Make/Type	12.250 HTC/M			OD	ÍD	Length	OD	Set	M		Mode Bore			Nat 1	14-P-220 5.500	Nat 14	I-P-220 500	Nat 14- 6.5	
Jets	3x2	24	Motor	9.625	0.000	1.0	13.375			7.0	Strok	ces in			4.000	14.	.000	14.0	000
TFA Jets Velocity	1.325	sq-in m/sec									Eff(%				97).139		97 139	97 0.13	
Jet Impact Force		lbf									SPM				0		0	0	
Bit HHSI Press Drop @ Bit		hhp/in2 psi									gpm Total	GPI/M			AV, Riser		Circ Pre	ess psi	
Bit Depth	1.0	m SG	Riser Open Hole	19.120 16.000		66.0 1,456.0					Total BU T	Circ	Time		AV min DP AV max DC		Tot Pre	s Loss Orop DP	
ECD @ Csg Shoe ECD @ Bit		SG				,					Total		kes		BU Strokes		Press D	orop An	
Propertie Source	es	F	1 Pit # 6	2	2	3	4			Tar	gets		Prog	gram	Fluid Type	Fluid	Treatme KCI/Po		
Time			10:00												Continued t	o prepare			orine fo
Depth FL Temp	m Deg C		2,313							-		_			next well.				
Density @ Deg C	SG		1.230						Х				1.140	1.170	1				
FV @ Deg C PV @ Deg C	sec/qt cP	19	59 9 @ 49									_							
YP	lbs/100 ft2	2	31										25	60	1				
GELS 600/300	lbs/100 ft2		3/19/- 0.0/50.0										12/-/-	20/-/-	1				
200/100 6/3			3.0/33.0 2.0/10.0												1				
API Filt	ml/30 min		4.6										3.0	5.0					
HTHP @ Deg C Cake API/HTHP	ml/30 min 32nd in	13.	0 @ 149 1/1										12.0	15.0					
Corr Solid	% by Vol		6.0									_]				
NAP/Water Sand	% by Vol % by vol		-/90.0 0.65							-		_				Ri	g Activity		
MBT	ppb Eq.	0.5	2.5									_			Continued t	o pull out	of hole. F		
pH @ Deg C ALK Mud	Pm		50 @ 27 0.15											10.00	Rigged up \$ 1,499 m - H				
ALK Filt Chlorides	Pf/Mf mg/l		05/0.60 50,000									_			CST on wire				
Tot. Hardness	mg/l		120												wireline at r	nidnight.			
LGS/HGS LGS/HGS	% by Vol		.4/4.7 45/68.53							_		_							
ASG	SG		3.837																
Additional Proper	ties																		
KCL % Potassium Ion	% by vol mg/l	5	10.0 50,000												}				
Product N	ame		Units	Start	Rec	Used	End		Cost				Sc	lide Cont	rol Equipme	ant		Tin	ne
Drilling Fluids Engi			day(s)	Start	Nec	1		,	\$1,250				Shaker	nus com	Scre		Hrs	Drilling	
Drilling Fluids Engi potassium chloride			day(s) 1000 kg bag	28		1 24			\$1,250 10,595									Circulatin Trips	g 8.
ALDACIDE G			25 I can	19		24	19		10,000		VSM-3	300						Rig	0.
BARABLOK BARA-DEFOAM W	/300		50 lb bag 5 gal can	30			30				VSM-3	300						Surveys Fishing	
BARAZAN D PLUS			25 kg bag	32			32											Run Casi	nç
barite BAROFIBRE FINE		1	1000 kg bulk 25 lb bag	96.000 50			96.000											Coring Reaming	
bentonite		1	1000 kg bulk	20.800			20.800						yclone	Cones	Scre	ens	Hrs	Testing	
calcium chloride fla caustic soda	ake 77%		25 kg bag 25 kg pail	94			94				ATL-1 Vacu-F		0 Degasser	16 4 0 0				Logging Dir Work	16.
Circal 60/16			1200 kg bag	9			9						J					Repair	
Circal Y citric acid			1200 kg bag 25 kg bag	11 38			38				(Centri	ifuge	Speed	Feed	Rate	Hrs	Other Total	24.0
CLAYSEAL PLUS			216 kg drum	8			8								•			Rotating	
EZ SPOT EZ-MUD			55 gal drum 25 kg pail	13			13											ROP Dil Rate	0.0
guar gum			25 kg bag	4			4				Fluid		ıme Brea			KCI/Poly			
Kwikseal Fine lime			40 lb bag 20 kg bag	39 41			39 41				Annu	Acti Ilus	ve	<u>bbl</u> 0.9	Additions Base	bbl	Fluid D	sses umped	bbl
N-DRIL HT PLUS			50 lb bag	90			90				Pipe				Drill Water		Transfe	erred	0
NO-SULF Omyacarb 5			17 kg pail 25 kg bulk				48.000				Active Total				Dewatering Sea Water		SCE Evapor	ation	-9.
PAC-L	-1 -		25 kg bag	40			40				Total	Circ		390.9	Whole Mud		Trips		
potassium hydroxid soda ash	ae		25 kg bag 25 kg bag	87 52			87 52				Rese Prev			1129.0 3225.4	Barite Chemicals		Other Total S	urface	
sodium bicarbonate	е		25 kg bag	35			35				Net C	Chang	je	-9.9	Other		Downh	ole	
STEELSEAL			25 kg sack	60			60				Total	FI	luid Type	3215.4 s	Total Vol bbl	De	Total Lo	osses Informatio	-9.9
Daily Products Cos			\$10,595.04			oot			13,09		KCL					Survey M	1D	1,506 1,499	.0 m
Cumulative Product Baroid Representa	itives	Eugene	\$260,934.05 Edwards	rotal CU	Brad Jack	son	<u> </u>		32,184							Survey T Angle		21.4	l6 Deg
Office Warehouse	90 Talinga c/o of Ess					Telephon		-9581								Direction Horiz Dis		33	37 .6 m
Warehouse	U/U UI ESS	บ คนร์แล	ııa Liü			Telephon	e 61-3-	ეხ-88′	1-445							I IUIIZ DIS	γı.	48.	.∪ m

Baroid Flu			_									Date			03/05/2008	Report N Depth		023 2,313.0 m	1
		Da	ily Drilli	ng Flu	ıid Re	port						Spud Da	te 02/14/	200	8	Rig Activi	t y Wire Li	ine logs	
Operator					Report For								Well Na	ame			WIICE	ne logo	
Apache Contractor					Richard R Report For	leading/Ste	fan Schm	ıdt					Wasal Rig Na			Unit Syste	em		
Seadrill			State/Province		Michael B	arry	Geograph	!a A	-/0	4			West			Apache			
Country Australia			Victoria	-			Bass Stra		a/Coun	ty					Vic-58P				
Bit Infor	12.250	in		Orill String	J (in) / (m ID) Length	in (Casin	ng m M[Model				<mark>ılation/Hydr</mark> 1-P-220		ata P-220	Nat 14-F	2-220
Make/Type Jets TFA Jets Velocity Jet Impact Force Bit HHSI	HTC/M 3x2 1.325	XL-1 4 sq-in	Drill Pipe Drill Pipe Drill Collar Motor	5.500 5.500 8.250 9.625	4.000 3.250 2.750 0.000	1,960.7 290.9 47.4 10.0	20.000 13.375	@	13	5.0 7.0	Bore ir Strokes Eff(%) bbl/strk SPM gpm bb	s in		6.9 14. 0.	500 .000 97 139	6.5 14. 9 0.7	500 000 07 139 0	6.50 14.00 97 0.13	00 00
Press Drop @ Bit Bit Depth ECD @ Csg Shoe	2,309.0	psi	Riser Open Hole	19.120 16.000		66.0 1,456.0					Total G	PM Sirc Time			AV, Riser AV min DP AV max DC		Circ Pre Tot Pre Press D	s Loss	
ECD @ Bit	•	SG								Tor	Total S		oarom		BU Strokes	Eluid	Press D		_
Propertie: Source	S	F	1 Pit # 6	2		3	4			ıar	gets	Pr	ogram		Fluid Type	Fiula	Treatmer KCI/Po		
Time Depth FL Temp Density @ Deg C FV @ Deg C PV @ Deg C YP	m Deg C SG sec/qt cP lbs/100 ft2 lbs/100 ft2 lbs/100 ft2 ml/30 min ml/30 min 32nd in % by Vol % by Vol ppb Eq. Pm Pf/Mf mg/l mg/l mg/l yby Vol ppb SG	19 19 11 68 43 12 13.0 - - 8.5 5 0.0 5	1.47 0 9:45 2,313 1.230 52 0 @ 49 30 2/18/- 0/49.0 0/49.0 0/10.0 4.6 0/20.0 0/10.0 4.6 0/20.0 0/10.0 0.05 2.5 0 @ 27 0.15 0.15 0.000 120 120 14/4.7 15/68.53 3.837						X			12/-	0 1	60 60 60 65.0 55.0 65.0	POOH with a Made up x-corright spot. Made up x	Rig and 800 bbls Rig Schlumbe over BHA Made up to the intinued to directly directly directly directly and perform the second sec	4 with ac Abandon KCI brine G Activity erger wire on 5.5" D op drive a b RIH to 2 ed hole cl	ldition of Ba program. to vessel. line to surfa P. RIH to 1, and washed 2,310 m. Ma ean. at 1,10 V V/V. RIH V er program.	ace. ,927 rr to ade up 00 VSI
Product Na	me		Jnits	01	Rec	11	End		Cost				Solido C	ontr.	ol Equipme	n4		Tim	_
Drilling Fluids Engin Drilling Fluids Engin BARAZAN D PLUS ALDACIDE G BARABLOK BARA-DEFOAM W3 barite BAROFIBRE FINE bentonite calcium chloride flal	neer 2 neer	1	day(s) day(s) day(s) 25 kg bag 25 l can 50 lb bag 5 gal can 000 kg bulk 25 lb bag 000 kg bulk 25 kg bag	32 19 30 3 96.000 50	Net	1 1 3 3			\$1,250 \$1,250	.00	VSM-300 VSM-300 VSM-300 VSM-300	Shake			Scree	ens	Hrs	Drilling Circulating Trips Rig Surveys Fishing Run Casin Coring Reaming Testing	9
caustic soda Circal 60/16 Circal Y citric acid			25 kg pail 1200 kg bag 1200 kg bag 25 kg bag	11			98 9 11 38				ATL-160 Vacu-Flo	0 1200 Degass	16 4 er 0 0					Logging Dir Work Repair Other	24.0
CLAYSEAL PLUS EZ SPOT			16 kg drum 55 gal drum				8				Се	entrifuge	Spee	ed	Feed	Rate	Hrs	Total Rotating	24.0
EZ-MUD			25 kg pail	13			13											ROP	
guar gum Kwikseal Fine			25 kg bag 40 lb bag				39				Fluid V	/olume Br	eakdowr	1		KCI/Poly	mer	Dil Rate	0.00
lime			20 kg bag	41			41				ı	Active	bbl		Additions	bbl	Los	sses	bbl
N-DRIL HT PLUS NO-SULF Omyacarb 5 PAC-L potassium chloride potassium hydroxide soda ash sodium bicarbonate		1	50 lb bag 17 kg pail 25 kg bulk 25 kg bag 1000 kg bag 25 kg bag 25 kg bag 25 kg bag	48 48.000 40 4 87 52 35			90 48 48.000 40 4 87 52 35				Annului Pipe Ca Active I Total H Total C Reserv Prev Vo Net Ch	ap Pits lole circ re ol ange	110 156 156 321: -8	0.0 5.0 1.7 1.7 5.4 7.5	Base Drill Water Dewatering Sea Water Whole Mud Barite Chemicals Other		Fluid Di Transfe SCE Evapora Trips Other Total Si Downho	ation urface ble	-87.5
STEELSEAL			25 kg sack	60			60			_	Total V	ol Fluid Ty			Total Vol bbl	De	Total Lo	osses nformation	-87.5 1
	s Cost	Eugene Rd Melb	Edwards bourne					\$3: -9581	\$2,956 35,140 -7555							Survey M Survey T Angle Direction Horiz Dis	ID VD	1,506.0 1,499.6	0 m 6 m 6 Deg 7

Baroid Flu			_									Date			03/06/2008			024 2,313.0	m
		Da	ily Drilli	ng Flu	uid Re	port						Spud [02/14/20	08	Rig Activit		d abandon	
Operator Apache					Report For Richard R	eading/Ste	fan Schm	idt						Well Name Wasabi -					
Contractor					Report For									Rig Name		Unit Syste	m		
Seadrill Country			State/Province	ce/Region	Michael B	arry	Geograph	ic Area	a/Coun	ty				West Trite Field or Bl		Apache			
Australia Rit Info	ormation		Victoria	rill Strine	g (in) / (m	\	Bass Str	ait Casin	a m						1 Vic-58P ulation/Hyd	raulice Da	ta		
Bit Size	12.250			OD	ÍD	Length	OD	Set	ME		Mode			Nat 1	4-P-220	Nat 14	-P-220		-P-220
Make/Type Jets	HTC/N 3x2		Motor	9.625	0.000	1.0	20.000 13.375				Bore Strok				.500 1.000	6.5 14.0			500 000
TFA Jets Velocity	1.325	sq-in									Eff(% bbl/st			0	97 .139	9 [.] 0.1			7 139
Jet Impact Force		m/sec lbf									SPM	IK		U	0	0.1)
Bit HHSI Press Drop @ Bit		hhp/in2 psi									gpm l	obl/min GPM			AV, Riser		Circ Pr	ess psi	
Bit Depth	1.0	m	Riser	19.120		66.0	1				Total	Circ Time			AV min DP		Tot Pre	es Loss	
ECD @ Csg Shoe ECD @ Bit		SG SG	Open Hole	16.000		1,456.0						me , min Strokes			AV max DC BU Strokes			Orop DP Orop An	
Properti	es	EI/	1 ow Line	2	2	3	4				gets		Prog	ram		Fluid	Freatme KCI/Po		
Source Time			23:59												Fluid Type Dumped 38	bbls of cer			l mud,
Depth FL Temp	m Deg C		2,312												while revers		-		_
Density @ Deg C	SG		1.235						Х			1.1	140	1.170	No cement 767m.	seen at su	rface wh	ııle reversii	ng @
FV @ Deg C PV @ Deg C	sec/qt cP	19	65 9 @ 49							-			\dashv						
YP	lbs/100 ft2	2	31									4.0	25		Pumped ou clean same		sand tra	aps, dump	and
GELS 600/300	lbs/100 ft2	69	3/21/- 0.0/50.0									12	2/-/-	20/-/-	Treated 120		L / Poly	mer mud, v	with
200/100 6/3			.0/29.0 3.0/12.0												0.375ppb A			-	
API Filt	ml/30 min		5.0										3.0	5.0	(NB:\$10,59: Brine for Co			BB, used	to bulla
HTHP @ Deg C Cake API/HTHP	ml/30 min 32nd in	13.	0 @ 149							\dashv		1	2.0	15.0			,		
Corr Solid NAP/Water	% by Vol % by Vol		7.2 -/89.0																
Sand	% by vol		0.50														Activity		
MBT pH @ Deg C	ppb Eq.	8.5	2.5 50 @ 27						-	-					POOH to 2, 1,330 m. Sp				
ALK Mud	Pm		0.10 05/0.70												cement job				
ALK Filt Chlorides	Pf/Mf mg/l		8,000												1,150 m. Re				
Tot. Hardness LGS/HGS	mg/l % by Vol	3	120 3.3/3.9												spotted 202 Performed 2		•		
LGS/HGS	ppb	29.	90/58.14												POOH to 73	37 m. Reve	erse circu	ulated 2 x l	DP
ASG	SG	;	3.474							-			\dashv		volume. PO RIH with OF				
Additional Proper	4:														Reversed c				-
KCL %	% by vol		0.0																
Potassium Ion	mg/l		0																
Product N	ama		Units	Chart	Rec	Used	End		Cost				80	lide Cont	rol Equipme	nt		I Tie	me
Drilling Fluids Engi			day(s)	Start	Nec	1		9	1,250			Shak		iius Cont	Scre		Hrs	Drilling	
Drilling Fluids Engi barite	neer	1	day(s) 000 kg bulk			19,000	77.000		31,250 39,022									Circulatir Trips	ng 2.0
ALDACIDE G			25 I can	19		8	11			.96	VSM-3	00						Rig	
BARABLOK BARA-DEFOAM W	/300		50 lb bag 5 gal can	30			30			_	VSM-3	00						Surveys Fishing	
BARAZAN D PLUS	3		25 kg bag	29			29											Run Cas	ing
BAROFIBRE FINE bentonite		1	25 lb bag 000 kg bulk				50 20.800											Coring Reaming	3
calcium chloride fla caustic soda	ake 77%		25 kg bag 25 kg pail	94			94 98				Hy ATL-16	drocyclone	9	Cones 16 4	Scre	ens	Hrs	Testing Logging	
Circal 60/16			1200 kg bag	9			9					lo 1200 Dega:	sser	00				Dir Work	:
Circal Y citric acid			1200 kg bag 25 kg bag				11 38											Repair Other	6.0
CLAYSEAL PLUS			216 kg drum	8			8					Centrifuge		Speed	Feed	Rate	Hrs	Total	24.
EZ SPOT EZ-MUD			55 gal drum 25 kg pail				13											Rotating ROP	
guar gum			25 kg bag	4			4											Dil Rate	0.00
Kwikseal Fine lime			40 lb bag 20 kg bag	39 41			39 41				Fluid	Volume E Active	3rea	kdown bbl	Additions	KCI/Poly		sses	bbl
N-DRIL HT PLUS			50 lb bag	90			90				Annu	lus			Base		Fluid D	umped	-349.3
NO-SULF Omyacarb 5			17 kg pail 25 kg bulk				48 48.000				Pipe (Drill Water Dewatering		Transfe SCE	errea	
PAĆ-L			25 kg bag				40 4				Total Total				Sea Water		Evapor Trips	ation	
potassium chloride potassium hydroxid			1000 kg bag 25 kg bag	4 87			87				Rese			0.9 1112.0	Whole Mud Barite	28.5	Other		
soda ash sodium bicarbonat	Α		25 kg bag 25 kg bag				52 35				Prev	Vol hange		1565.0 -319.6	Chemicals	1.3	Total S Downh		
STEELSEAL			25 kg bag 25 kg sack				60				Total	Vol		2808.4	Total		Total L	osses	-349.3
Daily Products Cos	st		\$9,721.68	Total Dai	ily Cost			\$1	2,221	.68		Fluid T	ype	s	Vol bbl	Survey M		Information 1.506	on 6.0 m
Cumulative Produc	cts Cost		\$271,112.45		mulative C				7,362							Survey T\		1,499	9.6 m
Baroid Representa Office	90 Talinga	Rd Mel			Brad Jack	son Telephon	e 61-03	- <u>95</u> 81-	-7 <u>5</u> 55							Angle Direction		33	46 Deg 37
Warehouse	c/o of Ess	o Austra	lia Ltd			Telephon										Horiz Dis	pl.	48	3.6 m

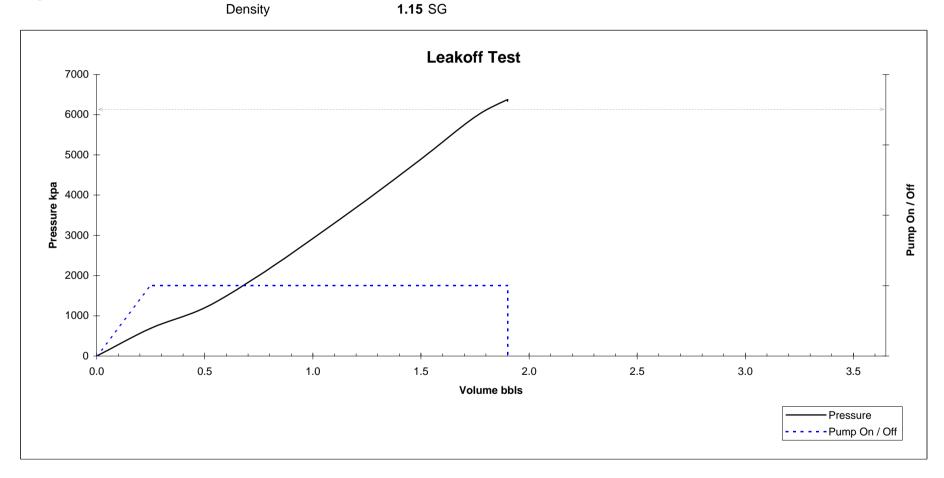
Baroid Flu	ıid Seı	rvice	s							Dat			03/07/2008			025 2,313.0 r	m
		Da	ily Drilli	ng Flւ	uid Re	port				Spu		02/14/20		Rig Activit		d rig down	l
Operator Apache					Report For Richard R	eading/Ste	fan Schmid	dt				Well Name Wasabi -					
Contractor Seadrill					Report For Michael B	<u> </u>					i i	Rig Name West Trit		Unit Syste Apache	m		
Country			State/Province	e/Region	IVIICIIAEI D	ally		c Area/County				Field or Bl	lock	Араспе			
Australia Bit Info	rmation		Victoria D	rill String	g (in) / (m		Bass Stra	it asing m					1 Vic-58P ulation/Hyd	raulics Da	ıta		
Bit Size Make/Type Jets TFA Jets Velocity Jet Impact Force Bit HHSI Press Drop @ Bit Bit Depth	12.250 HTC/M 3x2 1.325	XL-1 4 sq-in m/sec lbf hhp/in2 psi	Drill Pipe Drill Pipe Drill Collar Motor	OD 5.500 5.500 8.250 9.625	ID 4.000 3.250 2.750 0.000	Length 1,964.7 290.9 47.4 10.0	OD 3 20.000 (13.375 (Set MD @ 135	Total	in es in) rk bbl/min	me	Nat 1 6 1	4-P-220 5.500 4.000 97 0.139 0 AV, Riser AV min DP	Nat 14 6.5 14.0 9 0.1	-P-220 500 000 7		00 000 7 39
ECD @ Csg Shoe ECD @ Bit		SG SG	Open Hole	16.000		1,456.0				ime , mi Strokes			AV max DC BU Strokes		Press D		
Propertie Source	es		1	2		3	4	T	argets		Prog	ram	Fluid Type	Fluid	Treatmer KCI/Po		
Time Depth FL Temp Density @ Deg C FV @ Deg C PV @ Deg C YP GELS 600/300 200/100 6/3 API Filt HTHP @ Deg C Cake API/HTHP Corr Solid NAP/Water Sand MBT pH @ Deg C ALK Mud ALK Filt Chlorides Tot Hardness LGS/HGS ASG	m Deg C SG sec/qt cP lbs/100 ft2 lbs/100 ft2 ml/30 min ml/30 min 32nd in % by Vol % by Vol pb Eq. Pm Pf/Mf mg/l mg/l % by Vol ppb SG												Backload 1 ⁻ To be used Dump and of Cut casing, head. Prepare for Mud engine	on Coelac clean pits. Rig nipple dov rig move,	anth 1. Activity on BOP's to Coelad	, retrieve v	
Additional Propert	ties																
Product Na Drilling Fluids Engir			Units day(s)	Start	Rec	Used 1	End	Cost \$1,250.0	0	SI	Sol haker	ids Cont	rol Equipme Scre		Hrs	Tin Drilling	ne
Drilling Fluids Engir ALDACIDE G BARABLOK BARA-DEFOAM W BARAZAN D PLUS barite BAROFIBRE FINE bentonite calcium chloride fla caustic soda	300		day(s) 25 l can 50 lb bag 5 gal can 25 kg bag 000 kg bulk 25 lb bag 000 kg bulk 25 kg bag 25 kg pail	50		1		\$1,250.0	0 VSM-3 VSM-3 VSM-3	800 800 800 800 800	one	Cones 16 4	Scre		Hrs	Circulatin Trips Rig Surveys Fishing Run Casi Coring Reaming Testing Logging	inç
Circal 60/16 Circal Y citric acid CLAYSEAL PLUS		·	1200 kg bag 1200 kg bag 25 kg bag 216 kg drum	9 11 38 8						lo 1200 De	ŭ	0 0 Speed	Feed	Rate	Hrs	Dir Work Repair Other Total	24
EZ SPOT EZ-MUD			55 gal drum 25 kg pail	8 13												Rotating ROP	
guar gum Kwikseal Fine			25 kg bag 40 lb bag	4 39					Fluid	Volum	a Brasi	kdown		KCI/Poly	mer	Dil Rate	0.
lime N-DRIL HT PLUS NO-SULF Omyacarb 5 PAC-L potassium chloride potassium hydroxid soda ash	le	,	20 kg bag 50 lb bag 17 kg pail 25 kg bulk 25 kg bag 1000 kg bag 25 kg bag 25 kg bag	41 90 48 48.000 40 4 87 52					Annu Pipe Active Total Total Rese Prev	Active lus Cap e Pits Hole Circ rve Vol		bbl 1454.5 110.2 1564.7 1564.7 2808.4	Drill Water Dewatering Sea Water Whole Mud Barite Chemicals	bbl	Fluid Do Transfe SCE Evapora Trips Other Total Si	rred ation urface	-1100 -143
sodium bicarbonate STEELSEAL			25 kg bag 25 kg sack	35 60					Total			-1243.7 1564.7	Total		Downho Total Lo	osses	-124
Daily Products Cos Cumulative Product Baroid Representat Office Warehouse	ts Cost	Eugene Rd Mell	\$0.00 \$271,112.45 Edwards bourne					\$2,500.0 \$349,862.4 9581-7555 6-881-445		Fluid	d Types		Vol bbl	Survey M Survey T' Angle Direction Horiz Dis	D VD	33	.0 m .6 m 16 De

		Dai	ily Drilli	na Fli	ıid Rei	port						Date Spud Date		03/08/2008	Depth Rig Activity		2,313.0 m	1
Operator			.,	g	Report For	•							02/14/20 Well Name)		rig rele	ased	
Apache Contractor					Richard R Report For	eading/Stef	an Schm	idt					Wasabi - Rig Name	1	Unit System			
Seadrill					Michael B								West Trit	on	Apache			
Country Australia			State/Province Victoria	ce/Region			Geograph Bass Str		ea/Cou	nty			Field or Bl	ock 1 Vic-58P				
	rmation			rill String	g (in) / (m)		Casin	ng m					ulation/Hydi	aulics Data	a		
Bit Size	12.250 HTC/N		Drill Pipe	OD 5.500	1D 4.000	Length 1,964.7	OD 20.000	Set		1D 35.0	Model Bore in			4-P-220 5.500	Nat 14-F 6.50		Nat 14-F 6.50	
Make/Type Jets	3x2	24	Drill Pipe	5.500	3.250	290.9	13.375				Strokes	in		4.000	14.00		14.0	
TFA Jets Velocity	1.325		Drill Collar Motor	8.250 9.625	2.750 0.000	47.4 10.0					Eff(%) bbl/strk			97 .139	97 0.13		97 0.13	
Jet Impact Force		lbf	IVIOLOI	9.025	0.000	10.0					SPM			0	0.10		0.10	,,,
Bit HHSI Press Drop @ Bit		hhp/in2 psi									gpm bbl Total GF			AV, Riser		Circ Pres	ss nsi	
Bit Depth	2,313.0	m	Riser	19.120		66.0					Total Cir	rc Time		AV min DP		Tot Pres	Loss	
ECD @ Csg Shoe ECD @ Bit		SG SG	Open Hole	16.000		1,456.0					BU Time Total St			AV max DC BU Strokes		Press Dr Press Dr		
Propertie	es		1	2		3	4	ļ		Tar	gets		gram		Fluid T	reatmen	ts	
Source Time										-				Fluid Type		KCI/Poly	mer	
Depth	m)				
FL Temp Density @ Deg C	Deg C SG									-								
FV @ Deg C	sec/qt]				
PV @ Deg C YP	cP lbs/100 ft2)								-								
GELS	lbs/100 ft2]				
600/300 200/100														ł				
6/3	1/00]				
API Filt HTHP @ Deg C	ml/30 min ml/30 min																	
Cake API/HTHP	32nd in																	
Corr Solid NAP/Water	% by Vol % by Vol													1				
Sand MBT	% by vol													Continued to		Activity	ana fan sia	
pH @ Deg C	ppb Eq.													Continued to move.	o rig down a	iliu prepa	are ior rig	
ALK Mud ALK Filt	Pm Pf/Mf									-				Rig released	d 1600 hrs			
Chlorides	mg/l]				
Tot. Hardness LGS/HGS	mg/l % by Vol									-				·				
LGS/HGS	ppb]				
ASG	SG									-				ł				
]				
Additional Propert	ties																	
														<u> </u>				
Product Na Drilling Fluids Engil		U	Jnits day(s)	Start	Rec	Used 1	End		\$1,25	0.00		Shaker	olids Cont	rol Equipme Scre		Hrs	Tim Drilling	e
Drilling Fluids Engil			day(s)			1					VSM-300	Charci		00/0	0110		Circulating	9
											VSM-300 VSM-300						Trips Rig	
											VSM-300						Surveys	
																	Fishing Run Casir	20
																	Coring	
											Hydro	ocyclone	Cones	Scre	ens		Reaming Testing	
											ATL-1600		16 4	30.0	0.10		Logging	
											Vacu-Flo 1	200 Degasser	0 0				Dir Work Repair	
																	Other	24.0
											Cer	ntrifuge	Speed	Feed	Rate		Total Rotating	24.0
																	ROP	
											Eluid Va	olume Brea	akdown		KCI/Polym		Dil Rate	0.00
												ctive	bbl	Additions	bbl	Loss	ses	bbl
											Annulus Pipe Ca		1454.5			Fluid Dui Transferi		
											Active P	its		Drill Water Dewatering		SCE	Gu	
											Total Ho			Sea Water		Evaporat Trips	tion	
											Reserve		1564./	Whole Mud Barite		Other		-3.2
											Prev Vo			Chemicals		Total Su		
											Net Cha Total Vo	ol	1564.7	Other Total		Downhol Total Los	sses	-3.2
Deily Brade 1 2			#0.00	Tot-ID :	h. O4				ቀሳ ፖሳ	0.00		Fluid Type	es	Vol bbl	Dev	iation In	formation	า
Daily Products Cos Cumulative Produc		\$	\$0.00 \$271,112.45		nulative C				\$2,50 52,36						Survey MD Survey TV	, D	1,506.0 1,499.0	6 m
Baroid Representat		Eugene	Edwards		Brad Jack	son	e 61-03								Angle Direction		21.40 33	6 Deg
Office Warehouse	c/o of Ess					Telephone Telephone					ŀ				Horiz Disp	l.	48.0	/ 6 m

Baroid Fluid Services

Report No 026

							AU	STRAL	IA										
							Casi	ng Re	port										
Well: WASABI-1										n financia (na cara		Repo	ort No.:	1		Report	Date: 29	3/01/2008	3
Project: VIC-P58				Si	te:	WAS	SABI-1					Rig N	lame/No.						
Event: OFFSHORE	- ORIG DR	LG		St	art Date	: 29/0	1/2008	End	Date:	8/03/20	800	Spuc	Date:	14/	02/2008				
Active Datum: ROTA	RY TABLE	@38.00m (above Me	an Sea Leve)				UW	:										
				nen-amenakouse			Genera	l Inform	ation										
Assembly Name: St	RFACE		Tubing/Ca	sing Size:	340.0	00(mm)			Hole I	MD/TVI	D: 0	.00 (m) / 3	8.00 (m)		Hol	e Size:	406.0	0 (mm)	
and the same	.03(m)		Landed M		857.3	31 (m) /	362.00 (m)			nd Elev		7.00 (m)			Line	er Overlap	4		
Weight in Slips:			Max Hole	Angle:					Hours	Circ:	5	.00 (hr)			Vol	Fluid Lost	ii .		
							Casing F	lange/W	ellhead										
Manufacturer: DRIL	QUIP				odel:								Rating:		346.08 (m	**************************************	N. S. COMPANIES A.		
Hanger Model:				Pa	ackoff M	odel:						Base	Size/Rati	ng:	346.00 (m	m)/68,948	(kPa)		
							Integral	Casing	Detail										
Component Type	Body ID	Item Description	Body	Weight	Grade		Connection		ction OD	No	Length	MD	MU	TH	Manufacture	Model	Cond	Max	Min IE
	(mm)		(mm)	(kg/m)		(mm)		Bottom (mm)	Top (mm)	Jts	(m)	TOP (m)	Torque (kN-m)	D		No.		OD (mm)	(mm)
Casing Shoe		Float Shoe	340.00	101.20	L-80	315.34			A THE STATE OF THE	1	0.52	856.79		N				340.00	315.0
Float Collar		Float	340.00	101.20	L-80	315.34				1	0.59	856.20		N				340.00	315.0
Casing		Casing	340.00	101.20	L-80	315.34				57	732.40	123.80		N				340.00	315.0
Casing		Crossover Joint	340.00	101.20	L-80	315.34				1	5.70	118.10		N				340.00	315.0
Casing		406mm Casing	340.00	101.20	L-80	315.34				7	83.57	34.53		N				340.00	315.0
Casing		Crossover Jt #2	340.00	101.20	L-80	315.34				1	11.92	22.61		N				340.00	315.0
Pup Joint		Wellhead	346.07			315.00				1	1.58	21.03		N	5			346.00	315.0
								lewelry								11.10			
Accessory Name	Acce	ssory Group	Manuf	acturer		N	um Spacing		Int	erval			astener	Гуре	How	Fixed	A	ttach Pati	tem
							(m)		D Top (m)		MD Base (m)								
						l		mments				(Olicolares Columbia							


28/01/2009 9:22:35AM

AUSTRALIA Cementing Report WASABI-1 Well: Report No .: 1 Report Date: 29/01/2008 Project: VIC-P58 Site: WASABI-1 Rig Name/No.: OFFSHORE - ORIG DRLG Start Date: 29/01/2008 End Date: 8/03/2008 Spud Date: 14/02/2008 Active Datum: ROTARY TABLE @38.00m (above Mean Sea UWI: **General Information** Job Type: Primary Job Desc: Cement Surface 20/02/2008 12:00AM Cement Job Start Date/Time: Job End 20/02/2008 5:15AM N2 Used: N CO2: N Zone Isolated: N Date/Time: Contractor: HALLIBURTON Arrival Date/Time: 29/01/2008 Foreman: Assembly: SURFACE Tubing/Casing Size: 340.00 (mm) MD Landed: Hole Size: 406.00 (mm) 857.31 (m) Ground Temp: Air Temp: Seabed Temp: Annulus Temp: BHT: **Pipe Movement** NO MOVEMENT Pipe Movement: Rotating Date/Time (start-End): Rotating RPM: Rotating Torque (init/avg/max): (kN-m) Reciprocating Date/Time (start-End): Recip Drag Up/Down: - (tonne) SPM: Stroke Length: **Shoetrack Cement** Shoetrack Top MD: Shoetrack Drill Date/Time: Shoetrack Drill MD: Fluid Name: **Lead Cement** Fluids (1 of 1) Fluid Type: Cement Additives Name Type Amount Units Concentration Concentration Unit (Pa) NF-6 Fluid Loss 20.00 gal 0.130 GAL/SK CFR-3L Friction Reducer 3.000 GAL/SK HR6-L RETARDER 1.000 GAL/SK Fluid Tests Thick Time Thick Free Water Free Water Fluid Loss Fluid Loss Fluid Loss Comp Time Thick Press Comp Comp Time 2 Comp Strength Comp Temp 1 Comp Temp (hr) Temp (%) Temp (ml/30 min) Temp Press (kPa) Strength 1 (°C) (min) (°C) (°C) (°C) (kPa) (min) (kPa) (kPa) (°C) 2.50 34 11,287 360 3447 39 Stages Stage No. Type MD Top MD Base Hole Size Initial/Final Casing Pressure Circulate Flow Circulate Prior Circulate Vol Returns Volume Lost (m) (m) (mm) (kPa) Rate Press (hr) (m^3) (m3) (L/min) (kPa) 1 PRIM CMT 1ST STAGE 66.00 857.00 406.00 17,237/17,237 3407 17,237 5.00

AUSTRALIA Cementing Report WASABI-1 Well: Report No.: 1 Report Date: 29/01/2008 Project: VIC-P58 Site: WASABI-1 Rig Name/No.: OFFSHORE - ORIG DRLG Start Date: 29/01/2008 End Date: 8/03/2008 14/02/2008 Spud Date: UWI: Active Datum: ROTARY TABLE @38.00m (above Mean Sea Level) Stages Stage No. Type MD Top MD Base Hole Size Initial/Final Casing Pressure Circulate Flow Volume Lost Circulate Circulate Prior Vol Returns (m) (m) (mm) (kPa) Rate Press (hr) (m³) (m³) (L/min) (kPa) 1 PRIM CMT 1ST STAGE 66.00 857.00 406.00 17,237/17,237 3407 17,237 5.00 **Pumping Schedule** Fluid Pumped Volume Rate Slurry Slurry Disp Rate Disp Top Of **Pumping Start** Pumping End Operation Shutdown Foam Foam Gas Foam Gas Top MD Base MD Date/Time (m³) (L/min) Final Pressure Fluid Date/Time Time Job Type Vol Used (m) (m) (L/min) Final (m) (min) (scm) (kPa) Lead Cement -106 954 66.00 857.00 3,447.38 20/05/2008 4:00AM 20/02/2008 5:15AM N Cement

APACHE ENERGY LIMITED

6200 kpa Leak Off Pressure from graph Wasabi-1 Casing Size Well **340** mm **1.90** SG Vic P58 Shoe TVD Permit 857 meters **Equivalent Mud Weight** Test Fluid Rig **West Triton WBM 1.15** SG

FIT / LOT TEST RESULTS. Australian Drilling Associates Pty Ltd

		_	FIT / LO	OT DATA	_	
TEST DATE:	23nd Feb 2008	WELL #:		Wasabi-1	CLIENT:	Apache
	CAS	NG DATA			TEST	MUD DATA
CASING SIZE	CASING GRAD	E SHOE TV	D (M)	SHOE MD (M)	WEIGHT (PPG)	VISCOSITY (SEC)
13 3/8	L80	857		857	9.6	75
INDICATE TY	PE OF TEST:	FIT:		✓	LOT:	V
LEAK OFF (PRESSURE (PSI):	OR FIT TE	EQUIVALE MUD W (PPG):	FIGHT	MAX. MUD WFIGHT (PPG):	VOLUME PUMPED (BBLS):	VOLUME RETURNED (BBLS):
92	25	6.33		15.93	2	1.5

(PSI): (BBLS): 100	SURFACE	VOLUME		1000
100 0.25 174 0.5 290 0.75 424 1 564 1.25 710 1.5 863 1.75 925 1.9 920 886 878 878 872 868	PRESSURE	PUMPED		1000
174 0.5 290 0.75 424 1 564 1.25 710 1.5 863 1.75 925 1.9 920 896 886 886 878 872 868				
174				900
424				
1.25	290	0.75		
710 1.5 863 1.75 925 1.9 920 896 886 878 872 868 300 200 200 100 0.29.5.7511.25.5.75.9	424	1		800
863 1.75 925 1.9 920 896 886 878 872 868 300 200 100 0.29.5.7511.25.5.75.9	564	1.25		
925 1.9 920 896 886 878 872 868 300 200 100 0.29.5.7511.25.5.75.9	710	1.5		700
920 896 886 878 872 868 300 200 100 0.29.9.7511.25.5.75.9	863	1.75		
920 896 886 878 872 868 300 200 100 0.29.9.7511.25.5.75.9	925	1.9		600
300 200 100 0.25.5.75.9	920		<u>.</u>	
300 200 100 0.25.5.75.9	896		<u>ن</u>	
300 200 100 0.25.5.75.9	886		<u>r</u> e	500
300 200 100 0.25.5.75.9	878		SSL	
300 200 100 0.25.5.75.9	872		ē	400
200 100 0.25.5.7511.25.5.75.9	868			
200 100 0.25.5.7511.25.5.75.9				300
0.25.5.7511.25.5.75.9				
0.25.5.7511.25.5.75.9				
0.2 5 .5.7511.2 5 .5.7 5 .9				200
0.2 5 .5.7511.2 5 .5.7 5 .9				
0.2 5 .5.7511.2 5 .5.7 5 .9				100
0.2 5 .5.7511.2 5 .5.7 5 .9				
0.2 5 .5.7511.2 5 .5.7 5 .9				
Valuus Dumas 10111				
volume Pumped (bbls)				Volume Pumped (bbls)

	Р	RESENT DAY INF	0.	
	DEPT	H (M):	MU	JD:
DATE:	MD:	TVD:	WEIGHT (PPG):	VISCOSITY (SEC):
23/02/2008	857	857	9.6	75

MAASP = 925

COMMENTS:	

						TRALIA					
Well: WA	ASABI-1					o Lawellow		Report No.:	2	Report Date:	6/03/2008
Project: VIC	C-P58	9	S	ite: WASA	BI-1			Rig Name/No	.: WEST TRITON		
Event: OF	FSHORE - ORIG DRLG		S	tart Date: 29/01/2	2008	End Date: 8/0	3/2008	Spud Date:	14/02/2008		
Active Datum	: ROTARY TABLE @38.0 Level)	00m (above Mean Se	a U	IWI:		'					
					General	Information					
Job Type: Contractor: Assembly: Ground Temp:	HALLIBURTON SURFACE	Desc: Abandonment	Plug #1	Cement Job Star Arrival Date/Time Tubing/Casing S Seabed Temp:	a:	6/03/2008 6:30AN 340.00 (mm)	Job End Date/Time: Foreman: MD Landed: Annulus Temp	857.31 (Jsed: N CO2: N Size: 406.00 (m	Zone Isolated: N
Crouna Temp.				Ocabed Temp.	Pina A	lovement	Armulus Temp		BITI	•	
Pipe Movemen	nt:				, ibe ii	Cyclinette					
Rotating Date/	Time (start-End): Date/Time (start-End):				Rotating RPM Recip Drag U		- (tonne)	Rotating Toro	que (init/avg/max):	(kN-m) Stroke Length:	
					Plu	g Detail					
Plug Type: Pipe Pull Rate	ABANDONMENT : 3 (m/s)	Plug MD Top:	1,210.00 (m)	Plug MD Ba		1,270.00 (m)	Drilled Out: WOC Time:		Dril	led Out Date:	
					Plug	g Status					
Stage No.	Top (m)	Base (m)	Date	Status				Comm	ents		
Fluid Name:	Plug				l Fluid	s (1 of 1)					
Fluid Type:	Cement				Fluid	5(1011)					
					Ad	ditives					
	Name		Type		Amount		Units	C	oncentration (Pa)	Concer	ntration Unit
CFR-3L		Friction Reduc	cer			15.00 gal				GAL/SK	
SCR-100L									0.500	GAL/SK	
NF-6									0.128	GAL/SK	
					S	tages					
Stage No.	Туре	MD Top (m)	MD Base (m)	Hole Size (mm)		Casing Pressure (kPa)	Circulate Flow Rate (L/min)	Circulate Press (kPa)	Circulate Prior (hr)	Vol Returns (m³)	Volume Lost (m³)
1 A	BANDONMENT PLUG1	1,210.00	1,270.0	0 216.00	82	74/8274	300,000	8274	1.00		

28/01/2009 10:23:54AM

AUSTRALIA Cementing Report WASABI-1 Report No.: Well: 2 Report Date: 6/03/2008 Project: VIC-P58 Site: WASABI-1 Rig Name/No.: WEST TRITON OFFSHORE - ORIG DRLG Start Date: 29/01/2008 End Date: 8/03/2008 Spud Date: 14/02/2008 Active Datum: ROTARY TABLE @38.00m (above Mean Sea UWI: Level) Stages Stage No. Type MD Top Initial/Final Casing Pressure MD Base Hole Size Circulate Flow Circulate Circulate Prior Vol Returns Volume Lost (m) (m) (mm) (kPa) Rate Press (hr) (m³) (m³) (L/min) (kPa) 1 ABANDONMENT PLUG1 1,210.00 1,270.00 216.00 8274/8274 300,000 8274 1.00 **Pumping Schedule** Fluid Pumped Volume Rate Slurry Slurry Disp Rate Disp Top Of **Pumping Start** Pumping End Operation Shutdown Foam Gas Foam Gas Foam Top MD Base MD Date/Time Date/Time (m³) (L/min) Final Pressure Fluid Time Туре Vol Used Job (m) (L/min) Final (m) (m) (min) (scm) (kPa) Plug - Cement 795 1,210.00 1,270.00 3,447.38 N

AUSTRALIA Cementing Report WASABI-1 Well: Report No .: 3 Report Date: 6/03/2008 Site: Project: VIC-P58 WASABI-1 Rig Name/No.: WEST TRITON OFFSHORE - ORIG DRLG Start Date: 29/01/2008 End Date: 8/03/2008 Spud Date: 14/02/2008 Active Datum: ROTARY TABLE @38.00m (above Mean Sea UWI: Level) **General Information** Job Desc: Abandonment Plug #2 Job Type: Plug Cement Job Start Date/Time: 6/03/2008 11:30AM Job End 6/03/2008 1:00PM N2 Used: N CO2: N Zone Isolated: N Date/Time: Contractor: HALLIBURTON Arrival Date/Time: Foreman: Assembly: SURFACE Tubing/Casing Size: 340.00 (mm) MD Landed: 857.31 (m) Hole Size: 406.00 (mm) Ground Temp: Air Temp: Seabed Temp: Annulus Temp: BHT: **Pipe Movement** Pipe Movement: Rotating Date/Time (start-End): Rotating RPM: Rotating Torque (init/avg/max): (kN-m) Reciprocating Date/Time (start-End): Recip Drag Up/Down: - (tonne) SPM: Stroke Length: Plug Detail Plug Type: **ABANDONMENT** Plug MD Top: 797.00 (m) Plug MD Base: 887.00 (m) Drilled Out: Drilled Out Date: Pipe Pull Rate: Pipe Pulled Wet: 3 (m/s) WOC Time: **Plug Status** Stage No. Base Date Status Comments Top (m) (m) 797.00 887.00 28/01/2009 In Place Fluid Name: Plug Fluids (1 of 1) Fluid Type: Cement Additives Name Type Amount Units Concentration Concentration Unit (Pa) CFR-3L Friction Reducer 15.00 gal 3.000 GAL/SK NF-6 0.125 GAL/SK Stages Stage No. Type MD Top MD Base Hole Size Initial/Final Casing Pressure Circulate Flow Circulate Prior Circulate Vol Returns Volume Lost (m) (m) (mm) (kPa) Rate Press (hr) (m3) (m^3) (L/min) (kPa) 1 ABANDONMENT PLUG 797.00 887.00 215.90 8274/8274 300,000 8274 1.00

28/01/2009

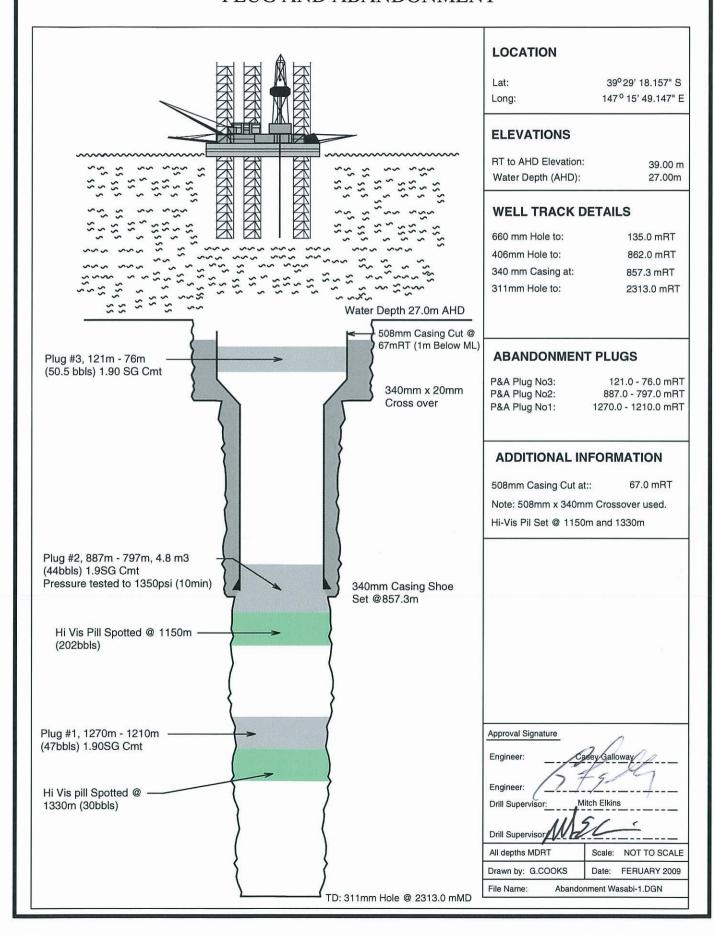
10:24:33AM

AUSTRALIA Cementing Report Well: WASABI-1 Report No.: Report Date: 6/03/2008 3 Project: VIC-P58 Site: WASABI-1 Rig Name/No.: WEST TRITON Event: OFFSHORE - ORIG DRLG Start Date: 29/01/2008 End Date: 8/03/2008 Spud Date: 14/02/2008 Active Datum: ROTARY TABLE @38.00m (above Mean Sea UWI: Level) Stages Stage No. Type MD Top MD Base Hole Size Initial/Final Casing Pressure Circulate Flow Circulate Circulate Prior Vol Returns Volume Lost (m) (m) (mm) (kPa) Rate Press (hr) (m³) (m3) (L/min) (kPa) 1 ABANDONMENT PLUG 797.00 887.00 215.90 8274/8274 300,000 8274 1.00 **Pumping Schedule** Fluid Pumped Volume Slurry **Pumping Start** Rate Slurry Disp Rate Disp Top Of Pumping End Operation Shutdown Foam Foam Gas Foam Gas (L/min) Top MD Base MD Final Date/Time (m3) Pressure Fluid Date/Time Time Job Type Vol Used (L/min) (m) (m) Final (m) (min) (scm) (kPa) Plug - Cement 795 797.00 887.00 3,447.38 Ν

28/01/2009

					AUSTRAL Cementing						
Well: WAS	SABI-1							Report No.:	4	Report Date:	6/03/2008
Project: VIC-F	P58			Site: WASAE	31-1			Rig Name/No.			3,00,200
Event: OFFS	SHORE - ORIG DRLG			Start Date: 29/01/2	008 End	d Date: 8	/03/2008	Spud Date:	14/02/2008		
Active Datum:	ROTARY TABLE @38.0 Level)	ົາm (above Mean ເ	Sea	UWI:							
					General Inform	nation					
Job Type: Contractor: Assembly: Ground Temp:	Plug Job D HALLIBURTON SURFACE Air Te	esc: Abandonme	ent Plug #3	Cement Job Start Arrival Date/Time Tubing/Casing Si Seabed Temp:	:	2008 9:00F 00 (mm)	PM Job End Date/Time: Foreman: MD Landed: Annulus Temp	857.31 (ı		Used: N CO2: N e Size: 406.00 (m	Zone Isolated: N
					Pipe Movem	ent					
Pipe Movement: Rotating Date/Ti Reciprocating Da					Rotating RPM: Recip Drag Up/Dow		- (tonne)	Rotating Torq	ue (init/avg/max):	(kN-m) Stroke Length:	
Plug Type:	ABANDONMENT	Plug MD Top:	76.00 (m)	Plug MD Ba		00 (m)	Drilled Out:		Dri	lled Out Date:	
Pipe Pull Rate:	3 (m/s)	riag in a rop.	70.00 (111)	Pipe Pulled		00 (111)	WOC Time:		Dil	ned Out Date.	
r ipo r un ritato.				r ipe r diled	Plug Statu	ıs	Woo Time.				
Stage No.	Top (m)	Base (m)	Date	Status				Comm	ents		
1	76.00	121.00	28/01/200	9 In Place							
Fluid Name:	Plug				Fluids (1 of	1)					
Fluid Type:	Cement										
					Additives						
	Name		Type		Amount		Units	C	oncentration (Pa)	Concer	ntration Unit
CALC2		ACCELER/	TOR		15.00	gal				0 %BWOC	
NF-6									0.12	5 GAL/SK	
					Stages						
Stage No.	Туре	MD Top (m)	MD Base (m)	Hole Size (mm)	Initial/Final Casing (kPa)	g Pressure	Circulate Flow Rate (L/min)	Circulate Press (kPa)	Circulate Prior (hr)	Vol Returns (m³)	Volume Lost (m³)
1 AB	ANDONMENT PLUG	76.00	121.0	00 457.20	8274/827	74	300,000	8274	1.00		

28/01/2009 10:25:11AM


AUSTRALIA Cementing Report Well: WASABI-1 Report No .: 4 Report Date: 6/03/2008 Project: VIC-P58 Site: WASABI-1 Rig Name/No.: WEST TRITON OFFSHORE - ORIG DRLG Event: Start Date: 29/01/2008 End Date: 8/03/2008 Spud Date: 14/02/2008 Active Datum: ROTARY TABLE @38.00m (above Mean Sea UWI: Level) Stages Stage No Type MD Top MD Base Hole Size Initial/Final Casing Pressure Circulate Flow Circulate Circulate Prior Vol Returns Volume Lost (m) (m) (mm) (kPa) Rate Press (hr) (m³) (m³) (L/min) (kPa) 1 ABANDONMENT PLUG 76.00 121.00 457.20 8274/8274 300,000 8274 1.00 **Pumping Schedule** Fluid Pumped Volume Rate Disp Rate Slurry Slurry Disp Top Of **Pumping Start** Pumping End Operation Shutdown Foam Foam Gas Foam Gas (m³) (L/min) Top MD Base MD Final Fluid Date/Time Date/Time Pressure Time Job Vol Used Type (m) (m) (L/min) Final (m) (min) (scm) (kPa) Plug - Cement 795 121.00 76.00 3,447.38 N

28/01/2009

10:25:11AM

VIC-P58 WASABI-1 PLUG AND ABANDONMENT

REPORT FOR THE WEST TRITON RIG MOVE TO THE WASABI-1 LOCATION

FUGRO BTW JOB NO. – 07066

Client : AUSTRALIAN DRILLING ASSOCIATES PTY LTD

Date of Project : 20th January to 14th February 2008

0	Final			
Rev	Description	Checked	Approved	Date

This document is confidential. The copyright © therein is vested in Fugro Survey Pty Ltd. All rights reserved. Neither the whole, nor any part of this document may be disclosed to any third party nor reproduced, stored in any retrieval system or transmitted in any form nor by any means (electronic, mechanical, reprographic, recording nor otherwise) without the prior written consent of the copyright owner.

		114	ГС	MI.	TC
C	U	N		IN	1 2

		PAGE NO.
1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	2
2.1	Scope of Work	2
2.2	Sequence of Events	2
3.0	RESULTS	4
3.1	Final Position	4
3.2	Rig Heading	4
3.3	Height	4
4.0	SAFETY	6
5.0	GEODETIC PARAMETERS	7
5.1	Datum and Projection	7
6.0	DIFFERENTIAL GPS REFERENCE STATIONS	8
7.0	PROJECT COORDINATES AND TOLERANCES	8
8.0	PERSONNEL	8
8.1	Personnel Listing	8
9.0	VESSELS	8
10.0	CONCLUSIONS AND RECOMMENDATIONS	8
11.0	DISTRIBUTION	9
	FIGURES	

FIGURES

TABLES

TABLE 2-1: FINAL COORDINATES AND HEADING1

TABLE 3-1: GEOGRAPHICAL POSITIONS	4
TABLE 3-2 : GRID COORDINATES	4
TABLE 3-3 : FINAL HEADING	
TABLE 3-4 : FINAL HEIGHT	
TABLE 4-1 : TRANSFORMATION PARAMETERS	7
TABLE 5-1 : GPS REFERENCE STATIONS	8
TABLE 6-1 : PROJECT DESIGN COORDINATES	8

APPENDICES

APPENDIX A - DAILY OPERATIONS REPORTS

APPENDIX B - FINAL POSITIONING DATA

APPENDIX C - CALIBRATIONS

APPENDIX D - VESSEL OFFSET DIAGRAM

APPENDIX E - CLIENT SUPPLIED DATA

1.0 EXECUTIVE SUMMARY

Between the 20th January and 14th February 2008 Fugro BTW Limited (Fugro) provided equipment and personnel for the Jack Up Mobile Offshore Drilling Unit (MODU) West Triton, rig move from Western Port Bay to the Wasabi-1 location.

Surface positioning was achieved utilising Fugro's Starfix Differential GPS (DGPS) interfaced to Fugro's SEIS navigation software.

The final position derived from DGPS observations of the West Triton Drill stem at the Wasabi-1 location is:

Location Name	West Triton : Drill stem
MGA94, UTM Zone 55 S	
Easting	522993.588 m
Northing	5739963.350 m
GDA94-ITRF2008.50	
Latitude	38º 29' 18.1573" S
Longitude	147º 15' 49.1465" E
Rig Heading (True)	119.76° (True)
Height above Australian Height	
Datum (AHD)	
Rotary Table (RT)	39.015m

TABLE 2-1: FINAL COORDINATES AND HEADING

This position is **14.86m** at a bearing of **179.88° True** FROM the proposed Wasabi-1 location.

All coordinates in this report are quoted in terms of Geocentric Datum of Australia 1994 (GDA94) and Map Grid of Australia 1994, UTM Zone 55 S (MGA94) projection unless otherwise stated.

2.0 INTRODUCTION

Fugro BTW Ltd (Fugro) was contracted by Australian Drilling Associates Pty Ltd (ADA) to provide navigation and positioning survey services onboard the Jack Up Rig (JUR) West Triton, during the rig move to the Wasabi-1 location in the Bass Strait, Australia.

A general location diagram is shown in Figure 1-1.

This report details the equipment used survey parameters adopted, procedures employed and the results achieved. A section on safety is included in Section 4.0 of this report.

2.1 Scope of Work

Personnel and equipment were provided on a 24 hour per day basis for:

- Installation of survey navigation equipment on MODU West Triton and Anchor Handling Vessels (AHVs) MV Pacific Battler and MV Pacific Wrangler.
- Final rig surface positioning at the Wasabi-1 location using DGPS observations.
- Final reporting of the positioning results.

2.2 Sequence of Events

On 20 January 2008, S. Armstrong and R. Cantlon departed New Plymouth for Melbourne. On 26 January the *MV Pacific Battler* navigation spread and telemetry system was mobilised and operational. On 28 January the *MV Pacific Wrangler* navigation spread and telemetry system was mobilised and operational. On 30 January S. Armstrong and R. Cantlon arrived via helicopter on *West Triton*. At 1000 on 3 February 2008 the navigation systems and telemetry links were confirmed as fully operational between the *West Triton* and AHVs. On 09 February the tow to Wasabi-1 commenced. The rig was positioned and the final fix undertaken on the 12 February 2008 after preloading and jacking operations had been completed. Fugro Personnel departed the rig on 13 February. On 14 February 2008 Fugro personnel arrived back in New Plymouth.

Further details of Fugro's involvement in the rig move are presented in the daily operations reports included in **Appendix A.**



FIGURE 1: WASABI-1 GENERAL LOCATION DIAGRAM

3.0 RESULTS

3.1 Final Position

The final position of the West Triton drill stem at Wasabi-1 was established by calculating the mean position from 1 hour of DGPS data logged between 0613 and 0713 (UTC) on the 12th February 2008. During this period, calculated drill stem coordinates from the primary positioning system were logged and the data used to calculate the final position.

Geocentric Datum of Australia 1994 geographical positions for the West Triton drill stem at the Wasabi-1 location are shown in Table 3-1.

Geocentric Datum of Australia 1994, ITRF2008.50					
Position	Method	Latitude	Longitude		
West Triton Drill Stem	DGPS	38° 29' 18.1573" S	147° 15' 49.1465" E		
Client Supplied Design for Wasabi-1		38° 29' 17.6755" S	147° 15' 49.1452" E		

TABLE 3-1: GEOGRAPHICAL POSITIONS

Map Grid of Australia 1994 grid coordinates (UTM Zone 55 S, CM 147 E) for the West Triton drill stem at the Wasabi-1 location are shown in Table 3-2.

Map Grid of Australia 1994, UTM Zone 55 S					
Position	Method	Easting	Northing		
West Triton Drill Stem	DGPS	522993.588 m	5739963.350 m		
Client Supplied Design for Wasabi-1		522993.600 m	5739978.200 m		

TABLE 3-2: GRID COORDINATES

The position is **14.86m** at a bearing of **179.88°** True (180.04° G) from the design location.

A copy of the original rig position field report is contained in Appendix B.

3.2 Rig Heading

Gyro calibration's were undertaken both prior to undertaking the rig move at Western Port Bay and on location at Wasabi-1 by sun azimuth to compute the C-O correction.

A copy of the Gyro calibration reports are shown in Appendix C.

The West Triton's heading at Wasabi-1 is shown in Table 3-3.

Description	Method	True	Grid
West Triton heading at Wasabi-1	GYRO	119.76°	119.92°
Client Supplied Design heading		120°	

TABLE 3-3: FINAL HEADING

3.3 Height

The West Triton Rotary Table's (RT) height above Australian Height Datum (AHD) was determined from logging 7 hours of carrier phase GPS data between 2118 on 11 February 2008 (UTC) and 0438 on 12 February 2008 (UTC). During this period, antenna heights from the primary positioning system were logged and the data used to calculate the final height of the RT.

The West Triton's Rotary Table height is shown in Table 3-4.

Description	Method	Height above AHD
West Triton Rotary Table at Wasabi-1	Carrier Phase GPS	39.015m
Client Supplied Design height		>38m

TABLE 3-4: FINAL HEIGHT

4.0 SAFETY

All work undertaken by Fugro personnel during the project was preformed within the guidelines of Fugro's Safety policy, as defined in Fugro's Safety Manual (SMS – P01) and Offshore Survey Practices (SMS SP26)

Fugro personnel worked within all project safety guidelines and plans adopted by Seadrill and ADA.

No safety incidents involving Fugro personnel were reported during the project.

Fugro personnel attended a vessel induction/ pre rig move meeting/ muster and abandonment drills whilst onboard.

5.0 GEODETIC PARAMETERS

5.1 Datum and Projection

All coordinates are referenced to the Geocentric Datum of Australia 1994 (GDA94) unless otherwise noted. The Global Positioning System (GPS) operates on the World Geodetic System 1984 (WGS84) datum. Fugro's Differential GPS Reference Stations are currently defined in the International Terrestrial Reference Frame 2000 (ITRF2000 Epoch 2008.50) datum. Due to the continual refinement of the WGS84 reference frame, for all cases, the transformation parameters indicate that the WGS84 and ITRF2000 reference frames are essentially identical.

Datum : World Geodetic System 1984 (WGS84)

Reference Spheroid: World Geodetic System 1984

Semi Major Axis : 6378137.000m Inverse flattening : 298.257223563

Datum : Geocentric Datum of Australia 1994 (GDA94)
Reference Spheroid : Geodetic Reference System 1980 (GRS80)

Semi Major Axis : 6378137.000m Inverse flattening : 298.257222101

The following seven parameter datum transformation was used in Fugro's software, to transform WGS84 (ITRF2000 Epoch 2008.50) coordinates to GDA94 coordinates. These parameters are calculated from the 14 parameter transformation defined by Geoscience Australia. Fugro follows the Coordinate Frame Rotation convention (as defined by UKOOA) for datum transformations.

Transformation Parameters from WGS84 (ITRF2000 Epoch 2008.50) to GDA94						
dX	+0.0174m	rX	+0.017554"			
dY	-0.0484m	rY	+0.015065"			
dΖ	-0.1035m	rZ	+0.018157"			
dS	+0.003362ppm					

TABLE 5-1: TRANSFORMATION PARAMETERS

No transformation is needed in order to compute between WGS84 to GRS80.

Well grid coordinates are referenced to the Map Grid of Australia.

Grid : Map Grid of Australia 1994 (MGA94)
Projection : Universal Transverse Mercator (UTM)

Latitude of Origin : 0°

Central Meridian : 147° E (UTM Zone 55)

Central Scale Factor : 0.9996
False Easting : 500000m
False Northing : 10000000m
Units : Metres

6.0 DIFFERENTIAL GPS REFERENCE STATIONS

Fugro's Differential GPS Reference Stations are currently defined in the ITRF2008.25 datum and shown in Table 6-1

	Datum: ITRF 2000 Epoch 2008.25 Reference Ellipsoid: GRS80							
Station Name	Station ID	Latitude	Longitude	Height (m)	Uplink			
Bathurst	336	33° 25′ 46.87757″	149° 34′ 01.97016″	756.670	OCSat / APSat			
Brisbane	275	27° 28′ 38.48593″	153° 01′ 37.35303″	93.155	OCSat			
Ceduna	355	32° 07′ 03.04719″	133° 41′ 22.85207″	7.280	OCSat			
Cobar	316	31° 29′ 57.42962″	145° 50′ 20.34599″	270.176	OCSat / APSat			
Melbourne	385	37° 47′ 59.26402″	144° 57′ 39.31144″	67.338	OCSat / APSat			

TABLE 6-1: GPS REFERENCE STATIONS

7.0 PROJECT COORDINATES AND TOLERANCES

Project target coordinates supplied by the client and surface tolerances for the West Triton Drill Stem at the Wasabi-1 location are shown in Table 7.1

Map Grid of Australia 1994, UTM Zone 55 S						
Location	Easting (m)	Northing (m)	Tolerance			
West Triton at Wasabi-1	522993.60	5739978.20	±25 m			

TABLE 7-1: PROJECT DESIGN COORDINATES

8.0 PERSONNEL

8.1 Personnel Listing

S Armstrong Party Chief / Surveyor 20th January 2007 – 14th February 2008 R Cantlon Surveyor 20th January 2007 – 14th February 2008

9.0 VESSELS

The vessels used for towing the West Triton were the Anchor Handling vessels *MV Pacific Battler* and the *MV Pacific Wrangler*. Refer to Appendix D for the offset diagram of the West Triton.

10.0 CONCLUSIONS AND RECOMMENDATIONS

On reviewing the rig move and positioning operations undertaken by Fugro the West Triton was successfully positioned at the Wasabi-1 location.

11.0 DISTRIBUTION

Australian Drilling Associates Pty Ltd : 1 electronic copy

Fugro BTW Ltd : 1 paper copy

: 1 paper copy : 1 electronic copy APPENDIX A
Daily Operations Reports

Fugro-BTW PM-F50 DAILY OPERATIONS REPORT

LIEN!:	ADA PT	/ LTD		AUSTRALIA			DATE: 20/01/08	
	T: RIG M			VESSEL: N/A	OB NO: 07066			
FROM	ТО			SUMMA	RY OF	OPERATIONS		
GMT -	÷13:00				- Marri	Dlumouth to Mall	ington	
1230	1300	S. Arms	trong & R.	Cantlon travel from	n New I	Plymouts to wes	iligion	
1600	2000 +11:00							
1800	+11.00	R. Cant	lon collects	s rental car and ch	ecks int	o accommodatio	n	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
		ļ. <u> </u>						
			<u> </u>					
		-						
	 	 						
		<u> </u>						
					· <u>-</u> , -			
		ļ	<u>. </u>					
	<u> </u>	 						
	 							
EQUIP RIG	MENT	NO.	EQUIPN	MENT REMOTE	NO.	PERSONNEL	TITLE	
		-	<u> </u>					
Starfix S	Seis	2	Starfix W	ombat (remote)	2	S. Armstrong	Party Chief / Surveyor	
Starfix S		2 3	<u> </u>	ombat (remote)	2	S. Armstrong R. Cantlon	Party Chief / Surveyor Surveyor	
Starfix Starfix I	HP DGPS		<u> </u>	Compass	 			
Starfix Starfix Radio N	HP DGPS	3 2	Fluxgate Radio M	Compass	3			
Starfix Starfix Radio N	HP DGPS Modem	3 2 2	Fluxgate	Compass	3 2			
Starfix Starfix Radio N	HP DGPS Modem	3 2	Fluxgate Radio M	Compass	3 2			
Starfix Starfix Radio MUPS Theodo	HP DGPS Modem	3 2 2	Fluxgate Radio M	Compass	3 2			
Starfix Starfix Radio MUPS Theodo	HP DGPS Modem	3 2 2 1	Fluxgate Radio M	Compass	3 2			
Starfix Starfix Radio MUPS Theodo	HP DGPS Modem blite bwn Gyro	3 2 2 1 2	Fluxgate Radio M Starfix H	Compass	3 2			
Starfix S Starfix I Radio M UPS Theodo	HP DGPS Modem	3 2 2 1 2	Fluxgate Radio M Starfix H	Compass	3 2			
Starfix S Starfix I Radio M UPS Theodo SG Bro VEHIC CONSI	HP DGPS Modem Ditte DWN Gyro LES: REN	3 2 2 1 2 1 2 TAL CAR	Fluxgate Radio M Starfix H	Compass odem P DGPS	3 2 2			
Starfix S Starfix I Radio M UPS Theodo SG Bro VEHIC CONSI	HP DGPS Modem Ditte DWN Gyro LES: REN	3 2 2 1 2 1 2 TAL CAR	Fluxgate Radio M Starfix H	Compass odem P DGPS	3 2 2			
Starfix S Starfix I Radio M UPS Theodo SG Bro VEHIC CONSI ACCO	HP DGPS Modem Slite WIN Gyro LES: REN UMABLES MMODATION	3 2 2 1 1 2 TAL CAR : N/A ON: REN	Fluxgate Radio M Starfix H	Compass	3 2 2 2 URNE			
Starfix S Starfix I Radio M UPS Theodo SG Bro VEHIC CONSI ACCO	HP DGPS Modem Slite WIN Gyro LES: REN UMABLES MMODATION	3 2 2 1 2 TAL CAR : N/A ON: REN	Fluxgate Radio M Starfix H DEZVOUS T CHANG	Compass odem P DGPS HOTEL, MELBO ES / COMMENTS:	3 2 2 2 URNE		Surveyor	

	: ADA PT	LTD	LO	CATION: ME	LBOUI	RNE	DATE: 21/01/08		
	CT: RIG M		VE	VESSEL: N/A JOB NO: 07066					
FROM	TO	11011		SUMMA	RY OF	OPERATIONS			
0430	0830	S. Arms	strong arrives	in Melbourne			en la li accesso		
1000	1130		· · · · · · · · · · · · · · · · · · ·	walan alfaad ria	move	meeting at ADA o	sms) is picked up from		
1600		CDKon	nedv						
1730		O.C.	بممام سماريال و	ne plus various	consur	nable items are p	urchased		
1830		Fugro p	ersonnel che tion Centre)	ck into ADA sup	plied a	ccommodation (N	lelbourne Airport Motel &		
		<u> </u>							
		<u> </u>		<u> </u>					
		 -	<u>.</u> <u></u>						
			<u> </u>		<u> </u>	<u> </u>			
<u></u>		 							
		-				<u></u>			
<u>-</u> .									
EQUIP	MENT	NO.	EQUIPME	NT REMOTE	NO.	PERSONNEL	TITLE		
RIG		NO.			NO. 2	PERSONNEL S. Armstrong	TITLE Party Chief / Surveyor		
RIG Starfix S	Seis	2	Starfix Wom	nbat (remote)	<u> </u>				
Starfix S	Seis HP DGPS	2 3	Starfix Wom	nbat (remote) ompass	2	S. Armstrong	Party Chief / Surveyor		
Starfix S Starfix I Radio M	Seis HP DGPS	2 3 2	Starfix Wom Fluxgate Co	nbat (remote) ompass em	2	S. Armstrong	Party Chief / Surveyor		
Starfix S Starfix I Radio M UPS	Seis HP DGPS Modem	2 3 2 2	Starfix Wom	nbat (remote) ompass em	2 3 2	S. Armstrong	Party Chief / Surveyor		
Starfix S Starfix H Radio M UPS Theodo	Seis -IP DGPS Modem	2 3 2 2 1	Starfix Wom Fluxgate Co	nbat (remote) ompass em	2 3 2	S. Armstrong	Party Chief / Surveyor		
Starfix S Starfix Radio M UPS Theodo	Seis HP DGPS Modem Slite wn Gyro	2 3 2 2 1	Starfix Wom Fluxgate Co	nbat (remote) ompass em	2 3 2	S. Armstrong	Party Chief / Surveyor		
Starfix S Starfix Radio M UPS Theodo	Seis HP DGPS Modem Slite Wn Gyro TCA 1105	2 3 2 2 1	Starfix Wom Fluxgate Co	nbat (remote) ompass em	2 3 2	S. Armstrong	Party Chief / Surveyor		
Starfix S Starfix I Radio M UPS Theodo SG Bro Leica T Total S	Seis HP DGPS Modem Slite Wn Gyro TCA 1105	2 3 2 2 1 2	Starfix Wom Fluxgate Co Radio Mode Starfix HP E	nbat (remote) ompass em	2 3 2	S. Armstrong	Party Chief / Surveyor		
Starfix Starfix Radio MUPS Theodo SG Bro Leica T Total S VEHIC	Seis HP DGPS Modem Slite Win Gyro TCA 1105 tation LES: RENT	2 3 2 2 1 2 1 TAL CAR	Starfix Wom Fluxgate Co Radio Mode Starfix HP D	nbat (remote) ompass em OGPS	2 3 2 2	S. Armstrong	Party Chief / Surveyor		
Starfix Starfix Radio MUPS Theodo SG Bro Leica T Total S VEHIC	Seis HP DGPS Modem Slite Win Gyro TCA 1105 tation LES: RENT	2 3 2 2 1 2 1 TAL CAR	Starfix Wom Fluxgate Co Radio Mode Starfix HP D	nbat (remote) ompass em	2 3 2 2	S. Armstrong	Party Chief / Surveyor		
Starfix Starfix Radio MUPS Theodo SG Bro Leica T Total S VEHIC CONSI	Seis -IP DGPS Modem Slite -wn Gyro -CA 1105 tation LES: RENT UMABLES:	2 3 2 2 1 2 1 2 1 TAL CAR N/A ON: AIRF	Starfix Worn Fluxgate Co Radio Mode Starfix HP D	nbat (remote) ompass em OGPS	2 3 2 2	S. Armstrong	Party Chief / Surveyor		
Starfix Starfix Radio MUPS Theodo SG Bro Leica T Total S VEHIC CONSI	Seis -IP DGPS Modem Slite -wn Gyro -CA 1105 tation LES: RENT UMABLES:	2 3 2 1 2 1 TAL CAR N/A DN: AIRF	Starfix Wom Fluxgate Co Radio Mode Starfix HP D	nbat (remote) ompass om OGPS , MELBOURNI	2 3 2 2	S. Armstrong	Party Chief / Surveyor Surveyor		

CLIENT:	: ADA PT	Y LTD		LOCATION: ME	LBOU	RNE	DATE: 22/01/08
	CT: RIG M)	VESSEL: N/A			JOB NO: 07066
FROM	TO					OPERATIONS	
0800	1730	Seadrill	and Third	Party personnel			nce along with ADA,
1830	2200	ADA or	ganised di	nner, drinks, evenir	ng ente	rtainment	
EQUIPI RIG	MENT	NO.	EQUIPN	MENT REMOTE	NO.	PERSONNEL	TITLE
Starfix S	Seis	2	Starfix W	/ombat (remote)	2	S. Armstrong	Party Chief / Surveyor
	IP DGPS	3	·	Compass	3	R. Cantlon	Surveyor
Radio M		2	Radio Me	odem	2		
UPS		2	Starfix H	P DGPS	2		
Theodo	lite	1					
	wn Gyro	2					
Leica Total St	CA 1105 tation	1					
VEHIC	ES: RENT	AL CAR					
CONSU	JMABLES:	N/A					
ACCO	MODATIO	ON: AIRF	ORT MOT	EL, MELBOURNE			
AUTHO	ORISED CO	ONTRAC	T CHANGI	ES / COMMENTS:			
 	Party Chi	ef Signa	ture:	Client Rep	resent	ative Signature:	D O R Number
4	M	2		M	$\frac{2}{}$	ans_	07066-3

CLIENT: ADA PTY LTD PROJECT: RIG MOVE TO			LC	CATION: ME	LBOU	RNE	DATE: 23/01/08	
	T: RIG M		VE	ESSEL: N/A	JOB NO: 07066			
FROM	ТО			SUMMA	RY OF	OPERATIONS		
0800	1600	Fugro p	ersonnel atte	nd Day two of D	WOP (conference		
1630		Survey	gear for Paci	fic Battler is coll	ected fr	om ABX logistics		
1700		Consur	nables require	ed for Pacific Ba	ittler su	rvey spread are p	ourchased	
				<u>,</u>				
		<u>. —</u>		<u> </u>				
	<u>, </u>							
						<u> </u>		
		-						
<u></u>								
				<u> </u>				
			·		·			
								
EQUIPN	MENT	NO.	FOUIPME	NT REMOTE	NO.	PERSONNEL	TITLE	
RIG		110.	<u> </u>				D. J. Ohiof / Our rover	
Starfix S		2		nbat (remote)	2	S. Armstrong	Party Chief / Surveyor Surveyor	
Starfix H		3	Fluxgate Co		3	R. Cantlon	Surveyor	
Radio M	odem	2	Radio Mode	em	2	<u></u>		
UPS	,	2	Starfix HP	OGPS	2			
Theodoli	te	1						
SG Brow	vn Gyro	2						
Leica TC Total Sta		1						
VEHICL	ES: RENT	AL CAR		··				
CONSU	MABLES:	N/A						
ACCOM	IMODATIO	N: AIRP	ORT MOTEL	, MELBOURNE				
AUTHO	RISED CO	NTRAC	T CHANGES	/ COMMENTS:				
	Party Chie	f Signat	ture:	Client Rep	resent	ative Signature:	D O R Number	
	13			lue	6	, <u>_</u>	07066-4	

LIENI:	ADA PTY	LTD		LOCATION: MEI GEELONG	BOU	RNE &	DATE: 24/01/08	
ROJEC	T: RIG MO	OVE TO		VESSEL: PACIF	IC BA	TTLER	JOB NO: 07066	
ROM	TO			SUMMA	RY OF	OPERATIONS		
0830	0930	Malhour	rne for Co	orio Quav. Geelong			ference Centre, depart	
1000	1015	Fuoro personnel undertake induction at Corio Quay						
1015	1800	Doord D	Pacific Ba	ittler and commence	mobilis	sation	-lh-	
1400	1630	R. Cant	lon depa	rts vessel to obtain v	arious	consumables, to	nired, Fugro personnel	
1800	1815	depart v	yessel an	d check in to accom	modati	on (Chifley Hotel)		
FOUIP	MENT	l Na	FOLUE	DMENT DEMOTE	NO	PERSONNEL	TITLE	
RIG		NO.	<u> </u>	PMENT REMOTE	NO.	PERSONNEL S. Armstrong		
RIG Starfix S	Seis	2	Starfix	Wombat (remote)	2	S. Armstrong	Party Chief / Surveyor	
RIG Starfix S		2 3	Starfix Fluxga	Wombat (remote) te Compass	2			
Starfix S	Seis IP DGPS	2	Starfix Fluxga	Wombat (remote)	3 2	S. Armstrong	Party Chief / Surveyor	
RIG Starfix S Starfix H	Seis IP DGPS	2 3	Starfix Fluxga	Wombat (remote) te Compass	2	S. Armstrong	Party Chief / Surveyor	
RIG Starfix S Starfix H Radio M	Seis HP DGPS Nodem	2 3 2	Starfix Fluxga	Wombat (remote) te Compass Modem	3 2	S. Armstrong	Party Chief / Surveyor	
RIG Starfix S Starfix H Radio M UPS Theodol	Seis HP DGPS Nodem	2 3 2 2	Starfix Fluxga	Wombat (remote) te Compass Modem	3 2	S. Armstrong	Party Chief / Surveyor	
RIG Starfix S Starfix H Radio M UPS Theodol SG Brow	Seis HP DGPS Hodem Hite wn Gyro CA 1105	2 3 2 2 1	Starfix Fluxga	Wombat (remote) te Compass Modem	3 2	S. Armstrong	Party Chief / Surveyor	
Starfix S Starfix H Radio M UPS Theodol SG Brow Leica Total St	Seis HP DGPS Nodem lite wn Gyro CA 1105 tation	2 3 2 2 1 2	Starfix Fluxga Radio I Starfix	Wombat (remote) te Compass Modem	3 2	S. Armstrong	Party Chief / Surveyor	
Starfix S Starfix H Radio M UPS Theodol SG Brow Leica Total St VEHICL	Seis HP DGPS Hodem Hite wn Gyro CA 1105	2 3 2 2 1 2 1 TAL CAR	Starfix Fluxga Radio I Starfix	Wombat (remote) te Compass Modem	3 2	S. Armstrong	Party Chief / Surveyor	
RIG Starfix S Starfix H Radio M UPS Theodol SG Brow Leica Total St VEHICL CONSL	Seis HP DGPS Hodem Hite wn Gyro CA 1105 tation LES: RENT	2 3 2 2 1 2 1 5 7AL CAR	Starfix Fluxga Radio Starfix	Wombat (remote) te Compass Modem	3 2	S. Armstrong	Party Chief / Surveyor	
Starfix S Starfix H Radio M UPS Theodol SG Brow Leica Tr Total St VEHICL CONSU	Seis HP DGPS Hodem Hite Wn Gyro CA 1105 tation LES: RENT JMABLES:	2 3 2 2 1 2 1 TAL CAR : N/A	Starfix Fluxga Radio Starfix	Wombat (remote) te Compass Modem HP DGPS	2 3 2 2	S. Armstrong	Party Chief / Surveyor	
Starfix S Starfix H Radio M UPS Theodol SG Brow Leica Tr Total St VEHICL CONSU	Seis HP DGPS Hodem Hite Wn Gyro CA 1105 tation LES: RENT JMABLES:	2 3 2 1 2 1 FAL CAR N/A ON: CHIF	Starfix Fluxga Radio Starfix FLEY HO	Wombat (remote) te Compass Modem HP DGPS TEL GEELONG GES / COMMENTS:	2 3 2 2	S. Armstrong	Party Chief / Surveyor Surveyor	

LIEN!	: ADA PT	Y LTD	LOCA	TION: GE	ELON	G	DATE: 25/01/08
	CT: RIG M		VESS	EL: PACIF	IC BA	TTLER	JOB NO: 07066
FROM	TO					OPERATIONS	
0730	0830	Fugro p	ersonnel depart (ehouse to purchase			
0830	0930	Arrive	t Corio Ouay, sea				
0930	1300	Carry o	ut GPS verificatio				
1300	1400	Upon fi	nishing all housel	keeping and	or .		of Starfix with skipper,
1700		Survey	gear for Pacific V th via Melbourne	Vrangler and	d West	Triton arrives at 0	Corio Quay from New
		-					
			<u></u>				
EQUIP	MENT	NO.	EQUIPMENT	REMOTE	NO.	PERSONNEL	TITLE
RIG		NO.	LGOII MILITI				
	Seis	2	Starfix Wombat		2	S. Armstrong	
Starfix S	Seis HP DGPS			(remote)	2	S. Armstrong R. Cantlon	Party Chief / Surveyor Surveyor
Starfix S	IP DGPS	2	Starfix Wombat	(remote)			
Starfix S Starfix H	IP DGPS	2 3	Starfix Wombat	(remote)	3		
Starfix S Starfix H Radio M	IP DGPS lodem	2 3 2	Starfix Wombat Fluxgate Comp Radio Modem	(remote)	3 2		
Starfix S Starfix H Radio M UPS Theodo	IP DGPS lodem	2 3 2 2	Starfix Wombat Fluxgate Comp Radio Modem	(remote)	3 2		
Starfix S Starfix H Radio M UPS Theodo SG Brow	IP DGPS Iodem lite wn Gyro CA 1105	2 3 2 2 1	Starfix Wombat Fluxgate Comp Radio Modem	(remote)	3 2		
Starfix S Starfix F Radio M UPS Theodo SG Brow Leica T Total St	IP DGPS Iodem lite wn Gyro CA 1105	2 3 2 2 1 2	Starfix Wombat Fluxgate Compa Radio Modem Starfix HP DGP	(remote)	3 2		
Starfix S Starfix H Radio M UPS Theodo SG Brov Leica T Total St VEHICL CONSU	IP DGPS Iodem lite wn Gyro CA 1105 tation LES: RENT	2 3 2 2 1 2 1 TAL CAR	Starfix Wombat Fluxgate Compa Radio Modem Starfix HP DGP	(remote) ass	3 2		
Starfix S Starfix H Radio M UPS Theodo SG Brov Leica T Total St VEHICL CONSU	IP DGPS Iodem lite wn Gyro CA 1105 tation LES: RENT	2 3 2 2 1 2 1 TAL CAR	Starfix Wombat Fluxgate Compa Radio Modem Starfix HP DGP	(remote) ass	3 2		
Starfix S Starfix H Radio M UPS Theodo SG Brov Leica Total St VEHICL CONSL ACCOM	IP DGPS Iodem lite wn Gyro CA 1105 tation LES: RENT JMABLES:	2 3 2 2 1 2 1 2 AL CAR N/A DN: CHIF	Starfix Wombat Fluxgate Compa Radio Modem Starfix HP DGP	e (remote) ass PS ELONG	3 2 2		
Starfix S Starfix H Radio M UPS Theodo SG Brov Leica Total St VEHICI CONSL ACCOM	IP DGPS Iodem lite wn Gyro CA 1105 tation LES: RENT JMABLES:	2 3 2 1 2 1 TAL CAR N/A DN: CHIF	Starfix Wombat Fluxgate Compound Radio Modem Starfix HP DGP	eLONG	3 2 2		

LIENT:	ADA PTY	LTD	LOCATION: GE WARRNANBOO		G &	DATE: 26/01/08
	T: RIG MO		VESSEE: I AOII			JOB NO: 07066
FROM	TO				OPERATIONS	
0800	1000	Check of	out of Chifley Hotel, collect su	st night		
1000	1100	Carried	out additional GPS health ch	that recently arrived,		
	1830	∆0.65m	, ∆2.49m survey gear for Pacific Wrar	ngler an	d commenced tra	nsit to Warrnanbool
1200 1830	1030	Checke	d in to Central Court Motel, \	Varrant	oool	
1000	-					
					<u> </u>	
		<u> </u>				
	<u> </u>					
	<u></u>	 - -				
		<u> </u>		_		
==:=	<u> </u>	<u> </u>		1	T	
EQUIPI RIG	MENI	NO.	EQUIPMENT REMOTE	NO.	PERSONNEL	TITLE
Starfix S	· · · · ·	2	Starfix Wombat (remote)	2	S. Armstrong	Party Chief / Surveyor
				3	R. Cantlon	Surveyor
Starfix F	IP DGPS	3	Fluxgate Compass		Tr. Caraon	
Radio M	lodem	2	Radio Modem	2		
UPS		2	Starfix HP DGPS	2		
	lite			2		
Theodo		2		2		
Theodo	wn Gyro	2		2		
Theodo	wn Gyro CA 1105	2		2		
Theodo SG Bro Leica T Total St	wn Gyro CA 1105	2 1 2 1	Starfix HP DGPS	2		
Theodo SG Brov Leica T Total St VEHICI	wn Gyro CA 1105 tation LES: RENT	2 1 2 1 AL CAR	Starfix HP DGPS	2		
Theodo SG Brov Leica Trotal St VEHICI CONSU	wn Gyro CA 1105 tation LES: RENT JMABLES:	2 1 2 1 AL CAR	Starfix HP DGPS	2		
Theodo SG Brov Leica T Total Si VEHICI CONSU ACCON	wn Gyro CA 1105 tation LES: RENT JMABLES: MMODATIC NANBOOL	2 1 2 1 AL CAR N/A DN: CEN	Starfix HP DGPS TAL COURT MOTEL			
Theodo SG Brov Leica T Total Si VEHICI CONSU ACCON	wn Gyro CA 1105 tation LES: RENT JMABLES: MMODATIC NANBOOL	2 1 2 1 AL CAR N/A DN: CEN	Starfix HP DGPS			
Theodo SG Brov Leica T Total Si VEHICI CONSU ACCON	wn Gyro CA 1105 tation LES: RENT JMABLES: MMODATIC NANBOOL DRISED CO	2 1 2 1 AL CAR N/A DN: CEN	Starfix HP DGPS TAL COURT MOTEL T CHANGES / COMMENTS		6thyo Signaturo	D O R Number
Theodo SG Brov Leica T Total Si VEHICI CONSU ACCON	wn Gyro CA 1105 tation LES: RENT JMABLES: MMODATIC NANBOOL	2 1 2 1 AL CAR N/A DN: CEN	Starfix HP DGPS TAL COURT MOTEL T CHANGES / COMMENTS		at ve Signature:	D O R Numbe
Theodo SG Brov Leica T Total Si VEHICI CONSU ACCOI WARR	wn Gyro CA 1105 tation LES: RENT JMABLES: MMODATIC NANBOOL DRISED CO	2 1 2 1 AL CAR N/A DN: CEN	Starfix HP DGPS TAL COURT MOTEL T CHANGES / COMMENTS		ative Signature:	D O R Number 07066-7

CLIENT:	: ADA PT	Y LTD		LOCATION: PO TRANSIT TO GE			DATE: 27/01/08
	CT: RIG M)	VESSEL: PACIF	IC WF	RANGLER	JOB NO: 07066
FROM	TO					OPERATIONS	
0800	1000	Check	out of Cer	ntral Court Motel, co	mmen	e transit to Portla	nd
100	1030	Drop of	f rental ca	ar	ette to collect Fug	ro Dorsonnel and survey	
1030	1115	gear				ro Personnel and survey spread, whilst Pacific	
1115	1400	Wrand	onboard F er comme	ence transit to Corio	Quay,	Geelong	,proda, 11
1400	2000	000000	anaa mah	ilication of new SUIV	ev spre	ead	
2000	2100	All surv	ev dear c	operational although a feed from the ship	housel	keeping and sea f	astening need to be ned
	- 						
EQUIP	MENT	NO	FOUIP	MENT REMOTE	NO.	PERSONNEL	TITLE
RIG		NO.	<u> </u>	MENT REMOTE Vombat (remote)		PERSONNEL S. Armstrong	TITLE Party Chief / Surveyor
RIG Starfix S	Seis	2	Starfix \	Nombat (remote)	NO. 2		
RIG Starfix S Starfix H	Seis HP DGPS	2 3	Starfix \ Fluxgat	Wombat (remote) e Compass	2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S	Seis HP DGPS	2	Starfix \ Fluxgat Radio M	Wombat (remote) e Compass	2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix H Radio M	Seis HP DGPS Nodem	2 3 2	Starfix \ Fluxgat Radio M	Nombat (remote) e Compass Nodem	3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix H Radio M UPS Theodo	Seis HP DGPS Nodem	2 3 2 2	Starfix \ Fluxgat Radio M	Nombat (remote) e Compass Nodem	3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix H Radio M UPS Theodo	Seis HP DGPS Modem lite wn Gyro CA 1105	2 3 2 2 1	Starfix \ Fluxgat Radio M	Nombat (remote) e Compass Nodem	3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix F Radio M UPS Theodo SG Brod Leica T Total St	Seis HP DGPS Modem lite wn Gyro CA 1105	2 3 2 2 1 2	Starfix \ Fluxgat Radio N Starfix	Nombat (remote) e Compass Nodem	3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix H Radio M UPS Theodo SG Brov Leica T Total SI VEHICL	Seis HP DGPS Modem lite wn Gyro CA 1105 tation	2 3 2 2 1 2 1	Starfix \ Fluxgat Radio N Starfix	Nombat (remote) e Compass Nodem	3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix F Radio M UPS Theodo SG Brov Leica T Total St VEHICL CONSL	Seis HP DGPS Modem lite wn Gyro CA 1105 tation LES: RENT	2 3 2 2 1 2 1 TAL CAR	Starfix \ Fluxgat Radio N Starfix	Nombat (remote) e Compass Nodem	3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix F Radio M UPS Theodo SG Brod Leica T Total SI VEHICL CONSU	Seis IP DGPS Iodem lite wn Gyro CA 1105 tation LES: RENT JMABLES:	2 3 2 2 1 2 1 2 1 TAL CAR N/A ON: N/A	Starfix \ Fluxgat Radio N Starfix	Nombat (remote) e Compass Nodem	2 3 2 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix F Radio M UPS Theodo SG Brod Leica T Total SI VEHICL CONSU	Seis IP DGPS Iodem lite wn Gyro CA 1105 tation LES: RENT JMABLES:	2 3 2 1 2 1 TAL CAR N/A DN: N/A	Starfix \ Fluxgat Radio N Starfix	Wombat (remote) e Compass Modem HP DGPS GES / COMMENTS:	2 3 2 2	S. Armstrong	Party Chief / Surveyor

LIENT:	ADA PT	Y LTD		LOCATION: GE	ELON	G	DATE: 28/01/08
	T: RIG M)	VESSEL: PACIF	IC WF	RANGLER	JOB NO: 07066
ROM	TO			SUMMA	RY OF	OPERATIONS	
0700	0930	Pacific \	Wrangler	nobilisation			
0930	1000	Dantal	or collec	e modilisation			
1000	1100	Fluxgat	e compas	ship, various components			
1100	1230	Getting verification	tion using	d positioning system = -1.99°, Fluxgate N = -1.5m (Standalone)			
1230	1415	Comple	te house	keening remove old	d surve	v spread and der	aπ vessei
1430	2359	Check	in to Chifl	ey Hotel, Geelong,	on stan	dby for flight to V	/est Triton
EQUIPI	MENT	NO.	EQUIP	MENT REMOTE	NO.	PERSONNEL	TITLE
RIG		NO.		MENT REMOTE Vombat (remote)	NO. 2	PERSONNEL S. Armstrong	TITLE Party Chief / Surveyor
RIG Starfix S	Seis	2	Starfix \	Nombat (remote)	<u> </u>		
RIG Starfix S Starfix H	Seis IP DGPS	2 3	Starfix \	Nombat (remote) e Compass	2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M	Seis IP DGPS	2 3 2	Starfix \ Fluxgat Radio M	Nombat (remote) e Compass Modem	2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS	Seis HP DGPS Iodem	2 3	Starfix \ Fluxgat Radio M	Nombat (remote) e Compass	2 3 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS Theodo	Seis HP DGPS Modem	2 3 2 2	Starfix \ Fluxgat Radio M	Nombat (remote) e Compass Modem	2 3 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS Theodo SG Bro	Seis HP DGPS Modem lite wn Gyro CA 1105	2 3 2 2	Starfix \ Fluxgat Radio M	Nombat (remote) e Compass Modem	2 3 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix F Radio M UPS Theodo SG Brod Leica T Total Si	Seis HP DGPS Modem lite wn Gyro CA 1105 tation	2 3 2 2 1 2	Starfix \ Fluxgat Radio N Starfix	Nombat (remote) e Compass Modem	2 3 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS Theodo SG Brod Leica T Total St VEHICI	Seis HP DGPS Modem lite wn Gyro CA 1105 tation LES: RENT	2 3 2 2 1 2 1	Starfix \ Fluxgat Radio N Starfix	Nombat (remote) e Compass Modem	2 3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix H Radio M UPS Theodo SG Brod Leica T Total St VEHICI CONSL	Seis HP DGPS Modem lite wn Gyro CA 1105 tation LES: RENT	2 3 2 2 1 2 1 TAL CAR	Starfix \ Fluxgat Radio N Starfix	Nombat (remote) e Compass Modem	2 3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix H Radio M UPS Theodo SG Brod Leica T Total Si VEHICI CONSU	Seis HP DGPS Hodem lite wn Gyro CA 1105 tation LES: RENT JMABLES:	2 3 2 2 1 2 1 FAL CAR : N/A	Starfix \ Fluxgat Radio N Starfix	Wombat (remote) e Compass Modem HP DGPS	2 3 2 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix H Radio M UPS Theodo SG Brod Leica T Total Si VEHICI CONSU	Seis HP DGPS Hodem lite wn Gyro CA 1105 tation LES: RENT JMABLES:	2 3 2 2 1 2 1 FAL CAR : N/A ON: CHIF	Starfix \ Fluxgat Radio N Starfix	Wombat (remote) e Compass Modem HP DGPS TEL, GEELONG GES / COMMENTS:	2 3 2 2	S. Armstrong	Party Chief / Surveyor Surveyor

	: ADA PT	Y LTD		OCATION: GE IELBOURNE	ELON(G &	DATE: 29/01/08
	CT: RIG M) v	ESSEL: N/A			JOB NO: 07066
FROM	ТО			SUMMA	RY OF	OPERATIONS	
0001	0900	On star	dby for fligh	t to West Triton			
0900	1030	Cornyo	ut admin rec	uirements			
		Docific	Dattler inform	ne that a waynoir	nt is rec	uired during float	off operations, this is
1030	1130	setup v	ia telephone this more e	needs to be official to			
1400		Receive	ed confirmat	ion from ADA Fu	gro Per	sonnel are to trav	el to West Triton on
	<u> </u>	Checke	w mornings	Hotel comment	e trans	it to Melbourne. F	Pacific Battler informs of
1500	1530	licource:	with Starfiv o	oftware (display	and he	adına problems)	from Pacific Wrangler is
1530	1630	droppe	d off and arr	anged courier to	Fuaro's	s New Plymouth o	OTTICE
1630	1830	Return	rental car, c	heck in to Holida	y Inn, N	Meibourne Airport	
EQUIP!	MENT	NO.	EQUIPME	ENT REMOTE	NO.	PERSONNEL	TITLE
EQUIP RIG Starfix S		NO.		ENT REMOTE mbat (remote)	NO. 2	PERSONNEL S. Armstrong	TITLE Party Chief / Surveyor
RIG Starfix S	Seis			mbat (remote)			
RIG Starfix S Starfix H	Seis HP DGPS	2 3	Starfix Wo	mbat (remote) Compass	2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S	Seis HP DGPS	2	Starfix Wo	mbat (remote) Compass dem	2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M	Seis HP DGPS Modem	3 2	Starfix Wo Fluxgate C Radio Mod	mbat (remote) Compass dem	3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix H Radio M UPS Theodo	Seis HP DGPS Modem	2 3 2 2	Starfix Wo Fluxgate C Radio Mod	mbat (remote) Compass dem	3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix F Radio M UPS Theodo	Seis HP DGPS Modem lite wn Gyro CA 1105	2 3 2 2 1	Starfix Wo Fluxgate C Radio Mod	mbat (remote) Compass dem	3 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix F Radio M UPS Theodo SG Brod Leica T Total Si	Seis HP DGPS Modem lite wn Gyro CA 1105	2 3 2 2 1 2	Starfix Wo Fluxgate C Radio Mod Starfix HP	mbat (remote) Compass dem	3 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS Theodo SG Broo Leica T Total Si VEHICI	Seis HP DGPS Modem lite wn Gyro CA 1105 tation	2 3 2 2 1 2 1	Starfix Wo Fluxgate C Radio Mod Starfix HP	mbat (remote) Compass dem	3 2	S. Armstrong	Party Chief / Surveyor
Starfix Starfix FRadio MUPS Theodo SG Broth Leica Trotal St VEHICI CONSL	Seis HP DGPS Modem lite wn Gyro CA 1105 tation LES: RENT	2 3 2 2 1 2 1 TAL CAR	Starfix Wo Fluxgate C Radio Mod Starfix HP	mbat (remote) Compass dem	3 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS Theodo SG Brod Leica T Total Si VEHICI CONSU	Seis HP DGPS Modem lite wn Gyro CA 1105 tation LES: RENT JMABLES:	2 3 2 2 1 2 1 TAL CAR	Starfix Wo Fluxgate C Radio Mod Starfix HP	mbat (remote) Compass dem DGPS	2 3 2 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS Theodo SG Brod Leica T Total Si VEHICI CONSU	Seis HP DGPS Modem lite wn Gyro CA 1105 tation LES: RENT JMABLES:	2 3 2 1 2 1 2 1 FAL CAR N/A DN: HOL	Starfix Wo Fluxgate C Radio Mod Starfix HP	mbat (remote) Compass dem DGPS MELBOURNE S / COMMENTS:	2 3 2 2	S. Armstrong	Party Chief / Surveyor Surveyor

LIENT:	: ADA PTY	LTD		CATION: ME ESTERN POR		RNE &	DATE: 30/01/08
	T: RIG M		VE	ESSEL: WEST	TRITO	ON	JOB NO: 07066
FROM	ТО					OPERATIONS	
0730	0750	Check	out of Holiday	Inn, travel to Bi	istow F	leliport, Essendo	n Airport, Melbourne
0750	1200	Informe	d that flight h	as been delayed	d until f	urther notice, star	ndby
1200	1345	Check i	in for flight to	West Triton			
1345	1415	Arrive c	n board Wes	t Triton			
1415	1630	Underta	ake full West	Triton inductions	3		
1630	1830	Comme	ence planning	survey spread	installa	tion, discuss option	ons with Barge Master
1830	2030	Comme	ence mobilisa	tion		due to magne	of maying from drill floor to
2030	2100	Shift su pilot ho	ırvey gear und use / radio ro	der cover until to om	omorrov	w, due to means o	of moving from drill floor to
					<u> </u>	<u> </u>	<u></u>
		<u> </u>					
					<u> </u>		
EQUIP	MENT	NO.	EQUIPME	NT REMOTE	NO.	PERSONNEL	TITLE
EQUIPI RIG Starfix S		NO. 2		NT REMOTE	NO. 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S				nbat (remote)			
RIG Starfix S	Seis HP DGPS	2	Starfix Won	nbat (remote) ompass	2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H	Seis HP DGPS	2 3	Starfix Won	nbat (remote) ompass em	2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M	Seis HP DGPS Iodem	3 2	Starfix Won Fluxgate Co Radio Mode	nbat (remote) ompass em	2 3 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS Theodo	Seis HP DGPS Iodem	2 3 2 2	Starfix Won Fluxgate Co Radio Mode	nbat (remote) ompass em	2 3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix H Radio M UPS Theodo	Seis HP DGPS Hodem lite wn Gyro CA 1105	2 3 2 2 1	Starfix Won Fluxgate Co Radio Mode	nbat (remote) ompass em	2 3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix H Radio M UPS Theodo SG Brow Leica Total St	Seis HP DGPS Modem Site wn Gyro CA 1105 tation	2 3 2 2 1 2	Starfix Won Fluxgate Co Radio Mode Starfix HP I	nbat (remote) ompass em	2 3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix H Radio M UPS Theodo SG Brov Leica To Total St VEHICI	Seis HP DGPS Hodem lite wn Gyro CA 1105 tation LES: RENT	2 3 2 2 1 2 1 AL CAR	Starfix Won Fluxgate Co Radio Mode Starfix HP I	nbat (remote) ompass em	2 3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix F Radio M UPS Theodo SG Brov Leica Total St VEHICL CONSL	Seis HP DGPS Hodem Site wn Gyro CA 1105 tation LES: RENT	2 3 2 2 1 2 1 AL CAR	Starfix Won Fluxgate Co Radio Mode Starfix HP I	nbat (remote) ompass em	2 3 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS Theodo SG Brow Leica Total Si VEHICI CONSL ACCOM	Seis HP DGPS Hodem lite wn Gyro CA 1105 tation LES: RENT JMABLES:	2 3 2 2 1 2 1 AL CAR N/A	Starfix Won Fluxgate Co Radio Mode Starfix HP I	nbat (remote) ompass em OGPS	2 3 2 2	S. Armstrong	Party Chief / Surveyor
Starfix Starfix FRadio MUPS Theodo SG Brow Leica Total St VEHICL CONSU	Seis HP DGPS Hodem lite wn Gyro CA 1105 tation LES: RENT JMABLES:	2 3 2 2 1 2 1 AL CAR N/A	Starfix Won Fluxgate Co Radio Mode Starfix HP I	nbat (remote) ompass em OGPS	2 3 2 2	S. Armstrong R. Cantlon	Party Chief / Surveyor Surveyor
Starfix Starfix FRadio MUPS Theodo SG Brow Leica Total Si VEHICL CONSU	Seis HP DGPS Hodem lite wn Gyro CA 1105 tation LES: RENT JMABLES:	2 3 2 2 1 2 1 AL CAR N/A ON: N/A	Starfix Word Fluxgate Co Radio Mode Starfix HP I	nbat (remote) ompass em OGPS	2 3 2 2	S. Armstrong	Party Chief / Surveyor Surveyor

LIENI	ADA PTY	LTD		LOCATION: WE	STER	N PORT	DATE: 30/01/08
	T: RIG M)	VESSEL: WEST	TRIT	ON	JOB NO: 07066
FROM	ТО					OPERATIONS	<u> </u>
0700	0830	Examin	e rig draw				
0830	0845	Comme	ence meas	suring vessel, stop o	due to r	ain, source tarpa	ulin to cover survey gear
0845	1130	Character	. for mont	har arone and elec	trician		
1130	1400	diaman	tlina ria ta	ned from electrician run internal cables			oling, commence
1400	2000	Survey	gear lifted	d to radio room decl nels from cable run	<u>k, instal</u>	lation continues	
2000	2100						
EQUIPI	MENT	NO.	FOUIP	MENT REMOTE	NO.	PERSONNEL	TITLE
	Seis	2		Vombat (remote)	2	S. Armstrong	Party Chief / Surveyor
Starfix S		2	Starfix V		2	S. Armstrong R. Cantlon	Party Chief / Surveyor Surveyor
Starfix S	IP DGPS		Starfix V	e Compass			
Starfix S	IP DGPS	2 3	Starfix V Fluxgate Radio M	e Compass	3		
Starfix S Starfix H Radio M	IP DGPS	2 3 2	Starfix V Fluxgate Radio M	e Compass lodem	3 2		Party Chief / Surveyor Surveyor
Starfix S Starfix H Radio M UPS Theodo	IP DGPS	2 3 2 2	Starfix V Fluxgate Radio M	e Compass lodem	3 2		
Radio M UPS Theodo SG Brov	Indem Indem Indem Index In	2 3 2 2 1	Starfix V Fluxgate Radio M	e Compass lodem	3 2		
Starfix S Starfix H Radio M UPS Theodo SG Brow Leica To Total St	Indem Indem Indem Index In	2 3 2 2 1	Starfix V Fluxgate Radio M	e Compass lodem	3 2		
Starfix S Starfix H Radio M UPS Theodo SG Brow Leica To Total St VEHICL	In DGPS Indem Index Inde	2 3 2 2 1 2	Starfix V Fluxgate Radio M	e Compass lodem	3 2		
Starfix S Starfix F Radio M UPS Theodo SG Brow Leica Te Total St VEHICL CONSL	Indem Indem Indem Index In	2 3 2 2 1 2 1	Starfix V Fluxgate Radio M	e Compass lodem	3 2		
Starfix S Starfix F Radio M UPS Theodo SG Brow Leica Total St VEHICL CONSU	Indem Indem Indep DGPS Inde	2 3 2 2 1 2 1 N/A	Starfix V Fluxgate Radio V Starfix H	e Compass lodem	3 2 2		
Starfix S Starfix F Radio M UPS Theodo SG Brow Leica Total St VEHICL CONSU	Indem Indem Indep DGPS Inde	2 3 2 2 1 2 1 N/A ON: N/A	Starfix V Fluxgate Radio M Starfix H	e Compass Modem HP DGPS BES / COMMENTS:	3 2 2		

CLIENT:	: ADA PTY	LTD	LOCA	ATION: WE	STER	N PORT	DATE: 01/02/08
PROJEC	CT: RIG M	OVE TO	VESS	EL: WEST	TRITO	ON	JOB NO: 07066
FROM	TO	HON		SUMMA	RY OF	OPERATIONS	
0700	2000	Continu	e mobilisation				
							
	<u> </u>						
				<u> </u>	<u></u>		
							
		<u> </u>		 		<u> </u>	
				<u></u>			
	-						
	<u> </u>	1					
EQUIPI RIG	MENT	NO.	EQUIPMENT	REMOTE	NO.	PERSONNEL	TITLE
11.10			 			S. Armstrong	Party Chief / Surveyor
Starfix S	Seis	2	Starfix Wombat	t (remote)	2	S. Allisticity	Faity Officer Curveyor
	Seis HP DGPS	3	Starfix Wombat Fluxgate Comp		3	R. Cantlon	Surveyor
	IP DGPS		<u> </u>		ļ .		
Starfix H	IP DGPS	3	Fluxgate Comp	ass	3		
Starfix H	IP DGPS	3 2	Fluxgate Comp Radio Modem	ass	3		
Starfix H Radio M UPS Theodol	IP DGPS	3 2 2	Fluxgate Comp Radio Modem	ass	3		
Starfix H Radio M UPS Theodol SG Brov	IP DGPS Iodem lite wn Gyro CA 1105	3 2 2 1	Fluxgate Comp Radio Modem	ass	3		
Starfix H Radio M UPS Theodol SG Brov Leica To Total St	IP DGPS Iodem lite wn Gyro CA 1105	3 2 2 1 2	Fluxgate Comp Radio Modem	ass	3		
Starfix H Radio M UPS Theodol SG Brow Leica To Total St VEHICL	IP DGPS Iodem lite wn Gyro CA 1105 tation	3 2 2 1 2	Fluxgate Comp Radio Modem	ass	3		
Starfix H Radio M UPS Theodol SG Brov Leica To Total St VEHICL CONSL	In DGPS Indem Inte Inte Inte Inte Inte Inte Inte Inte	3 2 2 1 1 2 1 N/A	Fluxgate Comp Radio Modem	ass	3		
Starfix H Radio M UPS Theodol SG Brow Leica To Total St VEHICL CONSL	IP DGPS Iodem lite wn Gyro CA 1105 tation LES: N/A JMABLES:	3 2 2 1 2 1 2 1 N/A N: N/A	Fluxgate Comp Radio Modem	ess PS	3 2 2		
Starfix H Radio M UPS Theodol SG Brow Leica To Total St VEHICL CONSL	In DGPS Indem Inte Inte Inte Inte Inte Inte Inte Inte	3 2 2 1 2 1 2 1 N/A ON: N/A ONTRAC	Fluxgate Comp Radio Modem Starfix HP DGF	omments:	3 2 2		Surveyor
Starfix H Radio M UPS Theodol SG Brow Leica To Total St VEHICL CONSL ACCOM	IP DGPS Iodem lite wn Gyro CA 1105 tation LES: N/A JMABLES:	3 2 2 1 2 1 2 1 N/A ON: N/A ONTRAC	Fluxgate Comp Radio Modem Starfix HP DGF	omments:	3 2 2	R. Cantlon	Surveyor

LIENT:	ADA PTY	LTD		LOCATION: WE	STERI	N PORT	DATE: 02/02/08		
	T: RIG M			VESSEL: WEST	TRITO	ON	JOB NO: 07066		
FROM	TO			SUMMA	RY OF	OPERATIONS			
0700	1200	Continu	e mobilis	ation			and fluvanto compass		
1200	1430	O1 E	L	and fluxgate compass,					
1430	1530	l mais mas	ah transfi	ar ta Dacific Raffler	itlon partake in JHA with West Triton Safety Rep. regarding				
1530	1545	1		a aignal fluydata co	าทากสรร	s is not operating	correctly fluxgate compass and		
1545	1600	99		book reconfigure W.	aet Trita	on radio	nnection successful with		
1600	1615	Dooific	Rattler						
1615	1645	0	lvaata ir	transfer back to Pa	attler c	ncerational althou	du llot keebilig up wiiii		
1645	1715	l chin's a	wro teler	metry link operating	fine be	tween Pacific Bat	tler and West Triton		
1715	1730	S. Arms	strong an	d R. Cantlon transfe k to the West Triton	er pack	to vvest inton	compass is non		
1745	1830	operation	onal , atte	empting to fix	et caus	sed it unfixing av	ro from floor for further		
1830	1930	Gyro w inspect well	ill not povion and to	ests, as starboard g	yro was	s in port gyros pa	th it had to be removed as		
1930	2000	Starboa	ard gyro	re-installed, now on	port sic	le			
EQUIP	MENT	NO.	EQUIP	MENT REMOTE	NO.	PERSONNEL	TITLE		
RIG					NO. 2	PERSONNEL S. Armstrong			
RIG Starfix S		NO. 2	Starfix \	MENT REMOTE Wombat (remote) e Compass					
RIG Starfix S	Seis HP DGPS	2	Starfix \	Wombat (remote) e Compass	2	S. Armstrong	Party Chief / Surveyor		
RIG Starfix S	Seis HP DGPS	2 3	Starfix \ Fluxgat Radio M	Wombat (remote) e Compass	2	S. Armstrong	Party Chief / Surveyor		
Starfix S Starfix H Radio M	Seis HP DGPS Modem	3 2	Starfix \ Fluxgat Radio M	Nombat (remote) e Compass Modem	3 2	S. Armstrong	Party Chief / Surveyor		
RIG Starfix S Starfix H Radio M UPS Theodo	Seis HP DGPS Modem	2 3 2 2	Starfix \ Fluxgat Radio M	Nombat (remote) e Compass Modem	3 2	S. Armstrong	Party Chief / Surveyor		
RIG Starfix S Starfix F Radio M UPS Theodo SG Bro	Seis HP DGPS Modem lite wn Gyro CA 1105	2 3 2 2 1	Starfix \ Fluxgat Radio M	Nombat (remote) e Compass Modem	3 2	S. Armstrong	Party Chief / Surveyor		
RIG Starfix S Starfix F Radio M UPS Theodo SG Bro Leica T Total S	Seis HP DGPS Modem lite wn Gyro CA 1105	2 3 2 2 1 2	Starfix \ Fluxgat Radio M	Nombat (remote) e Compass Modem	3 2	S. Armstrong	Party Chief / Surveyor		
RIG Starfix S Starfix H Radio M UPS Theodo SG Bro Leica T Total S VEHIC	Seis HP DGPS Modem lite wn Gyro CA 1105 tation	2 3 2 2 1 2	Starfix \ Fluxgat Radio M	Nombat (remote) e Compass Modem	3 2	S. Armstrong	Party Chief / Surveyor		
RIG Starfix S Starfix H Radio M UPS Theodo SG Bro Leica T Total S VEHIC	Seis HP DGPS Modem lite wn Gyro CA 1105 tation LES: N/A	2 3 2 2 1 2	Starfix \ Fluxgat Radio M	Nombat (remote) e Compass Modem	3 2	S. Armstrong	Party Chief / Surveyor		
RIG Starfix S Starfix F Radio M UPS Theodo SG Bro Leica T Total S VEHIC CONSI ACCOL	Seis HP DGPS Modem lite wn Gyro CA 1105 tation LES: N/A JMABLES:	2 3 2 2 1 2 1 N/A	Starfix \ Fluxgat Radio M Starfix	Nombat (remote) e Compass Modem	2 3 2 2	S. Armstrong	Party Chief / Surveyor Surveyor		
RIG Starfix S Starfix F Radio M UPS Theodo SG Bro Leica T Total S VEHIC CONSI	Seis HP DGPS Modem lite wn Gyro CA 1105 tation LES: N/A JMABLES:	2 3 2 2 1 2 1 N/A DN: N/A	Starfix \ Fluxgat Radio M Starfix	Wombat (remote) e Compass Modem HP DGPS GES / COMMENTS:	2 3 2 2	S. Armstrong	Party Chief / Surveyor Surveyor		

CLIENT:	: ADA PT\	LTD		LOCATION: WE	STER	N PORT	DATE: 03/02/08
	T: RIG M)	VESSEL: WEST	TRIT	ON	JOB NO: 07066
FROM	ТО					OPERATIONS	
0700	0945	Telemetry problems from between West Triton and Paci established that it is not at rig end, thus organising trans					rangler are apparent, it is Pacific Wrangler
0945	1000	S Arms	strong tra	nsfers to Pacific Wr	o inspect radio		
1000	1010	Teleme	try proble	ms solved, S. Arms	strong re	eturns to West Tri	ton
1030	1100	Fuoro r	personnel	attend abandon rig	muster	7	
1100	1300	Underta	ake meas	urements in order to	deterr	mine the centre of	rig
1300	1400	Fugro r	ersonnel	attend weekly safe	ty meet	ing	
1400	1530	Continu	10 Veccel	centraline measure	ments		
1530	1615	and toy	vnoints				art measurement fairlead
1615	1730	Comple	to fairles	ds and towpoints, c	ontinue	centreline measu	rements
1730	1830	Fairlea	d, towpoi	nts and centreline e	stablish	ned vessel file is u	odated with fairleads and
		towpoir	าเร	toncion load from o	lectricis	n which enables	completion of helmsman
1830	1900	display	power ex in contro	tension lead nom e I room	iecti icie	an willon chables	omploadil of Neillean
		ulopia)					
		<u> </u>					
	<u> </u>	 					
	ļ						
	<u> </u>						
		i					
	<u> </u>	 				- -	
EQUIP1 RIG	MENT	NO.	EQUIP	MENT REMOTE	NO.	PERSONNEL	TITLE
-		NO. 2		MENT REMOTE Vombat (remote)	NO. 2	PERSONNEL S. Armstrong	TITLE Party Chief / Surveyor
RIG Starfix S		_	Starfix \				
RIG Starfix S	Seis IP DGPS	2	Starfix \	Vombat (remote) e Compass	2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H	Seis IP DGPS	2 3	Starfix \ Fluxgate Radio N	Vombat (remote) e Compass	2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M	Seis HP DGPS lodem	2 3 2	Starfix \ Fluxgate Radio N	Vombat (remote) e Compass lodem	3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix H Radio M UPS Theodol	Seis HP DGPS lodem	2 3 2 2	Starfix \ Fluxgate Radio N	Vombat (remote) e Compass lodem	3 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS Theodol SG Brow Leica TG	Geis HP DGPS Hodem Lite Wn Gyro CA 1105	2 3 2 2 1	Starfix \ Fluxgate Radio N	Vombat (remote) e Compass lodem	3 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS Theodol SG Brov Leica To Total St	Seis HP DGPS Hodem Lite Wn Gyro CA 1105 ation	2 3 2 2 1 2	Starfix \ Fluxgate Radio N	Nombat (remote) e Compass lodem	3 2	S. Armstrong	Party Chief / Surveyor
Starfix S Starfix H Radio M UPS Theodol SG Brow Leica To Total St VEHICL	Geis HP DGPS Hodem Lite Wn Gyro CA 1105	2 3 2 2 1 2	Starfix \ Fluxgate Radio N	Nombat (remote) e Compass lodem	3 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS Theodol SG Brov Leica To Total St VEHICL CONSU	Seis HP DGPS lodem lite wn Gyro CA 1105 ation LES: N/A	2 3 2 2 1 2	Starfix \ Fluxgate Radio N	Nombat (remote) e Compass lodem	3 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS Theodol SG Brov Leica TO Total St VEHICL CONSU	Seis HP DGPS Hodem Lite Wn Gyro CA 1105 Eation LES: N/A JMABLES:	2 3 2 2 1 2 1 N/A	Starfix \ Fluxgate Radio \(\) Starfix \(\)	Vombat (remote) e Compass Modem HP DGPS	2 3 2 2	S. Armstrong	Party Chief / Surveyor
RIG Starfix S Starfix H Radio M UPS Theodol SG Brov Leica TO Total St VEHICL CONSU	Seis HP DGPS Hodem Lite Wn Gyro CA 1105 Eation LES: N/A JMABLES:	2 3 2 2 1 2 1 N/A N: N/A	Starfix \ Fluxgate Radio N Starfix I	Vombat (remote) e Compass Modem HP DGPS GES / COMMENTS:	2 3 2 2	S. Armstrong	Party Chief / Surveyor

LIENT:	ADA PT	Y LTD	LOCATION: WE	STER	N PORT	DATE: 04/02/08
	T: RIG M		VESSEL: WEST	TRIT	ON	JOB NO: 07066
FROM	ТО				OPERATIONS	
0700	1030	commu	rough Rig Move Checklist (fi nication with office			
1030	1100	Carried	out sun shots for gyro calibration	ered into SEIS		
1245	1315	Underto	ook logging for positioning sy sing, to carry out again	erification, probler	n occurred when	
1315	2359	Fugro p	personnel standing by, waiting	g on we	eather	
				·		
EQUIPI RIG	MENT	NO.	EQUIPMENT REMOTE	NO.	PERSONNEL	TITLE
Starfix S	eis	2	Starfix Wombat (remote)	2	S. Armstrong	Party Chief / Surveyor
Starfix H	P DGPS	3	Fluxgate Compass	3	R. Cantlon	Surveyor
Radio M	odem	2	Radio Modem	2		
						•
UPS		2	Starfix HP DGPS	2		
	ite	2	Starfix HP DGPS	2		
Theodol			Starfix HP DGPS	2		
UPS Theodol SG Brow Leica TC Total St	vn Gyro CA 1105	1	Starfix HP DGPS	2		
Theodol SG Brov Leica T0 Total Sta	vn Gyro CA 1105	2	Starfix HP DGPS	2		
Theodol SG Brov Leica TC Total Sta VEHICL	vn Gyro CA 1105 ation	1 2 1	Starfix HP DGPS	2		
Theodol SG Brow Leica TC Total Sta VEHICL CONSU	vn Gyro CA 1105 ation ES: N/A	1 2 1 N/A	Starfix HP DGPS	2		
Theodol SG Brow Leica TC Total Sta VEHICL CONSU	vn Gyro CA 1105 ation ES: N/A MABLES:	1 2 1 1 N/A N: N/A	Starfix HP DGPS CHANGES / COMMENTS:			
Theodol SG Brow Leica TC Total Sta VEHICL CONSU ACCON	vn Gyro CA 1105 ation ES: N/A MABLES:	1 2 1 N/A N: N/A NTRAC	CHANGES / COMMENTS:		ative Signature:	D O R Number

CLIENT:	: ADA PT	/ LTD	LOCATION:	WESTER	N PORT	DATE: 05/02/08	
	CT: RIG M		VESSEL: WE	ST TRIT	ON	JOB NO: 07066	
FROM	TO		SUM	MARY OF	OPERATIONS		
0000	1630	Fugro p	ersonnel standing by, wa	iting on we	eather		
1630	1830	Wester	n Triton changes heading	. it is notice	ed that gyro compass is not moving, perating, re installed and re interfaced		
1830	1945 2359	Ashted	Singapore is contacted, goersonnel standing by, wa	jyro now o itina on we	peraung, re instat eather	led and re interlaced	
1945	2309	Fugio	belsoniner standing by, we	iding on in			
				··			
		-					
· - ·							
				· - -			
				·			
		<u> </u>					
					<u> </u>		
		 		<u> </u>			
		 					
					<u> </u>		
EQUIP! RIG	MENT	NO.	EQUIPMENT REMOT	E NO.	PERSONNEL		
Starfix S	eis	2	Starfix Wombat (remote) 2	S. Armstrong	Party Chief / Surveyor	
Starfix I	IP DGPS	3	Fluxgate Compass	3	R. Cantlon	Surveyor	
Radio M	lodem	2	Radio Modem	2			
UPS		2	Starfix HP DGPS	2			
Theodol	lite	1					
SG Brov	wn Gyro	2					
Leica Total St	CA 1105 ation	1					
VEHICL	ES: N/A						
	MABLES:	N/A					
ACCON	MODATIC	N: N/A					
AUTHO	RISED CO	NTRAC	T CHANGES / COMMEN	TS:			
-	Party Chic	ef Signat	ure: Client F	Represent	ative Signature:	D O R Number	
	1	2	2 11	M	Van	07066-17	
		-					

CLIENT: AE	A PT	/ LTD		LOCATION: WE	STER	N PORT	DATE: 06/02/08	
PROJECT: WASABI-1)	VESSEL: WEST			JOB NO: 07066	
	TO	·		SUMMA	RY OF	OPERATIONS		
0000 1	400	Fugro p	ersonnels	standing by, waiting	on we	ather		
	530	Underto	ok offset i	measurements to n	ew proj	posed DGPS ant	enna positions	
1530 2	2359	Fugro p	ersonnels	standing by, waiting	on we	ather		
EQUIPME!	NT	NO.	EQUIP	MENT REMOTE	NO.	PERSONNEL	TITLE	
Starfix Seis		2	Starfix W	/ombat (remote)	2	S. Armstrong	Party Chief / Surveyor	
Starfix HP D	GPS	3		Compass	3 R. Cantlon		Surveyor	
Radio Mode		2	Radio M		2			
UPS		2	ļ 	IP DGPS	2			
Theodolite		1						
SG Brown (Зуго	2						
Leica TCA Total Statio	1105	1						
VEHICLES	: N/A							
CONSUMA	BLES:	N/A						
ACCOMMO	DDATIC	N: N/A			<u>.</u>			
AUTHORIS	SED CO	NTRAC	T CHANG	ES / COMMENTS:				
Pa	rtv Chi	ef Signa	ture:	Client Rep	resent	D O R Number		
				lu	20	07066-18		

CLIENT:	ADA PTY	LTD	LC	CATION: WE	STER	N PORT	DATE: 07/02/08	
	T: RIG M		VE	SSEL: WEST	TRIT	ON	JOB NO: 07066	
FROM	TO			SUMMA	RY OF	OPERATIONS		
0000	0715	Fugro p	personnel star	iding by, waiting	on we	ather		
0715	0730	Comme	enced sun sho	its for gyro com	pass ca	alibration; <u>C-O = -</u>	·114.99°	
0730	2359	Fugro p	personnel star	nding by, waiting	on we	eather		
-								
	_							
					<u> </u>			
· 			<u></u>					
		 	<u> </u>					
<u></u>		ļ						
			<u>. </u>					
EQUIPN RIG	MENT	NO.	EQUIPME	NT REMOTE	NO.	PERSONNEL	TITLE	
Starfix S	eis	2	Starfix Wom	bat (remote)	2	S. Armstrong	Party Chief / Surveyor	
Starfix H	P DGPS	3	Fluxgate Co	mpass	3	R. Cantlon	Surveyor	
Radio M	odem	2	Radio Mode	m	2			
UPS		2	Starfix HP D)GPS	2			
Theodol	ite	1						
SG Brov	vn Gyro	2						
Leica TO		1						
VEHICL	ES: N/A	. ·						
CONSU	MABLES:	N/A						
ACCOM	MODATIO	N: N/A						
AUTHO	RISED CO	NTRAC	T CHANGES	/ COMMENTS:				
	Party Chie	ef Signat	ture:	Client Rep	resent	D O R Number		
				1 Dr	7	07066-19		
					<u> </u>	XIAU J		

CLIENT:	ADA PTY	LTD		LOCATION: WE	STER	N PORT	DATE: 08/02/08				
	T: RIG M)	VESSEL: WEST	TRIT	ON	JOB NO: 07066				
FROM	то			SUMMA	RY OF	OPERATIONS					
0000	1000	Fugro p	ersonnel	standing by, waiting	on we	ather					
1000	1100	evisting	rayro: C-0	$O = -205.50^{\circ}$			ed by comparing with				
1100	1230	sides o	f the helip	ad (antennas canno	ot be re	antenna's, located on port and starboard relocated until connections arrive)					
1230	2359	Fugro p	ersonnel	standing by, waiting	g on we	eather					
						<u></u>					
	<u>.</u>										
		<u></u>									
EQUIPN RIG	MENT	NO.	EQUIP	MENT REMOTE	NO.	PERSONNEL	TITLE				
Starfix S	eis	2	Starfix V	Vombat (remote)	2 S. Armstrong		Party Chief / Surveyor				
Starfix H	P DGPS	3	Fluxgate	e Compass	3	R. Cantion	Surveyor				
Radio M	odem	2	Radio M	lodem	2						
UPS		2	Starfix H	HP DGPS	2						
Theodoli	ite	1									
SG Brow	vn Gyro	2									
Leica TO Total Sta		1									
<u> </u>	ES: N/A	<u></u>	<u> </u>								
	MABLES:	N/A									
ACCON	MODATIO	N: N/A									
AUTHO	RISED CO	NTRAC	CHANG	ES / COMMENTS:							
	Party Chie	ef Signat	ure:	Client Rep	resent	ative Signature:	D O R Number				
-)			Olk)(07066-20					

	ADA PT		EN	OCATION: WE N-ROUTE TO			DATE: 09/02/08			
	CT: RIG N I-1 LOCA		VE	ESSEL: WEST			JOB NO: 07066			
FROM	TO			SUMMA	ARY OF	OPERATIONS				
0000	0500	Fugro p	ersonnel star	nding by, waiting	g on we	eather				
0500	0530	Wester	n Port Bay				oour tugs en route to			
0530	0620	Pacific	Battler conne	cting to centre t	ow tov	v chain				
0620	0700	New gy	ro (TSS Meri	dian) had died,	is chec	ked and a blown	fuse is discovered			
0700	0745	Pacific	Wrangler con	necting to port	aft tow	chain				
0745	0930	All Wes	st Triton legs	clear of seabed,	comm	ence move off lo	cation			
0930	0941	Comme	ence logging t	S file name; 2008	302082241					
0941	1000	Statem	ent of facts, ι	inder tow to Wa	sabi-1		Link Handiffer from No.			
1000	1030	linates; 522993m	n slightly differ from the E, 5739978.20mN							
1030	1045	ce for West Triton	is 15 feet							
1200	1215_	S. Arm	strong hands	rig move shift to	o R. Ca	ntion				
1300	1400	S. Arm	strong attend	s weekly safety	meetin	9				
1527		Wester	n Port Bay pi	lot disembarks l	Pacific	Battler				
1554		Pacific	Wrangler rele	eased from steri	n of We	est Iriton	I			
1654		Pacific Contin	forward port side	tow wire						
1654	2359									
EQUIP! RIG	MENT	NO.	EQUIPME	NT REMOTE	NO.	PERSONNEL	TITLE			
Starfix S	eis	2	Starfix Wom	nbat (remote)	2	S. Armstrong	Party Chief / Surveyor			
Starfix H	IP DGPS	3	Fluxgate Co	mpass	3	R. Cantion	Surveyor			
Radio M	odem	2	Radio Mode	em	2					
UPS		2	Starfix HP D	OGPS	2					
Theodol	ite	1								
SG Brov	vn Gyro	2								
Leica To	CA 1105 ation	1								
Total St										
	ES: N/A					 				
VEHICL	ES: N/A MABLES:	N/A								
VEHICL										
VEHICL CONSU ACCON	MABLES:	N: N/A	Γ CHANGES	/ COMMENTS:						
VEHICL CONSU ACCON	MABLES:	N: N/A			resent	atiγe Signature:	D O R Number			

CLIENT	: ADA PT	/ LTD	LOCATION WASABI-1	: EN-ROUT	TE TO	DATE: 10/02/08					
	T: RIG M		VESSEL. V			JOB NO: 07066					
FROM	ТО		SU	MMARY OF	OPERATIONS						
0000	2034	Continu	ie transit to Wasabi-1			stanta allow Decisio					
2034		Transit	speed decreased as thi to disconnect from tow l	ee and a ha oridia	if mile radius appi	oaches to allow Pacific					
2059	<u> </u>	Confirm	ned from client (Bill Ope	nshaw) that	new heading at W	Vasabi-1 location is to be					
2105		Pacific	Wrangler contacted to a	iter West Tr	iton ghost vessel	heading					
2110		Pacific	Battler report spooling p	problem with	winch						
2130	_		from Wasabi-1 location		of Facts						
2137 Pacific Battler released from tow wire 2206 Pacific Battler is connected to West Triton port aft tow wire											
2206 Pacific Battler is connected to West Triton port art tow wire Pinned at location, approximately 15m from proposed Wasabi-1 coordinates at a											
heading of approximately 120°T, within tolerances											
2330 2345 Commence logging for preliminary position verification											
2345	2359	Compl	ete logging, prepare pre	liminary repo	ort						
		<u> </u>									
	<u> </u>										
		ļ									
		1									
		<u> </u>									
EQUIPI RIG	MENT	NO.	EQUIPMENT REMO	OTE NO.	PERSONNEL	TITLE					
Starfix S	Seis	2	Starfix Wombat (remo	te) 2	S. Armstrong	Party Chief / Surveyor					
Starfix H	IP DGPS	3	Fluxgate Compass	3	R. Cantlon	Surveyor					
Radio M	lodem	2	Radio Modem	2							
UPS		2	Starfix HP DGPS	2							
Theodol	lite	1									
SG Brov	wn Gyro	2									
Leica Total St	CA 1105 ation	1									
VEUICI	ES: N/A				<u> </u>						
ACUICE						1					
	IMABLES:	N/A									
CONSU	IMABLES:										
CONSU	MODATIC	N: N/A	CHANGES / COMME	NTS:							
CONSU	MODATIC	N: N/A			ative Signature:	D O R Number					

CLIENT:	ADA PTY	/ LTD		LOCATION: WA	ASABI	-1	DATE: 11/02/08					
	T: RIG M)	VESSEL: WES	T TRIT	ON	JOB NO: 07066					
FROM	то			SUMMA	ARY OF	OPERATIONS						
0000	0030	Prelimi	nary positi	on report handed t	o ADA	Company man						
0030	0038	Pacific	Wrangler	released from tow	bridle							
0038	0050	Pacific	Wrangler	departs Wasabi-1	ocation	n for Corio Quay, Geelong						
0839	0909						mmence sun observations					
0909	1030			hot and stop loggin								
1030	1600			tanding by for com								
1600	1730			gging format which			urate heights					
1730	2359	Standb	y for com	oletion of rig pre-loa	ading o	perations						
	·	*										
							-A					
												
				 			<u>-</u>					
EQUIPN RIG	IENT	NO.	EQUIPM	MENT REMOTE	NO.	PERSONNEL	TITLE					
Starfix Se	eis	2	Starfix W	ombat (remote)	2	S. Armstrong	Party Chief / Surveyor					
Starfix H	PDGPS	3	Fluxgate	Compass	3	R. Cantlon	Surveyor					
Radio Mo	odem	2	Radio Mo	odem	2	ļ						
UPS		2	Starfix H	P DGPS	2							
Theodolit	e	1										
SG Brow	n Gyro	2										
Leica TC Total Sta		1										
VEHICLE	S: N/A											
CONSUN	MABLES: N	l/A	_									
ACCOM	MODATION	1: N/A		_								
AUTHOR	RISED CON	ITRACT	CHANGE	S / COMMENTS:								
F	Party Chief	Signat	ure:	Client Repr	esenta	tive Signature:	D O R Number					
1			2		\mathcal{I}	law	07066-23					

CLIENT	ADA PT	Y LTD		LOCATION: W/	ASABI	-1	DATE: 12/02/08			
	CT: RIG M		5	VESSEL: WES	T TRIT	ON	JOB NO: 07066			
FROM	TO			SUMMA	ARY OI	F OPERATIONS	,			
0000	0500	Dia pro	loading co			ng to drilling draft				
0500	0650		riton is at d		JE JACKI	ng to arming aran				
					verv fiv	e seconds for six	hours), using final fix			
0650	0703	progra		9 101 111111 1111 (1111 0			,,			
0703	0745			curs with final fix a	pplicat	ion, restart PC				
0745	0758	Comm	ence loggin	g for final fix						
0758	0837	logging	carrier pha	ase GPS RINEX d	lata (foi	r an accurate heig				
0837	0840	applica	ition		•	·	ion using the final fix			
0840 1005 Faulty Ashtead gyro compass freighted to Essendon Heliport via chopper										
1005	1100			curs with final fix a		ion				
1100	1538			data logging ses						
1538	1713				primary	and secondary C	SPS			
1713	1813		<u> </u>	d for final fix						
1813	1915		x handed to							
1915	1940					drill floor, update	offset diagrams			
1940	2100	Tidy sı	ırvey area,	general housekee						
2100	2130	result a	agrees with	GPS observations –						
2130	2359	Standi	ng by for he	licopter back to M	l eibour	ne.				
EQUIPN RIG	MENT	NO.	EQUIPM	ENT REMOTE	NO.	PERSONNEL	TITLE			
Starfix Se		2	Starfix Wo	ombat (remote)	2	S. Armstrong	Party Chief / Surveyor			
Starfix H		3	Fluxgate	<u>.</u>	3	R. Cantlon	Surveyor			
Radio Mo		2	Radio Mo	<u>-</u>	2					
UPS		2	Starfix HF		2					
Theodoli	te	1								
SG Brow	n Gyro	2								
Leica TC Total Sta		1								
VEHICLI	S: N/A				•					
	MABLES: N	N/A								
ACCOM	MODATIO	N: N/A								
AUTHOR	RISED CON	NTRACT	CHANGES	S / COMMENTS:						
<u> </u>	Party Chief	Signat	ure:	Client Rep	esent	tive Signature:	D O R Number			
			>	LU	Q	ew	07066-24			

CLIENT	: ADA PT	Y LTD		LOCATION: W	ASABI	-1	DATE: 13/02/08				
	CT: RIG M		0	VESSEL: WES	T TRIT	ON	JOB NO: 07066				
FROM	TO			SUMM	ARY O	F OPERATIONS					
0000	0800	Standi	ng by for he	licopter			,				
0800				signed off by clie	nt rep.						
0800	0900			rea and packing p		el belongings.					
1000	1100			lepart West Tritor							
1100	1130	Transp	ortation fro	m Essendon airpo	ort to M	elbourne airport p	rovided by ADA				
1130	1200	Arrang	e hire car w	ith Hertz at Melbo	ourne a	irport.					
1200	1500	South	Yarra.			•	back to CR Kennedy Ltd in				
1500	1700	Singar	ore, at ABX	CLogistics Melbou	ırne.	•	ead Technologies Ltd,				
1700	2359	Check	in Airport M	lotel and Convent	ion Ce	ntre, Melbourne. V	Vaiting on flight to NZ.				
EQUIPM RIG	MENT	NO.	EQUIPM	ENT REMOTE	NO.	PERSONNEL	TITLE				
Starfix Se	eis	2	Starfix Wo	ombat (remote)	2	S. Armstrong	Party Chief / Surveyor				
Starfix HI	P DGPS	3	Fluxgate (Compass	3	R. Cantlon	Surveyor				
Radio Mo	odem	2	Radio Mo	dem	2						
UPS		2	Starfix HP	DGPS	2						
Theodolit	te	1									
SG Brow	n Gyro	2									
Leica TC Total Sta		1									
VEHICLE	S: HIRE C	AR									
CONSU	ABLES: N	I/A									
ACCOM	MODATION	N: AIRP	ORT MOTE	L							
AUTHOR	RISED CON	ITRACT	CHANGES	S / COMMENTS:							
F	Party Chief	Signati	ure:	Client Repr	esenta	tive Signature:	D O R Number				
			<u></u>				07066-25				

CLIENT	: ADA PT	Y LTD		LOCATION: W	ASAB	-1	DATE: 14/02/08	
	CT: RIG M I-1 LOCA		0	VESSEL: WES	T TRIT	ON	JOB NO: 07066	
FROM	TO			SUMM	ARY O	F OPERATIONS		
0000	0915	Standi	ng by for flig	ght to NZ				
0915	0930			Motel and Conve				
0930	1030		iing hire car urne Airport		rne Airp	ort. Checking in fo	or flight to NZ at	
1135				depart Melbourne	for NZ	(UTC + 11)		
1700	1830					g on flight to New	Plymouth.	
1830	1915	Flying	from Auckla	and to New Plymo	uth			
1915		S. Arm	istrong and	R. Cantlon arrive	New P	lymouth airport.		
EQUIPM RIG		NO.		ENT REMOTE	NO.	PERSONNEL	TITLE	
Starfix Se	eis	2	Starfix Wo	ombat (remote)	2	S. Armstrong	Party Chief / Surveyor	
Starfix H	PDGPS	3	Fluxgate (Compass	3	R. Cantlon	Surveyor	
Radio Mo	odem	2	Radio Mo	dem	2			
UPS		2	Starfix HP	DGPS	2			
Theodolit	e	1						
SG Brow	n Gyro	2						
Leica TC Total Sta		1						
VEHICLE	S: HIRE C	AR						
CONSUM	/ABLES: N	N/A						
ACCOM	MODATIO	N: AIRP	ORT MOTE	L				
AUTHOR	RISED CON	ITRACT	CHANGES	S / COMMENTS:				
						D O R Number		
F	Party Chief	Signati	иге:	Client Repr	esenta	tive Signature:	D O R Number	

APPENDIX B Final Positioning Data

Starfix Final Fix Report

Fugro Job Number

07066

Job Name

West Triton Rig Move S. Armstrong, R. Cantlon

Fugro Personnel

Client Name

Client Representative Sampling Started

12 Feb 2008 6:13:24 AM UTC 12 Feb 2008 7:13:19 AM UTC

Sampling Ended

Comment

Intended Offset / Well Location

Geodetic Datum GDA94-ITRF2008.50

Latitude

38°29'17.6755"S

Longitude Projection

147°15'49.1452"E

Easting

Transverse Mercator (UTM) Zone: 55

522993.600 m 5739978.200 m

Northing

Intended Rig Heading

0.00 °T

Final DGPS Position Fix Summary for West Triton At Wasabi-1

DS computed from FWD OCSAT.GGA (Primary)

DS Offset From CRP

Starboard

0.000 m

Forward

-4.572 m

Up

0.000 m

Geodetic Datum

GDA94-ITRF2008.50

Latitude

38°29'18.1573"S Longitude 147°15'49.1465"E

Projection

Transverse Mercator (UTM) Zone: 55

Easting

522993.588 m

Northing 5739963.350 m

Final Rig Heading 119.76 °T (Convergence 0.16° Australia/New Zealand) Gyro C-O ###### °

Position is 14.86 m @ 179.88 °T (180.04 °G) FROM intended location

DS computed from AFT APSAT.GGA (Secondary)

Geodetic Datum

GDA94-ITRF2008.50

Latitude

38°29'18.1620"S

Longitude Projection

147°15'49.1179"E Transverse Mercator (UTM) Zone: 55

Easting

522992.896 m

Northing

5739963.207 m

Position is 15.01 m @ 182.53 °T (182.69 °G) FROM intended location

Positioning System Comparison (System 2 minus System 1)

Delta Easting

-0.693 m

Delta Northing

-0.143 m

Client Representative:

07066 - 07:13 February 12, 2008

Page 1

Fugro BTW Ltd Australian Drilling Associates Pty Ltd West Triton Rig Positioning

P07066

Field Report One

Final Rotary Table Heighting

Date: 15 February 08

The West Triton Rotary Table's (RT) height above Australian Height Datum (AHD) was determined from logging 7 hours of carrier phase GPS data between 2118 on 11 February 2008 (UTC) and 0438 on 12 February 2008 (UTC). During this period, antenna heights from the primary positioning system were logged and the data used to calculate the final height of the RT.

The West Triton's Rotary Table height is shown in Table 1.

Description	Method	Height above AHD
West Triton Rotary Table at Wasabi-1	Carrier Phase GPS	39.015m
Client Supplied Design height		>38m

TABLE 1

Stephen Armstrong
Party Chief / Surveyor

Fugro BTW Ltd

Preliminary Pre-Spud Fix Starfix Final Fix Report

Fugro Job Number

Job Name

Fugro Personnel

Client Name Sampling Started Sampling Ended

Output File Name

07066

West Triton Rig Move

S. Armstrong - Party Chief / Surveyor

R. Cantlon - Surveyor

ADA

10 Feb 2008 12:30:38 PM UTC 10 Feb 2008 12:45:39 PM UTC

"041 12 45 39.pdf"

West Triton At Wasabi-1 - Final DGPS Position Fix Summary for DS

DS Offset From CRP

Starboard

0.000 m

Forward

-4.572 m

0.000 m

Geodetic Datum

GDA94-ITRF2008.50

Latitude

38°29'18.1685"S

Longitude

147°15'49.0843"E

Projection Easting Transverse Mercator (UTM) Zone: 55 522992.080 m

5739963.010 m

Northing

Final Rig Heading 119.51 °T (Convergence 0.16° Aust/NZ)

Gyro C-O

°

DS Position is 15.27 m on a bearing of 185.55 °T (185.71 °G) FROM intended location

Transverse Mercator (UTM) Zone: 55

Intended Offset / Well Location

Geodetic Datum

GDA94-ITRF2008.50

Latitude

Northing

38°29'17.6755"S

Longitude

147°15'49.1452"E

Projection Easting

522993.600 m 5739978.200 m

Team Leader / Surveyor: /

W. OPENSHAN SENIOR DRILLING SUPV.

07066 - 12:45 February 10, 2008

Page 1 of 5 **APPENDIX C Calibrations**

GYRO COMPASS CALIBRATION BY SUN AZIMUTH - CALCULATION SUMMARY

Fugro Job Number: P07066 West Triton Vessel: Job Description: Rig Move from Western Port to Wasabi-1

Australian Drilling Associates Pty Ltd Client:

Surveyor: S. Armstrong

Gyro Compass (Serial No): SG Brown (863) Instrument: Wild T2 252357 Serial No:

February 6, 2008 Date:

11hrs

Vessel Details D M S D S М 22 ' 41 " Enter approximate WGS84 position of instrument : Enter correction from RO to vessel centreline ### Latitude () -38° 26 ' 17 "

Longitude (λ) 36 " 145° 17 '

Time Zone:

Observations

Obs.			Instrume	nt Position		ed Sun Azimuth at		erved	Direct	tion to Sun	Calc'd	Obs'd	Sun Semi	(C-O)
No.	Date	UTC	Latitude (ø)	Longitude (λ)	UTC		000	civca	Direct	ion to oun	Vessel Hdg	Vessel	Diameter	Degrees
140.			DMS	DMS	DMS	Dec. Deg		Min	Sec	Dec. Deg	v c s s c i i i a g	Hdg	Diameter	Degrees
1	6-Feb-08	20:20:46	-038° 26' 17.00"	145° 17' 36.00"	104° 09' 7.85"	104.152 °		01'	07	298.019	125.512 °	240.50°	0.2707	-114.99°
2	6-Feb-08	20:21:07	-038° 26' 17.00"	145° 17' 36.00"	104° 05' 59.59"	104.100°	297°	57'	41	297.961	125.517 °	240.50°	0.2707	-114.98°
3	6-Feb-08	20:21:27	-038° 26' 17.00"	145° 17' 36.00"	104° 03' 0.33"	104.050°	297°	54'	56	297.916	125.513 °	240.50°	0.2707	-114.99°
4	6-Feb-08	20:22:04	-038° 26' 17.00"	145° 17' 36.00"	103° 57' 28.81"	103.958°	297°	49'	31	297.825	125.511 °	240.50°	0.2707	-114.99°
5	6-Feb-08	20:22:23	-038° 26' 17.00"	145° 17' 36.00"	103° 54' 38.61"	103.911 °	297°	46'	25	297.774	125.515 °	240.50°	0.2707	-114.98°
6	6-Feb-08	20:25:52	-038° 26' 17.00"	145° 17' 36.00"	103° 23' 28.61"	103.391 °	297°	16'	42	297.278	125.491 °	240.50°	0.2707	-115.01°
7	6-Feb-08	20:26:24	-038° 26' 17.00"	145° 17' 36.00"	103° 18' 42.62"	103.312 °	297°	10'	34	297.176	125.514°	240.50°	0.2707	-114.99°
8	6-Feb-08	20:26:46	-038° 26' 17.00"	145° 17' 36.00"	103° 15' 26.04"	103.257 °	297°	07'	19	297.122	125.513 °	240.50°	0.2707	-114.99°
9	6-Feb-08	20:27:01	-038° 26' 17.00"	145° 17' 36.00"	103° 13' 12.04"	103.220 °		04'	58	297.083	125.515 °	240.50°	0.2707	-114.98°
10	6-Feb-08	20:27:19	-038° 26' 17.00"	145° 17' 36.00"	103° 10' 31.26"	103.175 °	297°	01'	58	297.033	125.521 °	240.50°	0.2707	-114.98°
11	6-Feb-08	20:27:39	-038° 26' 17.00"	145° 17' 36.00"	103° 07' 32.64"	103.126 °	296°	59'	17	296.988	125.516 °	240.50°	0.2707	-114.98°
12	6-Feb-08	20:27:57	-038° 26' 17.00"	145° 17' 36.00"	103° 04' 51.91"	103.081 °	296°	57'	80	296.952	125.507 °	240.50°	0.2707	-114.99°
13	6-Feb-08	20:28:18	-038° 26' 17.00"	145° 17' 36.00"	103° 01' 44.43"	103.029°	296°	53'	30	296.892	125.515 °	240.50°	0.2707	-114.98°
14	6-Feb-08	20:28:36	-038° 26' 17.00"	145° 17' 36.00"	102° 59' 3.75"	102.984°	296°	50'	01	296.834	125.529°	240.50°	0.2707	-114.97°
15	6-Feb-08	20:28:59	-038° 26' 17.00"	145° 17' 36.00"	102° 55' 38.47"	102.927 °	296°	47'	45	296.796	125.510°	240.50°	0.2707	-114.99°
													·	
										Mean	•	-114.99 °		

Std. Deviation 0.01 Maximum -114.97 ° Minimum -115.01 ° Range 0.04

Signature S. Armstrong

SURVEYOR / PARTY CHIEF

GYRO COMPASS CALIBRATION BY SUN AZIMUTH - CALCULATION SUMMARY

February 10, 2008

Serial No:

Time Zone:

Date:

252357

11hrs

Fugro Job Number: P07066 West Triton Vessel: Job Description: Rig Move from Western Port to Wasabi-1 Instrument: Wild T2

Australian Drilling Associates Pty Ltd Client:

Surveyor: S. Armstrong

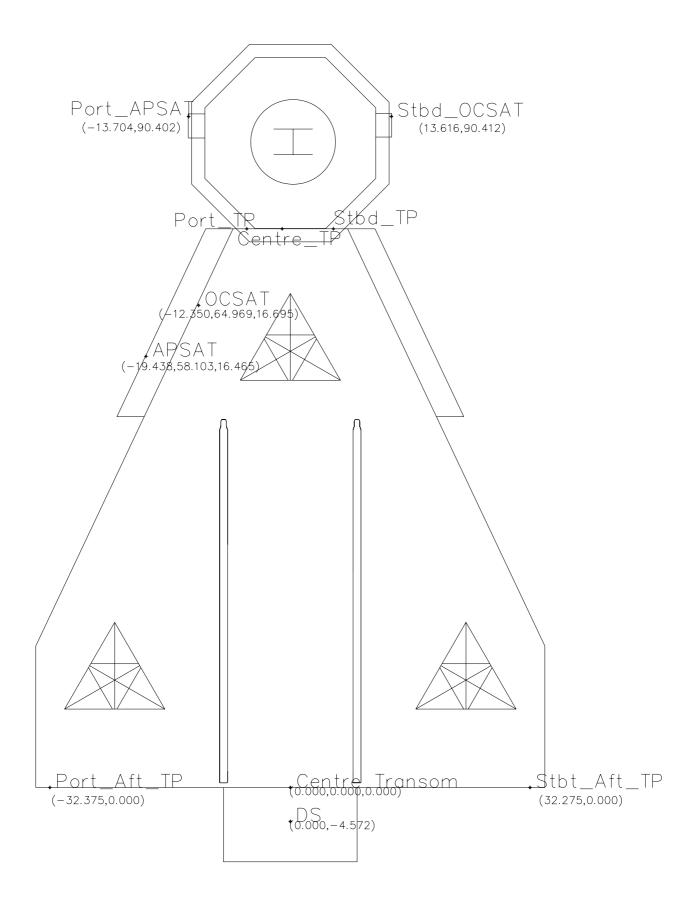
Gyro Compass (Serial No): SG Brown (863)

Vessel Details D M S D S М

0° Enter approximate WGS84 position of instrument : Enter correction from RO to vessel centreline 00 ' 07 " Latitude () -38° 29 ' 19 " Longitude (λ) 52 " 147° 15 '

Observations

Obs.		LITC	Instrumer	nt Position	Calculated Sun	Azimuth at	Ohe	orvod	Direct	ion to Sun	Calc'd	Obs'd	Sun Semi	(C-O)
No.	Date	UTC	Latitude (þ)	Longitude (λ)	UTC		Obs	erveu	Direct	ion to Sun	Vessel Hdg	Vessel	Diameter	Degrees
140.			DMS	DMS	DMS	Dec. Deg	Deg	Min	Sec	Dec. Deg	vesserriag	Hdg	Diameter	Degrees
1	10-Feb-08	21:55:07	-038° 29' 19.40"	147° 15' 52.20"	087° 38' 15.22"	87.638°	327°	52'	44	327.879	119.761°	234.50°	0.2705	-114.74°
2	10-Feb-08	21:55:30	-038° 29' 19.40"	147° 15' 52.20"	087° 34' 34.63"	87.576°	327°	49'	16	327.821	119.757°	234.50°	0.2705	-114.74°
3	10-Feb-08	21:55:53	-038° 29' 19.40"	147° 15' 52.20"	087° 30' 53.88"	87.515°	327°	45'	27	327.757	119.759°	234.50°	0.2705	-114.74°
4	10-Feb-08	21:56:19	-038° 29' 19.40"	147° 15' 52.20"	087° 26' 44.13"	87.446°	327°	41'	20	327.689	119.759°	234.50°	0.2705	-114.74°
5	10-Feb-08	21:56:42	-038° 29' 19.40"	147° 15' 52.20"	087° 23' 3.03"	87.384°	327°	37'	39	327.627	119.759°	234.50°	0.2705	-114.74°
6	10-Feb-08	21:57:10	-038° 29' 19.40"	147° 15' 52.20"	087° 18' 33.64"	87.309°	327°	32'	55	327.549	119.763°	234.50°	0.2705	-114.74°
7	10-Feb-08	21:57:35	-038° 29' 19.40"	147° 15' 52.20"	087° 14' 32.91"	87.242°	327°	28'	48	327.480	119.764°	234.50°	0.2705	-114.74°
8	10-Feb-08	21:58:20	-038° 29' 19.40"	147° 15' 52.20"	087° 07' 19.08"	87.122°	327°	21'	46	327.363	119.761 °	234.50°	0.2705	-114.74°
9	10-Feb-08	21:58:43	-038° 29' 19.40"	147° 15' 52.20"	087° 03' 37.10"	87.060°	327°	17'	42	327.295	119.767°	234.50°	0.2705	-114.73°
10	10-Feb-08	21:59:08	-038° 29' 19.40"	147° 15' 52.20"	086° 59' 35.62"	86.993°	327°	13'	42	327.228	119.767°	234.50°	0.2705	-114.73°
11	10-Feb-08	21:59:27	-038° 29' 19.40"	147° 15' 52.20"	086° 56' 31.95"	86.942°	327°	10'	38	327.177	119.767°	234.50°	0.2705	-114.73°
12	10-Feb-08	21:59:48	-038° 29' 19.40"	147° 15' 52.20"	086° 53' 8.82"	86.886°	327°	07'	37	327.127	119.761 °	234.50°	0.2705	-114.74°
13	10-Feb-08	22:00:16	-038° 29' 19.40"	147° 15' 52.20"	086° 48' 37.75"	86.810°	327°	03'	31	327.059	119.754°	234.50°	0.2705	-114.75°
14	10-Feb-08	22:01:01	-038° 29' 19.40"	147° 15' 52.20"	086° 41' 21.55"	86.689°	326°	55'	49	326.930	119.761 °	234.50°	0.2705	-114.74°
15	10-Feb-08	22:01:23	-038° 29' 19.40"	147° 15' 52.20"	086° 37' 48.06"	86.630°	326°	52'	80	326.869	119.763°	234.50°	0.2705	-114.74°
											·		•	
											·		•	
		•		•		•						Mann	•	444740


Signature S. Armstrong

SURVEYOR / PARTY CHIEF

Mean -114.74° Std. Deviation 0.00 Maximum -114.73 ° Minimum -114.75 ° Range 0.01

APPENDIX D Vessel Offset Diagram

WEST TRITON

APPENDIX E
Client Supplied Data

APACHE ENERGY LTD

Vic-58-P: Wasabi-1

Doc No. DR-70-LD-005

SEQUENCE OF OPERATIONS

The planned sequence of events for Wasabi-1 is summarized in the table below:

Operations	DIMS Phase
Move rig to 1km from location.	MIRU
Move rig and prepare to work	MIRU
Drill 660mm x 406mm Hole Section	C-DRL
Install 508mm x 340mm Conductor	C-CSG
NU BOP	P-NUP
Drill 311mm Hole Section	P-DRL
Openhole Logs	P-EVAL
P & A well	PLUG
Move-off	RDMO

Move Rig & Prepare To Work

- Tow rig to the Wasabi-1 location. A high accuracy GPS positioning system will be used to
 determine the final rig position and RT AHD measurement. The rig position is to be verified
 by the Apache Drilling Supervisor using the hand held GPS, in accordance with Rig Move
 Positioning QC procedure DR-00-RQ-001.
- Position rig onto location within a 25m radius of the Wasabi-1 location. Final rig heading will be (TBA°) per Seadrill and site survey results. Pre-load as per Seadrill procedures.
- Report the following in the DDR, and send in the actual Rig Positioning/Surveying contractors summary sheet showing:
 - · Spud can penetrations
 - · Rig heading
 - Distance and bearing from the proposed location
- 4. Jack up to a height that will be at or above the programmed rotary table elevation of 38m AHD. If required, mark the legs at the time of the rig positioning contractor's height survey to allow subsequent correction if the rig is jacked up or down.

Do not report any datum at this point.

- 5. Skid out cantilever.
- 6. Pick up HWDP as required.
- 7. Prepare the 476mm (18-3/4") unitized wellhead housing (with pre-installed landing ring and nominal bore protector).

660mm x 406mm (26" x 16") Hole Section to +/- 900m

- 8. Pick up 660mm (26") BHA as per BHA programme and RIH. Shallow Test MWD/LWD tools.
 - 26" rock bit, bit sub / float, 2 x 9-1/2" DC, 16" stab, 9-1/2" DC, 16" stab, 9 x 8-1/4" DC, jar, 2 x 8-1/4" DC, x/o, 15 x 5-1/2" HWDP).
 - Above will form basis of 406mm BHA. Rack back 8-1/4" DC's as required so that top of DC's is below the RT when tag seabed (RT to seabed estimated 75m).
- Tag seabed and spud the well.
 - Observe drillstring and confirm it is hanging vertically below the rotary table. Consider waiting on slack tides if necessary.

COELACANTH-1 & WASABI-1

SITE SURVEYS

FINAL REPORT

JOB NO. 10033

OCTOBER 2006

Apache Energy Ltd Level 3 256 St Georges Terrace Western Australia Australia, 4000

EGS Survey Pty Ltd 108 Stirling Street, Perth, Western Australia Australia, 6000

Tel: 08 9228 6800 Fax: 08 9228 6806

http://www.egssurvey.com

CONTENTS

			PAGE
1	INT	TRODUCTION	4
	1.1	PROJECT DESCRIPTION	4
	1.2	SCOPE OF WORK	4
	1.2.	1 Survey Area	5
2	SUI	RVEY EQUIPMENT, VESSEL AND PERSONNEL	6
	2.1	EQUIPMENT LIST	
	2.2	SURVEY VESSEL	
	2.3	SURVEY PERSONNEL	
3		RVEY PARAMETERS	
4		UIPMENT CALIBRATIONS AND VERIFICATIONS	
	4.1	GYROCOMPASS CALIBRATION	
	4.2	DIFFERENTIAL GPS VERIFICATION	
	4.3	DMS-H HEAVE MOTION SENSOR VERIFICATION	
	4.4	BOOMER SYSTEMS	
	4.5	SIDE-SCAN SONAR	9
5	SUI	RVEY OPERATIONS	10
	5.1	SEQUENCE OF EVENTS	10
	5.2	SURVEY PREPARATION	11
	5.3	MOBILISATION	
	5.4	CONTROL	
	<i>5.4</i> .	• • • • • • • • • • • • • • • • • • • •	
	5.4.		
	5.5	COVERAGE	
	5.6	ECHO SOUNDER	
	5.7	SEISMIC REFLECTION SURVEY	
	5.8	SIDE-SCAN SONAR	
	5.9	DEMOBALISATION	13
6	DA'	TA PROCESSING AND INTERPRETATION	14
	6.1	ECHO SOUNDER	14
	6.2	SEISMIC DATA	14
	6.2.	1 Processing	14
	6.2.	2 Interpretation	14
	6.3	SIDE-SCAN SONAR	14
	6.3.	0	14
	6.3.	2 Interpretation	15
7	RE	SULTS	18
	7.1	PRESENTATION	18
	7.2	BATHYMETRY	
	7.3	BACKGROUND GEOLOGY	18

EGS Job No.: 10033

	7.4	SUB-BOTTOM PROFILES.	19
	7.4.	Coelacanth-1	19
	7.4.2		
	7.5	SURFICIAL SEDIMENTS AND SEABED FEATURES	
	7.4.1	σ	
	7.4.2		
	7.4.3	3 Wasabi-1	22
8	PRO	OJECT HEALTH AND SAFETY	27
	8.1	SITE SAFETY	27
	8.2	JOB HAZARD ANALYSIS AND TOOLBOX MEETINGS	
9	CO	NCLUSION	10
y	COI	NCLUSION	40
		FIGURES	
F	igure 1:	Typical example of post-processed SBP data from Coelacanth-1 Line 400	16
		T'11 CDD 1 f W1: 1 1: 400	17
r	igure 2:	Typical example of post-processed SBP data from Wasabi-1 Line 400	1/
F	igure 3:	SSS image of featureless seabed of fine to coarse, gravely SAND	21
F	igure 4:	SSS image showing area of north-south orientated megaripples	22
F	ioure 5.	SSS image of HARDPAN exposure in SAND	22
1	iguic 3.	555 image of Tranch ray exposure in 57114b	
F	igure 6:	SSS image showing speckled texture of biological growth on fine SAND	24
F	igure 7:	SSS image of medium to coarse/fine SAND boundary	25
		TABLES	
T	able 1:	Coelacanth-1 proposed location and survey extents	5
т	2-1-1- 2-	Week! 1 amount 11 and a man decomposition of	5
1	able 2:	Wasabi-1 proposed location and survey extents	
Т	able 3:	Geodetic parameters	7
T	able 4:	7-Parameter transformation	7
_			_
1	able 5:	Gyrocompass calibration results	8
т	able 6	DGPS verification results	Q
1	aute 0.	DOLD verification results.	

APPENDICES

Appendix A: Daily Operations Reports

Appendix B: Gyrocompass Calibration

Appendix C: DGPS Verification

Appendix D: Bar Check

Appendix E: Sound Velocity Profiles

Appendix F: Vessel Offset Diagram

Appendix G: Tidal Data

Appendix H: Sediment Sample Logs

Appendix I: Wasabi-1 Profiles

REFERENCE

G. R. Holdgate, M. W. Wallace, S. J. Gallagher, A. J. Smith, J. B. Keene, D. Moore and S. Shafik (2003). *Plio-Pleistocene tectonics and eustasy in the Gippsland Basin, southeast Australia: evidence from magnetic imagery and marine geological data.* Australian Journal of Earth Sciences, Volume 50, Issue 3.

COELACANTH 1 & WASABI-1 SITE SURVEYS

APACHE Energy Pty Ltd BASS STRAIT VICTORIA, AUSTRALIA FINAL REPORT

EGS JOB NUMBER 10033

October 2006

1 INTRODUCTION

1.1 PROJECT DESCRIPTION

EGS Survey Pty Ltd (EGS) was contracted by Apache Energy Australia to provide reconnaissance survey and geophysical information for two areas in the Bass Strait, south of the East Victorian coast. The objective of the survey is to gather seismic and bathymetric data to ensure the two sites are suitable for the installation of a jack up rig.

1.2 SCOPE OF WORK

The scope of work was as follows:

Conduct two site surveys (Coelacanth-1 and Wasabi-1) to determine a suitable rig location. Each site will have 100m-line spacing conducted throughout the area with cross-lines conducted at 500m spacing.

Each site will be surveyed using a dual frequency single beam echo sounder, side-scan sonar and sub bottom profiler.

The information collected will also be used to support Mobile Offshore Drilling Unit (MODU) activities. The following data is required:

- Bathymetry
- Seabed features
- Shallow geology

1.2.1 Survey Area

The proposed locations and survey extents at each site are summarised in the following two tables.

GDA94, MGA, Zone 55 CM 147° E Survey Area (Approx): 1km x 2km (North to South Orientation)								
Easting (m) Northing (m)								
NW Corner	612 009	5 714 216						
NE Corner	613 640	5 715 297						
SW Corner	612 642	5 713 028						
SE Corner 614 361 5 714 271								
Surface Location	613 194	5 714 177						

Table 1: Coelacanth-1 proposed location and survey extents

GDA94, MGA, Zone 55 CM 147° E Survey Area (Approx): 1km x 1km (North to South Orientation)							
Easting (m) Northing (m)							
NW Corner	522 152	5 740 844					
NE Corner	523 454	5 740 844					
SW Corner	522 152	5 739 509					
SE Corner 523 446 5 739 509							
Surface Location	522 717	5 740 338					

Table 2: Wasabi-1 proposed location and survey extents

2 SURVEY EQUIPMENT, VESSEL AND PERSONNEL

2.1 EQUIPMENT LIST

The following equipment was mobilised and used for this survey:

Vessel "Bluefin"

C-Nav 2050 DGPS (Primary and Secondary)

Knudsen dual frequency Single beam Echo sounder and mounting pole

Ashtead DMS-H Heave Motion Compensator

Robinson Gyrocompass

Valeport SVP650 Velocity Probe

Applied Acoustics CSP 300/Boomer

C-Products low-voltage Boomer (LVB)

Klein 2000 Side-scan Sonar (2)

Qinsy online navigation software and PC

C-Phone hydrophone system

C-View

QINSy

2.2 Survey Vessel

The FTV Bluefin is a single hull shallow draft vessel managed by the Australian Maritime College from the port of Beauty Point, Tasmania.

Length Overall: 34.50m Breadth Overall: 10m

Draft: 4.40m (Max)
Personnel: 9 Crew

2.3 SURVEY PERSONNEL

The following personnel were mobilised for the duration of the project:

Rod Farrawell Senior Surveyor/Party Chief

David Struthers
Louise Minty
Geophysicist
Ian Wright
Gary Wong
Anderson Leung
Survey Technician
Survey Technician

David Khoo Client Representative

Final Report

Page 7

3 SURVEY PARAMETERS

The geodetic parameters used for this project are listed below:

Spheroid parameters: WGS 84 (ITRF 2006.5)						
Datum:	GDA 94					
Ellipsoid:	GRS80					
Semi-Major Axis:	6378137.000					
Reciprocal Flattening:	298.257222101					
Projection Parameters:						
Projection:	Universal Transverse Mercator (UTM)					
Zone	55 South					
Central Meridian:	147°					
Origin of Latitude	0° North					
False East:	500000m					
False North:	10000000m					
Scale Factor:	0.9996					

Table 3: Geodetic parameters

The following 7-parameter transformation (Table 4) values were used to transform between WGS84 (ITRF2000 Epoch 1 July 2006) and GDA94.

Transformation Parameters WGS 84 [ITRF2000 (Epoch 2006.50)] to GDA94									
dX	-0.0046m	RX	0.015486"						
dY	-0.0394m	RY	0.013723"						
dZ	-0.0687m	RZ	0.016079"						
Scale	0.004438 ppm								

Table 4: 7-Parameter transformation

4 EQUIPMENT CALIBRATIONS AND VERIFICATIONS

4.1 GYROCOMPASS CALIBRATION

A Robinson Gyro compass was fitted to the FTV Bluefin as the primary heading source for the survey operation. This was calibrated whilst the vessel was alongside the wharf in Beauty Point during the mobilisation phase of the project. Wharf alignment was ascertained with the use of a nautical chart and tape measure observations were made to determine the heading of the vessel. A straight portion along the ships hull was used as a baseline and perpendicular measurements from the bow and stern of the baseline were made. The ships heading derived by these measurements were then compared with simultaneous readings from the Robinson gyrocompass logged by the navigation software.

A total of 10 observations were made. Once the gyro compass correction (Table 5) was determined the result was entered into the Robinson gyro. Appendix B displays these results.

Gyrocompass	Mean C-O (°)
Robinson	+98.18°

Table 5: Gyrocompass calibration results

4.2 DIFFERENTIAL GPS VERIFICATION

Surface positioning was conducted with a C-Nav 2050 DGPS receiver directly interfaced into the QINSy navigation software. The QINSy navigation software was setup using the geodetic parameters detailed in Section 3. The C-Nav 2050 uses combined GPS and differential antennae, which were installed to maximise satellite visibility and to minimise any multipath effects.

To verify the integrity of the C-Nav 2050 positioning system, checks were carried out whilst alongside in Beauty Point on the 10th October 2006. The QINSy navigation software was initialised and set to log data. All offsets in the QINSy systems were verified. A reflective prism was then mounted on the mast as close to the GPS antenna being verified as possible. A total of 15 observations were then made to this prism from a known reference mark using a total station. A comparison was then made between the calculated position and the observed position (C-O), (Table 6) which confirmed the DGPS accuracy. Appendix C displays these results.

A comparison between the C-Nav primary and secondary DGPS systems was made from 30 observations at 10-second intervals. These calibration results are shown in Appendix C.

System	Easting C-O	Northing C-O	Easting Stdev.	Northing Stdev.
C-NAV Primary	0.02	0.01	0.04	0.02
C-NAV Secondary	0.07	-0.04	0.01	0.02

Table 6: DGPS verification results

4.3 DMS-H HEAVE MOTION SENSOR VERIFICATION

A verification of the DMS-H Heave sensor was carried out on the 10th October 2006. Manually lifting the motion senor approximately 1m whilst recording the heave on the echo sounder trace. This verified that the heave was being applied correctly.

4.4 BOOMER SYSTEMS

Both the C-Products Low-voltage Boomer (LVB) and Applied Acoustics CSP 300/Boomer were 'wet tested' whilst the vessel was moored alongside at Beauty Point. These tests are carried out to ensure power levels, frequency transmissions, pulse rates and general working order of the systems are of the expected quality. The results indicated excellent working order of both instruments, including spares.

4.5 SIDE-SCAN SONAR

Internal clocks used to measure reflection times are calibrated by the manufacturer, the calibration is valid for the life of the instrument therefore no further calibration is required. A rub test and "wet test" were undertaken whilst the vessel was moored alongside at Beauty Point. The results indicated excellent working order of both instruments, including spares.

5 SURVEY OPERATIONS

5.1 SEQUENCE OF EVENTS

The survey was carried out over 24-hour operations between 11th and 13th October 2006.

Survey mobilisation commenced at 0800 on Monday the 9th October 2006. The Bluefin was alongside The Australian Maritime College (AMC), Beauty Point, Tasmania. The mobilisation was carried out safely and within the time frame allowed. There was minor problem attaching the single beam echo sounder pole to the bracket, this was rectified by the services of a local tradesman onboard securing the bracket to the vessel. The mobilisation continued on the 10th October including calibrations, the vessel departed the wharf at 1830 on the 10th October. Whilst in the harbour after departure, wet testing of the geophysical equipment spread was conducted. The vessel departed the Tamar River for the first site (Coelacanth-1) at 2359.

FTV Bluefin arrived at Coelacanth-1 survey area at 1445 on the 11th October. On arrival a Sound Velocity Probe (SVP) was conducted and equipment deployed. Survey operations commenced at 1735 and were completed at 0945 on the 12th October. Time was spent trying to receive better quality data from the CSP boomer system. The vessel noise signature was a constant noise issue for the boomer system and several different methods were tried as to reduce the noise through the system. Choppy sea conditions were also a factor.

On completion of the Coelacanth-1 site the vessel transited to the Wasabi-1 survey site, approximately 6 hours west of the first site. The FTV Bluefin arrived at the Wasabi-1 site at 1555 and immediately commenced deployment of the equipment and obtained an SVP. The Wasabi-1 site was completed at 0020 on the 13th of October. The CSP boomer data was again poor quality due to the vessel noise. A small seabed sample was also collected before leaving the Wasabi-1 survey site.

Due to significant noise with the boomer data first collected at the Coelacanth-1 site, the vessel returned to the site to re-survey with the boomer only. The vessel arrived back at Coelcanth-1 at 0655 and survey operations were underway by 0710 on the 13th October. Attempts were made to improve the data of the boomer by making adjustments with the hydrophone and boomer catamaran. At 0935 the Bluefin conducted noise tests in an effort to determine the cause of the noisy data. These tests indicated that the engine noise was the primary reason for the noisy signal and the engines pitch was adjusted in an attempt to the level of noise. The boomer re-runs then recommenced.

The Coelacanth-1 site re-runs were completed and all equipment recovered by 1535. A seabed sample was collected and the vessel then commenced passage to Beauty Point departing the survey site at 1600 on the 13th October.

The vessel arrived in Beauty Point at 1000 on the 14th October. The vessel demobilisation was completed by 1500 and all EGS staff departed the vessel.

5.2 SURVEY PREPARATION

Prior to commencement of the project and the mobilisation of the vessel there was a period of preparation of survey documentation. A key component of the preparation was also the survey Project Execution Plan (PEP).

The week leading up to the survey was also used as project preparation and dispatching equipment to Beauty Point from the EGS offices in Perth and Hong Kong. Welding of the single beam bracket onto the vessel was conducted during the mobilisation process.

5.3 MOBILISATION

Mobilisation of the survey equipment on the Bluefin was conducted whilst the vessel was alongside The Australian Maritime College at Beauty Point, Tasmania. This commenced on Monday 9th October 2006 and was completed late evening Tuesday the 10th October 2006. All calibrations were completed prior to the vessel departing the jetty in Beauty Point.

During the mobilisation local tradesmen were used to weld the single beam bracket onto the starboard side of the Bluefin.

5.4 CONTROL

5.4.1 Horizontal Control

The survey vessel was located by C-NAV GPS receiver unit, for which system C-NAV GcGPS (GLOBALLY CORRECTED GPS) offers worldwide sub-metre accuracy.

The control used for the calibrations was acquired from the Department of Primary Industry's Water and Environment, Tasmania web site. The site lists all of the station summary information throughout Tasmania. The control stations were checked to ensure that the correct co-ordinate system was used.

5.4.2 Vertical Control

Predicted tides were used throughout the survey. The tidal information for the area was calculated at Metocean Engineers in Perth.

5.5 COVERAGE

Apache determined the coverage of the survey in there scope of work received by EGS. This was also confirmed at the pre start meeting held on the 4th October 2006.

5.6 ECHO SOUNDER

The Knudsen 320M dual frequency echo sounder was used throughout the survey. A sound velocity profile was conducted in the survey areas prior to collection of data. A speed of sound through the water of 1492 m/s was determined for the Coelacanth-1 survey site and 1490m/s for the Wasabi-1 survey site, these were entered into the echo sounder. Appendix E displays the sound velocity data.

5.7 SEISMIC REFLECTION SURVEY

The recording/survey parameters for the seismic reflection survey were as follows:

• Vessel Speed 1.9 – 2.8 m/sec

Fix Interval 50m
Layback 30m
Output Power 200J/Pulse
Pulse Rate 4/sec

• Sweep 200ms or approx 150m

Gain setting

All seismic data was logged using the C-View Seabed Data Management Package (SDMP) and simultaneously recorded with navigation, fix, vessel heading. The data was printed via the Octopus printer, as a backup.

Following acquisition of the first line of data it became apparent that there was a high level of noise that 'masked' reflectors to a high degree, making the data uninterpretable. It was not immediately clear what was causing the high noise levels and hence test variations of the tow configuration were assessed and instruments were changed in an attempt to mitigate the noise. Following investigations into the noise source it was discovered that the frequency of the noise coincided with the emitting frequency bandwidth of the boomer system and that if the vessel engines were turned off the noise ceased. It was therefore deemed that the noise originated from the propeller and as such the propellers pitch was altered but no reduction in the noise level could be measured.

The Boomer plate and hydrophone were towed from the stern of the survey vessel, at a distance such that noise from the vessel was minimised, whilst maintaining positional accuracy (see Appendix F vessel Layout Diagram). Survey operations proceeded with the hope that more focused analysis and post-processing of the data would yield better results.

5.8 SIDE-SCAN SONAR

A digital dual frequency (100/500kHz) Klein 2000 Side-scan Sonar (SSS) was used throughout the survey. The following operation parameters were applied:

Frequency : 500 and 100kHzRange : 150m per channel

• Cable deployed : Coelacanth-1=210m, Wasabi-1=30m

• Towing offset from datum(x) : +4.4m

• Towing offset from datum(y) : -14.7m plus cable out

A depressor and weights were attached to the side-scan tow-fish while surveying the Coelacanth-1 survey site in order to maintain a reasonable altitude above the seabed.

The side-scan sonar system was used to locate and identify seabed features and potential obstructions and to investigate surficial sediment properties and boundaries. The system was operated at both 100 and 500kHz on all survey lines to provide the best resolution possible.

The side-scan sonar performed well for the duration of the survey and the reliability of the sensors was very good.

5.9 DEMOBALISATION

Demobilisation commenced when the vessel was in the Tamar River and not during the transit from Coelacanth-1 site due to the weather conditions making conditions unsafe to perform those duties. Demobilisation was completed by 1500 on Saturday 14th of October.

6 DATA PROCESSING AND INTERPRETATION

6.1 ECHO SOUNDER

The influence of wave action was corrected in real time by the DMS-H motion sensor from the sounding data. The Qinsy processing software was used to remove data spikes from the collected raw data. The cleaned sounding data was then reduced using predicted tidal data from Metocean Engineers.

6.2 SEISMIC DATA

All processing and interpretation of the seismic data was carried out using the C-View processing and interpretation software.

6.2.1 Processing

All offsets and laybacks are automatically calculated by the C-View system. Processing of the Sub-bottom Profiler (SBP) data included band pass filtering, time-varying gain (TVG), trace averaging, and swell filtering. These processes were applied with parameters set to best enhance the quality and clarity of the image and aid interpretation. Despite this the general ability to draw interpretations from the data remained poor.

6.2.2 Interpretation

Seismic data collected from the Coelacanth-1 site was particularly bad quality with only occasional short sections of sub-horizontal reflectors identifiable surrounded by large line sections containing no identifiable reflectors at all (Figure 1). This quality of data is not sufficient to make any geological interpretations as to the rock/sediment types present, or their structure.

At the Wasabi-1 site, the data is also of a poor quality, however due to the shallower water depths, and improved sea conditions, a slightly greater signal-to-noise ratio is observed and as a result sub-horizontal reflectors can be identified on most lines (Figure 2). The interpretation and significance of these reflectors however is not possible to comment upon. A uniform seismic velocity of 1600m/s was used for the material underlaying the seabed.

Aspects of seismic interpretation such as stratigraphic assessment and attribute analysis were not feasible from any of the data collected.

6.3 SIDE-SCAN SONAR

All processing and interpretation of the side-scan sonar data was carried out using the C-View processing and interpretation software.

6.3.1 Processing

All offsets and laybacks are automatically calculated by the C-View system. Gain settings were adjusted to enhance data quality and clarity.

6.3.2 Interpretation

The ranges achieved with the sonar provided good overlapping coverage. The quality of the side-scan sonar data guaranteed significant feature detection based upon backscatter intensity and observation of seabed features.

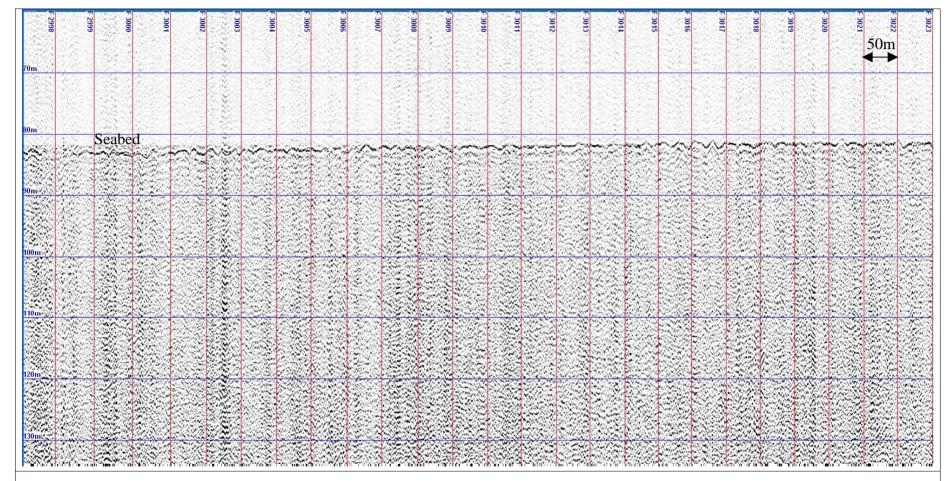
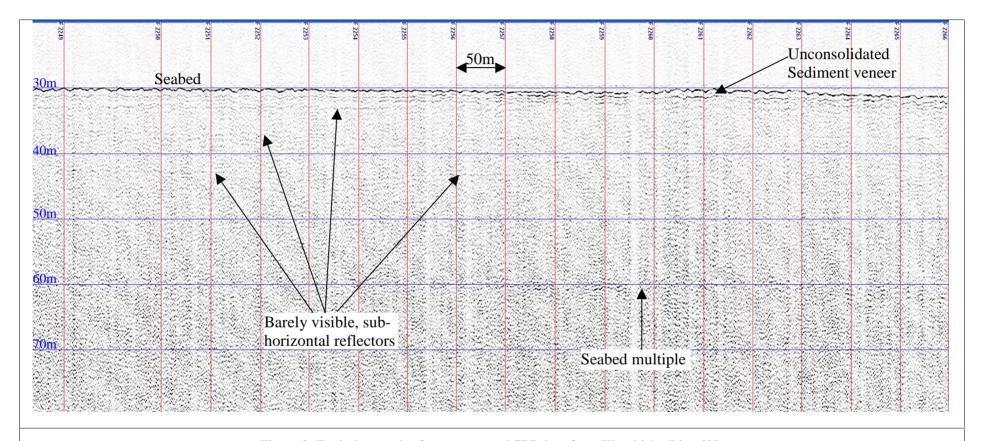



Figure 1: Typical example of post-processed SBP data from Coelacanth-1. (Line 400).

No reflectors are identifiable.

 $Figure \ 2: Typical \ example \ of \ post-processed \ SBP \ data \ from \ Wasabi-1. \ (Line \ 400)$

Showing sub-horizontal reflectors.

7 RESULTS

7.1 Presentation

The results for the survey have been presented as follows:

DRAWINGS

10033-C-001 Wasabi-1 Site Survey Composite Drawing 10033-C-002 Coelacanth-1 Site Survey Composite Drawing

7.2 BATHYMETRY

7.2.1 Coelacanth-1

The water depths range from approximately 87m(CD) in the south-west to 107m(CD) in the north-east.

The seabed topography is relatively flat in the west of the survey area, east of the 89m contour the seafloor slopes moderately reaching a maximum depth of 107m.

7.2.2 Wasabi-1

Water depths range from approximately 24m(CD) at the Western side to 29m(CD) at the Eastern side.

The seabed topography dips very gently to the east-southeast to a maximum of 29m.

7.3 BACKGROUND GEOLOGY

The study areas are located within the Gippsland Basin. Holdgate et al. (2003) reveals the findings of a study into the near surface sediments within this basin. The following text summarises relevant details from this study.

The Pliocene and Pleistocene sediments of the Gippsland shelf are dominated by mixed carbonates and siliciclastics. Stratigraphic analyses of eight oil and gasfield foundation bores drilled to 150 m below the seabed revealed three principal facies types: (i) Facies A is finegrained limestone and limey marl deeper than 50 m below the seabed, of Late Pliocene age (ii) Facies B is a fine-coarse pebble quartz-carbonate sand that occurs 10-50 m below the seabed in the inner shelf, grading down into Facies A in wells in the outer shelf, and is of Early-Middle Pleistocene age and (iii) discontinuous horizons of Facies C composed of carbonate-poor carbonaceous and micaceous fine quartz sand occurring 10-50 m below the seabed. Holocene sands dominate the upper 1.5–2.5 m of the Gippsland shelf and disconformably overlie cemented limestones with aragonite dissolution. Airborne magnetic imaging across the Gippsland shelf and onshore provides details of buried magnetic palaeoriver channels and barrier systems. The river systems trend south-southeast across the shelf. Seismic surveys show the magnetic palaeochannels as seismic 'smudges' 20-40 m below the seabed. They appear to correspond to Facies C lenses (i.e. are Early to Middle Pleistocene features). Magnetic palaeobarrier systems trending south-southwest in the inner shelf and onshore beneath the Gippsland Lakes are orientated 15° different to the modern Ninety Mile Beach barrier trend. Offshore, they correlate

stratigraphically to progradation packages of Facies B. Analysis of bore data in the adjacent onshore Gippsland Lakes suggests that a Pliocene barrier sequence 100–120 m below surface is overlain by fluvial sand–gravel and lacustrine mud facies. The ferruginous sandstone beds resemble offshore Facies C, and are located where magnetic palaeoriver channel systems occur.

7.4 SUB-BOTTOM PROFILES

7.4.1 Coelacanth-1

Due to the lack of any identifiable reflectors it has not been possible to make any geological interpretation of this site based on the seismic data.

7.4.2 Wasabi-1

Sub-bottom Profiles for all lines acquired on the Wasabi-1 site can be seen in Appendix I

Reflectors identified occur at depths ranging between 1m and 16m below the seabed. Reflector 1 (Red) indicates that a resolvable veneer of unconsolidated material/sediment exists on the eastern side of the site (observable on lines 001 to 500, and between Fix 2387 to 2397 on Cross-line 3). To the west of the site the sediment veneer is too thin to resolve in profile records. The sediment veneer thickens to the east reaching a maximum of 2m (Line 001) and likely relates to the Holocene sands mentioned above.

The deeper regional reflectors identified are generally sub-horizontal in nature, and can be traced across the entire site. Reflector 2 (Green) generally parallels the seabed and occurs at ~ 3m beneath the seabed. Reflector 3 (Magenta) occurs between 7-9m beneath the seabed and has a more undulatory nature. This reflector was generally the most easily identifiable on the seismic sections and hence likely indicates a significant change in the lithology. Reflector 4 (Blue) marks an indistinct reflector observable between 14 and 16m beneath the seabed.

Note:

- As mentioned above, a conservative seismic velocity of 1600m/s was used in this
 interpretation and hence reflector depths described are minimum depths and actual
 depths may be up to 2/3 meters deeper.
- The geological strata described here is based upon poor quality data. The actual geological strata may be more complex.

7.5 SURFICIAL SEDIMENTS AND SEABED FEATURES

This section provides the results of seabed characterisation, sonar contacts and seabed features and is based on interpretation of 100kHz and 500kHz side-scan sonar (SSS) data. No geotechnical sampling was acquired as part of the scope of work. However, a seabed sample was taken near the centre of each site using a ship made dredge. Given that very limited sampling was carried out comments regarding the geotechnical properties of seabed sediments are inferred and require confirmation by a full geotechnical survey of the both sites.

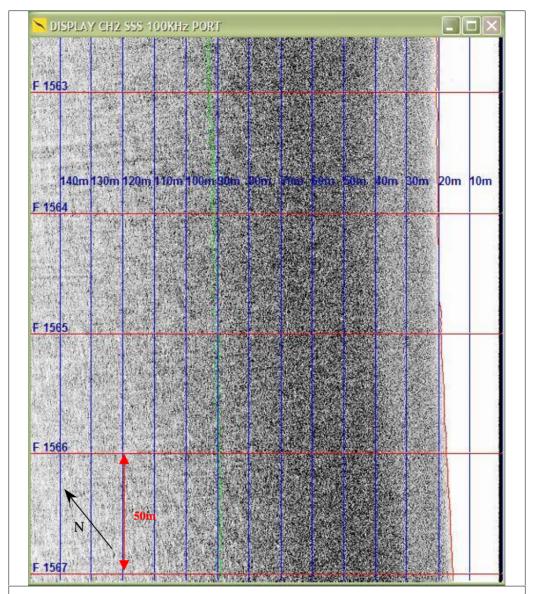
7.4.1 Seabed Sediment Classification

The following classifications are used in this report;

- Slightly gravelly, fine SAND
- Gravelly, fine to coarse SAND
- Gravelly, medium to coarse SAND
- HARDPAN thin layers (with up to 1m relief in places) of partially consolidated calcareous sediments forming a crust on the seabed..

It should be noted that HARDPAN classification is not acoustic basement or indicative of bedrock. It represents, as a minimum, partially consolidated or desiccated sediments. Locally it may have been subject to colonisation by calcareous organisms or partial cementation. There is potential for these layers of hard material to have a geotechnical classification equivalent to a weak rock, over thin intervals. HARDPAN occurs as a thin crust sitting on top of unconsolidated sediments.

7.4.2 Coelacanth-1


The seabed in the south and west of the Coelacanth-1 survey area is predominately flat with depths between 87-90m. The east of the site slopes moderately to the east deepening to 100m. From the 100m contour the slope becomes gentle and the seabed deepens to a maximum of 107m at the eastern extreme. No sonar contacts were identified in the survey area. In the east and south of the survey area there is evidence of trawling activity in the form of trawl scars on the seabed.

Seabed sediment throughout the Coelacanth-1 survey area is fine to coarse, gravelly SAND (Figure 3). A sediment sample taken near the centre of the site (GS-COE001, Appendix H) returned gravelly, fine to coarse SAND.

The seabed is featureless throughout most of the survey area with the exception of several areas of low-amplitude megaripples, one in the north (Figure 4) and 3 in the south. Megaripple orientations vary across the survey area and heights are consistently below 0.5m suggesting that the currents responsible for transporting the sediments are low and intermittent.

 $\label{eq:sanda} \textbf{Figure 3: SSS image of featureless seabed of fine to coarse, gravelly SAND.}$

Location of Fix 1565 is approximately 613685E, 5714639N.

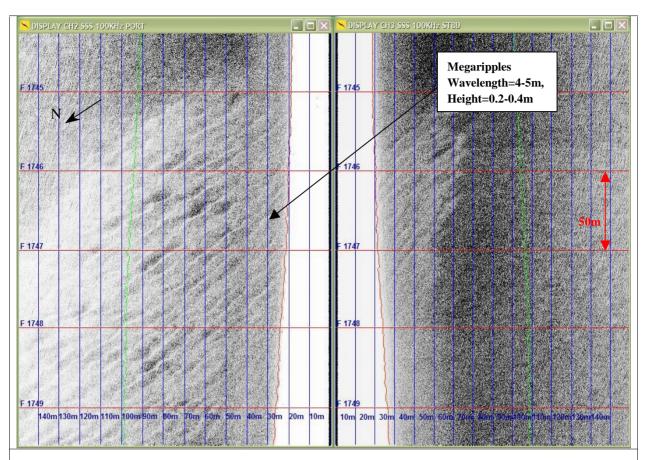


Figure 4: SSS image showing area of north-south orientated megaripples.

Location of fix 1745 is approximately 613337E, 5715114N.

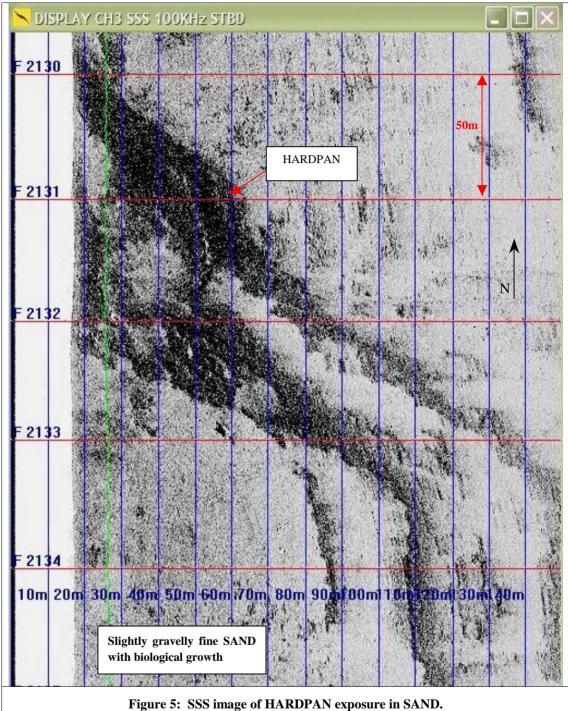
7.4.3 Wasabi-1

The seabed in the Wasabi-1 survey area dips very gently to the east-southeast, depths range from 24.5m in the northwest to 29.7m in the south-east. No sonar contacts were identified in the survey area.

Seabed sediments and features can be broadly divided into 3 areas;

The west of the site is dominated by HARDPAN with slightly gravelly fine SAND and biological growth between exposures (Figure 5). HARDPAN occurrence is irregular but has a broadly linear trend mirroring the Victorian coastline which runs north-east to south-west approximately 12.5km from the centre of the Wasabi-1 site.

The centre and northeast of the site is characterised by featureless low reflectivity SAND with a speckled texture (Figure 6). The speckled texture is interpreted as biological growth. A seabed sample taken in this area (GS-WA001, Appendix H) returned poorly graded, slightly gravelly fine SAND along with some vegetation. Occasional HARDPAN exposures are present particularly in the far northeast of this area.



The south/southeast of the site is characterised by megaripples with a wavelength typically between 10-15m and height of up to 0.6m. Megaripples become less pronounced to the northeast. Pockets of fine SAND have formed to the lee of HARDPAN exposures indicating a dominant north-east current direction (Figure 7). Sediment in the far south-east of the site comprises slightly gravelly, medium to coarse SAND. Further west sediment is slightly gravelly, fine SAND. The boundary between the fine and coarser material is demonstrated in Figure 7 where coarser sediments show higher reflectivity. Small irregular patches of HARDPAN are also evident throughout the south-east of the survey area.

Location of fix 2130 is approximately 522371E, 5740562N.

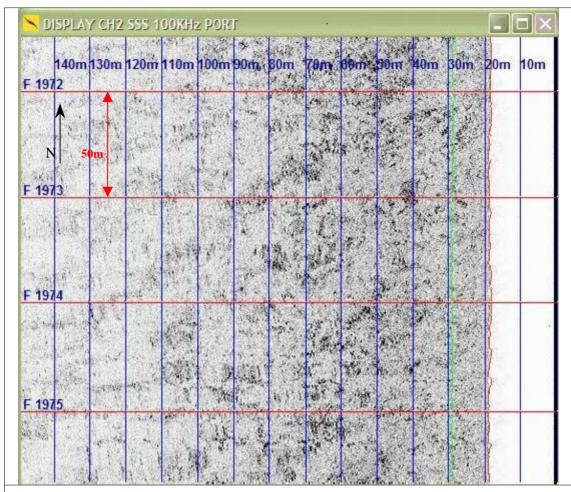


Figure 6: SSS image showing speckled texture of biological growth on slightly gravelly fine SAND.

Location of fix 1975 is approximately 522857E, 5740425N.

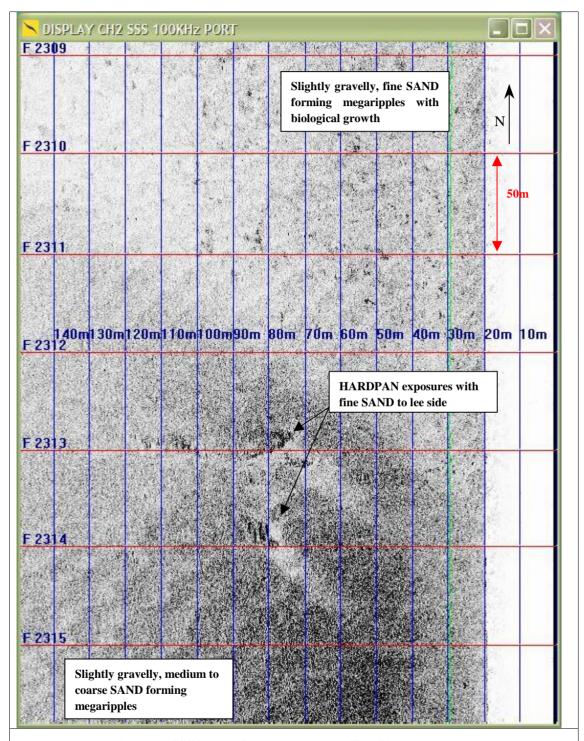


Figure 7: SSS image of medium to coarse/fine SAND boundary.

Also showing megaripples and fine sand to lee of HARDPAN exposure indicating a predominant current from the northeast.

Location of fix 2310 is approximately 523360E, 5740059N.

8 PROJECT HEALTH AND SAFETY

8.1 SITE SAFETY

All EGS personnel involved with this project were in receipt of offshore safety certificates and had completed a vessel induction course in accordance with EGS Safety Procedures.

For the purpose of the contract, EGS operated using the vessels management system.

A vessel induction was completed prior to any mobilisation activities.

No incidents were reported for the entire duration of the project.

EGS personnel attended all vessel drills during the course of the project.

8.2 JOB HAZARD ANALYSIS AND TOOLBOX MEETINGS

Prior to any installation works the on shift EGS personnel attended a job hazard analyses or toolbox meetings with regards to that installation and where the chance of a hazard occurring during the implementation of a task was present. Prior to mobilisation and demobilisation a toolbox was held to ensure all work was carried out in a safe and controlled manner.

9 CONCLUSION

The survey was completed in a safe and professional manner. Some problems were encountered during the mobilisation with the installation of the single beam echo sounder pole. This problem was rectified by modifications being performed by the boilermaker with no loss of time. Also there were continual problems with the boomer data and this was initially assumed to be a result of the choppy seas. Many modifications and testing were performed to raise the quality of the boomer data without any real success. It was later discovered that in fact the noise from the vessel propulsion was the sole reason for the poor quality of boomer data captured. This was noted and the source and severity of the problem was made known to the client representative.

The seismic data acquired at the Coelacanth-1 site was unable to yield any geological interpretations. The profiles of the Wasabi-1 site depict a relatively simple geological structure of the survey area. A veneer of unconsolidated material, up to 2m thick, exists on the eastern side of the site. Beneath this, the material likely comprises limestone (Holgate et.al 2003), with changes in the lithology (possibly significant) at various depths ranging between 2m to 16m beneath the seabed. Due to the poor data quality used in making these observations, the profiles and corresponding discussion should be taken as a rough guide only.

Side-scan sonar data quality was good throughout. Seabed sediment at the Coelacanth-1 site is a fine to coarse gravelly SAND. The seabed is predominately featureless with some areas of low relief megaripples. Several trawl scars are seen on the seabed. No sonar contacts or hazards were identified. The seabed at the Wasabi-1 site is predominately slightly fine to medium SAND with occurrences of HARDPAN – especially to the west of the site. Low relief megaripples are seen across the southeast of the site. No sonar contacts or hazards were identified.

Rod Farrawell Party Chief EGS Survey October 2006 Noel Cowley Chief Surveyor EGS Survey

APPENDIX A DAILY OPERATIONS REPORTS

EGS Survey Pty Ltd

108 Stirling Street, Perth, Western Australia, 6000 Tel: +618 9228 6800 Fax:+618 9228 6806

	DAIL	Y PROG	RESS F	REPORT	EAST	TH SCENCES & TUNVETING		:+618 9228 68 v.egssurvey.co	
PROJEC	T	Wasabi-1	& Coela	canth-1 Site S	Surveys				
JOB NO		10033							
CLIENT		Apache							
CONTRAC	TOR	EGS Surve	v Ptv I td			VESSEL	Bluefin		
REPORT N		001	y i ty Lta			DATE	8-Oct-06		
Status at 2						Latitude	0 00.00	•	S
Local Tin	ne (LT) = U	TC + 8.0	Hrs			Longitude		•	E
uel (Litre		riginal Bunk	ers	0.0 Fuel	Consumpt.	0.0	Fuel Remain	ning 0.	.0
AA HSE	SUMMA	RY							
Item	Type	Today	Total	Туре	Today	Total	Туре	Today	Total
ncidents	Fatality	0	0	LTI	0	0	RWC	0	0
		0	0	MTC	0	0	1st Aid	0	0
Safety	Briefing	0	0	Tool Box	0	0		0	0
	Inspection	0	0	Induction	0	0		0	0
Prills	Fire	0	0	Emerg. Must	0	0	Aban. Ship	0	0
	MOB	0	0	Medivac	0	0	Oil Spill	0	0
`ommo=t-	Lifeboat	0	0	1					
comments	5.								
lazard ID	carde	0		Comments:					
	d Analysis	0	0	Comments:					
Permit to V		0	0	Comments:					
Survey Ma		1	1	Comments:					
	ATHER SU			100					
.T	WIND	SEA	VIS	TEMP °C	Mb	IFORECAST	FOR NEXT	24 HRS	
5:00	Wiite	OL/(7.0	12		WIND	I	2411110	
2:00						10000			
8:00									
4:00									
CC ACT	IVITY SU	MMARY							
Start	End	Status				Activity			
06:10		Giaido	FGS Perso	onnel departed f	Perth for La				
19:00	23:59			arrived Beauty			modation on s	stand by	
			1						
		Ì	†						

10033_DPR_01.xls Page 1 of 3

DD TIM	E SIII	MMARY	(decimal he	···ro)								
	E 301	WIWAR I	(decimal ho		T laye		O	1-4:10			C	
Activity Mob/Demo	- h		Code MOB	0.0	Today 0%		Cum	ulative 0%			Comments	
Calibration			CAL	0.0	0%			0%	 			
Equipment		mont	DEP	0.0	0%			0%	 			
Survey Op			SOP	0.0	0%			0%	 			
Geotechnic			SAMP	0.0	0%			0%	 			
Port Call	Cai Gaii	припу	PRT	0.0	0%			0%	 			
Transit			TRN	0.0	0%			0%	 			
Standby	-		STB	0.0	0%			0%	 			
Downtime	- weath	nor	DTW	0.0	0%			0%				
Downtime			DTS	0.0	0%			0%				
Downtime		•	DTV	0.0	0%			0%				
Developme		<i>y</i> 1	DEV	0.0	0%			0%				
Dovolep	OTT		TOTAL	0.0	0%		0.0	0%				
CC FOI	IIPME	ENT SUM		0.0	3 ,5			<u> </u>				
1	JII 141.	-141 001	IVIAINI				8					
2							9	-				
3							10	1				
4							11					
5	-						12		-			
6							13					
7							14					
		TION SII	MMARY 1		Dhas	^ 2· [orm Si	ita Su	rvov		
EE FIX		TION 30					laur			rvey	O = === m = m + e	
Our roughing	Item		Estimated			Today		Cumu	ulative		Comments	
Survey line					0	0%			0%			
Survey line												
6m Piston Developme												
		Map referen						[Щ.			
Survey Loc	Callon	Map releten	CE.									
FF PRO	ODLIC	TION SII	MMARY 2		Dhac	^ 2· D	inali	ne Su				
FF FIX		TION 30					lheii		ulative		Osmmonto	
O line	Item	`	Estimated			Today		Cumu			Comments	
Survey line						0%			0%			
Survey line		,				0%			0%			
6m Piston						0% 0%			0%			
Developme	ent iine	S (KIII)				U 70		[0%			
GG PRO	ODIIC	TION SII	MMARY 3		ΛΙ \ /	Dacai	nnaid	ssance	2 Sur			
GG I IV		11014 00					lliai		ulative	vey	Osmmonto	
MDES our	Item	/l.ma \	Estimated			Today 0%		Cumu	####		Comments	
MBES sun									####			
Developme	ent line	s (km)				0%			####			
22 50		CONNEL	CHECAL	_								
			ONBOAF									
1	R. Far		PC/Surve	-								
2	D. Stru		Survey									
3	L. M		Geophys									
4	I. Wı		Geophys									
5	G.W		Engine								ļ	
6	A. Le		Engine									
_		START	JOIN	LE/	AVE	EN	ID			Re	emarks	
LAST 24												
LAST 24 Boat crew		0	0		0	0		ļ				
LAST 24 Boat crew Survey cre		0 6	0		0	6						
LAST 24 Boat crew Survey cre Client		0 6 0	0 0 0	(0	6						
LAST 24 Boat crew Survey cre		0 6 0	0		0	6						

10033_DPR_01.xls Page 2 of 3

Total

HH PROGRA	M								
Program for next	24 hrs (1) Mobilise (2) (3)	e boat							
Survey at "Area"			Actual date of comp						
Estimated days to	survey completion		Actual days taken t	o complete work					
II CONTRA	CTOR COMMENT	S							
JJ CLIENT	COMMENTS								
KK SIGNATU	KK SIGNATURES								
Title	Name	Signature	Title	Name	Signature				
EGS Party Chief	R. Farrawell		"Client" Representative	D. Khoo					

10033_DPR_01.xls Page 3 of 3

EGS Survey Pty Ltd

108 Stirling Street, Perth, Western Australia, 6000 Tel: +618 9228 6800 Fax:+618 9228 6806

	DAIL	Y PROG	RESS F	REPORT	gast	TH SCENCES & TUMETRIC		:+618 9228 68 w.egssurvey.co	
PROJEC	Т	Wasabi-1	& Coelad	canth-1 Site S	Surveys				
JOB NO		10033							
CLIENT		Apache							
CONTRAC	TOR	EGS Surve	v Ptv I td			VESSEL	Bluefin		
REPORT N		003	y r ty Ltu			DATE	9-Oct-06		
Status at 2		000				Latitude	0 000 00	٥	S
	ne (LT) = U	TC + 11.0	Hrs			Longitude		0	E
uel (Litre		riginal Bunk		0.0 Fuel	Consumpt.	0.0	Fuel Remai	ning 0.	
AA HSE	SUMMAI					<u>'</u>	<u> </u>	Ţ,	
Item	Type	Today	Total	Туре	Today	Total	Туре	Today	Total
ncidents	Fatality	0	0	LTI	0	0	RWC	0	0
		0	0	MTC	0	0	1st Aid	0	0
Safety	Briefing	0	1	Tool Box	2	3		0	0
	Inspection	0	0	Induction	0	1		0	0
Prills	Fire	0	0	Emerg. Must	0	0	Aban. Ship	0	0
	MOB	0	0	Medivac	0	0	Oil Spill	0	0
<u> </u>	Lifeboat	0	0						
omments	s: Vessel In	duction an	d Mob JHA	and toolbox n	neetings				
lazard ID	carde	0	1	Comments:					
	d Analysis	0	1	Comments:					
Permit to \		0	0	Comments:					
Survey Ma		0	0	Comments:					
	ATHER SU	_		Comments:					
.T	WIND	SEA	VIS	TEMP °C	Mb	IEOPEC AST	FOR NEXT	24 HPS	
5:00	WIND	JLA	VIS	I LIWIT C	IVID	WIND	Weather is e		increase
2:00						WIND	on Wedneso		IIICIEase
8:00							on wednesd	ay mgm	
4:00									
	IVITY SU	MMARY		1		L	<u> </u>		
Start	End	Status				Activity			
07:50	Enu	Status	Chackad a	ut of Accomoda	ation	Activity			
08:00	08:30			nnel joined ves		ad a brief yes	real induction		
08:30	00.30			ed mobilisation					
13:00	13:15			rived to size E		nobilisation s			
16:00	17:20			rived to fit ES b					
19:00	17.20		Client Rep		racitot				
20:00				n Completed fo	r the day.				
		Ì	i						

10033_DPR_02.xls Page 1 of 3

DD	TIME SUI	MMARY	(decimal ho	ours)								
Activ	ity		Code		Today		Cum	ulative			Comments	
Mob/	Demob		MOB	12.0	100%			0%	60% o	f Mob com	oleted	
	ration		CAL	0.0	0%			0%				
	ment deploy		DEP	0.0	0%			0%				
Surve	y Operation	S	SOP	0.0	0%			0%				
Geot	echnical San	npling	SAMP	0.0	0%			0%				
Port (Call		PRT	0.0	0%			0%				
Trans	sit		TRN	0.0	0%			0%				
Stand	dby		STB	0.0	0%			0%				
Dowr	ntime - weath	ner	DTW	0.0	0%			0%				
Dowr	ntime - surve	у	DTS	0.0	0%			0%				
Dowr	ntime - vesse	el .	DTV	0.0	0%			0%				
Deve	lopment		DEV	0.0	0%			0%				
			TOTAL	0.0	0%		0.0	0%				
CC	EQUIPME	NT SUM	MARY									
1		Knudser	Dual Freq	SBES			8			DMS-H Hea	ve Compensator	
2	Low Volt		m & Assoc			nent	9				v DGPS units	
3			& Associate				10				port SVP	
4			2 x UPS				11				Irophone	
5			oinson Gyro				12					
6			Computers				13					
7	(gh Voltage		er		14					
EE	PRODUC					e 2· I	Platfo	orm S	ite Su	rvev		
	Item	11011 00	Estimated			Today	iativ		ılative		Comments	
Surve	ey line (km)		LStimated		0	0%		Cumic	0%		Comments	
	ey line (km)				- 0	0 70			0 70			
Suive	ey iii ie (Kiii)											
Πονο	lopment line	e (km)										
	ey Location N		CO.									
Suive	ey Location i	viap reletet	ce.									
FF	PRODUC	TION SU	MMARY 2)	Phas	e 3· P	ineli	ne Su	rvev			
•	Item	11011 00	Estimated			Today	ipen		ılative		Comments	
Sum.	ey line - (km	`	Estimateu			0%		Cumi	0%		Comments	
						0%			0%			
	ey line - (km)										
	iston Coring	o (lena)				0%			0%			
Deve	lopment line	S (KIII)				0%			0%			
CC	PRODUC	TION SII	MMADV 2	1	A I I\/	Daga	nnaid	ssanc	o Sur	VOV		
GG		HON 30					IIIai			vey		
· · · ·	Item	<i>(</i> 1)	Estimated			Today		Cumi	lative		Comments	
	S survey line					0%			####			
Deve	lopment line	s (km)				0%			####			
2.0	E00 DE	001:::=:	ONE OF									
GG	EGS PER											
1	R. Far		PC/Surve	•								
2	D. Stru		Survey									
3 L. Minty Geophysicist												
4	I. Wr		Geophys			_						
5 G.Wong Engineer												
6	A. Le		Engine									
	ST 24HRS	START	JOIN	LE	AVE	EN				Re	emarks	
Boat		9	9-Oct		0	390						
Surve	ey crew	6	9-Oct		0	390	05					
	t	1	9-Oct		0	390	nn					

10033_DPR_02.xls Page 2 of 3

2

117015

9-Oct 38999

2

Total

9-Oct

155996

Others

HH PROGRA	M				
Program for next	24 hrs (1) Continu (2) Sail For (3)	ue with Mobilisation r survey			
Survey at "Area"			Actual date of comp		
Estimated days to	survey completion		Actual days taken to	o complete work	
II COMMEN	NTS				
JJ CLIENT (COMMENTS				
KK SIGNATU	JRES				
Title	Name	Signature	Title	Name	Signature
EGS Party Chief	R. Farrawell		"Client" Representative	D. Khoo	

10033_DPR_02.xls Page 3 of 3

EGS Survey Pty Ltd DAILY PROGRESS REPORT

108 Stirling Street, Perth, Western Australia, 6000 Tel: +618 9228 6800 Fax:+618 9228 6806

	DAIL	Y PROG	RESS R	EPORT	EAST	Fax:+618 9228 6806 www.egssurvey.com			
PROJEC	T	Wasabi-1	& Coelac	anth-1 Site	Survevs				
JOB NO		10033			, -				
CLIENT									
	T 00	Apache	D() ()			LV=00=:	In. c		
CONTRAC		EGS Surve	ey Pty Ltd			VESSEL	Bluefin		
REPORT N		003				DATE	10-Oct-06		
Status at 2						Latitude		•	S
	ne (LT) = U					Longitude		•	E
Fuel (Litre	•	riginal Bunk	ers (0.0 Fuel	Consumpt.	0.0	Fuel Remain	ning	0.0
	SUMMAI								
Item	Type	Today	Total	Туре	Today	Total	Туре	Today	
Incidents	Fatality	0	0	LTI	0	0	RWC	0	0
		0	0	MTC	0	0	1st Aid	0	0
Safety	Briefing	1	2	Tool Box	2	3		0	0
	Inspection	0	0	Induction	1	2		0	0
Drills	Fire	0	0	Emerg. Must		1	Aban. Ship	0	0
	MOB	0	0	Medivac	0	0	Oil Spill	0	0
	Lifeboat	0	0						
Comments	s: Vessel In	duction an	d Mob JHA	and toolbox r	neetings				
Hazard ID	cards	0		Comments:					
	d Analysis	0	0	Comments:					
Permit to \		0	0	Comments:					
Survey Ma		0	0	Comments:					
	ATHER SU			Tournillenie:					
			\ \/\O	TEMP 00		150550407	EOD NEVE	04.110.0	
LT	WIND	SEA	VIS	TEMP °C	Mb		FOR NEXT		
6:00						WIND	Weather is e		
12:00							on Wednesd	lay night	
18:00									
24:00			<u> </u>						
	IVITY SU								
Start	End	Status				Activity			
08:00				nced Mobilisati					
09:00	09:30			rived to make		to ES pole			
10:30				ed and operation					
17:00				ent tested and					
17:40	18:30		Vessel safe	ty meeting/ind	uction and m	nuster drill			
18:30				arted Wharf					
19:16	21:00		Wet testing	all equipment					
21:00	23:59		Equipment	functioning co	rrectly, on pa	ssage to Co	elacanth-1		
				<u> </u>		-			
			1						
			 						
			 						
			ļ						
			 						
			ļ						
			1						
			1						
								-	
			 						
			ļ						
·		1							

10033_DPR_03.xls Page 1 of 3

-	TIME 011											
	TIME SU	MMARY	(decimal hours) Code									
Activ			Code		Today		Cum	ulative				
	Demob		MOB		100%			0%				
	ration		CAL	1.0	8%			0%				
1 1		DEP	0.8	7%			0%					
	ey Operation		SOP	0.0	0%			0%				
	echnical Sar	mpling	SAMP	0.0	0%			0%				
Port (PRT	0.0	0%			0%				
Trans			TRN	3.0	25% 0%			0%				
Stand	itime - weat	har	STB DTW	0.0	0%			0% 0%				
	itime - weat itime - surve		DTS	0.0	0%			0%				
	ntime - surve	•	DTV	0.0	0%			0%				
	lopment	EI	DEV	0.0	0%			0%				
Devo	Юринени		TOTAL	0.0	0%		0.0	0%				
CC	FOLIDMI	ENT SUM		0.0	0 /0		0.0	0 /0				
	EQUIPINI			3550			, ,				2	
1	1		Dual Freq				8		L		ve Compensator	
2			om & Associated Equipment & Associated Equipment				9				v DGPS units	
3	Kiein			t	10		Valeport SVP Hydrophone					
4			2 x UPS				11 12			Hyu	ropnone	
5 6			binson Gyro				12					
7			k Computers ligh Voltage Boomer				14					
						- 0. [C	!4~ C			
EE		HON SO	MMARY 1					orm S		rvey		
	Item		Estimated			Today		Cumi	ulative		Comments	
	ey line (km)			0	0%			0%			
Surve	ey line (km)										
D = 1/2	ممالة مسالة مسا	/1\					ļ					
	lopment line											
Surve	ey Location	Map reteren	ice:									
	DRODUC	TION CIT	BARA A D.V. O		Dhao	- 0. D	\!!:	C				
FF		TION SU	MMARY 2				ıpeıı	ne Su				
	Item		Estimated			Today		Cumi	ılative		Comments	
	ey line - (km					0%			0%			
	y line - (km					0%		0%				
	iston Coring					0%			0%			
Deve	lopment line	es (km)				0%			0%			
						_			_			
GG	PRODUC	TION SU	MMARY 3					ssanc		vey		
	Item		Estimated			Today		Cum	ılative		Comments	
	MBES survey line (km)					0%			####			
Deve	lopment line	es (km)				0%			####			
GG	EGS PEF	RSONNEL	_ ONBOAF	RD								
1	R. Fai	rrawell	PC/Surve	eyor								
2			Survey	Surveyor								
3 L. Minty			Geophysicist									
4 I. Wright			Geophysicist									
5		/ong		Engineer								
6	A. Lo	eung	Engine									
	ST 24HRS	START	JOIN	LE	AVE	EN	ID			Re	marks	
Boat		9	9-Oct		0	390						
	ey crew	6	9-Oct		0 390		05					
Client 1		10-Oct	0 39		01							

10033_DPR_03.xls Page 2 of 3

2 117016

10-Oct 39000

Others

2

Total

10-Oct 155998

HH PROGRA	M				
Program for next	24 hrs (1) Arrive C (2) (3)	Coelacanth-1 and cor	mmence survey		
Survey at "Area"			Actual date of comp		
Estimated days to	nated days to survey completion Actual days taken to complete work				
II COMMEI	NTS				
JJ CLIENT	COMMENTS				
KK SIGNATU	JRES				
Title	Name	Signature	Title	Name	Signature
EGS Party Chief	R. Farrawell		"Client" Representative	D. Khoo	

10033_DPR_03.xls Page 3 of 3

EGS Survey Pty Ltd DAILY PROGRESS REPORT

108 Stirling Street, Perth, Western Australia, 6000 Tel: +618 9228 6800

DAILY PROGRESS REPORT						Fax:+618 9228 6800 Fax:+618 9228 6806 www.egssurvey.com					
PROJEC	T	Wasabi-1	& Coelac	anth-1	Site S	urveys					
JOB NO		10033									
CLIENT		Apache									
	TOD		Di Lid				VECCEI	Inc. c.			
CONTRAC		EGS Surve	y Pty Lta				VESSEL	Bluefin			
REPORT N		004					DATE	11-Oct-06			
Status at 2		<u> </u>					Latitude	38° 43.105' S			
	ne (LT) = U						Longitude	148° 17.704' E			
Fuel (Litre:	,	riginal Bunke	ers (0.0	Fuel (Consumpt.	0.0	Fuel Remai	ning 0.0)	
AA HSE	SUMMAI	RY									
Item	Туре	Today	Total	Тур	е	Today	Total	Туре	Today	Total	
Incidents	Fatality	0	0	ĹŤ		0	0	RWC	0	0	
	,	0	0	= ' '		0	0	1st Aid	0	0	
Safety	Briefing	0	2	Tool Box		5	8		0	0	
- Currety	Inspection	0	0	Induc		0	2		0	0	
Drills	Fire	0	0	Emerg.		0	1	Aban. Ship	0	0	
3	MOB	0	0	Mediv		0	0	Oil Spill	0	0	
	Lifeboat	0	0	ivieuivac U		U	<u> </u>		<u> </u>	U	
Comments				vatch for	bight	s in line wl	nen deployin	g equipment	-		
Hazard ID	cards	0		Comme	nts:						
Job Hazar	d Analysis	0	0	Comme	nts:						
Permit to V	Vork	0	0	Comme	nts:						
Survey Ma	n davs	0	0	Comme	nts:						
	ATHER SU	IMMARY		•							
LT	WIND	SEA	VIS	TEMP	•	Mb	IEODEC AST	FOR NEXT	24 HDC		
	NW/10	JEA 1	VIS	12.		1025	WIND			orooo	
6:00		1					WIND	weather is e	expected to in	crease	
12:00	N/10	1		13.		1025					
18:00	N/10	1.5		15.	/	1022					
24:00	NE/16	MMARY									
	End	Status	ı				Activity				
Start		Status	O +	. 0			Activity				
00:00	14:43		On transit to			OVE					
14:45	15:00		On Location								
15:00	15:05		Deployed S								
15:10	16:00						, and ES pole				
16:00	17:35					unding spee	d 2.5kts due	to SSS Cable	length		
17:35	19:20	ļ	Conducting								
19:20	21:40					o get the S	SS lower to th	e seabed.			
21:40	22:05		Conducting								
22:05	23:10		Boomer dat	ta poor d	ue to w	veather, tryi	ng different m	ethods to res	olve noise iss	sue	
23:10	23:59		Conducting	survey c	ps						
				<u>, -</u>	•						
		 	 								
		 	 								
		 	 								
		 									
-											
		ļ									
		 	1								
		 	 								
		ļ									
		ļ									
<u> </u>			_	· <u> </u>	_	_					

10033_DPR_04 Page 1 of 4

10033_DPR_04 Page 2 of 4

DD IIIVIE	SUMMANT	(decimal no	iurs)								
Activity		Code		Today		Cum	ulative			Comments	
Mob/Demob		MOB	0.0				100%				
Calibration		CAL	0.0	0%			100%				
Equipment d	eployment	DEP	2.3	10%			10%				
Survey Oper		SOP	6.0	25%			25%				
Geotechnica		SAMP	0.0				0%				
Port Call	. Camping	PRT	0.0				0%				
Transit		TRN	14.7	61%			54%				
		STB		0%							
Standby			0.0				0%				
Downtime - v		DTW	1.1	5%			5%				
Downtime - s		DTS	0.0				0%				
Downtime - \		DTV	0.0				0%				
Developmen	t	DEV	0.0				0%				
		TOTAL	0.0	100%		0.0	293%				
CC EQUI	PMENT SUM	IMARY									
1	Knudse	n Dual Freq	SBES			8			DMS-H Hea	ave Compensator	
2 Low	v Voltage C-Bo				ent	9				av DGPS units	
	Klein 2000 SSS					10				eport SVP	
4	110111 2000 000	2 x UPS	o Equ	pc		11				drophone	
5	D.	binson Gyro	`			12			1190	агорнопе	
6		x Computers				13					
7		ligh Voltage		<u> </u>		14					
			БООП								
EE PROI	DUCTION SU	MMARY 1		Phas	e 2:	Platto	rm Si	te Su	rvey		
	Item	Estimated			Today		Cumi	ulative		Comments	
Survey line	(km)	8			24%			24%			
Survey line	(km)										
ĺ	7										
Developmen	t lines (km)										
	tion Map refere	uce.		I							
Ourvey Loca	tion map refere	1100.									
EE DDOI	NIOTION OF	INANA A DV. O		Disease	- O- D	! I!.	0				
	DUCTION SL					іреш	ne Su				
	tem	Estimated			Today		Cum	ulative		Comments	
Survey line -	` '	0			0%			0%			
Survey line -	(km)				0%			0%			
6m Piston Co	oring				0%			0%			
Developmen	t lines (km)				0%			0%			
	· ·										
GG PROI	DUCTION SU	IMMARV 3		ΔΗΛ	Recor	nnaic	sance	Sur	/AV		
						mais			<i>т</i> Су	0	
	Item	Estimated			Today		Cumi	ulative		Comments	
MBES surve		-			0%			####			
Developmen	t lines (km)				0%			####			
GG EGS	PERSONNE	L ONBOAF	RD								
1 F	R. Farrawell	PC/Surve	eyor								1
). Struthers	Survey									1
3	L. Minty	Geophys		1							+
4	I. Wright	Geophys									+
5	G.Wong	Engine		1							+
	A. Leung	Engine									+
		_				<u> </u>			-		
LAST 24H		JOIN		AVE	EN				R	emarks	
Boat crew	9	9-Oct		0	390						
Survey crew		9-Oct		0	390						
Client	1	10-Oct		0	390	01					
Others	2	10-Oct		-Oct	2						
	Total 18	155998	39	000	1170	016					
					/		İ				

DD TIME SUMMARY (decimal hours)

10033_DPR_04 Page 3 of 4

HH PROGRAM										
Program for next 24 hrs (1) Complete Coelacanth and commence Wasabi (2) (3)										
Survey at "Area"		Coelacanth	Actual date of completion							
Estimated days to survey con	npletion	2	Actual days taken to complete work							
II COMMENTS										
Experienced difficulties in getting the SSS to within 20m of the bottom. Currently have 40kg of extra weight on the soft cable. 10kg 1m from SSS, then 10kg at 90m,100m, and 110m. Also experieced bad weather for CDP quality. Continued running lines with SSS and ES, with the boomer still running and logging.										
JJ CLIENT COMMENTS										

KK SIGNATU	JRES				
Title	Name	Signature	Title	Name	Signature
EGS Party Chief	R. Farrawell		"Client" Representative	D. Khoo	

10033_DPR_04 Page 4 of 4

EGS Survey Pty Ltd

108 Stirling Street, Perth, Western Australia, 6000 Tel: +618 9228 6800

	DAIL	Y PROG	RESS I	REPORT	EART	TH SCIENCES & SURVEYING		:+618 9228 6806 w.egssurvey.com	
PROJEC	T	Wasabi-1	& Coela	acanth-1 Site	Surveys				
JOB NO		10033			,				
CLIENT		Apache							
CONTRAC	TOR	EGS Surve	v Ptv I td			VESSEL	Bluefin		
REPORT N		005	y i ty Ltu			DATE	12-Oct-06		
Status at 2						Latitude		38° 28.94'	S
Local Tin	ne (LT) = U	C + 11.0	Hrs			Longitude	1	48° 16.29'	Е
Fuel (Litres	s): O	riginal Bunk	ers	0.0 Fuel	Consumpt.	0.0	Fuel Remain	ning 0.0	
AA HSE	SUMMAR	RY							
Item	Type	Today	Total	Type	Today	Total	Type	Today	Total
Incidents	Fatality	0	0	LTI	0	0	RWC	0	0
		0	0	MTC	0	0	1st Aid	0	0
Safety	Briefing	0	2	Tool Box	2	10		0	0
	Inspection	0	0	Induction	0	2		0	0
Drills	Fire	0	0	Emerg. Must	0	1	Aban. Ship	0	0
	MOB	0	0	Medivac	0	0	Oil Spill	0	0
Commanda	Lifeboat	0	0 minded to	wotch for him	ibto in line ::	uhan danlari	na oaulere	<u>.</u>	
Comments	. rersonne	ı aıways re	mmaea ta	watch for big	jiits in iine v	vnen aepioy	ing equipmer	ıt.	
Hazard ID	carde	0		Comments:					
Job Hazard		0	0	Comments:					
Permit to V		0	0	Comments:					
Survey Ma		0	0	Comments:					
	ATHER SU			T COMMISSION OF THE PARTY OF TH					
LT	WIND	SEA	VIS	Sea Temp ℃	Mb	FORECAST	FOR NEXT 2	4 HRS	
6:00	NE/10	1.2		15.1	1020	Weather is	expected to re	main in a favo	urable
12:00	NW/15	1.2		13.2	1017	survey cond	ition.		
18:00	N/10	1		14.3	1014				
24:00	SW/10	1		13.9	1013				
CC ACT	IVITY SUI	MMARY							
Start	End	Status				Activity			
00:00	09:10			ng Survey ops					
09:10	09:45			ed Coelacanth,	recovering e	quipment			
09:45	15:15			t to Wasabi-1					
15:15	15:35			ng SVP observ					
15:35	15:55			g SBES pole,SS			!		
15:55	23:59		Conducti	ng Survey ops	on Wasabi-1				

10033_DPR_05 Page 1 of 4

10033_DPR_05 Page 2 of 4

DD TIME SU	MMARY	(decimal ho	urs)						
Activity		Code		Today		Cum	ulative		Comments
Mob/Demob		MOB	0.0				100%		
Calibration		CAL	0.0	0%			100%		
Equipment deplo	yment	DEP	1.0	4%			4%		
Survey Operation		SOP	###	73%			90%		
Geotechnical Sar		SAMP	0.0	0%			0%		
Port Call	' '	PRT	0.0	0%			0%		
Transit		TRN	5.5	23%			77%		
Standby		STB	0.0	0%			0%		
Downtime - weatl		DTW	0.0	0%			0%		
Downtime - surve		DTS	0.0	0%			0%		
Downtime - vesse	el	DTV	0.0				0%		
Development		DEV	0.0				0%		
		TOTAL	0.0	100%		0.0	371%		
CC EQUIPMI	ENT SUM	MARY							
1	Knudsen	Dual Freq S	BES	3		8			DMS-H Heave Compensator
	age C-Booi	m & Associa	ated	Equipr		9			2 x C-Nav DGPS units
		Associate				10	i		Valeport SVP
4		2 x UPS				11			Hydrophone
5	Rob	inson Gyro				12			
6		Computers				13			
7	CSP300 Hig	ıh Voltage E	Boon	ner		14			
EE PRODUC	TION SUI	MMARY 1		Phase	e 2: F	Platfo	orm Si	te Su	ırvey
Item		Estimated			Today		Cumi	ulative	Comments
Survey line (km)		66			66%				The remaining is for boomer re-runs
Survey line (km)									at Coelacanth-1
Development line									
Survey Location I	Map referen	ce:							
				_	_	_	_	_	
FF PRODUC	TION SUI	MMARY 2				ipeli	ne Su		
Item		Estimated			Today		Cumi	ulative	
Survey line - (km		0			0%			0%	
Survey line - (km					0%			0%	
6m Piston Coring					0%			0%	
Development line	es (km)				0%			0%	
20.00000	7.01.011				_				
GG PRODUC	TION SUI						sance		-
Item		Estimated			Today		Cumi	ulative	
MBES survey line					0%			####	
Development line	es (km)				0%			####	
			_						
		ONBOAF							
	rrawell	PC/Surve							
	uthers	Surveyo							
	/linty	Geophysic							
	right	Geophysic							
	/ong	Enginee							
	eung	Enginee							
LAST 24HRS	START	JOIN	LE	EAVE	EN				Remarks
Boat crew	9	9-Oct		0	390				
Survey crew	6	9-Oct		0	390				
Client	1	10-Oct		0	390	01			
Othors	2	10 Oct) Oct	2				

10033_DPR_05 Page 3 of 4

117016

10-Oct 155998

2

18

Total

Others

10-Oct 39000

HH PROGRAM										
Program for next	24 hrs (1) Comple (2) (3)	te Coelacanth Boo	omer Re-runs							
Survey at "Area"		Coelacanth	Actual date of comp	oletion						
Estimated days to	survey completion	2	Actual days taken t	o complete work						
II COMMEN	NTS									
	ess during the day. It is	noped to milion the	, sarvey temerrow.							
JO CLILIVI C	COMMENTS									
KK SIGNATU	KK SIGNATURES									
Title	Name	Signature	Title	Name	Signature					
EGS Party Chief	R. Farrawell		"Client" Representative	D. Khoo						

10033_DPR_05 Page 4 of 4

EGS Survey Pty Ltd DAILY PROGRESS REPORT

108 Stirling Street, Perth, Western Australia, 6000 Tel: +618 9228 6800 Fax:+618 9228 6806

	DAIL	Y PROC	RESS R	EPORT	EA	RTH SCIENCES & SURVEYING	Fa	l: +618 9228 680 x:+618 9228 680 w.egssurvey.cor	6	
PROJEC	т	Wasabi-1	& Coelac	anth-1 Site	e Surveys			0 ,		
JOB NO		10033	0. 000.40	<u> </u>						
CLIENT		Apache								
CONTRAC	T∩D	EGS Surve	v Dtv I td			VESSEL	Bluefin			
REPORT N		006	y Fly Llu			DATE	13-Oct-06			
Status at 2		000				Latitude		38° 28.94'	S	
	ne (LT) = U	TC + 11.0	Hrs			Longitude				
Fuel (Litre		riginal Bunk).0 Fu	uel Consumpt.	0.0	Fuel Remai			
	SUMMAI	RŸ			·					
Item	Туре	Today	Total	Туре	Today	Total	Туре	Today	Total	
Incidents	Fatality	0	0	LTI	0	0	RWC	0	0	
		0	0	MTC	0	0	1st Aid	0	0	
Safety	Briefing	0	2	Tool Box	9	19		0	0	
·	Inspection	0	0	Induction	0	2		0	0	
Drills	Fire	0	0	Emerg. Mu	ıst 0	1	Aban. Ship	0	0	
	MOB	0	0	Medivac		0	Oil Spill	0	0	
	Lifeboat	0	0							
Comments	5 :									
Hazard ID	cards	0		Comments	s:					
Job Hazar	d Analysis	1	3	Comments	s: Conducted	JHA for seab	ed sampling			
Permit to \	Vork	0	0	Comments						
Survey Ma	n days	0	0	Comments	s:					
BB WE	ATHER SU	JMMARY								
LT	WIND	SEA	VIS	Sea Temp	°C Mb	FORECAST	FOR NEXT	24 HRS		
6:00		<u> </u>								
12:00										
18:00										
24:00										
CC ACT	IVITY SUI	MMARY								
Start	End	Status				Activity				
00:00	00:20		Conducting	survey ope	rations at Was					
00:20	00:35				, SSS, Boomei		one			
00:35	00:55			seabed san		•				
00:55	06:55		On transit to	o Coelacant	h-1 for Boome	r re-runs				
06:55	07:10		Deployed B	Boomer and	Hydrophone.					
07:10	08:10			boomer re-						
08:10	08:30				or better data	quality				
08:30	09:35			boomer re-						
09:35	10:30				e tests, which	indicated high	noise from v	essel causing	poor	
			boomer dat							
10:30	15:25			boomer re-						
15:25	15:35				d hydrophone					
15:35	16:00			seabed sar	•					
16:00	23:59		On transit to	o Beauty Po	int					
					<u> </u>			<u> </u>		
!			 							

10033_DPR_06 Page 1 of 4

10033_DPR_06 Page 2 of 4

DD TIME SUM	IMARV	(decimal ho	ure)								
				Taday		C	ulativa			Commonto	
Activity Mob/Demob		Code MOB	0.0	Today 0%		Cum	ulative 100%			Comments	
Calibration		CAL	0.0	0%			100%				
Equipment deployn	nont	DEP	1.0	4%			8%				
Survey Operations		SOP	8.9	37%			100%				
Geotechnical Sam		SAMP	0.0	0%			0%				
Port Call	pilitig	PRT	0.0	0%			0%				
Transit		TRN	14.0	58%			90%				
Standby		STB	0.0	0%			0%				
Downtime - weathe	or.	DTW	0.0	0%			0%				
Downtime - weather		DTS	0.0	0%			0%				
Downtime - survey		DTV	0.0	0%			0%				
Development		DEV	0.0	0%			0%				
Development		TOTAL		100%		0.0	398%				
CC FOUIDME	NT CLIMI		0.0	100 /6		0.0	390 /6				
CC EQUIPME						_					
1		Dual Freq				8				ave Compensator	
		m & Associ				9				v DGPS units	
		& Associate	d Equ	ipmen	t	10				eport SVP	
4		2 x UPS				11			Нус	drophone	
5		oinson Gyro				12					
6		Computers				13					
		gh Voltage	Boom			14					
EE PRODUCT	TON SUI	MMARY 1		Phase	e 2: F	Platfo	orm Si	te Su	rvey		
Item		Estimated		•	Today		Cumu	lative		Comments	
Survey line (km)		66			66%			90%	The remain	ing is for boomer re	e-runs
Survey line (km)									at Coelacar		
, , ,											
Development lines	(km)										
Survey Location Ma		ce:									
1	•										
FF PRODUCT	ION SUI	MMARY 2		Phase	e 3: P	ipeli	ne Sui	rvev			
Item		Estimated			Today		Cumu		Ī	Comments	
Survey line - (km)		39			0%		- Junio	100%		Commente	
Survey line - (km)		55			0%			0%			
6m Piston Coring					0%			0%			
Development lines	(km)				0%			0%			
Development lines	(NIII)				0 /6			0 /6			
CC PRODUCT		MMADV 2		A11\/	Dooor	nois		Cur	1011		
GG PRODUCT	ION 201					inais	sance		vey		
Item	, ,	Estimated			Today		Cumu	lative		Comments	
MBES survey line (` '				0%						
Development lines	(km)				0%						
GG EGS PERS	SONNEL	ONBOAR	D								
1 R. Farra	awell	PC/Surve	yor								
2 D. Strut	thers	Surveyo	•								
3 L. Mir		Geophysi									
4 I. Wri		Geophysi									
5 G.Wd	-	Engine									
	ung	Engine									1
O A. Let				AVE	EN	D			R	emarks	
	START	I JOIN I					l				
LAST 24HRS	START 9	JOIN 9-Oct		0	390	08					
LAST 24HRS Boat crew	9	9-Oct		0	390 390						
LAST 24HRS Boat crew Survey crew	9 6	9-Oct 9-Oct		0	390	05					
LAST 24HRS Boat crew Survey crew Client	9 6 1	9-Oct 9-Oct 10-Oct		0 0	390 390	05 01					
LAST 24HRS Boat crew Survey crew	9 6	9-Oct 9-Oct	10-	0	390	05 01					

10033_DPR_06 Page 3 of 4

HH PROGRA	M						
Program for next	24 hrs (1) Complete (2) (3)	Demob					
Survey at "Area"		Coelacanth	Actual date of com	pletion			
Estimated days to survey completion 1 Actual days taken to complete work							
		'	7 lotaar days takerr t	o complete work			
II COMMEN	NTS						
JJ CLIENT (COMMENTS						
KK SIGNATU	JRES						
Title	Name	Signature	Title	Name	Signature		
EGS Party Chief	R. Farrawell		"Client" Representative	D. Khoo			

10033_DPR_06 Page 4 of 4

EGS Survey Pty Ltd DAILY PROGRESS REPORT

108 Stirling Street, Perth, Western Australia, 6000

6000 Tel: +618 9228 6800 Fax:+618 9228 6806 www.egssurvev.com

	DAIL	Y PROG	RESS F	REPORT	EAR	TH SCHOOLS & SURFERING		:+618 9228 6806 w.egssurvey.com	
PROJEC	T	Wasabi-1	1 & Coela	canth-1 Site	Survevs				
JOB NO		10033			J -				
CLIENT		Apache							
CONTRAC	TOD	EGS Surve	ov Dtv Ltd			VESSEL	Bluefin		
REPORT N		007	ey Piy Liu			DATE	13-Oct-06		
Status at 2		007				Latitude		38° 28.94'	S
	ne (LT) = U	TC + 11.0	Hrs			Longitude		48° 16.29'	E
Fuel (Litre		iginal Bunk		0.0 Fuel	Consumpt.	0.0	Fuel Remain		1
	SUMMAI	_						9	
Item	Type	Today	Total	Туре	Today	Total	Туре	Today	Total
ncidents	Fatality	0	0	LTI	0	0	RWC	0	0
		0	0	MTC	0	0	1st Aid	0	0
Safety	Briefing	0	2	Tool Box	1	20		0	0
	Inspection	0	0	Induction	0	2		0	0
Orills	Fire	0	0	Emerg. Must	0	1	Aban. Ship	0	0
	MOB	0	0	Medivac	0	0	Oil Spill	0	0
	Lifeboat	0	0						
Comments	S:								
lazard ID	cards	0		Comments:					
	d Analysis	1	4	Comments: 0	Conducted	JHA for seab	ed sampling		
Permit to \		0	0	Comments:	- J				
Survey Ma		0	0	Comments:					
	ATHER SU								
_T	WIND	SEA	VIS	Sea Temp °C	Mb	FORECAST	FOR NEXT 2	4 HRS	
5:00	WIND	OLA	V10	oea remp o	IVID	TORLOAGE	TOR NEXT 2		
12:00			1						
18:00			1						
24:00									
	IVITY SU	MMADV							
Start	End	Status	T			Activity			
00:00	10:00	Status	On Transit	to Beauty Poin	+	Activity			
10:00	15:00		Demob	to beauty i oiii					
15:00	10.00			onnel depart ve	ssel for retu	n to Perth			
10.00	†		2001010	ornior appart vo	00011011010	TI to I CITII.			
			1						
			1						
			1						
									
	1	Ī	<u> </u>						

10033_DPR_07.xls Page 1 of 3

ואווו טט	IE SUMMA	r i (decima	ii nours)								
Activity		Code		Today	'	Cum	ulative			Comments	
Mob/Demo	ob	MOB	5	.0 42%			100%				
Calibration	n	CAL	0	.0 0%		_	100%				
Equipment	t deployment	DEP	1	.0 4%			8%				
Survey Op		SOP	0	.0 0%			100%				
	ical Sampling	SAMP	0	.0 0%			0%				
Port Call	<u> </u>	PRT	0	.0 0%			0%				
Transit		TRN	10				100%				
Standby		STB	0				0%				
Downtime	- weather	DTW	0	.0 0%			0%				
Downtime		DTS	0				0%				
Downtime		DTV	0				0%				
Developmo		DEV		.0 0%			0%				
		TOTAL		.0 88%		0.0	408%				
CC EQI	IIIDMENT	SUMMARY				0.0	.0070				
			000			_	1		DMO IIII	0	1
1		udsen Dual F				8				ave Compen	
		C-Boom & As				9				av DGPS uni	TS .
3	Klein 2000	SSS & Assoc		quipmei	nt	10				eport SVP	
4		2 x UPS				11			Hyd	drophone	
5		Robinson (12					
6		2 x Compu				13					
7		00 High Volta				14					
EE PRO	ODUCTION	SUMMAR	Y 1	Phas	e 2: I	Platf	orm S	ite Su	rvey		
	Item	Estima	ted		Today		Cum	ulative		Comme	ents
Survey line	e (km)		0		0%			100%	The remain	ning is for bo	omer re-runs
ouivev iii ie	C (KIII)										
									at Coelacai	ntn-1	
									at Coelaca	ntn-1	
Survey line									at Coelaca	ntn-1	
Survey line Developme Survey Loc	e (km) ent lines (km cation Map re		Y 2	Phas	se 3: P	Pipeli	ne Su	rvey	at Coelaca	ntn-1	
Survey line Developme Survey Loc	e (km) ent lines (km cation Map re	eference:		Phas	se 3: P	•		rvey ulative	at Coelaca	Comme	ents
Survey line Developme Survey Loc	e (km) ent lines (km) cation Map re ODUCTION Item	eference:		Phas		•			at Coelaca		ents
Survey line Developme Survey Loc FF PRO Survey line	e (km) ent lines (km) cation Map re ODUCTION Item e - (km)	eference:		Phas	Today	•		ulative	at Coelaca		ents
Developme Survey Loc FF PRO Survey line Survey line	e (km) ent lines (km) cation Map re ODUCTION Item e - (km) e - (km)	eference:		Phas	Today 0%	•		ulative 100%	at Coelaca		ents
Developme Survey Loc FF PRO Survey line Survey line 6m Piston	e (km) ent lines (km) cation Map re ODUCTION Item e - (km) e - (km) Coring	SUMMAR Estima		Phas	Today 0% 0%	•		100% 0%	at Coelaca		ents
Developme Survey Loc FF PRO Survey line Survey line 6m Piston	e (km) ent lines (km) cation Map re ODUCTION Item e - (km) e - (km)	SUMMAR Estima		Phas	Today 0% 0% 0%	•		100% 0% 0%	at Coelaca		ents
Developme Survey Loc FF PRC Survey line Survey line 6m Piston	e (km) ent lines (km) cation Map re ODUCTION Item e - (km) e - (km) Coring	SUMMAR Estima		Phas	Today 0% 0% 0%	•		100% 0% 0%	at Coelaca		ents
Developme Survey Loc FF PRO Survey line Survey line Sm Piston Developme	e (km) ent lines (km) cation Map re ODUCTION Item e - (km) e - (km) Coring ent lines (km	SUMMAR Estima	ted		Today		Cum	100% 0% 0% 0%			ents
Developme Survey Loc FF PRO Survey line Survey line Sm Piston Developme	e (km) ent lines (km) cation Map re ODUCTION Item e - (km) e - (km) Coring ent lines (km)	SUMMAR Estima)	Y 3		Today	nnai	Cum	100% 0% 0% 0%		Comme	
Development Survey Loc FF PRO Survey line Survey line 6m Piston Development GG PRO	e (km) ent lines (km) cation Map re ODUCTION Item e - (km) e - (km) Coring ent lines (km) ODUCTION Item	SUMMAR Estima) SUMMAR Estima	Y 3		Today 0% 0% 0% 0% 0% Today	nnais	Cum	100% 0% 0% 0%			
Development of the control of the co	e (km) ent lines (km) cation Map re ODUCTION Item e - (km) Coring ent lines (km) ODUCTION Item vey line (km)	SUMMAR Estima SUMMAR Estima SUMMAR Estima	Y 3		Today 0% 0% 0% 0% 0% 0% 0% 0	nnais	Cum	100% 0% 0% 0%		Comme	
Development Survey Local Survey	e (km) ent lines (km) cation Map re ODUCTION Item e - (km) e - (km) Coring ent lines (km) ODUCTION Item	SUMMAR Estima SUMMAR Estima SUMMAR Estima	Y 3		Today 0% 0% 0% 0% 0% Today	nnais	Cum	100% 0% 0% 0%		Comme	
Development Survey line Survey line Survey line Survey line Survey line Survey line Survey line Survey line Survey line Survey line Survey line Survey line Development Survey line Survey	e (km) ent lines (km) cation Map re ODUCTION Item e - (km) e - (km) Coring ent lines (km ODUCTION Item vey line (km) ent lines (km	SUMMAR Estima) SUMMAR Estima) SUMMAR Estima)	Y 3		Today 0% 0% 0% 0% 0% 0% 0% 0	nnais	Cum	100% 0% 0% 0%		Comme	
Development Survey Local Survey	e (km) ent lines (km ecation Map re DUCTION Item e - (km) e - (km) Coring ent lines (km ODUCTION Item Exercise (km) Exercise	SUMMAR Estima) N SUMMAR Estima) N SUMMAR Estima)	Y 3 ted	AUV	Today 0% 0% 0% 0% 0% 0% 0% 0	nnais	Cum	100% 0% 0% 0%		Comme	
Development Survey Local Survey	e (km) ent lines (km cation Map re ODUCTION Item e - (km) e - (km) Coring ent lines (km Vey line (km) ent lines (km R. Farrawell	SUMMAR Estima) N SUMMAR Estima) N SUMMAR Estima) PC/S	Y 3 ted DARD urveyor	AUV	Today 0% 0% 0% 0% 0% 0% 0% 0	nnais	Cum	100% 0% 0% 0%		Comme	
Development Survey line Survey Loc FF PRO Survey line Survey line Survey line Survey line MP Piston Development Development Development GG PRO MBES sur Development GG EGS 1 2	e (km) ent lines (km cation Map re DUCTION Item e - (km) e - (km) Coring ent lines (km Vey line (km) ent lines (km S PERSON R. Farrawell D. Struthers	N SUMMAR Estima) N SUMMAR Estima) N SUMMAR Estima) N SUMMAR Estima) SUMMAR Estima	Y 3 ted DARD urveyor veyor	AUV	Today 0% 0% 0% 0% 0% 0% 0% 0	nnais	Cum	100% 0% 0% 0%		Comme	
Development Survey Local Survey	e (km) ent lines (km) cation Map re ODUCTION Item e - (km) Coring ent lines (km) ODUCTION Item vey line (km) ent lines (km) S PERSON R. Farrawell D. Struthers L. Minty	N SUMMAR Estima) N SUMMAR Estima) N SUMMAR Estima) N SUMMAR Estima) SUMMAR Estima	Y 3 ted DARD urveyor	AUV	Today 0% 0% 0% 0% 0% 0% 0% 0	nnais	Cum	100% 0% 0% 0%		Comme	
Development Survey line Survey Loc FF PRO Survey line Survey line Survey line Survey line MP Piston Development Development Development GG PRO MBES sur Development GG EGS 1 2	e (km) ent lines (km cation Map re DUCTION Item e - (km) e - (km) Coring ent lines (km Vey line (km) ent lines (km S PERSON R. Farrawell D. Struthers	SUMMAR Estima) SUMMAR Estima) INEL ONBO PC/S Sum Geop	Y 3 ted DARD urveyor veyor	AUV	Today 0% 0% 0% 0% 0% 0% 0% 0	nnais	Cum	100% 0% 0% 0%		Comme	
Development Survey line Survey	e (km) ent lines (km) cation Map re ODUCTION Item e - (km) Coring ent lines (km) ODUCTION Item vey line (km) ent lines (km) S PERSON R. Farrawell D. Struthers L. Minty	N SUMMAR Estima) N SUMMAR Estima) INEL ONBO PC/S Sun Geop	Y 3 ted DARD urveyor veyor hysicist	AUV	Today 0% 0% 0% 0% 0% 0% 0% 0	nnais	Cum	100% 0% 0% 0%		Comme	
Development Survey line Survey	e (km) ent lines (km) cation Map re DUCTION Item e - (km) e - (km) Coring ent lines (km Vey line (km) ent lines (km S PERSON R. Farrawell D. Struthers L. Minty I. Wright	N SUMMAR Estima) N SUMMAR Estima) N SUMMAR Estima) O Company of the compa	Y 3 ted DARD urveyor veyor hysicist hysicist	AUV	Today 0% 0% 0% 0% 0% 0% 0% 0	nnais	Cum	100% 0% 0% 0%		Comme	
Development Survey line Survey	e (km) lent lines (km) lent lines (km) lent lines (km) e - (km) e - (km) Coring lent lines (km) ODUCTION Item vey line (km) lent lines (km) E. Farrawell D. Struthers L. Minty I. Wright G.Wong A. Leung	N SUMMAR Estima) N SUMMAR Estima) N SUMMAR Estima) O CONTROL ONBO Geop Geop Eng Eng	Y 3 ted Urveyor hysicist hysicist gineer jineer	AUV	0% 0% 0% 0% 0% 0% 0% 0%	nnais	Cum	100% 0% 0% 0%	/ey	Comme	
Development Survey line Survey	e (km) lent lines (km ocation Map resource (km) e - (km) e - (km) Coring lent lines (km) ODUCTION Item Vey line (km) Lent lines (km) R. Farrawell D. Struthers L. Minty I. Wright G.Wong A. Leung IHRS STA	N SUMMAR Estima Summar Summa	Y 3 ted DARD urveyor hysicist hysicist jineer jineer L	AUV	Today	nnais	Cum	100% 0% 0% 0%	/ey	Comme	
Survey line Survey Loo FF PRO Survey line Survey line 6m Piston Developme MBES survey Developme GG EGS 1 2 3 4 5 6 LAST 24 Boat crew	e (km) lent lines (km ocation Map resource (km) e - (km) e - (km) e - (km) e - (km) function lines (km) ODUCTION ltem lent lines (km) ent lines (km) ent lines (km) Ent lines (km) Item lent lines (km) A. Farrawell D. Struthers L. Minty I. Wright G.Wong A. Leung HRS STA	N SUMMAR Estima Summar Summa	Y 3 ted DARD urveyor hysicist hysicist jineer jineer I L	AUV BEAVE 4-Oct	Columbia	nnais	Cum	100% 0% 0% 0%	/ey	Comme	
Survey line Survey Loo FF PRO Survey line Survey line 6m Piston Developme MBES sur Developme GG EGS 1 2 3 4 5 6 LAST 24 Boat crew Survey cree	e (km) lent lines (km) lent lines (km) lent lines (km) e - (km) e - (km) Coring lent lines (km) Vey line (km) lent lines (km) S PERSON R. Farrawell D. Struthers L. Minty I. Wright G.Wong A. Leung HRS STA	N SUMMAR Estima) N SUMMAR Estima) N SUMMAR Estima) O SUMMAR Estima) O SUMMAR Estima) O SUMMAR O	Y 3 ted DARD urveyor hysicist hysicist gineer jineer t t	AUV EAVE 4-Oct 4-Oct	Columbia	nnais	Cum	100% 0% 0% 0%	/ey	Comme	
Survey line Survey Loo FF PRO Survey line Survey line 6m Piston Developme MBES survey Developme GG EGS 1 2 3 4 5 6 LAST 24 Boat crew	e (km) lent lines (km ocation Map resource (km) e - (km) e - (km) e - (km) e - (km) function lines (km) ODUCTION ltem lent lines (km) ent lines (km) ent lines (km) Ent lines (km) Item lent lines (km) A. Farrawell D. Struthers L. Minty I. Wright G.Wong A. Leung HRS STA	N SUMMAR Estima) N SUMMAR Estima) N SUMMAR Estima) N SUMMAR Estima) O O O O O O O O O O O O	Y 3 ted DARD urveyor hysicist hysicist jineer jineer t t	AUV BEAVE 4-Oct	Columbia	nnais	Cum	100% 0% 0% 0%	/ey	Comme	

DD TIME SUMMARY

(decimal hours)

10033_DPR_07.xls Page 2 of 3

HH PROGRA	M				
Program for next	24 hrs (1) (2) (3)				
Survey at "Area"		Coelacanth	Actual date of comp		
	o survey completion	0	Actual days taken to	o complete work	
II COMMEN	NTS				
JJ CLIENT (COMMENTS				
KK SIGNATU	JRES				
Title	Name	Signature	Title	Name	Signature
EGS Party Chief	R. Farrawell		"Client" Representative	D. Khoo	

10033_DPR_07.xls Page 3 of 3

APPENDIX B GYROCOMPASS CALIBRATION

Gyrocompass Calibration

Date: 10 October 2006 **Job Name:** Apache Site Surveys

Job Number: 10033 Vessel: Bluefin Ellipsoid: GRS80 Projection: GDA-MGA

Central Meridian: 147° Scale Factor: 0.9996

Calibration locationEasting (m)Northing (m)Height (m)Beauty Point485344.155443659.02Unknown

Calculated Grid Convergence: 0° 06' 53.9"

Negative - West of Central Meridian

Known Wharf Alignment (True): 340° 00' 00.0"

Gyrocompass Type and Identifier: Robertson Gyro

Measurements To: Fwd and Aft hull locations

Baseline Distance (m): 14.5

Time	Observed	Measured	Calculated (C)	Observed (O) Gyro	C-O
(hh:mm:ss)	Position	Distance (m)	True Heading	True Heading	C-O
14:25:30	Fwd	1.400	341.74°	242.50°	99.24°
14:25:30	Aft	1.840			
14:26:00	Fwd	1.530	340.63°	241.80°	98.83°
14:26:00	Aft	1.690			
14:26:30	Fwd	1.120	341.90°	242.80°	99.10°
14:26:30	Aft	1.600			
14:27:00	Fwd	1.950	340.59°	242.50°	98.09°
14:27:00	Aft	2.100			
14:30:00	Fwd	1.960	339.45°	242.80°	96.65°
14:30:00	Aft	1.820			
14:32:00	Fwd	1.930	340.99°	243.70°	97.29°
14:32:00	Aft	2.180			
14:34:00	Fwd	1.460	341.34°	243.40°	97.94°
14:34:00	Aft	1.800			
14:34:30	Fwd	1.240	341.82°	243.20°	98.62°
14:34:30	Aft	1.700			
14:35:30	Fwd	1.400	340.55°	243.20°	97.35°
14:35:30	Aft	1.540			
14:36:00	Fwd	1.540	341.46°	242.80°	98.66°
14:36:00	Aft	1.910			
				Mean C-O	98.18°
				Stdev.	0.86

Surveyor: Client Representative:

APPENDIX C DGPS VERIFICATION

Differential Global Positioning System Check

Date: 10 October 2006 **Job Name:** Apache Site Surveys

Job Number: 10033 **Vessel:** Bluefin

Ellipsoid: GRS80 **Setup Station** Easting (m) Northing (m) Height (m) **Projection:** GDA-MGA 10051 485215.984 5443626.87 Unknown Central Meridian: 147° **Backsight Station** Easting (m) Northing (m) Height (m) Scale Factor: 0.9996 10061 5443666.562 484909.874 Unknown

Calculated Plane Bearing: 277° 23' 17.1"

Calculated Grid Convergence: 0° 06' 57.5"

Negative - West of Central Meridian

Time (hh:mm:ss)	Plane Distance (m)	Plane	Plane Bearing		g Calculated (C)) Positioning S Co-ordinates			
(1111.111111.55)	(III)				Easting (m)	Northing (m)	Easting (m)	Northing (m)	dE (C-O)	dN (C-O)	DRMS
15:23:22	137.343	72°	07'	18"	485346.695	5443669.034	485346.730	5443669.020	-0.035	0.014	0.037
15:23:45	137.246	72°	08'	12"	485346.614	5443668.970	485346.520	5443668.920	0.094	0.050	0.106
15:24:05	137.259	72°	05'	34"	485346.594	5443669.074	485346.590	5443669.050	0.004	0.024	0.024
15:24:30	137.259	72°	07'	28"	485346.617	5443669.002	485346.660	5443669.020	-0.043	-0.018	0.046
15:25:06	137.349	72°	06'	07"	485346.686	5443669.081	485346.700	5443669.080	-0.014	0.001	0.014
15:25:22	137.502	72°	06'	08"	485346.832	5443669.127	485346.780	5443669.110	0.052	0.017	0.055
15:25:40	137.436	72°	06'	08"	485346.769	5443669.107	485346.740	5443669.110	0.029	-0.003	0.030
15:26:00	137.585	72°	05'	32"	485346.904	5443669.175	485346.870	5443669.170	0.034	0.005	0.034
15:26:23	137.469	72°	06'	10"	485346.801	5443669.116	485346.760	5443669.100	0.041	0.016	0.044
15:26:40	137.447	72°	05'	31"	485346.772	5443669.134	485346.770	5443669.130	0.002	0.004	0.004
15:26:57	137.287	72°	05'	31"	485346.620	5443669.085	485346.600	5443669.090	0.020	-0.005	0.021
15:27:18	137.362	72°	05'	55"	485346.696	5443669.092	485346.680	5443669.100	0.016	-0.008	0.018
15:27:36	137.531	72°	05'	23"	485346.850	5443669.165	485346.790	5443669.140	0.060	0.025	0.065
15:27:51	137.385	72°	05'	34"	485346.714	5443669.113	485346.770	5443669.140	-0.056	-0.027	0.062
15:28:15	137.515	72°	05'	43"	485346.839	5443669.147	485346.780	5443669.130	0.059	0.017	0.062
								Mean	0.02	0.01	0.04
								Stdev.	0.04	0.02	0.03

Surveyor: Client Representative:

Differential Global Positioning System Check

Date: 10 October 2006 **Job Name:** Apache Site Surveys

Job Number: 10033 Vessel: Bluefin

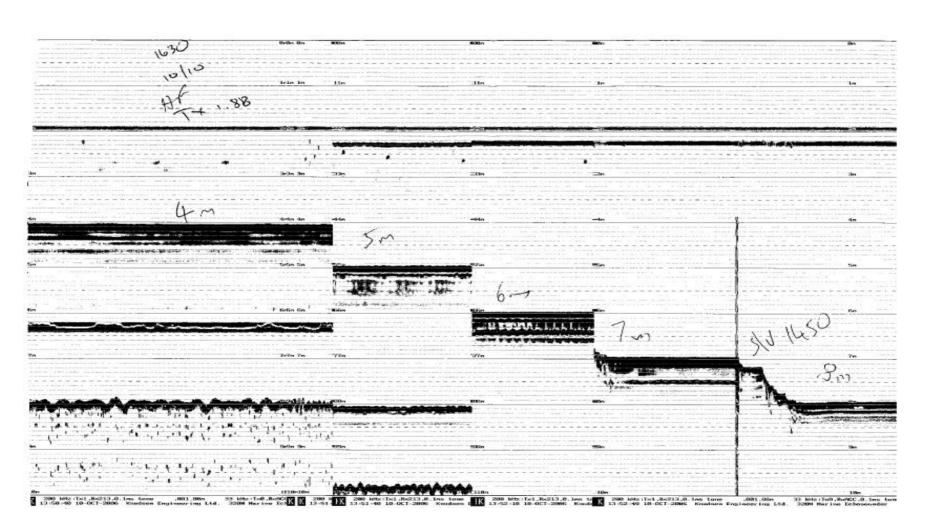
Ellipsoid: GRS80 **Setup Station** Easting (m) Northing (m) Height (m) **Projection:** GDA-MGA 10051 485215.984 5443626.87 N/A Height (m) Central Meridian: 147° **Backsight Station** Easting (m) Northing (m) Scale Factor: 0.9996 5443666.562 10061 484909.874 N/A

Calculated Plane Bearing: 277° 23' 17.1"
Calculated Grid Convergence: 0° 06' 57.5"

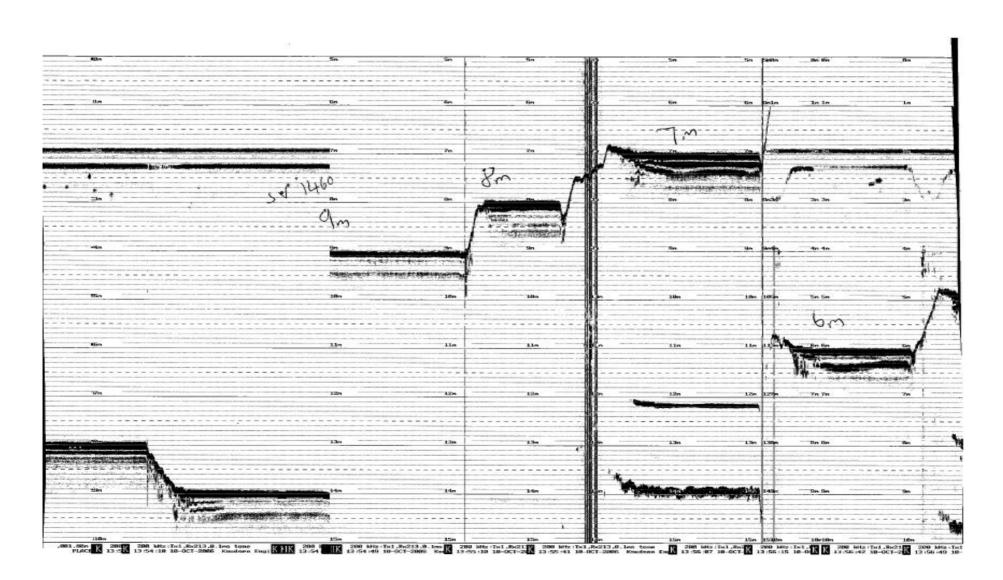
PRIMARY AND SECONDAY C-NAV COMPARISON

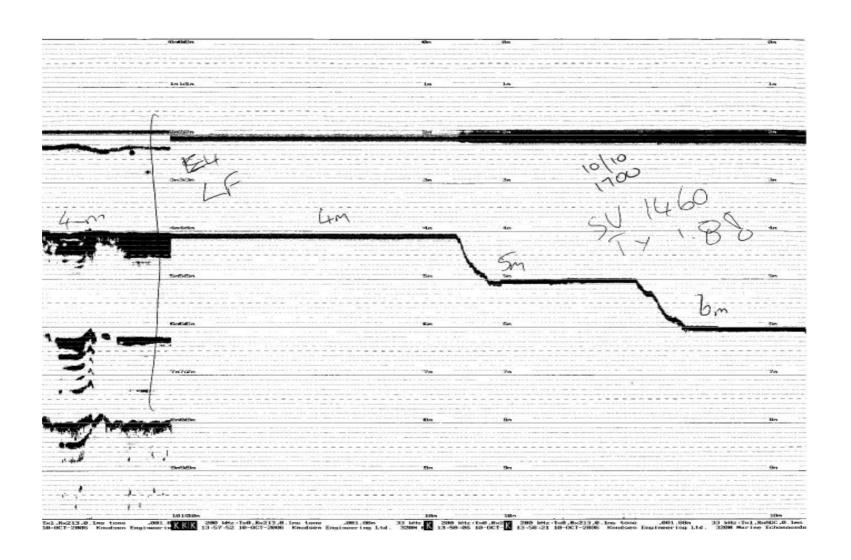
E Primary	N Primary	Time	E Secondary	N Secondary		Delta E	Delta N
608162.930	5698117.680	3:00:11	608162.870	5698117.710		0.060	-0.030
608181.040	5698161.440	3:00:21	608180.970	5698161.490		0.070	-0.050
608197.860	5698205.970	3:00:31	608197.790	5698205.980		0.070	-0.010
608211.480	5698251.920	3:00:41	608211.400	5698251.930		0.080	-0.010
608224.380	5698297.930	3:00:51	608224.320	5698297.960		0.060	-0.030
608241.310	5698342.740	3:01:01	608241.250	5698342.780		0.060	-0.040
608259.790	5698386.680	3:01:11	608259.700	5698386.710		0.090	-0.030
608274.510	5698431.860	3:01:21	608274.440	5698431.870		0.070	-0.010
608286.920	5698477.980	3:01:31	608286.860	5698478.010		0.060	-0.030
608302.410	5698523.100	3:01:41	608302.340	5698523.130		0.070	-0.030
608320.650	5698567.110	3:01:51	608320.570	5698567.140		0.080	-0.030
608336.560	5698612.080	3:02:01	608336.500	5698612.110		0.060	-0.030
608349,270	5698658.160	3:02:11	608349.190	5698658.190		0.080	-0.030
608363.630	5698703.940	3:02:21	608363.560	5698703.960		0.070	-0.020
608381.900	5698747.990	3:02:31	608381.840	5698748.030		0.060	-0.040
608400.350	5698792.030	3:02:41	608400.280	5698792.080		0.070	-0.050
608413.190	5698837.720	3:02:51	608413.110	5698837.770		0.080	-0.050
608425.950	5698884.170	3:03:01	608425.900	5698884.230		0.050	-0.060
608442.350	5698929.160	3:03:11	608442.290	5698929.190		0.060	-0.030
608460.910	5698973.010	3:03:21	608460.840	5698973.050		0.070	-0.040
608477.380	5699017.930	3:03:31	608477.300	5699017.990		0.080	-0.060
608489.940	5699063.800	3:03:41	608489.870	5699063.850		0.070	-0.050
608504.060	5699109.710	3:03:51	608504.000	5699109.760		0.060	-0.050
608521.660	5699154.440	3:04:01	608521.590	5699154.470		0.070	-0.030
608539.270	5699198.480	3:04:11	608539.200	5699198.540		0.070	-0.060
608552.910	5699244.310	3:04:21	608552.840	5699244.360		0.070	-0.050
608565.640	5699290.240	3:04:31	608565.580	5699290.290		0.060	-0.050
608582.040	5699334.870	3:04:41	608581.970	5699334.900		0.070	-0.030
608600.210	5699379.010	3:04:51	608600.160	5699379.070		0.050	-0.060
608616.080	5699423.840	3:05:01	608616.010	5699423.890		0.070	-0.050
608628.590	5699469.830	3:05:11	608628.520	5699469.870		0.070	-0.040
					AVG	0.068	-0.038
					STDEV	0.009	0.015

APPENDIX D


BAR CHECK

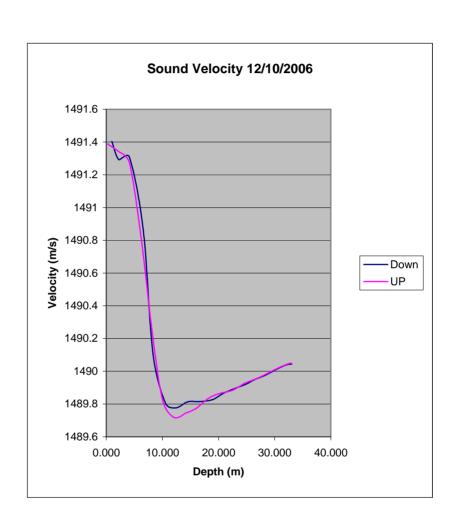
Apache Energy Limited Coelacanth-1 & Wasabi-1 Site Survey Bass Strait, Victoria


Bar Check Conducted on Site 10th of October 2006


Apache Energy Limited Coelacanth-1 & Wasabi-1 Site Survey Bass Strait, Victoria

Apache Energy Limited Coelacanth-1 & Wasabi-1 Site Survey Bass Strait, Victoria

APPENDIX E SOUND VELOCITY PROFILES



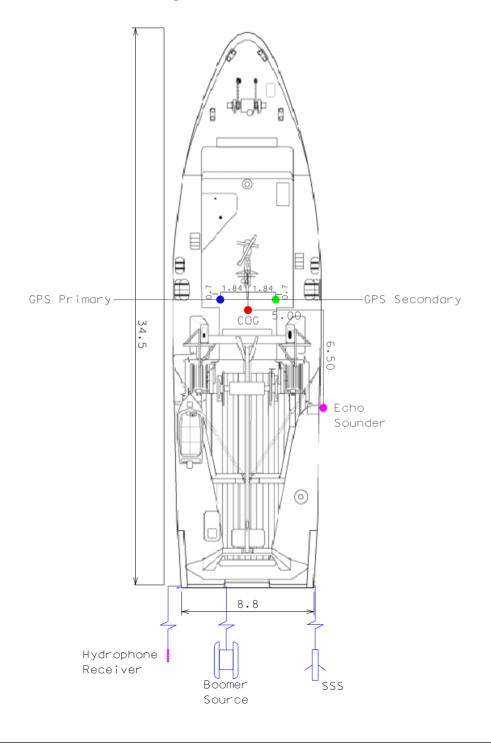
Sound Velocity Profile

Project: Wasabi 1
Job #: 10033
Client: Apache
Vessel: Bluefin

21/08/06

Sound	
Velocity	Depth
1491.404	0.994
1491.293	2.237
1491.309	4.101
1490.865	6.587
1490.107	8.327
1489.803	10.564
1489.777	12.428
1489.814	14.541
1489.815	16.654
1489.826	18.891
1489.862	20.631
1489.886	22.246
1489.921	24.856
1489.95	26.472
1489.976	28.336
1490.016	30.573
1490.039	32.064
1490.044	33.058
1490.044	33.058
1490.05	32.810
1490.024	30.821
1489.991	28.957
1489.956	26.845
1489.928	24.732
1489.884 1489.863	22.495 20.009
1489.833	18.145
1489.774	16.143
1489.746	14.293
1489.718	12.056
1489.819	10.067
1490.232	8.203
1490.815	6.214
1491.275	4.101
1491.344	2.113
1491.388	0.249

Mean Sound Velocity


1490.205

APPENDIX F VESSEL OFFSET DIAGRAM

EGS (Australia) Pty Ltd 108 String Street Perth, Western Australia 6000

Vessel Offset Diagram				
Vessel: FTV Bluefin				
Job No.:	10033			
Project:	Coelacanth 1 & Wasabi 1 Site Survey			
Date:	11th October 2006			

Offset Diagram
Tow Configuration for FTV Bluefin

APPENDIX G

TIDAL DATA

TIDE HEIGHT PREDICTIONS

LOCATION: Wasabi Site LATITUDE: 38 29 6 S LONGITUDE: 147 15 38 E

CLIENT: Apache Energy limited

TIME ZONE : UTC DATUM : LAT (~0.95M < MSL) PERIOD : 1/10/2006 - 31/10/2006

INTERVAL: 10 MINUTES

HH:MM	Day	Month	Year	Height
0:00	8	10	2006	1.49
0:10	8	10	2006	1.49
0:20	8	10	2006	1.49
0:30	8	10	2006	1.48
0:40	8	10	2006	1.46
0:50	8	10	2006	1.45
1:00	8	10	2006	1.43
1:10	8	10	2006	1.41
1:20	8	10	2006	1.38
1:30	8	10	2006	1.35
1:40	8	10	2006	1.32
1:50	8	10	2006	1.29
2:00	8	10	2006	1.26
2:10	8	10	2006	1.22
2:20	8	10	2006	1.18
2:30	8	10	2006	1.14
2:40	8	10	2006	1.10
2:50	8	10	2006	1.06
3:00	8	10	2006	1.02
3:10	8	10	2006	0.97
3:20	8	10	2006	0.93
3:30	8	10	2006	0.89
3:40	8	10	2006	0.85
3:50	8	10	2006	0.80
4:00	8	10	2006	0.76
4:10	8	10	2006	0.73
4:20	8	10	2006	0.69
4:30	8	10	2006	0.65
4:40	8	10	2006	0.62
4:50	8	10	2006	0.58
5:00	8	10	2006	0.55
5:10	8	10	2006	0.53
5:20	8	10	2006	0.50
5:30	8	10	2006	0.48
5:40	8	10	2006	0.46
5:50	8	10	2006	0.44
6:00	8	10	2006	0.42
6:10	8	10	2006	0.41
6:20	8	10	2006	0.41
6:30	8	10	2006	0.40
6:40	8	10	2006	0.40
6:50	8	10	2006	0.41

7:00	8	10	2006	0.41
7:10	8	10	2006	0.42
7:20	8	10	2006	0.44
7:30	8	10	2006	0.46
7:40	8	10	2006	0.48
7:50	8	10	2006	0.50
8:00	8	10	2006	0.53
8:10	8	10	2006	0.56
8:20	8	10	2006	0.59
8:30	8	10	2006	0.63
8:40	8	10	2006	0.66
8:50	8	10	2006	0.70
9:00	8	10	2006	0.74
9:10	8	10 10	2006 2006	0.78 0.82
9:20 9:30	8 8	10	2006	0.82
9:30 9:40	8	10	2006	0.80
9:40 9:50	8	10	2006	0.90
10:00	8	10	2006	0.98
10:00	8	10	2006	1.01
10:10	8	10	2006	1.05
10:30	8	10	2006	1.09
10:40	8	10	2006	1.12
10:50	8	10	2006	1.15
11:00	8	10	2006	1.18
11:10	8	10	2006	1.21
11:20	8	10	2006	1.24
11:30	8	10	2006	1.26
11:40	8	10	2006	1.29
11:50	8	10	2006	1.31
12:00	8	10	2006	1.32
12:10	8	10	2006	1.34
12:20	8	10	2006	1.35
12:30	8	10	2006	1.36
12:40	8	10	2006	1.37
12:50	8	10	2006	1.37
13:00	8	10	2006	1.37
13:10	8	10	2006	1.37
13:20	8	10	2006	1.36
13:30	8	10	2006	1.35
13:40	8	10	2006	1.34
13:50	8	10	2006	1.33
14:00	8	10	2006	1.31
14:10	8	10	2006	1.29
14:20	8	10	2006	1.27
14:30	8	10	2006	1.25
14:40	8	10	2006	1.22
14:50	8	10	2006	1.20
15:00	8	10	2006	1.17
15:10	8	10	2006	1.14
15:20	8 8	10 10	2006	1.11
15:30 15:40	8		2006	1.08
15:40 15:50	8	10 10	2006 2006	1.05 1.02
16:00	8	10	2006	0.99
16:10	8	10	2006	0.99
16:10	8	10	2006	0.93
16:30	8	10	2006	0.90
16:40	8	10	2006	0.90
10.40	J	10	2000	0.00

16:50 17:00 17:10 17:20 17:30	8 8 8 8	10 10 10 10 10	2006 2006 2006 2006 2006	0.85 0.82 0.80 0.77 0.75
17:30	8	10	2006	0.73
17:50	8	10	2006	0.71
18:00	8	10	2006	0.69
18:10	8	10	2006	0.68
18:20	8	10	2006	0.67
18:30	8	10	2006	0.66
18:40 18:50	8 8	10 10	2006 2006	0.65 0.65
19:00	8	10	2006	0.65
19:10	8	10	2006	0.65
19:20	8	10	2006	0.66
19:30	8	10	2006	0.67
19:40 19:50	8 8	10 10	2006 2006	0.68 0.70
20:00	8	10	2006	0.70
20:10	8	10	2006	0.74
20:20	8	10	2006	0.76
20:30	8	10	2006	0.79
20:40	8	10	2006	0.82
20:50 21:00	8 8	10 10	2006 2006	0.85 0.88
21:10	8	10	2006	0.91
21:20	8	10	2006	0.95
21:30	8	10	2006	0.98
21:40	8	10	2006	1.02
21:50	8	10	2006	1.05
22:00 22:10	8 8	10 10	2006 2006	1.08 1.12
22:20	8	10	2006	1.15
22:30	8	10	2006	1.18
22:40	8	10	2006	1.21
22:50	8	10	2006	1.24
23:00 23:10	8 8	10 10	2006 2006	1.27 1.30
23:20	8	10 10	2006	1.32
23:30	8	10	2006	1.35
23:40	8	10	2006	1.37
23:50	8	10	2006	1.39
0:00	9	10	2006	1.40
0:10 0:20	9 9	10 10	2006 2006	1.42 1.43
0:20	9	10	2006	1.43
0:40	9	10	2006	1.45
0:50	9	10	2006	1.45
1:00	9	10	2006	1.45
1:10	9	10	2006	1.45
1:20 1:30	9 9	10 10	2006 2006	1.44 1.43
1:40	9	10	2006	1.42
1:50	9	10	2006	1.41
2:00	9	10	2006	1.39
2:10	9	10	2006	1.37
2:20	9	10 10	2006	1.35
2:30	9	10	2006	1.32

2:40 2:50 3:00 3:10 3:20 3:30 3:40 3:50 4:00 4:10 4:20 4:30 4:40 4:50 5:00 5:10 5:20 5:30 5:40 5:50 6:00 6:10 6:20 6:30 6:40 6:50 7:00 7:10 7:20 7:30 7:40 7:50 8:00 8:10 8:20 8:30 8:40 8:50 9:00 9:10 9:20 9:30 9:40 9:50 10:20 10:30 10:40 10:50	999999999999999999999999999999999999999	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2006 2006 2006 2006 2006 2006 2006 2006	1.29 1.26 1.23 1.20 1.16 1.13 1.09 1.05 1.01 0.97 0.94 0.90 0.86 0.78 0.74 0.70 0.66 0.63 0.59 0.56 0.53 0.48 0.45 0.43 0.41 0.40 0.39 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
10:00 10:10 10:20	9 9 9	10 10 10	2006 2006 2006	0.64 0.67 0.70
10:40 10:50 11:00	9 9 9	10 10 10	2006 2006 2006	0.77 0.81 0.84
11:10 11:20 11:30 11:40	9 9 9	10 10 10 10	2006 2006 2006 2006	0.88 0.91 0.95 0.98
11:50 12:00 12:10 12:20	9 9 9	10 10 10 10	2006 2006 2006 2006	1.01 1.04 1.07 1.10

12:30	9	10	2006	1.13
12:40	9	10	2006	1.16
12:50	9	10	2006	1.18
13:00	9	10	2006	1.20
13:10	9	10	2006	1.22
13:20	9	10	2006	1.24
13:30	9	10	2006	1.25
13:40	9	10	2006	1.26
13:50	9	10	2006	1.27
14:00	9	10	2006	1.28
14:10	9	10	2006	1.28
14:20	9	10	2006	1.29
14:30 14:40	9 9	10 10	2006 2006	1.29 1.28
14:40	9	10	2006	1.28
15:00	9	10	2006	1.27
15:10	9	10	2006	1.26
15:20	9	10	2006	1.25
15:30	9	10	2006	1.24
15:40	9	10	2006	1.22
15:50	9	10	2006	1.20
16:00	9	10	2006	1.19
16:10	9	10	2006	1.17
16:20	9	10	2006	1.15
16:30	9	10	2006	1.13
16:40	9	10	2006	1.10
16:50	9	10	2006	1.08
17:00	9	10	2006	1.06
17:10 17:20	9 9	10 10	2006 2006	1.03 1.01
17:20	9	10	2006	0.99
17:40	9	10	2006	0.96
17:50	9	10	2006	0.94
18:00	9	10	2006	0.91
18:10	9	10	2006	0.89
18:20	9	10	2006	0.87
18:30	9	10	2006	0.85
18:40	9	10	2006	0.83
18:50	9	10	2006	0.81
19:00	9	10	2006	0.79
19:10	9	10	2006	0.78
19:20	9	10	2006	0.77
19:30 19:40	9 9	10 10	2006 2006	0.76 0.75
19:50	9	10	2006	0.73
20:00	9	10	2006	0.74
20:10	9	10	2006	0.74
20:20	9	10	2006	0.75
20:30	9	10	2006	0.75
20:40	9	10	2006	0.76
20:50	9	10	2006	0.77
21:00	9	10	2006	0.79
21:10	9	10	2006	0.80
21:20	9	10	2006	0.82
21:30	9	10	2006	0.84
21:40	9	10	2006	0.87
21:50	9 9	10	2006	0.89
22:00 22:10	9	10 10	2006 2006	0.91 0.94
22.10	9	10	2006	0.94

22:20 22:30 22:40 22:50 23:00 23:10 23:20 23:30 23:40 23:50 0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30 2:40 2:50 3:00 3:10 3:20 3:30 3:40 4:40 4:50 5:00 5:10 5:20 5:30 5:40 6:50 7:00 7:10 7:20	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2006 2006 2006 2006 2006 2006 2006 2006	0.97 1.00 1.02 1.05 1.08 1.11 1.14 1.17 1.19 1.22 1.24 1.27 1.39 1.31 1.35 1.37 1.38 1.39 1.40 1.41 1.42 1.42 1.41 1.40 1.39 1.37 1.36 1.34 1.32 1.29 1.27 1.24 1.11 1.08 1.04 1.00 0.96 0.92 0.88 0.84 0.80 0.76 0.72 0.68 0.65 0.61 0.57 0.54 0.50
6:40	10	10	2006	0.65
6:50	10	10	2006	0.61
7:00	10	10	2006	0.57
7:10	10	10	2006	0.54
7:20	10	10	2006	0.50
7:30	10	10	2006	0.47
7:40	10	10	2006	0.45
7:50	10	10	2006	0.42
8:00	10	10	2006	0.40

8:10	10	10	2006	0.38
8:20 8:30	10 10	10 10	2006 2006	0.36 0.35
8:40	10	10	2006	0.34
8:50	10	10	2006	0.33
9:00	10	10	2006	0.33
9:10	10	10	2006	0.33
9:20	10	10	2006	0.34
9:30	10 10	10 10	2006 2006	0.34
9:40 9:50	10	10	2006	0.35 0.37
10:00	10	10	2006	0.38
10:10	10	10	2006	0.40
10:20	10	10	2006	0.42
10:30	10	10	2006	0.44
10:40 10:50	10 10	10 10	2006 2006	0.47 0.50
11:00	10	10	2006	0.52
11:10	10	10	2006	0.55
11:20	10	10	2006	0.58
11:30	10	10	2006	0.62
11:40 11:50	10 10	10 10	2006 2006	0.65 0.68
12:00	10	10	2006	0.00
12:10	10	10	2006	0.75
12:20	10	10	2006	0.79
12:30	10	10	2006	0.82
12:40 12:50	10 10	10 10	2006 2006	0.86 0.89
13:00	10	10	2006	0.89
13:10	10	10	2006	0.96
13:20	10	10	2006	0.99
13:30	10	10	2006	1.02
13:40 13:50	10 10	10 10	2006	1.05 1.08
14:00	10	10	2006 2006	1.11
14:10	10	10	2006	1.13
14:20	10	10	2006	1.16
14:30	10	10	2006	1.18
14:40 14:50	10 10	10 10	2006 2006	1.20 1.21
15:00	10	10	2006	1.23
15:10	10	10	2006	1.24
15:20	10	10	2006	1.25
15:30	10	10	2006	1.26
15:40 15:50	10 10	10	2006	1.26
15:50 16:00	10	10 10	2006 2006	1.27 1.27
16:10	10	10	2006	1.27
16:20	10	10	2006	1.26
16:30	10	10	2006	1.26
16:40	10	10	2006	1.25
16:50 17:00	10 10	10 10	2006 2006	1.24 1.23
17:10	10	10	2006	1.23
17:20	10	10	2006	1.20
17:30	10	10	2006	1.19
17:40	10	10	2006	1.17
17:50	10	10	2006	1.15

40.00	40	40	2000	4.40
18:00	10	10	2006	1.13
18:10	10	10	2006	1.11
18:20	10	10	2006	1.09
18:30	10	10	2006	1.06
18:40	10	10	2006	1.04
18:50	10	10	2006	1.02
19:00	10	10	2006	0.99
19:10	10	10	2006	0.97
19:20	10	10	2006	0.95
19:30	10	10	2006	0.92
19:40	10	10	2006	0.90
19:50	10	10	2006	0.88
20:00	10	10	2006	0.86
20:10	10	10	2006	0.85
20:20	10	10	2006	0.83
20:30	10	10	2006	0.82
20:40	10	10	2006	0.81
20:50	10	10	2006	0.80
21:00	10	10	2006	0.79
21:10	10	10	2006	0.79
21:20	10	10	2006	0.79
21:30	10	10	2006	0.79
21:40	10	10	2006	0.79
21:50	10	10	2006	0.81
22:00	10	10	2006	0.82
22:10	10	10	2006	0.83
22:20	10	10	2006	0.84
22:30	10	10	2006	0.86
22:40	10	10	2006	0.87
22:50	10	10	2006	0.89
23:00	10	10	2006	0.91
23:10	10	10	2006	0.94
23:20	10	10	2006	0.96
23:30	10	10	2006	0.98
23:40	10	10	2006	1.01
23:50	10	10	2006	1.03
0:00	11	10	2006	1.06
0:00	11		2006	
		10		1.08
0:20	11	10	2006	1.11
0:30	11	10	2006	1.13
0:40	11	10	2006	1.16
0:50	11	10	2006	1.19
1:00	11	10	2006	1.21
1:10	11	10	2006	1.24
1:20	11	10	2006	1.26
1:30	11	10	2006	1.28
1:40	11	10	2006	1.30
1:50	11	10	2006	1.32
2:00	11	10	2006	1.34
2:10	11	10	2006	1.36
2:20	11	10	2006	1.37
2:30	11	10	2006	1.39
	11			
2:40		10	2006	1.40
2:50	11	10	2006	1.40
3:00	11	10	2006	1.41
3:10	11	10	2006	1.41
3:20	11	10	2006	1.41
3:30	11	10	2006	1.41
3:40	11	10	2006	1.40

3:50	11	10	2006	1.39
4:00	11	10	2006	1.38
	11	10		
4:10			2006	1.37
4:20	11	10	2006	1.35
4:30	11	10	2006	1.34
4:40	11	10	2006	1.32
4:50	11	10	2006	1.29
5:00	11	10	2006	1.27
5:10	11	10	2006	1.24
5:20	11	10	2006	1.21
5:30	11	10	2006	1.18
5:40	11	10	2006	1.15
5:50	11	10	2006	1.11
6:00	11	10	2006	1.08
6:10	11	10	2006	1.04
6:20	11	10	2006	1.00
6:30	11	10	2006	0.96
6:40	11	10	2006	0.91
6:50	11	10	2006	0.87
7:00	11	10	2006	0.83
7:10	11	10	2006	0.78
7:20	11	10	2006	0.74
7:30	11	10	2006	0.70
7:40	11	10	2006	0.65
7:50	11	10	2006	0.61
8:00	11	10	2006	0.57
8:10	11	10	2006	0.53
8:20	11	10	2006	0.49
8:30	11	10	2006	0.46
8:40	11	10	2006	0.42
8:50	11	10	2006	0.40
9:00	11	10	2006	0.37
9:10	11	10	2006	0.34
9:20	11	10	2006	0.32
9:30	11	10	2006	0.31
9:40	11	10	2006	0.29
9:50	11	10	2006	0.28
10:00	11	10	2006	0.28
10:10	11	10	2006	0.27
10:20	11	10	2006	0.27
10:30	11	10	2006	0.28
10:40	11	10	2006	0.28
10:50	11	10	2006	0.29
11:00	11	10	2006	0.30
11:10	11	10	2006	0.32
11:20	11	10	2006	0.33
11:30	11	10	2006	0.35
11:40	11	10	2006	0.38
11:50	11	10	2006	0.40
12:00	11	10	2006	0.43
12:10	11	10	2006	0.46
12:20	11	10	2006	0.49
12:30	11	10	2006	0.52
12:40	11	10	2006	0.55
12:50	11	10	2006	0.59
13:00	11	10	2006	0.62
13:10	11	10	2006	0.66
13:20	11	10	2006	0.70
13:30	11	10	2006	0.74
10.00	1.1	10	2000	0.74

40.40	4.4	40	2222	0.70
13:40	11	10	2006	0.78
13:50	11	10	2006	0.81
14:00	11	10	2006	0.85
14:10	11	10	2006	0.89
14:20	11	10	2006	0.93
14:30	11	10	2006	0.97
14:40	11	10	2006	1.00
14:50	11	10	2006	1.03
15:00	11	10	2006	1.03
15:10	11	10	2006	1.10
15:20	11	10	2006	1.13
15:30	11	10	2006	1.15
15:40	11	10	2006	1.18
15:50	11	10	2006	1.20
16:00	11	10	2006	1.22
16:10	11	10	2006	1.24
16:20	11	10	2006	1.26
16:30	11	10	2006	1.27
16:40	11	10	2006	1.28
16:50	11	10	2006	1.29
17:00	11	10	2006	1.30
17:10	11	10	2006	1.30
17:20	11	10	2006	1.30
17:30	11	10	2006	1.30
17:40	11	10	2006	1.30
17:50	11	10	2006	1.29
18:00	11	10	2006	1.28
18:10	11	10	2006	1.27
18:20	11	10	2006	1.26
	11	10		
18:30			2006	1.25
18:40	11	10	2006	1.23
18:50	11	10	2006	1.21
19:00	11	10	2006	1.19
19:10	11	10	2006	1.17
19:20	11	10	2006	1.14
19:30	11	10	2006	1.12
19:40	11	10	2006	1.09
19:50	11	10	2006	1.07
20:00	11	10	2006	1.04
20:10	11	10	2006	1.01
20:20	11	10	2006	0.99
20:30	11	10	2006	0.96
20:40	11	10	2006	0.94
20:50	11	10	2006	0.91
21:00	11	10	2006	0.89
21:10	11	10	2006	0.87
21:20	11	10	2006	0.86
21:30	11	10	2006	0.84
21:40	11	10	2006	0.83
21:50	11	10	2006	0.82
22:00	11	10	2006	0.81
22:10	11	10	2006	0.80
	11	10		
22:20			2006	0.80
22:30	11	10	2006	0.80
22:40	11	10	2006	0.80
22:50	11	10	2006	0.80
23:00	11	10	2006	0.81
23:10	11	10	2006	0.82
23:20	11	10	2006	0.83

23:30	11	10	2006	0.84
23:40	11	10	2006	0.86
23:50	11	10	2006	0.87
0:00	12	10	2006	0.89
0:10 0:20	12 12	10 10	2006 2006	0.91 0.93
0:20	12	10	2006	0.93
0:40	12	10	2006	0.98
0:50	12	10	2006	1.00
1:00	12	10	2006	1.03
1:10	12	10	2006	1.06
1:20	12	10	2006	1.08
1:30	12	10	2006	1.11
1:40	12	10	2006	1.14
1:50	12	10	2006	1.17
2:00	12	10	2006	1.19
2:10 2:20	12 12	10 10	2006 2006	1.22 1.25
2:30	12	10	2006	1.25
2:40	12	10	2006	1.30
2:50	12	10	2006	1.32
3:00	12	10	2006	1.34
3:10	12	10	2006	1.36
3:20	12	10	2006	1.38
3:30	12	10	2006	1.39
3:40	12	10	2006	1.40
3:50	12	10	2006	1.41
4:00	12	10	2006	1.42
4:10 4:20	12 12	10 10	2006 2006	1.43 1.43
4.20 4:30	12	10	2006	1.43
4:40	12	10	2006	1.43
4:50	12	10	2006	1.42
5:00	12	10	2006	1.41
5:10	12	10	2006	1.40
5:20	12	10	2006	1.39
5:30	12	10	2006	1.37
5:40	12	10	2006	1.35
5:50 6:00	12 12	10 10	2006	1.33 1.30
6:00 6:10	12	10	2006 2006	1.28
6:20	12	10	2006	1.25
6:30	12	10	2006	1.21
6:40	12	10	2006	1.18
6:50	12	10	2006	1.14
7:00	12	10	2006	1.10
7:10	12	10	2006	1.06
7:20	12	10	2006	1.02
7:30	12 12	10 10	2006	0.97
7:40 7:50	12	10	2006 2006	0.92 0.88
8:00	12	10	2006	0.83
8:10	12	10	2006	0.78
8:20	12	10	2006	0.73
8:30	12	10	2006	0.68
8:40	12	10	2006	0.64
8:50	12	10	2006	0.59
9:00	12	10	2006	0.55
9:10	12	10	2006	0.51

0.00	4.0	4.0	0000	0.40
9:20	12	10	2006	0.46
9:30	12	10	2006	0.43
9:40	12	10	2006	0.39
9:50	12	10	2006	0.36
10:00	12	10	2006	0.33
10:10	12	10	2006	0.30
10:20	12	10	2006	0.28
10:30	12	10	2006	0.26
10:40	12	10	2006	0.25
10:50	12	10	2006	0.23
11:00	12	10	2006	0.23
11:10	12	10	2006	0.22
11:20	12	10	2006	0.22
11:30	12	10	2006	0.22
11:40	12	10	2006	0.23
11:50	12	10	2006	0.23
12:00	12	10	2006	0.24
12:10	12	10	2006	0.26
12:20	12	10	2006	0.28
12:30	12	10	2006	0.30
12:40	12	10	2006	0.32
12:50	12	10	2006	0.35
13:00	12	10	2006	0.37
13:10	12	10	2006	0.40
13:20	12	10	2006	0.44
13:30	12	10	2006	0.47
13:40	12	10	2006	0.51
13:50	12	10	2006	0.55
14:00	12	10	2006	0.59
14:10	12	10	2006	0.63
14:20	12	10	2006	0.67
14:30	12	10	2006	0.71
14:40	12	10	2006	0.76
14:50	12	10	2006	0.80
15:00	12	10	2006	0.84
15:10	12	10	2006	0.88
15:20	12	10	2006	0.93
15:30	12	10	2006	0.97
15:40	12	10	2006	1.01
15:50	12	10	2006	1.04
16:00	12	10	2006	1.08
16:10	12	10	2006	1.11
16:20	12	10	2006	1.15
16:30	12	10		1.18
			2006	
16:40	12	10	2006	1.21
16:50	12	10	2006	1.23
17:00	12	10	2006	1.25
17:10	12	10	2006	1.28
17:20	12	10	2006	1.29
17:30	12	10	2006	1.31
17:40	12	10	2006	1.32
17:50	12	10	2006	1.33
18:00	12	10	2006	1.34
18:10	12	10	2006	1.34
	12			1.35
18:20		10	2006	
18:30	12	10	2006	1.35
18:40	12	10	2006	1.34
18:50	12	10	2006	1.34
19:00	12	10	2006	1.33

10:10 10 10 2000	
19:10 12 10 2006	1.31
19:20	1.30 1.28
19:40 12 10 2006	1.26
19:50 12 10 2006	1.24
20:00 12 10 2006	1.21
20:10 12 10 2006	1.19
20:20 12 10 2006	1.16
20:30	1.13
20:40 12 10 2006 20:50 12 10 2006	1.10 1.07
21:00 12 10 2006	1.04
21:10 12 10 2006	1.01
21:20 12 10 2006	0.99
21:30	0.96
21:40 12 10 2006 21:50 12 10 2006	0.93 0.91
22:00 12 10 2006	0.81
22:10 12 10 2006	0.86
22:20 12 10 2006	0.84
22:30 12 10 2006	0.83
22:40 12 10 2006	0.81
22:50	0.80 0.79
23:10 12 10 2006	0.78
23:20 12 10 2006	0.78
23:30 12 10 2006	0.78
23:40	0.78
23:50 12 10 2006 0:00 13 10 2006	0.78 0.79
0:10 13 10 2006 0:10 13 10 2006	0.79
0:20 13 10 2006	0.81
0:30 13 10 2006	0.82
0:40 13 10 2006	0.83
0:50 13 10 2006	0.85
1:00 13 10 2006 1:10 13 10 2006	0.87 0.89
1:20 13 10 2006	0.03
1:30 13 10 2006	0.94
1:40 13 10 2006	0.96
1:50 13 10 2006	0.99
2:00 13 10 2006 2:10 13 10 2006	1.02 1.05
2:20 13 10 2006	1.03
2:30 13 10 2006	1.11
2:40 13 10 2006	1.14
2:50 13 10 2006	1.17
3:00 13 10 2006	1.20
3:10 13 10 2006 3:20 13 10 2006	1.23 1.26
3:30 13 10 2006	1.29
3:40 13 10 2006	1.31
3:50 13 10 2006	1.34
4:00 13 10 2006	1.36
4:10 13 10 2006 4:20 13 10 2006	1.38 1.40
4:30 13 10 2006	1.40
4:40 13 10 2006	1.43
4:50 13 10 2006	1.44

5:00	13	10	2006	1.45
5:10	13	10	2006	1.45
5:20	13	10	2006	1.46
5:30	13	10	2006	1.46
5:40	13	10	2006	1.45
5:50	13	10	2006	1.45
6:00	13	10	2006	1.44
6:10	13	10	2006	1.43
6:20	13	10	2006	1.41
6:30	13	10	2006	1.40
6:40	13	10	2006	1.37
6:50	13	10	2006	1.35
7:00	13	10	2006	1.32
7:10	13	10	2006	1.29
7:20	13	10	2006	1.26
7:30	13	10	2006	1.22
7:40	13	10	2006	1.18
7:50	13	10	2006	1.14
8:00	13	10	2006	1.10
8:10	13	10	2006	1.05
8:20	13	10	2006	1.00
8:30	13	10	2006	0.96
8:40	13	10	2006	0.91
8:50	13	10	2006	0.85
9:00	13 13	10 10	2006	0.80 0.75
9:10 9:20	13	10	2006 2006	0.73
9:30	13	10	2006	0.76
9:40	13	10	2006	0.60
9:50	13	10	2006	0.55
10:00	13	10	2006	0.51
10:10	13	10	2006	0.47
10:20	13	10	2006	0.43
10:30	13	10	2006	0.39
10:40	13	10	2006	0.35
10:50	13	10	2006	0.32
11:00	13	10	2006	0.29
11:10	13	10	2006	0.27
11:20	13	10	2006	0.25
11:30	13	10	2006	0.23
11:40	13	10	2006	0.21
11:50 12:00	13 13	10 10	2006	0.20
12:10	13	10	2006 2006	0.20 0.19
12:10	13	10	2006	0.19
12:30	13	10	2006	0.19
12:40	13	10	2006	0.20
12:50	13	10	2006	0.21
13:00	13	10	2006	0.23
13:10	13	10	2006	0.25
13:20	13	10	2006	0.27
13:30	13	10	2006	0.29
13:40	13	10	2006	0.32
13:50	13	10	2006	0.35
14:00	13	10	2006	0.38
14:10	13	10	2006	0.41
14:20	13	10	2006	0.45
14:30	13	10	2006	0.49
14:40	13	10	2006	0.53

14:50	13	10	2006	0.57
15:00	13	10	2006	0.62
15:10	13	10	2006	0.66
15:20	13	10	2006	0.71
15:30	13	10	2006	0.76
15:40	13	10	2006	0.80
15:50	13	10	2006	0.85
16:00	13	10	2006	0.89
16:10	13	10	2006	0.94
16:20	13	10	2006	0.98
16:30	13	10	2006	1.02
16:40	13	10	2006	1.06
16:50	13	10	2006	1.10
17:00	13	10	2006	1.14
17:10	13	10	2006	1.17
17:20	13	10	2006	1.21
17:30	13	10	2006	1.24
17:40	13	10	2006	1.26
17:50	13	10	2006	1.29
	13	10		1.31
18:00			2006	
18:10	13	10	2006	1.33
18:20	13	10	2006	1.35
18:30	13	10	2006	1.36
18:40	13	10	2006	1.37
18:50	13	10	2006	1.38
19:00	13	10	2006	1.38
19:10	13	10	2006	1.39
19:20	13	10	2006	1.38
19:30	13	10	2006	1.38
19:40	13	10	2006	1.37
19:50	13	10	2006	1.36
20:00	13	10	2006	1.34
20:10	13	10	2006	1.32
20:20	13	10	2006	1.30
20:30	13	10	2006	1.28
20:40	13	10	2006	1.25
20:50	13	10	2006	1.23
21:00	13	10	2006	1.20
21:10	13	10	2006	1.17
21:20	13	10	2006	1.14
21:30	13	10	2006	1.10
21:40	13	10	2006	1.07
21:50	13	10	2006	1.04
22:00	13	10	2006	1.01
22:10	13	10	2006	0.98
22:20	13	10	2006	0.94
22:30	13	10	2006	0.92
22:40	13	10	2006	0.89
22:50	13	10	2006	0.86
23:00	13	10	2006	0.84
23:10	13	10	2006	0.82
23:20	13	10	2006	0.82
23:30	13	10	2006	0.79
23:40	13	10	2006	0.77
23:50	13	10	2006	0.76

APPENDIX H SEDIMENT SAMPLE LOGS

GS-COE001

Grab sample

Latitude: 38° 42.846' S

Longitude: 148° 18.108' E

Easting: 613180

Project name: Site Surveys

Project number: 10033

Client: Apache

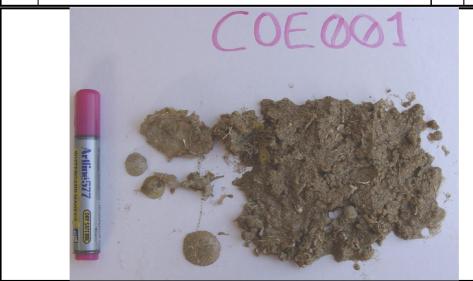
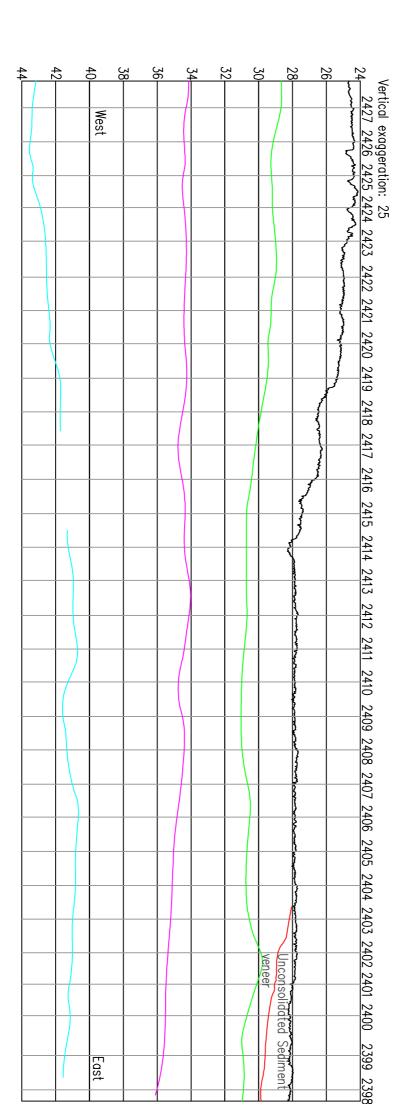

Northing: 5714145 Survey vessel: FTV Bluefin

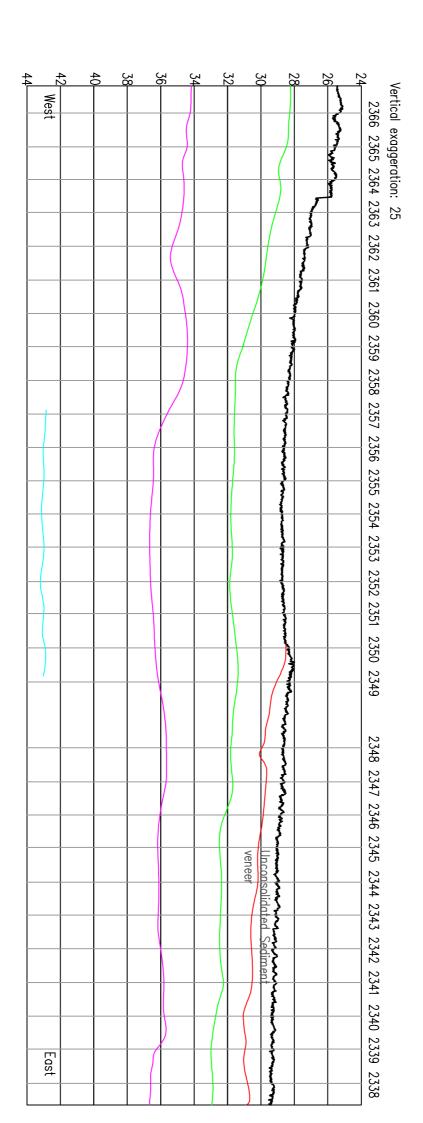
Chart number:

13-Oct-06, 15:50 Datum: GDA94
Water depth: 91m Projection: UTM
Penetration:

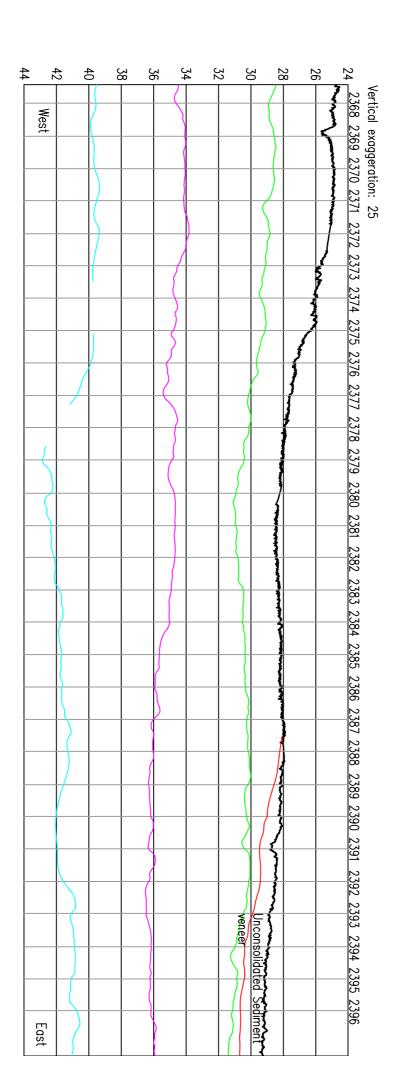
Recovery:

		Geo	otechn	ical
Depth	Description	Depth	USS	UCS
		(m)	(kPa)	(kg/cm ²)
0m –	Light brown, well graded, gravelly fine to coarse SAND. Note: GRAVEL fraction			
	comprises 100% shell and coral fragments up to 50mm in diameter	1		
-		1		
_				
1m _				
-				
1 =				
2m -				
2111 -				
1 =				
1 -				
_				
-				
3m –				
	Note: Obtained with ship made dredge			
	Trote. Obtained with ship made dreage	1		

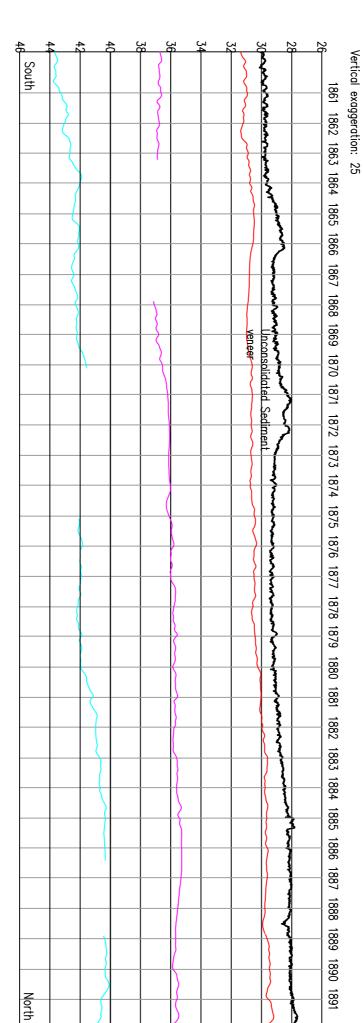


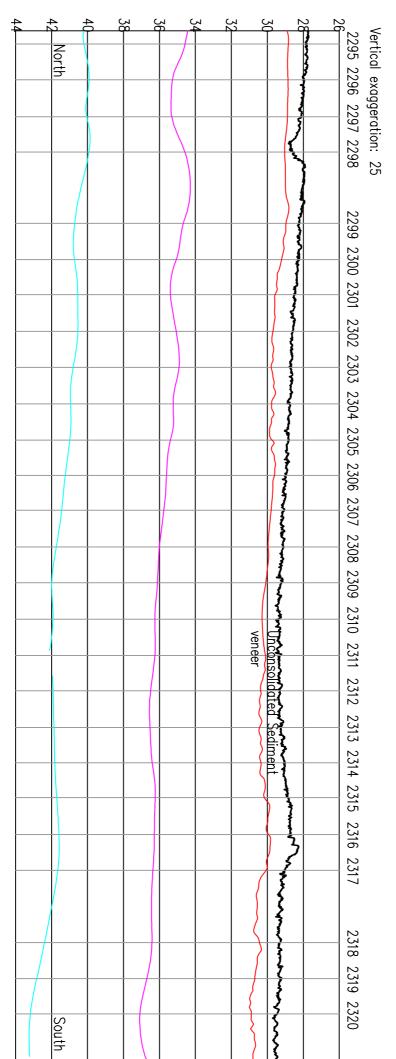

GS-WA001 Grab sample Latitude: 38° 29.134' S Project name: Site Surveys Longitude: 147° 15.581' E Project number: 10033 Easting: 522649 Client: Apache Northing: 5740276 Survey vessel: FTV Bluefin Chart number: 13-Oct-06, 00:55 Datum: GDA94 Water depth: 28m Projection: UTM Penetration: Recovery: Geotechnical Description Depth Depth USS (kPa) (m) (kg/cm²) Light brown, poorly graded, slightly gravelly, fine SAND 3m Note: Obtained with ship made dredge

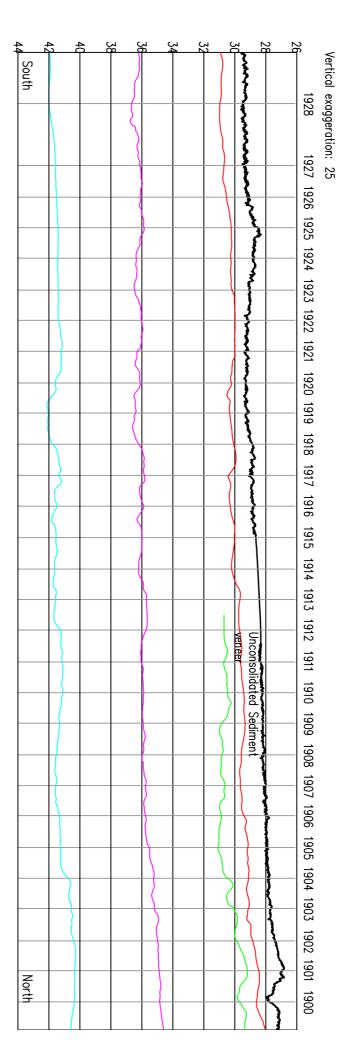
Page 2

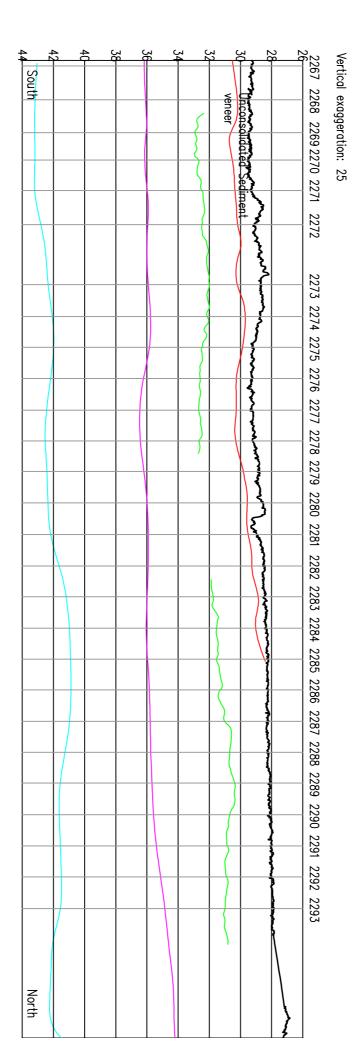

APPENDIX I WASABI-1 PROFILES

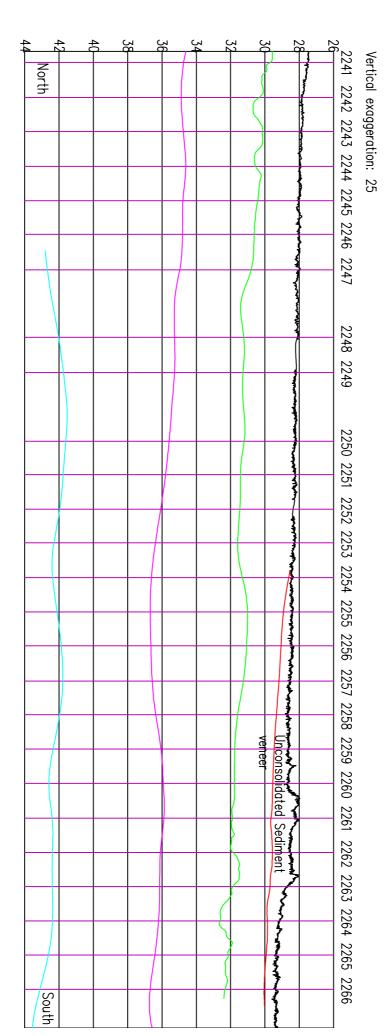
Crossline 1

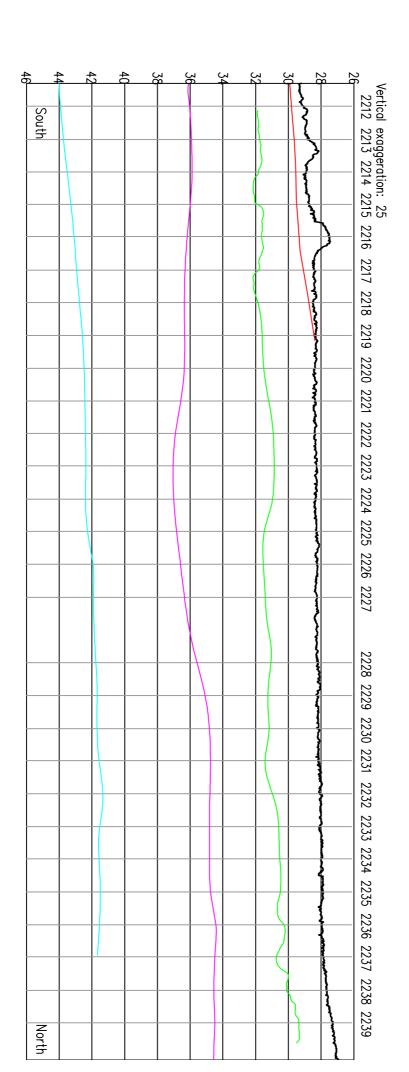


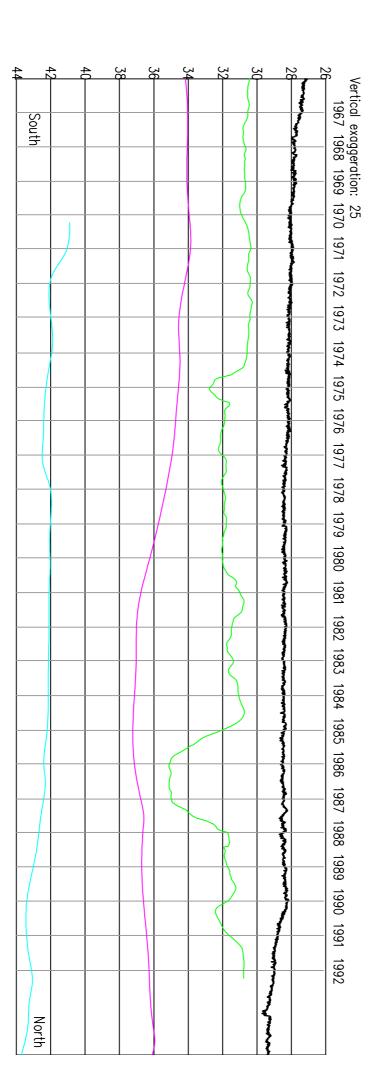

Crossline 3

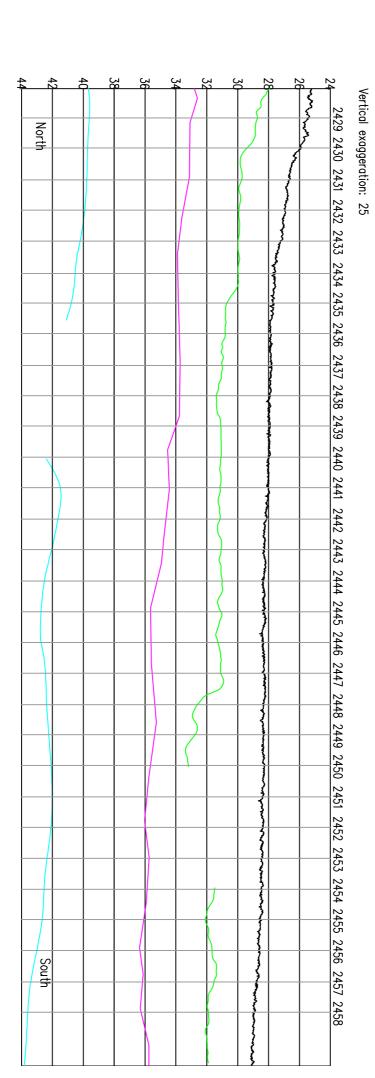

Line 001

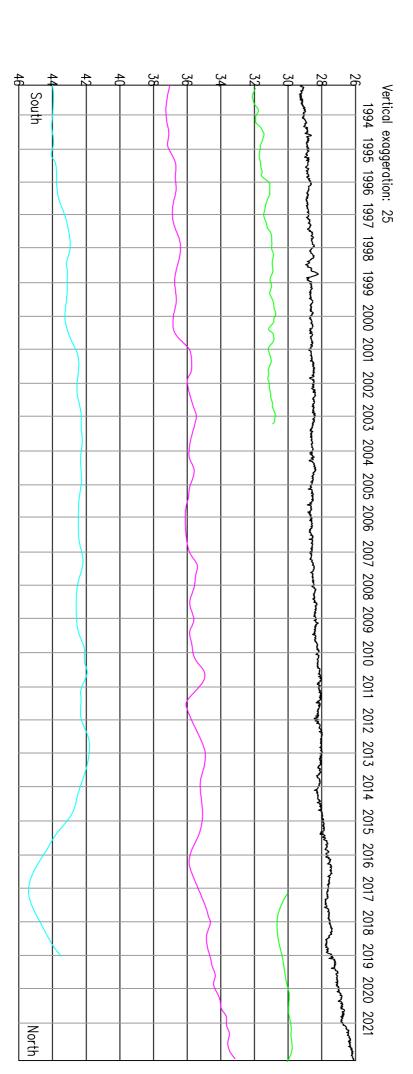

Line 100

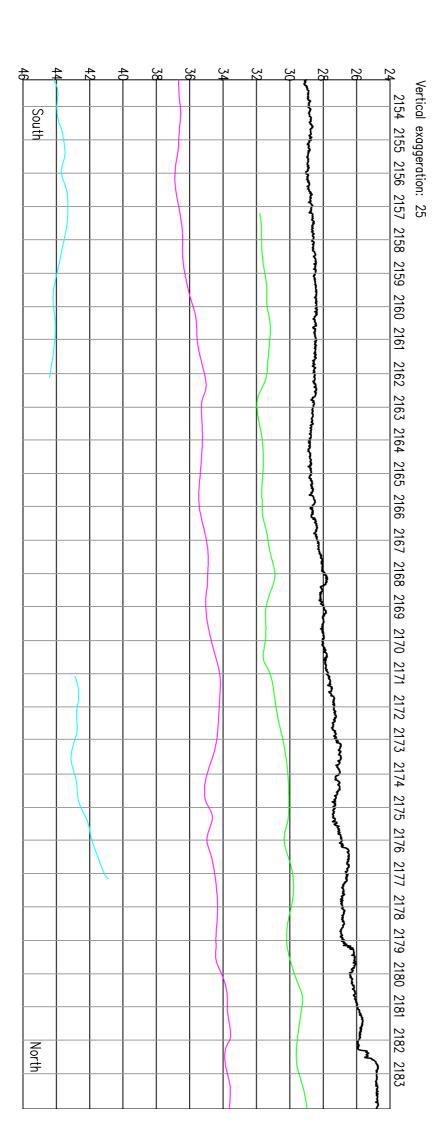

Line 200

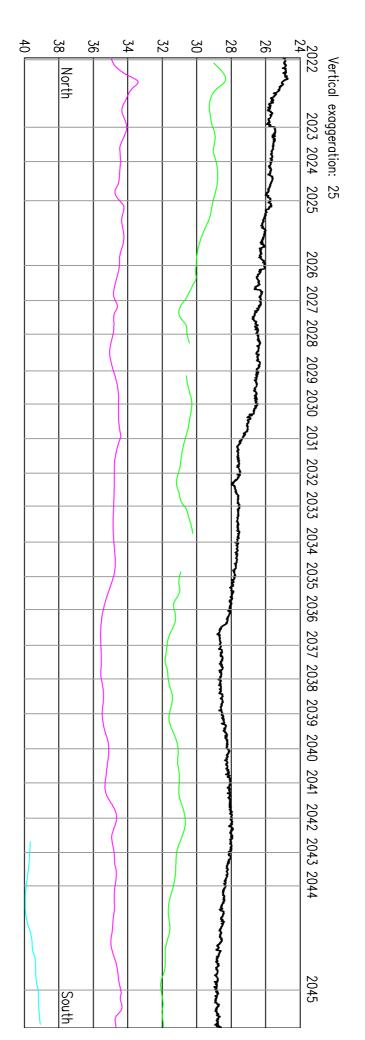

Line 300

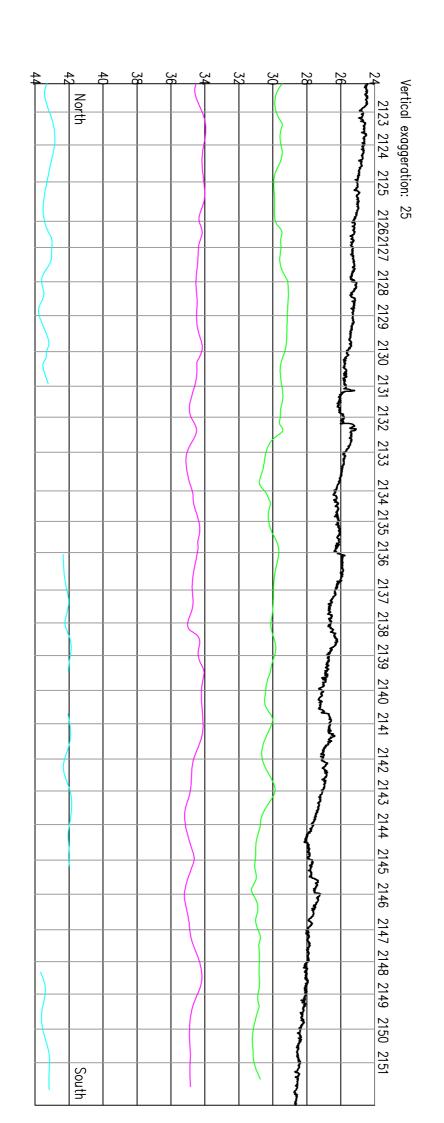

Line 400


Line 500

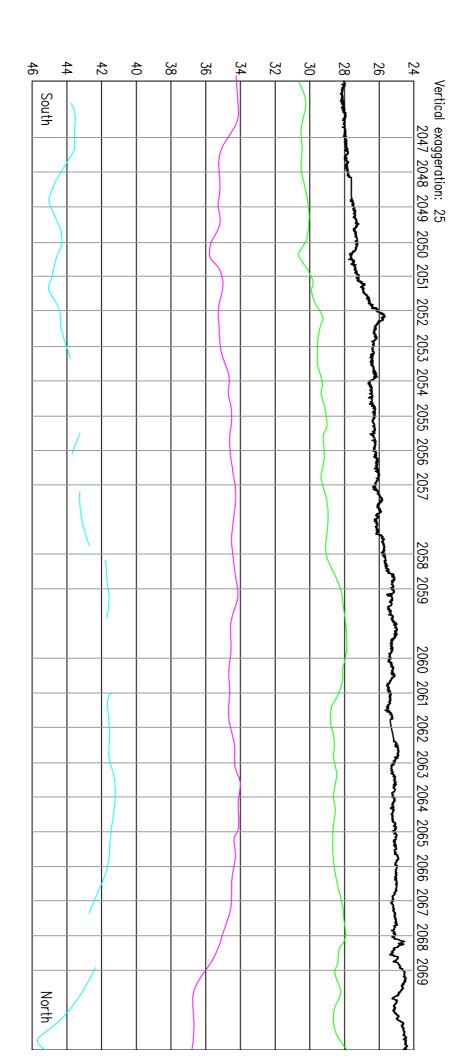

Line 600


Line 700

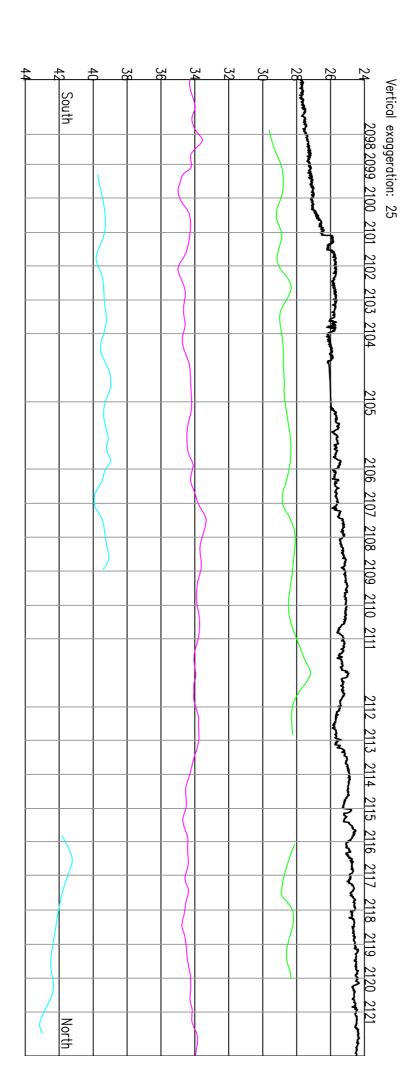

Line 800

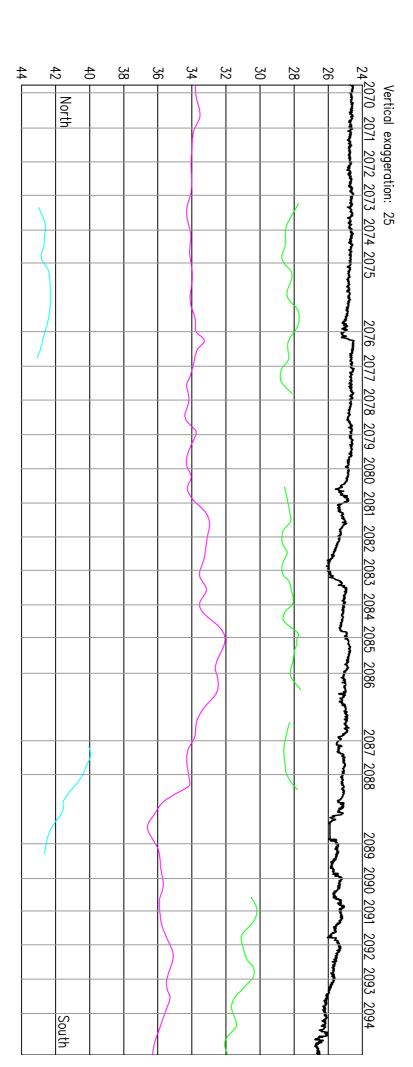


Line 900



Line 1000




Line 1200

Line 1300

Line 1400

Apache Northwest Pty Ltd

Cuttings Descriptions Report

Well Name: Wasabi-1 **Print Date** 5/03/2008

Wellsite Geologist(s): A Cruickshank H Little

li	nterv (m)		%	Lithology / Show Descriptions	Ca (%)	Mg (%
/lain	• •					
862.0	-	875.0	80	CALCARENITE: off white, light to medium grey, light brownish grey in part, arenaceous, common pale grey argillaceous matrix, abundant fossils, common very coarse frosted & iron stained quartz grains, trace nodular pyrite, rare glauconite specks, moderately hard aggregates, tight visible porosity, trace mineral fluorescence. FLUORESCENCE: (Trace) pale yellow mineral fluorescence.	75	
			20	CALCILUTITE: light to medium grey, off white to pale grey, trace grey, soft to dispersive, moderately hard in part, sub-blocky, argillaceous, trace microcrystalline, minor micro fossils		
875.0	-	885.0	70	CALCARENITE: as above, common silty matrix & locally grading to calcisiltite.	74	8
			30	CALCISILTITE: very light grey to light grey, medium to dark grey in part, firm, sub-blocky to blocky, commonly argillaceous & locally grading to calcilutite, common micro fossils, minor very fine glauconite, locally are		
885.0	-	895.0	50 50	CALCARENITE: as above, trace to minor very coarse translucent to frosted quartz grains. CALCISILTITE: as above		
895.0		010.0		CALCARENITE: as above, occasional very coarse lithics.	68	5
0.050	-	910.0	60	CALCISILTITE: as above, occasional very coarse litrics. CALCISILTITE: as above, common to locally abundant micro fossils.	68	5
			20	CALCILUTITE: as above, commonly pale brown to tan.		
				· ·		
910.0	-	920.0	75	CALCARENITE: as above		
			20	CALCISILTITE: as above		
			5	CALCILUTITE: as above		
920.0	-	930.0	60	ARGILLACEOUS CALCARENITE: as above, common argillaceous matrix and grading to calcilutite.	64	6
			20	CALCILUTITE: as above, dominantly light to medium grey, common off white.		
			20	CALCISILTITE: as above, dominantly light to medium grey, common off white.		
930.0	-	940.0	60	ARGILLACEOUS CALCARENITE: as above		
			20	CALCILUTITE: as above		
			20	CALCISILTITE: as above		
940.0	-	950.0	70	ARGILLACEOUS CALCARENITE: as above, rare sponge spicules, rare coral fragments, rare rounded frosted quartz grains		
			20	CALCISILTITE: as above		
			10	CALCILUTITE: as above		
950.0	-	970.0	40	CALCISILTITE: very light grey to light grey, medium to dark grey in part, firm, sub-blocky to blocky, commonly argillaceous & locally grading to calcilutite, common micro fossils, minor very fine glauconite, locally are	61	4
			40	ARGILLACEOUS CALCARENITE: dominantly as above with common colourless		
			20	to white calcite crystals, minor sponge spicules, rare bivalve casts CALCILUTITE: as above		
970.0	-	980.0	50	ARGILLACEOUS CALCARENITE: as above		
			30	CALCISILTITE: as above		
			20	CALCILUTITE: as above		
~ 0		200 5:		a Systems International Pty Ltd	Page	1

980.0 -	990.0				
000.0		50	CALCISILTITE: as above	47	1
000.0		30	ARGILLACEOUS CALCARENITE: as above		
000.0		20	CALCILUTITE: as above		
990.0 -	1000.0	50	CALCISILTITE: as above	35	1
		30	ARGILLACEOUS CALCARENITE: off white, light to medium grey, light brownish grey in part, sub blocky to dominantly blocky, soft to firm, dominantly firm, arenaceous, common pale grey argillaceous matrix, abundant fossils, common very coarse frosted & iron stained quartz grains, trace nodular pyrite, rare glauconite specks, moderately hard aggregates, tight visible porosity, trace mineral fluorescence. CALCILUTITE: as above		
1000.0 -	1010.0	40	CALCISILTITE: as above		
		40	ARGILLACEOUS CALCARENITE: as above		
		20	CALCILUTITE: as above		
1010.0 -	1020.0	50	CALCISILTITE: as above		
	.020.0	30	ARGILLACEOUS CALCARENITE: as above		
		20	CALCILUTITE: as above		
1020.0 -	1030.0	50	ARGILLACEOUS CALCARENITE: as above, rare pyrite		
1020.0	1000.0	30	CALCILUTITE: as above		
		20	CALCISILTITE: as above		
1030.0 -	1040.0	60	ARGILLACEOUS CALCARENITE: as above	38	3
1030.0 -	1040.0	30	CALCISILTITE: as above	36	3
		10	CALCILUTITE: as above		
1040.0 -	1050.0	60	ARGILLACEOUS CALCARENITE: as above		
		30	CALCISILTITE: as above		
		10	CALCILUTITE: as above		
1050.0 -	1060.0	60	ARGILLACEOUS CALCARENITE: as above	34	
		30	CALCISILTITE: as above		
		10	CALCILUTITE: as above		
1060.0 -	1070.0	60	ARGILLACEOUS CALCARENITE: as above		
		30	CALCISILTITE: as above		
		10	CALCILUTITE: as above, rare dark green glauconite		
1070.0 -	1080.0	50	ARGILLACEOUS CALCARENITE: off white, light to medium grey, light brownish grey in part, sub blocky to dominantly blocky, soft to firm, dominantly firm, rare moderately hard, arenaceous, common pale grey argillaceous matrix, abundant fossils, common very coarse frosted & iron stained quartz grains, trace nodular pyrite, rare glauconite specks, tight visible porosity, trace mineral fluorescence. CALCISILTITE: as above		
		10	CALCILUTITE: as above		
1080.0 -	1090.0	40	CALCISILTITE: as above	30	0
1000.0 -	1030.0	30	ARGILLACEOUS CALCARENITE: as above	30	
		30	CALCILUTITE: as above		
1090.0 -	1100.0	40	CALCISILTITE: as above		
	-	30	CALCILUTITE: as above		
		30	ARGILLACEOUS CALCARENITE: as above		

Interval (m)	%	Lithology / Show Descriptions	Ca (%)	Mg (%
1100.0 - 1110.0	40	CALCISILTITE: as above		
	30	ARGILLACEOUS CALCARENITE: as above		
	30	CALCILUTITE: as above		
1110.0 - 1120.0	50	CALCISILTITE: as above	30	1
	30	CALCILUTITE: as above		
	20	ARGILLACEOUS CALCARENITE: as above		
1120.0 - 1130.0	50	CALCISILTITE: as above	29	1
	30	CALCILUTITE: as above		
	20	ARGILLACEOUS CALCARENITE: as above, very rare well rounded spheroidal quartz grains greater than very course		
1130.0 - 1140.0	50	CALCISILTITE: as above		
	30	CALCILUTITE: as above		
	20	ARGILLACEOUS CALCARENITE: as above		
1140.0 - 1150.0	40	CALCISILTITE: as above		
	40	CALCILUTITE: as above		
	20	ARGILLACEOUS CALCARENITE: as above		
1150.0 - 1160.0	50	CALCILUTITE: as above	34	
	40	CALCISILTITE: as above		
	10	ARGILLACEOUS CALCARENITE: as above		
1160.0 - 1170.0	50	CALCILUTITE: as above, rare black carbonaceous material		
	40	CALCISILTITE: as above		
	10	ARGILLACEOUS CALCARENITE: as above		
1170.0 - 1180.0	50	CALCILUTITE: as above		
	40	CALCISILTITE: as above		
	10	ARGILLACEOUS CALCARENITE: as above		
1180.0 - 1190.0	40	CALCILUTITE: as above	28	3
	40	CALCISILTITE: as above		
	20	ARGILLACEOUS CALCARENITE: as above		
1190.0 - 1200.0	40	CALCISILTITE: as above		
	40	CALCILUTITE: as above, trace black carbonaceous material, rare round reddish brown lithic grains		
	20	ARGILLACEOUS CALCARENITE: as above		
1200.0 - 1210.0	100	MARL: pale to medium grey, very argillaceous, occasional calcareous fragments, locally arenaceous, firm to moderately hard, sub-blocky to blocky.	25	
1210.0 - 1230.0	100	MARL: as above, minor carbonaceous material.	25	1
1230.0 - 1240.0	100	MARL: as above	23	2
1240.0 - 1250.0	80	CALCAREOUS SANDSTONE: pale brown, light grey brown, translucent in part, very fine to coarse, dominantly very fine to fine, poor to moderately sorted, sub-angular to sub-rounded, locally angular coarse grains, common strong calcareous cement, common pale grey argillaceous matrix & locally grading to arenaceous SILTSTONE, common carbonaceous specks, locally common very fine glauconite, minor disseminated & nodular pyrite, generally loose grains, very hard aggregates, poor visible porosity. CALCAREOUS SILTSTONE: pale to medium grey, very argillaceous & commonly	4	1
		grading to calcareous claystone, minor calcareous fragments, firm to moderately hard, sub-blocky to blocky.		

Interval (m)	%	Lithology / Show Descriptions	Ca (%)	Mg (%)
1250.0 - 12	260.0 90	CALCAREOUS SANDSTONE: medium grey, occasionally off white to pale green, very fine to coarse, dominantly medium, poorly sorted, angular to sub-rounded, minor moderately strong calcareous cement, locally common light brown grey argillaceous matrix, common to abundant disseminated pyrite, common glauconite, generally loose grains, very hard aggregates, poor to fair visible porosity, fair to good inferred porosity. CALCAREOUS SILTSTONE: as above, common to abundant disseminated pyrite,		
	10	common very fine glauconite specks.		
1260.0 - 12	270.0 100	CALCAREOUS SANDSTONE: clear to translucent, frosted, off white, fine to very coarse, poorly sorted, angular to sub-angular, minor weak calcareous cement, rare pale grey argillaceous matrix, common nodular and disseminated pyrite, common glauconite, generally loose clean quartz grains, good visible and inferred porosity.		
1270.0 - 12	280.0 95	CALCAREOUS SANDSTONE: clear to translucent, frosted, off white, fine to coarse, dominantly medium, poor sorted, angular to sub-rounded, minor weak calcareous cement, rare pale grey argillaceous matrix, generally loose clean quartz grains, good visible and inferred porosity. CALCAREOUS SILTSTONE: light to medium grey brown, light to medium grey, argillaceous, minor calcareous material, common carbonaceous specks, common nodular and disseminated pyrite, common very fine glauconite specks, locally	1	3
		micaceous, firm, sub-blocky to blocky.		
1280.0 - 12	290.0 90	CALCAREOUS SANDSTONE: as above. CALCAREOUS SILTSTONE: as above.		
1290.0 - 13	300.0 95	SANDSTONE: clear to translucent, pale brown, fine to very coarse, poorly sorted, angular to sub-rounded, trace weak calcareous cement, locally medium brown argillaceous matrix, common iron stained coarse grains, common carbonaceous fragments, occasional nodular pyrite and glauconite specks, generally loose clean quartz grains, good visible and inferred porosity.		
	5	SILTSTONE: as above.		
1300.0 - 13	310.0 100	SANDSTONE: as above		
1310.0 - 13	320.0 90	SANDSTONE: as above. SILTSTONE: light to medium grey, light bluish grey, argillaceous and locally grading to claystone, occasional lithics and carbonaceous specks, trace nodular pyrite, trace micromicaceous, minor calcareous material, firm to moderately hard, sub-fissile to sub-blocky.		
1320.0 - 13	330.0 95	SANDSTONE: clear to translucent, frosted, medium to very coarse, dominantly coarse, moderately well sorted, angular to sub-angular, rare weak calcareous cement, no visible matrix, occasional carbonaceous fragments, abundant loose clean quartz grains, good inferred porosity		
	5	SILTSTONE: medium to dark grey, occasional light grey, argillaceous, common carbonaceous material, locally arenaceous and grading to very fine sandstone, minor micaceous flecks, moderately hard to hard, sub-blocky to sub-fissile.		
1330.0 - 13	70	SANDSTONE: clear to translucent, pale to medium brown grey, very fine to coarse, poorly sorted, angular to sub-angular to sub-angular, minor weak calcareous cement, locally common light brown grey argillaceous matrix where fine grained and grading to arenaceous siltstone, common carbonaceous laminations and specks, generally loose grains, moderately hard fine grained aggregates, poor visible porosity, fair to good inferred porosity.	2	3
	25	SILTSTONE: medium to dark grey, argillaceous, common carbonaceous material and locally grading to coal stringers, minor micaceous flecks, moderately hard to hard, sub-blocky to sub-fissile.		
	5	COAL: dark grey to black, sub-vitreous, dull to earthy in part, common silty laminations and locally grading to carbonaceous siltstone, friable to moderately hard, sub-fissile to sub-blocky, locally sub-conchoidal.		
1340.0 - 13	350.0 95	SANDSTONE: clear to translucent, frosted, medium to very coarse grained, poorly sorted, angular to sub-angular, trace weak calcareous cement, minor localised pale grey brown argillaceous matrix, common carbonaceous specks, generally loose grains, good inferred porosity.		
	5	SILTSTONE: as above.		
1350.0 - 13	860.0 90	SANDSTONE: as above, nil visible matrix.		
	10	SILTSTONE: as above, occasionally off white to pale bluish grey, locally		

	Interval (m)			Lithology / Show Descriptions	Ca (%)	Mg (%)
				arenaceous and grading to very fine sandstone.		
1360.0	-	1370.0	85	SANDSTONE: as above	1	1
			15	SILTSTONE: as above		
1370.0	-	1380.0	85	SANDSTONE: clear to translucent, frosted, fine to very coarse, poor sorted, angular to sub-rounded, minor weak calcareous cement, rare pale grey argillaceous matrix, occasional carbonaceous material, trace very fine glauconite specks, generally loose grains, good inferred porosity.		
			15	SILTSTONE: as above, occasionally micromicaceous.		
1380.0	-	1390.0	40	COAL: black, dark grey, vitreous to sub-vitreous, silty in part and locally grading to very dark brown carbonaceous siltstone, hackly in part, friable to moderately hard, conchoidal to sub-conchoidal fracture, sub-blocky in part.		
			40	SILTSTONE: medium brown, me grey brown, tan, argillaceous, locally arenaceous laminations, common to abundant carbonaceous material and locally grading to coal, trace micromicaceous, firm to moderately hard, sub-blocky to sub-fissile.		
			20	SANDSTONE: pale brown, light grey brown, very fine to medium, occasional very coarse angular frosted grains, poor sorted, sub-angular to sub-rounded, minor pale grey argillaceous matrix and locally grading to arenaceous siltstone, generally loose, hard aggregates, poor visible porosity.		
1390.0	-	1400.0	80	COAL: black, dark grey, vitreous to sub-vitreous, silty in part and locally grading to very dark brown carbonaceous siltstone, hackly in part, friable to moderately hard, conchoidal to sub-conchoidal fracture, sub-blocky in part.		
			15	SILTSTONE: as above, occasionally light grey.		
			5	SANDSTONE: as above, very fine to very coarse, poor sorted, minor light brown argillaceous matrix.		
1400.0	-	1410.0	50	COAL: as above		
			45	SILTSTONE: as above, arenaceous and locally grading to very fine sandstone.		
			5	SANDSTONE: as above		
1410.0	-	1420.0	75	SANDSTONE: light grey brown, translucent, fine to coarse, poor sorted, sub-angular to sub-rounded, minor moderately strong calcareous cement, minor nodular pyrite, generally loose grains, fair to good inferred porosity.		
			10	CALCAREOUS CLAYSTONE : pale bluish grey, siliceous, common to abundant calcareous material, hard to very hard, sub-fissile.		
			10	SILTSTONE: medium grey brown, medium grey brown, light brown, arenaceous and locally grading to very fine sandstone, occasionally argillaceous, common lithics, common carbonaceous laminations, moderately hard to hard, sub-blocky to blocky.		
			5	COAL: as above, common silty laminations and grading to carbonaceous siltstone.		
1420.0	-	1425.0	70	SANDSTONE: clear to translucent, pale grey, very fine to very coarse, dominantly fine to medium, poorly sorted, angular to sub-rounded, minor weak calcareous cement, localised pale grey argillaceous matrix, common to locally abundant disseminated pyrite and glauconite specks, generally loose, hard aggregates, poor visible porosity, fair to good inferred porosity.	4	4
			20	COAL: as above.		
			10	SILTSTONE: as above.		
1425.0	-	1430.0	80	COAL: as above.	2	
			20	SILTSTONE: as above.		
1430.0	-	1435.0	50	SILTSTONE: dark brown grey, dark grey, argillaceous, abundant carbonaceous material and laminations, common grading to coal, occasional siderite cement, hard to very hard, sub-fissile.		
			50	COAL: as above		
1435.0	-	1440.0	95	SILTSTONE: light grey brown, light to medium brown, arenaceous & locally grading to very fine sandstone, occasional micromicaceous, trace calcareous material, common carbonaceous material, hard to very hard, sub-blocky, locally sub-fissile.		
			5	COAL: as above, commonly grading to carbonaceous siltstone.		
1440.0	-	1445.0	95	SANDSTONE: clear to translucent, frosted, Fe stained, medium to very coarse, dominantly coarse to very coarse, generally well sorted, angular to sub-angular, minor sub-rounded, abundant clean quartz grains, very good visible & inferred		

Interval (m)	%	Lithology / Show Descriptions	Ca (%)	Mg (%)
		porosity.		
	5	SILTSTONE: as above.		
1445.0 - 1450.0	90	SANDSTONE: as above, trace weak calcareous cement.		
	10	SILTSTONE: pale grey, pale bluish grey, pale brown to tan, siliceous, minor calcareous material, trace micromicaceous, hard to very hard, sub-fissile.		
1450.0 - 1455.0	90	SANDSTONE: as above		
	10	SILTSTONE: as above		
1455.0 - 1460.0	100	SANDSTONE: as above		
1460.0 - 1470.0	95	SANDSTONE: as above		
	5	COAL: black, vitreous lustre, hard, blocky, conchoidal fracture in part		
1470.0 - 1475.0	70	SANDSTONE: as above		
1470.0	30	COAL: dominantly as above with rare localised brown argillaceous micro		
	30	laminations		
1475.0 - 1480.0	80	SANDSTONE: dominantly as above with 20% white to off white, fine to medium, dominantly fine, angular, well sorted, weakly calcareous cemented aggregates, trace very light grey argillaceous matrix, commonly fractured aggregates creating loose quartz angular grains, poor to moderate inferred porosity COAL: as above		
1480.0 - 1485.0	90	SANDSTONE: as above, dominately loose, 10% fine grained aggregates	0	3
	10	CLAYSTONE: light blue grey to medium blue grey, firm to moderately hard, blocky, moderately calcareous		
1485.0 - 1490.0	70	SANDSTONE: as above		
	20	COAL: as above		
	10	CLAYSTONE: as above, with localised white fleck throughout		
1490.0 - 1495.0	90	COAL: as above		
	10	SANDSTONE: as above		
1495.0 - 1500.0	70	COAL: as above		
	30	SANDSTONE: clear, transparent, loose, very fine to fine grained, dominantly fine,		
		well sorted, sub angular to sub round, dominantly sub angular, spheroidal, rare nodular pyrite, moderate to good inferred porosity, no show		
1500.0 - 1505.0	100	SANDSTONE: white, entirely pulverised, rock flour, non calc		
1505.0 - 1510.0	100	SANDSTONE: dominantly white, minor transparent, loose, coarse to very coarse, dominantly very coarse, very well sorted, sub angular to rounded, dominantly rounded, spherical, good to very good inferred porosity, no show		
1510.0 - 1515.0	100	SANDSTONE: as above		
1515.0 - 1520.0	100	SANDSTONE: as above		
1520.0 - 1525.0	95	SANDSTONE: dominantly pulverised quartz grains, white rock flour, minor loose, fine to coarse, dominantly medium, sub rounded, spherical grains, no show	1	
	5	CLAYSTONE: light olive grey to light brown grey, soft, sub blocky, slightly calcareous		
1525.0 - 1530.0	100	SANDSTONE: white, transparent, colourless, loose, fine to very coarse, predominantly very coarse, well sorted, sub rounded to rounded, dominantly sub rounded, spherical, very good inferred porosity, no show		
1530.0 - 1535.0	80	SANDSTONE: off white, pale grey to pale brown, very fine to fine, occasionally medium to coarse grains, generally well sorted, sub-rounded, minor sub-angular, trace weak calcareous cement, common to abundant pale grey brown silty matrix and commonly grading to arenaceous siltstone, common silty laminations, common to rock flour, common carbonaceous material, generally loose grains, poor visible porosity.		

Interval (m)			%	Lithology / Show Descriptions	Ca (%)	Mg (%
1530.0	-	1535.0	20	SILTSTONE: pale brown, pale grey brown, arenaceous and common grading to very fine sandstone, occasional carbonaceous material, firm, sub-blocky.		
1535.0	-	1540.0	90	SANDSTONE: as above		
			10	SILTSTONE: as above		
1540.0	-	1545.0	100	CLAYSTONE: medium brown, medium orange brown, very dark brown grey, trace arenaceous in part, trace calcareous material, common carbonaceous material where very dark brown grey, firm to hard, dispersive to sub-blocky, sub-fissile in part.		
1545.0	-	1550.0	90	SANDSTONE: translucent, frosted, pale brown, very fine to very coarse, poorly sorted, angular to sub-angular, minor sub-rounded, minor weak calcareous cement, trace pale brown silty matrix, generally loose clean grains, good inferred porosity. SILTSTONE: as above, rare disseminated pyrite.	3	
1550.0	-	1555.0	100	SANDSTONE: translucent, frosted, very fine to very coarse, generally coarse to very coarse, moderately well sorted, angular to sub-angular, trace weak calcareous cement, minor moderately strong siliceous cement, trace off white to light brown argillaceous matrix, trace disseminated pyrite, generally loose grains, good inferred porosity.		
1555.0	-	1560.0	100	SANDSTONE: as above, common off white to pale brown argillaceous matrix.		
1560.0	-	1565.0	100	SANDSTONE: as above		
1565.0	-	1570.0	80	SANDSTONE: as above		
			20	CLAYSTONE: off white to pale brown, tan, siliceous, trace medium grey silty laminations, hard to very hard, sub-blocky to sub-fissile. Possibly tuff?		
1570.0	-	1575.0	90	SANDSTONE: as above		
			10	CLAYSTONE: as above		
1575.0	-	1580.0	80	SANDSTONE: as above.		
			10	COAL: black, very dark grey, vitreous, sub vitreous in part, minor silty laminations and locally grading to carbonaceous siltstone, firm to hard, brittle in part, conchoidal to sub-conchoidal fracture, sub-blocky in part. CLAYSTONE: as above, dominantly bluish grey.		
1580.0	-	1585.0	50	SANDSTONE: as above	3	
			40	COAL: as above		
			10	CLAYSTONE: as above		
1585.0	-	1590.0	95 5	SANDSTONE: pale brown, translucent, frosted, fine to very coarse, poorly sorted, angular to sub-angular, generally loose clean grains, good inferred porosity. CLAYSTONE: as above.		
1590.0	-	1600.0	80	SANDSTONE: as above.		
			20	CLAYSTONE: off white to pale brown, tan, siliceous, trace medium grey silty laminations, hard to very hard, sub-blocky to sub-fissile.		
1600.0	-	1605.0	90	SANDSTONE: as above	1	
			10	CLAYSTONE: as above		
1605.0	-	1620.0	100	SANDSTONE: as above, translucent and frosted, minor weak calcareous cement.		
1620.0	-	1635.0	80	SANDSTONE: as above, minor calcareous, trace fossil fragments, trace nodular pyrite.		
			20	CLAYSTONE: as above.		
1635.0	-	1645.0	85	SANDSTONE: as above, translucent and frosted, minor weak calcareous cement.	3	
			15	CLAYSTONE: as above.		
1645.0	-	1650.0	55	CLAYSTONE: as above		
			45	SANDSTONE: as above.		
1650.0	-	1660.0	60	SANDSTONE: as above, minor weak calcareous cement.		

Interval (m)		al				
1650.0	-	1660.0	20	SILTSTONE: pale to medium grey, medium bluish grey, siliceous, argillaceous and grd to claystone in part, occasional calcareous material, minor carbonaceous specks, trace micromicaceous, trace lithics, hard to very hard, sub-fissile to sub-blocky.		
			20	CLAYSTONE: as above		
1660.0	-	1665.0	80	SANDSTONE: as above, dominantly coarse to very coarse, moderately sorted.	4	
			15	SILTSTONE: as above		
			5	CLAYSTONE: as above		
1665.0	-	1670.0	90	SANDSTONE: as above		
			10	SILTSTONE: as above		
1670.0	-	1675.0	10	SANDSTONE: pale brown, clear to translucent, frosted, very fine to very coarse, dominantly fine to medium, poorly sorted, sub-angular to sub-rounded, angular where coarse, trace weak calcareous cement, common pale brown argillaceous matrix & locally grading to arenaceous siltstone, common carbonaceous laminations, minor nodular pyrite, generally loose, moderately hard to hard aggregates, tight to poor visible porosity, fair inferred porosity. SILTSTONE: pale to medium brown, arenaceous and commonly grading to very fine sandstone, common micromicaceous, trace calcareous material, common carbonaceous laminations and specks, common nodular pyrite, hard, sub-blocky.		
			5	COAL: as above, common grading to carbonaceous siltstone.		
1675.0	-	1680.0	95	SANDSTONE: clear to translucent, off white in part, fine to very coarse, poorly sorted, angular to subangular, subround where fine, trace weak calcareous cement, nil visible matrix, occasional carbonaceous material, occasional nodular pyrite, good inferred porosity		
			5	SILTSTONE: as above		
1680.0	-	1685.0	100	SANDSTONE: dominantly as above, frosted, translucent, minor off white to pale brown argillaceous matrix, no calcareous cement		
1685.0	-	1690.0	100	SANDSTONE: as above		
1690.0	-	1695.0	100	SANDSTONE: as above	1	
1695.0	-	1700.0	60	SANDSTONE: as above		
			40	SILTSTONE: off white to pale brown, locally pale brownish grey, hard to very hard, subblocky, common very fine sand grains, common lithics and carbonaceous material		
1700.0	-	1705.0	90	SANDSTONE: dominantly as above, dominantly coarse to very coarse, generally well sorted		
			10	SILTSTONE: as above		
1705.0	-	1710.0	95 5	SILTSTONE: off white, off white to pale grey, occasional light blue grey, hard to very hard, sub-blocky to sub-fissile, locally arenaceous, very fine Sand grains, locally argillaceous, trace lithics fragments, trace carbonaceous material SANDSTONE: as above		
1710.0	_	1720.0	60	SANDSTONE: as above		
. 2.0			40	SILTSTONE: as above		
1720.0	-	1725.0	100	SANDSTONE: off white, white, translucent, bi-modal, fine to medium, angular to subangular, dominantly subangular, moderately to well sorted, > very coarse, sub round to round, very well sorted, rare nodular pyrite, rare coral fragments, rare shl fragments, nil visible cement, moderate visible porosity		
1725.0	-	1730.0	70	SANDSTONE: as above	3	
			20	CLAYSTONE: pale blue grey, light grey, firm to moderately hard, blocky, slightly calcareous,		
			10	SILTSTONE: medium grey to dark grey, greenish grey, firm, blocky, sub fissile in part, arenaceous in part, moderately calcareous		
1730.0	-	1735.0	80	SANDSTONE: as above		
-			10	CLAYSTONE: as above		

Interval (m)		al % Lithology / Show Descriptions		Lithology / Show Descriptions	Ca (%)	Mg (%
1730.0	-	1735.0	10	SILTSTONE: as above		
1735.0	-	1745.0	100	SANDSTONE: as above		
1745.0	_	1750.0	95	SANDSTONE: as above	3	4
			5	SILTSTONE: dominantly green grey, moderately hard, blocky, moderately to very calcareous		
1750.0	-	1755.0	100	SANDSTONE : dominantly as above with 30% very fine to fine grained aggregates, weak silica cement, in part grading to SILTSTONE		
1755.0	-	1760.0	70	SANDSTONE: as above		
			30	SILTSTONE: dominantly as above with rare glauconite, carbonaceous material, lithics		
1760.0	-	1765.0	70	SANDSTONE: off white, white, translucent, loose, fine to > very course, angular to subangular, dominantly subangular, poor sorted, rare shell fragments, trace nodular pyrite, rare Foraminifera, nil visible cement, moderate visible porosity	1	
			20	CLAYSTONE: pale yellowish brown to yellowish grey, soft to firm, dominantly firm, blocky, sub blocky in part, non calcareous		
			10	SILTSTONE: as above		
1765.0	-	1770.0	100	SANDSTONE: as above, trace rock flour		
1770.0	-	1775.0	100	SANDSTONE: as above		
1775.0	-	1780.0	90	SANDSTONE: off white, white, translucent, fine to >very coarse, dominantly medium to very coarse, angular to subround, dominantly subangular, poor sorted, rare nodular pyrite, rare coal fragments, rare shell fragments, nil visible cement, moderate inferred porosity SILTSTONE: as above	1	
1780.0	-	1785.0	100	SANDSTONE: as above		
1785.0	-	1790.0	100	SANDSTONE: as above		
1790.0	-	1795.0	100	SANDSTONE: as above, common rock flour		
1795.0	-	1805.0	60	CALCAREOUS CLAYSTONE: light bluish grey, green grey, siliceous, occasional micro fossils, commonly micromicaceous, locally carbonaceous material, common to abundant calcareous material, trace nodular pyrite, hard to very hard, sub-blocky to sub-fissile.		
			40	SANDSTONE: translucent, clear, frosted, fine to very coarse, poorly sorted, angular to sub-angular, common weak calcareous cement, locally pale grey brown argillaceous matrix, occasional coal laminations, minor nodular pyrite, generally loose clean grains, frto good inferred porosity.		
1805.0	-	1810.0	50 50	CALCAREOUS CLAYSTONE: light bluish grey, green grey, siliceous, occasional micro fossils, commonly micromicaceous, locally carbonaceous material, common to abundant calcmat, trace nodular pyrite, hard to very hard, sub-blocky to sub-fissile. SANDSTONE: translucent, clear, frosted, fine to very coarse, poorly sorted, angular to sub-angular, common weak calcareous cement, locally pale grey brown argillaceous matrix, occasional coal laminations, minor nodular pyrite, generally	1	
1810.0	-	1815.0	60	loose clean grains, fair to good inferred porosity. CALCAREOUS SANDSTONE: Off white to pale brown, translucent to clear, very fine to very coarse, poorly sorted, angular to sub-angular, sub-rounded where fine grained, common moderately strong calcareous cement, locally common pale brown grey argillaceous matrix where fine grained, common rock flour, generally loose grains, very hard fine grained aggregates, poor visible porosity, fair inferred porosity where coarse.		
			40	CALCAREOUS CLAYSTONE: light bluish grey, green grey, siliceous, occasional micro fossils, commonly micromicaceous, localised carbonaceous material, common to abundant calcareous material, trace nodular pyrite, hard to very hard, sub-blocky to sub-fissile.		
1815.0	-	1820.0	75	SANDSTONE: Off white to pale brown, translucent to clear, very fine to very coarse, poorly sorted, angular to sub-angular, sub-rounded where fine grained, minor weak calcareous cement, locally common pale brown grey argillaceous matrix where fine grained, common rock flour, generally loose grains, very hard fine grained aggregates, poor visible porosity, fair inferred porosity where coarse.		

Interval (m)		% Lithology / Show Descriptions		Ca (%)	Mg (%	
1815.0	- 1	820.0	20	CLAYSTONE: light bluish grey, green grey, siliceous, occasional micro fossils, commonly micromicaceous, localised carbonaceous material, minor calcareous material, trace nodular pyrite, hard to very hard, sub-blocky to sub-fissile.		
			5	COAL: black, vitreous, hackly, very hard, conchoidal fracture.		
1820.0	- 1	825.0	80	SANDSTONE: as above		
			20	CLAYSTONE: as above		
1825.0	- 1	830.0	90	SANDSTONE: clear to translucent, frosted in part, fine to coarse, occasional very coarse angular grains, poor sorted, sub-angular to sub-rounded, minor weak calcareous cement, trace pale brown silty matrix, minor carbonaceous specks & laminations, minor nodular pyrite, generally loose clean grains, good inferred porosity. CLAYSTONE: light bluish grey, green grey, pale grey, siliceous, occasionally minor graphs calcareous material, bord to you had sub-blocky to		
				micromicaceous, minor calcareous material, hard to very hard, sub-blocky to sub-fissile.		
1830.0	- 1	835.0	85 10	SANDSTONE: pale brown grey, clear to translucent, frosted where very coarse grained, very fine to very coarse, dominantly fine to medium grained, poor sorted, sub-angular to sub-rounded, angular where very coarse, minor weak calcareous cement, common pale brown silty matrix where fine grained, common coal laminations, occasional nodular pyrite, commonly loose, very hard fine grained aggregates, tight to poor visible porosity. CLAYSTONE: as above with trace micro fossils.	2	
			5	COAL: as above, localised silty laminations and grading to dark brown		
				carbonaceous siltstone.		
1835.0	- 1	840.0	85	SANDSTONE: as above		
			10 5	COAL: as above		
1840.0	- 1	850.0	85	SANDSTONE: as above and locally grading to arenaceous siltstone.		
			5	SILTSTONE: medium brown, medium grey, arenaceous and common grading to very fine sandstone, commonly micromicaceous, common lithics and carbonaceous laminations, hard to very hard, sub-blocky.		
			5	CLAYSTONE: as above.		
			5	COAL: as above, commonly calcareous, trace micro fossils.		
1850.0	- 1	855.0	85	SANDSTONE: pale brown grey, clear to translucent, frosted where very coarse grained, very fine to very coarse, dominantly fine grained, moderately sorted, sub-angular to sub-rounded, angular where very coarse, trace weak calcareous cement, common pale brown silty matrix where fine grained, occasional coal laminations, trace nodular pyrite, commonly loose, very hard fine grained aggregates, tight to poor visible porosity. SILTSTONE: as above.		
			5	CLAYSTONE: light grey, light bluish grey, light green grey in part, siliceous, minor calcareous material, trace micro fossils, hard, sub-blocky to sub-fissile.		
1855.0	- 1	860.0	90	SANDSTONE: clear to translucent, minor pale grey brown, very fine to very coarse, poorly sorted, angular to sub-rounded, trace weak calcareous cement, locally pale brown silty matrix where fine grained, localised coal laminations, trace nodular pyrite, generally loose grains, hard fine grained aggregates, poor visible porosity, good inferred porosity, no fluorescence.	1	
			5	COAL: black, dark brown, vitreous to sub-vitreous, silty in part and grading to dark brown carbonaceous siltstone, common silty laminations, hard, sub-blocky to sub-fissile, conchoidal to sub-conchoidal where vitreous.		
			5	CLAYSTONE: as above.		
1860.0	- 1	865.0	90	SANDSTONE: as above		
			5 5	SILTSTONE: pale grey brown, light to medium brown, dark brown in part, arenaceous and commonly grading to very fine sandstone, common carbonaceous laminations and specks, minor platy micas, trace lithics, hard, sub-blocky. CLAYSTONE: as above		
1065.0		070.0				
1865.0	- 1	870.0	95	SANDSTONE: off white to pale brown, translucent, very fine to very coarse, poorly sorted, angular to sub-rounded, trace weak calcareous cement, common pale brown		

(m)	% Lithology / Show Descriptions		Ca (%)	Mg (%
(111)	5	silty matrix where fine grained and locally grading to arenaceous siltstone, occasional coal laminations, common rock flour, hard fine grained aggregates, poor visible porosity, fair inferred porosity. COAL: as above.		
1870.0 - 1880.0	90	SANDSTONE: as above		
1870.0 - 1880.0	5	SILTSTONE: as above		
	5	CLAYSTONE: as above		
1880.0 - 1890.0	70	SANDSTONE: as above	1	
	25	SILTSTONE: as above		
	5	CLAYSTONE: light bluish grey, green grey, hard to very hard, sub-blocky to sub-fissile, siliceous, minor micromicaceous, localised carbonaceous material, minor calcareous material, trace nodular pyrite		
1890.0 - 1895.0	50	SANDSTONE: as above		
	45	SILTSTONE: as above		
	5	CLAYSTONE: as above		
1895.0 - 1900.0	55	SILTSTONE: as above		
	40	SANDSTONE: as above		
	5	CLAYSTONE: as above		
1900.0 - 1905.0	40 40 20	CLAYSTONE: light bluish grey, green grey, moderately hard to hard, sub-blocky to blocky, rare sub-fissile, siliceous, minor micromicaceous, localised trace carbonaceous material, minor calcareous material, trace nodular pyrite SILTSTONE: light grey to medium grey, brownish grey, blocky, moderately hard to hard, very fine grained arenaceous, carbonaceous, micromicaceous, rare Foraminifera and shell fragments SANDSTONE: off white to pale brown, translucent, dominantly loose, very fine to very coarse, poorly sorted, angular to sub-rounded, minor weak calcareous cement, common pale brown silty matrix where fine grained and locally grading to arenaceous siltstone, occasional coal laminations, dominantly carbonaceous, poor visible porosity, fair inferred porosity.		
1905.0 - 1910.0	50	SILTSTONE: as above		
	40	SANDSTONE: as above		
	10	CLAYSTONE: as above		
1910.0 - 1915.0	40	SILTSTONE: as above	9	
	30	SANDSTONE: as above		
	30	CLAYSTONE: as above		
1915.0 - 1920.0	40	SANDSTONE: as above		
	40	CLAYSTONE: dominantly as above, increasingly grading to moderately calcareous SILTSTONE, arenaceous, common Foraminifera		
	20	SILTSTONE: as above		
1920.0 - 1925.0	50	SANDSTONE: off white to pale brown, translucent, common loose, increasingly siliceous aggregates, very fine to very coarse, dominantly fine to medium, poorly sorted, angular to sub-rounded, minor weak calcareous cement, common siliceous cement, common pale brown silty matrix where fine grained and locally grading to arenaceous siltstone, dominantly carbonaceous, minor Foraminifera, poor visible porosity, poor inferred porosity. CLAYSTONE: as above		
	10	SILTSTONE: as above, common Foraminifera, shell fragments,		
1925.0 - 1930.0	60	CLAYSTONE: as above		
	30	SANDSTONE: as above		
	10	SILTSTONE: as above		

Interval (m)		% Lithology / Show Descriptions		Ca (%)	Mg (%	
1930.0	-	1935.0	45	SANDSTONE: as above	9	
			30	SILTSTONE: as above		
			20	CLAYSTONE: becoming medium grey to light greenish grey, medium bluish grey, blocky, firm, moderately calcareous, silty, arenaceous, minor Foraminifera, increasingly grading to SLTST		
			5	COAL: very dark grey to black, sub blocky to blocky, crumbly, silty, poor lustre		
1935.0	-	1940.0	80	SANDSTONE: as above		
			10	SILTSTONE: as above		
			10	CLAYSTONE: as above		
1940.0	-	1945.0	100	SANDSTONE: off white to pale brown, translucent, 90% loose, 10% aggregates, very fine to very coarse, dominantly fine to medium, poorly sorted, moderately sorted in part, angular to sub-rounded, minor weak calcareous cement, trace siliceous cement, common very light grey to off white argillaceous matrix, minor Foraminifera, poor visible porosity, poor inferred porosity.		
1945.0	-	1950.0	100	SANDSTONE: as above		
1950.0	-	1955.0	100	SANDSTONE: as above		
1955.0	-	1960.0	100	SANDSTONE: as above with trace nodular pyrite	7	
1960.0	-	1965.0	90	SANDSTONE: as above		
			10	SILTSTONE: light brownish grey, brownish grey, hard to very hard, blocky, non calcareous, very fine arenaceous		
1965.0	-	1970.0	100	SANDSTONE: off white, colourless, translucent, loose, very fine to very coarse, dominantly medium, poorly sorted, angular to sub-rounded, common very light grey to off white argillaceous matrix, good inferred porosity		
1970.0	-	1975.0	100	SANDSTONE: as above		
1975.0	-	1980.0	100	SANDSTONE: as above		
1980.0	-	1985.0	100	SANDSTONE: dominantly as above, trace aggregates with white to very light grey calcareous argillaceous matrix, rare brownish black lithic fragments		
1985.0	-	1990.0	100	SANDSTONE: as above		
1990.0	-	1995.0	100	SANDSTONE: as above		
1995.0	-	2000.0	100	SANDSTONE: as above		
2000.0	_	2005.0	70	SANDSTONE: as above		
			30	CLAYSTONE: medium grey to brownish grey, medium dark grey, very soft to firm, dominantly soft, amorphous to blocky, dominantly sub blocky, dispersive in part, non calcareous, minor grading to SLTST		
2005.0	-	2010.0	60	SANDSTONE: as above, rare nodular pyrite		
			40	CLAYSTONE: as above		
2010.0	-	2015.0	70	SANDSTONE: as above	0	
			30	SILTSTONE: medium grey to brownish grey, medium dark grey, firm to moderately hard, dominantly firm, sub-blocky to blocky, dominantly sub-blocky, non calcareous, commonly grading to SST		
2015.0	-	2025.0	70	SANDSTONE: off white, colourless, translucent, 90% loose, very fine to very coarse, dominantly fine to medium, poorly sorted, angular to sub-rounded, spheroidal, 10% aggregates with weak calcareous cement, light to medium grey, abundant very light grey to off white argillaceous matrix, minor carbonaceous material, poor-fair inferred porosity		
			25	SILTSTONE: as above		
			5	COAL: very dark grey, black, hard, blocky, dull vitreous lustre, dominantly sub-conchoidal fracture, rare conchoidal fracture		
		2030.0	70	SANDSTONE: dominantly as above with 30% aggregates		

Interval (m)		/al	%	% Lithology / Show Descriptions					
2025.0	-	2030.0	30	SILTSTONE: as above					
2030.0	-	2035.0	60	SANDSTONE: as above					
			30	SILTSTONE: as above					
			10	CLAYSTONE: light brownish grey, light olive grey, very soft to soft, amorphous, dispersive, very calcareous					
2035.0	-	2040.0	85	SANDSTONE: pale grey to off white, clear to translucent, very fine to very coarse, dominantly fine to medium, poorly sorted, sub-angular to sub-rounded, angular where coarse grained, common moderate calcareous cement, minor pale grey argillaceous matrix & locally grading to arenaceous silttone, minor carbonaceous laminations, occasional disseminated and nodular pyrite, generally loose grains, fair to good inferred porosity. SILTSTONE: medium grey, light to medium brown grey, arenaceous and generally grading to very fine sandstone, common coal laminations, occasional nodular pyrite,					
			5	firm, sub-blocky. COAL: black, dark grey, vitreous to sub-vitreous, locally silty and grading to					
00400		2252.2		carbonaceous siltstone, firm to moderately hard, fissile in part, sub-conchoidal.					
2040.0	-	2050.0	95 5	SANDSTONE: pale grey to off white, clear to translucent, very fine to very coarse, dominantly fine to medium, poorly sorted, sub-angular to sub-rounded, angular where coarse grained, minor weak calcareous cement, minor pale grey argillaceous matrix & locally grading to arenaceous siltstone, minor carbonaceous laminations, occasional disseminated and nodular pyrite, generally loose grains, fair to good inferred porosity. SILTSTONE: medium grey, light to medium brown grey, arenaceous and generally grading to very fine sandstone, common coal laminations, occasional nodular pyrite,					
				firm, sub-blocky.					
2050.0	-	2055.0	95	SANDSTONE: as above					
			5	SILTSTONE: as above					
2055.0	-	2060.0	85	SANDSTONE: pale grey to off white, clear to translucent, very fine to very coarse, dominantly fine to medium, poorly sorted, sub-angular to sub-rounded, angular where coarse grained, minor weak calcareous cement, minor pale grey argillaceous matrix & locally grading to arenaceous siltstone, minor carbonaceous laminations, occasional disseminated and nodular pyrite, generally loose grains, fair to good inferred porosity.					
			15	SILTSTONE: medium grey, light to medium brown grey, arenaceous and generally grading to very fine sandstone, occasional calcareous material, minor coal laminations, occasional nodular pyrite, firm, sub-blocky.					
2060.0	-	2065.0	95 5	SANDSTONE: clear to translucent, off white to pale grey, very fine to very coarse, dominantly very fine to fine, moderately sorted, sub-angular to sub-rounded, angular where coarse, minor weak calcareous cement, locally common pale grey argillaceous matrix and common grading to arenaceous siltstone, common carbonaceous specks, minor rock flour, generally loose grains, fair to good inferred porosity. SILTSTONE: medium grey, light to medium brown grey, arenaceous and generally					
				grading to very fine sandstone, occasional calcareous material, minor coal laminations, occasional nodular pyrite, firm, sub-blocky.					
2065.0	-	2070.0	95	SANDSTONE: clear to translucent, off white to pale grey, very fine to very coarse, poorly sorted, sub-angular to sub-rounded, angular where coarse, minor weak calcareous cement, localised pale grey argillaceous matrix and occasionally grading to arenaceous siltstone, trace coal laminations, minor nodular and disseminated pyrite, common rock flour, generally loose grains, good inferred porosity.					
			5	SILTSTONE: light to medium grey, light to medium brown grey, arenaceous and generally grading to very fine sandstone, occasional calcareous material, trace flakey micas, minor coal laminations, occasional nodular pyrite, firm, sub-blocky.					
2070.0	-	2075.0	95	SANDSTONE: clear to translucent, off white to pale grey, very fine to very coarse, poorly sorted, angular to sub-angular, minor weak calcareous cement, localised pale grey argillaceous matrix and occasionally grading to arenaceous siltstone, trace coal laminations, minor nodular and disseminated pyrite, common rock flour, generally loose grains, good inferred porosity.					
			5	SILTSTONE: as above					
2075.0	-	2085.0	95	SANDSTONE: as above with common moderate calcareous cement and minor coal laminations.					

Interval (m)	%	Lithology / Show Descriptions	Ca (%)	Mg (%)
2075.0 - 2085.0	5	SILTSTONE: as above		
2085.0 - 2090.0	95	SANDSTONE: as above, dominantly fine to medium, poor to moderate sorting.		
2000.0	5	SILTSTONE: as above		
2090.0 - 2095.0	90	SANDSTONE: clear to translucent, off white to pale grey, very fine to very coarse, dominantly fine to medium, poor to moderately sorted, angular to sub-angular, minor weak calcareous cement, localised pale grey argillaceous matrix and occasionally grading to arenaceous siltstone, trace coal laminations, minor nodular and disseminated pyrite, common rock flour, generally loose grains, good inferred porosity.		
	5	COAL: black, dark grey, vitreous to sub-vitreous, locally silty and grading to carbonaceous siltstone, firm to moderately hard, fissile in part, sub-conchoidal.		
	5	SILTSTONE: medium grey, light to medium brown grey, argillaceous in part, generally arenaceous and grading to very fine sandstone, occasional calcareous material, common micromicaceous, common carbonaceous material, occasional nodular pyrite, firm, sub-blocky.		
2095.0 - 2100.0	70	SANDSTONE: clear to translucent, off white to pale grey, very fine to very coarse, dominantly fine to medium, poor to moderately sorted, angular to sub-angular, minor weak calcareous cement, localised pale grey argillaceous matrix and occasionally grading to arenaceous siltstone, trace coal laminations, minor nodular and disseminated pyrite, common rock flour, generally loose grains, good inferred porosity.	0	
	25	SILTSTONE: medium grey, light to medium brown grey, argillaceous in part, generally arenaceous and grading to very fine sandstone, occasional calcareous material, common micromicaceous, common carbonaceous material, occasional nodular pyrite, firm, sub-blocky.		
	5	COAL: black, dark grey, vitreous to sub-vitreous, locally silty and grading to carbonaceous siltstone, firm to moderately hard, fissile in part, sub-conchoidal.		
2100.0 - 2110.0	70	SILTSTONE: light to medium grey, medium to dark grey, medium brown grey, argillaceous and locally grading to silty claystone, arenaceous in part, common carbonaceous material, occasional nodular pyrite, minor micromicaceous, firm to hard, sub-blocky to blocky.		
	20	SANDSTONE: pale brown grey, clear to translucent in part, very fine to very coarse, poorly sorted, sub-angular to sub-rounded, angular where very coarse, minor moderately strong calcareous cement, common pale grey argillaceous matrix and locally grading to arenaceous siltstone, trace disseminated pyrite, generally loose grains, poor inferred porosity.		
2110.0 - 2115.0	80	SANDSTONE: clear to translucent, pale grey, fine to medium, occasional coarse to very coarse, moderately sorted, angular to sub-angular, minor weak calcareous cement, nil visible matrix, occasional carbonaceous specks, common nodular and disseminated pyrite, loose, good inferred porosity.		
	20	SILTSTONE: light to medium grey, dark grey, medium brown grey in part, locally arenaceous, common carbonaceous material and grading to carbonaceous siltstone, occasional micromicaceous, firm to hard, sub-blocky to blocky.		
2115.0 - 2125.0	50	SANDSTONE: Sweep returns - contaminated sample		
	40	SILTSTONE: Sweep returns - contaminated sample		
	10	COAL: Sweep returns - contaminated sample		
2425.0	60	Sweep returns - Sample contaminated		
2125.0 - 2135.0	60	SANDSTONE: light to medium grey, very fine to very coarse, poor sorted, angular to sub-rounded, minor weak calcareous cement, occasional pale grey argillaceous matrix, locally grading to arenaceous siltstone, common carbonaceous material, common nodular pyrite, generally loose grains, fair inferred porosity.		
	30	SILTSTONE: medium grey, medium to dark grey, medium brown grey, arenaceous and occasionally grading to very fine sandstone, argillaceous in part, common carbonaceous laminations and specks, commonly micromicaceous, locally grading to carbonaceous siltstone, firm to hard, sub-blocky, occasionally sub-fissile.		
	10	COAL: black, dark grey, vitreous to sub-vitreous, locally silty and grading to carbonaceous siltstone, trace disseminated pyrite, firm to moderately hard, fissile in part, sub-conchoidal.		
	5	CLAYSTONE: pale green grey, light blue grey, siliceous, hard to very hard, sub-fissile to sub-blocky.		14 of 18

Interval (m)	%	Lithology / Show Descriptions	Ca (%)	Mg (%
2135.0 - 2145.0	70	SANDSTONE: as above		
	20	SILTSTONE: as above		
	5	COAL: as above		
	5	CLAYSTONE: pale green grey, light blue grey, siliceous, hard to very hard, sub-fissile to sub-blocky.		
2140.0 - 2145.0	70	SANDSTONE: light to medium grey, clear to translucent in part, very fine to very coarse, frosted where very coarse, poorly sorted, angular to sub-rounded, minor weak calcareous cement, occasional pale grey argillaceous matrix, locally grading to arenaceous siltstone, common carbonaceous material, common nodular pyrite, generally loose grains, fair inferred porosity.		
	20	SILTSTONE: light to medium grey, medium to dark olive grey, medium brown grey, arenaceous and commonly grading to very fine sandstone, argillaceous in part, common carbonaceous laminations and specks, commonly micromicaceous, locally grading to carbonaceous siltstone, firm to hard, sub-blocky, occasionally sub-fissile.		
	5	CLAYSTONE: pale green grey, light blue grey, siliceous, hard to very hard, sub-fissile to sub-blocky.		
	5	COAL: black, dark grey, vitreous to sub-vitreous, locally silty and grading to carbonaceous siltstone, common disseminated pyrite, firm to moderately hard, fissile in part, sub-conchoidal.		
2145.0 - 2150.0	45	SILTSTONE: light to medium grey, medium brown grey, arenaceous and commonly grading to very fine sandstone, locally argillaceous and grading to silty claystone in part, common carbonaceous laminations and specks, commonly micromicaceous, firm to hard, sub-blocky to blocky.		
	40	SANDSTONE: pale to medium grey, translucent to frosted in part, very fine to very coarse, dominantly fine, poorly sorted, sub-angular to sub-rounded, angular where coarse grained, minor weak calcareous cement, common pale grey argillaceous matrix & locally grading to arenaceous siltstone, common carbonaceous specks, minor disseminated pyrite, loose, poor to fair inferred porosity.		
	5	COAL: black, dark grey, dark brown grey, vitreous to sub-vitreous, occasionally silty and grading to carbonaceous siltstone, trace disseminated pyrite, firm to moderately hard, fissile in part, sub-conchoidal.		
2150.0 - 2155.0	65	SANDSTONE: as above		
	20	SILTSTONE: as above		
	10	COAL: as above		
	5	CLAYSTONE: as above.		
2155.0 - 2160.0	85	SANDSTONE: clear to translucent, frosted, very fine to very coarse, poorly sorted, angular to sub-rounded, trace weak calcareous cement, rare pale grey argillaceous matrix, common nodular pyrite, generally loose grains, fair to good inferred porosity.		
	5	CLAYSTONE: pale green grey, light blue grey, siliceous, hard to very hard, sub-fissile to sub-blocky.		
	5	SILTSTONE: light to medium grey, medium brown grey, arenaceous and commonly grading to very fine sandstone, common carbonaceous laminations and specks, commonly micromicaceous, firm to hard, sub-blocky to blocky.		
	5	COAL: black, dark grey, vitreous to sub-vitreous, locally silty and grading to carbonaceous siltstone, trace disseminated pyrite, firm to moderately hard, fissile in part, sub-conchoidal.		
2160.0 - 2165.0	90	SANDSTONE: as above		
	5	COAL: as above		
	5	SILTSTONE: as above		
2165.0 - 2175.0	85	SANDSTONE: as above		
	10	SILTSTONE: as above		
	5	COAL: aa		
2175.0 - 2180.0	100	CAVINGS:		
		Cavings, cleaned out header box above sample collecting area		
2180.0 - 2185.0	50	SILTSTONE: light to medium grey, medium brown grey, soft to firm, dominantly	0	

Interval (m)	%	Lithology / Show Descriptions	Ca (%)	Mg (%
	30	soft, amorphous to blocky, dominantly blocky, arenaceous and commonly grading to very fine sandstone, slightly calcareous, common carbonaceous laminations and specks, commonly micromicaceous, rare glauconite SANDSTONE: as above		
	20	CLAYSTONE: pale greenish grey, light blue grey, siliceous, hard to very hard, sub-fissile to sub-blocky, slightly to moderately calcareous.		
2185.0 - 2190.0	70	SILTSTONE: as above		
	20	SANDSTONE: as above		
	10	CLAYSTONE: as above		
2190.0 - 2195.0	65	SILTSTONE: as above		
	20	CLAYSTONE: as above		
	10	SANDSTONE: as above		
	5	COAL: as above, in part grading to Carbonaceous SLTST		
2195.0 - 2200.0	70	SILTSTONE: as above		
	20	CLAYSTONE: as above		
	10	SANDSTONE: as above		
2200.0 - 2205.0	60	SILTSTONE: as above		
	30	CLAYSTONE: dominantly as above, light to medium grey, very soft to soft,		
	10	amorphous, commonly in tray as gloopy matrix, possibly being washed out SANDSTONE: clear to translucent, frosted, very fine to very coarse, dominantly very fine to medium, poorly sorted, angular to sub-rounded, trace weak calcareous cement, common pale grey argillaceous matrix, minor nodular pyrite, generally loose grains, fair inferred porosity.		
2205.0 - 2210.0	60	SANDSTONE: as above		
	30	SILTSTONE: as above		
	10	CLAYSTONE: as above		
2210.0 - 2215.0	50	SILTSTONE: light to medium grey, medium brown grey, firm to moderately hard, dominantly moderately hard, sub-blocky to blocky, dominantly blocky, arenaceous and commonly grading to very fine sandstone, slightly calcareous, common carbonaceous laminations and specks, minor micromicaceous SANDSTONE: clear to translucent, frosted, very fine to very coarse, dominantly	0	
	10	fine to medium, poorly to moderately sorted, angular to sub-rounded, trace weak calcareous cement, common pale grey argillaceous matrix, trace nodular pyrite, generally loose grains, fair to good inferred porosity.		
	10	CLAYSTONE: as above		
2215.0 - 2225.0	50	SILTSTONE: as above		
	40	SANDSTONE: as above		
	10	CLAYSTONE: as above		
2225.0 - 2230.0	60	SANDSTONE: as above		
	40	SILTSTONE: very dark grey, brownish black, soft to firm, sub-blocky, slightly calcareous, very finely arenaceous, carbonaceous, minor nodular pyrite		
2230.0 - 2235.0	50	SANDSTONE: as above.		
	45	SILTSTONE: as above		
	5	CLAYSTONE: pale greenish grey, light blue grey, hard to very hard, sub-blocky to blocky, moderately calcareous.		
2235.0 - 2240.0	80	SANDSTONE: clear to translucent, frosted, loose, dominantly very fine to fine, common medium, rare coarse to very coarse, poorly to moderately sorted, well sorted in part, angular to sub-angular, minor sub-rounded, trace nodular pyrite, trace mica, fair inferred porosity.		
	20	SILTSTONE: as above		

Interval (m)	%	Lithology / Show Descriptions	Ca (%)	Mg (%)
2240.0 - 2245.0	75	SANDSTONE: clear to translucent, frosted, very fine to coarse, poor sorted, angular to sub-rounded, minor weak calcareous cement, nil visible matrix, minor nodular and disseminated pyrite, occasional rock flour, generally loose grains, fair	0	
	10	inferred porosity. SILTSTONE: medium brown, light to medium brown grey, medium grey in part, arenaceous and locally grading to very fine sandstone, common carbonaceous laminations and specks, hard, sub-blocky, locally sub-fissile.		
	5	VOLCANIC: off white to pale grey, very pale green grey, argillaceous, weathered, minor dark minerals, trace siliceous, moderately hard to hard, very hard where siliceous, sub-blocky.		
2245.0 - 2250.0	80	SANDSTONE: clear to translucent, frosted, very fine to coarse, poor sorted, angular to sub-rounded, minor weak calcareous cement, rare light grey argillaceous matrix, occasional nodular and disseminated pyrite, occasional rock flour, generally loose grains, fair inferred porosity.		
	10	VOLCANIC: off white to pale grey, very pale green grey, light to medium blu green, argillaceous, weathered, minor dark minerals, trace siliceous, moderately hard to hard, very hard where siliceous, sub-blocky.		
	10	SILTSTONE: medium brown, light to medium brown grey, medium grey in part, arenaceous and locally grading to very fine sandstone, common carbonaceous laminations and specks, hard, sub-blocky, locally sub-fissile.		
2250.0 - 2255.0	50	VOLCANIC: Tuffite, pale grey green, off white to pale green, light to medium blue green, minor dark green, siliceous groundmass, common feldspars, occasional dark green minerals (olivine?) argillaceous where weathered, localised reworked carbonaceous fragments, angular, sub-blocky where weathered.		
	30	SANDSTONE: clear to translucent, pale grey, very fine to coarse, poor sorted, angular to sub-rounded, common weak calcareous cement, minor pale grey argillaceous matrix, common lithics and carbonaceous specks, common nodular and disseminated pyrite, loose, poor inferred porosity.		
	10	CLAYSTONE: pale grey, light to medium grey, siliceous, minor silty laminations and locally grading to argillaceous siltstone, trace carbonaceous material, occasionally micromicaceous, moderately hard to hard, sub-blocky to sub-fissile.		
	10	CLAYSTONE: medium brown, redish brown, minor carbonaceous material, firm, sub-blocky, dispersive.		
2255.0 - 2260.0	50	VOLCANIC: pale grey green, off white to pale green, light to medium blue green, minor dark green, siliceous groundmass, common feldspars, occasional dark green minerals, argillaceous where weathered, sub-blocky.		
	30	SANDSTONE: pale grey, frosted, very fine to medium, common coarse frosted grains, moderately sorted, sub-angular to sub-rounded, angular where coarse, minor weak calcareous cement, common pale grey argillaceous matrix and grading to arenaceous siltstone in part, common lithics and carbonaceous specks, hard aggregates, tight to poor visible porosity.		
	20	CLAYSTONE: medium brown, medium reddish brown, medium grey brown, siliceous where medium grey, minor carbonaceous laminations and specks, firm to very hard, sub-blocky.		
2260.0 - 2265.0	60	VOLCANIC: pale grey green, off white to pale green, light to medium blue green, minor dark green, generally weathered - argillaceous, minor siliceous groundmass, common feldspars, occasional dark green minerals, sub-blocky.		
	30	SANDSTONE: as above		
	10	CLAYSTONE: as above		
2265.0 - 2270.0	35	VOLCANIC: as above, light blue grey, light green grey, very weathered and grading to claystone.		
	30	CLAYSTONE: as above, pale to medium grey, medium reddish brown, dispersive.		
	30 5	SANDSTONE: as above, generally loose scattered grains. COAL: black, dark grey, dark brown grey, vitreous to sub-vitreous, occasionally silty		
	J	and grading to carbonaceous siltstone, firm to moderately hard, fissile in part, sub-conchoidal. (possible that any free fragments are cavings).		
2270.0 - 2275.0	60	CLAYSTONE: as above, minor calcareous material.		
	30	VOLCANIC: as above, weathered and generally grading to claystone.		
	10	SANDSTONE: as above.		
2275.0 - 2280.0	70	CLAYSTONE: off white, pale brown grey, very pale green grey, very pale blue grey,		17 of 18

Interval (m)	%	Lithology / Show Descriptions	Ca (%)	Mg (%
		trace disseminated pyrite, trace chert fragments, firm to hard in part, sub-blocky,		
		dispersive. (Probable weathered tuff).		
	10	VOLCANIC: as above		
	10	SANDSTONE: as above, rare coarse to very coarse, well sorted.		
	5	COAL: as above.		
	5	SILTSTONE: medium grey, light to medium brown grey, argillaceous and commonly grading to silty claystone, minor arenaceous, locally common carbonaceous laminations & specks, minor calcareous material, trace disseminated pyrite, moderately hard to hard, sub-blocky, minor sub-fissile.		
2280.0 - 2285.0	75	CLAYSTONE: as above	0	
	10	SANDSTONE: as above		
	10	VOLCANIC: as above		
	5	COAL: as above		
	<u> </u>	COAL. as above		
2285.0 - 2290.0	60	CLAYSTONE: as above		
	30	SANDSTONE: as above		
	5	VOLCANIC: as above		
	5	COAL: as above		
2290.0 - 2295.0	80	SANDSTONE: clear to translucent, pale very fine to very coarse, dominantly medium, moderately sorted, sub-angular to sub-rounded, angular where coarse, minor weak calcareous cement, trace pale grey argillaceous matrix, occasional calcareous fragments, trace nodular pyrite, occasional carbonaceous material, loose, fair to good inferred porosity.		
	10	VOLCANIC: off white, pale brown grey, very pale green grey, dark grey in part, mottled, minor dark green minerals, commonly weathered to claystone, common feldspars, firm to hard, very hard in part, sub-blocky.		
	10	CLAYSTONE: off white, pale brown grey, very pale green grey, very pale blue grey, trace disseminated pyrite, trace chert fragments, firm to hard in part, sub-blocky, dispersive.		
2295.0 - 2300.0	80	SANDSTONE: clear to translucent, pale very fine to very coarse, poorly sorted, sub-angular to sub-rounded, angular where coarse, minor weak calcareous cement, trace pale grey argillaceous matrix, occasional calcareous fragments, trace nodular pyrite, loose, fair to good inferred porosity.		
	10	CLAYSTONE: pale to medium grey, medium brown, minor light brown grey, siliceous, trace lithics and carbonaceous specks, trace micromicaceous, hard, sub-fissile to sub-blocky.		
	10	VOLCANIC: off white, pale to medium grey, medium to dark green mottling, minor light brown grey, siliceous, minor dark green minerals, commonly weathered to claystone, common feldspars, firm to hard, very hard in part, sub-blocky.		
2300.0 - 2305.0	90	SANDSTONE: clear to translucent, pale very fine to very coarse, dominantly fine to medium, poor to moderately sorted, sub-angular to sub-rounded, angular where coarse, minor weak calcareous cement, trace pale grey argillaceous matrix, occasional calcareous fragments, minor nodular pyrite, occasional carbonaceous material, loose, fair to good inferred porosity.		
	5	CLAYSTONE: pale to medium grey, medium brown, minor light brown grey, siliceous, trace lithics and carbonaceous specks, trace micromicaceous, hard, sub-fissile to sub-blocky.		
	5	VOLCANIC: as above.		
2305.0 - 2310.0	75	SANDSTONE: as above		
	15	CLAYSTONE: as above		
	10	VOLCANIC: as above		
	10	TOLORINO. do above		
2310.0 - 2313.0	65	SANDSTONE: as above	0	
	30	CLAYSTONE: as above		
	15	VOLCANIC: as above		

Apache Northwest Pty Ltd *SIDE WALL CORE DESCRIPTIONS*

Well Name: Wasabi-1

Suite Number: 1 Run Number: 4

Run Date: 3/03/2008 Hole Size: 311 (mm) Service Company : Schlumberger

Engineers: K. Albarhi, A. Dandi, M. Dawson

Geologists: A. Cruickshank, H. Little

Lost: 0 Empty: 1 Rejected: 0 Bought: 29 Misfired: 0

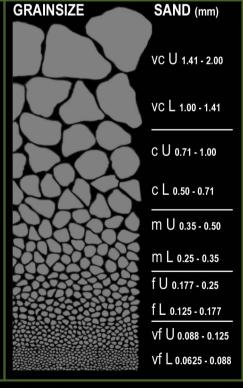
Shot	SWC	SWC	Rec.		
No.	No	Depth	Length	Shot Type	Lithology / Shows
		(m)	(cm)		
1	1	1477.2	3.0	Evaluation	SANDSTONE: 100% medium brown to dark brown, off white, translucent, very fine to very coarse, poorly sorted, angular to sub-rounded, trace weak calcareous cement, common medium brown silt matrix and locally grading to arenaceous SILTSTONE, trace lithics, hard aggregates, poor to fair visible porosity, no fluorescence.
2	2	1448.1	1.0	Evaluation	ARGILLACEOUS SANDSTONE: 100% light to medium brown, meb brown grey, very fine to coarse, predominantly fine grained, moderately sorted, sub-angular to dominantly sub-rounded, common moderately calcareous cement, common pyritic cementing, common to abundant medium brown argillaceous matrix and common grading to arenaceous SILTSTONE, common platy micas, firm aggregates, poor visible porosity, no fluorescence.
3	3	1438.4	3.0	Palynology	CARBONACEOUS SILTSTONE: 90% medium brown, medium grey brown, dark brown to very dark grey, trace arenaceous, common carbonaceous material and grading to COAL, common micromicaceous, minor sideritic cement, firm to hard. COAL: 10% dark grey to black, sub-vitreous, commonly dull and earthy, grading to carbonaceous SILTSTONE, sub-conchoidal fracture.
4	4	1417.5	2.5	Evaluation	SANDSTONE: 100% medium brown, medium grey brown, translucent, fine to very coarse, poor sorted, angular to sub-angular, minor sub-rounded, minor medium brown silty matrix, friable, weak aggregates, poor to fair visible porosity, no fluorescence.
5	5	1410.4	3.7	Evaluation	SANDSTONE: 100% pale brown, minor off white, translucent, very fine to coarse, poor sorted, angular to sub-angular, trace weak calcareous cement, common pale brown to off white argillaceous matrix, minor lithics and carbonaceous specks, firm aggregates, poor to fair inferred porosity, no fluorescence.
7	7	1379.3	3.7	Palynology	SILTY SANDSTONE: 100% medium brown, medium to dark grey brown, very fine to coarse, dominantly fine to medium, moderately sorted, sub-angular to sub-rounded, trace weak calcareous cement, common to locally abundant medium brown silty matrix and grd to arenaceous SILTSTONE, minor carbonaceous material, occasional silty laminations, hard, poor visible porosity, no fluorescence.
8	8	1374.2	2.5	Evaluation	SANDSTONE: 100% off white to pale grey, translucent, fine to medium grained, occasional coarse, poor to moderately sorted, and to sub-rounded, minor moderately strong calcareous and siliceous cement, common off white to pale grey argillaceous matrix, occasional lithics and carbonaceous specks, hard aggregates, poor tight fair visible porosity. no fluorescence.
9	9	1354.1	2.6	Evaluation	SILTY SANDSTONE: 100% medium grey, medium olive grey, very fine to fine, well sorted, sub-rounded, minor weak siliceous cement, common silty matrix and grading to arenaceous SILTSTONE, trace very fine lithics & carbonaceous specks, hard aggregates, poor visible porosity, no fluorescence.

Lost:	0)	Empty:	1	Rejected: 0 Bought: 29 Misfired: 0
Shot No.	SWC No	SWC Depth (m)	Rec. Length (cm)	Shot Type	Lithology / Shows
10	10	1350.0	2.0	Evaluation	SANDSTONE: 100% pale grey to off white, translucent, pale
11	11	1344.4	2.7	Evaluation	brown, very fine to coarse, trace very coarse, poor sorted, angular to sub-rounded, common pale grey to off white argillaceous matrix, hard aggregates, poor visible porosity, no fluorescence. SILTY SANDSTONE: 100% medium grey, medium olive grey, very fine to fine, well sorted, sub-rounded, common silty matrix and grading to arenaceous SILTSTONE, trace very fine lithics & carbonaceous specks, hard aggregates, poor visible porosity, no
12	12	1331.0	2.2	Palynology	fluorescence. CARBONACEOUS SILTSTONE: 100% medium brown, medium grey brown, dark brown to very dark grey, trace arenaceous, common carbonaceous material commonly micromicaceous, minor
13	13	1329.5	2.9	Evaluation	sideritic cement, firm to hard. SANDSTONE: 100% medium brown, medium brown grey, dark brown in part, translucent in part, fine to coarse, dominantly medium, poor to moderately sorted, angular to sub-angular, trace weak calcareous cement, minor moderately strong siliceous
14	14	1329.0	1.2	Evaluation	cement, trace medium brown grey silty matrix, hard aggregates, poor to fair visible porosity, no fluorescence. SILTY SANDSTONE: 100% medium brown, medium brown grey, dark brown in part, translucent in part, fine to coarse, poorly sorted, angular to sub-angular, minor moderate calcareous cement, trace moderately strong siliceous cement, common medium brown grey silty matrix, minor carbonaceous material, hard aggregates, poor to
15	15	1328.5	3.0	Evaluation	fair visible porosity. SILTY SANDSTONE: 100% medium brown, medium brown grey, medium orange brown, dark brown in part, translucent in part, fine to coarse, poorly sorted, angular to sub-angular, minor moderately strong siliceous cement, common medium brown grey silty matrix, minor carbonaceous material, hard aggregates, poor to fair visible
16	16	1327.3	2.0	Palynology	porosity. CARBONACEOUS SILTSTONE: 100% medium brown, medium grey brown, dark brown to very dark grey, trace arenaceous, common carbonaceous material, commonly micromicaceous, minor
17	17	1319.2	1.7	Evaluation	lithics, firm to hard. SILTY SANDSTONE: 100% medium brown grey, medium grey, translucent, very fine to medium, minor coarse grains, moderately well to well sorted, sub-angular to sub-rounded, minor moderately siliceous cement, minor medium grey brown silty matrix, hard
18	18	1314.4	2.0	Evaluation	aggregates, poor visible porosity, no fluorescence. SANDSTONE: 100% off white, medium brown grey, translucent to frosted, very fine to coarse, dominantly medium, poor to moderately sorted, angular to sub-rounded, trace moderate calcareous cement, minor moderate siliceous cement, common off white to medium brown argillaceous matrix, hard aggregates, poor to fair visible
19	19	1303.0	2.5	Evaluation	porosity, no fluorescence. SILTY SANDSTONE: 100% medium grey, medium olive grey, very fine to fine, well sorted, sub-rounded, common silty matrix and grading to arenaceous SILTSTONE, trace very fine lithics & carbonaceous specks, hard aggregates, poor visible porosity, no fluorescence.

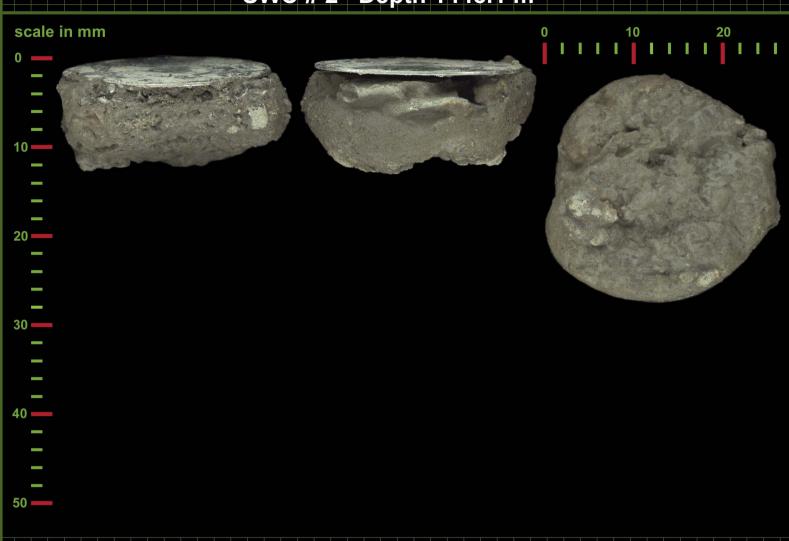
Lost: 0 **Empty:** Rejected: 0 **Bought:** 29 Misfired: o SWC swc Rec. Shot Depth Length **Shot Type** Lithology / Shows No. No (m) (cm) Evaluation **SILTY SANDSTONE**: 100% medium grey, medium olive grey, 20 20 1298.2 2.2 dark brown grey, very fine to fine, trace coarse, well sorted, sub-rounded, common silty matrix and grading to arenaceous SILTSTONE, trace carbonaceous specks, hard aggregates, poor visible porosity, no fluorescence. 21 21 1295.2 2.0 Palynology **SILTY SANDSTONE**: 100% light to medium brown, medium grey, medium olive grey, minor dark grey, very fine to fine, well sorted, sub-rounded, common to abundant silty matrix commonly grading to arenaceous SILTSTONE, common silty laminations, occasional lithics, common carbonaceous laminations, occasional platy micas, hard aggregates, poor visible porosity, no fluorescence. Evaluation SILTY SANDSTONE: 100% medium brown, medium olive grey, 1288.0 3 1 22 22 very fine to fine, well sorted, sub-rounded, common silty matrix, minor moderately strong siliceous cement, occasional lithics, occasional platy micas, hard aggregates, poor visible porosity, no fluorescence. 1276.8 2.7 Evaluation SILTY SANDSTONE: 100% medium brown, medium olive grey, 23 23 very fine to fine, well sorted, sub-rounded, common silty matrix, common moderately strong calcareous cement and minor moderately strong siliceous cement, occasional lithics, occasional platy micas, hard aggregates, poor visible porosity, no fluorescence. **Evaluation** SILTY SANDSTONE: 100% light to medium grey, medium grey 1264 5 2.7 24 24 brown, translucent, very fine to fine, well sorted, sub-rounded, minor to common moderately strong calcareous cement, common to abundant medium brown grey silty matrix and locally grading to arenaceous SILTSTONE, occasional carbonaceous material, hard aggregates, poor visible porosity, no fluorescence. 1262.9 Evaluation SANDSTONE: 100% light to medium grey, translucent, fine to 25 25 2.5 medium, dominantly fine, well sorted, sub-angular to sub-rounded, trace weak calcareous cement, minor moderately strong siliceous cement, trace carbonaceous material, hard aggregates, fair visible porosity, no fluorescence. **Evaluation** SANDSTONE: 100% light to medium grey, translucent, fine to 1261.3 17 26 26 medium, dominantly fine, well sorted, sub-angular to sub-rounded, trace weak calcareous cement, minor moderately strong siliceous cement, trace silty matrix, hard aggregates, fair visible porosity, no fluorescence. 27 27 1259.3 2.4 Evaluation **SANDSTONE**: 100% medium to dark grey, translucent, very fine to fine, trace medium, well sorted, sub-angular to sub-rounded. common moderately strong siliceous cement, trace weak calcareous cement, rare argillaceous matrix, occasional carbonaceous specks, hard aggregates, fair visible porosity, no fluorescence. Evaluation SILTY SANDSTONE: 100% medium grey, medium olive grey, 1258.1 3.3 28 28 dark grey, very fine to fine and grading to arenaceous SILTSTONE, very well sorted, sub-rounded, minor weak calcareous cement, common silty matrix, occasional carbonaceous specks and flakey micas, hard aggregates, poor visible porosity, no fluorescence. 29 29 1256.4 3.0 Palynology PYRITIC MARL: 50% medium to dark grey, dark green, silver, very argillaceous, abundant disseminated pyrite, abundant fine dark green glauconite, common dispersed very coarse quartz grains, interbedded with poorly sorted SANDSTONE. PYRITIC SANDSTONE: 50% see marl description - very fine to very coarse grains, poorly sorted, common calcareous moderately hard, tight visible porosity, no fluorescence.

Lost: 0 Empty: 1 Rejected: 0 Bought: 29 Misfired: 0

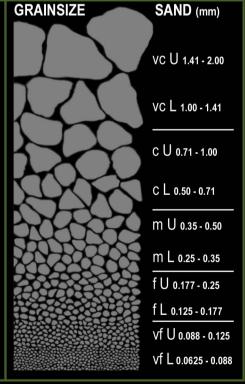
Shot No.	SWC No	SWC Depth (m)	Rec. Length (cm)	Shot Type	Lithology / Shows
No. 30	No 30	Depth (m) 1250.0	Length (cm) 3.7	Palynology	MARL: 100% medium grey brown ,medium grey, common to abundant calcareous material, common dark green glauconite, common disseminated pyrite, minor micromicaceous, hard.



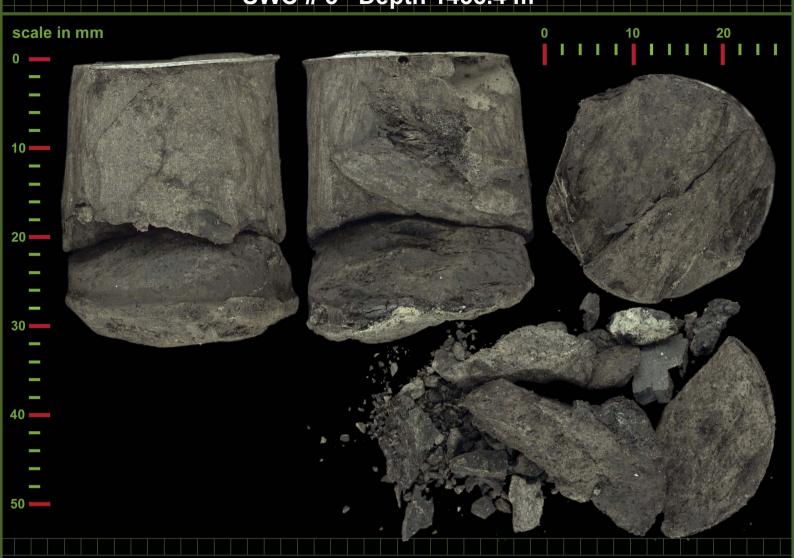
Apache Energy Ltd WASABI - 1 SWC # 1 Depth 1477.2 m


WELLSITE DESCRIPTION

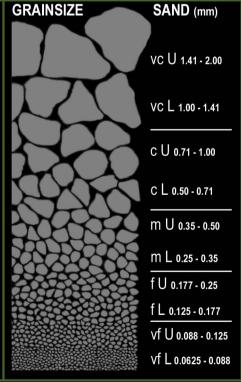
SANDSTONE (100%): medium brown to dark brownish grey, off white in part, mainly translucent quartz grains, very fine to granular, poorly sorted, angular to sub-rounded, trace weak calcareous cement, common medium brown siliciclastic silt matrix and locally grading to arenaceous SILTSTONE, trace lithics, hard aggregates, poor to fair visible porosity, no fluorescence.



Apache Energy Ltd WASABI - 1 SWC # 2 Depth 1448.1 m

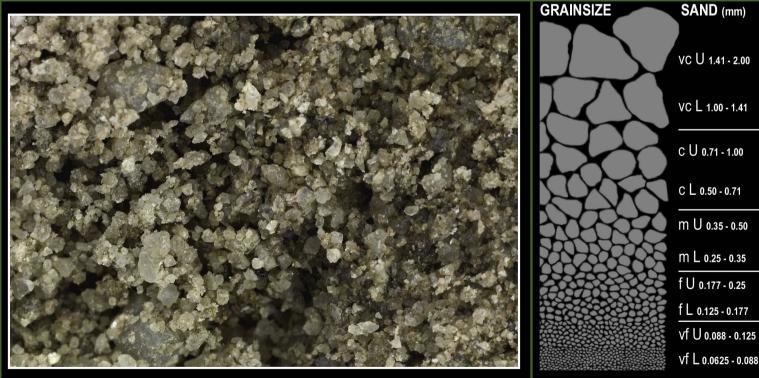

WELLSITE DESCRIPTION

ARGILLACEOUS SANDSTONE (100%): light to medium brown, medium brownish grey, very fine to lower granular, poorly sorted, sub-angular to dominantly sub-rounded, common moderately calcareous cement, common pyritic cement, common to abundant medium brown argillaceous matrix and commonly grades to arenaceous SILTSTONE, common platy micas, firm aggregates, poor visible porosity, no fluorescence.



Apache Energy Ltd WASABI - 1 SWC # 3 Depth 1438.4 m

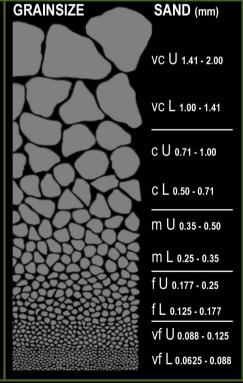
WELLSITE DESCRIPTION


CARBONACEOUS SILTSTONE (90%): medium brown, medium greyish brown, dark brown to very dark grey, trace arenaceous, common carbonaceous material and grading to COAL, common micromicaceous, minor sideritic cement, firm to hard. **COAL (10%):** dark grey to black, sub-vitreous, commonly dull and earthy, grading to carbonaceous SILTSTONE, sub-conchoidal fracture.

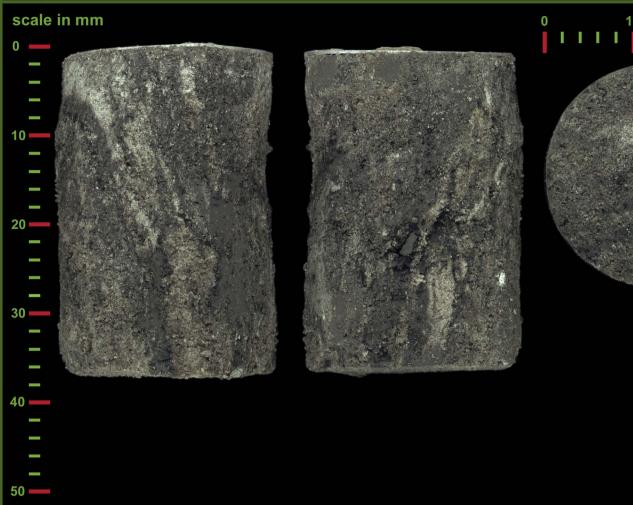
Apache Energy Ltd WASABI - 1 SWC # 4 Depth 1417.5 m

WELLSITE DESCRIPTION

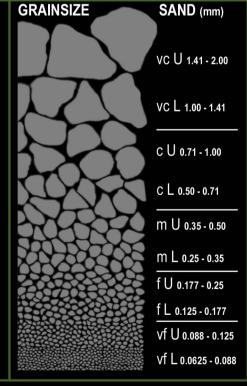
SANDSTONE (100%): medium brown, medium greyish brown, mainly translucent quartz grains, fine to lower granular, poorly sorted, angular to sub-angular, minor sub-rounded, minor medium brown silty matrix, friable, weak aggregates, poor to fair visible porosity, no fluorescence.



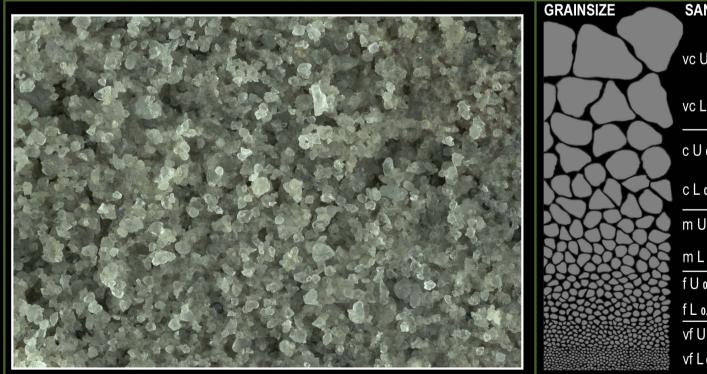
Apache Energy Ltd WASABI - 1 SWC # 5 Depth 1410.4 m

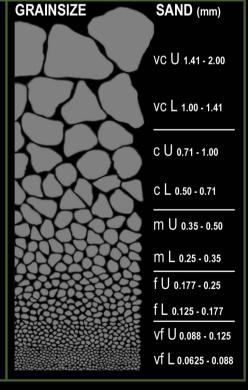

WELLSITE DESCRIPTION

SANDSTONE (100%): pale brownish grey, minor off white speckles, mainly translucent quartz grains, very fine to lower very coarse, predominantly medium, moderately sorted, angular to sub-rounded, trace weak calcareous cement, common pale brown to off white argillaceous matrix, minor lithics and carbonaceous specks, firm aggregates, poor to fair inferred porosity, no fluorescence.


Apache Energy Ltd WASABI - 1 SWC # 7 Depth 1379.3 m

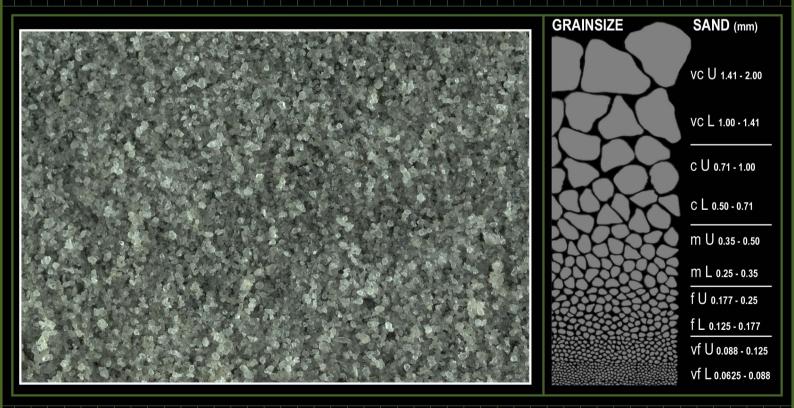

WELLSITE DESCRIPTION


SILTY SANDSTONE (100%): medium brown, medium to dark greyish brown, very fine to coarse, predominantly fine to medium, poorly to moderately sorted, sub-angular to sub-rounded, trace weak calcareous cement, common to locally abundant medium brown siliciclastic silty matrix and grades to arenaceous SILTSTONE, minor to locally common undifferentiated clay, minor carbonaceous material, occasional silty laminations, hard, poor visible porosity, no fluorescence.



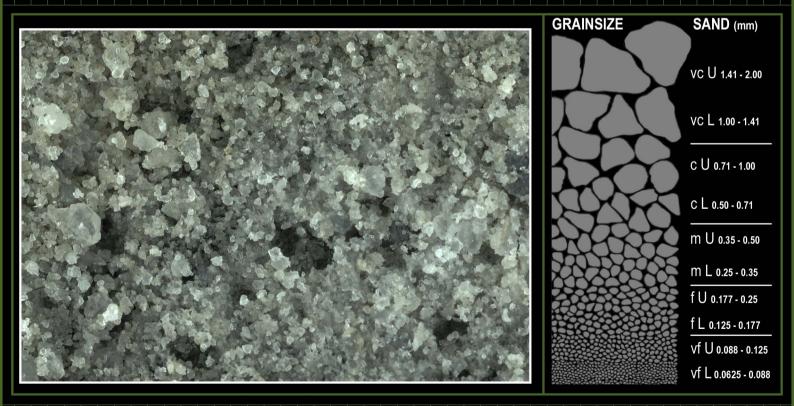
Apache Energy Ltd WASABI - 1 SWC # 8 Depth 1374.2 m

WELLSITE DESCRIPTION


SANDSTONE (100%): pale grey, common off white speckling, mainly translucent quartz grains, predominantly fine to medium, occasional coarse grains, moderately sorted, sub-angular to sub-rounded, minor moderately strong calcareous and siliceous cement, common off white to pale grey argillaceous matrix, occasional lithics and carbonaceous specks, hard aggregates, poor to fair visible porosity, no fluorescence.

Apache Energy Ltd WASABI - 1 SWC # 9 Depth 1354.1 m

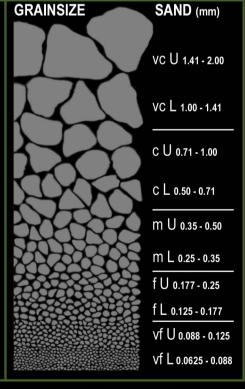
WELLSITE DESCRIPTION


SILTY SANDSTONE (100%): medium grey, medium olive grey, clear to translucent quartz grains, very fine to fine, well sorted, subrounded, minor weak siliceous cement, common siliciclastic silty matrix and in part grades to arenaceous SILTSTONE, trace very fine lithics and carbonaceous specks, hard aggregates, poor visible porosity, no fluorescence.

Apache Energy Ltd WASABI - 1 SWC # 10 Depth 1350.0 m

WELLSITE DESCRIPTION

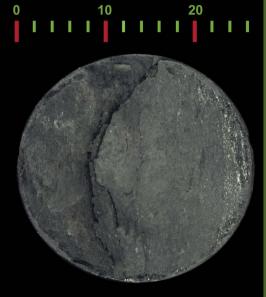
SANDSTONE (100%): pale grey, off white speckling, mainly translucent quartz grains, very fine to coarse, trace very coarse, poorly sorted, angular to sub-rounded, common pale grey to off white argillaceous matrix, hard aggregates, poor visible porosity, no fluorescence.

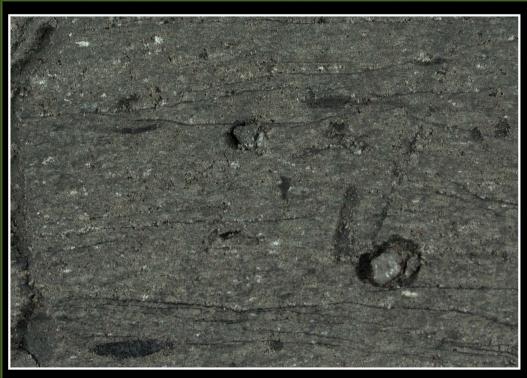


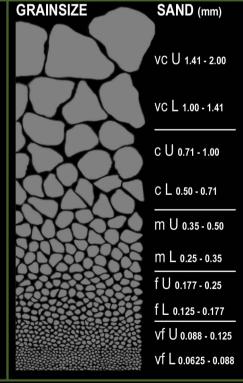
Apache Energy Ltd WASABI - 1 SWC # 11 Depth 1344.4 m

WELLSITE DESCRIPTION

SILTY SANDSTONE (100%): medium grey, medium olive grey, clear to translucent quartz grains, very fine to fine, well sorted, subrounded, common siliciclastic silty matrix and in part grades to arenaceous SILTSTONE, trace very fine lithics and carbonaceous specks, hard aggregates, poor visible porosity, no fluorescence.

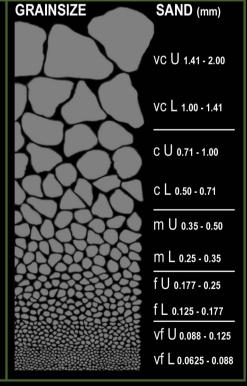



Apache Energy Ltd WASABI - 1 SWC # 12 Depth 1331.0 m



WELLSITE DESCRIPTION

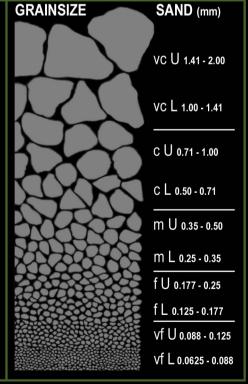
CARBONACEOUS ARGILLACEOUS SILTSTONE (100%): medium brown, medium grey brown, dark brown to very dark grey, trace siliciclastic grains up to coarse sand-size, common carbonaceous material as coaly specks and in argillaceous microlaminations, commonly micromicaceous, minor sideritic cement, firm to hard.



Apache Energy Ltd WASABI - 1 SWC # 13 Depth 1329.5 m

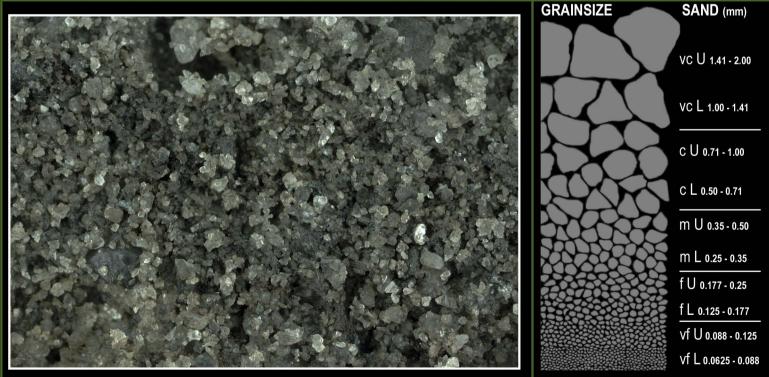
WELLSITE DESCRIPTION

SANDSTONE (100%): grey to medium brownish grey, dark brown stained in part, mainly translucent quartz grains, fine to coarse, predominantly medium, poorly to moderately sorted, angular to sub-angular, trace weak calcareous cement, minor moderately strong siliceous cement, trace medium brownish grey siliciclastic silt matrix, hard aggregates, poor to fair visible porosity, no fluorescence.



Apache Energy Ltd WASABI - 1 SWC # 14 Depth 1329.0 m

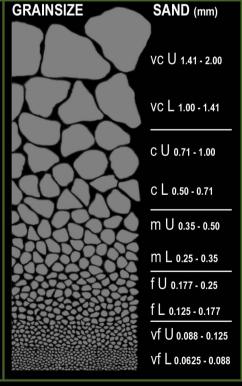
WELLSITE DESCRIPTION


SILTY SANDSTONE (100%): medium brownish grey, dark brown stained in part, mainly translucent quartz grains, fine to coarse, poorly sorted, angular to sub-angular, minor moderate calcareous cement, trace moderately strong siliceous cement, common medium brownish grey siliciclastic silt matrix, trace undifferentiated clays, trace carbonaceous material, hard aggregates, poor to fair visible porosity.

Apache Energy Ltd WASABI - 1 SWC # 15 Depth 1328.5 m

WELLSITE DESCRIPTION

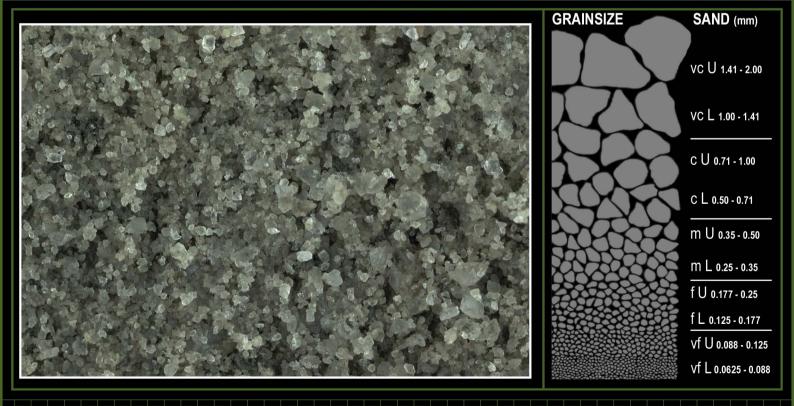
SILTY SANDSTONE (100%): medium brownish grey, medium orange brown to dark brown stained in part, mainly translucent quartz grains, fine to upper coarse, poorly sorted, angular to sub-rounded, minor moderately strong siliceous cement, common medium brownish grey siliciclastic silt matrix, trace undifferentiated clays, trace carbonaceous material, hard aggregates, poor to fair visible porosity.



Apache Energy Ltd WASABI - 1 SWC # 16 Depth 1327.3 m

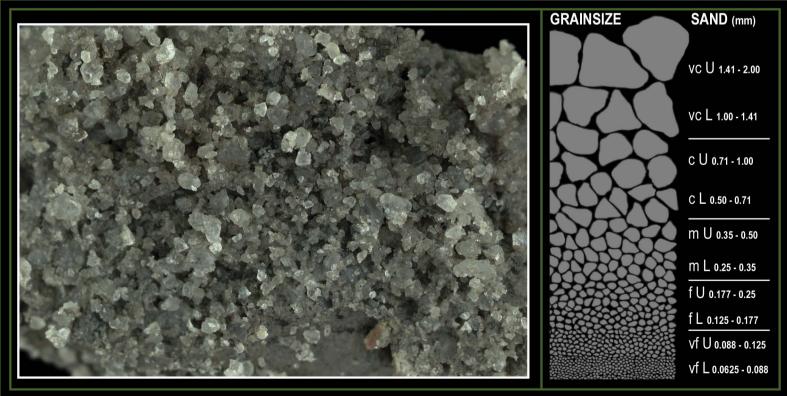
WELLSITE DESCRIPTION

CARBONACEOUS ARGILLACEOUS SILTSTONE (100%): medium olive grey to brownish grey, dark brown to very dark grey in part, trace mainly very fine quartz sand, common disseminated carbonaceous material, common undifferentiated clays, commonly micromicaceous, minor lithics, firm to hard.


Note: surficial development of secondary gypsum.

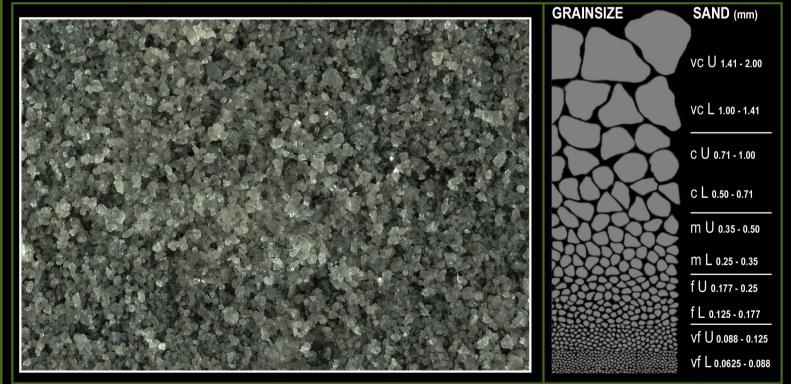
Apache Energy Ltd WASABI - 1 SWC # 17 Depth 1319.2 m

WELLSITE DESCRIPTION


SANDSTONE (100%): medium brownish grey, medium grey, quartz grains clear to mainly translucent, very fine to medium, minor coarse grains, moderately well to well sorted, sub-angular to sub-rounded, minor moderately siliceous cement, minor medium greyish brown siliciclastic silt matrix, hard aggregates, fair to mainly poor visible porosity, no fluorescence.

Apache Energy Ltd WASABI - 1 SWC # 18 Depth 1314.4 m

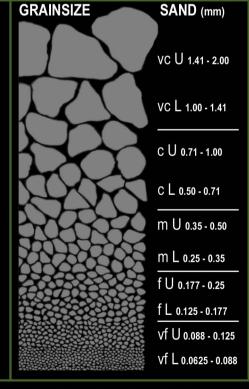
WELLSITE DESCRIPTION


SANDSTONE (100%): grey to medium brownish grey, translucent to frosted quartz grains, very fine to coarse, predominantly medium, poorly to moderately sorted, angular to sub-rounded, trace moderate calcareous cement, minor moderate siliceous cement, common off white to medium brownish grey argillaceous matrix, hard aggregates, poor to fair visible porosity, no fluorescence.

Apache Energy Ltd WASABI - 1 SWC # 19 Depth 1303.0 m

WELLSITE DESCRIPTION

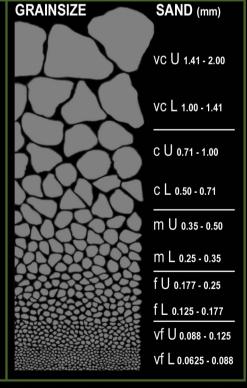

SILTY SANDSTONE (100%): medium grey, medium olive grey, clear to translucent quartz grains, very fine to lower medium, mainly fine, well sorted, sub-rounded, common silty matrix and in part may grade to arenaceous SILTSTONE, trace very fine lithics, trace carbonaceous specks, hard aggregates, fair to mainly poor visible porosity, no fluorescence.



Apache Energy Ltd WASABI - 1

WELLSITE DESCRIPTION

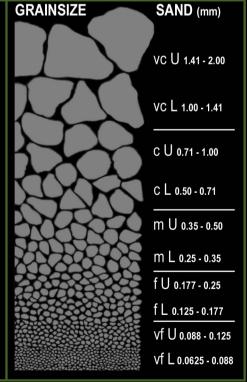
ARGILLACEOUS SILTY SANDSTONE (100%): medium grey, medium olive grey, dark brownish grey stained in part, mainly very fine to fine, minor scattered medium to very coarse framework grains, poorly to moderately sorted, sub-angular to sub-rounded, common undifferentiated clays, common siliciclastic silty matrix, grades to arenaceous SILTSTONE, trace carbonaceous specks, hard aggregates, poor visible porosity, no fluorescence.



Apache Energy Ltd WASABI - 1 SWC # 21 Depth 1295.2 m

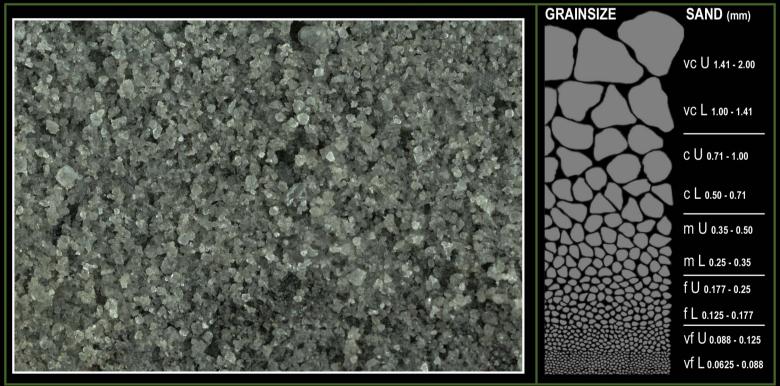
WELLSITE DESCRIPTION

ARGILLACEOUS SILTY SANDSTONE (100%): light to medium olive grey, brownish grey stained in part, very fine to fine, well sorted, sub-angular to sub-rounded, common undifferentiated siliceous clays, common to abundant silty matrix and overall grades to arenaceous SILTSTONE, silt and clay concentrations typically present as disturbed microlaminations, occasional lithics, minor carbonaceous matter in some microlaminations, occasionally micromicaceous, hard aggregates in places, poor visible porosity, no fluorescence.



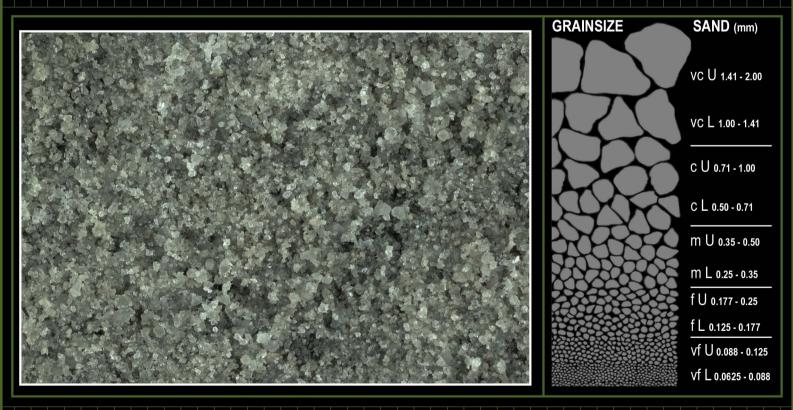
Apache Energy Ltd WASABI - 1 SWC # 22 Depth 1288.0 m

WELLSITE DESCRIPTION


SANDSTONE (100%): grey to medium olive grey, brownish grey stained in part, clear to mainly translucent quartz grains, very fine to medium, mainly upper fine to lower medium, well sorted, sub-rounded, minor to common silty matrix, minor moderately strong siliceous cement, occasional lithics, trace mica, hard aggregates in places, fair to poor visible porosity, no fluorescence.

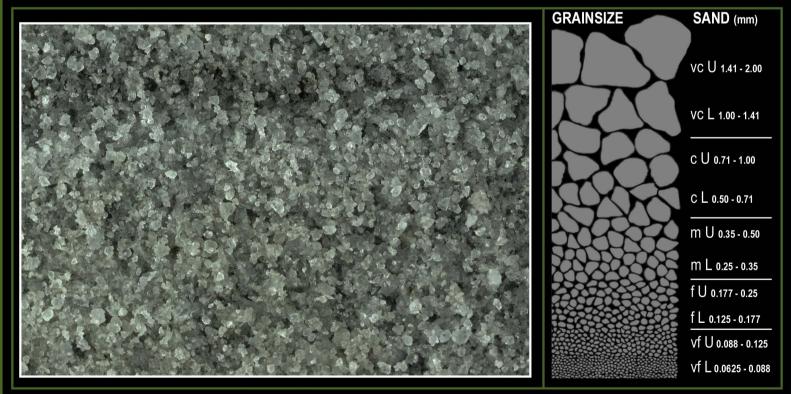
Apache Energy Ltd WASABI - 1 SWC # 23 Depth 1276.8 m

WELLSITE DESCRIPTION


SILTY SANDSTONE (100%): medium grey to olive grey, brownish grey stained in part, mainly very fine to fine, rare medium grains, well sorted, sub-rounded, common silty matrix, trace undifferentiated clays, common moderately strong calcareous cement and minor moderately strong siliceous cement, occasional lithics, trace mica, hard aggregates in places, fair to mainly poor visible porosity, no fluorescence.

Apache Energy Ltd WASABI - 1 SWC # 24 Depth 1264.5 m

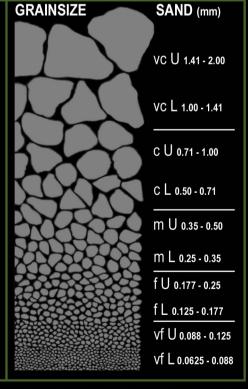
WELLSITE DESCRIPTION


SILTY SANDSTONE (100%): light to medium grey, medium greyish brown stained in places, mainly translucent quartz grains, very fine to lower medium, mainly very fine to lower fine, well sorted, sub-rounded, minor to common moderately strong calcareous cement, common to abundant medium brownish grey siliciclastic silt matrix, locally grades to arenaceous SILTSTONE, occasional carbonaceous material, trace undifferentiated clays, hard aggregates in places, generally poor visible porosity, no fluorescence.

Apache Energy Ltd WASABI - 1 SWC # 25 Depth 1262.9 m

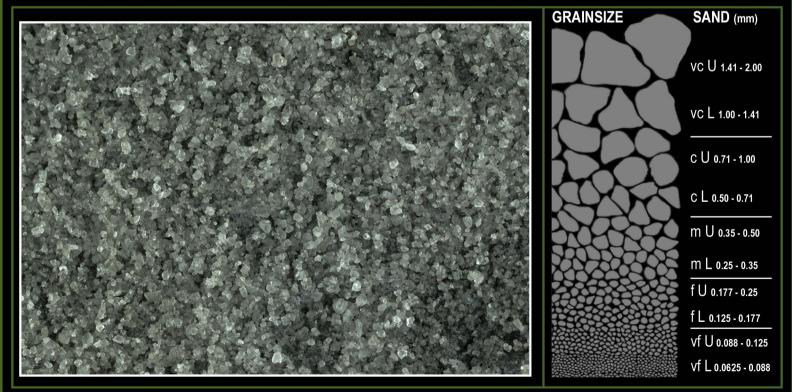
WELLSITE DESCRIPTION

SANDSTONE (100%): light to medium grey, clear to mainly translucent quartz grains, fine to medium, predominantly upper fine, well sorted, sub-angular to sub-rounded, trace siliciclastic silt, trace weak calcareous cement, minor moderately strong siliceous cement, trace carbonaceous material, hard aggregates in places, fair visible porosity, no fluorescence.



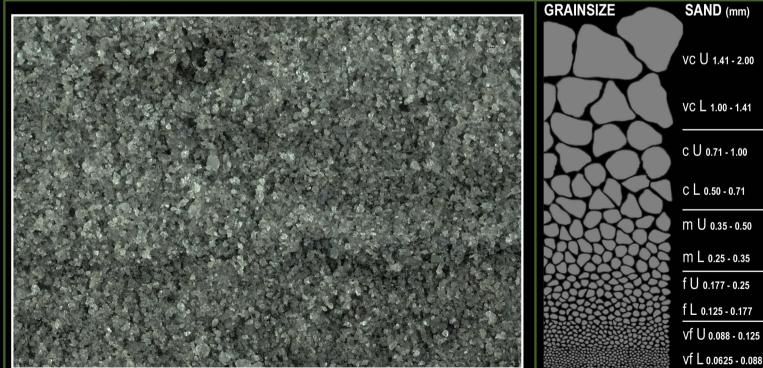
Apache Energy Ltd WASABI - 1 SWC # 26 Depth 1261.3 m

WELLSITE DESCRIPTION


SILTY SANDSTONE (100%): light to medium grey, mainly translucent quartz grains, fine to medium, predominantly upper very fine, well sorted, sub-angular to sub-rounded, very poorly defined layering, common siliciclastic silt, trace weak calcareous cement, minor moderately strong siliceous cement, hard aggregates in places, poor to fair visible porosity, no fluorescence.

Apache Energy Ltd WASABI - 1 SWC # 27 Depth 1259.3 m

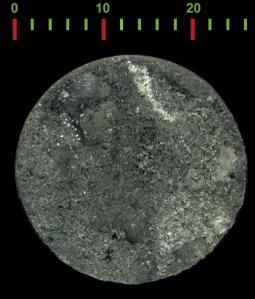
WELLSITE DESCRIPTION


SANDSTONE (100%): medium to dark grey, clear to mainly translucent quartz grains, very fine to fine, predominantly fine, trace medium, well sorted, sub-angular to sub-rounded, faintly defined layering in part, common moderately strong siliceous cement, trace weak calcareous cement, rare argillaceous matrix, occasional carbonaceous specks, hard aggregates in places, fair visible porosity, no fluorescence.

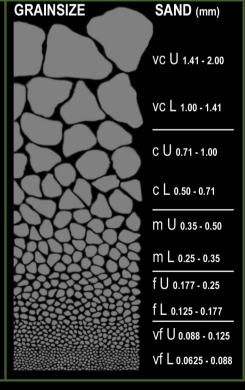
Apache Energy Ltd WASABI - 1 SWC # 28 Depth 1258.1 m

WELLSITE DESCRIPTION

SILTY SANDSTONE (100%): medium grey, medium olive grey, dark grey in part, very fine to fine, common siliciclastic silt and may grade to arenaceous SILTSTONE, very well sorted, sub-rounded, minor weak calcareous cement, trace amounts of undifferentiated clays, carbonaceous specks, and mica, occasional hard aggregates, fair to poor visible porosity, no fluorescence.

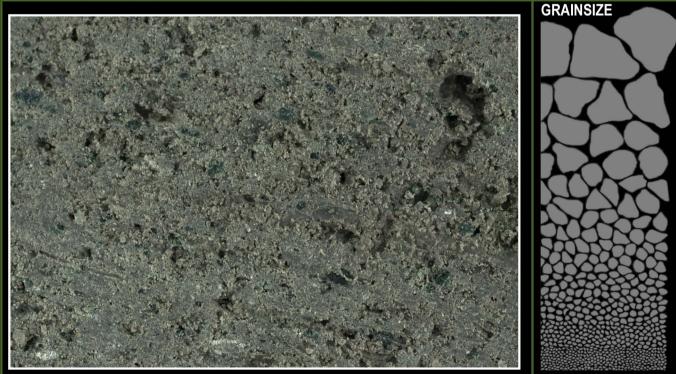


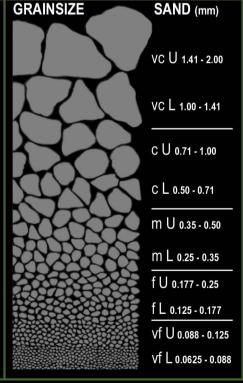
Apache Energy Ltd WASABI - 1 SWC # 29 Depth 1256.4 m



WELLSITE DESCRIPTION

PYRITIC GLAUCONITIC MARL (50%): medium to dark grey, speckled dark green, silver, very argillaceous, abundant disseminated pyrite, abundant fine dark green glauconite, common dispersed very coarse quartz grains, interbedded with poorly sorted SANDSTONE.


PYRITIC GLAUCONITIC CALCAREOUS SANDSTONE (50%): very fine to very coarse quartz grains, poorly sorted, common calcareous clay, common glauconite, moderately hard, tight visible porosity, no fluorescence.



Apache Energy Ltd WASABI - 1 SWC # 30 Depth 1250.0 m

WELLSITE DESCRIPTION

ARENACEOUS GLAUCONITIC MARL (100%): medium grey brown, medium grey, common to abundant calcareous material, common dark green glauconite grains up to medium sand-size, common irregularly disseminated quartz sand, common disseminated pyrite, minor micromica, hard.

FINAL WELL REPORT

Apache Northwest Pty Ltd

Wasabi-1

14 February - 06 March 2008

by

BAKER HUGHES INTEQ

The information, interpretations, recommendations, or opinions contained herein are advisory only and may be rejected. Consultant does not warrant their accuracy or correctness. Nothing contained herein shall be deemed to be inconsistent with, nor expand, modify or alter consultant's obligation of performance as provided for in a written agreement between the parties, or, if none, in consultant's most recent price list.

Wasabi-1

Final Well Report

Section 1 Well Summary

Section 2 Drilling & Engineering

2.1 Bit Run Summaries2.2 Cementing Summary

Section 3 Geology & Shows

3.1 Geology Summary and Shows

3.2 Sampling Summary and Record of Distribution

Tables Bit Run Summary

Bit Hydraulics Summary

Time Depth Curve

Appendices

Formation Evaluation Log 1:500
Drilling Data Plot 1:1000
Gas Ratio Plot 1:500
Pressure Log 1:1000

SECTION 1

WELL SUMMARY

1 Well Summary

1 Well Data Summary

Well Name Wasabi-1

Rig Name: MODU West Triton

Rig Type: Jack-Up

Drilling Contractor: Seadrill

Drilling Datum: Rotary Table

RT to AHD: 39.0 mMDRT

RT to Seabed: 66.0 mMDRT

Surface Coordinates: Lat 38° 29' 18.157" S

Long 147° 15' 49.147" E

Grid Coordinates: E 522 993.588 m (DATUM GDA94) N 5 739 963.350 m

Permit: VIC/P-58

Well Type: Exploration

Spud Date: 14 February 2008

Spud Depth: 66.0 mMDRT

Total Depth: 2313.0 mMDRT

TD Date: 01 March 2008

Well Status: Plugged & Abandoned

Baker Hughes INTEQ Crew:

Data Engineers: Deelip Mahajan, Yeong Chen Wong,

John Mancarella, Exequiel Discipulo

Logging Geologists: Avadhut Gholap, Rebecca Houston

1 Well Summary

1.1 Well Summary Wasabi-1

Baker Hughes INTEQ SLS provided formation evaluation, drill monitoring services for Wasabi-1 from the spud depth at 66.0 mMDRT on 14 February 2008 to 2313.0 mMDRT on 01 March 2008. Data was processed and stored using **Advantage version 2.10U2** software. All depths are measured depth below Rotary Table (mMDRT) referenced to Australian Height Datum (AHD) unless otherwise stated.

Wasabi-1 was planned as an exploration well to be drilled in the Wasabi field to assess the La Trobe, Intra La Trobe, L Balmei and Golden Beach formations and was programmed to TD below the Golden Beach formation. The well was spudded on 14 February 2008, using a 660 mm Smith XR+C bit. The hole was drilled from the seabed at 66.0 to 135.0 mMDRT. The hole was drilled using seawater and hi-vis gel sweeps, with cuttings dumped to the seabed.

The 406 mm hole was drilled vertically to from 135.0m to 862.0 mMDRT with a Reed T11CDH bit. The section was drilled riserless, with seawater and hi-vis sweeps pumped every stand. Before pulling the BHA to surface, the hole was displaced to 1.15 sg gel mud. After pulling the BHA to surface, the 508 x 340 mm casing was run. When running in the 508 x 340 mm casing from 135.0 mMDRT to 139.0 mMDRT a 10k drag was observed. The 508 x 340 mm casing was pull out of hole and bit 3RR2 Reed T11CDH was run to wash and ream the tight section. Then the 508 mm x 340 mm casing was run and cemented with the 340 mm casing shoe set at 857.0 mMDRT.

The BOPs and marine riser were run and latched to the PGB. The BOPs were pressure-tested and the diverter installed. The 311 mm hole section was drilled in three bit runs. A Smith Mi616VBPX bit (NB4) was made up to a directional drilling BHA with MWD tools. After tagging the cement high at 855.0 mMDRT, the bit drilled out the shoe track, 340 mm casing shoe at 857.0 mMDRT and two meters of new formation to 864.0 mMDRT. The hole was displaced to a KCI-Polymer water-based mud system initially weighted to 1.15 sg. Pulling back into the shoe, a Leak Off Test (LOT) was performed with 1.15 sg mud yielding an Equivalent Mud Weight (EMW) of 1.91 sg. The first bit run was drilled at an average 24.3 m/hr. At 1797.0 mMDRT, the bit was pulled to surface. A new fixed cutter bit (NB5) was made up to the previous directional drilling assembly with MWD tools and run in to directionally drill 311 mm to 1900.0 mMDRT. The bit was pulled out and replaced because of the need to build more angle before the target was reached. A new tricone bit (NB6) was made up to the previous directional drilling assembly with MWD tools. Directional drilling of the 311 mm hole was resumed from 1900.0 m to the well reached TD at 2313.0 mMDRT. The bit was pulled out to make way for wireline logging.

The wireline logging tools were not able to reach the target due to obstructions in the well. So a wiper trip was performed and the target area logged with LWD tools. Once the wiper trip was completed, wireline logging was successfully completed.

Three cement plugs were set after wireline logging on 06 March 2008. The first cement plug was set at 1210.0 mMDRT to 1270.0 mMDRT. The second cement plug was set across the 340 mm casing shoe from 797.0 mMDRT to 887.0 mMDRT while the final cement plug was set from 76.0 mMDRT to 121.0 mMDRT

The MODU West Triton was towed off location on 08 March 2008.

SECTION 2

DRILLING & ENGINEERING

Wasabi-1

2.1 Drilling & Engineering 660 mm (26") Hole Section 14 - 15 February 2008

Bit Run No. 1 Summary

Bit No. NB1 Bit Size, mm 660

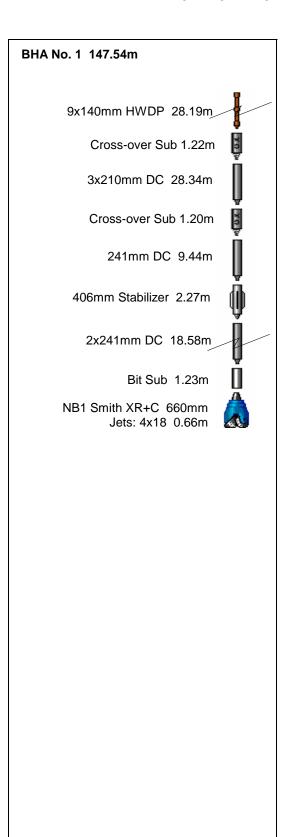
Bit Type Smith XR+C
Serial Number MZ1716
Jets 4 x 18
Depth In, mMDRT 66.0
Depth Out, mMDRT 135.0

Bit Grading 1-1-WT-A-E-I-NO-TD

Drilling Parameters

WOB, mt 0.3 – 5.4 RPM Surf 30 – 103 Pump Pressure, kPa 2068 – 16788 Flow In, Ipm 757 – 4572 Torque, kNm 0.71 – 3.45

Mud


Seawater 1.06 sg High viscosity gel sweeps

Lithology

Returns to seabed.

Drilling Summary

This spud assembly was made up, run in, tagging the seabed at 66.0 mMDRT. Wasabi-1 was spudded at 2300hrs on 14 February 2008, drilling 660 mm hole from seabed to 135.0 mMDRT. At TD, a PHG mud pill was pumped around the hole before displacing the hole to PHG mud.

406 mm (16") Hole Section 16 - 17 February 2008

Bit Run No. 2 Summary

Bit No. NB2 Bit Size, mm 406

 Bit Type
 Reed T11CDH

 Serial Number
 1369484

 Jets
 3x18, 1x16

 Depth In, mMDRT
 135.0

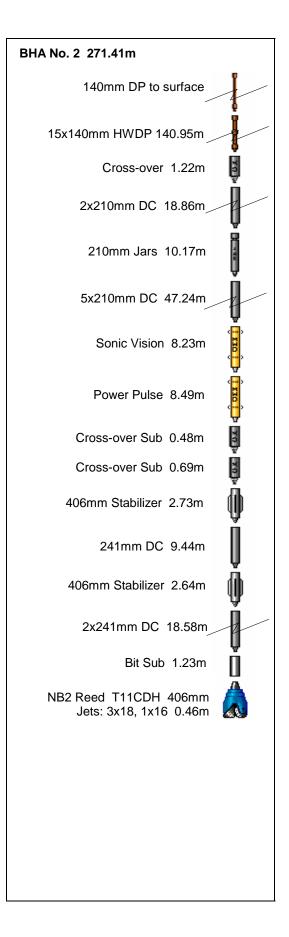
 Depth Out, mMDRT
 862.0

Bit Grading 1-2-WT-A-E-I-NO-TD

Drilling Parameters

WOB, mt 0.5 – 16.6 RPM Surf 45 – 103 Pump Pressure, kPa 7108 – 16954 Flow In, Ipm 3293 – 5245 Torque, kNm 0.1 – 12.4

Mud


Seawater 1.06 sg High viscosity gel sweeps

Lithology

Returns to seabed.

Drilling Summary

The 406 mm hole section was vertically drilled with a Reed T11CDH bit, plus a directional MWD tool. Seawater with hi-vis gel sweeps every stand drilled was used to clean the hole. Cuttings were dumped to the seabed. Then the 406 mm hole was drilled to TD of 862.0 mMDRT. At TD, a PHG mud pill was pumped around the hole before displacing the hole to 1.15 sg PHG mud. A directional survey was taken prior to pulling out of hole.

406 mm (16") Hole Section 18 February 2008

Bit Run No. 3 Summary

Bit No. 3RR2

 Bit Size
 406 mm (16")

 Bit Type
 Reed T11CDH

 Serial Number
 1369484

 Jets
 3x18, 1x16

 Depth In, MDRT
 862.0

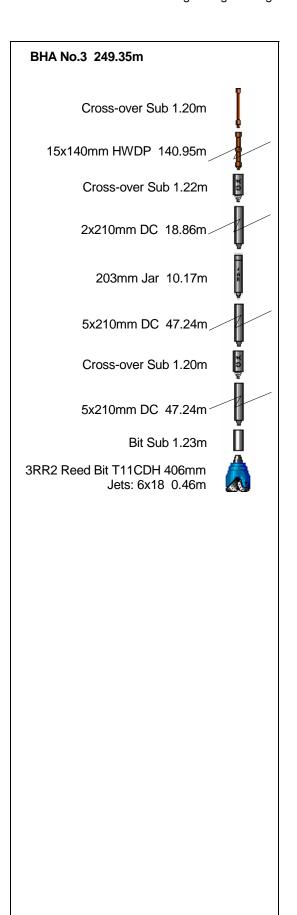
Depth Out, mMDRT 862.0

Bit Grading 1-2-WT-A-E-I-NO-TD

Drilling Parameters

Wiper Trip Only

Mud


Seawater 1.06 sg High viscosity gel sweeps

Lithology

Returns to seabed

Wiper Trip Summary

A 10k drag was observed when running in the 508 x 340 mm casing at depths of 135.0 mMDRT to 189.0 mMDRT. A wiper trip assembly was made up with the previous Reed T11CDH bit to wash and ream the tight section.

311 mm (12.25") Hole Section 22 - 26 February 2008

Bit Run No. 4 Summary

Bit No. NB4

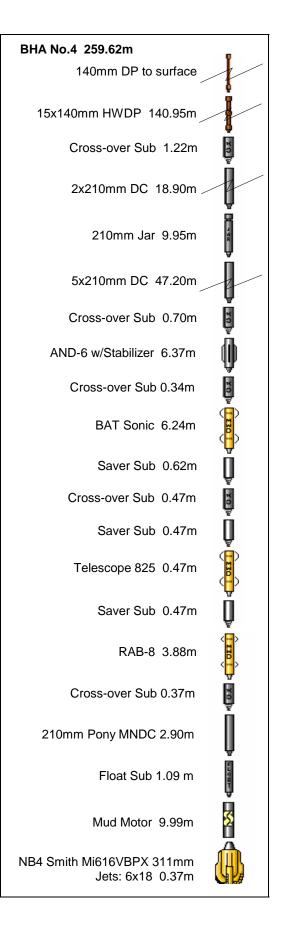
Bit Size 311 mm (12.25")
Bit Type Smith Mi616VBPX

Serial Number SCC 985 Jets 6x18

Depth In, MDRT 862.0 mMDRT
Depth Out, mMDRT 1797.0 mMDRT
Bit Grading 2-6-BT-S-X-I-RO-BHA

Drilling Parameters

Mud


KCI-Polymer 1.15 sg

Lithology

Limestone, Sandstone, Siltstone & Coal

Drilling Summary

A Smith Mi616VBPX bit was made up to a directional drilling BHA with MWD tools. After tagging the cement high at 855.0 mMDRT, the bit drilled out the shoe track, 340 mm casing shoe at 857.0 mMDRT and two meters of new formation to 864.0 mMDRT. The hole was displaced to a KCl-Polymer water-based mud system initially weighted to 1.15 sg. Pulling back into the shoe, a Leak Off Test (LOT) was performed with 1.15 sg mud yielding an Equivalent Mud Weight (EMW) of 1.91 sg. This first bit run was drilled at an average 24.3 m/hr. At 1797.0 mMDRT, the bit was pulled to surface.

311 mm (12.25") Hole Section 26 - 27 February 2008

Bit Run No. 5 Summary

Bit No. NB5

Bit Size 311 mm (12.25")
Bit Type Smith Mi616VBPX

Serial Number SCC991
Jets 9x14
Depth In, MDRT 1797.0
Depth Out, mMDRT 1900.0

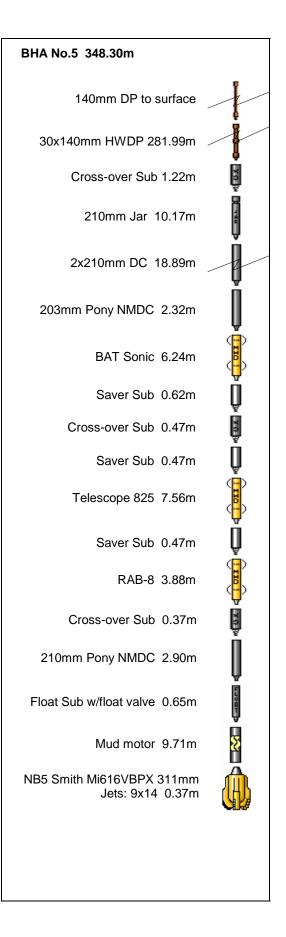
Bit Grading 2-4-CT-T-X-I-WT-BHA

Drilling Parameters

WOB mt 0.1 - 7.3 RPM Surf 0 - 50

Pump Pressure kPa 12463 – 25088 Flow In lpm 3406 – 4451 Torque kNm 0 – 17.3

Mud


KCI-Polymer 1.15 –1.16 sg

Lithology

Sandstone, Siltstone, Claystone & Coal

Drilling Summary

A new fixed cutter bit was made up to the previous directional drilling assembly with MWD tools and run in to directionally drilled 311 mm to 1900.0 mMDRT. The bit was pulled out and replaced because of the need to build more angle before the target was reached.

311 mm (12.25") Hole Section 27 February - 1 March 2008

Bit Run No. 6 Summary

Bit No. NB6

Bit Size 216 mm (12.25") Bit Type Hughes MXL-1X

 Serial Number
 6065524

 Jets
 3x24

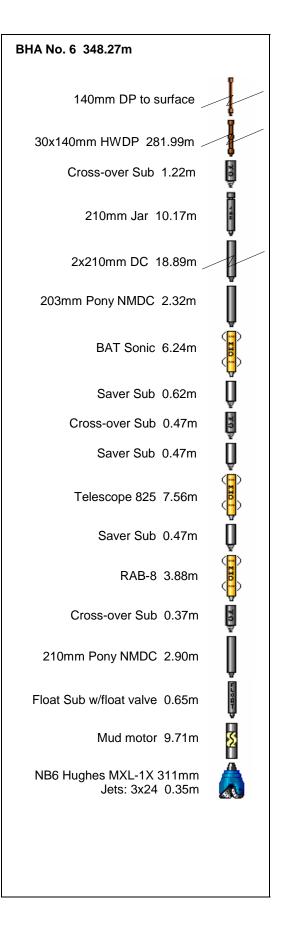
 Depth In, mMDRT
 1900.0

 Depth Out, mMDRT
 2313.0

Bit Grading 2-8-WT-A-4-16-CT-PR

Drilling Parameters

Mud


KCI-Polymer 1.15 - 1.21 sg

Lithology

Sandstone, Siltstone, Volcanics, Claystone & Coal

Drilling Summary

A new tricone bit was made up to the previous directional drilling assembly with MWD tools. Directional drilling of the 311 mm hole was resumed from 1900.0 m to the well TD at 2313.0 mMDRT.

2.2 Casing and Cementing

508 x 340 mm (20"x 13.375") Casing 18 – 20 February 2008

Hole Size: 660 mm (26")
Depth: 135.0 mMDRT

Hole Size: 406 mm (16")
Depth: 862.0 mMDRT

Casing Details

OD 508 mm (20")

Grade / Wt: X56 193 kg/m

Joints: 7 x 508 mm joint

OD 340 mm (13.375") Grade / Wt: L80 101 kg/m

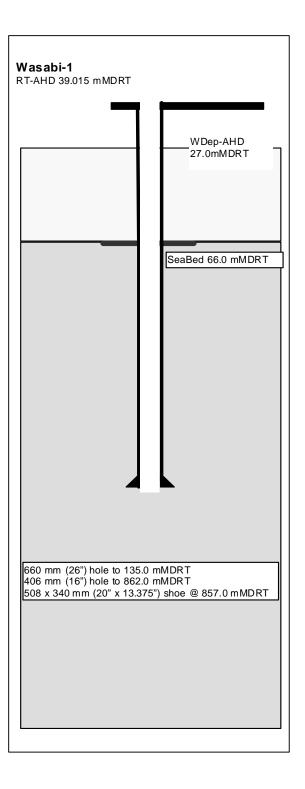
Joints: 1 x 340 mm shoe joint

57 x 340 mm joint 1 x cross-over joint

Shoe: 857.0 mMDRT

Cement Details

LEAD SLURRY:


Type: Class G Weight: 1.5 sg Slurry Volume: 117.6 m³

TAIL SLURRY:

Type: Class G Weight: 1.9 sg Slurry Volume: 7.2 m³

Summary

The 508 x 340 mm casing string was run on 18 February 2008. Each joint of casing was filled with sea water. The 340 mm shoe was set and cemented at 857.0 mMDRT as per the cementing program. After the cement had set, the cement stinger and the 140 mm drill pipe were pulled to surface.

Cement Plug 06 March 2008

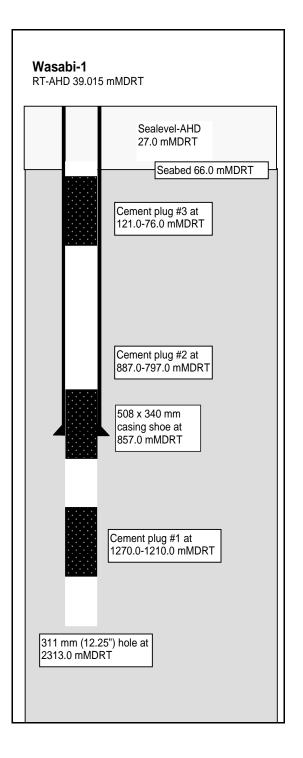
Hole Size: 311 mm (12.25") Depth: 2313.0 mMDRT

Cement Plug Details

CEMENT PLUG #1:

Type: Class G Weight: 1.89 sg Slurry Vol: 7.47 m³

CEMENT PLUG #2:


Type: Class G Weight: 1.89 sg Slurry Vol: 7.00 m³

CEMENT PLUG #3:

Type: Class G Weight: 1.89 sg Slurry Vol: 7.95 m³

Summary

The cement stinger made up of 140 mm drill pipe was run in hole as per Apache's program. Circulated to condition mud and spotted 30 bbl hivis pill at 1330.0 mMDRT. The line was tested to 1000 psi prior to pumping all 3 cement plugs The first cement plug was set from 1270.0 mMDRT to 1210.0 mMDRT. The second cement plug was set across the 340 mm casing shoe from 887.0 mMDRT to 797.0 mMDRT while the final cement plug was set at 121.0 mMDRT to 76.0 mMDRT. Reverse circulations of 2 times 140 mm drill pipe volume were done after every cement plug.

SECTION 3

GEOLOGY & SHOWS

3.1 Geology and Shows

Wasabi-1

Geological formation evaluation for Wasabi-1 commenced from the start of the 311 mm hole section at 862.0 mMDRT to the well's Total Depth at 2313.0 mMDRT. All depths given are measured depths from the Rotary Table (mMDRT).

All gas monitoring equipment was calibrated before drilling each hole section and checked regularly. Calcimetry analysis on cuttings samples was performed at the request of the Wellsite Geologists.

The lithologies encountered at Wasabi-1 are described below. For more detailed descriptions, see Appendix 1: Formation Evaluation Log. Please note that the lithological descriptions on the Formation Evaluation Log were provided by the Apache Wellsite Geologists, with input from the BHI mudloggers.

Sampling Intervals:

862 – 870 m	8 m interval
870 – 2310 m	5 m interval
2310 – 2313 m	3 m interval

Formation Description:

660 mm Section (66.0 – 135.0 mMDRT)

Returns to seabed. No samples.

406 mm Section (135.0 – 862.0 mMDRT)

Returns to seabed. No samples.

311 mm Section (862.0 – 2313.0 mMDRT)

862.0 to 1200.0 mMDRT.

Interbedded CALCISILTITE and CALCILUTITE with CALCARENITE

ARGILLACEOUS CALCARENITE (10 to 80%): off white, light to medium grey, light brownish grey in part, arenaceous, common pale grey, argillaceous matrix, abundant fossils, common very coarse frosted & iron stained quartz grains, trace nodular pyrite, rare glauconite specks, moderately hard aggregates, poor visible porosity, common silty matrix & locally grading to calcisiltite, trace mineral fluorescence, rare pyrite.

CALCILUTITE (5 to 40%): Light medium grey, very light grey to light grey, off white to pale grey, firm, sub-blocky to blocky, trace dark grey, argillaceous, trace microcrystalline, common microfossil, soft to dispersive, moderately hard in parts, , commonly argillaceous & locally grading to calcilutite, minor very fine glauconite, locally arenaceous, trace black carbonaceous material, rare round reddish brown lithic grains.

CALCISILTITE (20 to 50%): very light grey to light grey, medium to dark grey in part, firm, sub-blocky to blocky, commonly argillaceous & locally grading to calcilutite, minor very fine glauconite, locally arenaceous, common to locally abundant micro fossils, common black carbonaceous material.

1200.0 to 1290.0 mMDRT. Interbedded CALCAREOUS SANDSTONE and CALCAREOUS SILTSTONE

CALCAREOUS SANDSTONE (80 to 100%): pale brown, light grey brown, medium grey, occasionally off white to pale green, translucent in part, very fine to coarse, dominantly very fine to fine, poor to moderately sorted, sub angular to sub rounded, locally angular coarse grains, dominantly medium, poorly sorted, angular to sub rounded,

common strong calcareous cement, common pale grey argillaceous matrix & locally grading to arenaceous SILTSTONE, common carbonaceous specks, locally common very fine glauconite, minor disseminated & nodular pyrite, generally loose grains, very hard aggregates, poor visible porosity, fair to good inferred porosity.

CALCAREOUS SILTSTONE (5 to 20%): light to medium grey brown, light to medium grey, argillaceous, minor calcareous material, common carbonaceous specks, common nodular and disseminated pyrite, common very fine glauconite specks, locally micaceous, firm, sub blocky to blocky.

1290.0 to 1385.0 mMDRT. Interbedded SANDSTONE and SILTSTONE with minor COAL.

SANDSTONE (20 to 100%): Clear to translucent, pale brown, frosted, fine to very coarse, poorly sorted, dominantly coarse, moderately well sorted, angular to sub rounded, trace weak calcareous cement, locally medium brown argillaceous matrix, common iron stained coarse grains, common carbonaceous fragments, occasional nodular pyrite and glauconite specks, generally loose clean quartz grains, good visible and inferred porosity, rare weak calcareous cement, no visible matrix.

SILTSTONE (0 to 40%): Light to medium grey, light bluish grey, argillaceous and locally grading to claystone, occasional lithics and carbonaceous specks, trace nodular pyrite, trace micromicaceous, minor calcareous material, firm to moderately hard, moderately hard to hard, sub fissile to sub-blocky, locally arenaceous and grading to very fine sandstone, minor micaceous flecks.

COAL (0 to 5%): dark grey to black, sub to vitreous, dull to earthy in part, common silty laminations and locally grading to carbonaceous siltstone, friable to moderately hard, sub fissile to sub blocky, locally sub conchoidal.

1385.0 to 1795.0 mMDRT. Interbedded CALCAREOUS SILTSTONE and CALCAREOUS CLAYSTONE with trace CALCILUTITE

SANDSTONE (0 to 100%): Pale brown, light grey brown, clear to translucent, frosted, very fine to very coarse, dominantly fine to medium, poorly sorted, sub angular to sub-rounded, angular where coarse, angular frosted grains, trace weak calcareous cement, common pale brown argillaceous matrix & locally grading to arenaceous siltstone, common carbonaceous laminations, minor nodular pyrite, generally loose, moderately hard to hard aggregates, tight to poor visible porosity, fair inferred porosity.

SILTSTONE (0 to 95%): Light grey brown, light to medium brown, pale to medium grey, medium bluish grey arenaceous & locally grading to very fine sandstone, occasional micromicaceous, trace calcareous material, trace lithics common carbonaceous material, siliceous, argillaceous and grading to claystone in part, hard to very hard, sub blocky, locally sub fissile.

CLAYSTONE (0 to 100%): Medium brown, medium orange brown, very dark brown grey, trace arenaceous in part, trace calcareous material, common carbonaceous material where very dark brown grey, firm to hard, dispersive to sub blocky, sub fissile in part.

CALCAREOUS CLAYSTONE (10%): pale bluish grey, siliceous, common to abundant calcareous material, hard to very hard, sub fissile.

COAL (0 to 40%): Black, dark grey, vitreous to sub-vitreous, silty in part and locally grading to very dark brown carbonaceous siltstone, friable to moderately hard, conchoidal to sub to conchoidal fracture, sub to blocky in part.

1795.0 to 2207.0 mMDRT. Predominantly SANDSTONE interbedded with SILTSTONE and CLAYSTONE with COAL

SANDSTONE (0 to 100%): off white to pale grey, light to medium grey, frosted, clear to translucent, very fine to very coarse, predominantly poorly sorted, poor to moderately sorted i/p, predominately angular to subrounded, subrounded to sub angular, sub-rounded where fine grained, angular where very coarse, trace to common weak calcareous cement, locally pale grey brown argillaceous matrix and locally grading to arenaceous siltstone, trace to minor nodular and disseminated pyrite, trace to common coal laminations, fair to good inferred porosity, poor visual porosity, generally loose grains, poorly sorted.

CALCAREOUS CLAYSTONE (0 to 40%): light bluish grey, green grey, siliceous, occasional micro fossils, commonly micromicaceous, and locally carbonaceous material, common to abundant calcareous mat, trace nodular pyrite, hard to very hard, sub blocky to sub-fissile.

SILTSTONE (5 to 70%): Light to medium grey, medium to dark olive grey, medium brown grey, pale grey brown, light to medium brown, dark brown in part, arenaceous and commonly grading to very fine sandstone, argillaceous in part, common carbonaceous laminations and specks, commonly micromicaceous, locally grading to carbonaceous siltstone, locally grading to silty claystone, firm to hard, sub-blocky, occasionally sub-fissile, occasional nodular pyrite, trace lithics, minor platy micas.

COAL (0 to 20%): Black, very dark grey, dark brown, dull vitreous to sub vitreous, slty in part and grading to dark brown carbonaceous siltstone, common silty and grading to carbonaceous siltstone, trace disseminated pyrite, laminations, hard, sub-blocky to sub fissile, conchoidal to sub conchoidal where vitreous, rare conchoidal fracture

2207.0 to 2313.0 mMDRT. Interbedded SANDSTONE, CLAYSTONE and VOLCANIC with Minor SILTSTONE AND COAL

SANDSTONE (10 to 90%): Clear to translucent, frosted, pale very fine to very coarse, dominantly medium, moderately sorted, poor sorted, sub angular to sub rounded, angular where coarse, minor weak calcareous cement, trace pale grey argillaceous matrix, occasional calcareous fragments, trace nodular pyrite, occasional rock flour, trace mica, occasional carbonaceous material, loose, fair to good inferred porosity.

SILTSTONE (5 to 50%): medium brown, light to medium brown grey, medium grey in part, arenaceous and locally grading to very fine sandstone, common carbonaceous laminations and specks, hard, sub blocky, locally sub fissile, minor micromicaceous.

VOLCANIC (5 to 50%): Tuffite, pale grey green, off white to pale green, light to medium blue green, dark grey in part, minor dark green minerals,, siliceous groundmass, common feldspars, occasional dark green minerals (olivine?) argillaceous where weathered, localised reworked carbonaceous fragments, common feldspars, firm to hard, very hard in part, sub blocky. angular, sub blocky where weathered.

CLAYSTONE (5 to 75%): Pale grey, light to medium grey, medium brown, reddish brown, siliceous, minor silty and locally grading to argillaceous siltstone, minor carbonaceous laminations and specks, occasionally micromicaceous, moderately hard to hard, sub blocky to sub fissile.

COAL (0 -5%): Black, dark grey, dark brown grey, vitreous to sub-vitreous, occasionally silty and grading to carbonaceous siltstone, firm to moderately hard, fissile in part, sub conchoidal. (Possible that any free fragments are cavings).

ROP and Gas Readings:

311 mm Section (862.0 – 2313.0 mMDRT)

Interval (m)	ROP range (m/hr)	ROP average (m/hr)	Total Gas range (%)	Total Gas average (%)
862 – 1200	9 - 98	74	0.015 - 0.0026	0.0022
1200 – 1290	8 – 142	62	0.0021 - 0.0028	0.0024
1290 – 1385	2 – 182	76	0.0015 - 0.0048	0.0023
1385 – 1795	6 – 181	52	0 - 0.2833	0.0068
1795 – 2207	3 – 92	23	0 - 0.0285	0.0039
2207 – 2313	3 – 28	10	0.003 - 0.0176	0.0072

Minimum - Maximum Chromatograph Readings:

311 mm Section (862.0 - 2313.0 mMDRT)

Interval (m)	C1 (ppm)	C2 (ppm)	C3 (ppm)	iC4 (ppm)	nC4 (ppm)	iC5 (ppm)	nC5 (ppm)
862 – 1200	2 – 10	0-2	0 – 1	0	0	0	0
1200 – 1290	3 – 14	0	0	0	0	0	0
1290 – 1385	2-9	0	0	0	0	0	0
1385 – 1795	0 – 540	0 – 23	0 - 2	0 - 3	0-2	0	0
1795 – 2207	0 – 690	0 – 5	0	0	0	0	0
2207 – 2313	7 – 590	0 – 103	0 - 1	0	0	0	0

3.2 Sampling Summary

Sampling Summary and Record of Distribution:

Wasabi-1

Cuttings samples were collected at the intervals tabulated below as advised by the Well site Geologists.

862 – 870 m	8 m interval
870 – 2310 m	5 m interval
2310 – 2313 m	3 m interval

Samples were missed from the following depths:

Due to high ROP:

875m, 900m, 915m, 920m, 925m, 935m, 945m, 955m, 965m, 975m, 985m, 995m, 1005m, 1015m, 1025m, 1035m, 1045m, 1055m, 1065m, 1075m, 1085m, 1095m, 1110m, 1105m, 1115m, 1125m, 1135m, 1145m, 1155m, 1165m, 1175m, 1185m, 1200m, 1215m, 1225m, 1235m, 1245m, 1255m, 1265m, 1275m, 1285m, 1295m, 1305m, 1315m, 1325m, 1335m, 1345m, 1355m, 1365m, 1375m, 1395m, 1405m, 1415m, 1435m, 1555m, 1595m, 1615m, 1625m, 1635m, 1640m, 1655m, 1665m, 1685m, 1740m, 1925m, 2020m, 2045m,

Loggers running carbide bomb: 1845m

Sample Destination:

Set A (200g Washed & Dried Drill Cuttings in polythene bags) to be forwarded to:

Apache Energy Ltd c/o Core Laboratories Pty Ltd

447-449 Belmont Avenue

KEWDALE, WA 6105 (Attn: Mr. Paul Stephenson)

Set B (200g Washed & Dried Drill Cuttings in polythene bags) to be forwarded to:

DPI c/o Core Laboratories Pty Ltd

447-449 Belmont Avenue

KEWDALE, WA 6105 (Attn: Mr. Paul Stephenson)

Set C (200g Washed & Dried Drill Cuttings in polythene bags) to be forwarded to:

AGSO c/o Core Laboratories Pty Ltd

447-449 Belmont Avenue

KEWDALE, WA 6105 (Attn: Mr. Paul Stephenson)

Mud Samples to be forwarded to:

Apache Energy Ltd c/o Core Laboratories Pty Ltd

447-449 Belmont Avenue

KEWDALE, WA 6105 (Attn: Mr. Paul Stephenson)

3.2 Sampling Summary

				INTER				
SAMPLE TYPE	Well	No. of Sets			PACKING DETAILS			
			Large	Small	Interval (m)			
			Box No.	Box				
				No.				
				1	862 – 1640]		
DRILL CUTTINGS	Wasabi-1			2	1640 – 1740	Max. 8 small boxes		
minimum 200g:				3	1740 - 1850	per large box.		
			1	4	1850 – 1960]		
Washed & Air Dried			ı	5	1960 – 2070	Large boxes marked		
(polythene bags)				6	2070 – 2180	as Set A, B, C		
Sets A, B & C from				7	2180 – 2290]		
862 – 2313 m				8	2290 - 2400]		
		_		9	2400 – 2510]		
		3		10	2510 - 2620	1		
				11	2620 - 2730	1		
				12	2730 - 2840	1		
			2	13	2840 - 2940	1		
				14	2940 - 3060	1		
				15	3060 - 3170	1		
				16	3170 – 3230	1		
				17	3230 - 3274	1		
SAMPLEX TRAYS: Set D	Wasabi-1	1	1	1 862 – 2313		1 1 8		Packed in one wooden box marked as Set D
MUD SAMPLES: Set E	Wasabi-1	1	1	(50ml)	870, 1290, 1355, 1400, 1800, 1820, 2121, 2305	Packed in one Box marked as Set E		
				(500ml)	2030, 2313			

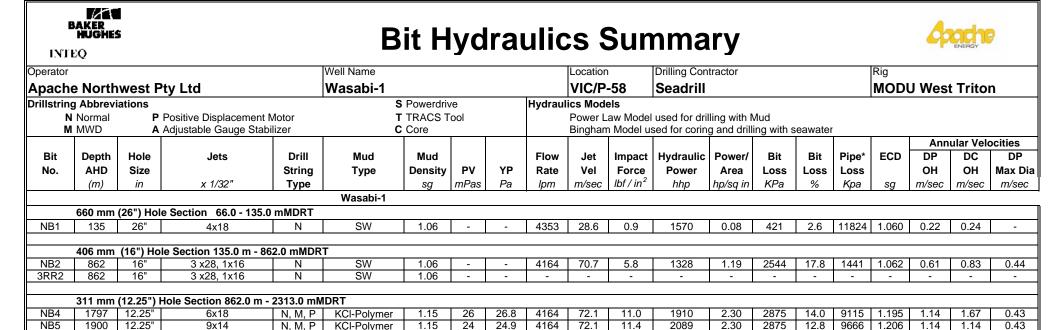

Samples Packed and Sent Off the Rig in Container # 6214

Table 1: Bit Run Summary Tables

OPERAT	TOR	•	•	<u> </u>		WELL NAME	·		·		LOCATIO	ON	•	CONTRAC	TOR	·							1	RIG		
		Apache Northwest	t Pty Ltd				Wasabi-	1			VIC/P-	-58			Seadrill									(1	MODU)	West Triton
					Mud Pump Dat	ta					BIT DUL	L CHARA	CTERISTICS									RI	ASONS	S PULLEI	D	
,				Pumps	1, 2, and 3		BC - Broken Cone		CI - Cone Interfere	ence	JD - Junk Da	amage	PB - Pinched Bit		SS - Self-Sharpening	·		BHA - Bottomh	ole Assembly		LOG - Run L	ogs	F	M - Formation	Change	TD - Total / Csg depth
	1200	400	AKER HUGHES	165 mm	6.5" Liners		BT - Broken Teeth		CR - Cored		LC - Lost Co	ine	PN - Plugged Nozzle		TR - Tracking			DMF - Downho	ole Motor failure		RIG - Rig rep	pair	F	IP - Hole Probl	lems	TQ - Torque
-	ENERG		HOURES	355 mm	14" Stroke		BU - Balled Up		CT - Chipped Tee	eth	LN - Lost No	zzle	RG - Rounded Gauge		WO - Washed-Out Bit			DSF - Drill Strin	ng failure		CM - Conditi	on Mud	F	IR - Hours		TW - Twist-Off
	EIZEH	INTE	CO	97% Eff	iciency, 16.03 litre/stk	(CC - Cracked Con	e	FC - Flat Crested	Wear	LT - Lost Tee	eth	RO - Ring Out		WT - Worn Teeth			DST - Drill Ster	m Test		CP - Core Pr	oint	F	P - Pump Pres	ssure	WC - Weather Conditions
			_		(0.1394 bbl/stk)		CD - Cone Dragge		HC - Heat Checki		OC - Off-Cer		SD - Shirttail Damage		NO - No Dull Characs.			DTF - Downhol			DP - Drill Plu	g	F	R - Penetration		WO - Washout - Drill String
ВНА	BIT	MAKE	TYPE	TFA	JETS	SERIAL		METRES			-	WOB	RPM	TBR	SPP	FLOW	TQ	L.,	_	GRAD					MW	REMARKS
#	No.			sq.in.		No.	IN m	ON BIT	BOTTOM	m/hr	HRS	tonne	Surf/Motor	krev	kPa	lpm	kNm	1 (0 D	L	В	G	0	R	SG	
				Wasabi-1	1																					
		26") Hole Section 66.0			1								1													ı
1	NB1	Smith	XR+C	0.9940	4x18	MZ1716	66	69	2.5	27.6	5.1	3.4	30-103	9.1	2068-16788	757-4572	0.71-3.45	1	1 WT	Α	Е	In	NO	TD :	SW (1.06)	Spud
		16") Hole Section 135			1	1							1		1	1			-							Г
2	NB2	Reed	T11CDH	0.9419	3x18,1x16	1369484	135	727	13.9	52.3	23.3	5.5	45-103	76.6	7108-16954	3293-5245	0.1-12.4		2 WT		E				SW (1.06)	Casing point
3	3RR2	Reed	T11CDH	0.9419	3x18,1x16	1369484	862	-	-	-	-	-	-	-	-	-	-	1 1	2 WT	Α	Е	ı	NO	TD :	SW (1.06)	Wiper Trip
		12.25") Hole Section 8											T/		2010 05705	2024 2027	0.00.5	1								E1: 01
4	NB4	Smith	Mi616VBPX	1.4910	6x18	SCC985	862	935	38.4	24.3	57.9	8.5	0-67/58-222	280.6			0-22.5	2 (6 BT	S	X		RO		1.15	Bit Change
5	NB5	Smith	Mi616VBPX	1.3530	9x14	SCC991	1797	103	11.1	9.3	11.9	2.3	0-50/118-173	45.4	12463-25088		0-17.3	2 4	4 CT	1	X	10	WT		1.16	Bit Change
6	NB6	Hughes Christensen	MXL-1X	1.3254	3x24	6065524	1900	413	37.1	11.1	53.2	16.7	0-85/93-205	390.1	9622-26388	2112-4300	0-15.0		8 WI	А	4	16	CT	PR	1.21	TD
																		-								
					DT AUD (m)			39.0	١																	
					RT-AHD (m) RT - Seabed				m) mMDRT																	
					Total Depth (m)) mMDRT																	
l					rotal Deptil (III)			2313.0	, IIIIVIDIK I																	

Apache Northwest Pty Ltd Wasabi-1 Table 2: Bit Hydraulics Summary Tables

Apache Northwest Pty Ltd Wasabi-1

N, M, P

KCI-Polymer

1.21

24

24.9

4012

78.2

12.1

2319

2.74

3557

13.7

* Note: Pipe Loss includes DP,HWDP, DC, MWD, Motor, Additional tools, surf equipment

12258 1.262

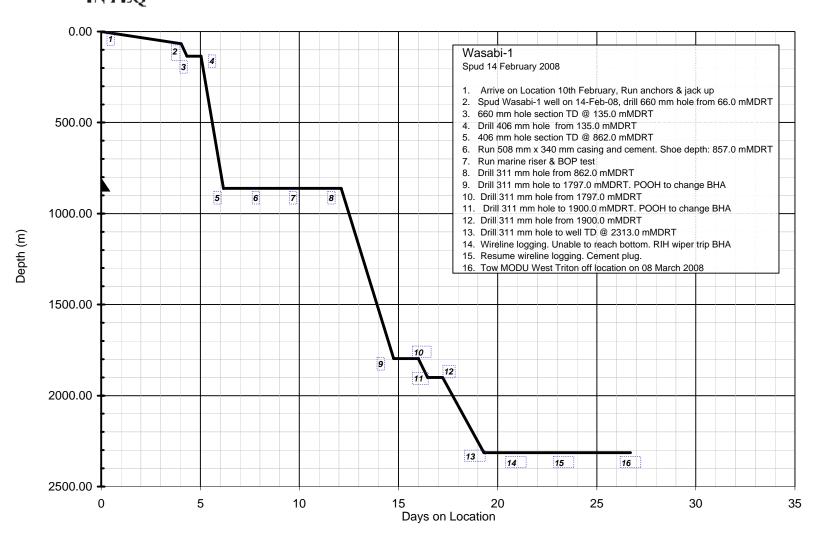
1.10

1.10

0.41

NB6

2313


12.25"

3x24

Apache Northwest Pty Ltd Wasabi-1 Time vs. Depth

FORMATION EVALUATION LOG

1:500

INTEO

Company **Apache Northwest Pty Ltd**

Wasabi-1 Well

Permit VIC/P-58

Region **Gippsland Basin**

Designation **Exploration**

38° 29' 18.157" S Coordinates

Long 147° 15' 49.147" E

Ref Elevation RT 39.0 mMDRT (AHD)

Total Depth 2313.0 mMDRT

Contractor Seadrill

Rig **MODU West Triton**

Jack-Up Type

LOG INTERVAL

66.0 - 2313.0 mMDRT Depth

14 February - 01 March 2008 Date

1:500 Scale

D. Mahajan, Y.C. Wong, J. **Data Engineers**

Mancarella, E. Discipulo

Logging Geologists A. Gholap, R. Houston

INTEQ LOG SUITE

Formation Evaluation **Drilling Data Plot** Gas Ratio Plot

Drilling Data Pressure Plot

ABBREVIATIONS

NB RB CB WOB RPM FLC FCG PR NR BG WTG TG POG	New Bit Rerun Bit Core Bit Weight on Bit Revs per Minute Flow Check Flow Check Gas Poor Returns No Returns Background Gas Wiper Trip Gas Trip Gas Pumps Off Gas	MD GPM PP MW FV F FC PV YP Sol Sd CI RM	Measured Depth Gallons per Min Pump Pressure Mud Weight sg Funnel Viscosity Filtrate - API Filter Cake Plastic Viscosity Yield Point Solids % Sand % Chlorides Mud Resistivity
. •	•	•	
SWG	Swab Gas	TVD	True Vertical Depth

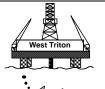
LITHOLOGY SYMBOLS

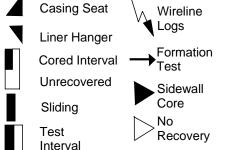
Ls

Clyst

Sst

Mrl




RT- AHD 39.0 mMDRT

W Dep - AHD 27.0 mMDRT

Seabed @ 66.0 mMDRT (AHD)

340 X 508mm Casing to 857.0 mMDRT 660 mm (26") hole to 135.0 m 406 mm (16") hole to 862.0 m Drilling Fluid: Seawater/Hi-vis sweeps

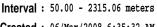
311 mm (12.25") hole to 2313.0m Drill Fluid: KCl Polymer 1.15-1.21 sg

Sidewall Core M Recovery

Mechanical

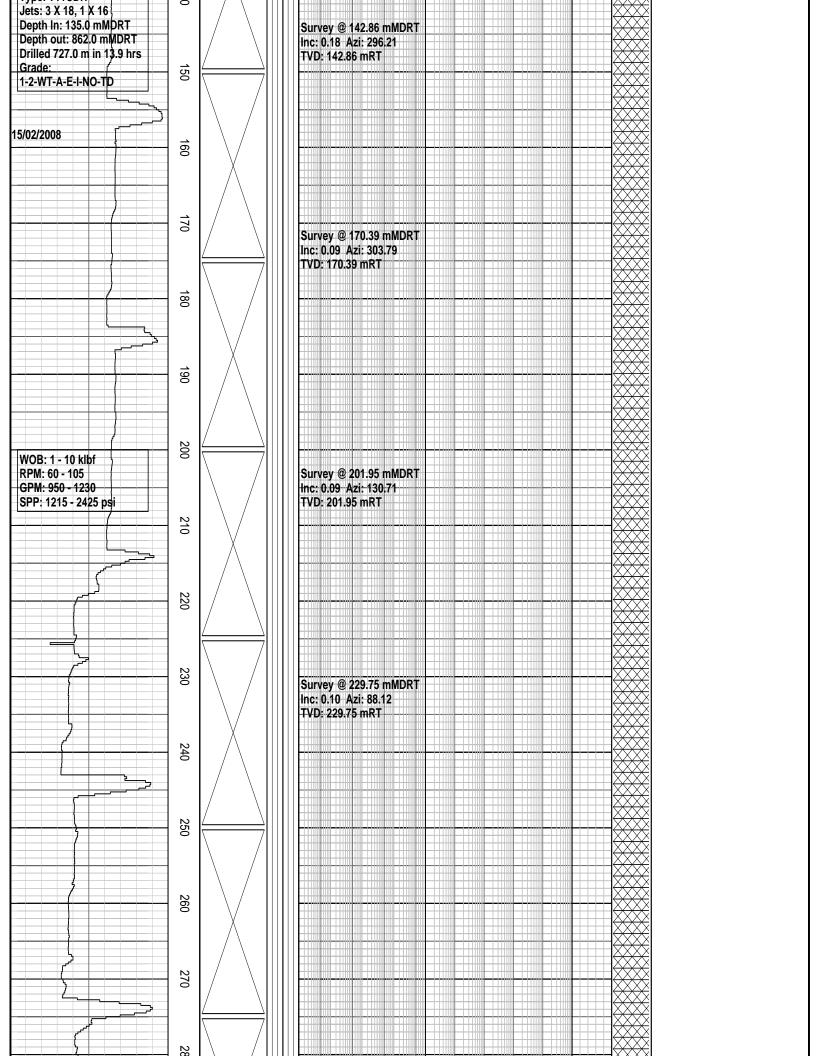
No

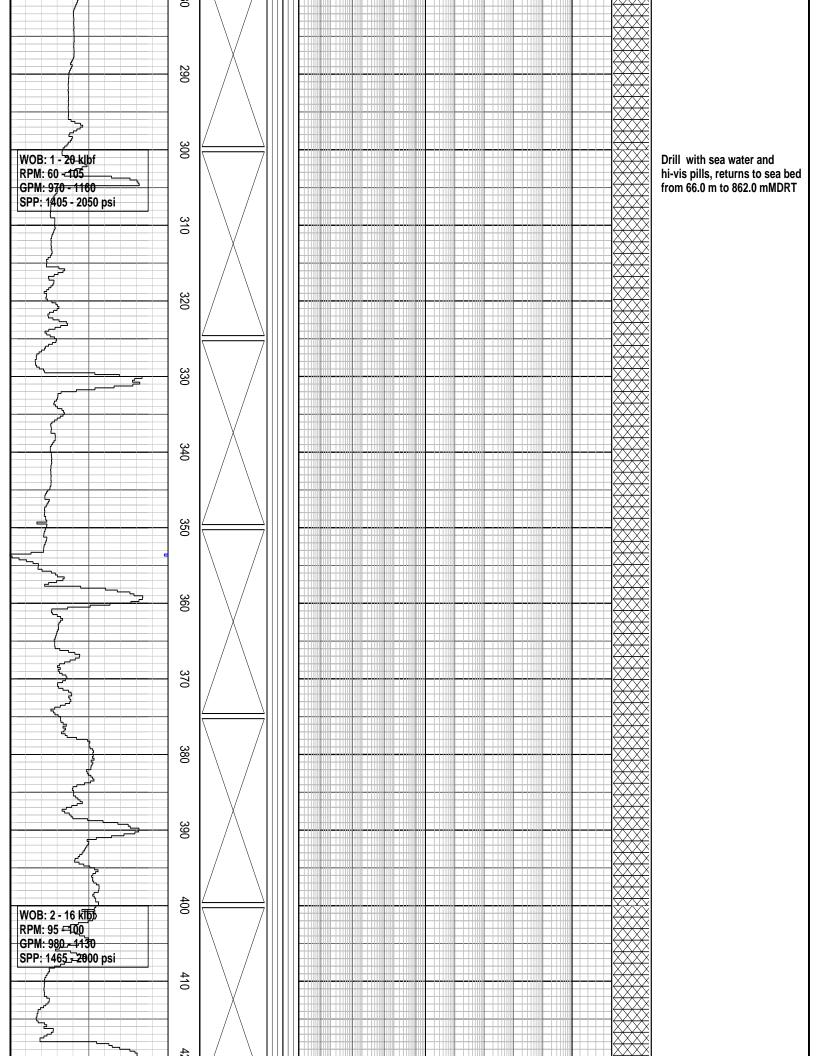
Glauconite Glauc

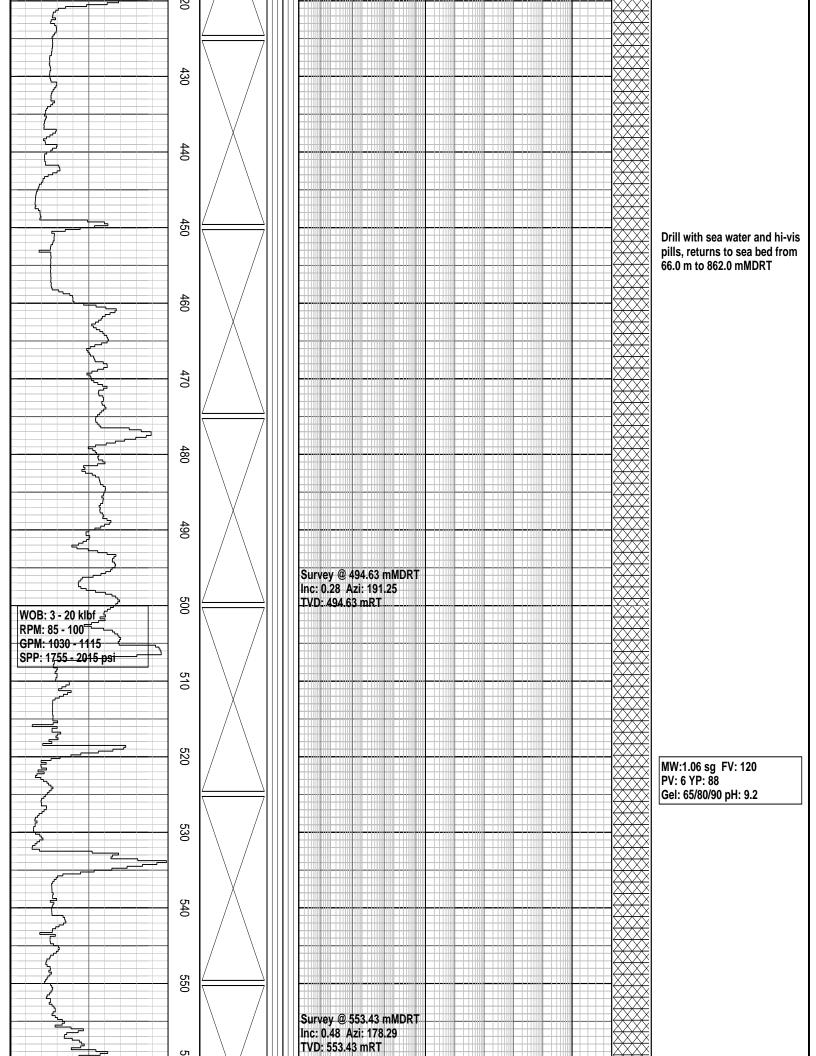

Cht

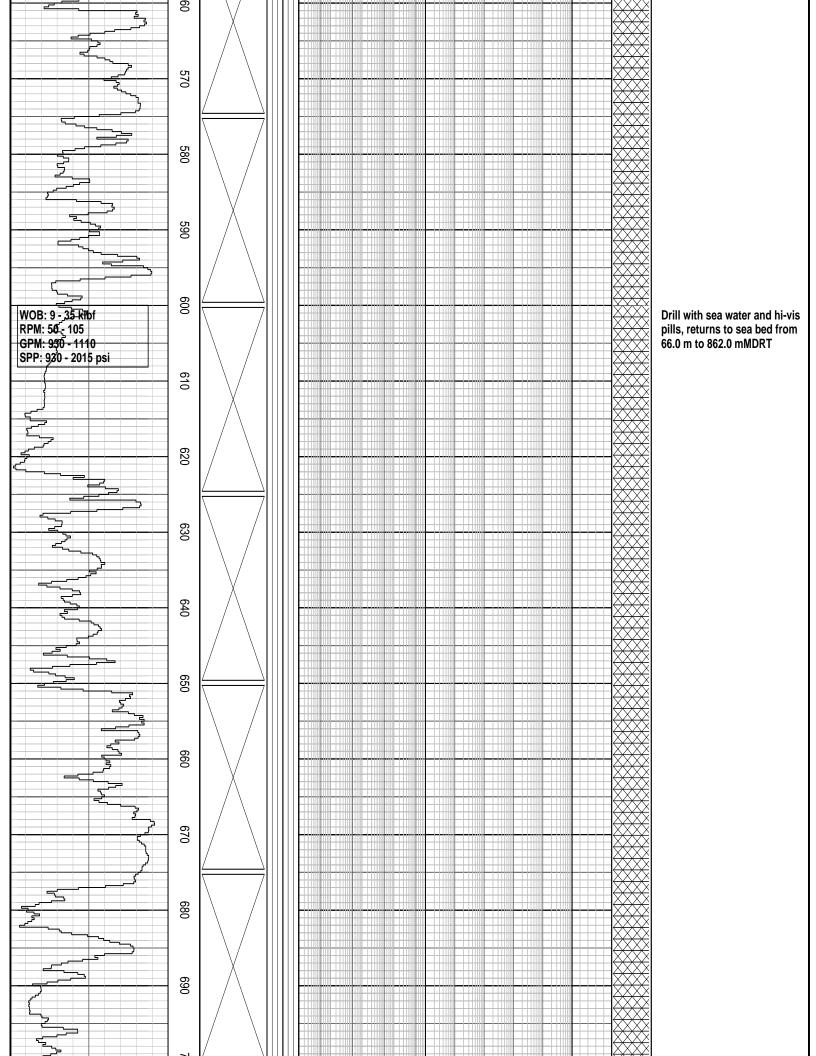
Reed

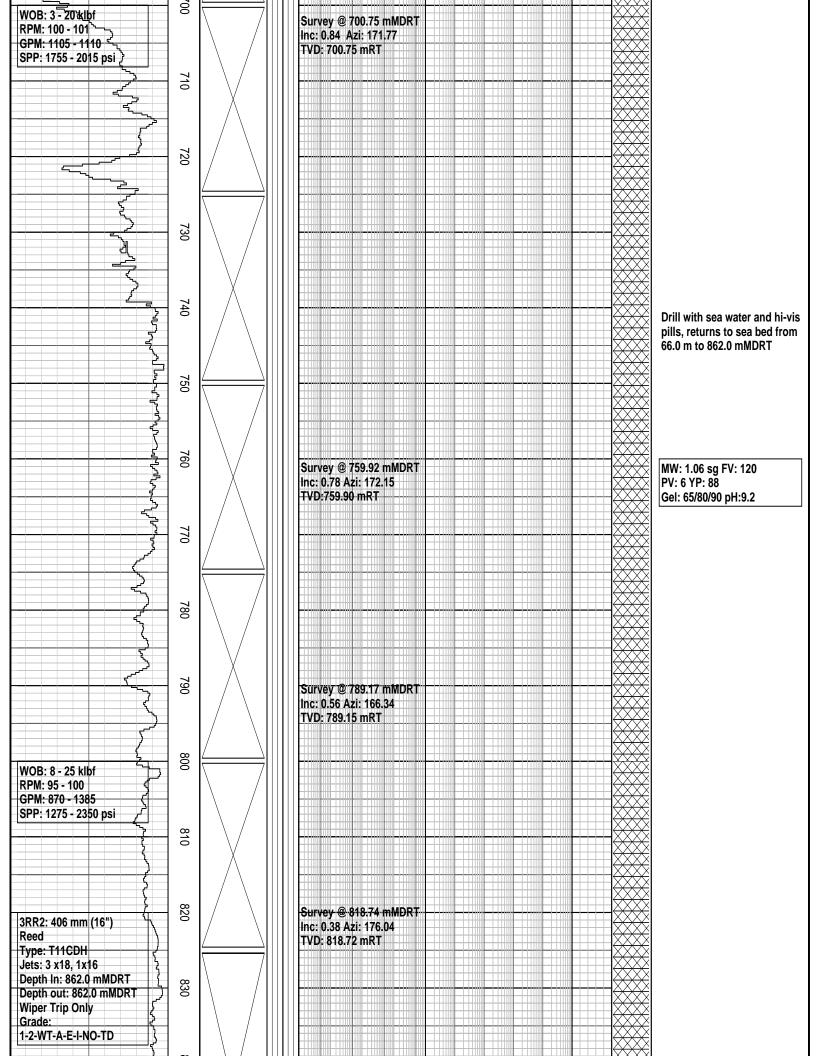
Company : Apache Northwest Pty Ltd

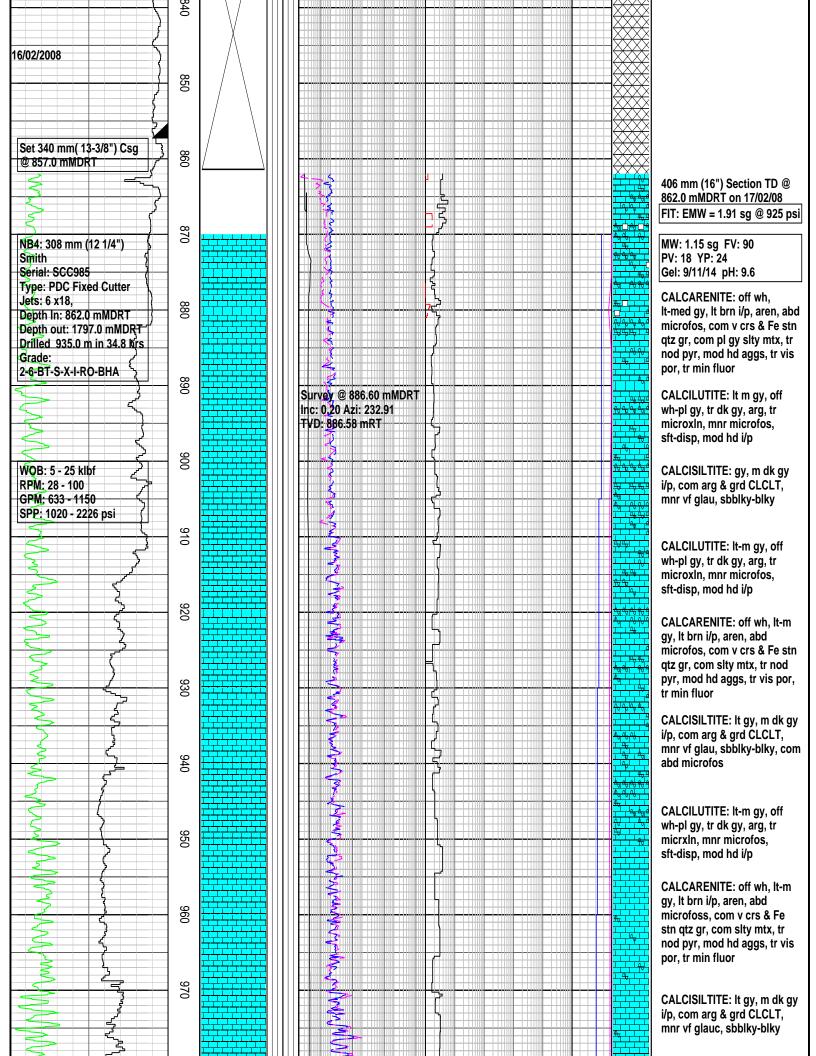

Well: Wasabi-1

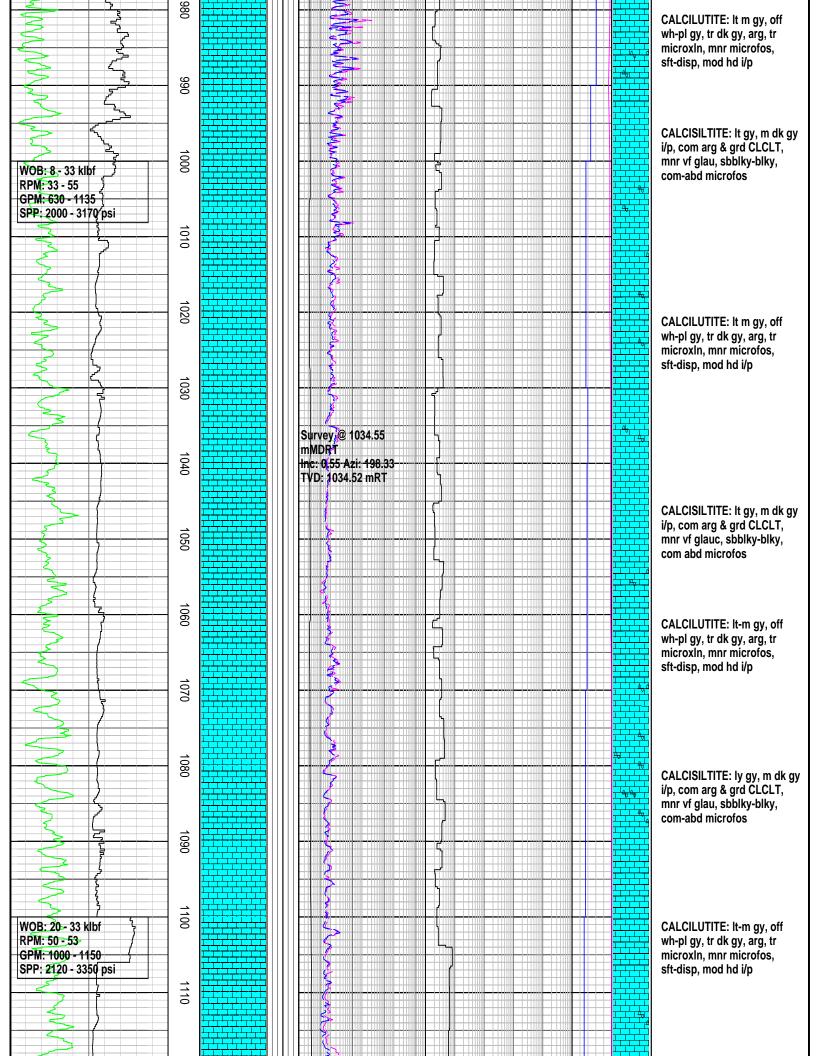


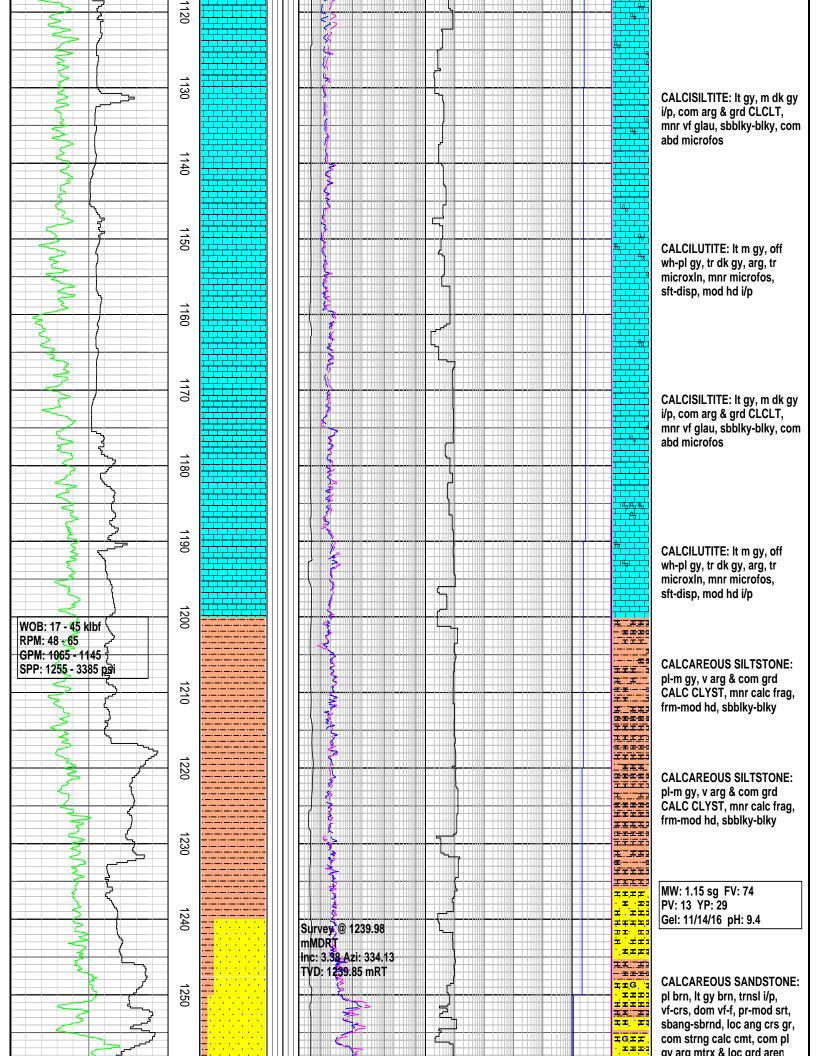


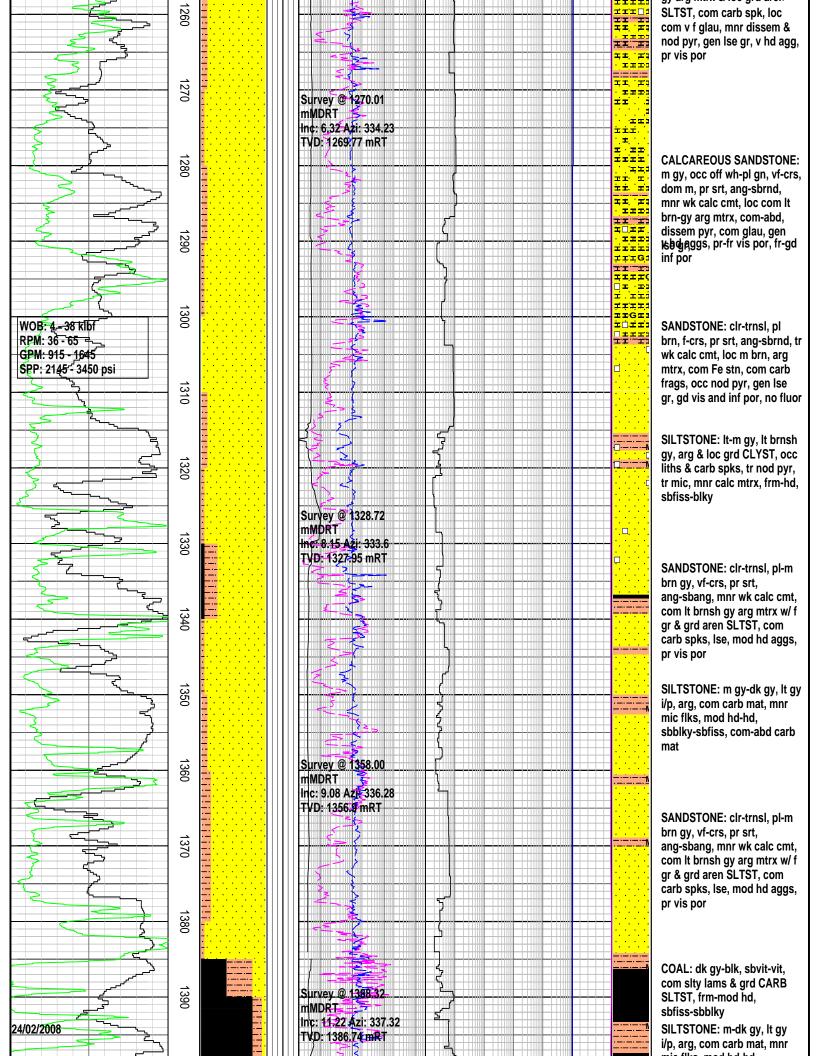

135.0 mMDRT on 15/02/08

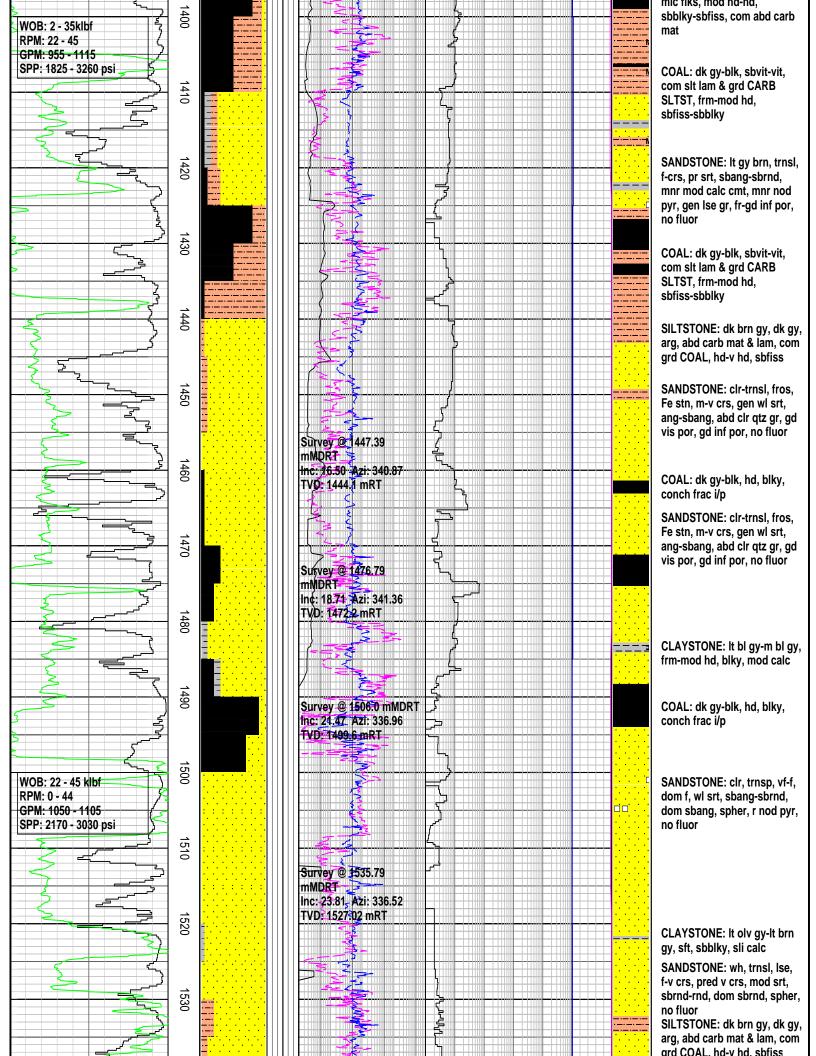

INTEQ Created: 06/Mar/2008 6:35:32 AM FORMATION EVALUATION LOG **Lithology Description Gas Data** Chromatograph Data Calcimetry Oil Show MD meters 1:500 Gas Hydrocarbon Avg % Methane ppm TVDRT meters Cuttings Lithology Interpreted Lithology 100000 Visual Inferred Porosity 0.01 0.1 Ethane ppm 100000 Resistivity Shall 0.2 2000 CaCO3 % Propane ppm 100000 OHMM |40 |60 |80 |10 **Resistivity Deep Drilling Rate** iso-Butane ppm 0.2 2000 100000 ROP (m/hr) OHMM n-Butane ppm 100000 20 40 60 60 80 100 120 140 180 180 180 iso-Pentane ppm 100000 ROP (m/hr) n-Pentane ppm 100000 220 240 260 260 280 300 300 300 300 300 300 Gamma Ray 200 **GAPI** 60 RT - AHD: 39.015 mMDRT Water Depth: 26,985 mMDRT RT-Sea bed: 66.0 mMDRT 70 14/02/2008 Spud Wasabi-1@ 2300 hrs on 14/02/2008 80 NB1: 660 mm (26") MW: 1.06 sg FV: 300 PV: 15 YP: 103 Smith Gel: 80/110/113 pH: 9.2 Type: XR+C Jets: 4x18 Depth In: 66.0 mMDRT Depth out: 135.0 mMDRT 90 Drilled 69.0 m in 2.5 hrs Grade: 1-1-WT-A-E-I-NO-TD 8 Drill with sea water and hi-vis pills, returns to sea bed from 66.0 m to 862.0 mMDRT 110 Survey @ 115.0 mMDRT Inc: 0.14 Azi: 336.08 120 TVD: 115.45 mRT 130 660 mm (26") Section TD @ NB2: 406 mm (16")

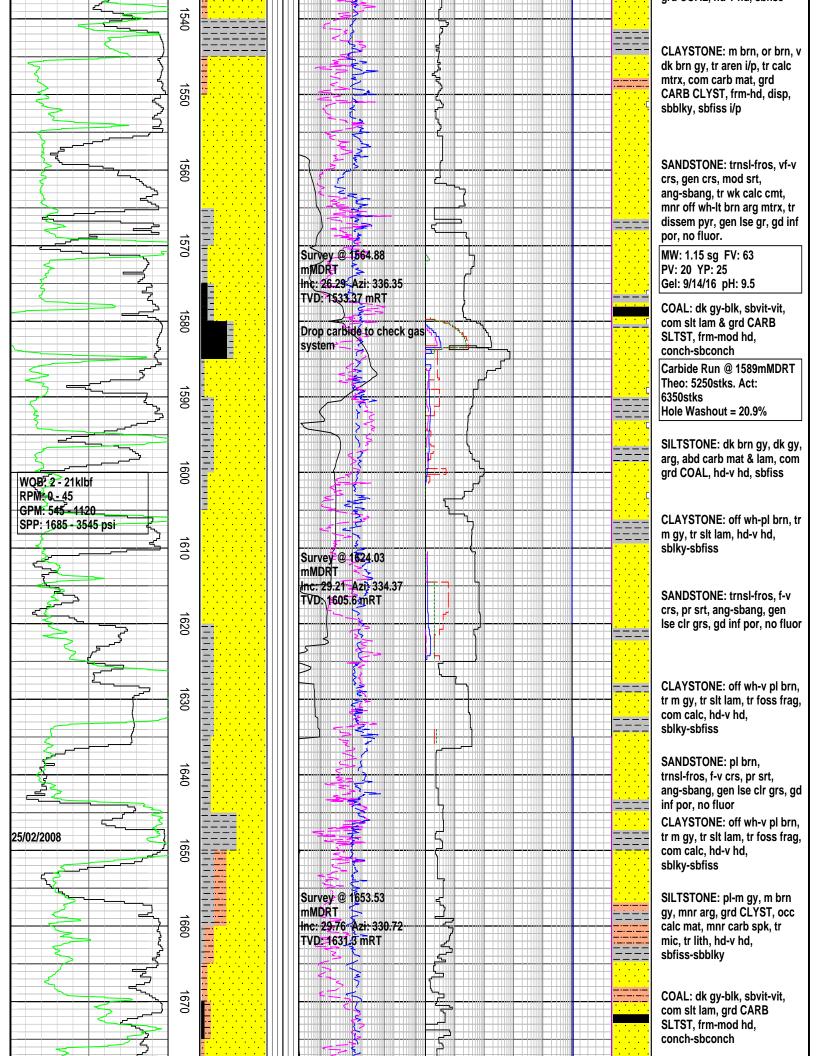


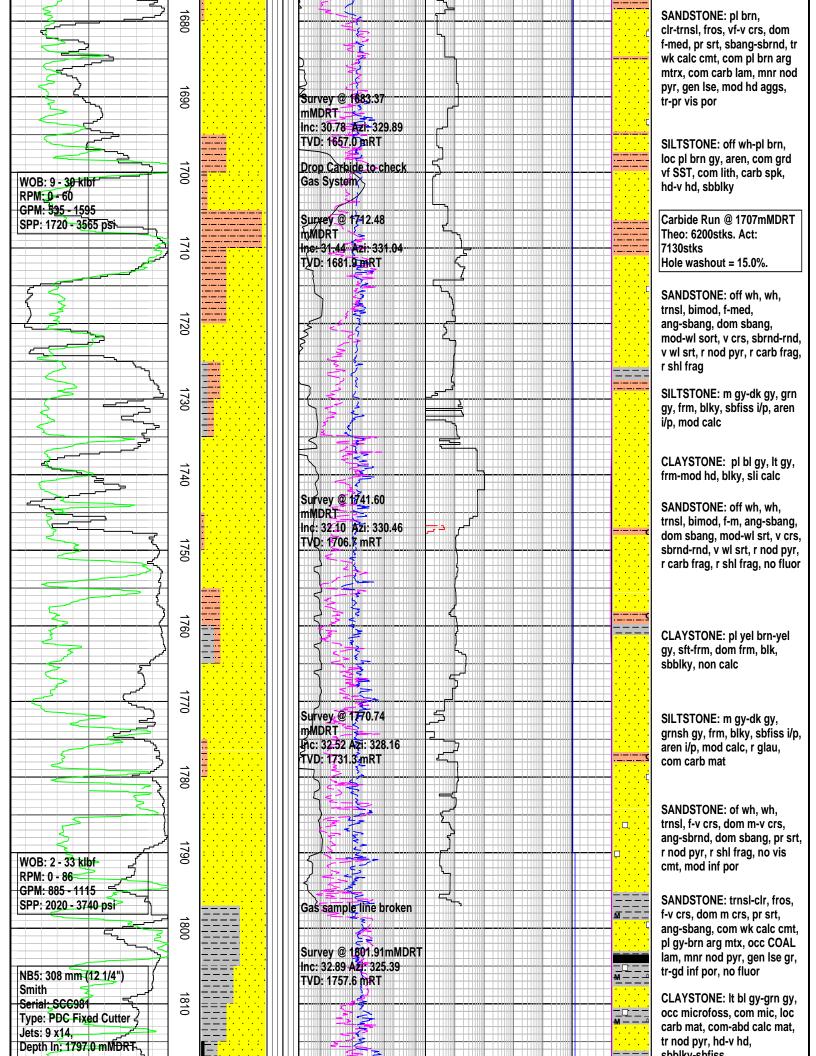


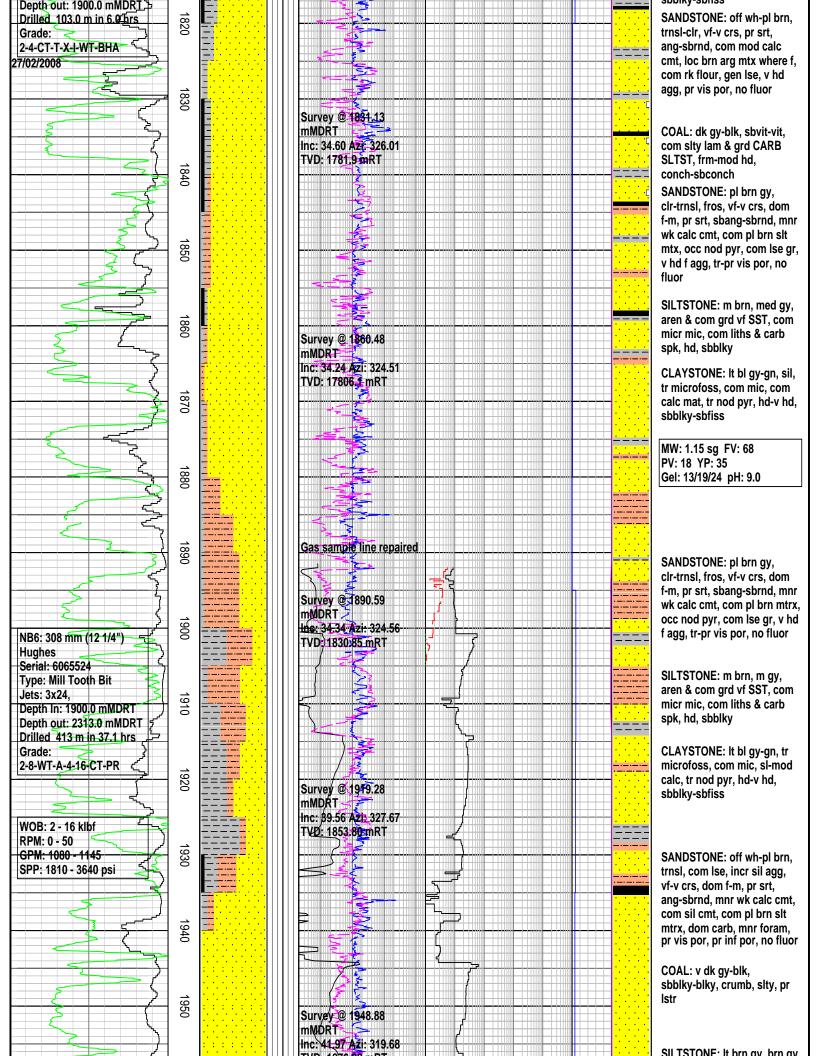


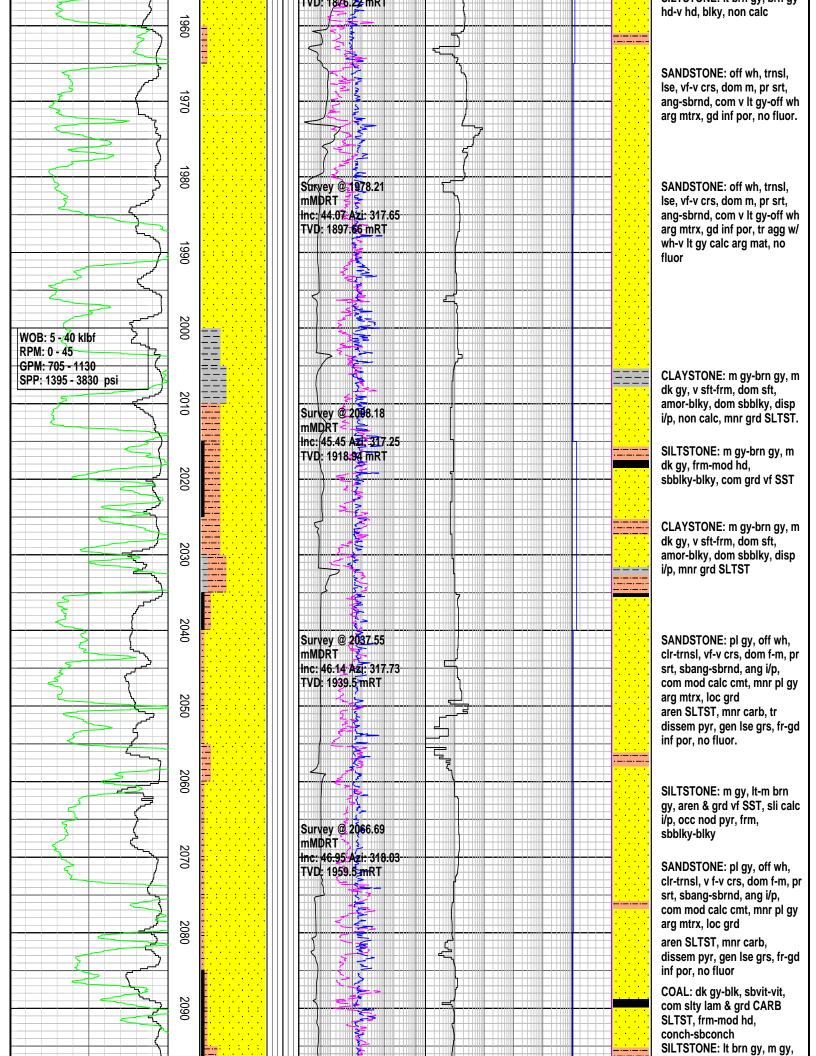


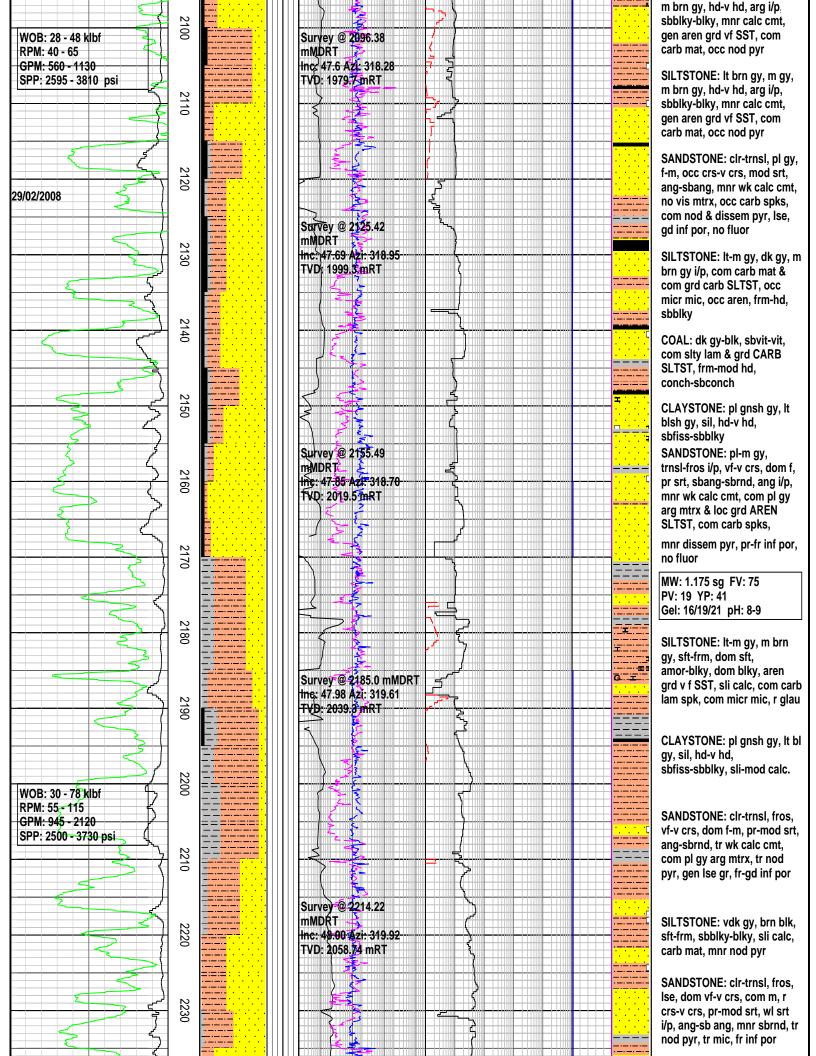


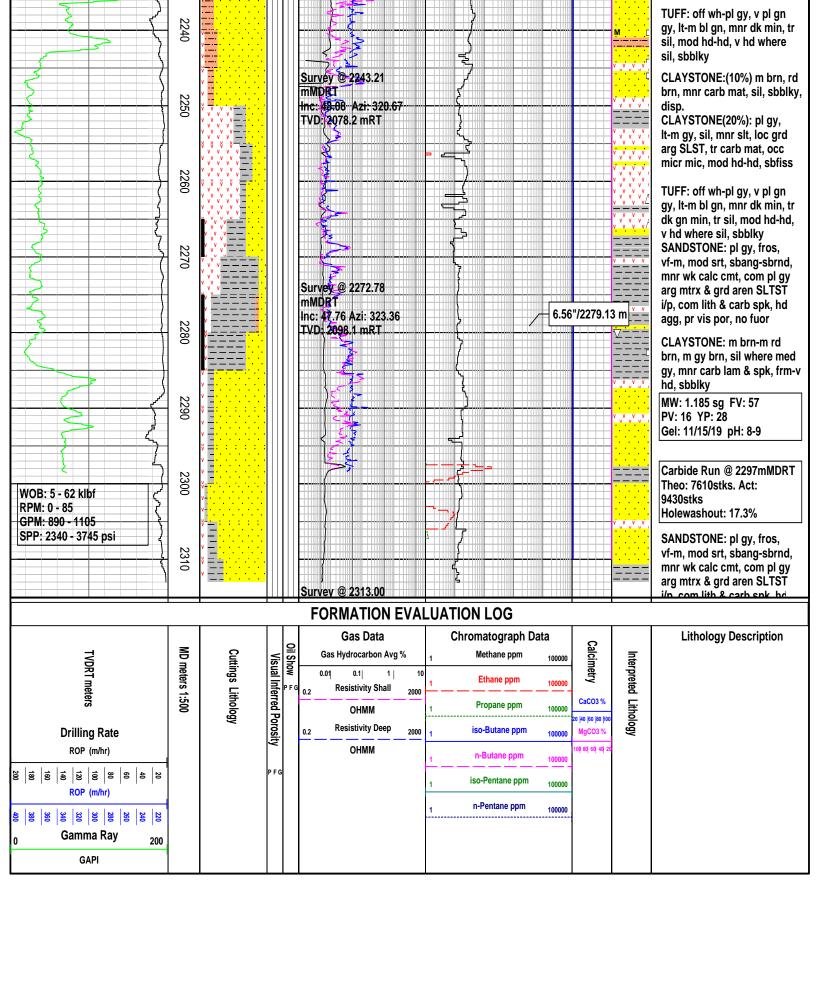












DRILLING DATA PLOT

1:1000

INTEO

Company **Apache Northwest Pty Ltd**

Wasabi-1 Well

Permit VIC/P-58

Region **Gippsland Basin**

Designation **Exploration**

38° 29' 18.157" S Coordinates

Long 147° 15' 49.147" E

Ref Elevation RT 39.0 mMDRT (AHD)

Total Depth 2313.0 mMDRT

Contractor Seadrill

Rig **MODU West Triton**

Jack-Up Type

LOG INTERVAL

66.0 - 2313.0 mMDRT Depth

14 February - 01 March 2008 Date

1:500 Scale

D. Mahajan, Y.C. Wong, J. **Data Engineers**

Mancarella, E. Discipulo

Logging Geologists A. Gholap, R. Houston

INTEQ LOG SUITE

Formation Evaluation **Drilling Data Plot** Gas Ratio Plot

Drilling Data Pressure Plot

ABBREVIATIONS

NB RB CB WOB RPM FLC FCG PR NR BG WTG TG POG	New Bit Rerun Bit Core Bit Weight on Bit Revs per Minute Flow Check Flow Check Gas Poor Returns No Returns Background Gas Wiper Trip Gas Trip Gas Pumps Off Gas	MD GPM PP MW FV F FC PV YP Sol Sd CI RM	Measured Depth Gallons per Min Pump Pressure Mud Weight sg Funnel Viscosity Filtrate - API Filter Cake Plastic Viscosity Yield Point Solids % Sand % Chlorides Mud Resistivity
. •	•	•	
SWG	Swab Gas	TVD	True Vertical Depth

LITHOLOGY SYMBOLS

Ls

Clyst

Sst

Mrl

Fragments FF

Volc

G G Glauconite

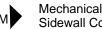
RT- AHD 39.0 mMDRT

W Dep - AHD 27.0 mMDRT

Seabed @ 66.0 mMDRT (AHD)

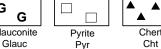
340 X 508mm Casing to 857.0 mMDRT 660 mm (26") hole to 135.0 m 406 mm (16") hole to 862.0 m Drilling Fluid: Seawater/Hi-vis sweeps

311 mm (12.25") hole to 2313.0m Drill Fluid: KCl Polymer 1.15-1.21 sg



No

Wireline

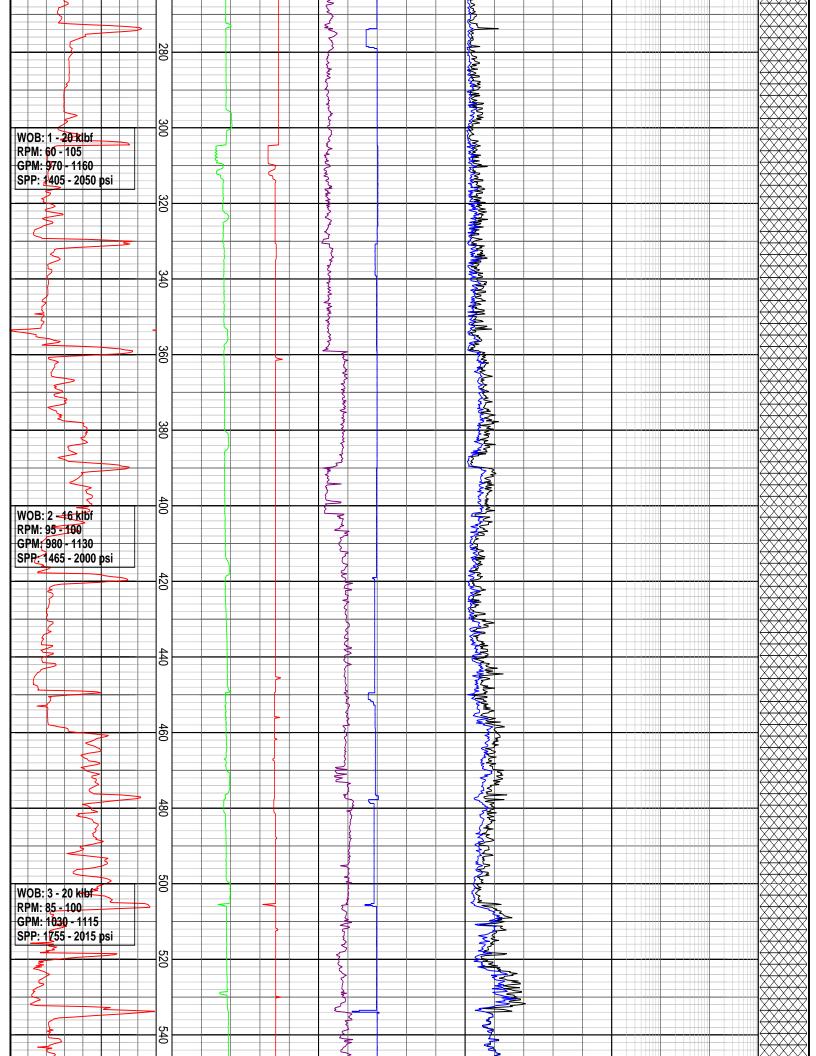

Formation

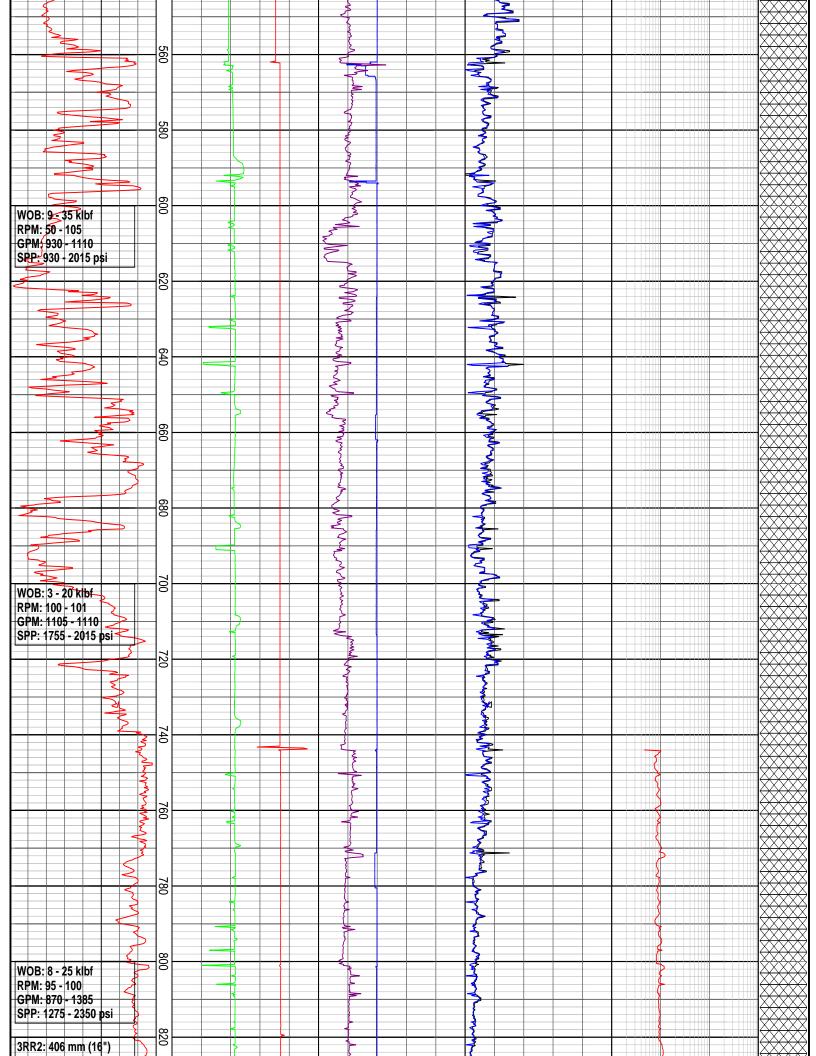
. Sidewall

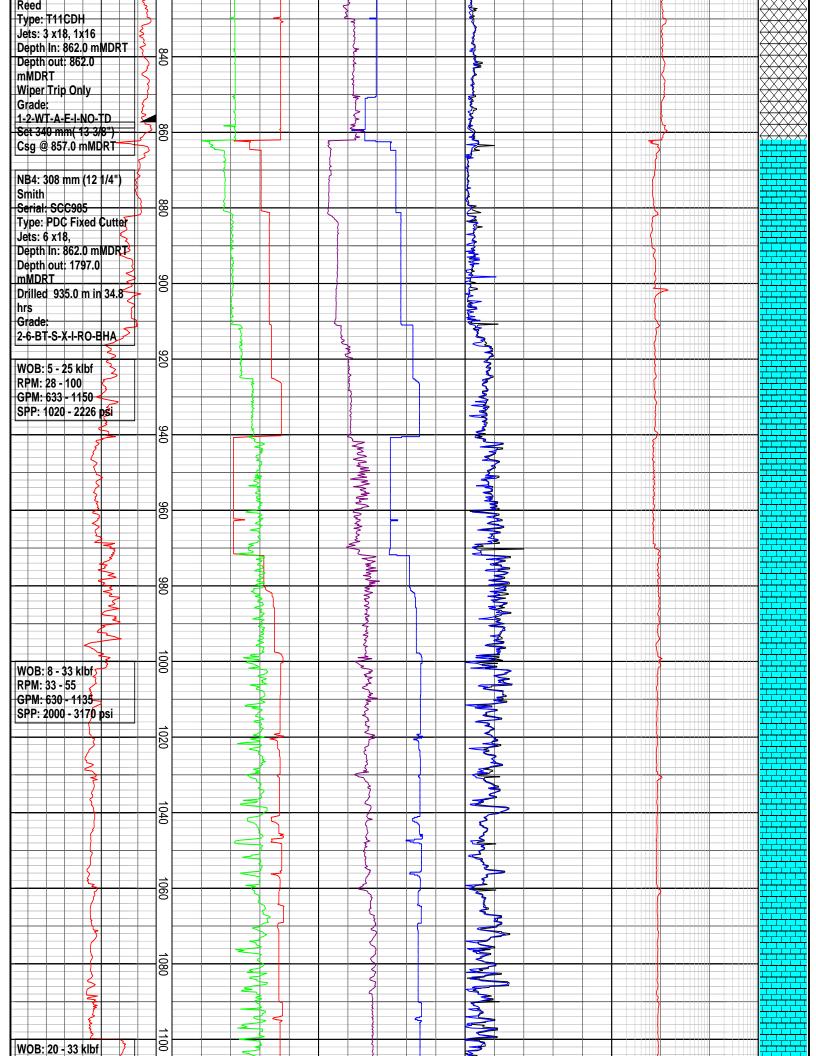
Logs

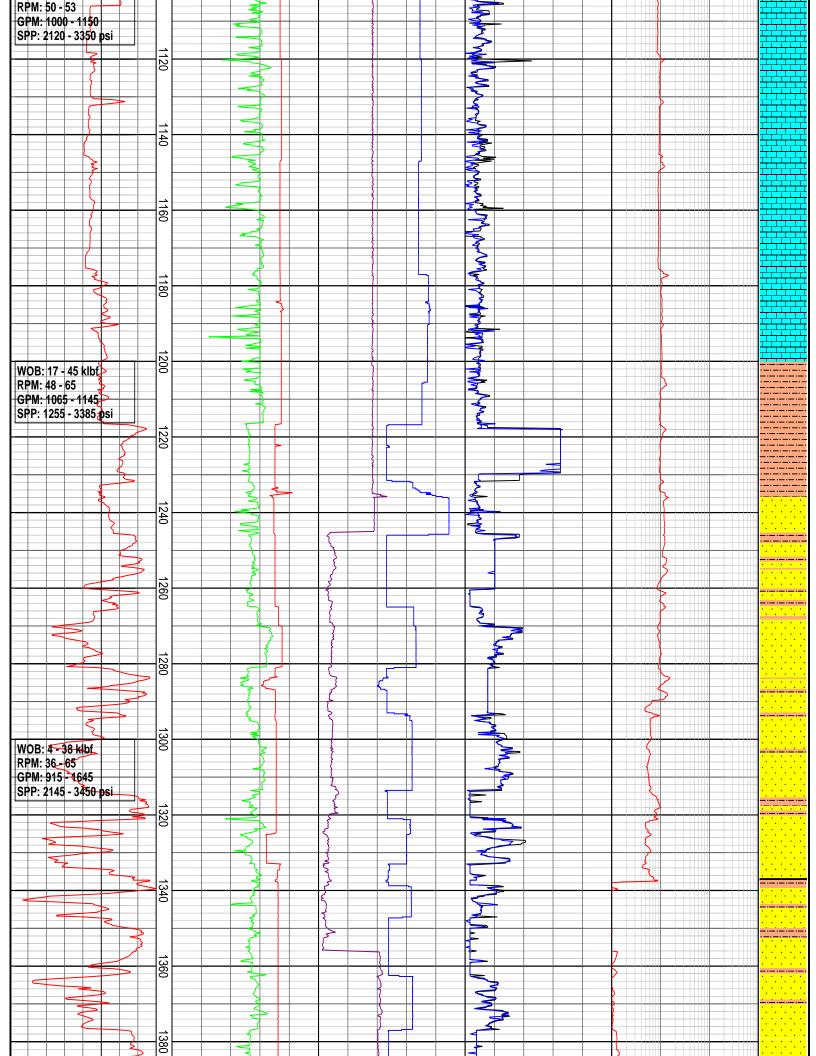
Test

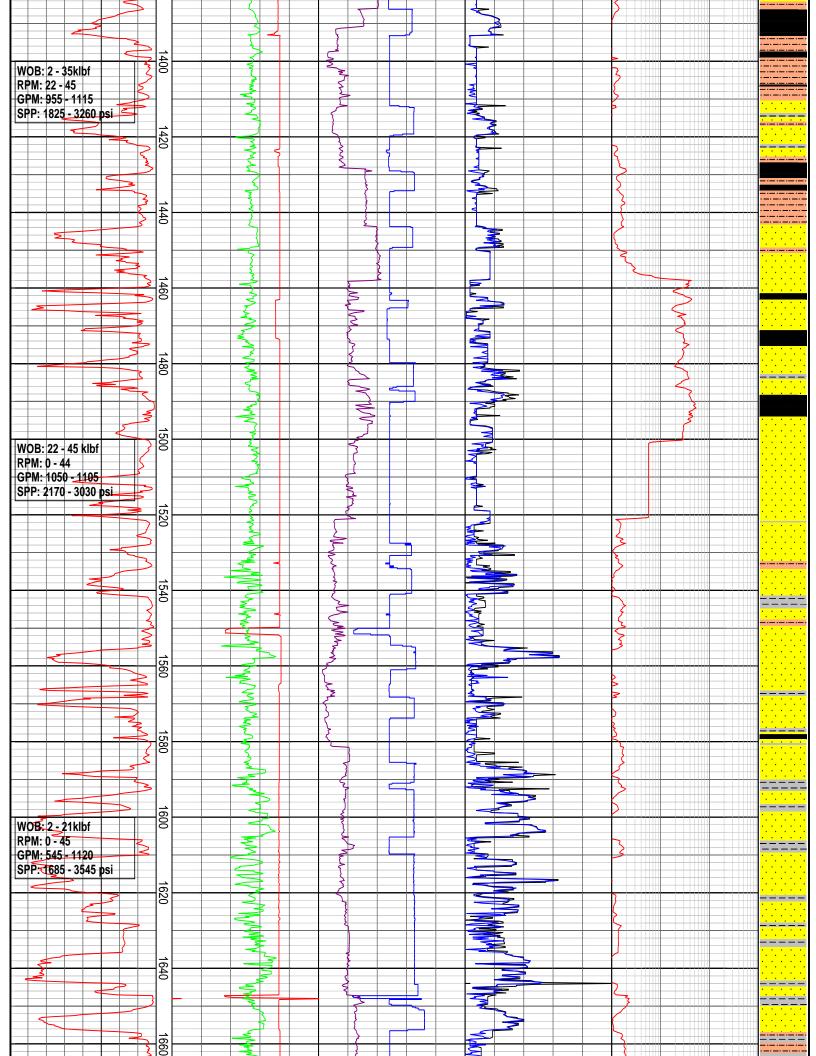
Company : Apache Northwest Pty Ltd

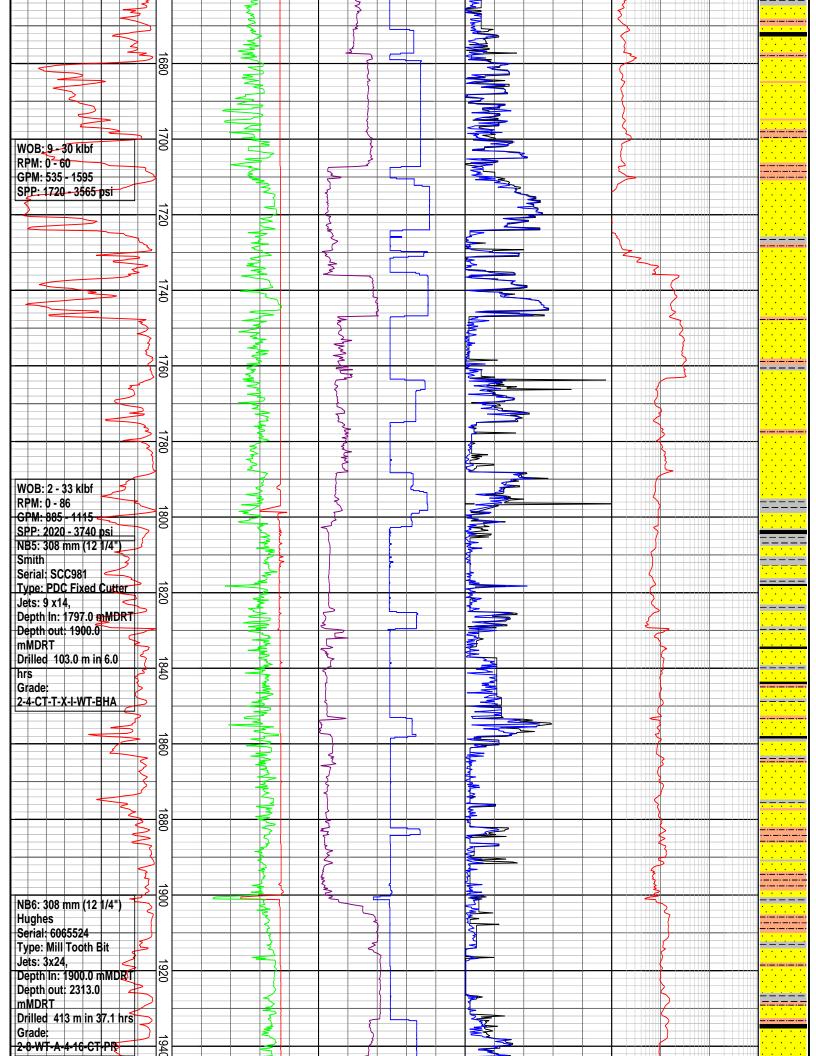

Well: Wasabi-1

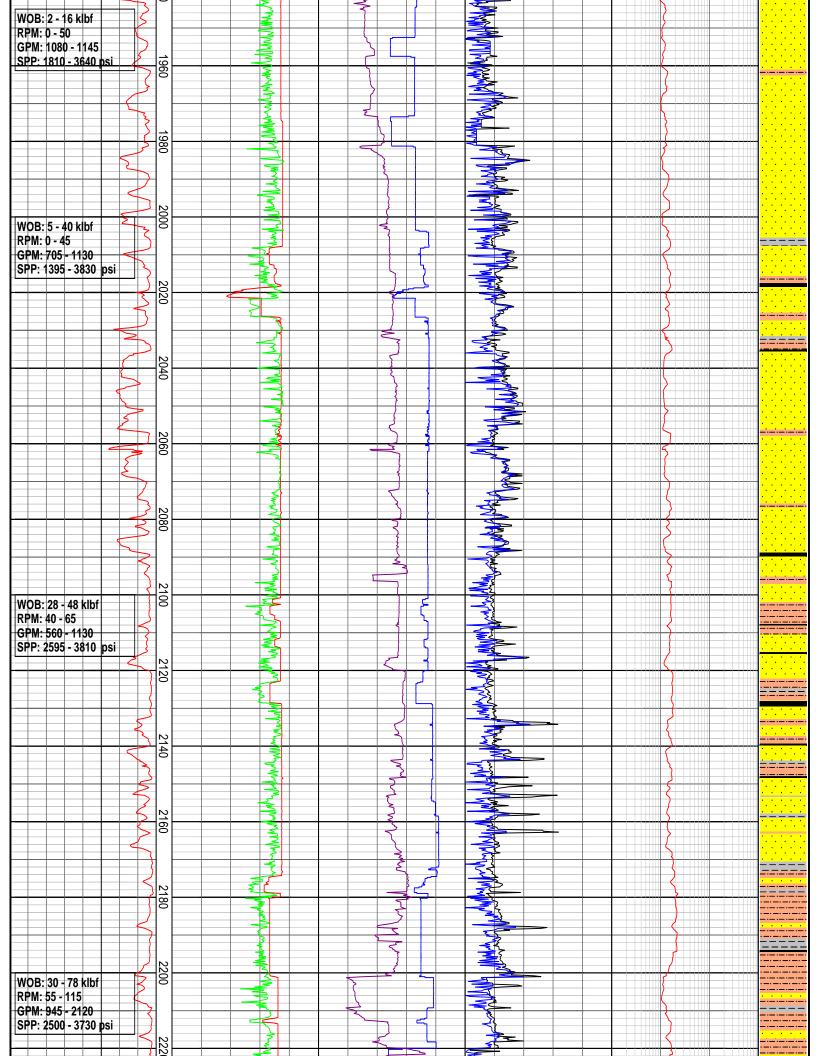

Interval : 50.00 - 2315.06 meters
Created : 06/Mar/2008 6:35:32 AM

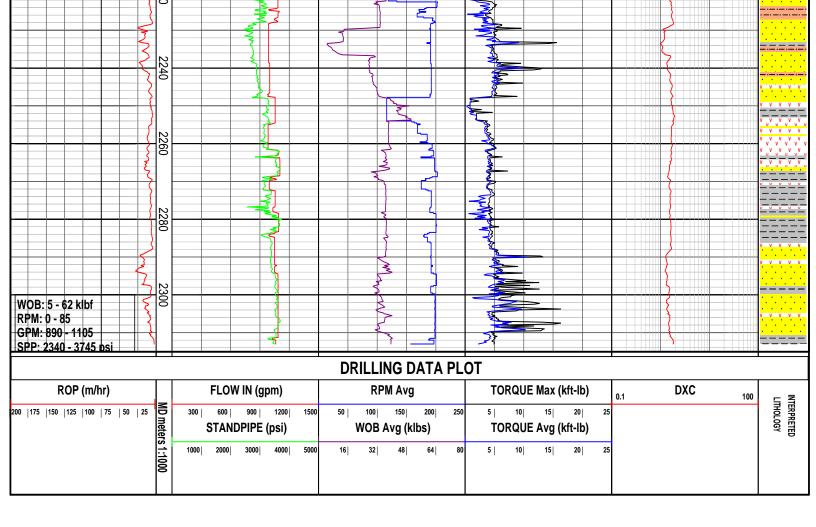



INTEQ Cr


				•	DRILLING D	ATA PLO	TC		•				
ROP (m/hr)		FLOW IN (gpm)		RPM Avg TORQUE Max (kft-lb)		0.1 DXC		100	_ Z				
00 175 150 125 100 75 50 25	MD met	300 600 STAN	900 1200 NDPIPE (psi)	1500	50 100 150 WOB Avg (k	200 250 lbs)	5 10 TORQU	15 20 E Avg (kft-lb)	25				INTERPRETED LITHOLOGY
	MD meters 1:1000	1000 2000		5000	16 32 48	64 80	5 10	15 20	25				
	60												
	}				7		73						
NB1: 660 mm (26") Smith Type: XR+C	80												
Jets: 4x18 Depth In: 66.0 mMDRT Depth out: 135.0 mMDRT	100						AND DO						
Drilled 69.0 m in 2.5 hrs Grade: 1-1-WT-A-E-I-NO-TD	120						A CONTRACTOR OF THE CONTRACTOR						
NB2: 406 mm (16")				[The state of the s						
Reed Type: T11CDH Jets: 3 X 18, 1 X 16 Depth In: 135.0 mMDRT	140			}									
Depth out: 862.0 nMDRT Orilled 727.0 m in 13.9	160												
Grade: -2-WT-A-E-I-NO-TD	180			,									
							J. Control of the con						
NOB: 1 - 10 klbf RPM: 60 - 105 GPM: 950 - 1230	200												
SPP: 1215 - 2425 psi	220						Manufacture of the second of t						
	240		>				A CONTROL OF THE PARTY OF THE P						
				- 2									
3	260				\$		<u> </u>						







PRESSURE EVALUATION PLOT

1:1000

INTEO

Company **Apache Northwest Pty Ltd**

Wasabi-1 Well

Permit VIC/P-58

Region **Gippsland Basin**

Designation **Exploration**

38° 29' 18.157" S Coordinates

Long 147° 15' 49.147" E

Ref Elevation RT 39.0 mMDRT (AHD)

Total Depth 2313.0 mMDRT

Contractor Seadrill

Rig **MODU West Triton**

Jack-Up Type

LOG INTERVAL

66.0 - 2313.0 mMDRT Depth

14 February - 01 March 2008 Date

1:500 Scale

D. Mahajan, Y.C. Wong, J. **Data Engineers**

Mancarella, E. Discipulo

Logging Geologists A. Gholap, R. Houston

INTEQ LOG SUITE

Formation Evaluation **Drilling Data Plot** Gas Ratio Plot

Drilling Data Pressure Plot

ABBREVIATIONS

NB RB CB WOB RPM FLC FCG PR NR BG WTG TG POG	New Bit Rerun Bit Core Bit Weight on Bit Revs per Minute Flow Check Flow Check Gas Poor Returns No Returns Background Gas Wiper Trip Gas Trip Gas Pumps Off Gas	MD GPM PP MW FV F FC PV YP Sol Sd CI RM	Measured Depth Gallons per Min Pump Pressure Mud Weight sg Funnel Viscosity Filtrate - API Filter Cake Plastic Viscosity Yield Point Solids % Sand % Chlorides Mud Resistivity
. •	•	•	
SWG	Swab Gas	TVD	True Vertical Depth

LITHOLOGY SYMBOLS

Ls

Clyst

Sst

Mrl

Fragments FF

Volc

G G Glauconite

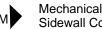
RT- AHD 39.0 mMDRT

W Dep - AHD 27.0 mMDRT

Seabed @ 66.0 mMDRT (AHD)

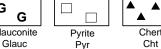
340 X 508mm Casing to 857.0 mMDRT 660 mm (26") hole to 135.0 m 406 mm (16") hole to 862.0 m Drilling Fluid: Seawater/Hi-vis sweeps

311 mm (12.25") hole to 2313.0m Drill Fluid: KCl Polymer 1.15-1.21 sg



No

Wireline

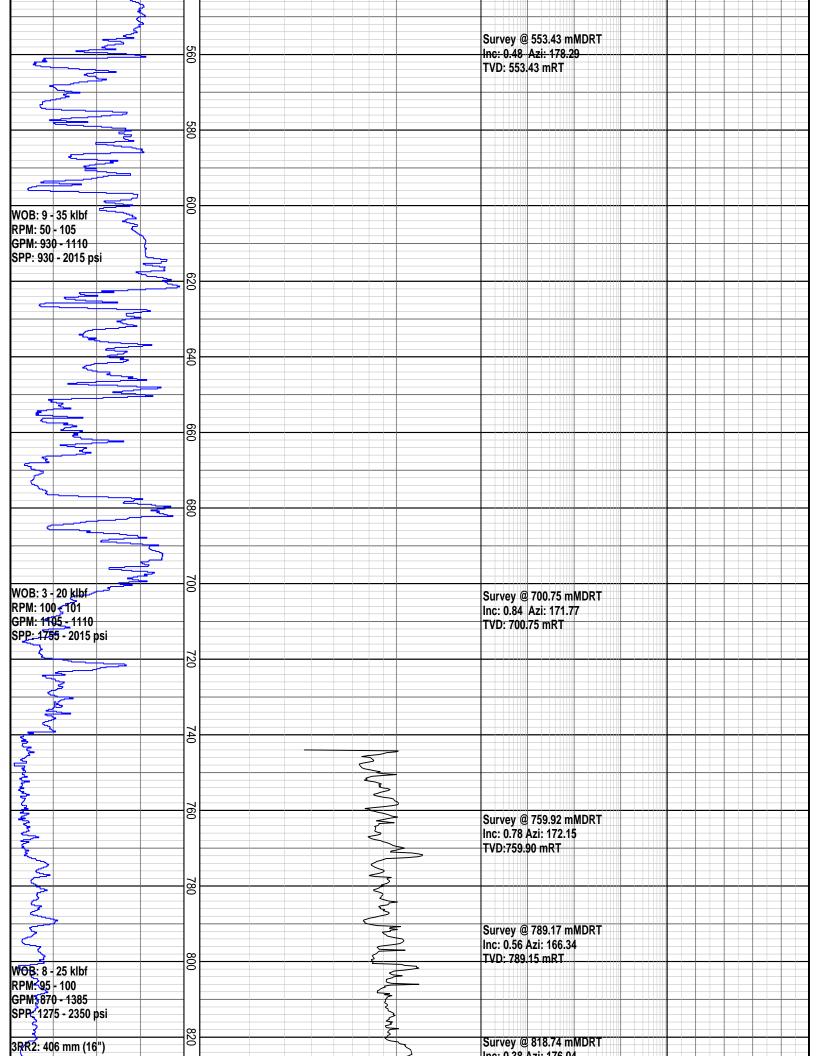

Formation

. Sidewall

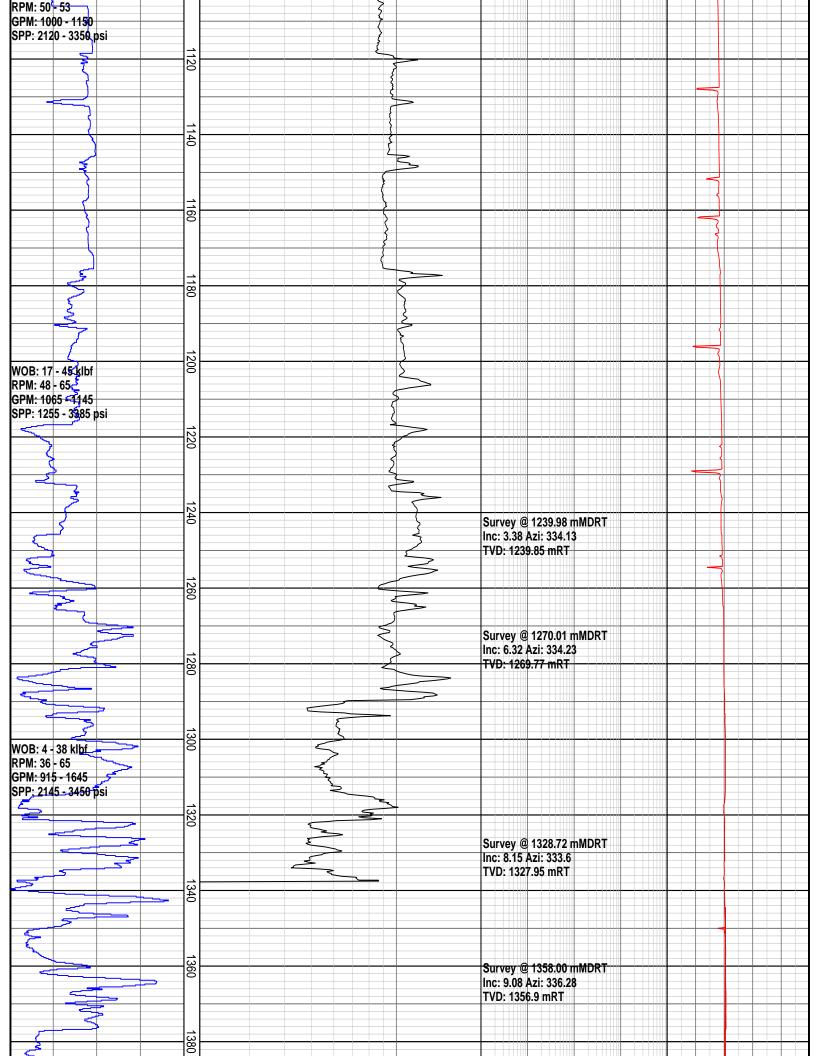
Logs

Test

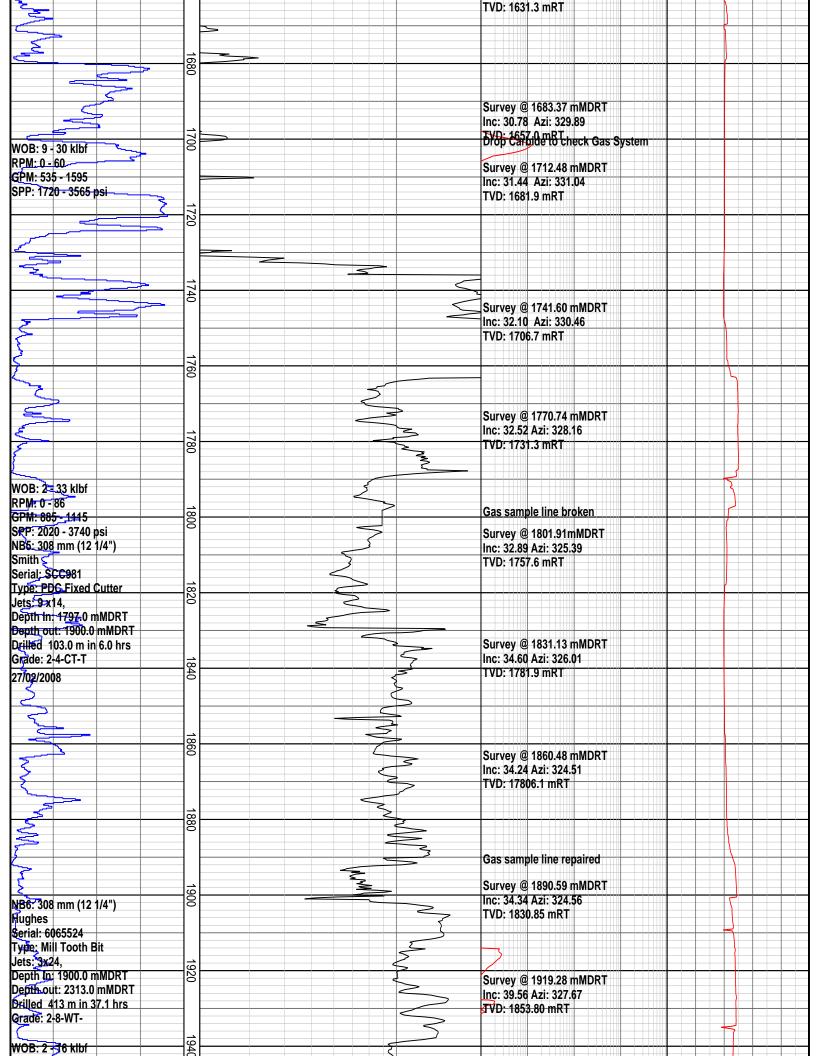
Company : Apache Northwest Pty Ltd

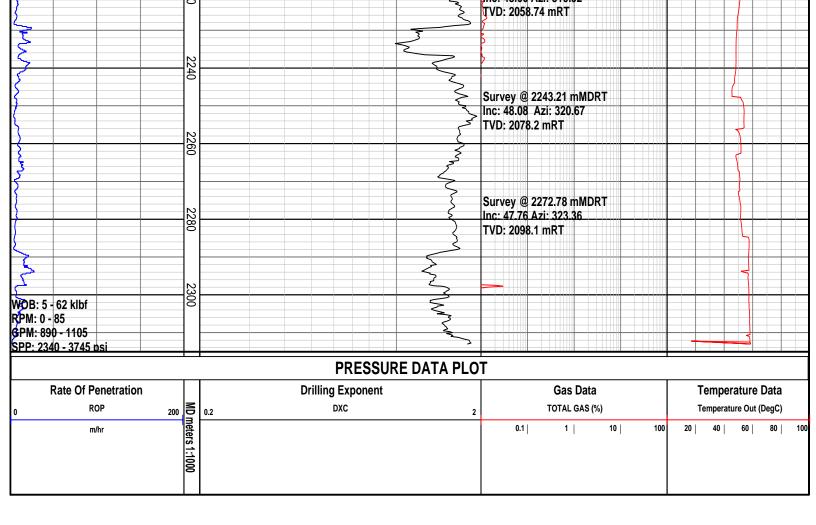

Well: Wasabi-1

Interval: 50.00 - 2315.06 meters



INTEQ Created: 06/Mar/2008 6:35:32 AM PRESSURE DATA PLOT **Drilling Exponent Rate Of Penetration Gas Data Temperature Data** DXC ROP ₽ TOTAL GAS (%) Temperature Out (DegC) 200 0.2 40 1 | m/hr 0.1 | 10 | 100 60 14/02/2008 80 NB1: 660 mm (26") Smith Type: XR+€ Jets: 4x18 Depth In: 66.0 mMDRT 100 Depth out: 135.0 mMDRT Drilled 69.0 m in 2.5 hrs Grade: 1-1-WT-A-E-I-NO-TD Survey @ 115.0 mMDRT 120 Inc: 0.14 Azi: 336.08 TVD: 115.45 mRT NB2: 406 mm (16") 4 Reed Type: T11CDH Survey @ 142.86 mMDRT Jets: 3 X 18, 1 X 16 Depth In: 135.0 mMDRT Inc: 0.18 Azi: 296.21 TVD: 142.86 mRT Depth out: 862.0 mMDRT Drilled 727.0 m in 13.9 hrs Grade: 1-2-WT-A-E-I-NO-TD 16C 15/02/2008 Survey @ 170.39 mMDRT Inc: 0.09 Azi: 303.79 8 TVD: 170.39 mRT WOB: 1 - 10 klbf Survey @ 201.95 mMDRT RPM: 60 - 105 Inc: 0.09 Azi: 130.71 GPM: 950 - 1230 TVD: 201.95 mRT SPP: 1215 - 2425 psi Survey @ 229.75 mMDRT Inc: 0.10 Azi: 88.12 TVD: 229.75 mRT


5			
3	280		
WOD 4 COLUM	300		
WOB: 1 - 20 klbf RPM: 60 - 105			
GPM: 970 - 1160			
SPP: 1405 - 2050 psi			
\$	320		
-			
5	ω		
	340		
<u> </u>			
2			
	360		
7	ő		
5			
	380		
3			
WOB: 2 - 16 klbf	400		
RPM: 95 - 100 GPM: 980 - 1130			
GPM: 980 - 1130			
SPP: 1465 - 2000 psi	_		
	420		
2			
	440		
	Ö		
	460		
\$			
7	480		
5			
5-4-			
	500	Survey @ 494.63 mMDRT	
VVOD. 3 7 ZV RIDI	ō	Inc: 0.28 Azi: 191.25 TVD: 494.63 mRT	
RPM: 85 - 100 GPM: 1030 - 1115			
SDD: 1755 - 2015 nci			
5FF. 1733 - 2013 psi	520		
3			
	540		


Reed Type: T11CDH		\$	TVD: 818.72 mRT	
Týpe: T11CDH Jets: 3 x18, 1x16		\$		
Depth In: 862.0 mMDRT	$\left \begin{array}{c} \infty \end{array} \right $	3		
Depth out: 862.0 mMDRT	840	>		
Wiper Trip Only Grade: 1-2-WT-A-E-I-NO-TD		3		
16/02/2008		3		
Set 340 mm(13-3/8") Csg @ 857.0	860			
mMDRT SOLD	Ö			
		5		"
NB43 308 mm (12 1/4") Smith				
Serial: SCC985	880	2		
Type: PDC Fixed Cutter		5		
Jets: 6 18, Depth in 862.0 mMDRT	7		Survey @ 886 60 mMDPT	
Depth out: 1797.0 mMDRT		3	Survey @ 886.60 mMDRT Inc: 0.20 Azi: 232.91	
Drilled, 935.0 m in 34.8 hrs Grade: 2-6-BT-S	900	3	TVD: 886.58 mRT	
\$		{		
WOB: 5 - 25 klbf		>		
RPM: 28 100 GPM: 633 150	9	{		
SPP: 1020 - 2226 psi	920	{		
		5		
		3		
کے ا	940			
7		MAN AND AND AND AND AND AND AND AND AND A		
5		<u> </u>		
3		\$		
2	960			
3		Oak A		
		2		
3		No.		
-5-	980			
oboy with		MAN AND AND AND AND AND AND AND AND AND A		
		5		
	1000			
WOB: 8 - 33 kllbf	8	4		
RPM: 33 - 55 GPM: 630 - 1135		\$		
GPM: 630 - 113 5 SPP: 2000 - 3170 psi		\{\}		
	1020			
\ <u>\{\}</u>				
}		1	Survey @ 1034 55 mMDRT	
	1040		Survey @ 1034.55 mMDRT Inc: 0.55 Azi: 198.33	
		}	TVD: 1034.52 mRT	-
	1060	1		
	80			
		\		
	1080	}		
	Ö	3		
3		\$		
3				
WOD. 20 22 LIVE	1100	\$		
WOB: 20 - 33 klbf		}		

2		
		Survey @ 1388.32 mMDRT
24/ 02 /2008		Inc: 11.22 Azi: 337.32
	1400	TVD: 1386.74 mRT
₩ OB: 2 - 35klbf	8	
RPM: 22 - 45		
GPM: 955 - 1115		
SPP : 182 5 - 3260 psi		
	1420	
5	20	
zer .		>
3		
3	1440	
cz	Ó	
- -		— Survey @ 1447.39 mMDRT
5	1460	Inc: 16.50 Azi: 340.87
		TVD: 1444.1 mRT
2		Sumay @ 4476.70 #MDDT
7		Survey @ 1476.79 mMDRT
	1480	Inc: 18.71 Azi: 341.36 TVD: 1472.2 mRT
<u> </u>		1 VD. 14/2.2 IIIN I
Jala		Survey @ 1506.0 mMDRT
		Inc: 21.47 Azi: 336.96
WOB: 22 - 45 klbf	1500	TVD: 1499.6 mRT
PPM+ 0 = 44 KIDI		
RPM: 0 - 44 GP M: 1050 - 1105		
SPP: 2170 - 3030 psi		Survey @ 4525 70 mMDDT
O1 [Survey @ 1535.79 mMDRT Inc: 23.81 Azi: 336.52
	1520	TVD: 1527.02 mRT
<u></u>		1 V D. 1327.02 IIIX I
-		
	55	
	540	
A.Mul		
	1560	
55		
		Survey @ 1564.88 mMDRT
<u> </u>		Inc: 26.29 Azi: 336.35 TVB: 1533.37 mRT Drop carbide to check gas system
5	1580	Drop Carbide to check gas system
2-2		
-		
	16	
WOB: 2 - 21klbf	1600	
RPM: 0 - 45		
GPM: 545 - 1120		Survey @ 4624.02 mMDRT
SPP: 1685 - 3545 psi		Survey @ 1624.03 mMDRT Inc: 29.21 Azi: 334.37
	1620	TVD: 1605.6 mRT
2		1 75. (000,0 1111)
<u> </u>		
2	16	
	1640	
25/02/2008	140 	

RPM: 0 - 50		<u></u>	
GPM: 1080 - 1145		>	
SPP! 1810 - 3640 psi		->	Survey @ 1948.88 mMDRT
7	100	5	Inc: 41.97 Azi: 319.68
	1960		TVD: 1070.22 mK1
de la			
es and a second		~~	
ζ	19	>	
حـــــــــــــــــــــــــــــــــــــ	1980	3	Survey @ 1978.21 mMDRT
ا ا ا		2	Inc: 44.07 Azi: 317.65
		\rightarrow	TVD: 1897.66 mRT
L	2000		
WOB: 5- 40 klbf	00	2	
RPM: 0 - 45			
GPM: 705 - 1130			Sum av @ 2009 49 MDDT
SPP: 1395 - 3830 psi		>	Survey @ 2008.18 mMDRT Inc: 45.45 Azi: 317.25
	2020		TVD: 1918.94 mRT
2	20	>	174D. 1010.04 IIIK1
		>	
	2040		
	2		Survey @ 2037.55 mMDRT
			Inc: 46.14 Azi: 317.73
			TVD: 1939.5 mRT
		2	
	2060	3	
-	8		
3		1	Survey @ 2066.69 mMDRT
			Inc: 46.95 Azi: 318.03
كس		\subseteq	TVD: 1959.5 mRT
3	2080		
	8	5	
>		3	
>	N		
3	2100	5	
WOB: 28 - 48 klbf	0	}	Survey @ 2096.38 mMDRT
RPM: 40 - 65			Inc: 47.6 Azi: 318.28
GPM: 560 - 1130 SPP: 2595 - 3810 psi		{	TVD: 1979.7 mRT
361. 2333 - 3010 psi	N		
	2120		
29/02/2008		5	
		5	Survey @ 2125.42 mMDRT
4			Inc: 47.69 Azi: 318.95
	2	<	TVD: 1999.3 mRT
	2140		
Ren'		2	
5		کے ا	
	2	_ <	Survey @ 2155.49 mMDRT
	2160		Inc: 47.85 Azi: 318.70
			TVD: 2019.5 mRT
		3	
(*)	23		
7	2180		
			Survey @ 2185.0 mMDRT
			Inc: 47.98 Azi: 319.61
		_	TVD: 2039.3 mRT
	22		1.15.2009.0 11111
WOB: 30 - 78 klbf	2200	2	
RPM: 55 - 115		2	
GPM: 945 - 2120		3	
\$PP: 2500 - 3730 psi			
> 1	22		Survey @ 2214.22 mMDRT
It i	2222		Inc: 48 00 Azi: 319 92

GAS RATIO PLOT

1:500

INTEO

Company **Apache Northwest Pty Ltd**

Wasabi-1 Well

Permit VIC/P-58

Region **Gippsland Basin**

Designation **Exploration**

38° 29' 18.157" S Coordinates

Long 147° 15' 49.147" E

Ref Elevation RT 39.0 mMDRT (AHD)

Total Depth 2313.0 mMDRT

Contractor Seadrill

Rig **MODU West Triton**

Jack-Up Type

LOG INTERVAL

66.0 - 2313.0 mMDRT Depth

14 February - 01 March 2008 Date

1:500 Scale

D. Mahajan, Y.C. Wong, J. **Data Engineers**

Mancarella, E. Discipulo

Logging Geologists A. Gholap, R. Houston

INTEQ LOG SUITE

Formation Evaluation **Drilling Data Plot** Gas Ratio Plot

Drilling Data Pressure Plot

ABBREVIATIONS

NB RB CB WOB RPM FLC FCG PR NR BG WTG TG POG	New Bit Rerun Bit Core Bit Weight on Bit Revs per Minute Flow Check Flow Check Gas Poor Returns No Returns Background Gas Wiper Trip Gas Trip Gas Pumps Off Gas	MD GPM PP MW FV F FC PV YP Sol Sd CI RM	Measured Depth Gallons per Min Pump Pressure Mud Weight sg Funnel Viscosity Filtrate - API Filter Cake Plastic Viscosity Yield Point Solids % Sand % Chlorides Mud Resistivity
. •	•	•	
SWG	Swab Gas	TVD	True Vertical Depth

LITHOLOGY SYMBOLS

Ls

Clyst

Sst

Mrl

Fragments FF

Volc

G G Glauconite

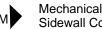
RT- AHD 39.0 mMDRT

W Dep - AHD 27.0 mMDRT

Seabed @ 66.0 mMDRT (AHD)

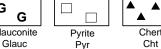
340 X 508mm Casing to 857.0 mMDRT 660 mm (26") hole to 135.0 m 406 mm (16") hole to 862.0 m Drilling Fluid: Seawater/Hi-vis sweeps

311 mm (12.25") hole to 2313.0m Drill Fluid: KCl Polymer 1.15-1.21 sg



No

Wireline


Formation

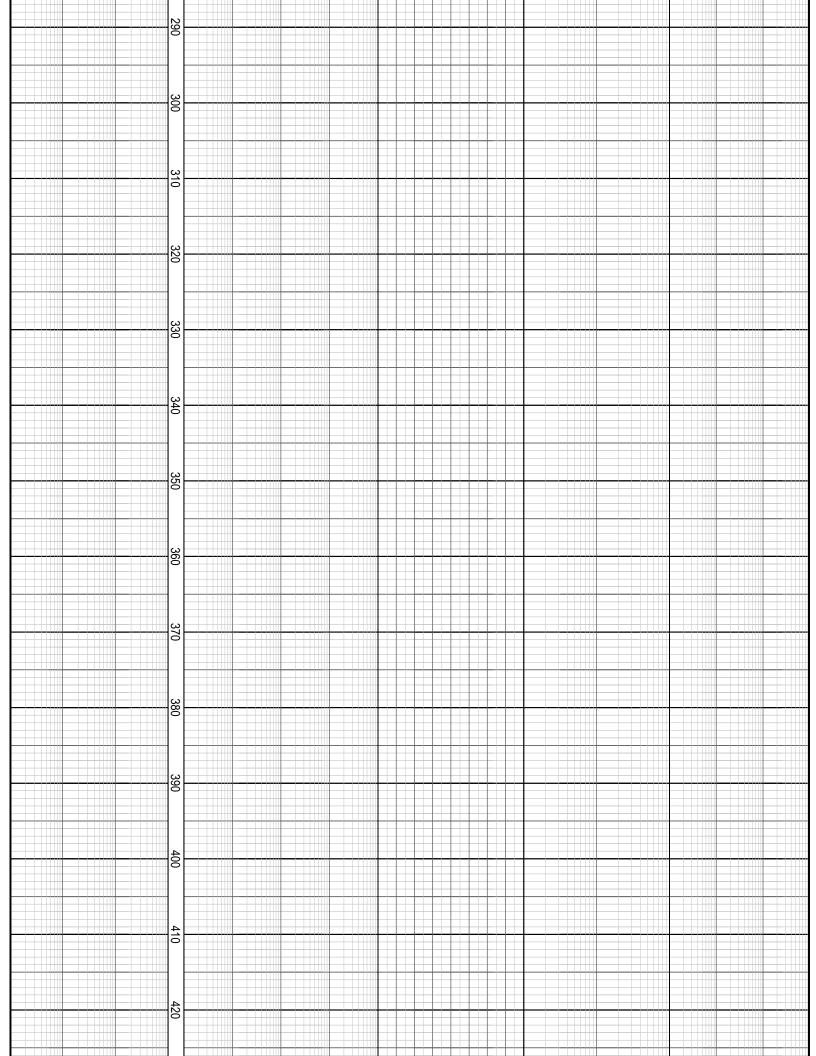
. Sidewall

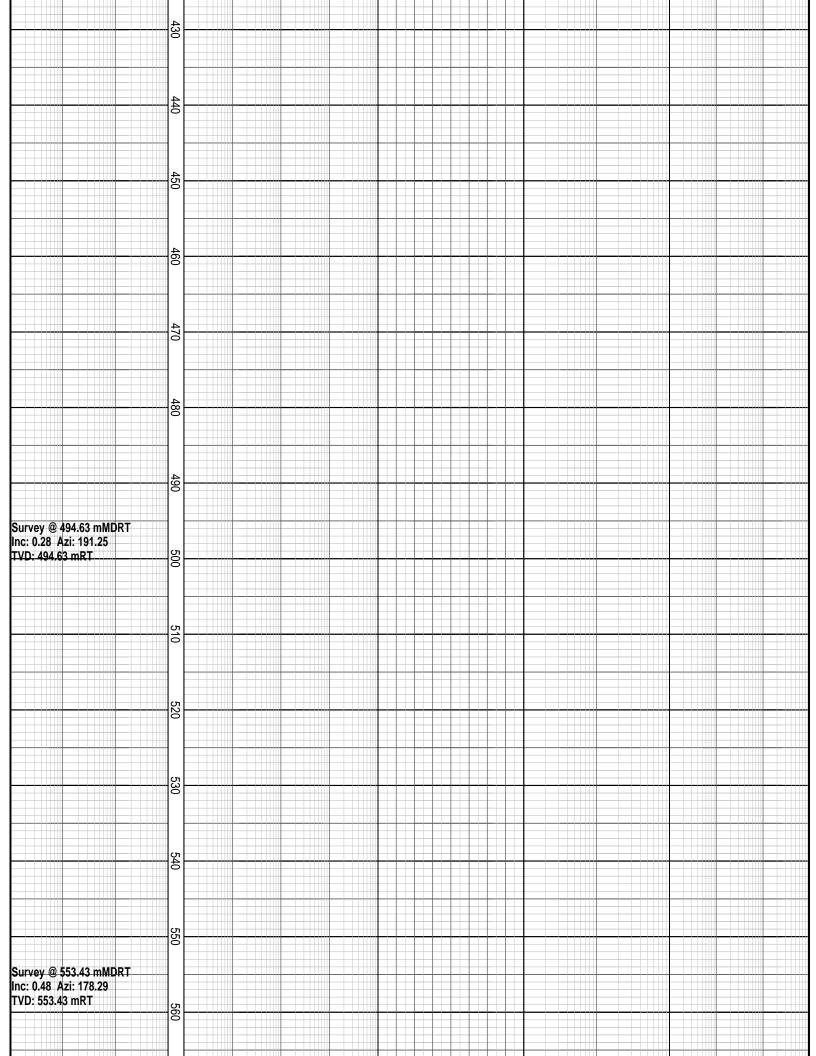
Logs

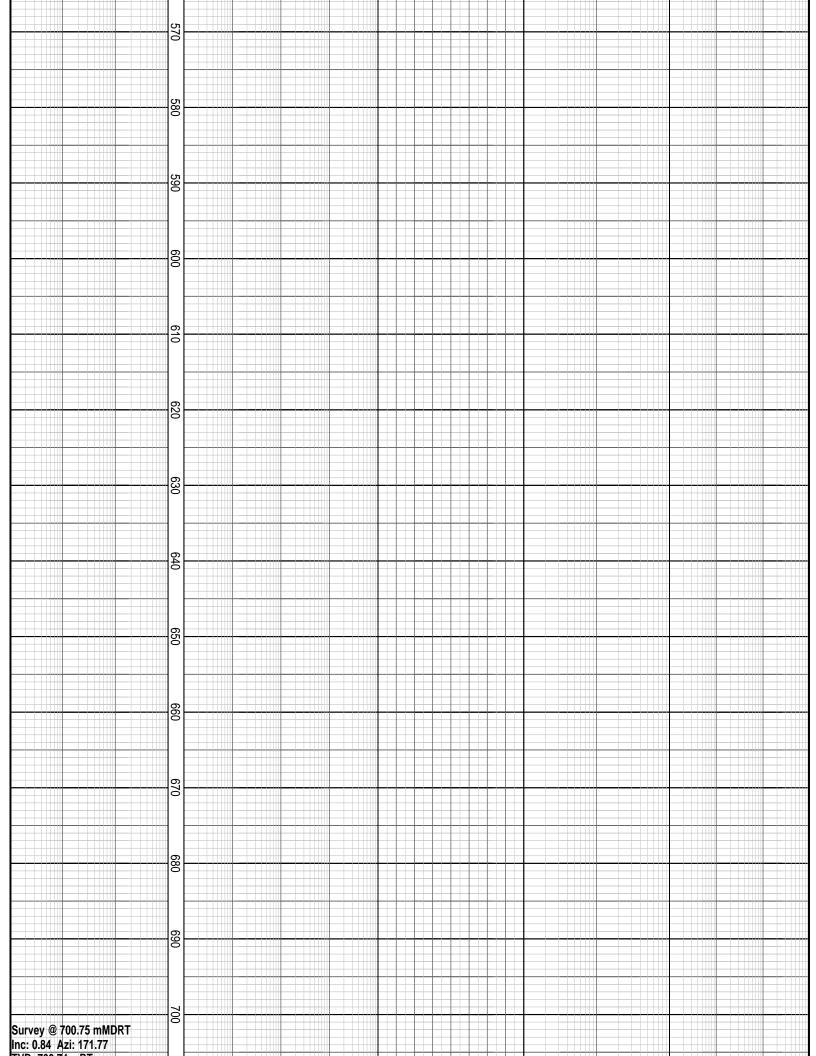
Test

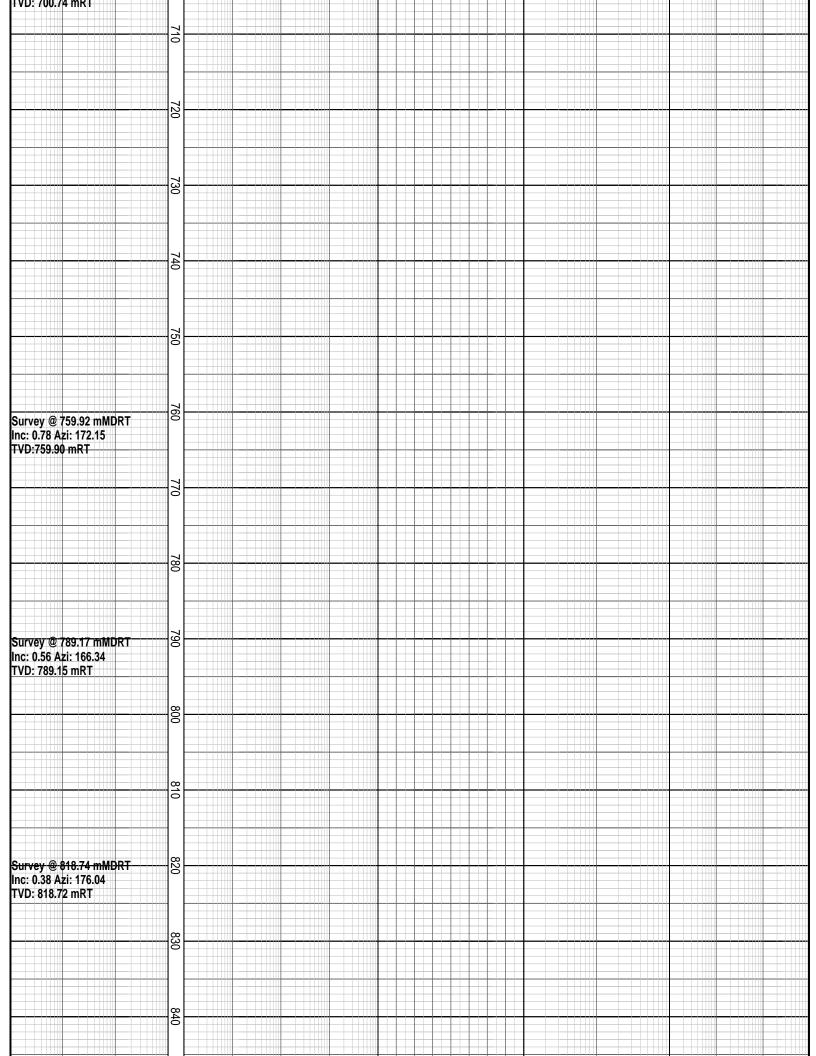
Inc: 0.18 Azi: 296.21

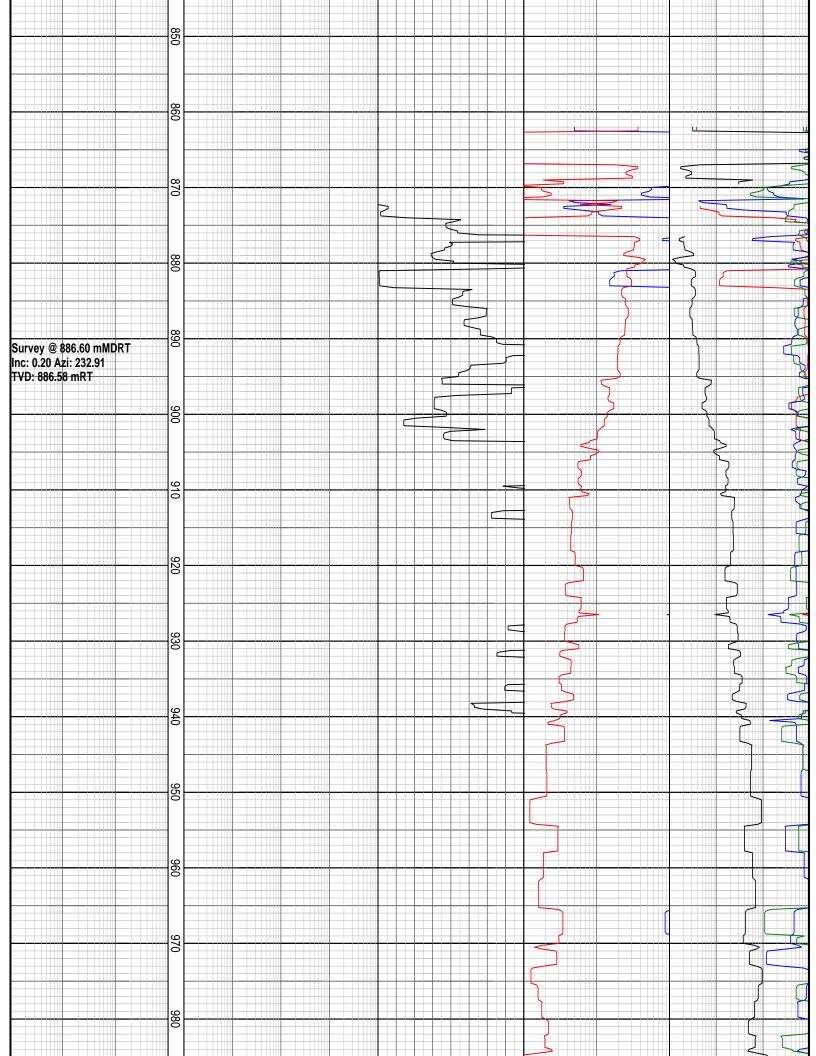
Company : Apache Northwest Pty Ltd

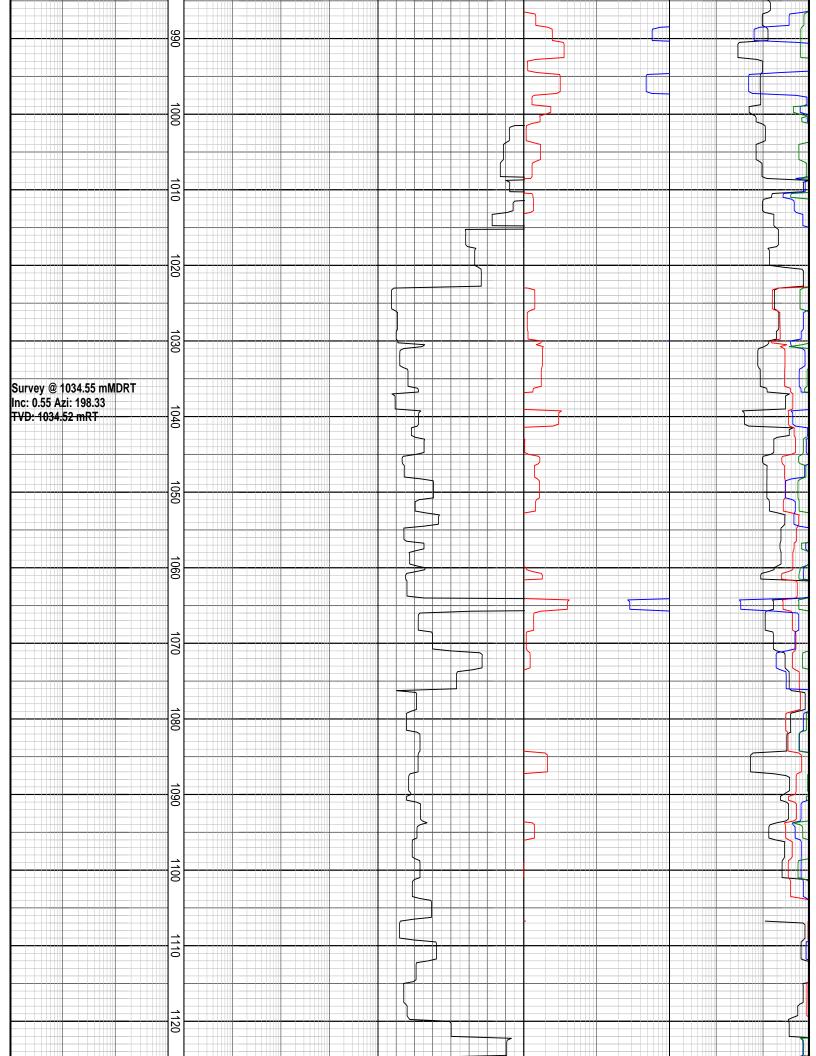

Well: Wasabi-1

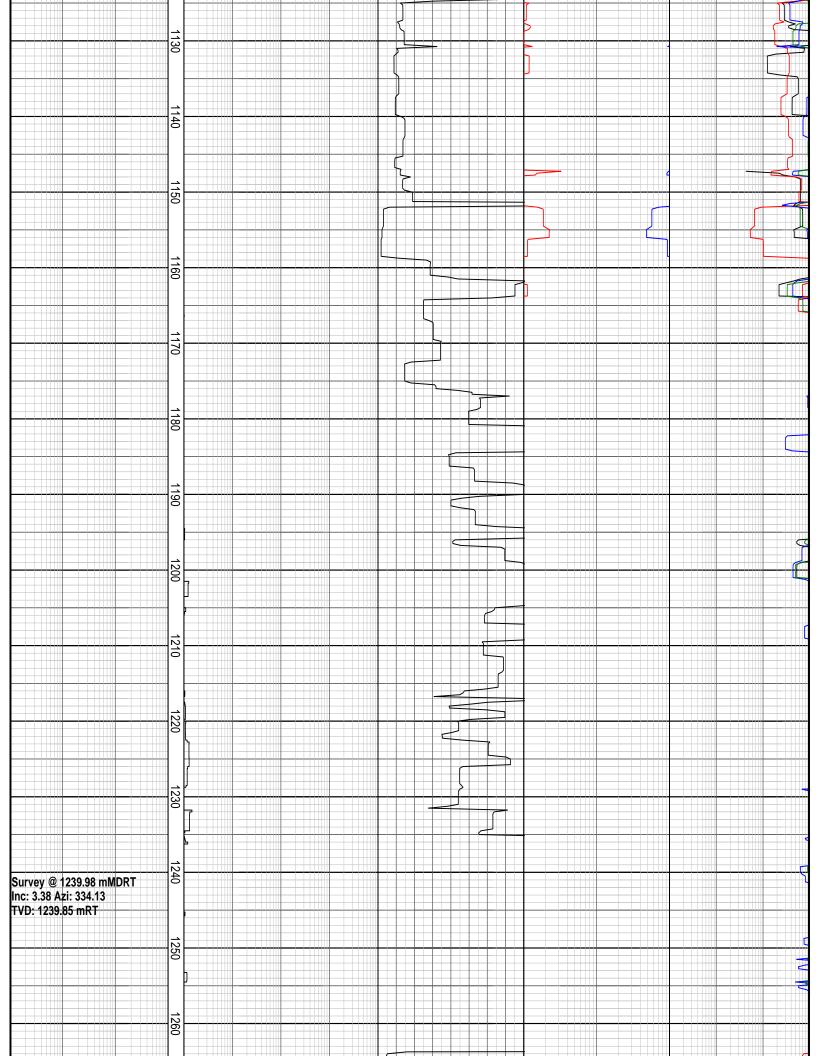

Interval: 50.00 - 2315.06 meters

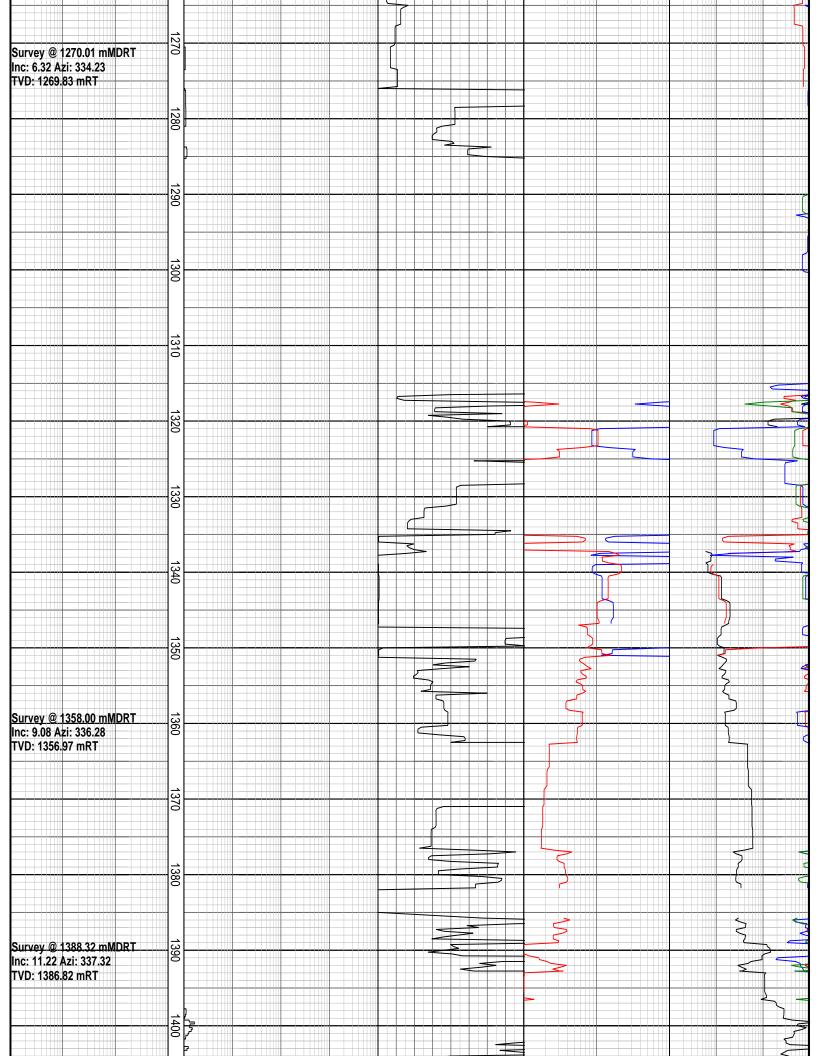


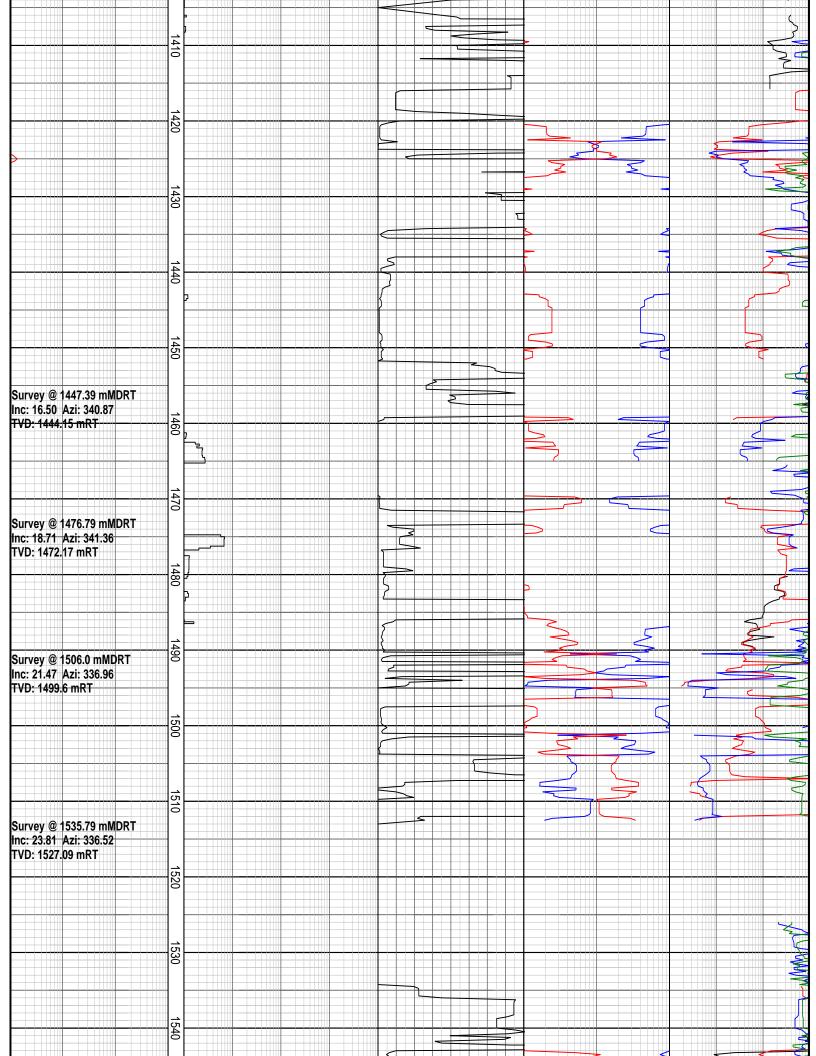

INTEQ Created: 06/Mar/2008 6:35:32 AM **GAS RATIO PLOT** OCQ **Total Gas Chromatograph Data Ratios** C1 Ratios MD meters 1:500 DITCH GAS C1 ppm LHR C1C2 100000 1000 10 100 GWR C1C3 C2 ppm 1000 10 100000 100 C1C4 C3 ppm Unitless 10 100000 1000 1 | 1.5 2 | 2.5 3 | 3.5 C1C5 iC4 ppm 100000 1000 nC4 ppm 100000 iC5 ppm 100000 10 nC5 ppm 10 100000 ල 7 80 9 8 3 Survey @ 115.45 mMDRT Inc: 0.14 Azi: 336.08 TVD: 115.45 mRT 3 6 Survey @ 142.86 mMDRT

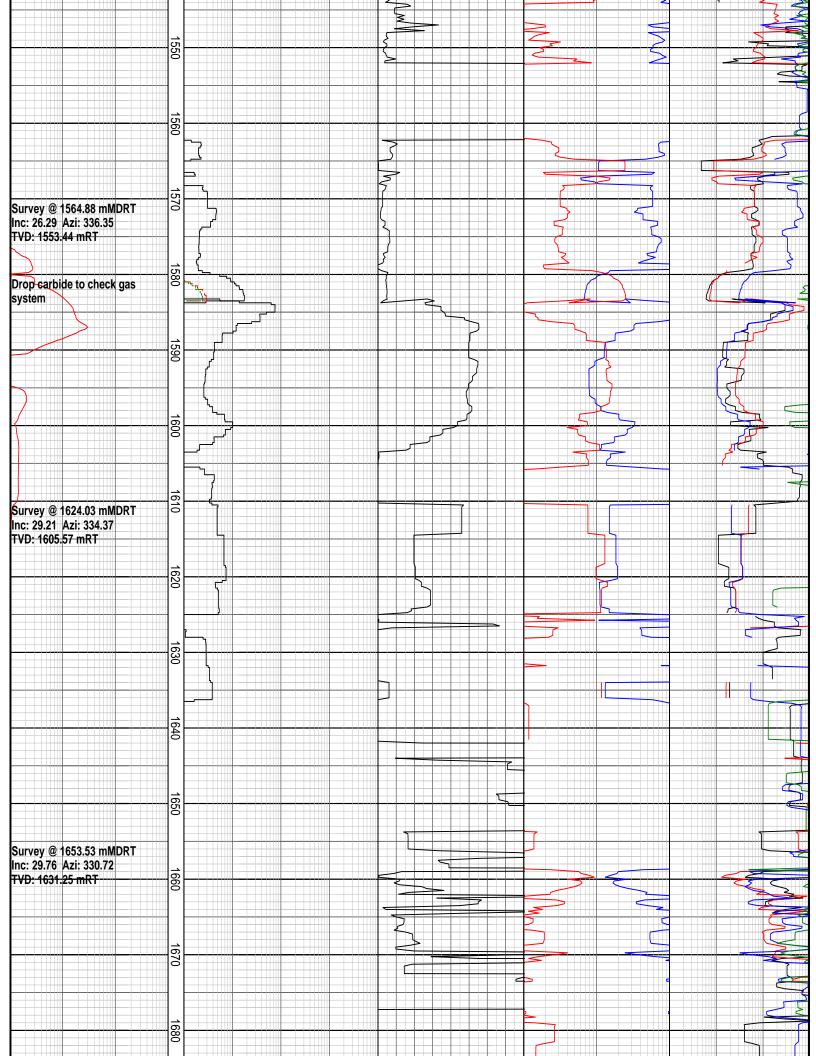

TVD: 142.86 mRT	150							
	ŏ							
	160							
	170							
Survey @ 170.39 mMDRT Inc: 0.09 Azi: 303.79								
TVD: 170.39 mRT								
	180							
	190							
	200							
Survey @ 201.95 mMDRT Inc: 0.09 Azi: 130.71								
TVD: 201.95 mRT	2							
	210							
	220							
	0							
Curvey @ 220.75 MDDT	230							
Inc: 0.10 Azi: 88.12								
TVD: 229.75 mRT								
	240							
	250					 		
	260							
	2							
	270							
	280							
	8							

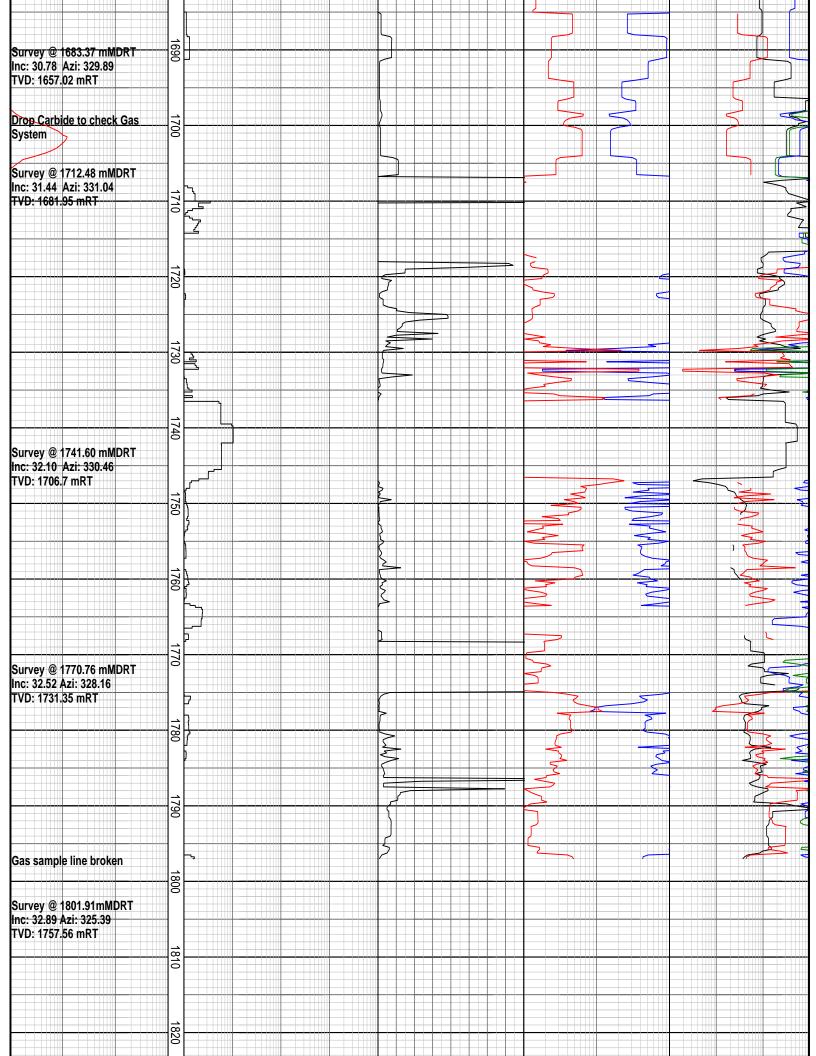


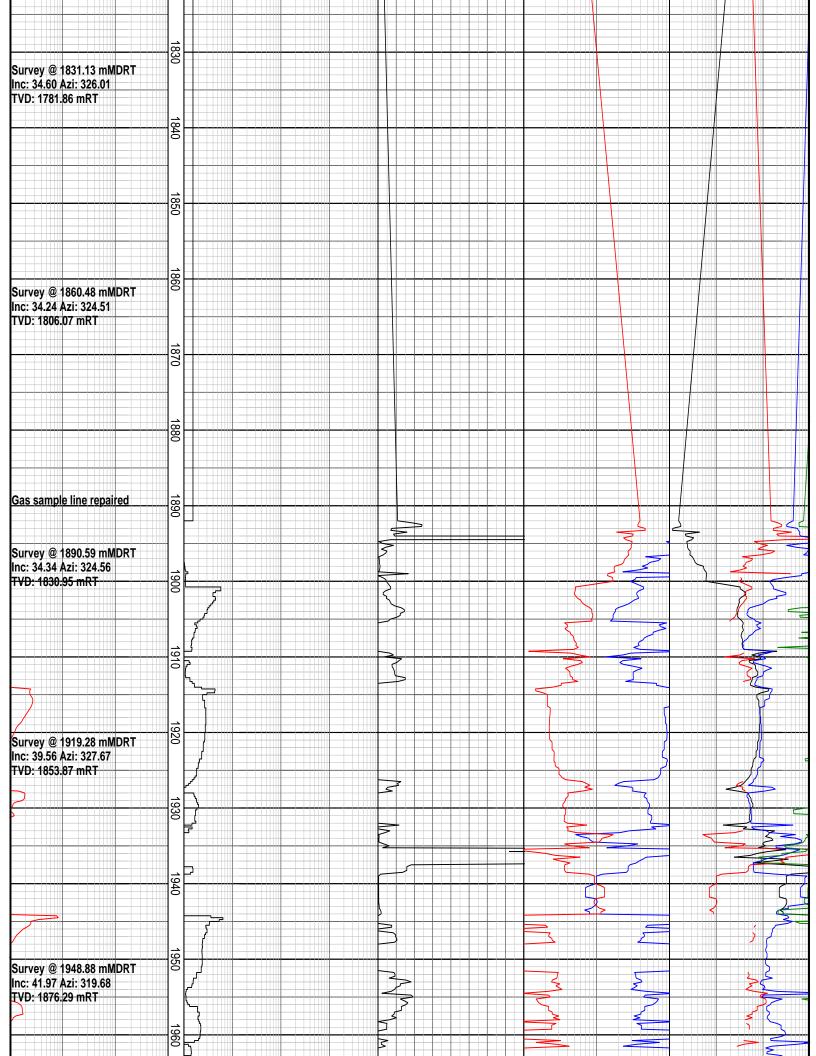


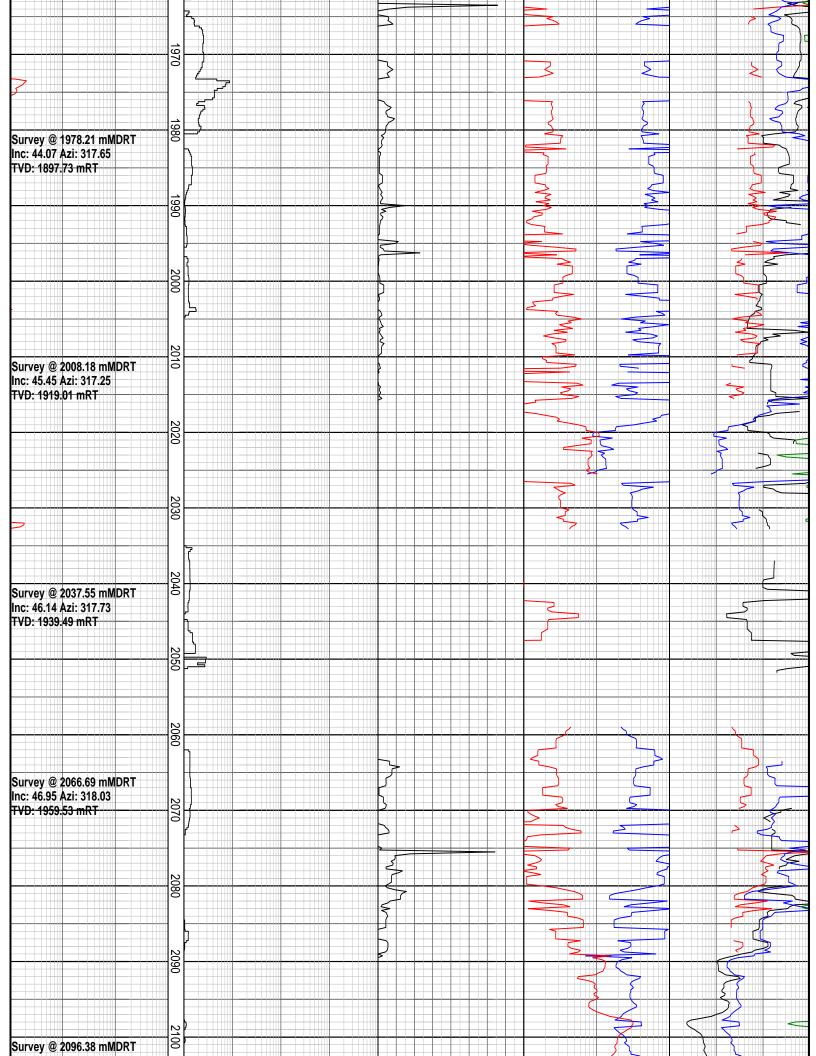


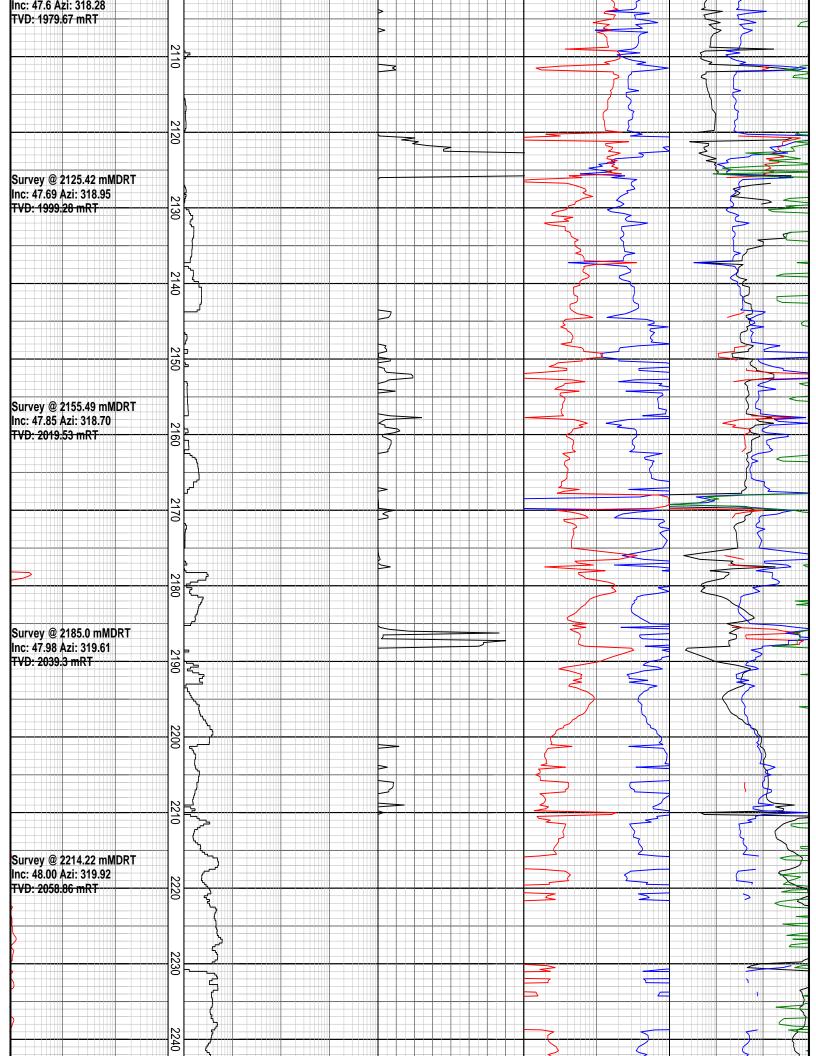


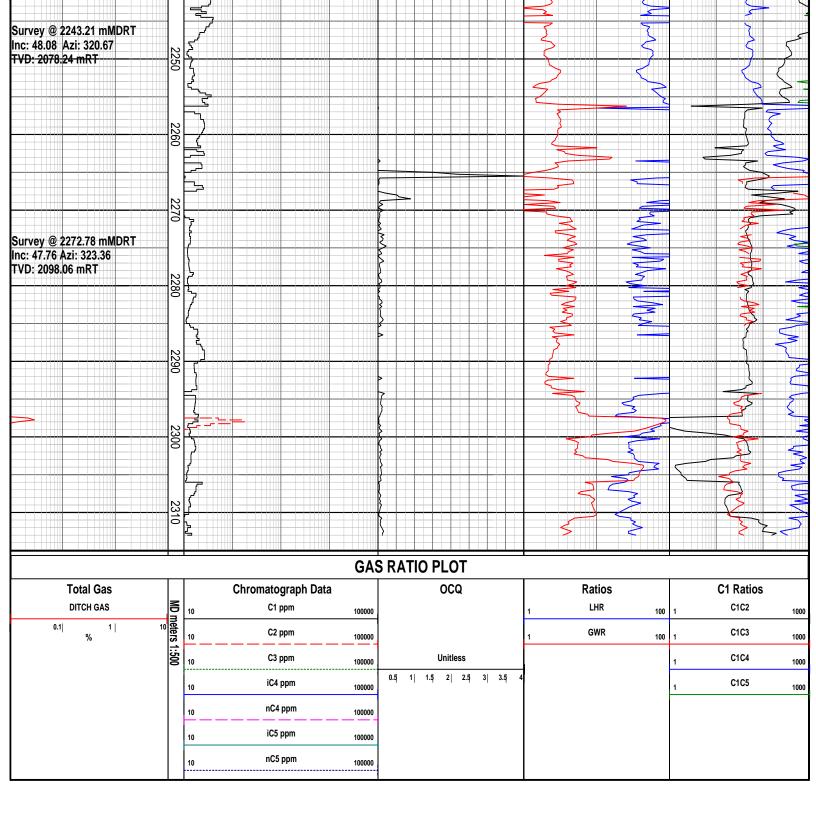












Wasabi-1 End of Well Report

	Name	Signature	Date
Schlumberger QC	lain McCourt		
Client approval	Steve Bunton		

Contents

- 1. General Information
- 2. Health, Safety, and Environment
- 3. Geomagnetic and Survey Reference Criteria
- 4. Definitive Survey
- 5. Drilling and Logging Overview
- 6. BHA Reports
- 7. Drilling Parameter Sheets
- 8. Drilling Tool Run Reports
- 9. Drill Bit Grading
- 10. Service Quality

General Information

Well Name:	Wasabı-1	
Rig:	West Triton	
Field:	Vic-P58	
Location:	Bass Strait	
Country:	Australia	
Cell Members:	Anagh Kohli Chris Hibberson Dallas Perkins Vedat Ali Degirmenci Jason Patterson	Cell Manager MWD/LWD Engineer MWD/LWD Trainee Directional Driller Directional Driller
Town Contacts:	Dwight Hennings Iain McCourt Arnis Ahmed	AWA Operations Manage Field Services Manager Service Quality Coach
Company Representatives:	Bill Openshaw Paul Callaghar Stefan Schmidt Richard Moore Hamish Little Adam Cruickshank	Company Man Company Man Company Man Company Man Wellsite Geologist Wellsite Geologist

Geomagnetic and Survey Reference Criteria

Geomagnetic Data

Magnetic Model: BGGM version 2007

Magnetic Date:29 Nov 2007Magnetic Field Strength:60140 HCNTMagnetic Declination:12.805 degreesMagnetic Dip:-69.07 degrees

Survey Reference Criteria

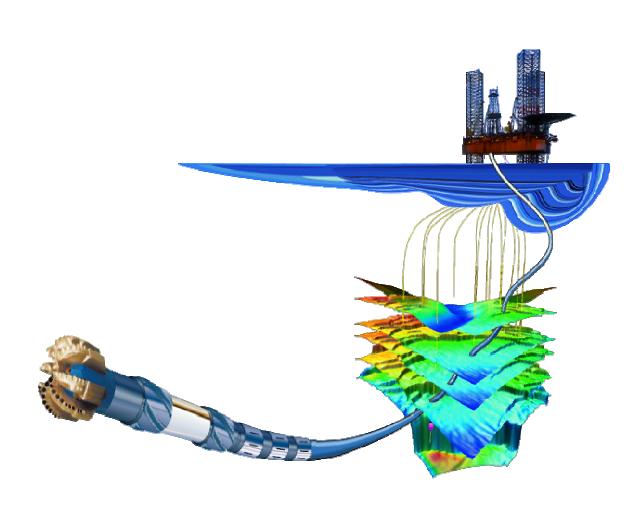
Reference G: 1000.05 mgal
Reference H: 1202.69 HCNT
Reference Dip: -69.07 degrees
G value Tolerance: 2.50 mgal
H value Tolerance: 6.00 HCNT
Dip Tolerance: 0.45 degrees

Survey Corrections Applied

Reference North: Grid North
Magnetic Declination: 12.80 degrees
Grid Convergence: -0.16 degrees
Total Azimuth Correction: 12.96 degrees
Vertical Section Azimuth: 322.47 degrees

Survey Reference Location

Location Coordinates


Latitude: 38° 29′ 18.157″ South Longitude: 147° 15′ 49.147″ East

Easting: 522993.588 m Northing: 5739963.350 m

MGA: GDA94/MGA94 Zone 55

Definitive Survey

Wasabi-1 Final Geodetic Survey

Report Date: March 27, 2008
Client: APACHE ENERGY LTD
Field: Apache/VIC-P58/WASABI-1
Structure / Slot: WASABI-1 / WASABI-1

Well: WASABI-1 Borehole: WASABI-1 UWI/API#:

Survey Name / Date: Wasabi-1 Survey / February 26, 2008
Tort / AHD / DDI / ERD ratio: 63.724° / 557.97 m / 5.104 / 0.263
Grid Coordinate System: GDA94/MGA94 Zone 55
Location Lat/Long: S 38 29 18.157, E 147 15 49.147
Location Grid N/E Y/X: N 5739963.350 m, E 522993.588 m

Grid Convergence Angle: -0.16408596° Grid Scale Factor: 0.99960651 Survey / DLS Computation Method: Minimum Curvature / Lubinski

Vertical Section Azimuth: 322.470°

Vertical Section Origin: N 0.000 m, E 0.000 m

TVD Reference Datum: RKB

TVD Reference Elevation: 39.0 m relative to AHD
Sea Bed / Ground Level Elevation: -37.000 m relative to AHD

Magnetic Declination: 12.802°
Total Field Strength: 60133.779 nT
Magnetic Dip: -69.072°
Declination Date: February 26, 2008
Magnetic Declination Model: BGGM 2007

North Reference: Grid North
Total Corr Mag North -> Grid North: +12.966°
Local Coordinates Referenced To: Well Head

Comments	Measured Depth	Inclination	Azimuth Grid	TVD	Vertical Section	NS Grid North	EW Grid North	DLS	Northing	Easting	Latitude	Longitude
	(m)	(deg)	(deg)	(m)	(m)	(m)	(m)	(deg/30 m)	(m)	(m)		
Tie-In	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5739963.35	522993.59	S 38 29 18.157	E 147 15 49.146
	115.45	0.14	336.08	115.45	0.14	0.13	-0.06	0.04	5739963.48	522993.53	S 38 29 18.153	E 147 15 49.144
	142.86	0.18	296.21	142.86	0.21	0.18	-0.11	0.13	5739963.53	522993.48	S 38 29 18.152	E 147 15 49.142
	170.39	0.09	303.79	170.39	0.27	0.21	-0.17	0.10	5739963.56	522993.42	S 38 29 18.151	E 147 15 49.140
	201.95	0.09	130.71	201.95	0.27	0.21	-0.17	0.17	5739963.56	522993.42	S 38 29 18.151	E 147 15 49.139
	229.75	0.10	88.12	229.75	0.23	0.19	-0.13	0.08	5739963.54	522993.46		E 147 15 49.141
	494.63	0.28	191.25	494.63	-0.33	-0.43	-0.02	0.04	5739962.92	522993.57		E 147 15 49.146
	553.43	0.48	178.29	553.43	-0.62	-0.82	-0.04	0.11	5739962.53	522993.54	S 38 29 18.184	E 147 15 49.145
	700.75	0.84	171.77	700.74	-2.07	-2.51	0.13	0.07	5739960.84	522993.72		E 147 15 49.152
	759.92	0.78	172.15	759.90	-2.79	-3.33	0.25	0.03	5739960.02	522993.83	S 38 29 18.265	E 147 15 49.157
	700.47	0.50	400.04	700 45	0.40	0.07	0.04	0.04	F7000F0 00	500000 00	0.00.00.40.070	E 447.45.40.400
	789.17	0.56	166.34	789.15	-3.10	-3.67	0.31	0.24	5739959.68	522993.90		E 147 15 49.160
	818.74	0.38	176.04	818.72	-3.31	-3.91	0.35	0.20	5739959.44	522993.94		E 147 15 49.161
	886.60	0.20	232.91	886.58	-3.50 -3.90	-4.20 -5.03	0.27	0.14 0.08	5739959.15 5739958.32	522993.86 522993.43		E 147 15 49.158
	1034.55 1180.90	0.55	198.33	1034.52 1180.87	-3.90 -4.28		-0.16	0.08	5739956.32	522993.43		E 147 15 49.140
	1100.90	0.38	233.51	1100.07	-4.20	-5.99	-0.77	0.07	5739957.36	522992.62	3 30 29 10.352	E 147 15 49.115
	1239.98	3.38	334.13	1239.92	-2.57	-4.54	-1.69	1.76	5739958.81	522991.90	S 38 29 18.305	E 147 15 49.077
	1270.01	6.32	334.23	1269.83	-0.09	-2.25	-2.79	2.94	5739961.10	522990.80	S 38 29 18.231	E 147 15 49.031
	1298.75	8.02	326.45	1298.35	3.46	0.84	-4.59	2.04	5739964.19	522989.00	S 38 29 18.130	E 147 15 48.957
	1328.72	8.15	333.60	1328.02	7.63	4.49	-6.69	1.01	5739967.84	522986.90		E 147 15 48.870
	1358.00	9.08	336.28	1356.97	11.91	8.46	-8.54	1.04	5739971.81	522985.05	S 38 29 17.884	E 147 15 48.793
	1388.32	11.22	337.32	1386.82	17.09	13.37	-10.64	2.13	5739976.72	522982.95		E 147 15 48.706
	1447.39	16.50	340.87	1444.15	30.61	26.61	-15.61	2.71	5739989.95	522977.98		E 147 15 48.499
	1476.79	18.71	341.36	1472.17	39.04	35.03	-18.49	2.26	5739998.36	522975.11		E 147 15 48.380
	1506.00	21.47	336.96	1499.60	48.65	44.39	-22.08	3.23	5740007.72	522971.52		E 147 15 48.230
	1535.79	23.81	336.52	1527.09	59.76	54.92	-26.61	2.36	5740018.25	522966.99	\$ 38 29 16.379	E 147 15 48.042
	1564.88	26.29	336.35	1553.44	71.71	66.21	-31.53	2.56	5740029.53	522962.07	S 38 29 16.013	E 147 15 47.838
	1594.25	28.63	333.72	1579.50	84.93	78.48	-37.26	2.69	5740041.80	522956.35		E 147 15 47.600
	1624.03	29.21	334.37	1605.57	99.04	91.43	-43.56	0.66	5740054.74	522950.05		E 147 15 47.338
	1653.53	29.76	330.72	1631.25	113.33	104.30	-50.25	1.91	5740067.61	522943.35		E 147 15 47.061
	1683.37	30.78	329.89	1657.02	128.23	117.37	-57.71	1.11	5740080.67	522935.90		E 147 15 46.752
	1712.48	31.44	331.04	1681.95	143.12	130.45	-65.12	0.92	5740093.75	522928.49		E 147 15 46.444
	1741.60	32.10	330.46	1706.70	158.30	143.83	-72.61	0.75	5740107.12	522921.01		E 147 15 46.133
	1770.76	32.52	328.16	1731.35	173.77	157.23	-80.57	1.34	5740120.52	522913.05		E 147 15 45.804
	1801.91	32.89	325.39	1757.56	190.55	171.31	-89.79	1.48	5740134.59	522903.84		E 147 15 45.421
	1831.13	34.60	326.01	1781.86	206.75	184.72	-98.93	1.79	5740147.99	522894.69	S 38 29 12.176	E 147 15 45.043
	1860.48	34.24	324.51	1806.07	223.32	198.35	-108.39	0.94	5740161.62	522885.25	S 38 20 11 725	E 147 15 44.651
	1890.59	34.24	324.51	1830.95	240.28	212.16	-118.23	0.94	5740101.02	522875.41		E 147 15 44.031
	1919.28	39.56	321.67	1853.87	257.51	225.93	-128.59	5.75	5740175.45	522865.04		E 147 15 43.814
	1948.88	41.97	319.68	1876.29	276.82	240.88	-140.85	2.77	5740204.13	522852.80		E 147 15 43.307
	1978.21	44.07	317.65	1897.73	296.79	255.90	-154.07	2.77	5740204.15	522839.58		E 147 15 43.307
			200		_556	_55.56	.001	,			2 22 20 0.010	
	2008.18	45.45	317.25	1919.01	317.81	271.44	-168.34	1.41	5740234.68	522825.32		E 147 15 42.169
	2037.55	46.14	317.73	1939.49	338.78	286.96	-182.56	0.79	5740250.20	522811.10		E 147 15 41.580
	2066.69	46.95	318.03	1959.53	359.87	302.65	-196.75	0.86	5740265.88	522796.92		E 147 15 40.993
	2096.38	47.60	318.28	1979.67	381.62	318.90	-211.30	0.68	5740282.12	522782.37		E 147 15 40.390
	2125.42	47.49	318.95	1999.28	402.99	334.98	-225.46	0.52	5740298.19	522768.21	S 38 29 7.315	E 147 15 39.804

	2155.49	47.85	318.70	2019.53	425.18	351.71	-240.10	0.40	5740314.92	522753.58	S 38 29 6.773	E 147 15 39.198
	2185.00	47.98	319.61	2039.30	447.04	368.28	-254.42	0.70	5740331.48	522739.27	S 38 29 6.237	E 147 15 38.605
	2214.22	48.00	319.92	2058.86	468.73	384.85	-268.45	0.24	5740348.05	522725.25	S 38 29 5.701	E 147 15 38.025
	2230.00	48.04	320.29	2069.41	480.45	393.85	-275.97	0.53	5740357.04	522717.73	S 38 29 5.410	E 147 15 37.713
	2243.21	48.08	320.67	2078.24	490.27	401.43	-282.22	0.65	5740364.62	522711.48	S 38 29 5.165	E 147 15 37.454
	2272.78	47.76	323.36	2098.06	512.21	418.72	-295.73	2.05	5740381.91	522697.98	S 38 29 4.605	E 147 15 36.895
Projected to TD	2313.00	48.00	323.50	2125.04	542.04	442.68	-313.50	0.20	5740405.86	522680.21	S 38 29 3.830	E 147 15 36.159

Survey Type: Non-Def Survey

Survey Error Model: SLB ISCWSA version 24 *** 3-D 95.00% Confidence 2.7955 sigma Surveying Prog:

Surveying Prog:			
MD From (m)	MD To (m)	EOU Freq Survey Tool Type	Borehole -> Survey
0.00	76.00	Act-Stns SLB_ZERO-Depth Only	WASABI-1 -> Wasabi-1 Survey
76.00	115.45	Act-Stns SLB_ZERO	WASABI-1 -> Wasabi-1 Survey
115.45	2272.78	Act-Stns SLB_MWD+DMAG	WASABI-1 -> Wasabi-1 Survey
2272.78	2313.00	Act-Stns SLB_BLIND+TREND	WASABI-1 -> Wasabi-1 Survey

Drilling and Logging Overview

Schlumberger Drilling and Measurements provided, MWD and sonicVISION for 406 mm (16") and Motor-PowerPak and MWD/LWD for 311 mm (12.25").

Well Objectives:

Wasabi-1 is an exploration well to be drilled in the Wasabi field, located in permit Vic-P58. The well will be assessing the La Trobe, Intra La Trobe, L Balmei and Golden Beach formations and is programed to TD below the Golden Beach formation.

In order to meet the geological objectives Wasabi-1 will be a directional well.

Wasabi-1 shall commence when the drilling MODU, West Triton is 1km from the planned well surface location. Wasabi-1 will be the first well to be drilled using the West Triton.

The well will be spudded with a 660 mm (26'') bit which will drill to $\pm /-60 \text{m}$ below the seabed. A 406 mm (16'') hole will be then drilled riserless to $\pm /-900 \text{m}$ in the lower Gippsland Limestone and a tapered $508 \text{mm} \times 340 \text{mm}$ ($20'' \times 13-3/8''$) conductor will be set. The 476 mm (18-3/4'') unitized wellhead housing will be landed in the conductor tensioner, prior to cementation using the inner string method. GR/Sonic LWD shall be run for formation evaluation in this section.

After testing the BOP, the 311mm (12 %") hole will be directional drilled to TD at +/-2652m MD (+/-2548m TVD). Quad combo (including GVR-8) + BAT sonic LWD shall be run for formation evaluation.

At TD, wireline logs consisting of a VSP shall be run to surface. RFT (pressures and samples) and RSCT will be contingent on the initial evaluation. Image logs will be contingent on the quality of the GVR-8 LWD log.

No well test is planned. However, the well may be sidetracked for coring if significant hydrocarbon is present. A revised drilling program will be issued should the well be sidetracked. The well shall be be plugged and abandoned.

The well shall be drilled with water based fluids throughout, therefore no cuttings injection will be undertaken and no cuttings dryer installed. Wasabi-1 is not in close proximity to any marine parks or environmentally sensitive areas.

Wasabi-1 ends when the rig is 1km from the surface location.

BHA # 1: MWD / sonicVISION Assembly

406 mm (16") Hole Section - Vertical(135.00 m MD- 862.00 m MD)

The following 406mm (16") MWD/sonicVISION Assembly was made up and run in hole:

406mm (16") Milled Tooth Bit (Type: Reed T11C, Jets 3 x 18,1 x 16)
9 1/2" Bit Sub
2 X 9 ½"DC
16" Stabalizer
9 ½"DC
8 ¼" X-Over
8 ¼" X-Over
8 ¼" Telescope* MWD
8 ¼" sonicVision* LWD (9½" ILS attached)
5 X 8 ¼" DC
8" JAR
2 X 8 ¼" DC
8 ¼" X-Over

Drilling Summary

MWD/LWD Summary

The Telescope* MWD tool was programmed with 12Hz/6bps configuration, to enable transmission of real time data uphole, providing Directional Survey information (Azimuth & Inclination). Only 1 SPT was used as the Delivery order for the proper T-piece for West Triton got delayed.

Successful Shallow Hole test was performed just before tagging bottom. Drilling commenced after tagging sea bed at 135.0mMD. Due to lack of non mags in the BHA a lot of magnetic interference was observed in the surveys. Surveys were used as inclination check. The run started with some signal issues. Harmonic from pump 3 was sitting on the carrier frequency of 12hz. Staggered pumps worked good for the signal.

sonic VISION was programmed at 5 seconds record rate hence no real time data.

TD was called at 862m MD. It was tried to Downlink to sonicVISION from 5 second record rate to 1 second record rate. However we were unable to do so due to the rigs automated system not having rheostat or the potential to change from high to low point in a short amount of time.

After dumping SonicVISION it was realized that post dumping waveform from the tool does not match the pre initialization waveforms. While laying out sonicVISION sparking was observed from the transmitter. Techlogs generated from the dumped data looked good though. The tool might have failed in between stopping acquisition and laying out BHA. Further investigation needs to be carried out once the tool gets back to the base.

BHA # 2: Motor-PowerPak and MWD/LWD Assembly 311 mm (12.25") Hole Section – (862.00 m MD- 1796.00 m MD)

The following 311mm (12.25") Motor-PowerPak and MWD/LWD Assembly was made up and run in hole:

311mm (12.25") PDC Bit (Type: Smith Mi616BPX, Jets: 6x 18)

9 6/8" PowerPak-A962 with sleeve

8" Float Sub

8 1/8" Monel

8 1/4" GVR LWD

8 1/4" TeleScope* MWD

8 3/8" X-Over

8 1/4" BAT Sonic

8 1/2" X-Over

8 1/4" sadnVISION* LWD

8 1/2" X-Over

6 X 8 ½ "DC

8" JAR

2X 8 1/2" DC

8 1/2" X-Over

5 X 5 1/2" HWDP

Drilling Summary

MWD/LWD Summary

The TeleScope* MWD tool was programmed with 12Hz/6bps configuration, to enable transmission of real time data uphole, providing Directional Survey information (Azimuth & Inclination).

GeoVISION and sadnVISION LWD tools were programmed at 5 second record rate each. sadnVISION was only run in recorded mode.

Successful Shallow Hole test was performed after making up first joint of heavy weight drillpipe. Drilling commenced after tagging cement at 862.00mMD. Signal problems were experienced throughout the run resulting in intermittent RT data. We experienced problems getting surveys as the automated pumps were slowly brought up and not in a single go. The issue was resolved after a talk with the driller.

We kicked off at 1239.00m MD. We mostly slid from 1239.00m MD to 1796.00m MD and hence were unable to get any good images in that interval.

Signal issue was temporarily resolved by pumping around the 1050-1100 GPM mark and maintained using pump stroke canceller and notch filter when required. Root cause of the signal issue was the lack of second SPT on goose neck which could have enabled us to read even a low signal from the tool.

Sliding was difficult throughout the run, however became a real struggle towards the end of the run. Upon bit inspection back at surface, the bit was quite worn, explaining the struggle to slide towards the end of the run.

Drilling and pump noise was also experienced in the run, along with some electrical noise due to cables being ran in cable trays that contains other electrical cables. This issue was mentioned to Company man, Toolpusher and Maintanance supervisor, however they insisted that cabling be 'Out of sight' as much as possible therefore cables were ran through cable trays.

After dumping sadnVISION porosity was found to be spiky. Some of the spikes can be correlated to coal beds but not all. Techlogs on SADN looked good however HEHV channel moved a bit which might be the cause of porosity spikes. There may be a triple HV failure. A further analysis would be done once the tool reaches the workshop.

Huge washouts were detected by sadnVISION which were later confirmed by wireline logs.

GeoVISION LWD experienced real time data failure throughout this run. After tool tagged bottom at 862.00mMD it was noticed that BIT_RES, RING_RES (Bit Resistivity, Ring Resistivity) were demodulating as 0 in HSPM surface system computer. This was in turn causing the real time curves to flat line on IDEAL real time depth log. After the tool was laid out on deck, all recorded memory was recovered from the GeoVISION tool and a recorded mode log was submitted to well site geologist including BIT_RES, RING_RES curves. Ring resistivity showed a faulty reading for about 100m outside the shoe.

After further investigation into the route cause of the real time BIT_RES, RING_RES failure from GeoVISION LWD tool it was noticed that the tool configuration file was programmed with internal coding to be ran in oil base mud, when in actual fact the well was being drilled with water base mud. This caused the tools internal algorithm used to calculate BIT_RES, RING_RES to produce incorrect values in real time, and in turn flat line on IDEAL real time display. Resulting in the loss of real time data.

It was getting very difficult to slide with the PDC bit and thus was decided to POOH and run in with a slick BHA which will allow the inclination to drop to the desired value.

.

BHA # 3: Motor-PowerPak and MWD/LWD Assembly 311 mm (12.25") Hole Section — (1796.00 m MD- 1900.00 m MD)

The following 311mm (12.25") Motor-PowerPak and MWD/LWD Assembly was made up and run in hole:

311mm (12.25") PDC Bit (Type: Smith Mi616VHBPX, Jets: 9x 14)

9 6/8" PowerPak-A962 without any sleeve

8" Float Sub

8 1/8" Monel

8 1/4" GVR LWD

8 1/4" TeleScope* MWD

8 3/8" X-Over

8 1/4" BAT Sonic

8 1/2" X-Over

8" Monel

2 X 8 ½ "DC

8" JAR

8 1/2" X-Over

9 X 5 1/2" HWDP

Drilling Summary

MWD/LWD Summary

Same tools were run as from the last BHA. sadnVISION was taken off from the BHA as it was interrupting with the BHA build/drop rates. As per Apache orders no Shallow Hole Test was carried out.

After running in the hole it was realized that the formation tops previously used were wrong and hence a plan was issued after we were almost about to tag bottom. We had made a drop assembly and the new plan wanted to build more. To summarize we changed from a S well to a normal directional well which required building upto 43 degrees.

GeoVISION LWD tool was programmed at 5 second record rate as in the last run.

Telescope was found to be switching off as soon as the motor got stalled. Tool was also found not to get into sync below 1100gpm. This could be attributed to we having just 1 SPT and signal strength being low from the tool. It was also noted on application of more WOB while sliding the tool lost sync though we were able to physically see tool working in the spectrogram. A differential pressure of about 300 psi was making signal go out .The signal strength was around0.8-1.3 psi for the run. The entire above mentioned signal issues resulted in intermittent RT data.

GeoVISION LWD tool on dumping showed failed medium button resistivity sensor. The root cause is still unknown as the tool has not reached the base yet. The whole run involved sliding hence we did not get any images from GVR. It was decided to pull out of the hole and change the bit as rate of penetration really slowed down.

BHA # 4: Motor-PowerPak and MWD/LWD Assembly

311 mm (12.25") Hole Section – (1900.00 m MD- 2313.00 m MD)

The following 311mm (12.25") Motor-PowerPak and MWD/LWD Assembly was made up and run in hole:

311mm (12.25") MillTooth Bit (Type: Hughes Christianson MXL1, Jets: 3x 24)

9 6/8" PowerPak-A962 with sleeve

8" Float Sub

8 1/8" Monel

8 1/4" GVR LWD

8 1/4" TeleScope* MWD

8 3/8" X-Over

8 1/4" BAT Sonic

8 1/2" X-Over

8" Monel

2 X 8 ½ "DC

8" JAR

8 1/2" X-Over

9 X 5 1/2" HWDP

Drilling Summary

MWD/LWD Summary

We only changed the bit from the last run and added a sleeve to the motor. Same tools were run in the hole. All programming rates remained as from the last run. We went in with a new Milltooth bit to get the desired inclination and azimuth. We started sliding according to the new plan. Tool face was steady and we drilled in the right direction.

Signal issues continued from the last run. Signal was intermittent all through the run and would go out of sync in rotary even when there was no harmonic or noise in the bandwidth. TD was called at 2313.00m MD. Button resistivity showed high value in real time hence confirming failed status from the last run.

At TD it was decided to Re-log for images from 2100-1770 m. We pumped out of the hole using Rop of 150m/hr rotating at 50 rpm. High stick and slip was observed while pumping out of the whole. Compnay man was informed of the ROP limitations for the re-logging section. It was also conveyed to the client that since we had been sliding from 1240m till 1776 m we may not have images in that interval. Long time to re- log and urgency to run wireline as the hole was washed out made the company man to decide against re-logging for images for the above mentioned interval.

BHA # 5: Motor-PowerPak and MWD/LWD Assembly 311 mm (12.25") Hole Section – WiperTrip(2313.00 m MD- 2313.00 m MD)

The following 311mm (12.25") Motor-PowerPak and MWD/LWD Assembly was made up and run in hole:

311mm (12.25") MillTooth Bit (Type: Hughes Christianson MXL1, Jets: 3x 24)

9 6/8" PowerPak-A962 without any sleeve

8" Float Sub

8 1/8" Monel

8 1/4" GVR LWD

8 1/4" TeleScope* MWD

8 3/8" X-Over

8 1/2" X-Over

8 1/4" sandVISION LWD

8" Monel

2 X 8 ½ "DC

8" JAR

8 1/2" X-Over

9 X 5 1/2" HWDP

Drilling Summary

MWD/LWD Summary

After TD of the well wireline was run to do further formation evaluation. Wireline was unable to go past 1390.00m MD with their sonic scanner and 1590.00m MD with PEX. Wireline logs agreed with our logs proving the hole is washed out at many places.

It was decided to run sadnVISION with the racked back BHA from the last run and to make trip out logs. sadnVISION was programmed at a 5 second record rate. We reached bottom with some tight spots all along the way and even had to fire jars once. We circulated out of the hole at 1100 gpm, 120 m/hr rop and 50rpm and logged from 2313.00m MD to 1740.00m MD. Hole appears to be out of gauge at a lot of places. Ream out logs were made and density and porosity data was given to the client.

Schlumberger

BHA Run Summary

Run	Hole Size (mm)	MWD/LWD Services	Start Depth (m)	End Depth (m)	Distance (m)	Run Start Date	Run End Date
1	406	D&I,GR, Sonic-Slowness	135.0	862.0	727.0	15-Feb-08	17-Feb-08
2	311	D&I,GR,RES,	862.0	1796.0	934.0	22-Feb-08	26-Feb-08
		Density,Porosity					
3	311	D&I,GR,RES	1796.0	1900.0	104.0	26-Feb-08	27-Feb-08
4	311	D&I,GR,RES	1900.0	2313.0	413.0	27-Feb-08	01-Mar-08
5	311	D&I,GR,RES,	2313.0	2313.0	0.0	02-Mar-08	04-Mar-08
		Density,Porosity					

Run	BRT Hours	Drilling	Circulating	Max	Trip for	Failure type
		Hours	Hours	Temp	MWD	
				(degC)		
1	49.33	13.90	23.3	38.90	No	None
2	97.00	50.40	56.9	53.40	No	BIT_RES, RING_RES in RT
3	28.00	8.44	11.10	56.30	N0	Medium Button RES
4	77.00	46.97	53.2	60.00	No	Medium Button RES
5	36.00	0	12	65.00	No	Medium Button RES

STATE: FIELD: WELL: Elevations: API Number: Date Logged: Using the following logs: Well Location COUNTRY: COUNTY: COMPANY: Schlumberger 8 Australia 17-Feb-2008 Wasabi-1 VIC-P58 Apache Energy Ltc 16" section 무 GEO Date Processed: PROCESSED INTERPRETATION FRAME 18-Feb-2008 *A Mark of Schlumberger **FOLD HERE** The well name, location and borehole reference data were furnished by the customer. All interpretations are opinions based on inferences from electrical or other measurements and we cannot, and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretations made by any of our officers, agents or employees. These interpretations are also subject to Clause 4 of our General Terms and Conditions as set out in our current Price Schedule. Field Recording: Location: Software Version: 13X0-101 Engineer: Office Recording: ICS Center: GF 4.3 Baseline: Log Analyst: Taesoo Kim

BHT:

Type Fluid in Hole:

Mud Density: 1.35g/cm3

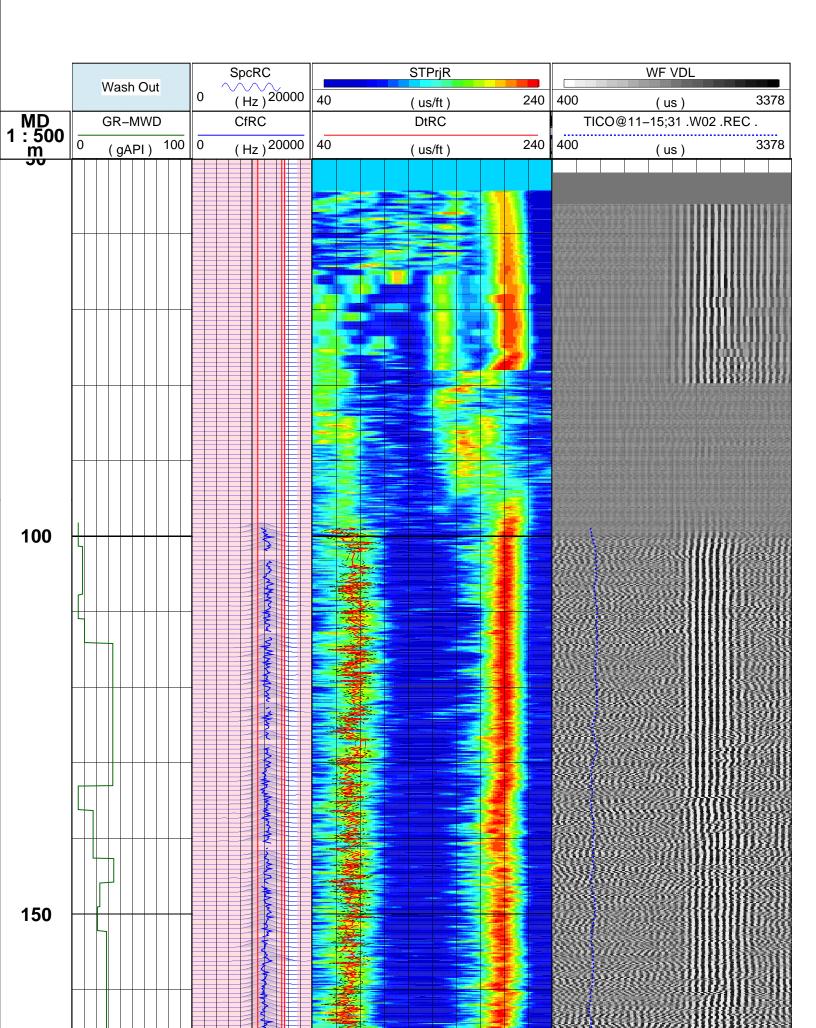
Bitsize:

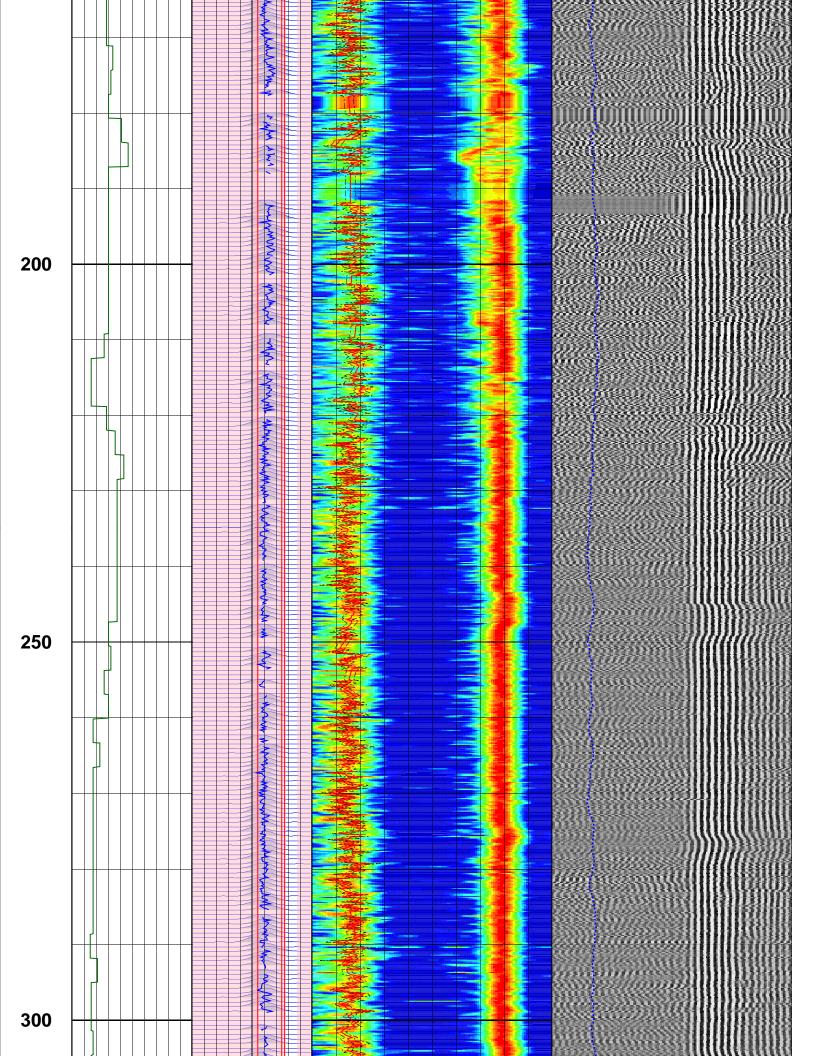
16in

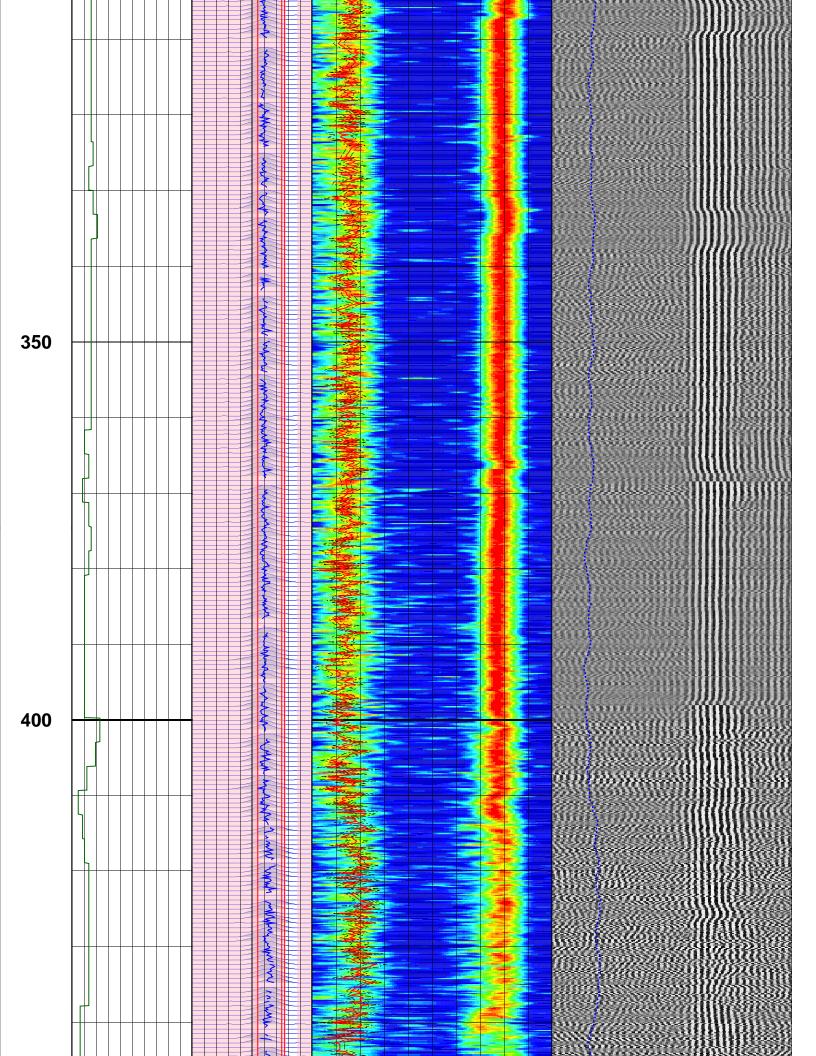
Remarks:

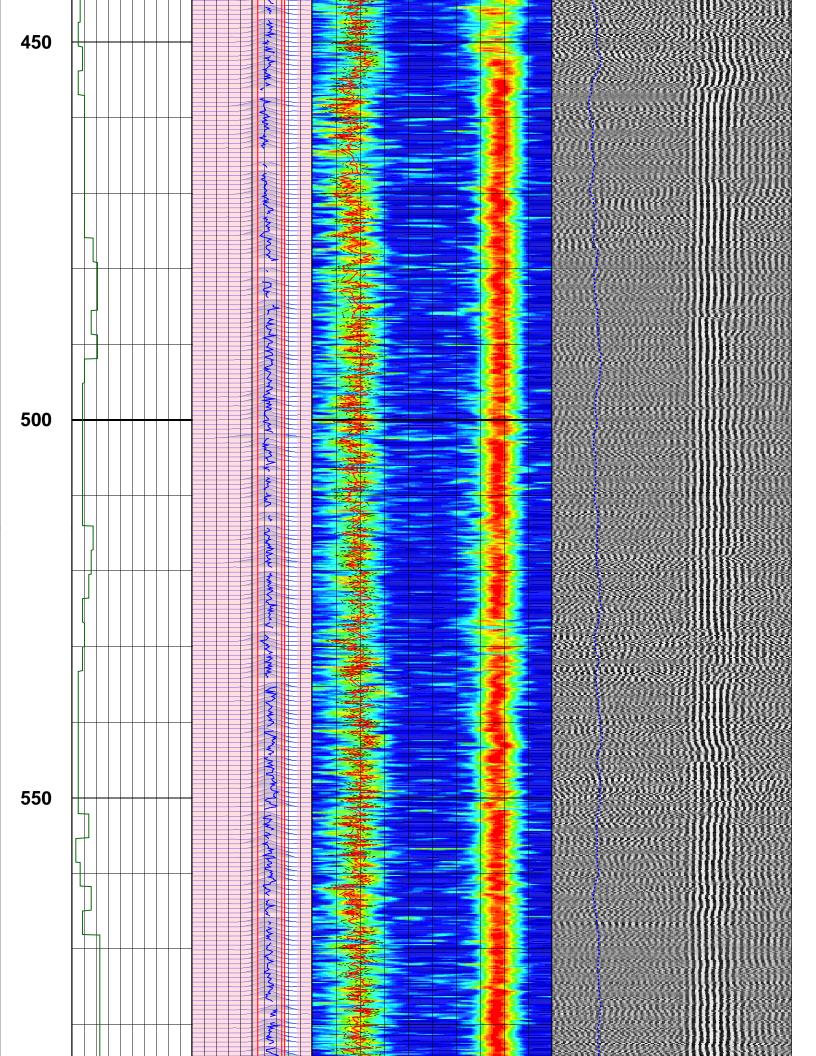
Data processed in computing center with 11–15 Khz.

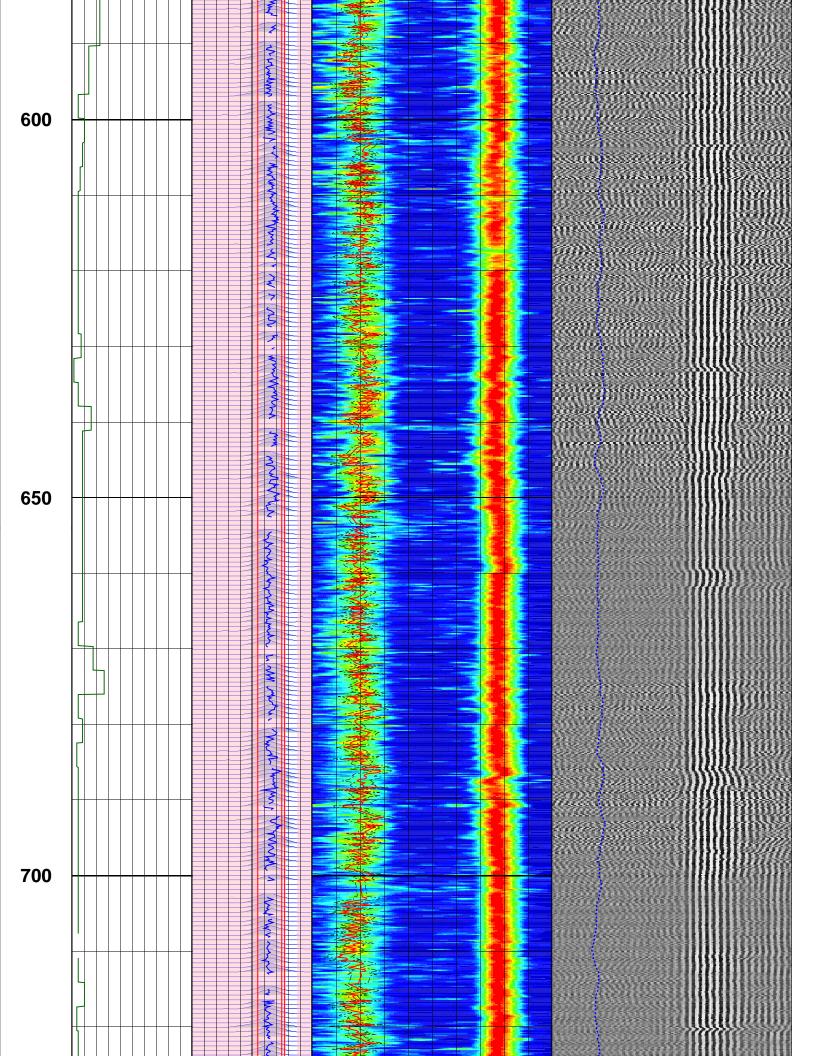
@

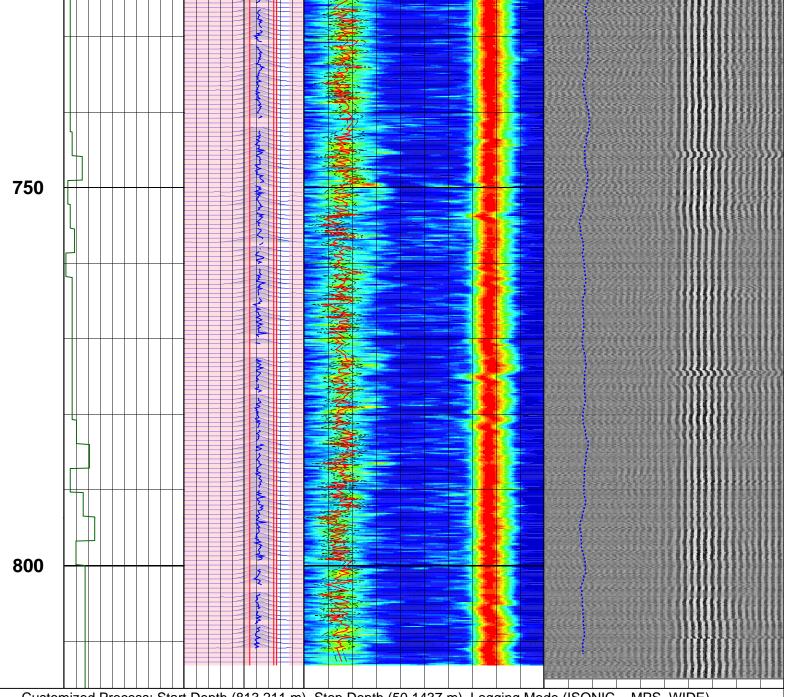

@


@


Mud and Borehole Measurements:


Rm @ Measured Temperature:


Rmf @ Measured Temperature:
Rmc @ Measured Temperature:



Customized Process: Start Depth (813.211 m), Stop Depth (50.1437 m), Logging Mode (ISONIC – MPS_WIDE)

Noise Cut Filtering(No), Casing Cut Filtering(No)

WF_FLG(1 1 1 1), MUD_TYPE(WBM), DTMUD(195), STCAL(Full Array)

TRSPAC(3.00228), RRSPAC(0 0.2032 0.4064 0.6096)

Hole Diameter (no input)

Zoning Guide (no input)

Tracking Guide (no input)

--- Zone Top Depth (0), Zone Name (Zone1) ---SFTY(Intermediate), BHS(OPEN), CSIZ(13.375), HDM(Fix*), HD(16*) TWI(238.281), SLL(39.7135), SUL(240.267), SST(1.98568), TLL(400), TUL(3219.66), TST(39.7135) SBW(1120), SBO(160), SWD(20), TWD(840), SEM(0.45), FLENG(63), FLOW(11000*), FHIGH(15000*) TKO_MODEL_ORDER(2), TKO_TOL(50) TKO_FLOW(0), TKO_FHIGH(12000)

MD 1:500	GR-MWD	CfRC	DtRC	TICO@11-15;31 .W02 .REC .
m . 300	0 (gAPI) 100	0 (Hz) ²⁰⁰⁰⁰	40 (us/ft) 240	400 (us) 3378
	Wash Out	SpcRC	STPrjR	WF VDL
	Wasii Out	0 (Hz)20000	40 (us/ft) 240	400 (us) 3378

Unit OLU-KC-0702 Depth system DWE & CLT	th system			Surface equipment		WBM 862.00 m		Type Mud record from			135	Hole size from	Bore hole record	Date logged: 15–Feb–08To	1: 85.	Lo	eld: cati ell:	any:	Vi Ba W Ap	cati	58 Stra bi–1 ne E	ait 1	rgy Total depth:		1:50	Gec	Rig: Wes	Field: Vic-			Company: Apa		
LWU	j	.T SPM	0702 IDEAL Wis		_	2313.00 m		to			1 862.00 m	to	rd	o 03–Mar–08 Mag dip:		28 E 522 993.588 m	ıl no. N 5 739 963.350 m	Depth reference:	Log measured from:	Permanent datum:				Recorded Mode Data, Composite Log	1:500 Measured Depth	GeoVISION Service	West Triton	Vic-P58	Wasabi-1		Apache Energy Ltd		
	See Remarks	hspm13_0c_03	ID13_0c_05	Soft		0.20 deg.	0.18 deg.	Min B		440 mm	508 mm	Size		ip: -69.071 deg.		8 m	350 m	Driller's Depth	Drill Floor	AHD	1 To 5	14-Feb-08	2313.00 m	ata, Com)epth	Ce	State:				Ltd		
	narks	_0c_03	:_05	Software record		48.08 deg.	0.84 deg.	Borehole deviation record Max from		101 lbm/m	193 lbm/m	Density	Casing record	\vdash		E 147° 15',	Longitude		38		Ele	eva	tion	ηposite L								2 5	2
						862.00 m	135.00 m	tion record from		Well Head	Well Head	from	ecord	See Remarks	Other services:	E 147° 15'49.147" S 38° 29'18.157"	Latitude		38.00 m above Perm. datum	Elev.: 0.00 m	D.F. 38.00 m	G.L37.00 m		og			Victoria					GMUMDELYEL	
						2313.00 m	862.00 m	ð		857.00 m	135.00 m	to				29'18.157"	de		Perm. datum		3	ю т	Drive									<u>-</u>	3
	DISCLAIMER THE USE OF AND RELIANCE LIBON THIS RECORDED DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS																																
	THE USE OF AND RELIANCE UPON THIS RECORDED-DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS AFFILIATES, PARTNERS, REPRESENTATIVES, AGENTS, CONSULTANTS AND EMPLOYEES) IS SUBJECT TO THE TERMS AND CONDITIONS AGREED UPON BETWEEN SCHLUMBERGER AND THE COMPANY, INCLUDING: (a) RESTRICTIONS ON USE OF THE RECORDED-DATA; (b) DISCLAIMERS AND WAIVERS OF WARRANTIES AND REPRESENTATIONS REGARDING COMPANY'S USE OF AND RELIANCE UPON THE RECORDED-DATA; AND (c) CUSTOMER'S FULL AND SOLE RESPONSIBILITY FOR ANY INFERENCE DRAWN OR DECISION MADE IN CONNECTION WITH THE USE OF THIS RECORDED-DATA.																																
		R SE VIS				OR RI	JN1								CES	S FO	R F	RUN	2							SER\			R R	RUN	3		

REMARKS: RUN NUMBER 1
Depth is referenced to driller's depth.

SonicVISION Data is presented separately.

Run Objective: Drill 406mm hole section

POOH: Section TD

REMARKS: RUN NUMBER 2

Depth is referenced to driller's depth.

GVR Gamma Ray is corrected for mud weight,

bit size, tool collar size, and potassium content in mud.

GVR Resisitivity is not environmentally corrected.

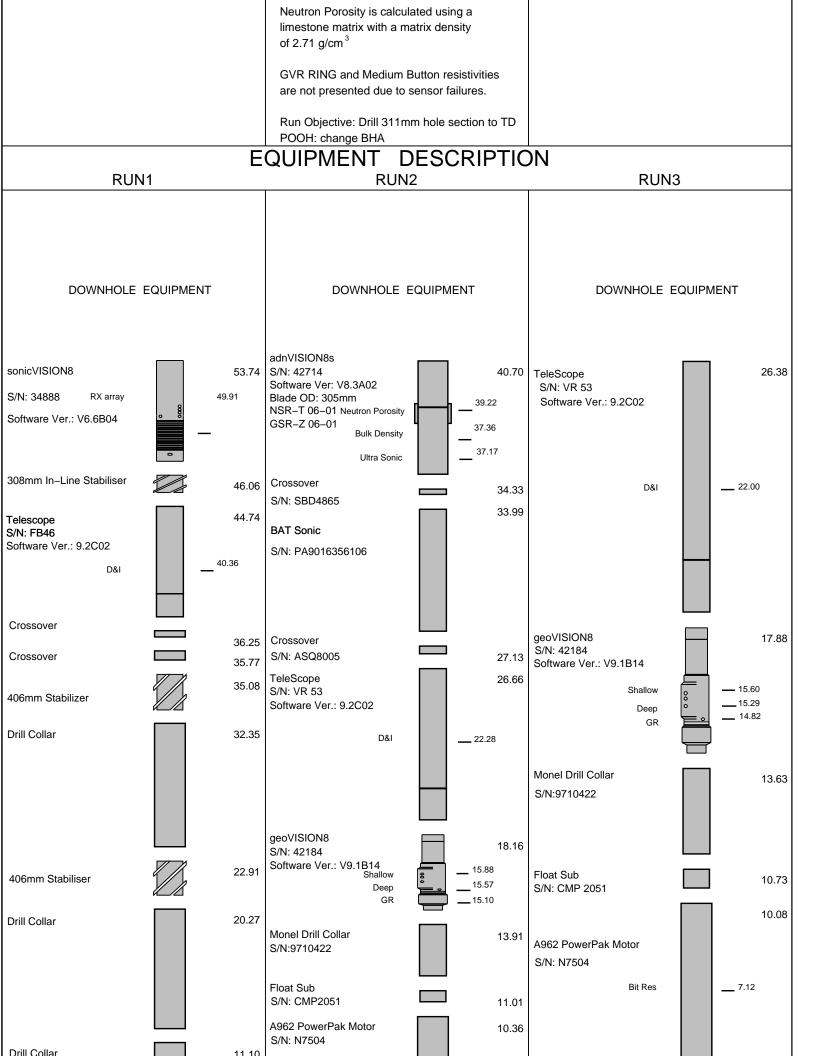
No Borehole compensation is applied.

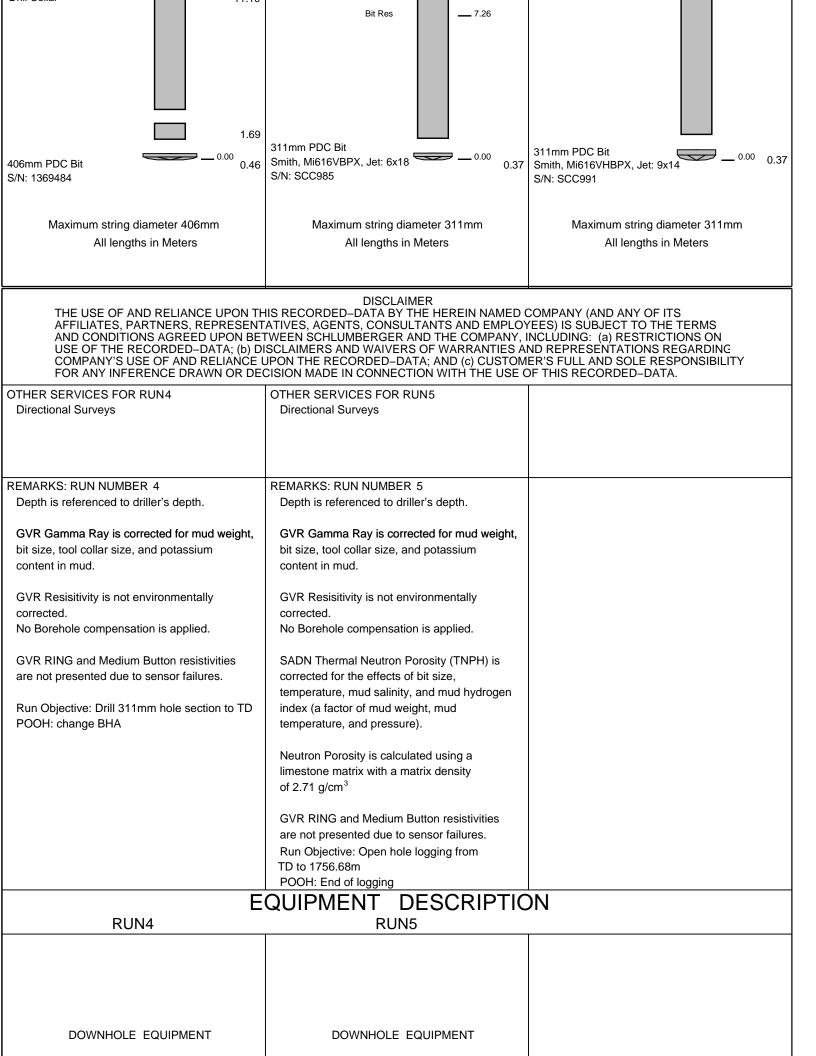
SADN Thermal Neutron Porosity (TNPH) is corrected for the effects of bit size, temperature, mud salinity, and mud hydrogen index (a factor of mud weight, mud temperature, and pressure).

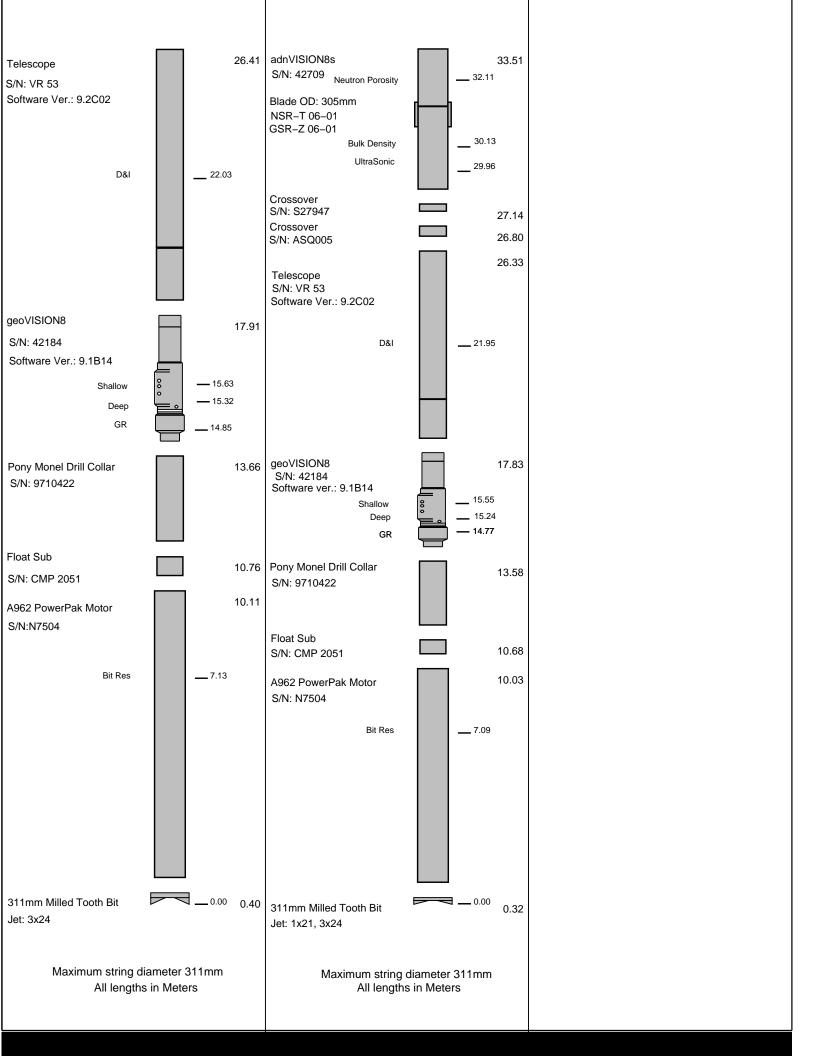
Gaps in TNPG data, from 1295m to 1750m, due to unstable detector high voltage

REMARKS: RUN NUMBER 3

Depth is referenced to driller's depth


GVR Gamma Ray is corrected for mud weight, bit size, tool collar size, and potassium content in mud.


GVR Resisitivity is not environmentally corrected.


No Borehole compensation is applied.

GVR RING and Medium Button resistivities are not presented due to sensor failures.

Run Objective: Drill 311mm hole section to TD POOH: change BHA

Bit Run Summary

Run number	1	2	3	4	5			
Bit size mm	406	311	311	311	311			·
Bit start depth m	135	862	1796	1900	2313			
Bit end depth m	862	1796	1900	2313	2313			
Top interval logged m	85.48	822.68	1777.19	1881.19	1703.89			
Bottom interval logged m	812.48	1756.68	1881.19	2294.19	2298.36			
Begin log: time	21:53	23:21	22:15	03:44	10:04			
Begin log: date	15-Feb-0	3 22-Feb-0	8 26-Feb-08	8 28-Feb-0	8 03–Mar–08	3		
End log: time	01:52	16:06	08:47	05:30	20:12			
End log: date	17-Feb-0	3 25-Feb-0	3 27-Feb-0	3 01-Mar-0	8 03-Mar-08	3		
Mud data								
Depth m	862	1796	1900	2313	2313			
Туре	Sea Water	WBM	WBM	WBM	WBM			
Mud weight ppg	8.85	9.6	9.64	10.02	10.02			
Solids %	4.7	4.1	3.9	5.1	5.1			
Chlorides mg/L	2000	48000	50000	49000	49000			
Rm ohm.m@°C	n/a	0.085@27	0.086@27	0.084@27	0.086@27			
Rmf ohm.m@°C	n/a	0.070@27	0.074@27	0.074@27	0.073@27			
Rmc ohm.m@°C	n/a	0.097@27	0.094@27	0.098@27	0.098@27			
Potassium %	n/a	4.33	4.58	4.4	4.4			
Environmental data								
GR								
Mud weight ppg	8.85	9.6	9.64	10.02	10.35			
Bit size mm	406	311	311	311	311			
Resistivity								
Neutron porosity								
Hole Size mm	406	311	311	311	311			
Mud weight ppg	8.85	9.6	9.64	10.02	10.35			
Temperature °C	24.31	55.7	58.8	65.9	59.61			
Mud salinity ppk	n/a	n/a	n/a	n/a	n/a			
Formation salinity	n/a	n/a	n/a	n/a	n/a			
Recording rate 1 SEC	5 (SON)	5 (GVR)	5 (GVR)	5 (GVR)	5 (GVR)			
Recording rate 2 SEC	n/a	5 (SADN)	n/a	n/a	5 (SADN)			
Filtering GR	3 pts	3 pts	3 pts	3 pts	3 pts			
Filtering density	3 pts	3 pts	3 pts	3 pts	3 pts			
Filtering Neutron	3 pts	3 pts	3 pts	3 pts	3 pts			
Company representative	B.Openshaw							
Anadrill personnel	A.Kohli	C.Hibberson	D.Perkins	J.Patterson	A.Vedat			

Variable Name	Variable Description	Run Name & Value	
	Run Number	2 3	
BHT_RM BSAL_RM BSAL_RM COEF_M C_WS FEXP FNUM FPHI_RM MST_RM OBMF_RM RHOF_RM RHOF_RM RHOM_RM RHOM_RM COMP_N RWA_COMP_N RWA_DEN_AD RWA_DEN_IN RWA_FORM_N	Rwa Density Input ADN Rwa Density Input CDN Rwa Density Input	DEGC 65.000 65.000 PPK 95.000 95.000 IN 12.250 12.250 1.650 1.650 1.000 1.000 2.000 2.000 1.000 1.000 XPLOT XPLOT DEGC 20.400 20.400 LB/G 9.530 9.530 NO NO G/C3 1.000 1.000 G/C3 2.710 2.710 OHMM 0.085 0.085	

TWA_INLO_IN TWA computation resistivity input	OURINA 4 000 4 000
RWS_RM Resistivity of Connate Water (RM) SHT_RM Ground Level Temperature (Mud–Line When Offshor	OHMM 1.000 1.000 re) (RM) DEGC 15.000 15.000
TD_RM Total Measured Depth (RM)	M 1796.000 1900.000
TWS_RM Temperature of Connate Water (RM) VF ILLI Fraction of illite in shales -	DEGC 23.889 23.889 0.500 0.500
VF_KAOL Fraction of kaolinite in shales	0.500 0.500 0.500 0.500
VF_MONT Fraction of montmorillonite in shales	0.000 0.000
XPDM_RM Cross plot density porosity multiplier XPNM_RM Cross plot neutron porosity multiplier	0.675 0.675 0.325 0.325
A Niv_Niv Cross plot neutron porosity multiplier	0.323 0.323
SAD Tura Otria r	Ohaasia ADNI
ADN_CHASSIS_STR Type String ADN_COLLAR_STR Type String	Chassis ADN Collar ADN
ADN_DATA_FIX ADN: Create A Corrected ADN Time Data File	NO
ADN_DATA_LTB ADN: Create An ADN LTB Data File	NO
ADN_STAB_STR ADN Stabilizer Type String ALPHA_COMPUTE_D Perform Density Enhanced Vertical Resolution	n process ? NO
ALPHA_COMPUTE_N Perform Neutron Enhanced Vertical Resolution	on process ? ——— NO
AVE_ADN ADN/Array Channels: perform averaging(RM) : A_DHS ADN Down Hole Software Version String	YES YES
CHI_RM Caliper High limit from BS (RM)	IN 3.000
CLO_RM Caliper Low limit from BS (RM)	IN 0.000
DEVI Well Section Deviation DTIK_SEL ADN: Density Tick Channel Name	DEG 12.300 LSAZ
DTMUD Delta—T for Mud	US/F 189.320
DYN_IMG_COMPUTE Generate Dynamic Normalized Image?	NO
ENVCOR Neutron Processing: Environmental Correction? EVRL EVR Process averaging number of samples (RM)	YES 49
FAZ1_AVAIL ADN8 Neutron Far Tube 1 Available? ` ´	YES
FAZ2_AVAIL ADN8 Neutron Far Tube 2 Available?	YES
FAZ3_AVAIL ADN8 Neutron Far Tube 3 Available? FCD Future Casing (Outer) Diameter	YES IN 0.000
GCSE Generalized Caliper Selection	BS
IDQT Image Derived Quality Threshold IHVS Integrated Hole Volume Start Value(RM)	0.400 F3 0.000
IMAGE_MAX_SOA Image SOA (Quadrant) Right Scale	IN 2.500
IMAGE_MAX_SPEF Image PEF(Segment) Right Scale	6.000
IMAGE_MAX_SRHOB Image RHOB(Segment) Right Scale IMAGE_MIN_SOA Image SOA (Quadrant) Left Scale	G/C3 2.650 IN 0.000
IMAGE_MIN_SPEF Image PEF(Segment) Left Scale	2.000
IMAGE_MIN_SRHOB Image RHOB(Segment) Left Scale	G/C3 2.050
JSD_ADN ADN Acquisition start date LITHO_TYPE_ADN Lithology (RM)	G/C3 2.050 LIME
N1FTU_6_RM ADN: Neutron Bank 1 Far Tubes used :	1-2-3
N2FTU_6_RM ADN: Neutron Bank 2 Far Tubes used : NNTU 8 RM ADN: Neutron Near Tube used :	1-2-3
NNTU_8_RM ADN: Neutron Near Tube used : NTIK_SEL ADN: Neutron Tick Channel Name	1-2-3 FAZ1
RSD LWD run start date dd-mmm-yy	OHMM 0.085 0.085
RWA_COMP_MOD Rwa computation model	BASIC BASIC RHOB RHOB
RWA_DEN_ADN Rwa Density Input RWA_DEN_CDN Rwa Density Input	RHOB RHOB
RVVA_DEN_INPOT RWa Density Input	RHOB RHOB
RWA_FORM_MOD Rwa computation formation model RWA_RES_INPUT Rwa computation resistivity input	CLASTIC CLASTIC RT RT
SOCNL Standoff Distance of the CNL Tool	1.000
SSIZ_ADN ADN Stabilizer Size	IN 12.000
STOH ADN Density Top of Hole Sector (Left Boundary): TRPM_RM Average Tool Rotational Speed	SECTOR_0 RPM 20.000
USMIN_RM ADN:Minimum Ultrasonic standoff (RM)	IN 0.180
USWF_RM ADN:Process Ultrasonic Waveform? VERS ADN ADN Downhole Software Version	NO 8.300
VERS_ADN ADN Downhole Software Version WSDI Window Size of Dynamic Normalization Image	M 4.572
, , , , , , , , , , , , , , , , , , ,	
RAB RAB/BTN_SLV_SIZE/PARAMETE IN RAB: Button Sleeve Diameter	7/8 11 11
RAB/STAB_SIZE/PARAMETER RAB: Stabilizer Diameter	IN 12-12.25 12-12.25
BDBHCA RAB: Button Deep Borehole A Factor BDBHCB RAB: Button Deep Borehole B Factor	
BHA_COEF_VER RAB: BHA Coef Generator Version	2.000 2.000
BITBHCA RAB: Bit A Borehole Factor	0.095 0.095
BITBHCB RAB: Bit B Borehole Factor BIT_K_FACTOR RAB: Bit K Factor	
BMBHCA RAB: Button Medium Borehole A Factor	0.006 0.006
BMBHCB RAB: Button Medium Borehole B Factor	0.019 -0.019
BSBHCA RAB: Button Shallow Borehole A Factor BSBHCB RAB: Button Shallow Borehole B Factor	0.009 -0.009 0.036 -0.036
BUT_KIMP_A RAB: Button Impedance Coeff A	0.002 0.002
BUT_KIMP_B RAB: Button Impedance Coeff B DBUTTON_K_FACTO RAB: Button Deep K factor	0.000 0.000 0.003 0.003
DHS_VERSION RAB: DownHole Software Version	999.250 -999.250
GR_BHC_TOOLSIZE RAB: Gamma–Ray Borehole Coeff 1	8.250 8.250
HI_CSDEPTH_OUT RAB: Allow Hi_Resolution CS_DEPTH Image I HI_DLIS_OUT RAB: Allow Hi_Resolution DLIS Image Data Outpu	Data Output NO NO t NO NO
HI_RIVER_OUT RAB: Allow Hi–Resolution River for Image Data C	Output NO NO
IMAGE_MAX_GR RAB: GR Image Maximum Scale Value	GAPI 120.000 120.000 OHMM 100.000 100.000
IMAGE_MAX_RES RAB: Image Maximum Resistivity Value RAB: GR Image Minimum Scale Value	GAPI 20.000 20.000
IMAGE_MIN_RES RAB: Image Minimum Resistivity Value	OHMM 1.000 1.000
JSD_RAB RAB Acquisition start date KPER Potassium Concentration (RM)	OHMM 1.000 1.000 4.900 4.900
MAG_DECL_RAB RAB: Magnetic Declination	DEG 12.800 12.800
MAG_INCL_RAB RAB: Magnetic Dip	DEG -69.070 -69.070
MBUTTON_K_FACTO RAB: Button Medium K Factor OBM RAB: Oil base Mud	0.004 0.004 NO NO
ORIENTATION_RM Rab Image Orientation	ТОН ТОН

RABBDA0	RAB: Button Deep A0 Coeff	0.118 -0.118
RABBDA1	RAB: Button Deep A1 Coeff	0.102 0.103
RABBDA2 RABBDA3	RAB: Button Deep A2 Coeff RAB: Button Deep A3 Coeff	
RABBDA4	RAB: Button Deep A4 Coeff	0.001 -0.001
RABBDA5 RABBDMIN	RAB: Button Deep A5 Coeff RAB: Button Deep Minimum Value	0.000 0.000 0.038 0.038
RABBITA0	RAB: Bit A0 Coeff	6.244 6.097
RABBITA1 RABBITA2	RAB: Bit A1 Coeff RAB: Bit A2 Coeff	22.738 -21.924 96.737 91.069
RABBITA3	RAB: Bit A3 Coeff	161.021 -149.094
RABBITA4	RAB: Bit A4 Coeff	120.518 110.251 33.735 -30.581
RABBITA5 RABBITMIN	RAB: Bit A5 Coeff RAB: Bit Minimum Value	22.460 22.458
RABBMA0	RAB: Button Medium A0 Coeff	0.118 -0.118
RABBMA1 RABBMA2	RAB: Button Medium A1 Coeff RAB: Button Medium A2 Coeff	0.096 0.097 0.039 -0.040
RABBMA3	RAB: Button Medium A3 Coeff	0.008 0.008
RABBMA4 RABBMA5	RAB: Button Medium A4 Coeff RAB: Button Medium A5 Coeff	
RABBMMIN	RAB: Button Medium Minimum Value	0.041 0.041
RABBSA0 RABBSA1	RAB: Button Shallow A0 Coeff RAB: Button Shallow A1 Coeff	
RABBSA2	RAB: Button Shallow A2 Coeff	0.038 -0.039
RABBSA3	RAB: Button Shallow A3 Coeff	0.007 0.007
RABBSA4 RABBSA5	RAB: Button Shallow A4 Coeff RAB: Button Shallow A5 Coeff	
RABBSMIN	RAB: Button Shallow Minimum Value	0.055 0.055
RABDHS RABEC	RAB Down Hole Software RAB: Resistivity Env–Cor	4.000 4.000 YES YES
RABRNGA0	RAB: RING A0 Coeff	0.114 -0.114
RABRNGA1 RABRNGA2	RAB: RING A1 Coeff RAB: RING A2 Coeff	0.101 0.102 0.043 -0.044
RABRNGA3	RAB: RING A3 Coeff	0.009 0.009
RABRNGA4	RAB: RING A4 Coeff	0.001 -0.001
RABRNGA5 RABRNGMIN	RAB: RING A5 Coeff RAB: Ring Minimum Value	0.000 0.000 1.150 1.150
RAB_BIT_ECAL	Bit Resistivity for ECAL_RAB?	YES YES
RAB_BIT_INVERSI RAB_CALIPER_CAI	Input Bit Resistivity for Inversion? (Recomr Compute ECAL_RAB?	mended at the bit) NO NO NO NO
RAB_DATA_FIX	RAB: Create A Corrected RAB Time Data F	
RAB_DATA_LTB	RAB: Create An RAB LTB Data File	NO NO ? YES YES
RAB_DEEPBTN_EC RAB_DEEPBTN_IN		
RAB_INVERSION	Perform Rt Inversion?	NO NO
RAB_INVERSION_E RAB_INVERSION_E		
RAB_INVERSION_E	B Ending Depth of Zone10	M -304.571 -304.571
RAB_INVERSION_E RAB_INVERSION_E		M -304.571 -304.571 M -304.571 -304.571
RAB_INVERSION_E	Ending Depth of Zone4	M -304.571 -304.571
RAB_INVERSION_E		M -304.571 -304.571
RAB_INVERSION_E RAB_INVERSION_E		M –304.571 –304.571 M –304.571 –304.571
RAB_INVERSION_E	B Ending Depth of Zone8	M -304.571 -304.571
RAB_INVERSION_E RAB_INVERSION_0		M -304.571 -304.571 0.500 0.500
RAB_INVERSION_D	D RAB Deep Button Sensor Weight for Inventor	ersion[0,1] 1.000 1.000
RAB_INVERSION_E RAB_INVERSION_E		YES YES YES YES
RAB_INVERSION_C	GR Cutoff for Shale Formation	75.000 75.000
RAB_INVERSION_C RAB_INVERSION_C		
RAB_INVERSION_C		GAPI 75.000 75.000 GAPI 75.000 75.000
RAB_INVERSION_C		GAPI 75.000 75.000
RAB_INVERSION_C RAB_INVERSION_C		GAPI 75.000 75.000 GAPI 75.000 75.000
RAB_INVERSION_C	GR Cutoff in Zone6	GAPI 75.000 75.000
RAB_INVERSION_C RAB_INVERSION_C		GAPI 75.000 75.000 GAPI 75.000 75.000
RAB_INVERSION_C	GR Cutoff in Zone9	GAPI 75.000 75.000
RAB_INVERSION_N RAB_INVERSION_F		nversion[0,1] 1.000 1.000 OHMM 2.000 2.000
RAB_INVERSION_F		NO NO
RAB_INVERSION_F	RAB Ring Sensor Weight for Inversion[0,	1] 1.000 1.000
RAB_INVERSION_F RAB_INVERSION_F		NO NO YES YES
RAB_INVERSION_F	Rt to R-deepest separation penalty multi	plier[0,1] 0.500 0.500
RAB_INVERSION_F RAB_INVERSION_S		YES YES 999.250 -999.250
RAB_INVERSION_S	GR of Shale Formation	999.250 -999.250
RAB_INVERSION_S		nversion[0,1]
RAB_INVERSION_T RAB_INVERSION_V	V Formation Water Resistivity	OHMM 0.100 0.100
RAB_INVERSION_V	V Formation Water Temperature	150.000 150.000
RAB_MEDIUMBTN_ RAB_MEDIUMBTN_		
RAB_QUAD	RAB: Process Quadrant data?	YES YES
RAB_RIGMODE_EC RAB_RING_ECAL	CA Bit on Bottom? Ring Resistivity for ECAL_RAB?	YES YES YES YES
RAB_RING_INVERS	Imput RING Resistivity for Inversion?	YES YES
RAB_SHALLOWBTN RAB_SHALLOWBTN		
RAB_TAB	RAB: Compute TAB ?	YES YES
RAB_TECHLOG RAB_TEMP_SELEC	RAB: Generate Techlog?	YES YES MEASURED MEASURED
	, NAS ICHDEIGIUE SEIEGIUI	WILAGUILL WILAGUILL

```
RAB_TICKS FREADOUT_PORT_MP
                               RAB: Generate Ticks?

RAB: ROP to Bit Face Distance
RAB: Ring Borehole A Factor
RAB: Ring Borehole B Factor
RAB: Ring Impedance Coeff A
RAB: Ring Impedance Coeff B
RAB: Ring K Factor
                                                                                                                                          YES
                                                                                                                               M
                                                                                                                                     15.075
                                                                                                                                                   14.795
RINGBHCA
RINGBHCB
                                                                                                                              0.298
                                                                                                                                           0.298
                                                                                                                              -0.112
0.000
                                                                                                                                           -0.112
RING_KIMP_A
RING_KIMP_B
RING_K_FACTOR
SBUTTON_K_FACTO
                                                                                                                                               0.000
                                                                                                                                 0.000 0.00
101 0.101
                                                                                                                                              0.000
                                                                                                                              0.101
                                                                                                                                    0.005 0.0
YES YES
                                        RAB: Button Shallow K Factor
SCALE_IMĀGES
                                    RAB: Process Image Data
                           RAB: Run with Stabilizer

RAB Time-Frame File Time Offset

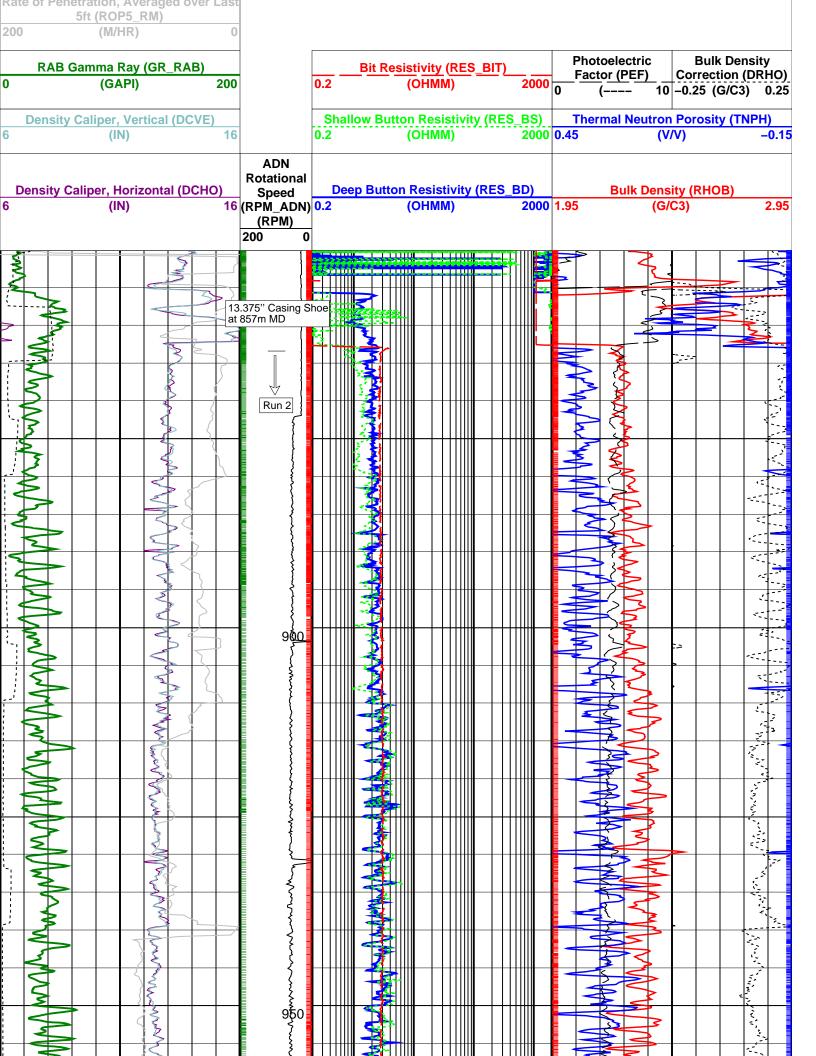
RAB: Time Frame File Name
STAB R
TFF_OFFSET_RAB
TIMEFRAME_FILE_
                                                                                                                                     YES
                                                                                                                       YES
                                                                                                                              S
                                                                                                                                    0.000 0.000
                                                                                                                            S
                                                                                                                                               0.000
                                                                                                                                  0.000
                                                                                                                            YES
TOOLTYPE
                                RAB: Azimuthal Tool
                                                                                                                                         YES
                          RAB: ToolScope Software Version
Rab Tool type (ENP/PILOT)
M RAB: Window Size for Scaling Dynamic Image
to Report Potassium Concentration (RM)
TS_VERSION
VRAB6
                                                                                                                                 -999.250 -999.250
                                                                                                                        RAB8_ENP RAB8_ENP
M 0.914 0.914
WIN_SIZE_DYN_IM
WRK to
                                                                                                                          K_by_Wgt_% K_by_Wgt_%
Schlumberger Drilling & Measurements
                                                                                     ID13 Parameter Insert Header Software version 3.0c
```

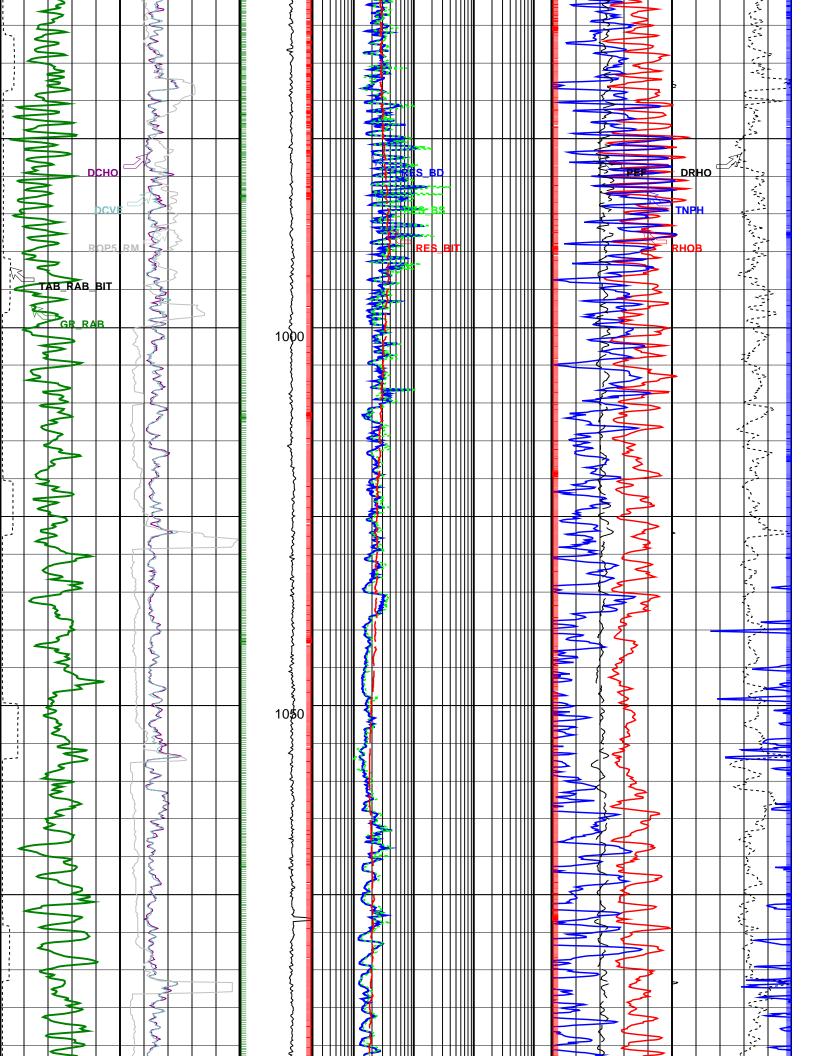
Variable Name	Variable Description	Run Name & Value
	Run Number	4 5
BHT_RM BSAL_RM BS_RM COEF_M C_WS FEXP FNUM FPHI_RM MST_RM MW_RM OBMF_RM RHOF_RM RHOM_RM RMS_RM RWA_COMP_ RWA_DEN_L RWA_DEN_L RWA_DEN_L	D Rwa Density Input ADN D Rwa Density Input CDN	DEGC 65.000 65.000 PPK 0.000 81.900 IN 12.250 12.250 1.650 1.650 1.000 1.000 2.000 2.000 1.000 1.000 XPLOT XPLOT DEGC 20.400 20.700 LB/G 9.800 10.400 NO NO G/C3 1.000 1.000 G/C3 2.710 2.710 OHMM 0.085 0.087
RWA_FORM_ RWA_RES_IN RWS_RM SHT_RM TD_RM VF_ILLI VF_KAOL VF_MONT XPDM_RM XPNM_RM	M Rwa computation formation mod	OHMM 1.000 1.000 e When Offshore) (RM) DEGC 10.000 15.000 M 2313.000 2313.000 DEGC 23.889 23.889 0.500 0.500 0.500 0.500 0.675 0.675
	RAB: Bit A Borehole Factor RAB: Bit B Borehole Factor RAB: Bit K Factor RAB: Button Medium Borehole A Factor RAB: Button Medium Borehole B Factor RAB: Button Shallow Borehole A Factor RAB: Button Shallow Borehole B Factor RAB: Button Impedance Coeff A RAB: Button Impedance Coeff B RAB: Button Impedance Coeff B RAB: Button Impedance Coeff B RAB: Button Deep K factor RAB: DownHole Software Version DLSIZE RAB: Gamma—Ray Borehole C RAB: Allow Hi—Resolution CS_ RAB: Allow Hi—Resolution River for RAB: Allow Hi—Resolution River for RAB: GR Image Maximum Resistivity RAB: GR Image Minimum Resistivity RAB: GR Image Minimum Resistivity RAB Acquisition start date Potassium Concentration (RM) RAB RAB: Magnetic Declination RAB: Magnetic Dip LFACTO RAB: Button Medium K Factor RAB: Oil base Mud	IN 12–12.25 12–12.25

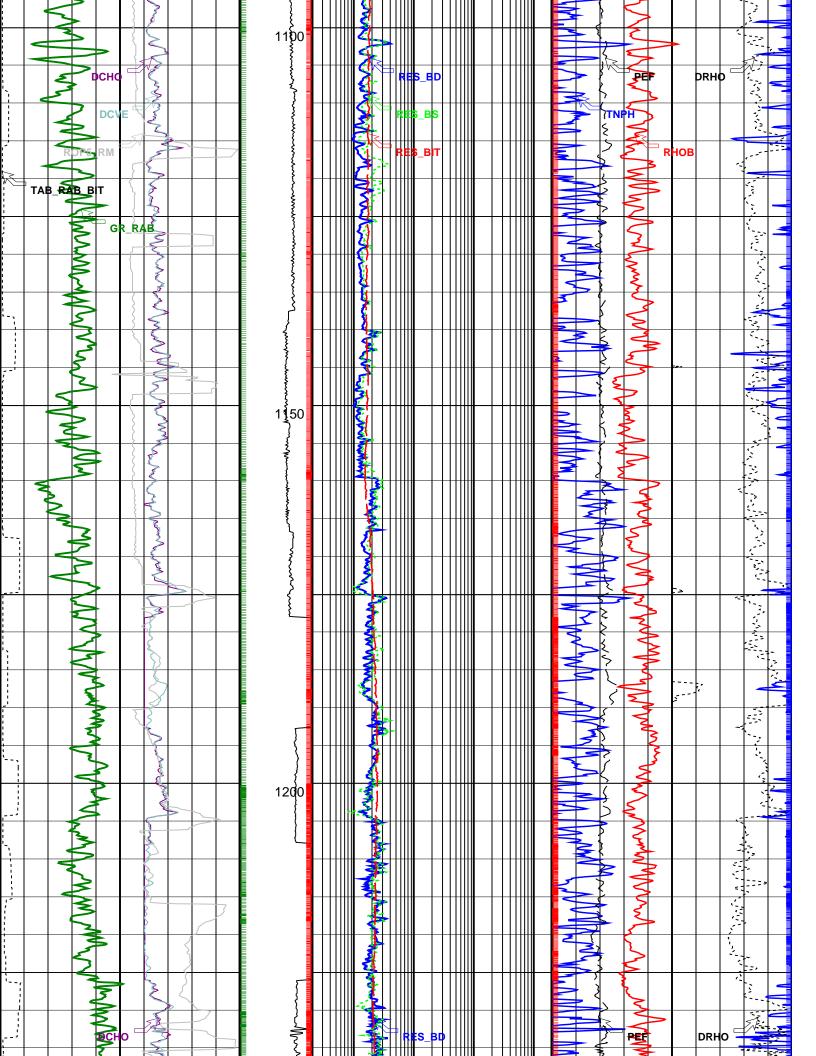
RABBDA2	RAB: Button Deep A2 Coeff	0.043 -0.043
RABBDA3	RAB: Button Deep A3 Coeff	0.009 0.009
RABBDA4	RAB: Button Deep A4 Coeff	
RABBDA5 RABBDMIN	RAB: Button Deep A5 Coeff RAB: Button Deep Minimum Value	0.000 0.000 0.038 0.038
RABBITA0	RAB: Bit A0 Coeff	6.113 6.071
RABBITA1	RAB: Bit A1 Coeff	22.012 -21.779
RABBITA2 RABBITA3	RAB: Bit A2 Coeff RAB: Bit A3 Coeff	91.677 90.057 150.372 -146.964
RABBITA4	RAB: Bit A4 Coeff	111.351 108.418
RABBITA5	RAB: Bit A5 Coeff	30.919 -30.018
RABBITMIN	RAB: Bit Minimum Value	22.459 22.458
RABBMA0 RABBMA1	RAB: Button Medium A0 Coeff RAB: Button Medium A1 Coeff	0.118 -0.118 0.096 0.097
RABBMA2	RAB: Button Medium A2 Coeff	0.040 0.040
RABBMA3	RAB: Button Medium A3 Coeff	0.008 0.008
RABBMA4	RAB: Button Medium A4 Coeff	0.001 -0.001
RABBMA5 RABBMMIN	RAB: Button Medium A5 Coeff RAB: Button Medium Minimum Value	0.000 0.000 0.041 0.041
RABBSA0	RAB: Button Shallow A0 Coeff	
RABBSA1	RAB: Button Shallow A1 Coeff	0.098 0.098
RABBSA2	RAB: Button Shallow A2 Coeff	0.039 -0.039
RABBSA3 RABBSA4	RAB: Button Shallow A3 Coeff RAB: Button Shallow A4 Coeff	0.007 0.007 0.001 -0.001
RABBSA5	RAB: Button Shallow A5 Coeff	0.000 0.000
RABBSMIN	RAB: Button Shallow Minimum Value	0.055 0.055
RABDHS	RAB Down Hole Software	4.000 4.000
RABEC RABRNGA0	RAB: Resistivity Env-Cor RAB: RING A0 Coeff	YES YES 0.114 -0.114
RABRNGA1	RAB: RING A1 Coeff	0.114 -0.114
RABRNGA2	RAB: RING A2 Coeff	0.044 -0.044
RABRNGA3	RAB: RING A3 Coeff	0.009 0.009
RABRNGA4 RABRNGA5	RAB: RING A4 Coeff RAB: RING A5 Coeff	0.001 -0.001 0.000 0.000
RABRNGMIN	RAB: Ring Minimum Value	1.150 1.150
RAB_BIT_ECAL	Bit Resistivity for ECAL_RAB?	YES YES
RAB_BIT_INVERSI		
RAB_CALIPER_CA RAB_DATA_FIX	L Compute ECAL_RAB? RAB: Create A Corrected RAB Time Date of the Computer of	ata File NO NO NO
RAB_DATA_LTB	RAB: Create An RAB LTB Data File	NO NO
RAB_DEEPBTN_EC	CA Deep Button Resistivity for ECAL_I	RAB? YES YES
RAB_DEEPBTN_IN		
RAB_INVERSION RAB_INVERSION_E	Perform Rt Inversion? B RAB Bit Sensor Weight for Inversion	NO NO [0.1] 0.000 0.000
RAB_INVERSION_E		(default through the whole well) M 30480.000 30480.000
RAB_INVERSION_E	B Ending Depth of Zone10	M -304.571 -304.571
RAB_INVERSION_E		M -304.571 -304.571
RAB_INVERSION_E RAB_INVERSION_E		M –304.571 –304.571 M –304.571 –304.571
RAB INVERSION E		M -304.571 -304.571 M -304.571 -304.571
RAB_INVERSION_E		M -304.571 -304.571
RAB_INVERSION_E		M -304.571 -304.571
RAB_INVERSION_E RAB_INVERSION_E		M –304.571 –304.571 M –304.571 –304.571
RAB_INVERSION_C	C Continuity Multiplier[0,1]	0.500 0.500
RAB_INVERSION_I		Inversion[0,1] 1.000 1.000
RAB_INVERSION_I	D RAB inversion for Dh?	YES YES
RAB_INVERSION_I RAB_INVERSION_0		YES YES 75.000 75.000
RAB_INVERSION_O	G GR Cutoff for Shale Formation in Zo	ne1(default through the whole well) GAPI 75.000 75.000
RAB_INVERSION_0	G GR Cutoff in Zone10	GAPI 75.000 75.000
RAB_INVERSION_0		GAPI 75.000 75.000
RAB_INVERSION_(G GR Cutoff in Zone3	GAPI 75.000 75.000
RAB_INVERSION_(RAB_INVERSION_(GAPI 75.000 75.000 GAPI 75.000 75.000
RAB_INVERSION_0		GAPI 75.000 75.000
RAB_INVERSION_0		GAPI 75.000 75.000
RAB_INVERSION_(RAB_INVERSION_(GAPI 75.000 75.000 GAPI 75.000 75.000
RAB_INVERSION_N		for Inversion[0,1] 1.000 1.000
RAB_INVERSION_F	R Resistivity Cutoff for Shale Formatio	n OHMM 2.000 2.000
RAB_INVERSION_F		NO NO
RAB_INVERSION_F RAB_INVERSION_F		on[0,1]
RAB_INVERSION_F	R RAB inversion for Rt?	YES YES
RAB_INVERSION_F	R Rt to R-deepest separation penalty	multiplier[0,1] 0.500 0.500
RAB_INVERSION_F		YES YES 999.250 -999.250
RAB_INVERSION_S RAB_INVERSION_S		999.250 -999.250 999.250 -999.250
RAB_INVERSION_S		
RAB_INVERSION_7	T Inversion Threshold[0, 0.3]	0.010 0.010
RAB_INVERSION_\ RAB_INVERSION_\		OHMM 0.100 0.100 150.000 150.000
RAB_INVERSION_V		100.000
RAB_MEDIUMBTN		nversion? YES YES
RAB_QUAD	RAB: Process Quadrant data?	YES YES
RAB_RIGMODE_EC	CA Bit on Bottom?	YES YES
RAB_RING_ECĀL RAB_RING_INVERS	Ring Resistivity for ECAL_RAB? S Imput RING Resistivity for Inversion	YES YES ? YES YES
RAB_SHALLOWBTI	N_ Shallow Button Resistivity for ECA	
RAB_SHALLOWBTI	N Input Shallow Button Resistivity for	Inversion? YES YES
RAB_TAB RAB_TECHLOG	RAB: Compute TAB?	YES YES YES YES
RAB_TECHLOG RAB_TEMP_SELEC	RAB: Generate Techlog ? CT RAB Temperature Selection	YES YES MEASURED MEASURED
RAB_TICKS	RAB: Generate Ticks?	YES YES
READOUT PORT I	MP RAB: ROP to Bit Face Distance	M 14.825 14.745

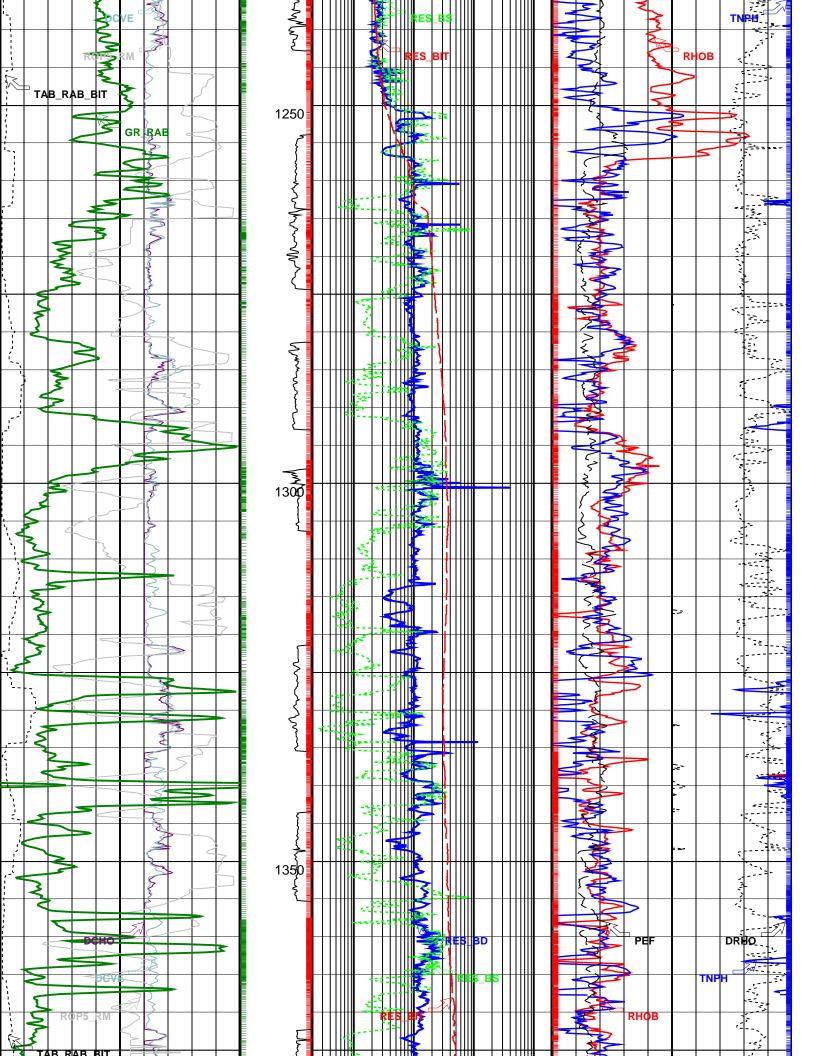
```
RINGBHCĀ
                           RAB: Ring Borehole A Factor
RAB: Ring Borehole B Factor
RAB: Ring Impedance Coeff A
RAB: Ring Impedance Coeff B
RAB: Ring K Factor
                                                                                                           0.298
                                                                                                                       0.298
RINGBHCB
                                                                                                           -0.112
                                                                                                                       -0.112
RING_KIMP_A
RING_KIMP_B
                                                                                                              0.000
                                                                                                                         0.000
                                                                                                              0.000
                                                                                                                         0.000
RING_K_FACTOR
                                                                                                           0.101
                                                                                                                      0.101
                       LWD run start date dd-mmm-yy
RSD
                                                                                               OHMM
                                                                                                            0.085
                                                                                                                       0.087
RWA_COMP_MOD
RWA_DEN_ADN
                                  Rwa computation model
                                                                                                                BASIC
                                Rwa Density Input
                                                                                                           RHOB
                                                                                                                        RHOB
RWA_DEN_CDN
                                Rwa Density Input
                                                                                                           RHOB
                                                                                                                        RHOB
RWA_DEN_INPUT
RWA_FORM_MOD
RWA_RES_INPUT
SBUTTON_K_FACTO
                                 Rwa Density Input
                                                                                                           RHOB
                                                                                                                        RHOB
                                  Rwa computation formation model
                                                                                                                                CLASTIC
                                                                                                                   CLASTIC
                                                                                                                           RT
                                Rwa computation resistivity input RAB: Button Shallow K Factor
                                                                                                                  RT
                                                                                                                  0.005
                                                                                                                             0.005
SCALE_IMĀGES
                               RAB: Process Image Data
                                                                                                                           YES
                                                                                                                YES
                       RAB: Run with Stabilizer
                                                                                                     YES
                                                                                                                 YES
TFF_OFFSET_RAB
                                 RAB Time-Frame File Time Offset
                                                                                                           S
                                                                                                                  0.000
TIMEFRAME_FILE_
                                 RAB: Time Frame File Name
                                                                                                                          0.000
                                                                                                               0.000
TOOLTYPE
                            RAB: Azimuthal Tool
                                                                                                         YES
                                                                                                                    YES
                        RAB: ToolScope Software Version
Rab Tool type (ENP/PILOT)
TS_VERSION
VRAB6
                                                                                                                0.000
                                                                                                                          0.000
                                                                                                     RAB8_ENP RAB8_ENP
WIN_SIZE_DYN_IM
                                                                                                                 M
                                RAB: Window Size for Scaling Dynamic Image
                                                                                                                       0.914
WRK
                       to Report Potassium Concentration (RM)
                                                                                                         K_by_Wgt_% K_by_Wgt_%
ADN_CHASSIS_STR
ADN_COLLAR_STR
ADN_DATA_FIX
                                  Type String
                                                                                                                   ADN
                                                                                                    Chassis
                              Type String
ADN: Create A Corrected ADN Time Data File
ADN: Create An ADN LTB Data File
                                                                                                                 ADN
                                                                                                    Collar
                                                                                                                                 NO
ADN_DATA_LTB
ADN_STAB_STR
                                                                                                                             NO
                                                                                                                       NO
                                ADN Stabilizer Type String
ALPHA_COMPUTE_D
                                   Perform Density Enhanced Vertical Resolution process?
                                                                                                                                          NO
ALPHA_COMPUTE_N
AVE_ADN
                                   Perform Neutron Enhanced Vertical Resolution process?
                                                                                                                                           NO
                        ADN/Array Channels: perform averaging(RM):
ADN Down Hole Software Version String
Caliper High limit from BS (RM)
Caliper Low limit from BS (RM)
                                                                                                                             YES
A_DHS
CHI_RM
                                                                                                                        YES
                                                                                                       IN
                                                                                                              3.000
CLO_RM
                                                                                                         IN
                                                                                                               0.000
                       Well Section Deviation
DEVI
                                                                                                DEG
                                                                                                          14.100
                          ADN: Density Tick Channel Name
DTIK_SEL
                                                                                                                      LSAZ
DTMŪD
                         Delta-T for Mud
                                                                                                US/F
                                                                                                       167.540
DYN_IMG_COMPUTE
                                   Generate Dynamic Normalized Image?
                          Neutron Processing: Environmental Correction?
ENVCOR
                                                                                                                            YES
                       EVR Process averaging number of samples (RM)
ADN8 Neutron Far Tube 1 Available?
ADN8 Neutron Far Tube 2 Available?
ADN8 Neutron Far Tube 3 Available?
EVRL
                                                                                                                             49
FAZ1_AVAIL
FAZ2_AVAIL
                                                                                                                          YES
                                                                                                                          YES
FAZ3_AVAIL
                       Future Casing (Outer) Diameter
Generalized Caliper Selection
FCD
                                                                                                             0.000
GCSE
                                                                                                                 BS
                      Image Derived Quality Threshold
Integrated Hole Volume Start Value(RM)
Image SOA (Quadrant) Right Scale
Image PEF(Segment) Right Scale
Image RHOB(Segment) Right Scale
IDQT
                                                                                                                0.400
IHVS
                                                                                                                  0.000
IMAGE_MAX_SOA
IMAGE_MAX_SPEF
                                                                                                                          2.500
                                                                                                                   IN
                                                                                                                            6.000
IMAGE_MAX_SRHOB
IMAGE_MIN_SOA
IMAGE_MIN_SPEF
IMAGE_MIN_SRHOB
                                                                                                                      G/C3
                                                                                                                                2.650
                          Image SOA (Quadrant) Left Scale
Image PEF(Segment) Left Scale
Image RHOB(Segment) Left Scale
ADN Acquisition start date
                                                                                                                        0.000
                                                                                                                           2.000
                                                                                                                   G/C3
JSD_ADN
                                                                                                     G/C3
                                                                                                               2.050
LITHO_TYPE_ADN
N1FTU_6_RM
                                 Lithology (RM)
                                                                                                                 LIME
                             ADN: Neutron Bank 1 Far Tubes used :
                                                                                                                          1-2-3
N2FTU_6_RM
                             ADN: Neutron Bank 2 Far Tubes used:
                                                                                                                          1-2-3
                                                                                                                       1-2-3
NNTU_8_RM
                             ADN: Neutron Near Tube used:
NTIK_SEL
                          ADN: Neutron Tick Channel Name
                                                                                                                       FAZ1
                         Standoff Distance of the CNL Tool
SOCNL
                                                                                                                  1.000
SSIZ_ADN
                          ADN Stabilizer Size
                                                                                                          12.000
                        ADN Density Top of Hole Sector (Left Boundary):
Average Tool Rotational Speed
ADN:Minimum Ultrasonic standoff (RM)
                                                                                                                      SECTOR_0
STOH
TRPM RM
                                                                                                                    20.000
USMIN_RM
USWF_RM
VERS_ADN
                                                                                                                IN
                                                                                                                       0.180
                            ADN:Process Ultrasonic Waveform?
                                                                                                                          YES
                            ADN Downhole Software Version
                                                                                                                       8.300
WSDI
                       Window Size of Dynamic Normalization Image
                                                                                                                       4.572
Schlumberger Drilling & Measurements
                                                                         ID13 Parameter Insert Header Software version 3.0c
```

Wasabi-1 VISION 1:500MD Main Log

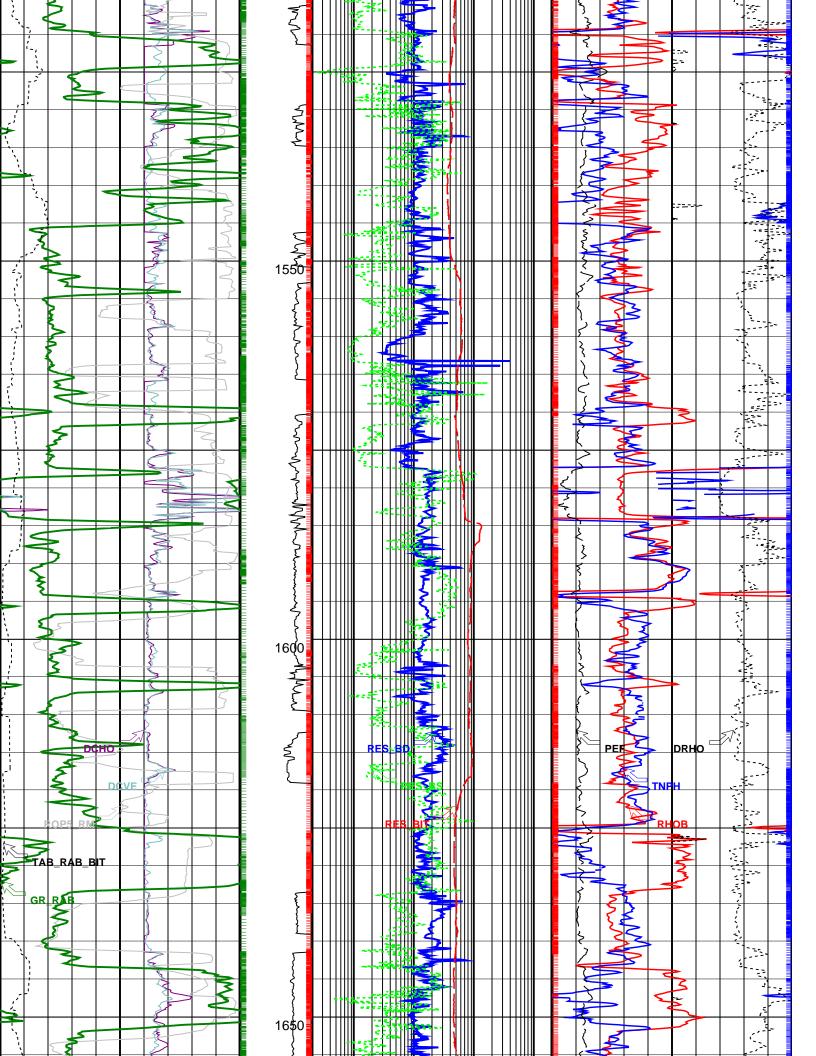

Format: Wasabi-1 GVR ADN 500MD Vertical Scale: 1:500 Graphics File Created: 08-Jun-2008 15:55

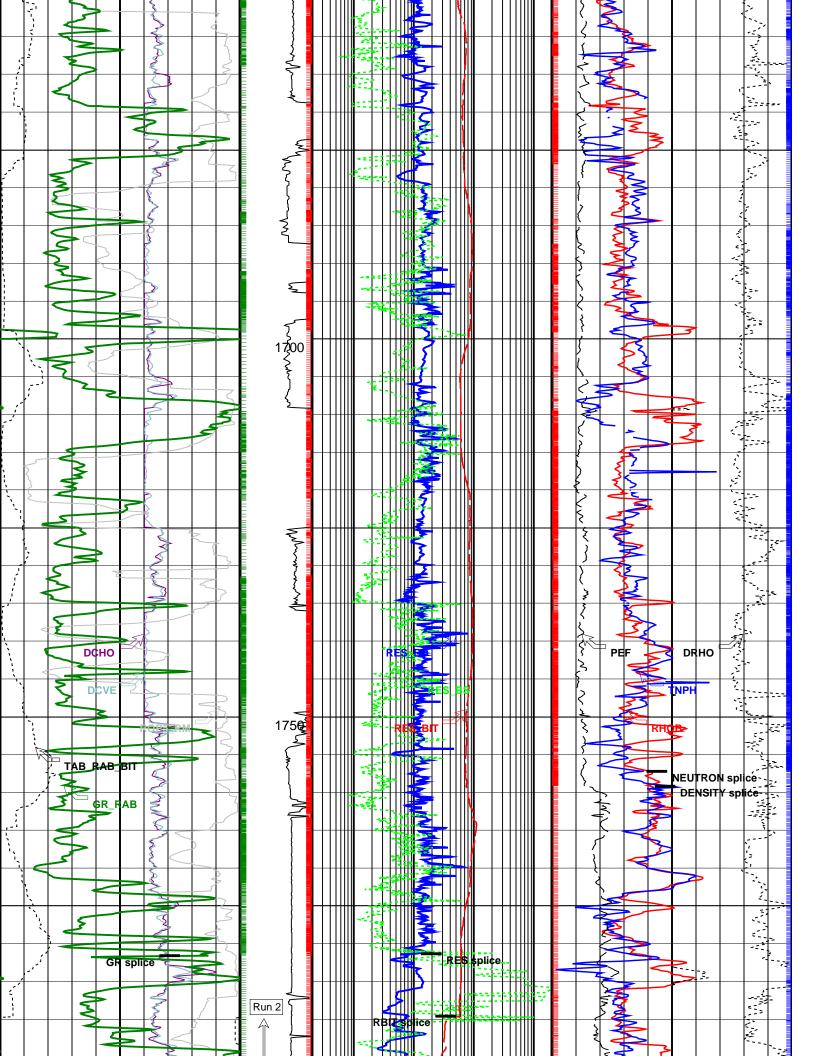

PIP SUMMARY

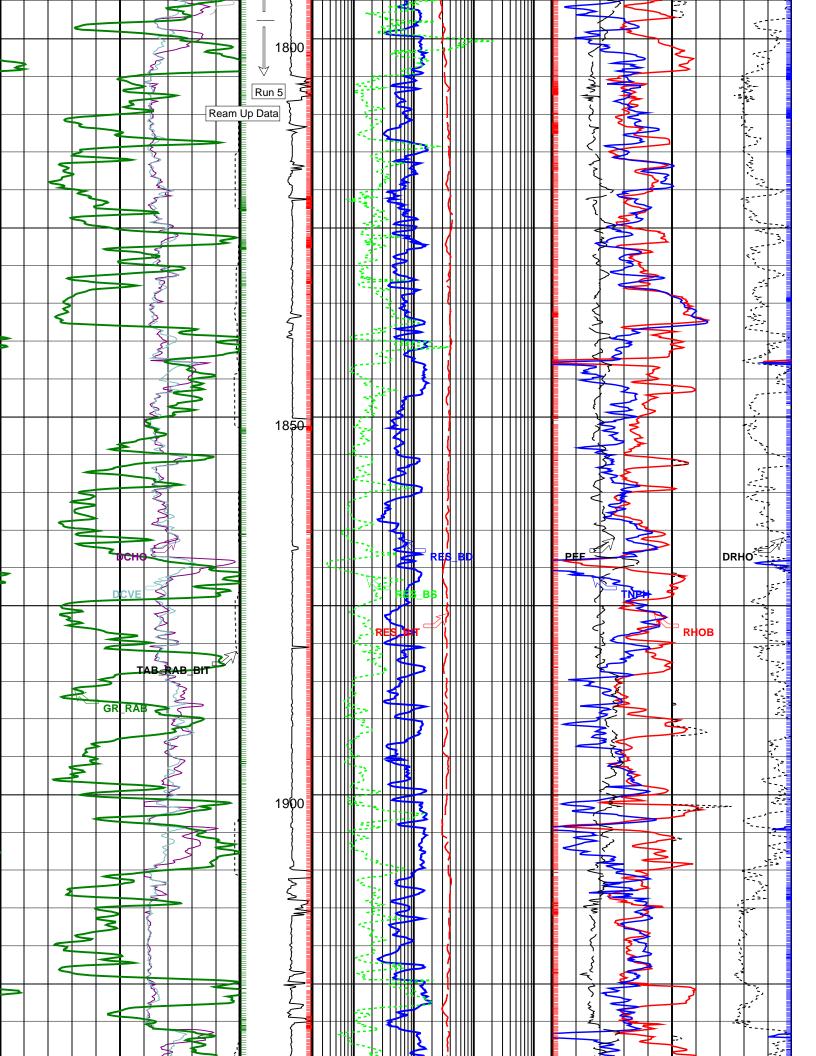

Density Ticks, 0.1 ft ⊢

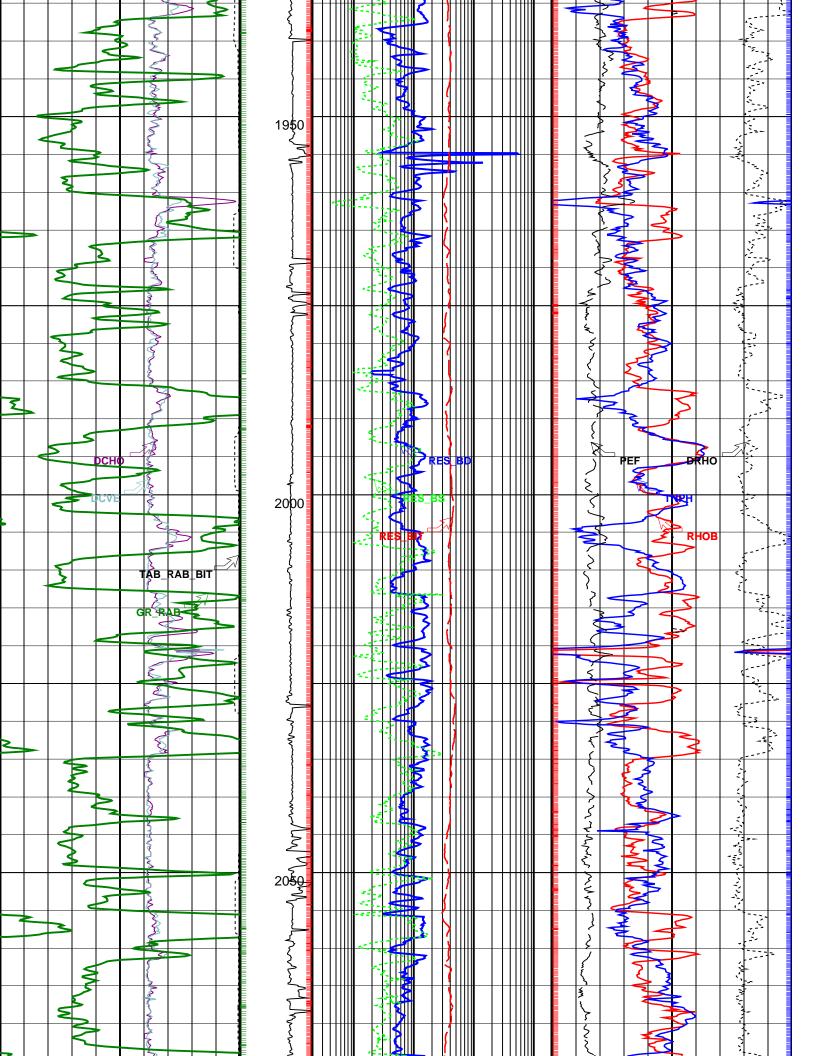

Neutron Ticks, 0.1 ft

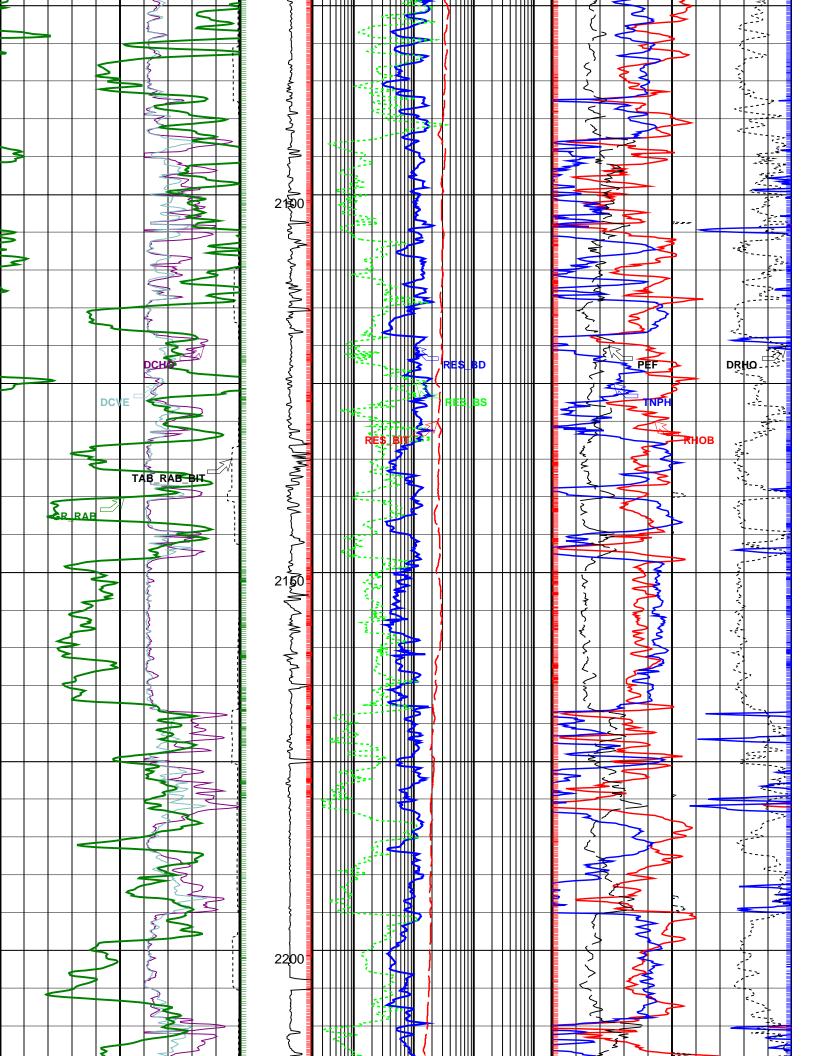
Gamma Ray Samples
 → GVR Resistivity Samples

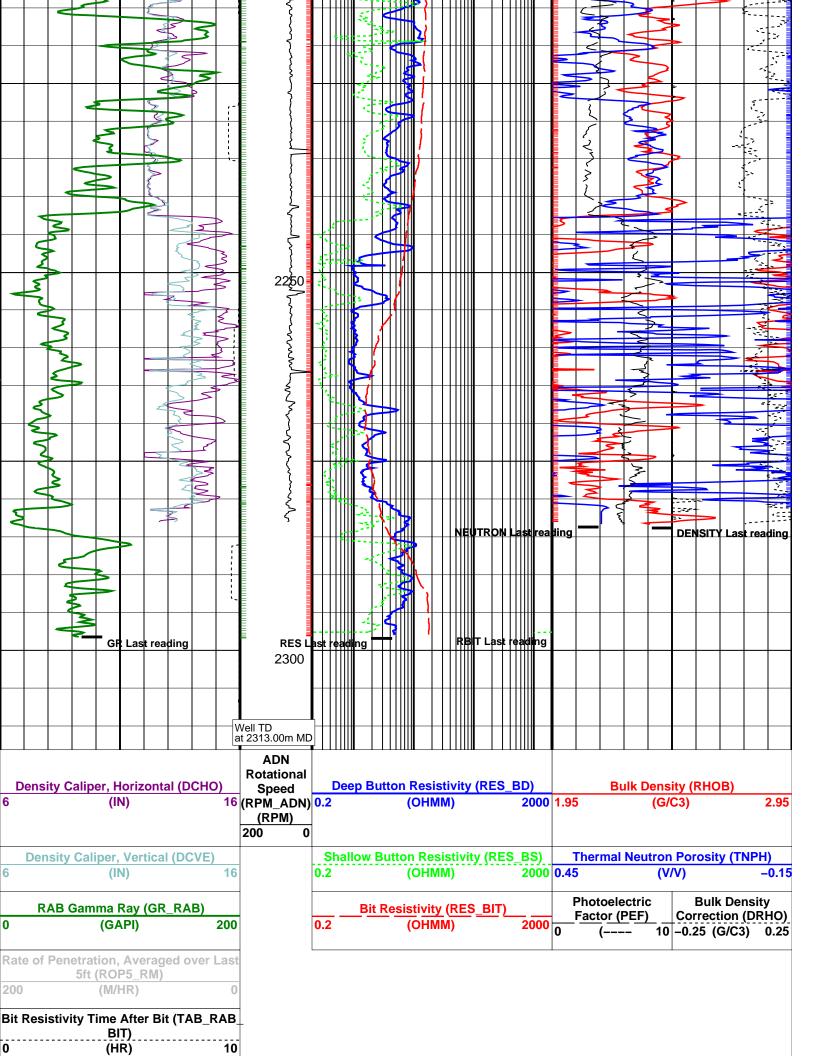


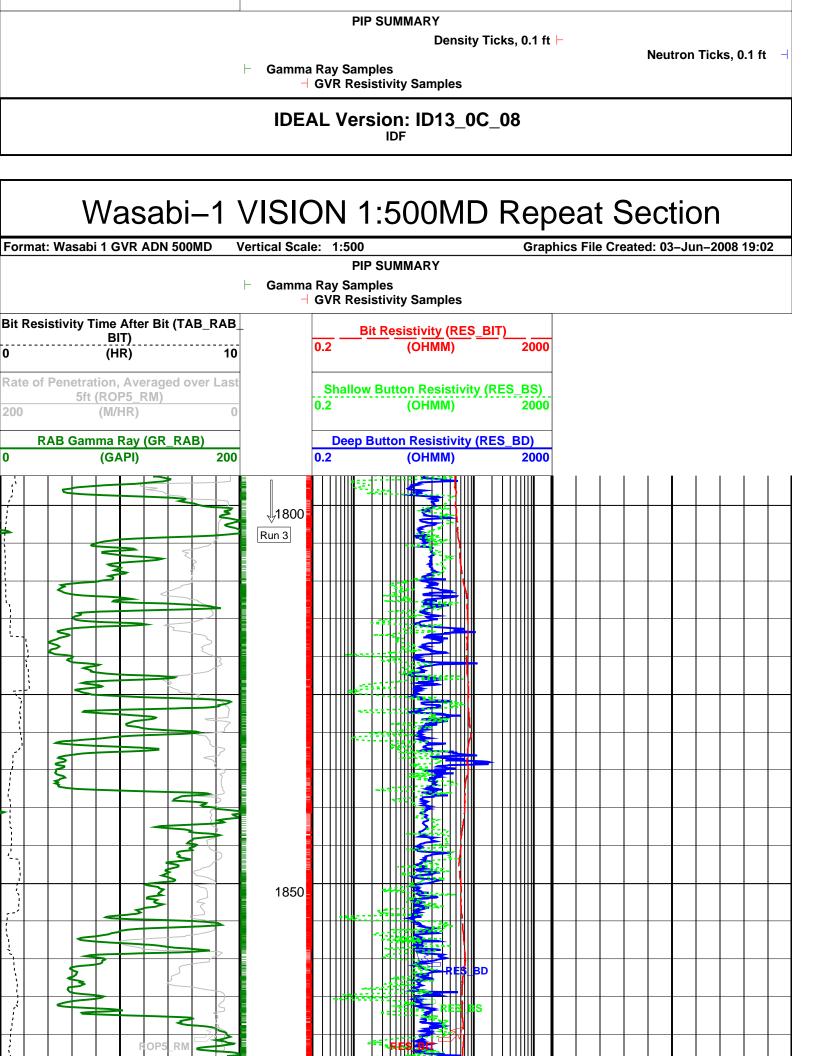


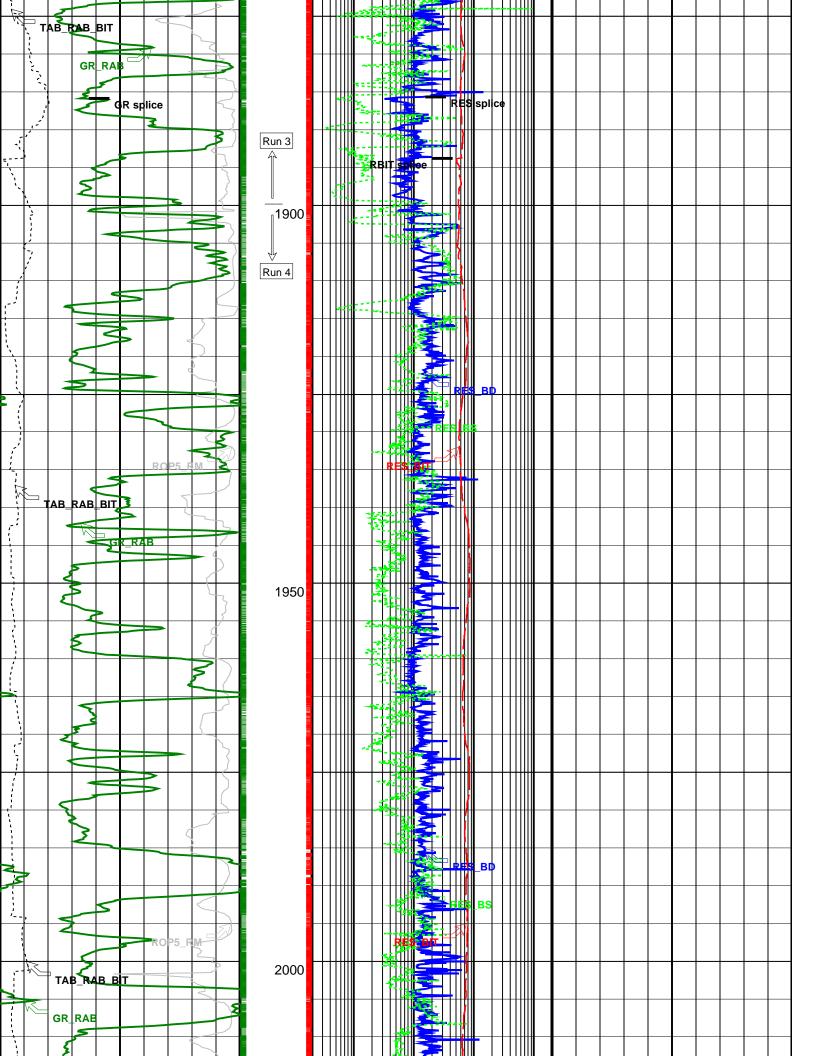


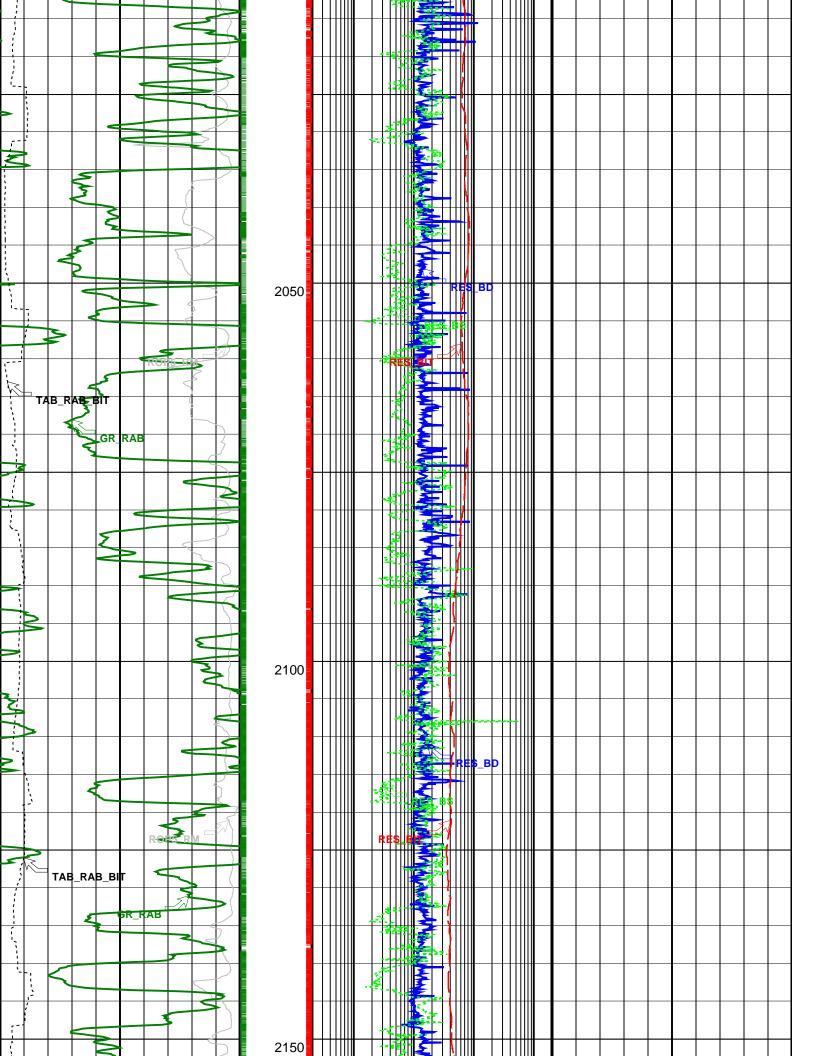


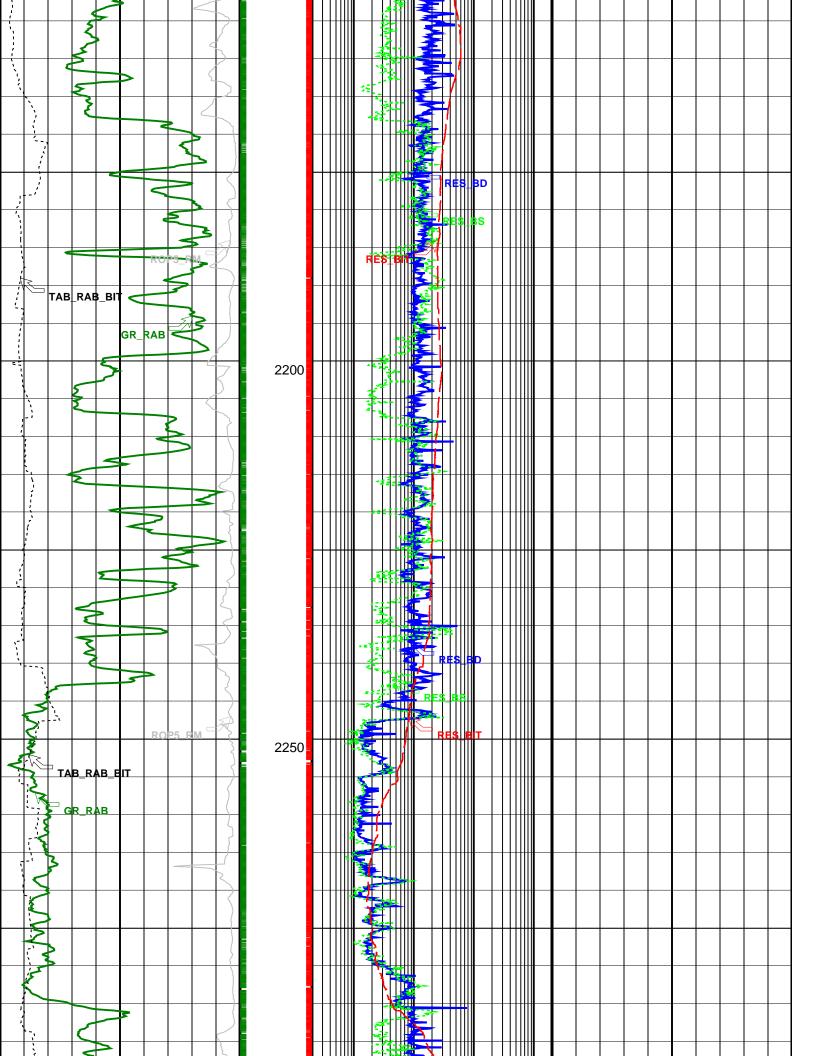


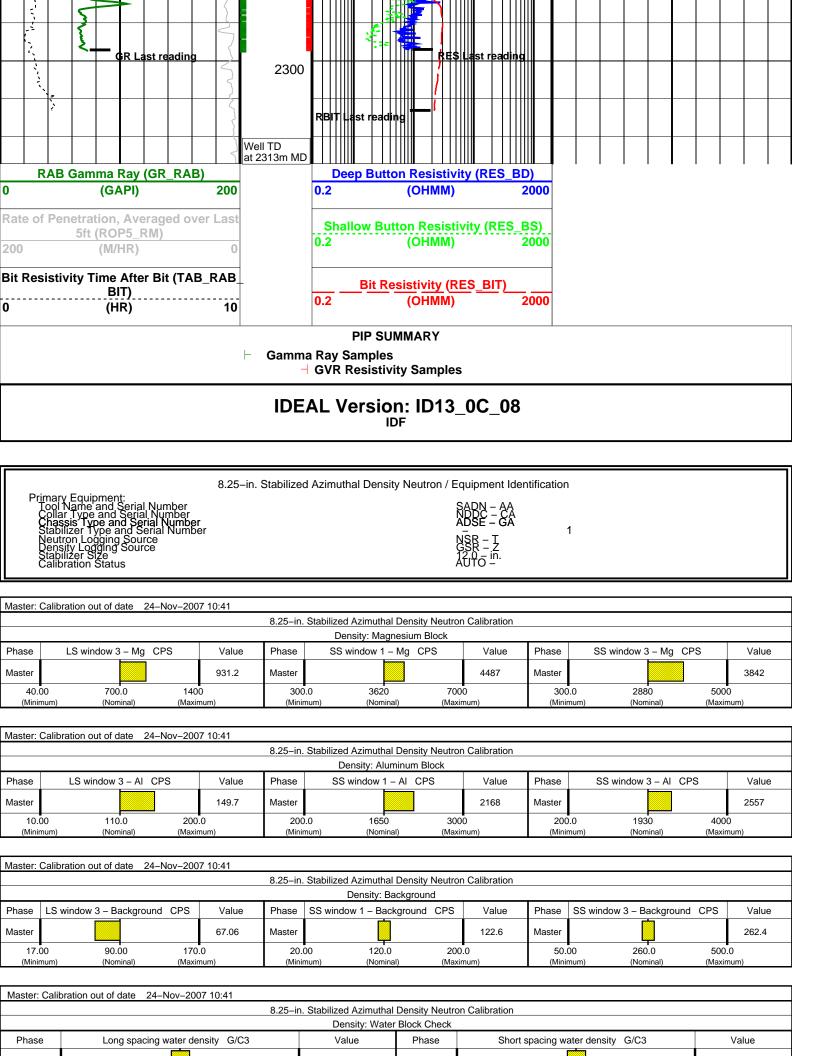


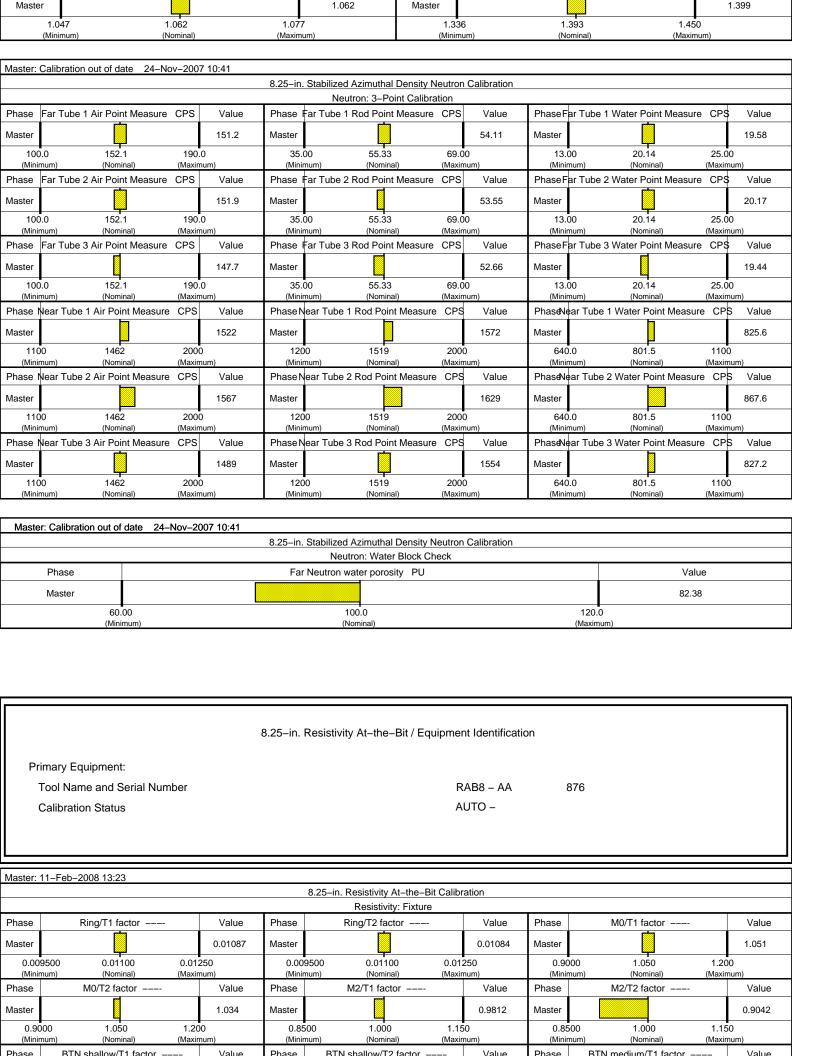












1 Hado	DTT GHAHOW TT	aotoi	Value	1 11000	5111	orianow 12 lactor		varao	1 11000		T modium, i i idoloi		Value
Master			0.0006620	Master				0.0006620	Master				0.0006630
0.000 (Minir	0.000670 num) (Nominal)		07700 mum)	0.000 (Minir	05700 num)	0.0006700 (Nominal)	0.000 (Maxin		0.000 (Minir	05700 num)	0.0006700 (Nominal)	0.000 (Maxir	
Phase	BTN medium/T2 f	actor	Value	Phase	BTN	N deep/T1 factor -		Value	Phase	В	TN deep/T2 factor -		Value
Master			0.0006620	Master				0.0006580	Master		.		0.0006550
0.000 (Minin	0.000670 num) (Nominal)		07700 mum)	0.000 (Minir	05700 num)	0.0006700 (Nominal)	0.000 (Maxin		0.000 (Minir	05700 num)	0.0006700 (Nominal)	0.000 (Maxir	

Master: 11-Feb-2008 10	:38					
	8.25-in. Res	istivity At-the-Bit Calibration				
	Gar	nma Ray: Blanket				
Phase	Gamma ray	factor	Value			
Master			8.700			
6.5	00 8.00	0 9.50	0			
(Minimum) (Nominal) (Maximum)						

	SCHLUMBERGER							
	Survey report	4-3	Jun-2008	06:02:55	Pa	ge 1	of 3	
Client Apache Energy Ltd. Field Vic-P58								
Well: Wasabi-1 API number: 07ASQ0028 Engineer: A.Kholi, C.Hibbers COUNTRY: Australia STATE: Victoria	on, D.Perkins	Last surv Total acc MD of fir	e yey date. cepted sur rst survey st survey	rveys y	: 01-Mar- : 51 : 0.0	08 0 m		
Survey calculation methods Method for positions: Minimum curvature Method for DLS Mason & Taylor Depth reference		Magnetic Magnetic Magnetic Magnetic Magnetic Magnetic Magnetic MWI Reference Reference Tolerance	omagnetic model date field st dec (+E/1 dip O survey I e G E H D pip E of G E of H	rengthW-)	: BGGM ve : 15-Feb- : 1202 : 12 : -69 e Criteri : 1000 : 1202 : -69 : (+/-) 2	rsion 2 2008 .69 HCN .80 deg .07 deg a05 mGa .69 HCN .07 deg	2007 TT grees grees L il TT grees	
Platform reference pointLatitude (+N/S-): 0.00 m Departure (+E/W-): 0.00 m Azimuth from Vsect Origin to target: 322.47		Magnetic Grid conv Total az (Total Survey Co I=Sag M=Schi S=Shel F=Fail	rections dec (+E/I vergence corr (+E, az corr: correction Correcte lumberger ll Magnet: led Axis (hetic Reso	W-) (+E/W-). /W-) = magnet Type d Inclin Magneti ic Corre Correcti	: 12 : -0 : 12 ic dec - .: ation c Correct ction on	.80 deg .16 deg .96 deg grid co	rees rees rees	
[(c)2008 TDEAL TD13 OC 08]		D=Dmag	g Magnetio			CCIOII		
[(c)2008 IDEAL ID13_0C_08] SCHLUMBERGER Survey Report	4-J	D=Dmag un-2008 06	g Magnetio				3	
SCHLUMBERGER Survey Report === ====== ===== ==== ==== ==== Seq Measured Incl Azimuth Course T # depth angle angle length de - (m) (deg) (deg) (m) (m	VD Vertical section (m)	Tun-2008 06 ======= Displ +N/S- (m)	g Magnetion 5:02:55 ====== Displ +E/W- (m)	 Total displ (m)	Page ====== At Azim (deg)	2 of ===== DLS (deg/ 10m)	==== Srvy tool type	Tool Corr (deg)
SCHLUMBERGER Survey Report Seq Measured Incl Azimuth Course T depth angle angle length de (deg) (deg) (m) (m 1 0.00 0.00 0.00 0.00 0.00 2 115.45 0.14 336.08 115.45 115 3 142.86 0.18 296.21 27.41 142 4 170.39 0.09 303.79 27.53 170	VD Vertical section (m) (m) 0.00 0.00 0.45 0.14 0.21	Tun-2008 06 Displ +N/S- (m) 0.00 0.13	g Magnetion 5:02:55 ====== Displ +E/W- (m)	====== Total displ (m) ====== 0.00 0.14 0.21 0.27	Page ====== At Azim (deg)	2 of ===== DLS (deg/ 10m)	Srvy tool type ==== TIP PUP PUP PUP	Tool Corr
SCHLUMBERGER Survey Report === ====== ==== ==== ==== ==== ====	VD Vertical section (m) (m) 0.00 0.14 0.21 0.27	Tun-2008 06 Displ +N/S- (m) 0.00 0.13 0.18 0.21	g Magnetion 5:02:55 ====== Displ +E/W- (m) ====== 0.00 -0.06 -0.11 -0.17	====== Total displ (m) ====== 0.00 0.14 0.21 0.27 0.27 0.23 0.43 0.43 2.51	Page At Azim (deg) 0.00 336.08 328.51 321.61	2 of ===== DLS (deg/ 10m) ===== 0.00 0.01 0.01 0.04 0.03	Srvy tool type ===== TIP PUP PUP PUP PUP PUP PUP PUP	Tool Corr (deg) ===== None None None None None None None
SCHLUMBERGER Survey Report ===	Type Vertical section (m) ==== ==============================	Tun-2008 06 ======== Displ +N/S- (m) ======= 0.00 0.13 0.18 0.21 0.21 0.19 -0.43 -0.82 -2.51	g Magnetion 5:02:55 ====== Disp1 +E/W- (m) ====== 0.00 -0.06 -0.11 -0.17 -0.17 -0.13 -0.02 -0.04 0.13	====== Total displ (m) ====== 0.00 0.14 0.21 0.27 0.27 0.23 0.43 0.82 2.51 3.34 3.68 3.92 4.21 5.04	Page At Azim (deg) 336.08 328.51 321.61 320.98 326.73 182.96 183.01 177.03	2 of ==== DLS (deg/ 10m) ==== 0.00 0.01 0.04 0.03 0.06 0.03 0.01 0.04 0.02	Srvy tool type ===== TIP PUP PUP PUP PUP PUP PUP PUP	Tool Corr (deg) ===== None None None None None None None None

21	1388.32	11.22	337.32	30.32	1386.82	17.09	13.37	-10.64	17.09	321.49	0.71	PUP	None
22	1447.39		340.87	59.07	1444.15	30.61	26.61	-15.61	30.85	329.61	0.90	PUP	None
23	1476.79	18.71	341.36	29.40	1472.17	39.04	35.03	-18.49	39.60	332.18	0.75	PUP	None
24	1506.00		336.96	29.21	1499.60	48.65	44.39	-22.08	49.57	333.56	1.08	PUP	None
25	1535.79	23.81	336.52	29.79	1527.09	59.76	54.92	-26.61	61.03	334.15	0.79	PUP	None
26	1564.88	26.29	336.35	29.09	1553.44	71.71	66.21	-31.53	73.33	334.53	0.85	PUP	None
27	1594.25	28.63	333.72	29.37	1579.50	84.93	78.48	-37.26	86.87	334.60	0.90	PUP	None
28	1624.03	29.21	334.37	29.78	1605.57	99.04	91.43	-43.56	101.27	334.53	0.22	PUP	None
29	1653.53	29.76	330.72	29.50	1631.25	113.33	104.30	-50.25	115.78	334.28	0.64	PUP	None
30	1683.37	30.78	329.89	29.84	1657.02	128.23	117.37	-57.71	130.79	333.82	0.37	PUP	None
	2008 IDEAL JMBERGER Su		_08] oort			4-J	un-2008 (06:02:55		Page	3 of	3	
===	======		======	=====	======	======	======			======	=====		=====
Seq		Incl	Azimuth		TVD	Vertical	Displ		Total	At	DLS		Tool
#	depth	angle	angle	length	depth	section	+N/S-		displ	Azim	(deg/		Corr
	(m)	(deg)	(deg)	(m)	(m)	(m)	(m)	(m)	(m)	(deg)	10m)		(deg)
31	1712.48		331.04	29.11	1681.95	143.12	130.45	-65.12		333.47	0.31		None
32	1741.60		330.46	29.12	1706.70	158.30	143.83	-72.61	161.12		0.25		None
33	1770.74		328.16	29.14	1731.33	173.76	157.22	-80.56	176.66		0.45	PUP	None
34	1801.91	32.89	325.39	31.17	1757.56	190.55	171.31	-89.79	193.41		0.49	PUP	None
35	1831.13		326.01	29.22	1781.86	206.75	184.72	-98.93		331.83	0.60	PUP	None
36	1860.48	34.24	324.51	29.35	1806.07	223.32	198.35	-108.39	226.03	331.35	0.31	PUP	None
37	1890.59	34.34	324.56	30.11	1830.95	240.28	212.16	-118.23	242.88	330.87	0.03	PUP	None
38	1919.28	39.56	321.67	28.69	1853.87	257.51	225.93	-128.59	259.97	330.35	1.92	PUP	None
39	1948.88		319.68	29.60	1876.29	276.82		-140.85	279.03	329.68	0.92	PUP	None
40	1978.21	44.07	317.65	29.33	1897.73	296.79		-154.07	298.70	328.95	0.86	PUP	None
41	2008.18	45.45	317.25	29.97	1919.01	317.81	271.44	-168.34	319.40	328.19	0.47	PUP	None
42	2037.55	46.14	317.73	29.37	1939.49	338.78		-182.56	340.11	327.54	0.26	PUP	None
43	2066.69	46.95	318.03	29.14	1959.53	359.87	302.65	-196.75	360.98	326.97	0.29	PUP	None
44	2096.38	47.60	318.28	29.69	1979.67	381.62		-211.30	382.55	326.47	0.23	PUP	None
45	2125.42	47.49	318.95	29.04	1999.28	402.99	334.97	-225.46	403.79	326.06	0.17	PUP	None
46	2155.49	47.85	318.70	30.07	2019.52	425.18	351.71	-240.10	425.85	325.68	0.13	PUP	None
47	2185.00	47.98	319.61	29.51	2039.30	447.04	368.27	-254.42	447.61	325.36	0.23	PUP	None
48	2214.22	48.00	319.92	29.22	2058.86	468.73		-268.45	469.23	325.10	0.08	PUP	None
49	2243.21	48.08	320.67	28.99	2078.24	490.27		-282.22	490.71	324.89	0.19	PUP	None
50	2272.78	47.76	323.36	29.57	2098.06	512.21		-295.72	512.63	324.77	0.68	PUP	None
50					2125.10	541.99	442.62	242.40	542.39	324.69	0.00		TO TD

Company: Apache Energy Ltd

Schlumberger

Well: Wasabi-1 Field: Vic-P58

Rig: West Triton
State: Victoria

GeoVISION Service 1:500 Measured Depth

Recorded Mode Data, Composite Log

		Depth system	Unit	Surface equipment		WBM	Sea Water	Type		311 mm	406 mm		١	Depth logged: 85 Date logged: 15	Lo	eld: cati ell:	on: any:	Vi Ba W	/est lc-P ass /asa pach	58 Stra bi–1	iit I	gy L	.td			Rig:	Field:	Well:	Company:	
		DWE & CLT	OLU-KC-0702	oment		862.00 m	135.00 m	Mud record		862.00 m		Bore hole record		85.48 m To 2298 15-Feb-08To 03-I	07ASQ0028	API serial no.	Depth reference:	Log measured from:	Permanent datum:	Runs:	Spud date:	Total depth:	Recorde	1:500 Tr	GeoVIS	West Triton	Vic-P58	Wasabi-1		
MWD	LWD	SPM	IDEAL Wis			2313.00 m	862.00 m			2313.00 m	862.00 m	5		2298.36 m Mag decl: 03–Mar–08 Mag dip:	E 522 993.588 m	N 5 739 963.350 m		ı	ı	_	12	23	Recorded Mode Data, Composite Log	1:500 True Vertical Depth	GeoVISION Service	iton	33	7	Apache Energy Ltd	
See Remarks	See Remarks	hspm13_0c_03	ID13_0c_05	Softv		0.20 deg.	0.18 deg.	Min Bo		440 mm	508 mm	5	1	sl: 12.801 deg. -69.071 deg.	m	0 m	Driller's Depth	Drill Floor	AHD	To 5	14-Feb-08	2313.00 m	ata, Com	Depth	Φ	State:			g	
narks	narks	_0c_03	_05	Software record		48.08 deg.	0.84 deg.	Borehole deviation record		101 lbm/m	193 lbm/m	Casing record	,	-	E 147° 15'	Longitude		38	<u> </u>	Ele	eva	tion	posite L							Schl
						862.00 m	135.00 m	ion record		Well Head	Well Head	ecord	-	Other services: See Remarks	E 147° 15'49.147" S 38° 29'18.157"	Latitude		38.00 m above Perm. datum	Elev.: 0.00 m	D.F. 38.00 m	G.L37.00 m	K.B. Top Drive	og			Victoria				chlumberger
						2313.00 m	862.00 m	5		857.00 m	135.00 m	5			29'18.157"	de		erm. datum		m	Ö m)rive								
		A U C	FFIL ND SE OM	LIAT CON OF PAN	ES, NDIT THE IY'S	PARTIONS RECUSE	TNE S AG ORE OF	RS, REE DED AND	REPRE D UPO DATA RELIA	ATI\ WE SCL IPO	/ES EN .AIM N TI	, AG SCH IERS HE F	ILU S A RE	D-DA NTS, (JMBE ND V CORI	CON RGI VAI\ DED	BY T ISU ER / /ER -D/	THE LTA ANE S O ATA	HE NTS TH F W ; AN	S AN IE C 'ARF ID (c	ID EOM RAN (C) C	EMF PAI ITIE US	PLO' NY, ES A TOM	YEE: INCI ND I IER':	S) IS LUDI REPI S FU	SÙBJ NG: (a RESEN LL AN	ECT a) RES NTATI D SO	TO T STRI IONS LE R	THE TE ICTION REG RESPO	ERMS NS ON ARDING DNSIBILI	
OTHER SERVICES FOR RUN1 sonicVISION Service OTHER SERVICES FOR RUN2 Directional Surveys OTHER SERVICE Directional Surveys									R RUN	13																				

REMARKS: RUN NUMBER 1 Depth is referenced to driller's depth.

SonicVISION Data is presented separately.

Run Objective: Drill 406mm hole section

POOH: Section TD

REMARKS: RUN NUMBER 2

Depth is referenced to driller's depth. GVR Gamma Ray is corrected for mud weight,

bit size, tool collar size, and potassium content in mud.

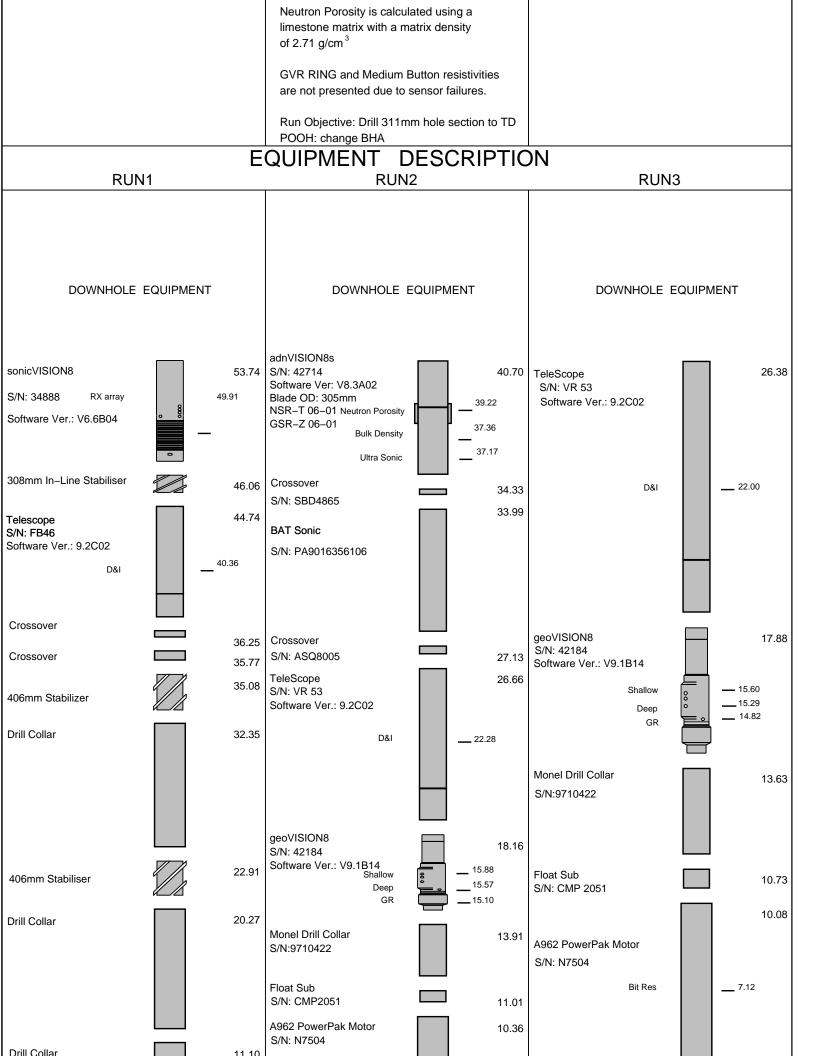
GVR Resisitivity is not environmentally corrected.

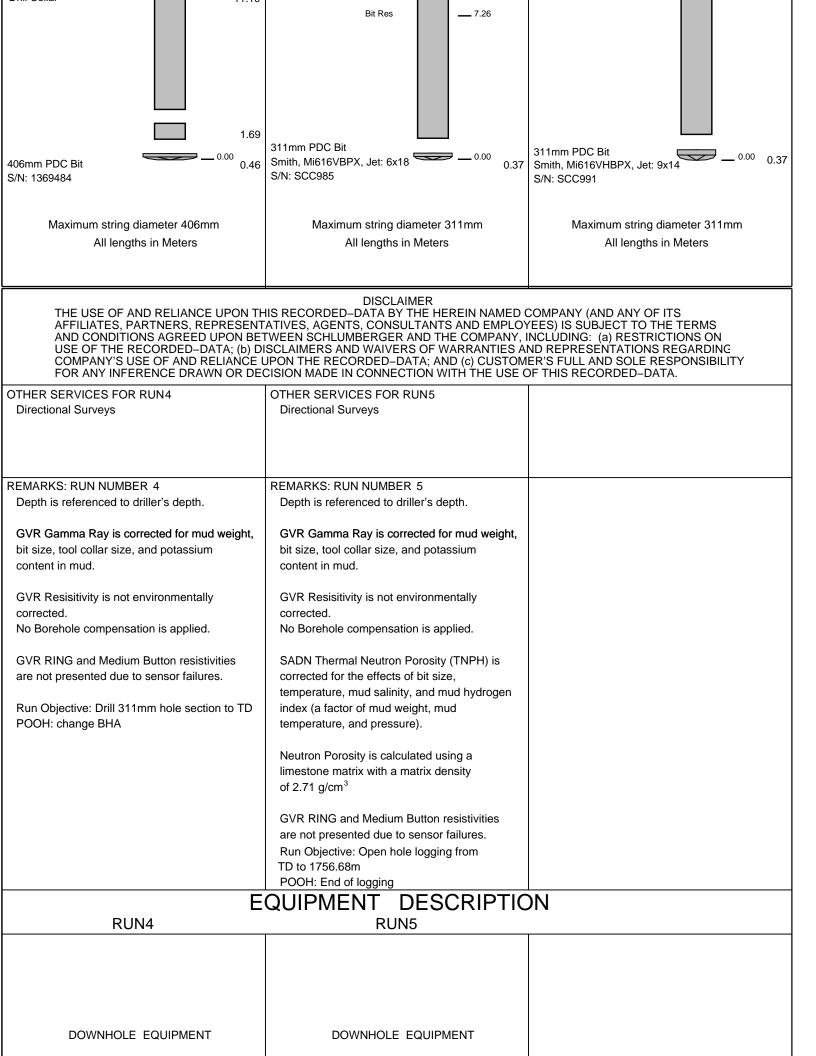
No Borehole compensation is applied.

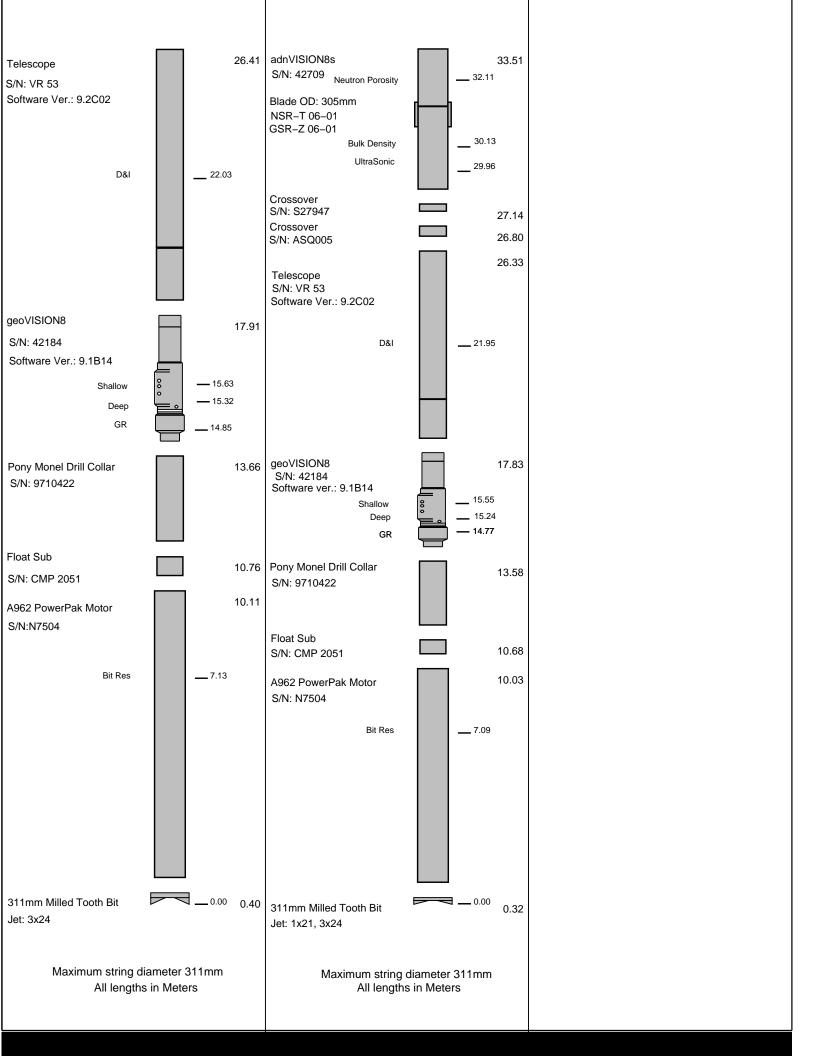
SADN Thermal Neutron Porosity (TNPH) is corrected for the effects of bit size, temperature, mud salinity, and mud hydrogen index (a factor of mud weight, mud temperature, and pressure). Gaps in TNPG data, from 1295m to 1750m, due to unstable detector high voltage

REMARKS: RUN NUMBER 3

Depth is referenced to driller's depth


GVR Gamma Ray is corrected for mud weight, bit size, tool collar size, and potassium content in mud.


GVR Resisitivity is not environmentally corrected.


No Borehole compensation is applied.

GVR RING and Medium Button resistivities are not presented due to sensor failures.

Run Objective: Drill 311mm hole section to TD POOH: change BHA

Bit Run Summary

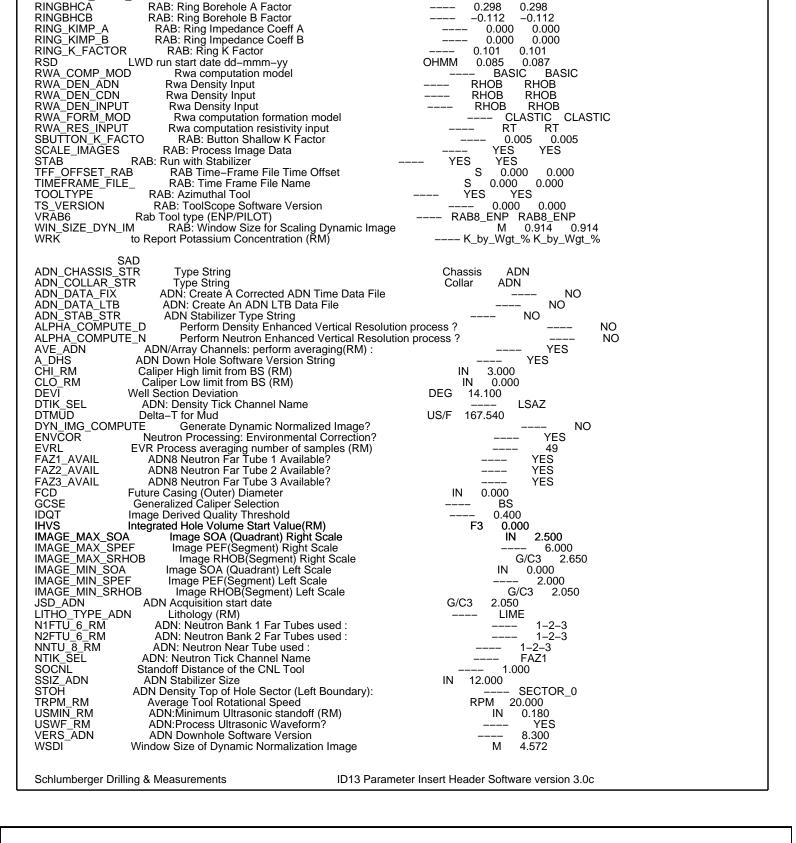
Run number	1	2	3	4	5			
Bit size mm	406	311	311	311	311			·
Bit start depth m	135	862	1796	1900	2313			
Bit end depth m	862	1796	1900	2313	2313			
Top interval logged m	85.48	822.68	1777.19	1881.19	1703.89			
Bottom interval logged m	812.48	1756.68	1881.19	2294.19	2298.36			
Begin log: time	21:53	23:21	22:15	03:44	10:04			
Begin log: date	15-Feb-0	3 22-Feb-0	8 26-Feb-08	8 28-Feb-0	8 03–Mar–08	3		
End log: time	01:52	16:06	08:47	05:30	20:12			
End log: date	17-Feb-0	3 25-Feb-0	3 27-Feb-0	3 01-Mar-0	8 03-Mar-08	3		
Mud data								
Depth m	862	1796	1900	2313	2313			
Туре	Sea Water	WBM	WBM	WBM	WBM			
Mud weight ppg	8.85	9.6	9.64	10.02	10.02			
Solids %	4.7	4.1	3.9	5.1	5.1			
Chlorides mg/L	2000	48000	50000	49000	49000			
Rm ohm.m@°C	n/a	0.085@27	0.086@27	0.084@27	0.086@27			
Rmf ohm.m@°C	n/a	0.070@27	0.074@27	0.074@27	0.073@27			
Rmc ohm.m@°C	n/a	0.097@27	0.094@27	0.098@27	0.098@27			
Potassium %	n/a	4.33	4.58	4.4	4.4			
Environmental data								
GR								
Mud weight ppg	8.85	9.6	9.64	10.02	10.35			
Bit size mm	406	311	311	311	311			
Resistivity								
Neutron porosity								
Hole Size mm	406	311	311	311	311			
Mud weight ppg	8.85	9.6	9.64	10.02	10.35			
Temperature °C	24.31	55.7	58.8	65.9	59.61			
Mud salinity ppk	n/a	n/a	n/a	n/a	n/a			
Formation salinity	n/a	n/a	n/a	n/a	n/a			
Recording rate 1 SEC	5 (SON)	5 (GVR)	5 (GVR)	5 (GVR)	5 (GVR)			
Recording rate 2 SEC	n/a	5 (SADN)	n/a	n/a	5 (SADN)			
Filtering GR	3 pts	3 pts	3 pts	3 pts	3 pts			
Filtering density	3 pts	3 pts	3 pts	3 pts	3 pts			
Filtering Neutron	3 pts	3 pts	3 pts	3 pts	3 pts			
Company representative	B.Openshaw							
Anadrill personnel	A.Kohli	C.Hibberson	D.Perkins	J.Patterson	A.Vedat			

Variable Name	Variable Description	Run Name & Value	
	Run Number	2 3	
BHT_RM BSAL_RM BSAL_RM COEF_M C_WS FEXP FNUM FPHI_RM MST_RM OBMF_RM RHOF_RM RHOF_RM RHOM_RM RHOM_RM COMP_N RWA_COMP_N RWA_DEN_AD RWA_DEN_IN RWA_FORM_N	Rwa Density Input ADN Rwa Density Input CDN Rwa Density Input	DEGC 65.000 65.000 PPK 95.000 95.000 IN 12.250 12.250 1.650 1.650 1.000 1.000 2.000 2.000 1.000 1.000 XPLOT XPLOT DEGC 20.400 20.400 LB/G 9.530 9.530 NO NO G/C3 1.000 1.000 G/C3 2.710 2.710 OHMM 0.085 0.085	

TWA_INLO_IN TWA computation resistivity input	OURINA 4 000 4 000
RWS_RM Resistivity of Connate Water (RM) SHT_RM Ground Level Temperature (Mud–Line When Offshor	OHMM 1.000 1.000 re) (RM) DEGC 15.000 15.000
TD_RM Total Measured Depth (RM)	M 1796.000 1900.000
TWS_RM Temperature of Connate Water (RM) VF ILLI Fraction of illite in shales -	DEGC 23.889 23.889 0.500 0.500
VF_KAOL Fraction of kaolinite in shales	0.500 0.500 0.500 0.500
VF_MONT Fraction of montmorillonite in shales	0.000 0.000
XPDM_RM Cross plot density porosity multiplier XPNM_RM Cross plot neutron porosity multiplier	0.675 0.675 0.325 0.325
A Niv_Niv Cross plot neutron porosity multiplier	0.323 0.323
SAD Tura Otria r	Ohaasia ADNI
ADN_CHASSIS_STR Type String ADN_COLLAR_STR Type String	Chassis ADN Collar ADN
ADN_DATA_FIX ADN: Create A Corrected ADN Time Data File	NO
ADN_DATA_LTB ADN: Create An ADN LTB Data File	NO
ADN_STAB_STR ADN Stabilizer Type String ALPHA_COMPUTE_D Perform Density Enhanced Vertical Resolution	n process ? NO
ALPHA_COMPUTE_N Perform Neutron Enhanced Vertical Resolution	on process ? NO
AVE_ADN ADN/Array Channels: perform averaging(RM) : A_DHS ADN Down Hole Software Version String	YES YES
CHI_RM Caliper High limit from BS (RM)	IN 3.000
CLO_RM Caliper Low limit from BS (RM)	IN 0.000
DEVI Well Section Deviation DTIK_SEL ADN: Density Tick Channel Name	DEG 12.300 LSAZ
DTMUD Delta—T for Mud	US/F 189.320
DYN_IMG_COMPUTE Generate Dynamic Normalized Image?	NO
ENVCOR Neutron Processing: Environmental Correction? EVRL EVR Process averaging number of samples (RM)	YES 49
FAZ1_AVAIL ADN8 Neutron Far Tube 1 Available? ` ´	YES
FAZ2_AVAIL ADN8 Neutron Far Tube 2 Available?	YES
FAZ3_AVAIL ADN8 Neutron Far Tube 3 Available? FCD Future Casing (Outer) Diameter	YES IN 0.000
GCSE Generalized Caliper Selection	BS
IDQT Image Derived Quality Threshold IHVS Integrated Hole Volume Start Value(RM)	0.400 F3 0.000
IMAGE_MAX_SOA Image SOA (Quadrant) Right Scale	IN 2.500
IMAGE_MAX_SPEF Image PEF(Segment) Right Scale	6.000
IMAGE_MAX_SRHOB Image RHOB(Segment) Right Scale IMAGE_MIN_SOA Image SOA (Quadrant) Left Scale	G/C3 2.650 IN 0.000
IMAGE_MIN_SPEF Image PEF(Segment) Left Scale	2.000
IMAGE_MIN_SRHOB Image RHOB(Segment) Left Scale	G/C3 2.050
JSD_ADN ADN Acquisition start date LITHO_TYPE_ADN Lithology (RM)	G/C3 2.050 LIME
N1FTU_6_RM ADN: Neutron Bank 1 Far Tubes used :	1-2-3
N2FTU_6_RM ADN: Neutron Bank 2 Far Tubes used : NNTU 8 RM ADN: Neutron Near Tube used :	1-2-3
NNTU_8_RM ADN: Neutron Near Tube used : NTIK_SEL ADN: Neutron Tick Channel Name	1-2-3 FAZ1
RSD LWD run start date dd-mmm-yy	OHMM 0.085 0.085
RWA_COMP_MOD Rwa computation model	BASIC BASIC RHOB RHOB
RWA_DEN_ADN Rwa Density Input RWA_DEN_CDN Rwa Density Input	RHOB RHOB
RVVA_DEN_INPOT RWa Density Input	RHOB RHOB
RWA_FORM_MOD Rwa computation formation model RWA_RES_INPUT Rwa computation resistivity input	CLASTIC CLASTIC RT RT
SOCNL Standoff Distance of the CNL Tool	1.000
SSIZ_ADN ADN Stabilizer Size	IN 12.000
STOH ADN Density Top of Hole Sector (Left Boundary): TRPM_RM Average Tool Rotational Speed	SECTOR_0 RPM 20.000
USMIN_RM ADN:Minimum Ultrasonic standoff (RM)	IN 0.180
USWF_RM ADN:Process Ultrasonic Waveform? VERS ADN ADN Downhole Software Version	NO 8.300
VERS_ADN ADN Downhole Software Version WSDI Window Size of Dynamic Normalization Image	M 4.572
,	
RAB RAB/BTN_SLV_SIZE/PARAMETE IN RAB: Button Sleeve Diameter	7/8 11 11
RAB/STAB_SIZE/PARAMETER RAB: Stabilizer Diameter	IN 12-12.25 12-12.25
BDBHCA RAB: Button Deep Borehole A Factor BDBHCB RAB: Button Deep Borehole B Factor	
BHA_COEF_VER RAB: BHA Coef Generator Version	
BITBHCA RAB: Bit A Borehole Factor	0.095 0.095
BITBHCB RAB: Bit B Borehole Factor BIT_K_FACTOR RAB: Bit K Factor	
BMBHCA RAB: Button Medium Borehole A Factor	0.006 0.006
BMBHCB RAB: Button Medium Borehole B Factor	0.019 -0.019
BSBHCA RAB: Button Shallow Borehole A Factor BSBHCB RAB: Button Shallow Borehole B Factor	0.009 -0.009 0.036 -0.036
BUT_KIMP_A RAB: Button Impedance Coeff A	0.002 0.002
BUT_KIMP_B RAB: Button Impedance Coeff B DBUTTON_K_FACTO RAB: Button Deep K factor	0.000 0.000 0.003 0.003
DHS_VERSION RAB: DownHole Software Version	999.250 -999.250
GR_BHC_TOOLSIZE RAB: Gamma–Ray Borehole Coeff 1	8.250 8.250
HI_CSDEPTH_OUT RAB: Allow Hi_Resolution CS_DEPTH Image I HI_DLIS_OUT RAB: Allow Hi_Resolution DLIS Image Data Outpu	Data Output NO NO t NO NO
HI_RIVER_OUT RAB: Allow Hi–Resolution River for Image Data C	Output NO NO
IMAGE_MAX_GR RAB: GR Image Maximum Scale Value	GAPI 120.000 120.000 OHMM 100.000 100.000
IMAGE_MAX_RES RAB: Image Maximum Resistivity Value RAB: GR Image Minimum Scale Value	GAPI 20.000 20.000
IMAGE_MIN_RES RAB: Image Minimum Resistivity Value	OHMM 1.000 1.000
JSD_RAB RAB Acquisition start date KPER Potassium Concentration (RM)	OHMM 1.000 1.000 4.900 4.900
MAG_DECL_RAB RAB: Magnetic Declination	DEG 12.800 12.800
MAG_INCL_RAB RAB: Magnetic Dip	DEG -69.070 -69.070
MBUTTON_K_FACTO RAB: Button Medium K Factor OBM RAB: Oil base Mud	0.004 0.004 NO NO
ORIENTATION_RM Rab Image Orientation	ТОН ТОН

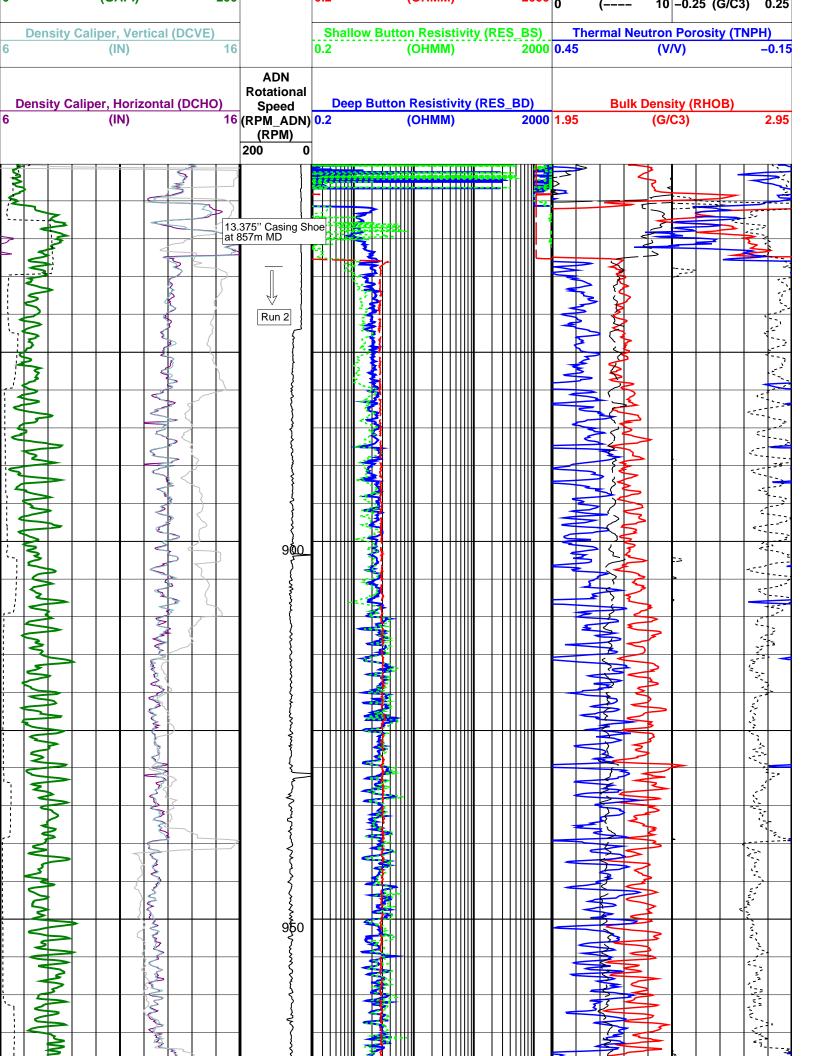
RABBDA0	RAB: Button Deep AU Coeff	0.118 -0.118
RABBDA1	RAB: Button Deep A1 Coeff	0.102 0.103
RABBDA2 RABBDA3	RAB: Button Deep A2 Coeff RAB: Button Deep A3 Coeff	
RABBDA4	RAB: Button Deep A4 Coeff	0.001 -0.001
RABBDA5 RABBDMIN	RAB: Button Deep A5 Coeff RAB: Button Deep Minimum Value	0.000 0.000 0.038 0.038
RABBITA0	RAB: Bit A0 Coeff	6.244 6.097
RABBITA1 RABBITA2	RAB: Bit A1 Coeff RAB: Bit A2 Coeff	22.738 -21.924 96.737 91.069
RABBITA3	RAB: Bit A3 Coeff	161.021 -149.094
RABBITA4	RAB: Bit A4 Coeff	120.518 110.251 33.735 -30.581
RABBITA5 RABBITMIN	RAB: Bit A5 Coeff RAB: Bit Minimum Value	22.460 22.458
RABBMA0	RAB: Button Medium A0 Coeff	0.118 -0.118
RABBMA1 RABBMA2	RAB: Button Medium A1 Coeff RAB: Button Medium A2 Coeff	0.096 0.097 0.039 -0.040
RABBMA3	RAB: Button Medium A3 Coeff	0.008 0.008
RABBMA4 RABBMA5	RAB: Button Medium A4 Coeff RAB: Button Medium A5 Coeff	
RABBMMIN	RAB: Button Medium Minimum Value	0.041 0.041
RABBSA0 RABBSA1	RAB: Button Shallow A0 Coeff RAB: Button Shallow A1 Coeff	
RABBSA2	RAB: Button Shallow A2 Coeff	0.038 -0.039
RABBSA3	RAB: Button Shallow A3 Coeff	0.007 0.007
RABBSA4 RABBSA5	RAB: Button Shallow A4 Coeff RAB: Button Shallow A5 Coeff	
RABBSMIN	RAB: Button Shallow Minimum Value	0.055 0.055
RABDHS RABEC	RAB Down Hole Software RAB: Resistivity Env–Cor	4.000 4.000 YES YES
RABRNGA0	RAB: RING A0 Coeff	0.114 -0.114
RABRNGA1 RABRNGA2	RAB: RING A1 Coeff RAB: RING A2 Coeff	0.101 0.102 0.043 -0.044
RABRNGA3	RAB: RING A3 Coeff	0.009 0.009
RABRNGA4	RAB: RING A4 Coeff	0.001 -0.001
RABRNGA5 RABRNGMIN	RAB: RING A5 Coeff RAB: Ring Minimum Value	0.000 0.000 1.150 1.150
RAB_BIT_ECAL	Bit Resistivity for ECAL_RAB?	YES YES
RAB_BIT_INVERSI RAB_CALIPER_CAI	Input Bit Resistivity for Inversion? (Recomr Compute ECAL_RAB?	mended at the bit) NO NO NO NO
RAB_DATA_FIX	RAB: Create A Corrected RAB Time Data F	
RAB_DATA_LTB	RAB: Create An RAB LTB Data File	NO NO ? YES YES
RAB_DEEPBTN_EC RAB_DEEPBTN_IN		
RAB_INVERSION	Perform Rt Inversion?	NO NO
RAB_INVERSION_E RAB_INVERSION_E		
RAB_INVERSION_E	B Ending Depth of Zone10	M -304.571 -304.571
RAB_INVERSION_E RAB_INVERSION_E		M -304.571 -304.571 M -304.571 -304.571
RAB_INVERSION_E	Ending Depth of Zone4	M -304.571 -304.571
RAB_INVERSION_E		M -304.571 -304.571
RAB_INVERSION_E RAB_INVERSION_E		M –304.571 –304.571 M –304.571 –304.571
RAB_INVERSION_E	B Ending Depth of Zone8	M -304.571 -304.571
RAB_INVERSION_E RAB_INVERSION_0		M -304.571 -304.571 0.500 0.500
RAB_INVERSION_D	RAB Deep Button Sensor Weight for Inventor	ersion[0,1] 1.000 1.000
RAB_INVERSION_E RAB_INVERSION_E		YES YES YES YES
RAB_INVERSION_C	GR Cutoff for Shale Formation	75.000 75.000
RAB_INVERSION_C RAB_INVERSION_C		
RAB_INVERSION_C		GAPI 75.000 75.000 GAPI 75.000 75.000
RAB_INVERSION_C		GAPI 75.000 75.000
RAB_INVERSION_C RAB_INVERSION_C		GAPI 75.000 75.000 GAPI 75.000 75.000
RAB_INVERSION_C	GR Cutoff in Zone6	GAPI 75.000 75.000
RAB_INVERSION_C RAB_INVERSION_C		GAPI 75.000 75.000 GAPI 75.000 75.000
RAB_INVERSION_C	GR Cutoff in Zone9	GAPI 75.000 75.000
RAB_INVERSION_N RAB_INVERSION_F		nversion[0,1] 1.000 1.000 OHMM 2.000 2.000
RAB_INVERSION_F		NO NO
RAB_INVERSION_F	RAB Ring Sensor Weight for Inversion[0,	1] 1.000 1.000
RAB_INVERSION_F RAB_INVERSION_F		NO NO YES YES
RAB_INVERSION_F	R Rt to R-deepest separation penalty multi	plier[0,1] 0.500 0.500
RAB_INVERSION_F RAB_INVERSION_S		YES YES 999.250 -999.250
RAB_INVERSION_S	GR of Shale Formation	999.250 -999.250
RAB_INVERSION_S		nversion[0,1]
RAB_INVERSION_T RAB_INVERSION_V	V Formation Water Resistivity	OHMM 0.100 0.100
RAB_INVERSION_V	V Formation Water Temperature	150.000 150.000
RAB_MEDIUMBTN_ RAB_MEDIUMBTN_		
RAB_QUAD	RAB: Process Quadrant data?	YES YES
RAB_RIGMODE_EC RAB_RING_ECAL	CA Bit on Bottom? Ring Resistivity for ECAL_RAB?	YES YES YES YES
RAB_RING_INVERS	Imput RING Resistivity for Inversion?	YES YES
RAB_SHALLOWBTN RAB_SHALLOWBTN		
RAB_TAB	RAB: Compute TAB ?	YES YES
RAB_TECHLOG RAB_TEMP_SELEC	RAB: Generate Techlog?	YES YES MEASURED MEASURED
	TO TOTAL TOTAL PROPERTY OF THE	WILAGUILL WILAGUILL

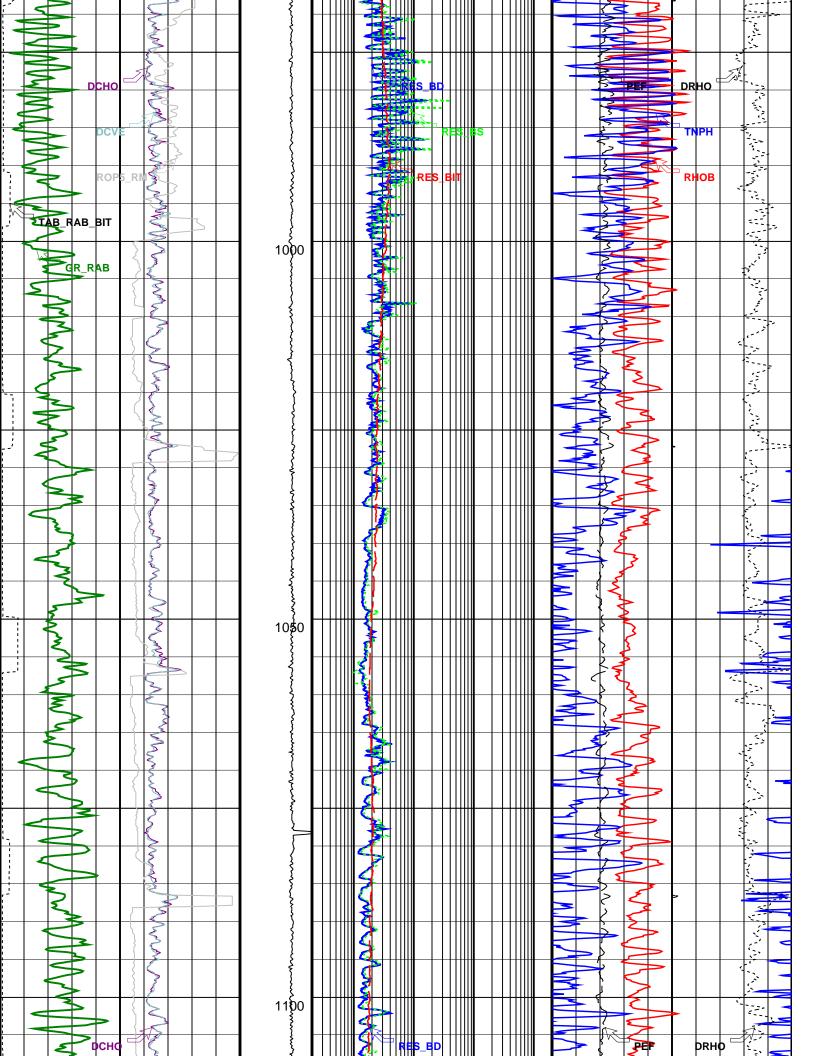
```
RAB_TICKS FREADOUT_PORT_MP
                               RAB: Generate Ticks?

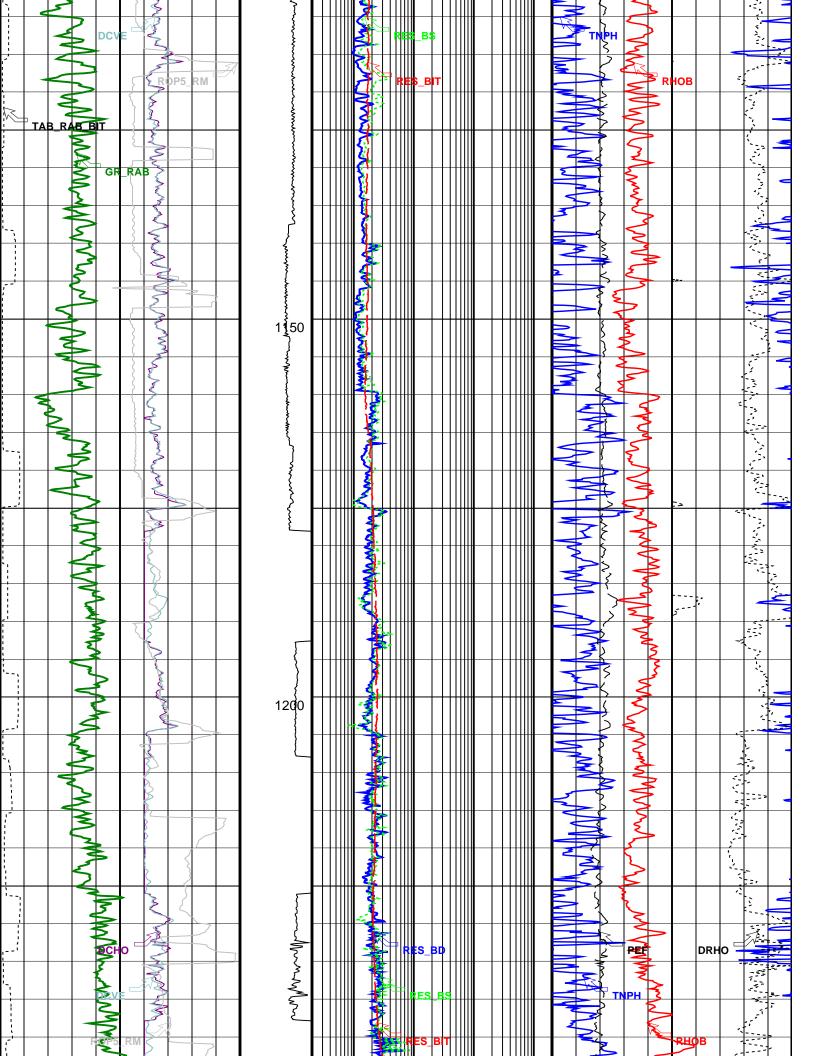

RAB: ROP to Bit Face Distance
RAB: Ring Borehole A Factor
RAB: Ring Borehole B Factor
RAB: Ring Impedance Coeff A
RAB: Ring Impedance Coeff B
RAB: Ring K Factor
                                                                                                                                          YES
                                                                                                                               M
                                                                                                                                     15.075
                                                                                                                                                   14.795
RINGBHCA
RINGBHCB
                                                                                                                              0.298
                                                                                                                                           0.298
                                                                                                                              -0.112
0.000
                                                                                                                                           -0.112
RING_KIMP_A
RING_KIMP_B
RING_K_FACTOR
SBUTTON_K_FACTO
                                                                                                                                               0.000
                                                                                                                                 0.000 0.00
101 0.101
                                                                                                                                              0.000
                                                                                                                              0.101
                                                                                                                                    0.005 0.0
YES YES
                                        RAB: Button Shallow K Factor
SCALE_IMĀGES
                                    RAB: Process Image Data
                           RAB: Run with Stabilizer

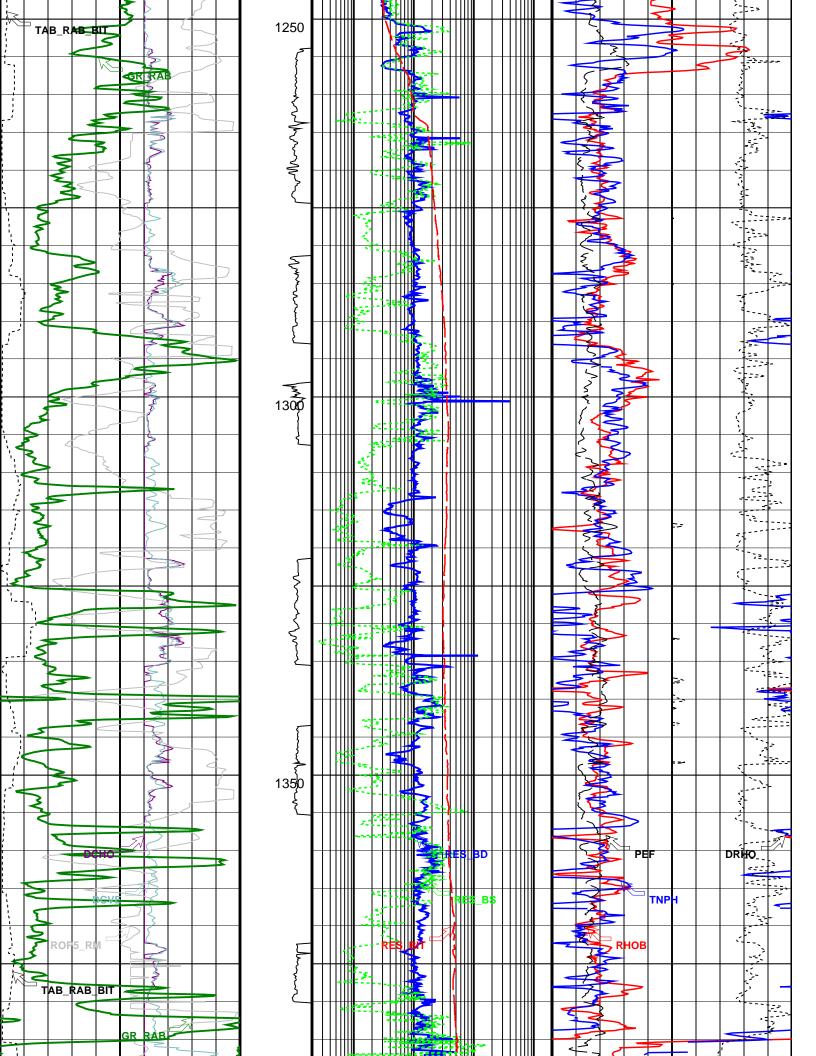
RAB Time-Frame File Time Offset

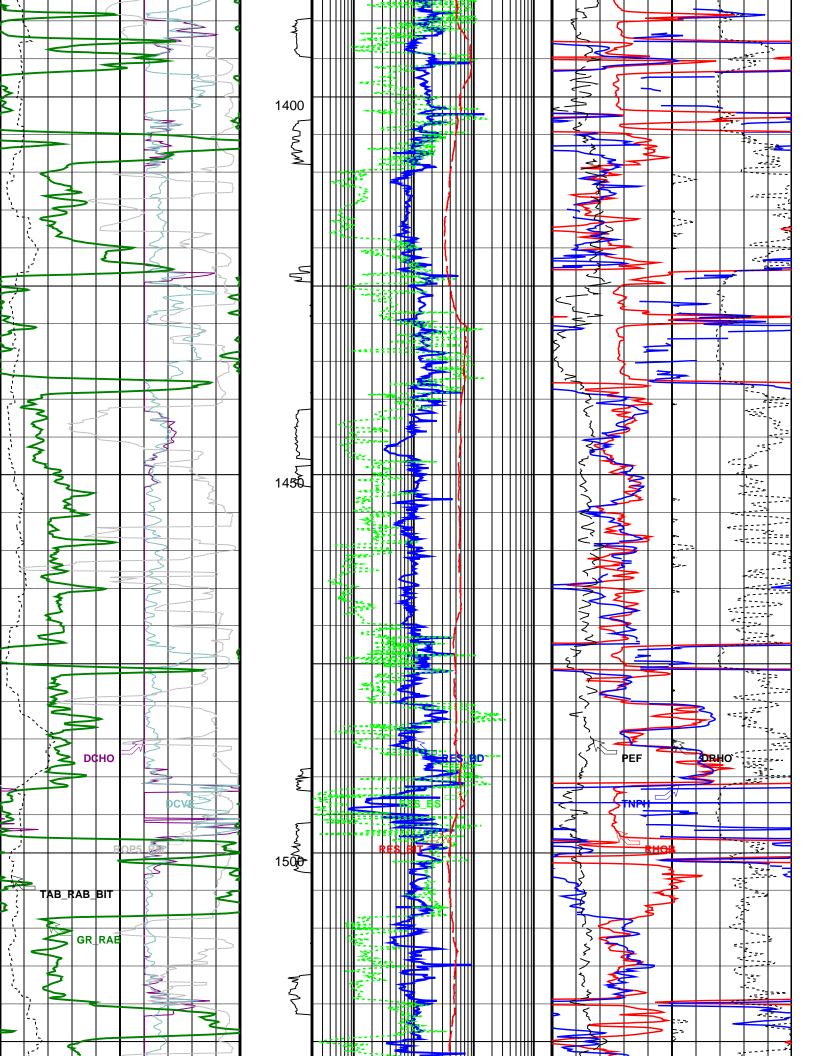
RAB: Time Frame File Name
STAB R
TFF_OFFSET_RAB
TIMEFRAME_FILE_
                                                                                                                                     YES
                                                                                                                       YES
                                                                                                                              S
                                                                                                                                    0.000 0.000
                                                                                                                            S
                                                                                                                                               0.000
                                                                                                                                  0.000
                                                                                                                            YES
TOOLTYPE
                                RAB: Azimuthal Tool
                                                                                                                                         YES
                          RAB: ToolScope Software Version
Rab Tool type (ENP/PILOT)
M RAB: Window Size for Scaling Dynamic Image
to Report Potassium Concentration (RM)
TS_VERSION
VRAB6
                                                                                                                                 -999.250 -999.250
                                                                                                                        RAB8_ENP RAB8_ENP
M 0.914 0.914
WIN_SIZE_DYN_IM
WRK to
                                                                                                                          K_by_Wgt_% K_by_Wgt_%
Schlumberger Drilling & Measurements
                                                                                     ID13 Parameter Insert Header Software version 3.0c
```

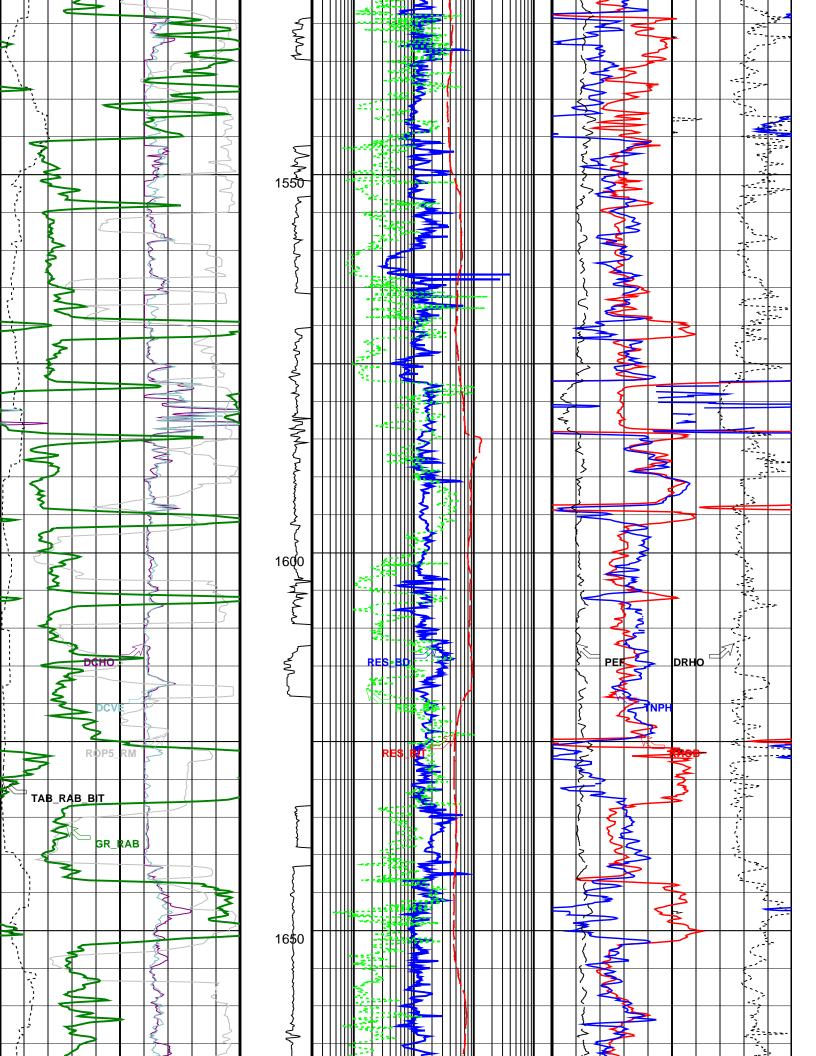

Variable Name	Variable Description	Run Name & Value
	Run Number	4 5
BHT_RM BSAL_RM BS_RM COEF_M C_WS FEXP FNUM FPHI_RM MST_RM MW_RM OBMF_RM RHOF_RM RHOM_RM RMS_RM RWA_COMP_ RWA_DEN_L RWA_DEN_L RWA_DEN_L	D Rwa Density Input ADN D Rwa Density Input CDN	DEGC 65.000 65.000 PPK 0.000 81.900 IN 12.250 12.250 1.650 1.650 1.000 1.000 2.000 2.000 1.000 1.000 XPLOT XPLOT DEGC 20.400 20.700 LB/G 9.800 10.400 NO NO G/C3 1.000 1.000 G/C3 2.710 2.710 OHMM 0.085 0.087
RWA_FORM_ RWA_RES_IN RWS_RM SHT_RM TD_RM VF_ILLI VF_KAOL VF_MONT XPDM_RM XPNM_RM	M Rwa computation formation mod	OHMM 1.000 1.000 e When Offshore) (RM) DEGC 10.000 15.000 M 2313.000 2313.000 DEGC 23.889 23.889 0.500 0.500 0.500 0.500 0.675 0.675
	RAB: Bit A Borehole Factor RAB: Bit B Borehole Factor RAB: Bit K Factor RAB: Button Medium Borehole A Factor RAB: Button Medium Borehole B Factor RAB: Button Shallow Borehole A Factor RAB: Button Shallow Borehole B Factor RAB: Button Impedance Coeff A RAB: Button Impedance Coeff B RAB: Button Impedance Coeff B RAB: Button Impedance Coeff B RAB: Button Deep K factor RAB: DownHole Software Version DLSIZE RAB: Gamma—Ray Borehole C RAB: Allow Hi—Resolution CS_ RAB: Allow Hi—Resolution River for RAB: Allow Hi—Resolution River for RAB: GR Image Maximum Resistivity RAB: GR Image Minimum Resistivity RAB: GR Image Minimum Resistivity RAB Acquisition start date Potassium Concentration (RM) RAB RAB: Magnetic Declination RAB: Magnetic Dip LFACTO RAB: Button Medium K Factor RAB: Oil base Mud	IN 12–12.25 12–12.25

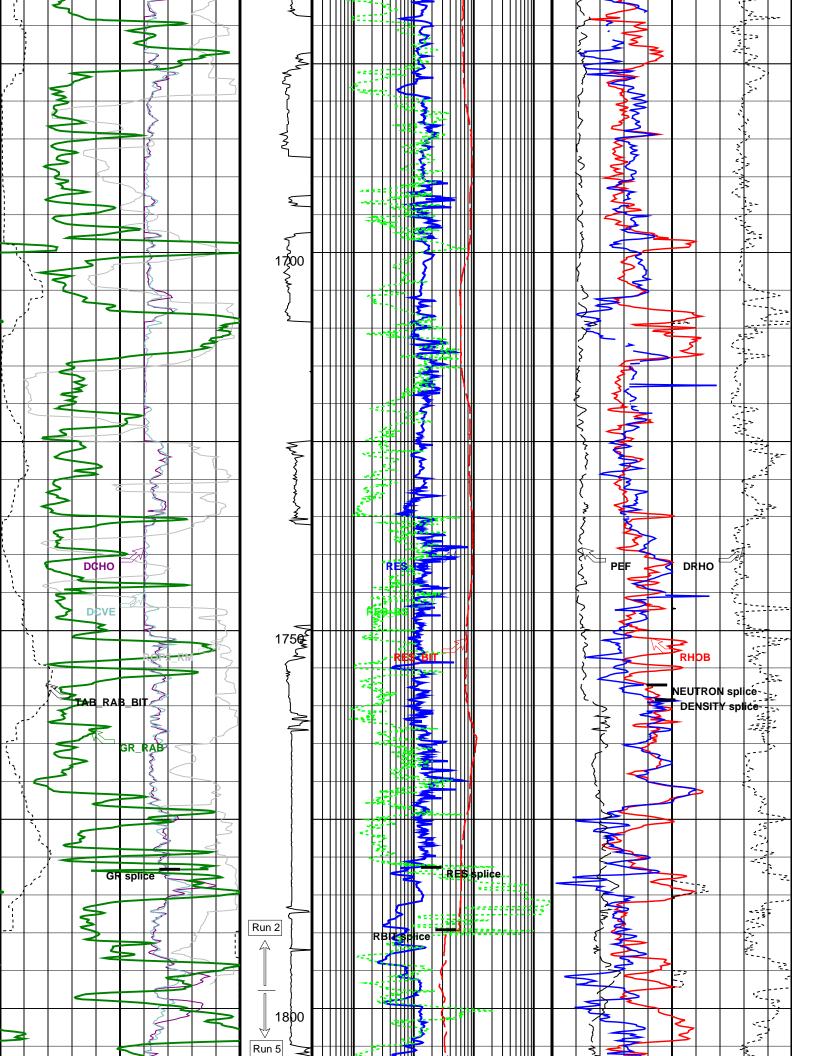

RABBDA2	RAB: Button Deep A2 Coeff	0.043 -0.043
RABBDA3	RAB: Button Deep A3 Coeff	0.009 0.009
RABBDA4 RABBDA5	RAB: Button Deep A4 Coeff RAB: Button Deep A5 Coeff	
RABBDMIN	RAB: Button Deep Minimum Value	0.038 0.038
RABBITA0	RAB: Bit A0 Coeff	6.113 6.071
RABBITA1 RABBITA2	RAB: Bit A1 Coeff RAB: Bit A2 Coeff	22.012 -21.779 91.677 90.057
RABBITA3	RAB: Bit A3 Coeff	150.372 -146.964
RABBITA4	RAB: Bit A4 Coeff	111.351 108.418
RABBITA5	RAB: Bit A5 Coeff	30.919 -30.018
RABBITMIN RABBMA0	RAB: Bit Minimum Value RAB: Button Medium A0 Coeff	22.459 22.458 0.118 -0.118
RABBMA1	RAB: Button Medium A1 Coeff	0.096 0.097
RABBMA2	RAB: Button Medium A2 Coeff	0.040 -0.040
RABBMA3	RAB: Button Medium A3 Coeff	0.008 0.008
RABBMA4 RABBMA5	RAB: Button Medium A4 Coeff RAB: Button Medium A5 Coeff	
RABBMMIN	RAB: Button Medium Minimum Value	0.041 0.041
RABBSA0	RAB: Button Shallow A0 Coeff	0.127 -0.126
RABBSA1 RABBSA2	RAB: Button Shallow A1 Coeff RAB: Button Shallow A2 Coeff	0.098 0.098 0.039 -0.039
RABBSA3	RAB: Button Shallow A3 Coeff	0.007 0.007
RABBSA4	RAB: Button Shallow A4 Coeff	0.001 -0.001
RABBSA5	RAB: Button Shallow A5 Coeff	0.000 0.000
RABBSMIN RABDHS	RAB: Button Shallow Minimum Value RAB Down Hole Software	0.055 0.055 4.000 4.000
RABEC	RAB: Resistivity Env–Cor	YES YES
RABRNGA0	RAB: RING A0 Coeff	0.114 -0.114
RABRNGA1	RAB: RING A1 Coeff	0.102 0.102
RABRNGA2 RABRNGA3	RAB: RING A2 Coeff RAB: RING A3 Coeff	0.044 -0.044 0.009 0.009
RABRNGA4	RAB: RING A4 Coeff	0.001 -0.001
RABRNGA5	RAB: RING A5 Coeff	0.000 0.000
RABRNGMIN RAB_BIT_ECAL	RAB: Ring Minimum Value Bit Resistivity for ECAL_RAB?	1.150 1.150 YES YES
RAB_BIT_INVERSI	Input Bit Resistivity for Inversion? (R	
RAB_CALIPER_CA	L Compute ECAL_RAB?	NO NO
RAB_DATA_FIX	RAB: Create A Corrected RAB Time	
RAB_DATA_LTB RAB_DEEPBTN_EC	RAB: Create An RAB LTB Data File CA Deep Button Resistivity for ECAL	NO NO RAB? YES YES
RAB_DEEPBTN_IN		
RAB_INVERSION	Perform Rt Inversion?	NO NO
RAB_INVERSION_E	RAB Bit Sensor Weight for Inversion	on[0,1] 0.000 0.000
RAB_INVERSION_E RAB_INVERSION_E		e1 (default through the whole well) M 30480.000 30480.000 M -304.571 -304.571
RAB_INVERSION_E		M -304.571 -304.571
RAB_INVERSION_E	B Ending Depth of Zone3	M -304.571 -304.571
RAB_INVERSION_E RAB_INVERSION_E		M -304.571 -304.571 M -304.571 -304.571
RAB_INVERSION_E		M -304.571 -304.571 M -304.571
RAB_INVERSION_E		M -304.571 -304.571
RAB_INVERSION_E	Ending Depth of Zone8	M -304.571 -304.571
RAB_INVERSION_E RAB_INVERSION_(M -304.571 -304.571 0.500 0.500
RAB_INVERSION_D		
RAB_INVERSION_I	D RAB inversion for Dh?	YES YES
RAB_INVERSION_I	D RAB inversion for Di?	YES YES
RAB_INVERSION_(RAB_INVERSION_(GR Cutoff for Shale Formation GR Cutoff for Shale Formation in 7	one1(default through the whole well) GAPI 75.000 75.000
RAB_INVERSION_C		GAPI 75.000 75.000
RAB_INVERSION_0	G GR Cutoff in Zone2	GAPI 75.000 75.000
RAB_INVERSION_(G GR Cutoff in Zone3	GAPI 75.000 75.000
RAB_INVERSION_O		GAPI 75.000 75.000 GAPI 75.000 75.000
RAB_INVERSION_C		GAPI 75.000 75.000
RAB_INVERSION_C		GAPI 75.000 75.000
RAB_INVERSION_(RAB_INVERSION_(GAPI 75.000 75.000 GAPI 75.000 75.000
RAB_INVERSION_N	M RAB Medium Button Sensor Weight	nt for Inversion[0,1] 1.000 1.000
RAB_INVERSION_F	Resistivity Cutoff for Shale Formati	on OHMM 2.000 2.000
RAB_INVERSION_F RAB_INVERSION_F		NO NO sion[0,1] 1.000 1.000
RAB_INVERSION_F		NO NO
RAB_INVERSION_F	RAB inversion for Rt?	YES YES
RAB_INVERSION_F		
RAB_INVERSION_F RAB_INVERSION_S		YES YES 999.250 -999.250
RAB_INVERSION_S		999.250 -999.250 999.250 -999.250
RAB_INVERSION_S	S RAB Shallow Button Sensor Weigh	t for Inversion[0,1] 1.000 1.000
RAB_INVERSION_T		0.010 0.010
RAB_INVERSION_\ RAB_INVERSION_\		OHMM
RAB_MEDIUMBTN_	_E Medium Button Resistivity for EC	AL_RAB? YES YES
RAB_MEDIUMBTN	I Input Medium Button Resistivity fo	r Inversion? YES YES
RAB_QUAD RAB_RIGMODE_E(RAB: Process Quadrant data ? CA Bit on Bottom?	YES YES YES YES
RAB_RIGNODE_EC RAB_RING_ECAL	Ring Resistivity for ECAL_RAB?	YES YES YES YES
RAB_RING_INVERS	S Imput RING Resistivity for Inversio	n? YES YES
RAB_SHALLOWBTI	N_ Shallow Button Resistivity for EC	AL_RAB? YES YES
RAB_SHALLOWBTI RAB_TAB	N_ Input Shallow Button Resistivity for RAB: Compute TAB?	or Inversion? YES YES YES YES
RAB_TECHLOG	RAB: Generate Techlog?	YES YES
RAB_TEMP_SELEC	CT RAB Temperature Selection	MEASURED MEASURED
RAB_TICKS	RAB: Generate Ticks?	YES YES M 14 825 14 745
READOUT PORT I	MP RAB: ROP to Bit Face Distance	M 14.825 14.745

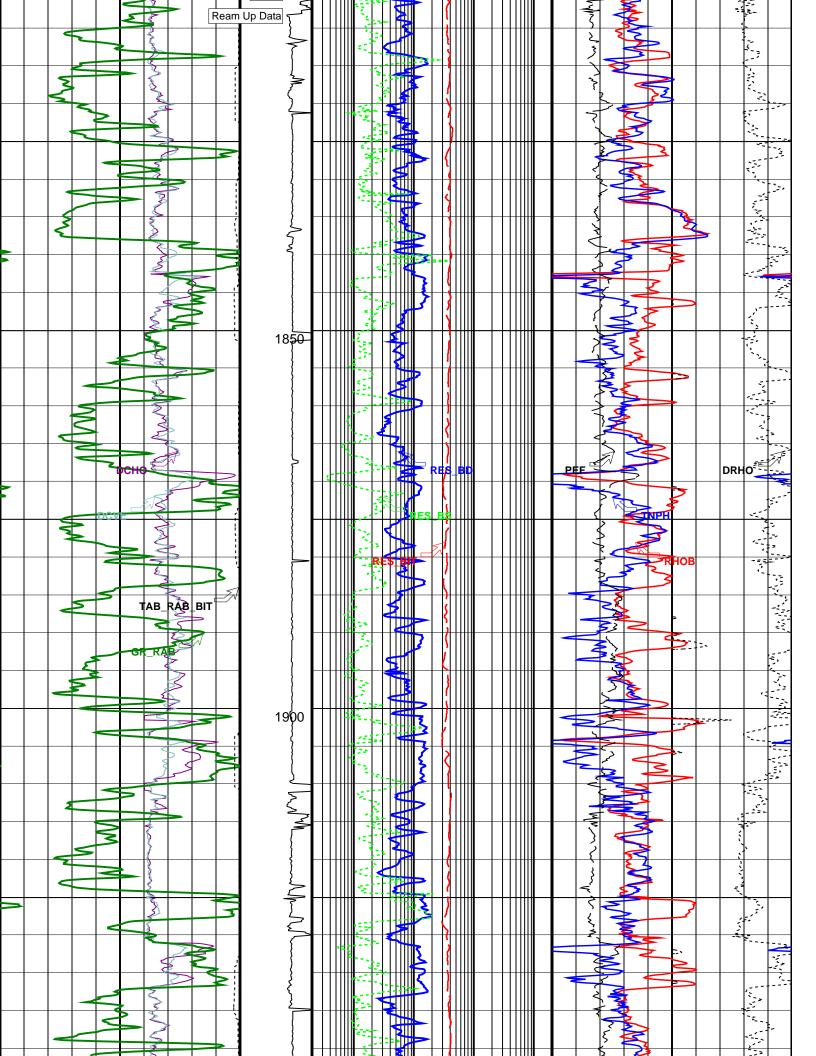


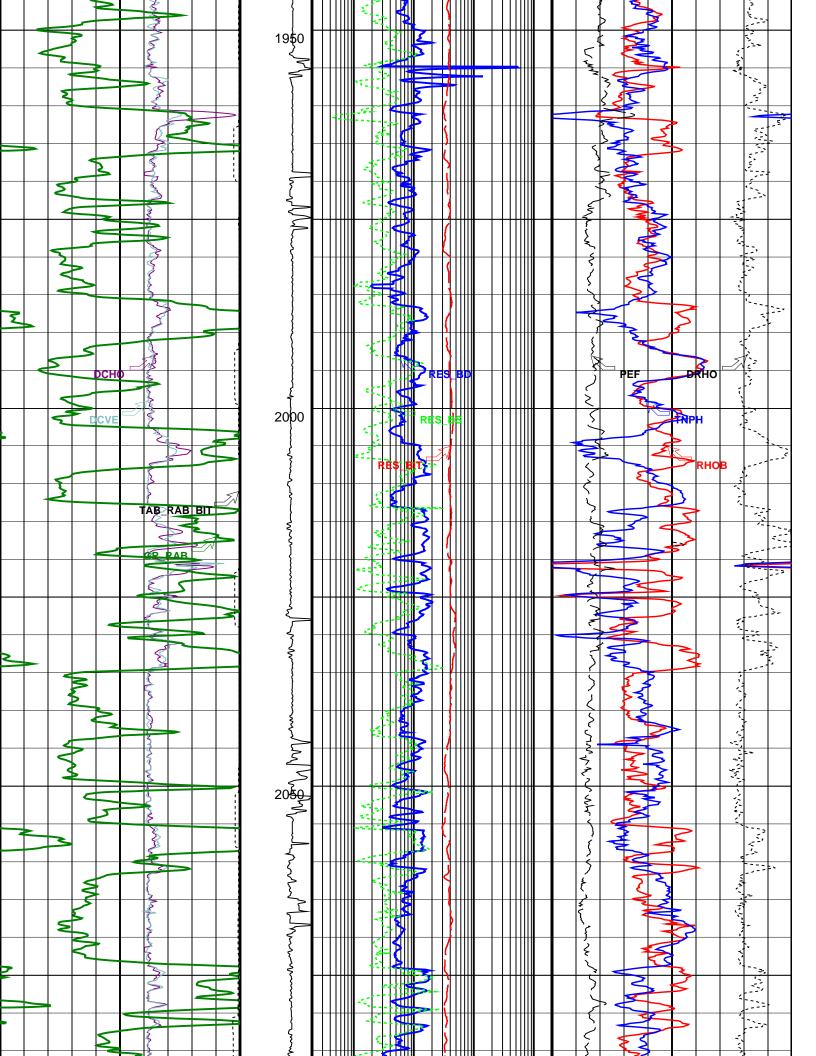

Wasabi-1 VISION 1:500TVD Main Log

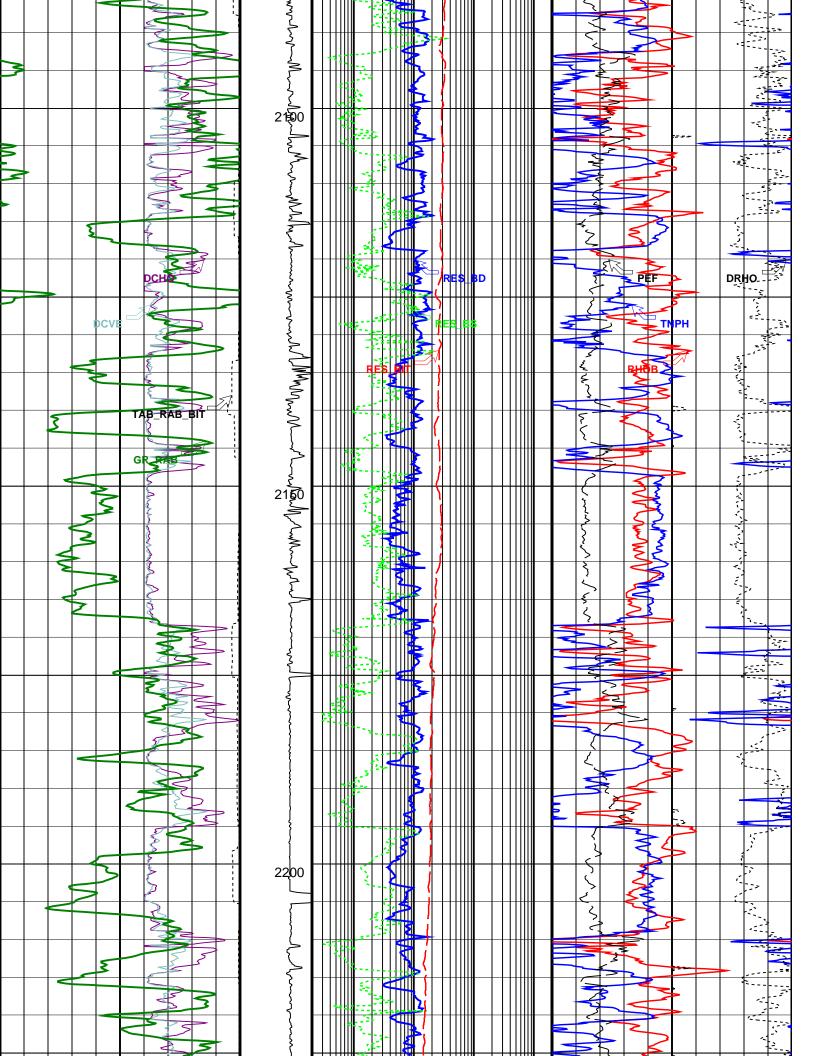

Format: \	Wasabi-1 GVR ADN 500	0TVD	Vertical Scale:	1:500		Graphic	s File Created: 08	3–Jun–2008 16:41
Bit Resis	tivity Time After Bit (TA BIT)	B_RAB_						
0	(HR)	10						
Rate of P	Penetration, Averaged o	ver Last						
200	(M/HR)	0						
RA	B Gamma Ray (GR_RA	В)		Bit Resistivit	y (RES_BIT)		Photoelectric	Bulk Density Correction (DRHO)
0	(GAPI)	200	0.2	(OHI	лм) <u>— — — —</u>	2000	Factor (PEF)	Correction (DKHO)

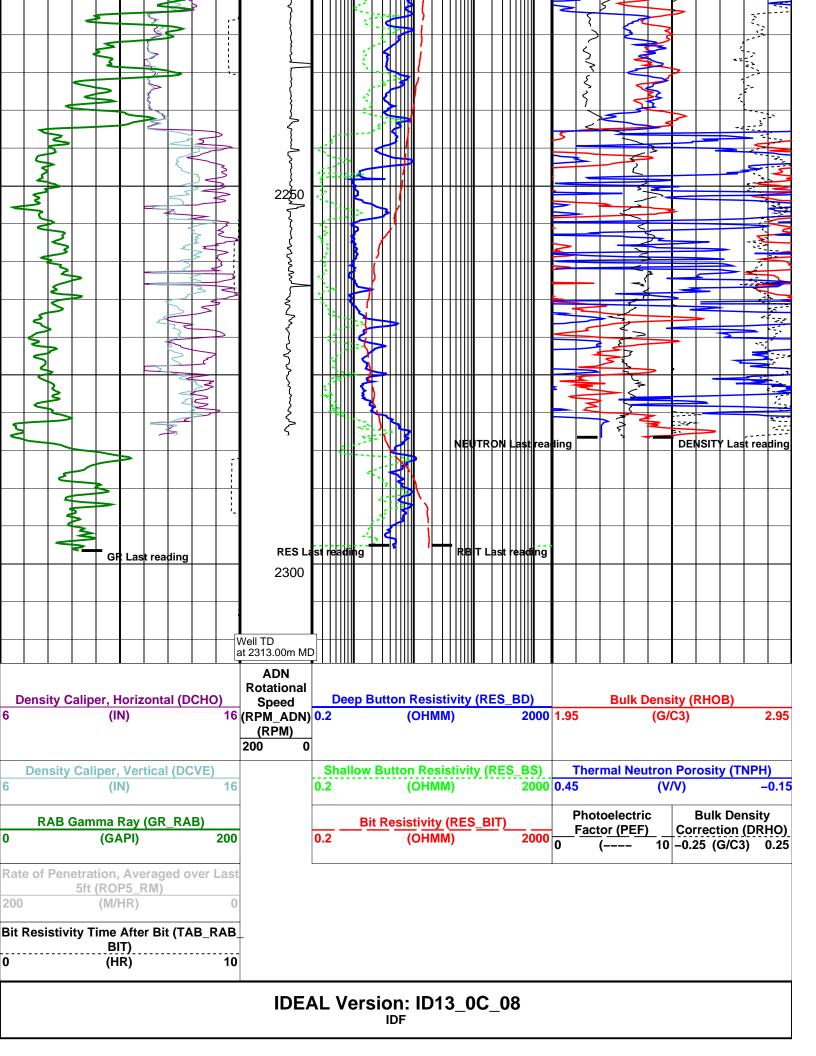


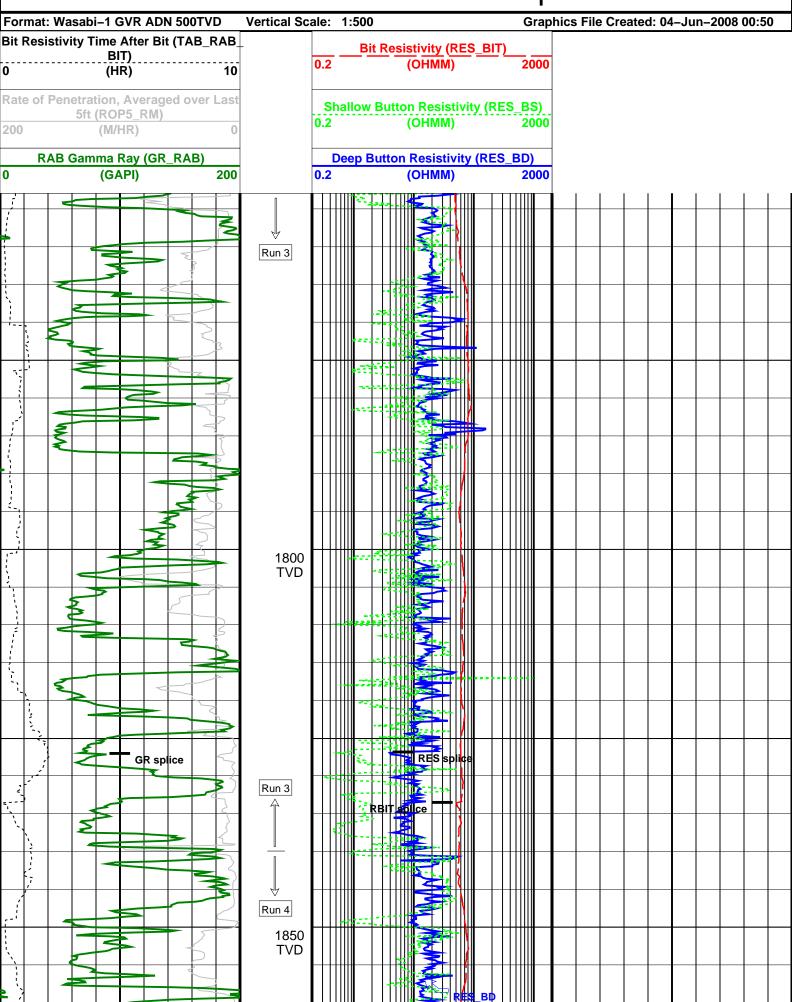


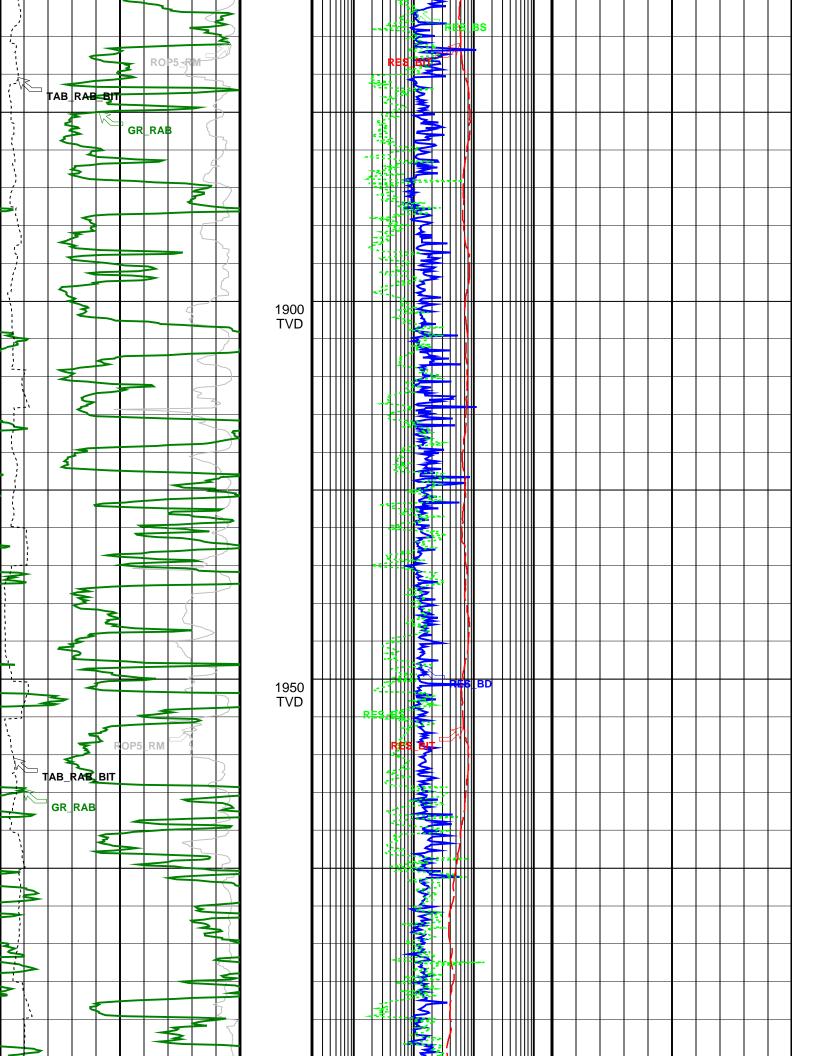


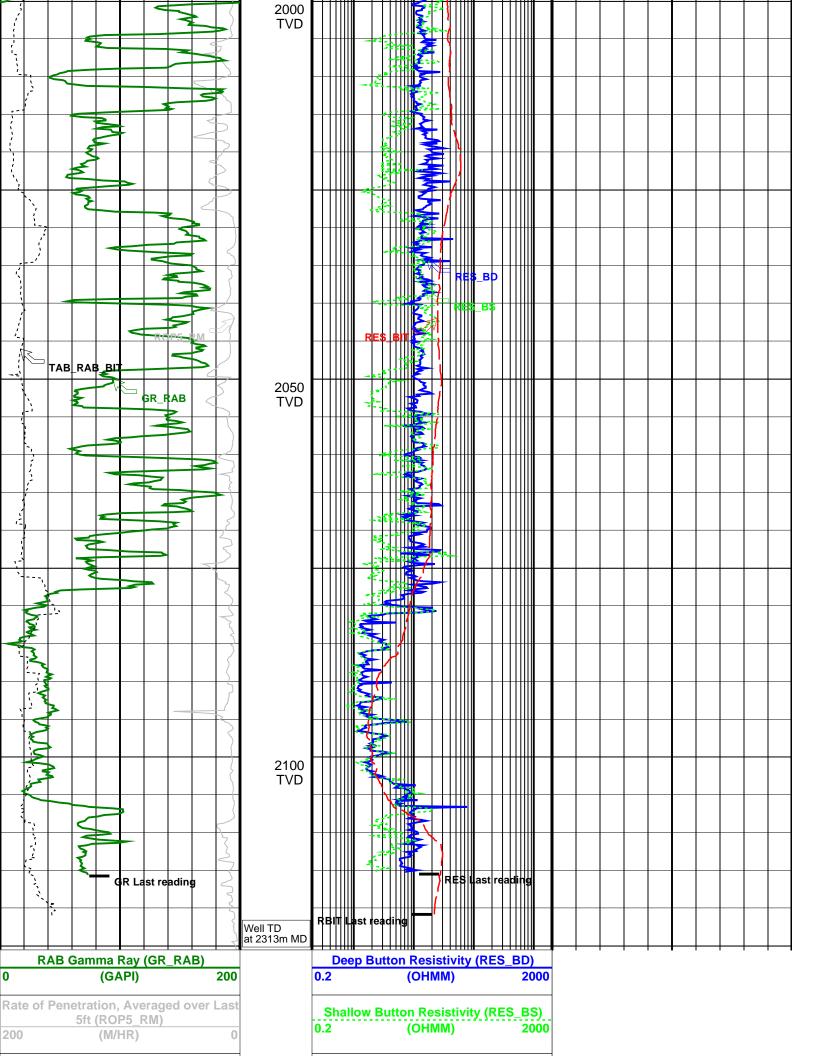


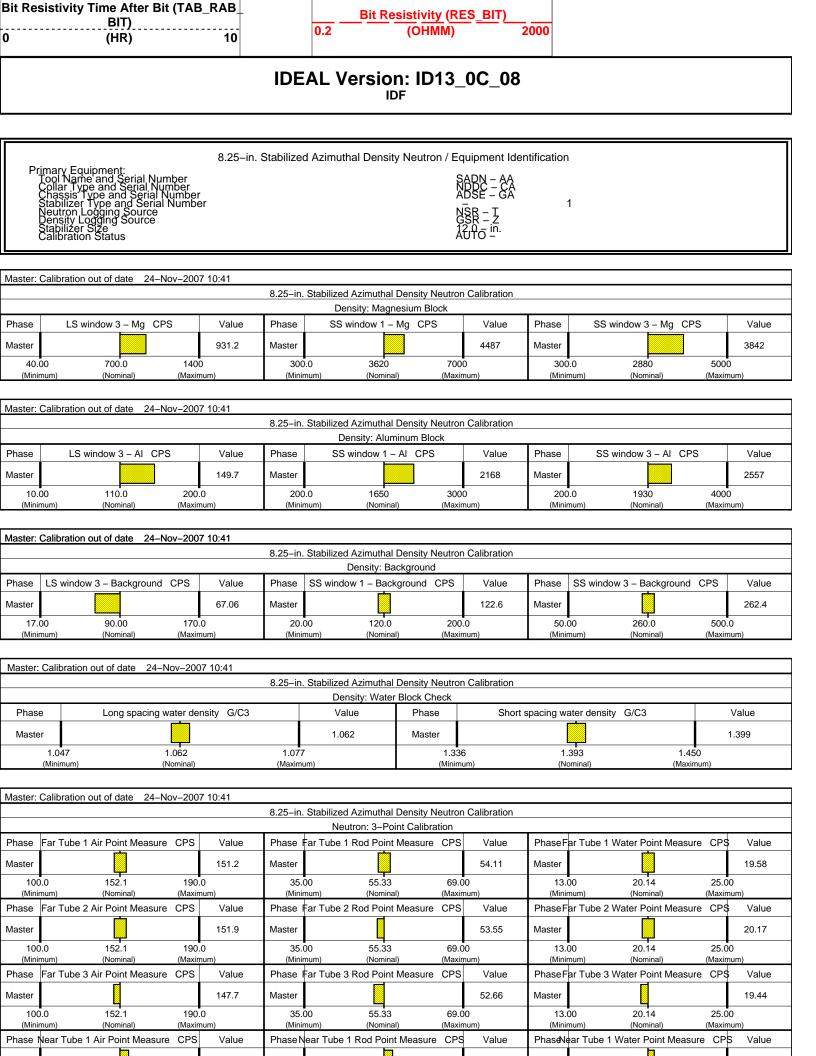


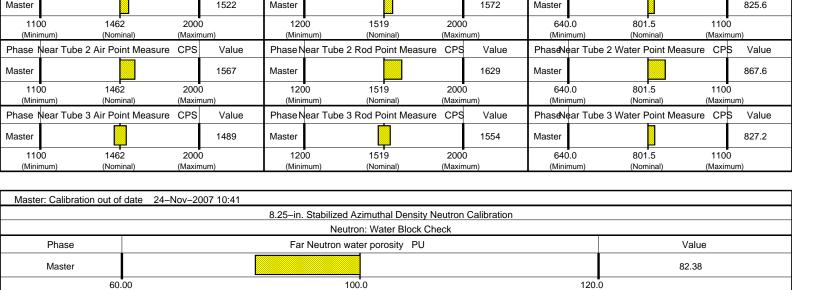


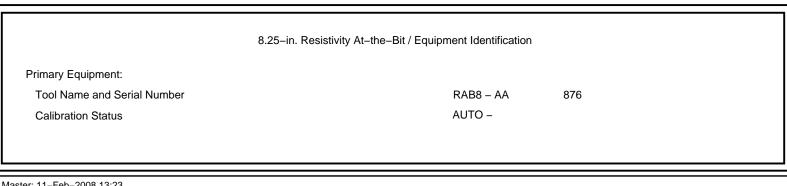


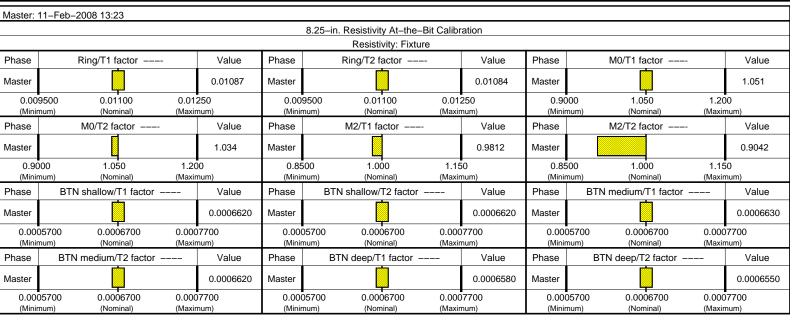


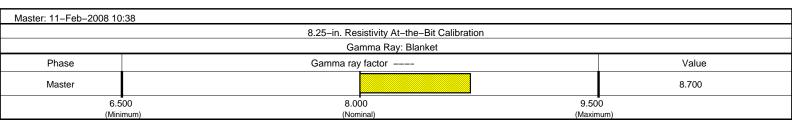





Wasabi-1 VISION 1:500TVD Repeat Section







SCHLUMBERGER

4-Jun-2008 06:02:55 Page 1 of 3 Survey report Client..... Apache Energy Ltd. Field..... Vic-P58 Spud date.....: 14-Feb-08
Last survey date....: 01-Mar-08 Well..... Wasabi-1 API number....: 07ASQ0028 Engineer.....: A.Kholi, C.Hibberson, D.Perkins Total accepted surveys...: 51

MD of first survey....: 0.00 m

COUNTRY....: Australia MD of last survey....: 2313.00 m STATE:..... Victoria ---- Survey calculation methods--------- Geomagnetic data -----Method for positions...: Minimum curvature Method for DLS...... Mason & Taylor Magnetic model..... BGGM version 2007 Magnetic date..... 15-Feb-2008 Magnetic field strength.: 1202.69 HCNT
Magnetic dec (+E/W-)...: 12.80 degrees
Magnetic dip......... -69.07 degrees ---- Depth reference -----Permanent datum..... AHD Depth reference....: RKB
GL above permanent...: -37.00 m
KB above permanent...: 38.00 m
DF above permanent...: 38.00 m ---- MWD survey Reference Criteria --------- Vertical section origin------ Latitude (+N/S-).....: 0.00 m Departure (+E/W-).....: 0.00 m - Platform reference point--------- Corrections -----Magnetic dec (+E/W-)...: 12.80 degrees
Grid convergence (+E/W-).: -0.16 degrees
Total az corr (+E/W-)...: 12.96 degrees
(Total az corr = magnetic dec - grid conv) Latitude (+N/S-)....: 0.00 m
Departure (+E/W-)....: 0.00 m Azimuth from Vsect Origin to target: 322.47 degrees Survey Correction Type ...: I=Sag Corrected Inclination
M=Schlumberger Magnetic Correction
S=Shell Magnetic Correction F=Failed Axis Correction R=Magnetic Resonance Tool Correction D=Dmag Magnetic Correction [(c)2008 IDEAL ID13 0C 08] 4-Jun-2008 06:02:55 SCHLUMBERGER Survey Report Page 2 of 3

===	=======	=====	======	=====	=======	=======	======	=======	======		=====	=====	=====
Seq	Measured	Incl	Azimuth	Course	TVD	Vertical	Displ	Displ	Total	At	DLS	Srvv	Tool
#	depth	angle	angle	length	depth	section	+N/S-	+E/W-	displ	Azim	(deg/		Corr
-	(m)	(deg)	(deg)	(m)	(m)	(m)	(m)	(m)	(m)	(deg)	10m)	type	
===	=======	=====	======		======	=======		=======		=======	=====		=====
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	TIP	None
2	115.45	0.14	336.08	115.45	115.45	0.14	0.13	-0.06	0.14	336.08	0.01	PUP	None
3	142.86	0.18	296.21	27.41	142.86	0.21	0.18	-0.11	0.21	328.51	0.04	PUP	None
4	170.39	0.09	303.79	27.53	170.39	0.27	0.21	-0.17	0.27	321.61	0.03	PUP	None
5	201.95	0.09	130.71	31.56	201.95	0.27	0.21	-0.17	0.27	320.98	0.06	PUP	None
6	229.75	0.10	88.12	27.80	229.75	0.23	0.19	-0.13	0.23	326.73	0.03	PUP	None
7	494.63	0.28	191.25	264.88	494.63	-0.33	-0.43	-0.02	0.43	182.96	0.01	PUP	None
8	553.43	0.48	178.29	58.80	553.43	-0.62	-0.82	-0.04	0.82	183.01	0.04	PUP	None
9	700.75	0.84	171.77	147.32	700.74	-2.07	-2.51	0.13	2.51	177.03	0.02	PUP	None
10	759.92	0.78	172.15	59.17	759.90	-2.79	-3.33	0.25	3.34	175.76	0.01	PUP	None
					500 45				2 60				
11	789.17	0.56	166.34	29.25	789.15	-3.10	-3.67	0.31	3.68	175.20	0.08	PUP	None
12	818.74	0.38	176.04	29.57	818.72	-3.31	-3.91	0.35	3.92	174.90	0.07	PUP	None
13	886.60	0.20	232.91	67.86	886.58	-3.50	-4.20	0.27	4.21	176.33	0.05	PUP	None
14	1034.55	0.55	198.33	147.95	1034.52	-3.90	-5.03	-0.16	5.04	181.81	0.03	PUP	None
15	1180.90	0.38	233.51	146.35	1180.87	-4.28	-5.99	-0.77	6.04	187.33	0.02	PUP	None
16	1239.98	3.38	334.13	59.08	1239.92	-2.57	-4.54	-1.69	4.84	200.40	0.59	PUP	None
17	1270.01	6.32	334.23	30.03	1269.83	-0.09	-2.25	-2.79	3.59	231.11	0.98	PUP	None
18	1298.75	8.02	326.45	28.74	1298.35	3.46	0.84	-4.59	4.67	280.40	0.68	PUP	None
19	1328.72	8.15	333.60	29.97	1328.02	7.63	4.49	-6.69	8.06	303.86	0.34	PUP	None
20	1358.00	9.08	336.28	29.28	1356.97	11.91	8.46	-8.54	12.02	314.73	0.35	PUP	None
20	1330.00	9.00	330.20	29.20	1330.97	11.91	0.40	-0.54	12.02	314./3	0.35	PUP	NOHE
0.1	1200 20	11.22	337.32	30.32	1386.82	17.09	13.37	-10.64	17.09	321.49	0.71	PUP	Mana
21	1388.32												None
22	1447.39	16.50	340.87	59.07	1444.15	30.61	26.61	-15.61	30.85	329.61	0.90	PUP	None
23	1476.79	18.71	341.36	29.40	1472.17	39.04	35.03	-18.49	39.60	332.18	0.75	PUP	None
24	1506.00	21.47	336.96	29.21	1499.60	48.65	44.39	-22.08	49.57	333.56	1.08	PUP	None
25	1535.79	23.81	336.52	29.79	1527.09	59.76	54.92	-26.61	61.03	334.15	0.79	PUP	None
26	1564.88	26.29	336.35	29.09	1553.44	71.71	66.21	-31.53	73.33	334.53	0.85	PUP	None
27	1594.25	28.63	333.72	29.37	1579.50	84.93	78.48	-37.26	86.87	334.60	0.90	PUP	None
28	1624.03	29.21	334.37	29.78	1605.57	99.04	91.43	-43.56	101.27	334.53	0.22	PUP	None
29	1653.53	29.76	330.72	29.50	1631.25	113.33	104.30	-50.25	115.78	334.28	0.64	PUP	None
30	1683.37	30.78	330.72	29.50	1631.25	128.23	117.37	-50.25 -57.71	130.79	334.28	0.64	PUP	None
30	1683.3/	30.78	329.89	∠9.84	105/.02	128.23	11/.3/	-5/./1	130.79	333.82	0.3/	PUP	MOHE

[(c)2008	IDEAI	ID13	0C	08]
SCHLUMBER	GER S	Survey	Rer	ort.

4-Jun-2008 06:02:55

Page 3 of 3

SCHLOMBERGER Survey Report						4-0	u11-2006	06:02:55		Page	3 01	3	
=== Seq # -	====== Measured depth (m)	Incl angle (deg)	====== Azimuth angle (deg)	===== Course length (m)	TVD depth (m)	Vertical section (m)	===== Displ +N/S- (m)		Total displ (m)	At Azim (deg)	==== DLS (deg/ 10m)		
31	1712.48	31.44	331.04	29.11	1681.95	143.12	130.45	-65.12	145.80	333.47	0.31	PUP	None
32	1741.60	32.10	330.46	29.12	1706.70	158.30	143.83	-72.61	161.12	333.47	0.25	PUP	None
33	1770.74	32.52	328.16	29.14	1731.33	173.76	157.22	-80.56	176.66	332.87	0.45	PUP	None
34	1801.91	32.89	325.39	31.17	1757.56	190.55	171.31	-89.79	193.41	332.34	0.49	PUP	None
35	1831.13	34.60	326.01	29.22	1781.86	206.75	184.72	-98.93	209.54	331.83	0.60	PUP	None
36 37 38 39 40	1860.48 1890.59 1919.28 1948.88 1978.21	34.24 34.34 39.56 41.97 44.07	324.51 324.56 321.67 319.68 317.65	29.35 30.11 28.69 29.60 29.33	1806.07 1830.95 1853.87 1876.29 1897.73	223.32 240.28 257.51 276.82 296.79	198.35 212.16 225.93 240.88 255.90	-108.39 -118.23 -128.59 -140.85 -154.07	226.03 242.88 259.97 279.03 298.70	331.35 330.87 330.35 329.68 328.95	0.31 0.03 1.92 0.92 0.86	PUP PUP PUP PUP PUP	None None None None

41 42 43 44 45	2008.18 2037.55 2066.69 2096.38 2125.42	45.45 46.14 46.95 47.60 47.49	317.25 317.73 318.03 318.28 318.95	29.97 29.37 29.14 29.69 29.04	1919.01 1939.49 1959.53 1979.67 1999.28	317.81 338.78 359.87 381.62 402.99	271.44 286.96 302.65 318.90 334.97	-168.34 -182.56 -196.75 -211.30 -225.46	319.40 340.11 360.98 382.55 403.79	328.19 327.54 326.97 326.47 326.06	0.47 0.26 0.29 0.23 0.17	PUP None PUP None PUP None PUP None PUP None	
46 47 48 49 50	2155.49 2185.00 2214.22 2243.21 2272.78	47.85 47.98 48.00 48.08 47.76	318.70 319.61 319.92 320.67 323.36	30.07 29.51 29.22 28.99 29.57	2019.52 2039.30 2058.86 2078.24 2098.06	425.18 447.04 468.73 490.27 512.21	351.71 368.27 384.85 401.43 418.73	-240.10 -254.42 -268.45 -282.22 -295.72	425.85 447.61 469.23 490.71 512.63	325.68 325.36 325.10 324.89 324.77	0.13 0.23 0.08 0.19 0.68	PUP None PUP None PUP None PUP None PUP None	
51 [(c)20	2313.00	47.76		40.22	2125.10	541.99	442.62	-313.49	542.39	324.69	0.00	PROJ TO TD	

Company: Apache Energy Ltd

Schlumberger

Well: Wasabi-1
Field: Vic-P58

Rig: West Triton

State: Victoria

GeoVISION Service

1:200 True Vertical Depth

Recorded Mode Data, Composite Log

Sperry Drilling Services

LWD End of Well Report

For

Apache Energy Ltd

Wasabi-1

Rig: West Triton

Field: Exploration

Job No: AU-FE-0005617882

Country: Australia

Date: 05-March-2008

Sperry Drilling Services

Table of Contents

- 1. General Information
- 2. Operational Overview
- 3. Summary of MWD Runs
- 4. Bitrun Summary

Sperry Drilling Services

General Information

Company: Apache Energy Ltd

Rig: West Triton
Well: Wasabi-1
Field: Exploration
Lease Name: VIC/P-54
State: Victoria

County:

Country: Australia

API Number:

Sperry-Sun Job Number: AU-FE-0005617882

Job start date: 22-Feb-08 Job end date: 02-Mar-08

North reference: Grid

Declination: 12.803 deg
Dip angle: -69.072 deg
Total magnetic field: 60136 nT

Date of magnetic data: 16 February, 2008

Wellhead coordinates N: 38 deg. 29 min 18.16 sec South GDA94 Wellhead coordinates E: 147 deg. 15 min 49.15 sec East GDA94

Vertical section direction: 0.00 deg
Unit Number: BHI Unit
MWD Engineers: J. Povey

Company Representatives: B. Openshaw, P.Gallagher, S. Corless

Company Geologist: H. Little, A. Cruickshank

Sperry Drilling Services

Operational Overview

311mm Hole Section:

The 311mm hole section was drilled from 862.0 mMDRT to a section TD of 2313.0 mMDRTwith a recorded only LWD suite comprising of a Bimodal Acoustic Tool (BAT) only. This section was drilling in 3 bit runs due to poor directional control. The first was from 862.0 mMDRT to 1797.0 mMDRT, then a BHA assembly was run to assist in dropping angle to 1900.0 mMDRT and then another to final TD of 2313.0 MDRT to help build back up to a revised target. All data was recovered on surface from each bit run.

Sperry Drilling Services

Summary of MWD runs

Run No.	Bit No.	Hole Size	MWD Service	Start Depth	End Depth	Drill/Wipe Distance	Run Start Date Time	Run End Date Time	BRT Hrs.	Oper. Hrs.	Circ. Hrs.	Temp.	Serv. Int.	for	Failure Type
		(mm)		(m)	(m)	(m)						(degF)		MWD	
100	3		BAT Rec	862.000				26-Feb-08 06:34			57.900			No	
200	4		BAT Rec	1797.000				27-Feb-08 16:26						No	
300	5	311.00	BAT Rec	1900.000	2313.000	413.000	27-Feb-08 16:50	01-Mar-08 22:00	77.17	77.220	53.200	149.00	No	No	
			1			1									
	•														
		1	I			l .								<u> </u>	1
			I			<u> </u>								<u> </u>	
ļ	•	1		1										<u> </u>	
		1												<u> </u>	
ļ		1		<u> </u>										1	
ļ	•	1	<u> </u>	<u> </u>										<u> </u> 	
	•	1		<u> </u>										<u>.</u>	
		1		1										<u> </u> 	
		1		,										<u>.</u> 1	
		1												1	
		1												1	
		İ												1	
		1		1										1	
		1													
														1	
		j												j	
]]	

Sperry Drilling Services

Bitrun Summary

RUN TIME I	DATA							
MWD Run	: 100	Run Start :	22-Feb-08 06:11	BRT Hrs	: 96.38 hr	Circ. Hrs	: 57.90 h	r
Rig Bit No	: 3	Run End :	26-Feb-08 06:34	Hole Size	: 311.00 mm	Oper. Hrs	: 83.39 h	r
DRILLING I	DATA							
Start Depth	862.00 m	Footage	: 935.00 m	Avg RPM	: 31 rpm	Avg ROP	: 62.00 m	n/hr
End Depth	: 1797.00 m	Avg Flow Rate	e : 1070 gpm	Avg WOB	: 18.0 klb	Avg SPP	: 2769 ps	sig
MUD DATA								
Mud Type	: KCl Polymer							
Weight	: 1.150 sg	Viscosity	: 69.00 spl	PV	: 19 cP	YP	: 12.45 p	а
Chlorides	: 48000 ppm	Max Temp.	: 56 degC	% Solids	: 4.10 %	% Sand	: 1.00 %	
pH	: 9.20 pH	Fluid Loss	: 4 cptm	% Oil	: N/A	O:W	: 0:92	
MWD PERF	ORMANCE							
Tool OD	203.20 mm T	Гуре	: BAT Rec	Min. Inc.	0.20 deg	Min. Inc. Depth	: 886.60	00 m
Final Az.	: 328.16 deg N	Max Op. Press.	: 3600 psig	Max Inc.	32.52 deg	Max Inc. Depth	: 1770.	760 m
	MWD Real-time	% : 0 %		MWD Recorded	: 100 %			
								D1 . F
			Length Dist From (m) Bit (m)				Length (m)	Dist From Bit (m)
			259.6	52			-	40.70
15 x 5-1/2" HWDP		П	140.95	,2				40.70
140.00 mm OD / 86	6.00 mm ID	1						
X-Over Sub 216.00 mm OD / 83.00 mm	ı ID		1.22	Anadrill ADN			(27	
2 x 8 1/4" Drill Col	llar			305.00 mm OD / 83	3.00 mm ID		6.37	
210.00 mm OD / 70	0.00 mm ID		18.90					
T			98.5	55				
Jar 211.00 mm OD / 70	6.00 mm ID	Ш	9.95			ļ		
		h	88.6	50				
5 x 8 1/4" Drill Col			47.20					
210.00 mm OD / 70	0.00 mm ID			8" BAT Collar) 77 ID			30.54
K-Over Sub 235.00 mm OD / 83.00 mm	ı ID		0.70 41.	40 203.00 mm OD / 48 * BAT Insert - SN			6.86	
			40.7	70				
MWD			6.37					
K-Over Sub 214.00 mm OD / 76.00 mm	, ID		0.34 34.	33		ļ		26.66
.14.00 mm OD / /6.00 mm	TID		33.9	99				20.00
MWD			6.86					
K-Over Sub			0.47 27.	13 Anadrill Telescope	MWD		8.03	
211.00 mm OD / 108.00 mi	m ID		26.6	213.00 mm OD / 13	30.00 mm ID		0.03	
MWD			12.38					
ζ-Over Sub			0.27 14.	28				
03.00 mm OD / 76.00 mm	ı ID		0.37			ł		18.63
Pony NMDC	(00 ID		2.90	`` `		I		
207.00 mm OD / 76	6.00 mm ID					I		
Float Sub 203.00 mm OD / 82.00 mm	n ID		0.65	Anadrill KAB-8		I	4.35	
Anadrill Mud Moto	or			36 308.00 mm OD / 99	9.00 mm ID	I		
11.00 mm OD / 19	00 00 mm ID		9.99	1				

COMMENTS

Smith Mi616VBPX 311.00 mm OD / 95.00 mm ID

311.00 mm OD / 199.00 mm ID

BAT recorded only mode. All data was recovered on surface.

HALLIBURTON

Sperry Drilling Services

Bitrun Summary

	DATA	D 644	. 26 Eab 00	07:07	DDT II	. 22 22 6-	Circ. II	: 11.10 h	
MWD Run Rig Bit No	: 200 : 4	Run Start Run End	: 26-Feb-08 : 27-Feb-08		BRT Hrs Hole Size	: 33.32 hr : 311.00 mm	Circ. Hrs Oper. Hrs	: 11.10 h : 33.31 h	
		Kun Enu	. 27-гер-00	10.20	Hole Size	. 311.00 11111	Oper. ms	. 33.3111	!
DRILLING D									
Start Depth	: 1797.00 m	Footage	: 103.0		Avg RPM	: 6 rpm	Avg ROP	: 29.00 m	
End Depth	: 1900.00 m	Avg Flow R	ate : 1103	gpm	Avg WOB	: 5.0 klb	Avg SPP	: 3320 ps	sig
MUD DATA									
Mud Type	: KCl Polyme		- 04.00	1	DV	- 10 -D	17D	. 10.10	_
Weight Chlorides	: 1.150 sg : 40000 ppm	Viscosity Max Temp.	: 64.00 : 58 de	•	PV % Solids	: 18 cP : 4.80 %	YP % Sand	: 18.19 p : 0.80 %	а
pH	: 8.60 pH	Fluid Loss	: 5 cptr	-	% Oil	: N/A	O:W	: 0:92	
•		Tiula Eoss	. о ора		70 011		0	. 0.02	
MWD PERFO		Т	. DAT Dag		Min Inc.	22.00 4	Min Inc Donah	. 1001 (210
		Type Max Op. Press.	: BAT Rec : 4100 psi			32.89 deg 34.60 deg	Min. Inc. Depth Max Inc. Depth	: 1801.9 : 1831.	
rmaraz	MWD Real-time	_	. +100 psi		MWD Recorded	•	wax me. Depth	. 1001.	100 111
					1				
				Dist From	ı			Length	Dist From
			(m)	Bit (m)				(m)	Bit (m)
			III.	348.30)		П		
30 x 5-1/2" HWDP 139.70 mm OD / 86			281.99				- 1		
X-Over Sub			ii .	66.31	1		- 1		
216.00 mm OD / 73.00 r	mm ID		1.22		8" BAT Collar				30.20
Jar			10.17	05.05	203.00 mm OD / 48 * BAT Insert - SN		- 1	6.86	
211.00 mm OD / 76	5.00 mm ID		10.17						
				54.92	2		- 1		
2 x 8 1/4" Drill Coll 210.00 mm OD / 70			18.89				- 1		
				36.03	,		- 1	1	26.38
Pony Collar			2.32	30.03	'		- 1		
207.00 mm OD / 73	3.00 mm ID		2.32				- 1		
				33.71	Tilladi III Telescope	MWD	- 1	8.03	
MWD			6.86		213.00 mm OD / 13	0.00 mm ID	- 1	8.03	
X-Over Sub				26.85	5		- 1		
211.00 mm OD / 108.00) mm ID		0.47	26.38			- 1		
MWD			12.38	20.30					
			12.50						18.3:
X-Over Sub 203.00 mm OD / 76.00 r	mm ID		0.37	14.00					
				13.63	3				
Pony Collar 207.00 mm OD / 76	6.00 mm ID		2.90		Anadrill RAB-8	100 mm ID		4.35	
Float Sub			0.65	10.73	308.00 mm OD / 99	.00 mm 1D			
203.00 mm OD / 83.00 r	mm ID		0.65	10.08					
Anadrill Mud Moto			9.71	10.00					
279.00 mm OD / 19	99.00 mm ID						l l		
Smith Mi616VBPX			0.37	0.3	-I				

COMMENTS

Drill ahead to 1900.0 mMDRT then trip for a Bit change. All recorded data was recovered on surface

Job No.: AU-FE-0005617882 Well No.: Wasabi-1 End of Well Report Page 7

HALLIBURTON

Sperry Drilling Services

Bitrun Summary

RUN TIME D									
MWD Run	: 300	Run Start	27-Feb-08		BRT Hrs	: 77.17 hr	Circ. Hrs	: 53.20 h	
Rig Bit No	: 5 	Run End	: 01-Mar-08	22:00	Hole Size	: 311.00 mm	Oper. Hrs	: 77.22 h	<u>r</u>
DRILLING D	OATA								
Start Depth	: 1900.00 m	Footage	: 413.00		Avg RPM	: 56 rpm	Avg ROP	: 17.70 m	
End Depth	: 2313.00 m	Avg Flow R	ate : 1079 (gpm	Avg WOB	: 36.8 klb	Avg SPP	: 3326 ps	sig
MUD DATA									
Mud Type	: KCL Polyme	r							
Weight	: 1.180 sg	Viscosity	: 50.00		PV	: 16 cP	YP	: 18.67 p	а
Chlorides	: 48000 ppm	Max Temp.	: 65 deç		% Solids	: 4.10 %	% Sand	: 0.75 %	
pН	: 9.00 pH	Fluid Loss	: 5 cptm	1	% Oil	: N/A	O:W	: 0:92	
MWD PERFO	ORMANCE								
		Type	: BAT Rec			34.34 deg	Min. Inc. Depth	: 1890.	
Final Az. :	_	Max Op. Press.	: 4150 psig			48.08 deg	Max Inc. Depth	: 2243.2	210 m
	MWD Real-time	e % : 0 %			MWD Recorded	% : 100 %			
			I4h	D:-+ F				T4h	Dist Farm
			(m)	Dist From Bit (m)				Length (m)	Dist From Bit (m)
			III.	348.32			-	_	
30 x 5-1/2" HWDP			281.99	340.32			- 1		
139.70 mm OD / 86	5.00 mm ID		281.99				- 1		
X-Over Sub			1.22	66.33			- 1		30.29
216.00 mm OD / 73.00 r	mm ID			65.11	8" BAT Collar 203.00 mm OD / 12	7.00 mm ID	- 1	6.86	30.25
Jar 211.00 mm OD / 76	6 00 mm ID		10.17		* BAT Insert - SN :		- 1	0.00	
211.00 11111 0157 70	5.00 IIIII ID)II				- 1		
2 - 0 1 /4" D-:11 C-1	11			54.94			- 1		
2 x 8 1/4" Drill Col 210.00 mm OD / 70			18.89				- 1		
				36.05			1		26.40
Pony NMDC			2.32	30.03			- 1		
207.00 mm OD / 73	3.00 mm ID		2.32				- 1		
				33.73	Anadrill Telescope -	MWD	- 1	II	
MWD			6.86		213.00 mm OD / 13		- 1	8.03	
			ll .				- 1		
X-Over Sub 211.00 mm OD / 108.00	mm ID		0.47	26.87			- 1		
				26.40			- 1		
MWD			12.37				H		18.37
X-Over Sub				14.03			- 1		
203.00 mm OD / 76.00 r	mm ID		0.37	13.66			- 1		
Pony NMDC			2.90	13.00			- 1		
207.00 mm OD / 76	5.00 mm ID		2.90		Anadrill RAB-8 308.00 mm OD / 99	.00 mm ID	- 1	4.34	
Float Sub	ID		0.65	10.76	,		- 1		
203.00 mm OD / 83.00 r	mm ID			10.11			- 1		
Anadrill Mud Moto 279.00 mm OD / 19			9.71				- 1		
2 / 9.00 mmi OD / 19	7.00 IIIII 1D				1		- 1		
Hughes Christensen MXL-				0.40					

COMMENTS

RIH and drill to section TD of 2313.0 mMDRT. All recorded data was recovered on surface

Job No.: AU-FE-0005617882 Well No.: Wasabi-1 End of Well Report Page 8

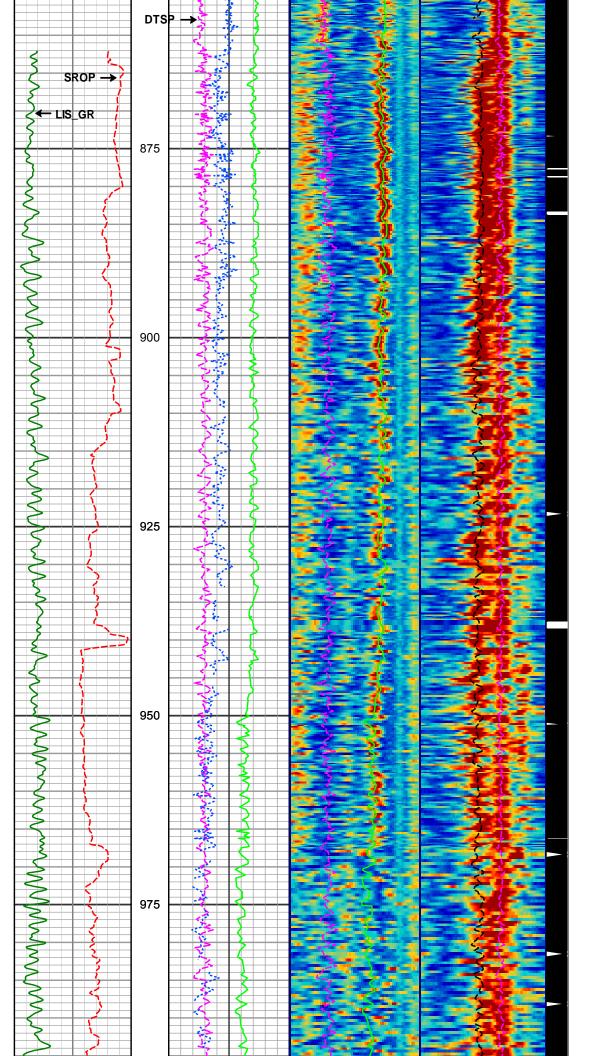
To To	ם ם ה	Country : Australia		
Total Depth MD Spud Date Run No. 100 200 300 300	Permanent Datum Log Measured From Drilling Measured From Drown Season Se	Field : Exploration		
O O O O O O O O O O O O O O O O O O O	linen: east east Mea	at: 38° 20' 1	8.16" South GDA94	/ _\
	t Da ired isure	Location .	49.15" East GDA94	
: 15-Feb : 15-Feb B Size 311,000 mm 311,000 mm	tum Froi d Fr	Well : Wasabi-1		
2,313 15-Fa Size .000 mi .000 mi	om	Company : Apache Energy	y Ltd	
2,313.00 m 15-Feb-08 15-Feb-08 Size 500 mm 8 000 mm 1 000 mm 1		Rig : West Triton		1:500
		OCATION		
TVD: 2	Sea loor loor loor 2,3		Cor Rig We	m
2,125.04 m 1 (MD) 1 T m 1797. 1 1900. 1 2313.	ea Level oor oor 2,313.00 m 02-Mar-08	Country DOE Nu Latitude Longitude UTM Ea	Company Rig Well	
173 199 23	-08 n	try Number)an	2
To 13.00		Country DOE Number Latitude : Lat: Longitude : Long UTM Easting =	~	
To 1797.00 m 2313.00 m	Elevatio 39.00 m	ı" 9:		
		OUNTRY : Australia OE Number : Latitude : Lat: 38° 29' 18.16" South GDA94 Longitude : Long: 147° 15' 49.15" East GDA94 UTM Easting = 522,993.59 m UTM Northing = 5730 063 35 m		o e
Run N Run N Rize Size 15,000 r	o bove	\ust	Ves Vas	<u></u>
	0.00 m Ve Perm No P	Australia 29' 18.16" S 0' 15' 49.15" 2,993.59 m 2,993.59 m	Apache E West Trit Wasabi-1 Explorati	7
	Above Permanent Datum MD LOG No. : BHI Unit		Apache Energy Ltd West Triton Wasabi-1 Exploration	HALLIEU BAT Bi-Ma
Pr-08 Size Casing F Weight 198.00 kgpm 101.00 kgpm	OG Darit	uth c	n n	BAT
Size Casii Casii Oo kgp	l atum	BDAS	₹ -	≟
Borehole Re Size Casing Record (MD) Weight F Weight 75.0 1.00 kgpm 75.0		94 4	.td	Bi-N
Borehole Record (MD) From Record (MD) From 75.00 m	Elev.			<u> </u>
hole Record From Jrd (MD) From 75.00 m	<u> </u>	욛		ု က မည္
		ner s		A F
	39 27 E-00	Other Services		JATON flodal Acousti
To To 135.00 m 857.00 m	Elev. KB DF 39.00 m GL WD 27.00 m Job No.: AU-FE-0005617882	ic es		Bi-Modal Acoustic
	7 7 7 1			
	882			
	1 N N N N N N N N N N N N N N N N N N N	WELL INFORM	ATION	
MWD Run Number	100	200	300	
MWD Run Number Date run completed	100 26-Feb-08	200 27-Feb-08	300 01-Mar-08	
MWD Run Number Date run completed Rig Bit Number	100 26-Feb-08 3	200 27-Feb-08 4	300 01-Mar-08 5	
MWD Run Number Date run completed	100 26-Feb-08 3 311	200 27-Feb-08 4 311	300 01-Mar-08	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm)	100 26-Feb-08 3	200 27-Feb-08 4	300 01-Mar-08 5 311	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m)	100 26-Feb-08 3 311 203 862.00 1,797.00	200 27-Feb-08 4 311 203 1,797.00 1,900.00	300 01-Mar-08 5 311 203 1,900.00 2,313.00	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time	100 26-Feb-08 3 311 203 862.00 1,797.00	200 27-Feb-08 4 311 203 1,797.00 1,900.00	300 01-Mar-08 5 311 203 1,900.00 2,313.00	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Drill/Wipe End Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m)	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Drill/Wipe End Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m) Bit TFA(in2) / Bit Type	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1 1.35 / Smith Mi616VBPX	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21 1.33 / HTC MXL-1X	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Drill/Wipe End Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m) Bit TFA(in2) / Bit Type Flow Rate (gpm)	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76 1.49 / Smith Mi616VBPX 1,070	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1 1.35 / Smith Mi616VBPX 1,103	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21 1.33 / HTC MXL-1X 1,079.00	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Drill/Wipe End Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m) Bit TFA(in2) / Bit Type	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1 1.35 / Smith Mi616VBPX	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21 1.33 / HTC MXL-1X	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Drill/Wipe End Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m) Bit TFA(in2) / Bit Type Flow Rate (gpm) Max AV (mpm) / CV (mpm) @ MWD Fluid Type Density (sg) / Viscosity (spl)	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76 1.49 / Smith Mi616VBPX 1,070 138.6 / 115.8 KCL Polymer 1.15 / 69.00	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1 1.35 / Smith Mi616VBPX 1,103 96.0 / 141.6 KCI Polymer 1.16 / 64.00	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21 1.33 / HTC MXL-1X 1,079.00 93.6 / 141.0 KCI Polymer 1.2 / 50.00	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m) Bit TFA(in2) / Bit Type Flow Rate (gpm) Max AV (mpm) / CV (mpm) @ MWD Fluid Type Density (sg) / Viscosity (spl) Filtrate CL (ppm)	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76 1.49 / Smith Mi616VBPX 1,070 138.6 / 115.8 KCL Polymer 1.15 / 69.00 48,000	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1 1.35 / Smith Mi616VBPX 1,103 96.0 / 141.6 KCI Polymer 1.16 / 64.00 40,000	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21 1.33 / HTC MXL-1X 1,079.00 93.6 / 141.0 KCI Polymer 1.2 / 50.00 48,000	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Drill/Wipe End Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m) Bit TFA(in2) / Bit Type Flow Rate (gpm) Max AV (mpm) / CV (mpm) @ MWD Fluid Type Density (sg) / Viscosity (spl) Filtrate CL (ppm) pH / Fluid Loss (cptm)	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76 1.49 / Smith Mi616VBPX 1,070 138.6 / 115.8 KCL Polymer 1.15 / 69.00 48,000 9.20 / 4.0	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1 1.35 / Smith Mi616VBPX 1,103 96.0 / 141.6 KCI Polymer 1.16 / 64.00 40,000 8.60 / 5.0	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21 1.33 / HTC MXL-1X 1,079.00 93.6 / 141.0 KCI Polymer 1.2 / 50.00 48,000 9.00 / 5.0	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m) Bit TFA(in2) / Bit Type Flow Rate (gpm) Max AV (mpm) / CV (mpm) @ MWD Fluid Type Density (sg) / Viscosity (spl) Filtrate CL (ppm)	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76 1.49 / Smith Mi616VBPX 1,070 138.6 / 115.8 KCL Polymer 1.15 / 69.00 48,000	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1 1.35 / Smith Mi616VBPX 1,103 96.0 / 141.6 KCI Polymer 1.16 / 64.00 40,000	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21 1.33 / HTC MXL-1X 1,079.00 93.6 / 141.0 KCI Polymer 1.2 / 50.00 48,000	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Drill/Wipe End Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m) Bit TFA(in2) / Bit Type Flow Rate (gpm) Max AV (mpm) / CV (mpm) @ MWD Fluid Type Density (sg) / Viscosity (spl) Filtrate CL (ppm) pH / Fluid Loss (cptm) PV (cP) / YP (pa)	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76 1.49 / Smith Mi616VBPX 1,070 138.6 / 115.8 KCL Polymer 1.15 / 69.00 48,000 9.20 / 4.0 19 / 12.45 4.1 / 1 0 / 0:92	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1 1.35 / Smith Mi616VBPX 1,103 96.0 / 141.6 KCI Polymer 1.16 / 64.00 40,000 8.60 / 5.0 18 / 18.19 4.8 / 0.8 0 / 0:92	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21 1.33 / HTC MXL-1X 1,079.00 93.6 / 141.0 KCI Polymer 1.2 / 50.00 48,000 9.00 / 5.0 16 / 18.67 4.1 / 0.75 0 / 0:92	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m) Bit TFA(in2) / Bit Type Flow Rate (gpm) Max AV (mpm) / CV (mpm) @ MWD Fluid Type Density (sg) / Viscosity (spl) Filtrate CL (ppm) pH / Fluid Loss (cptm) PV (cP) / YP (pa) % Solids / % Sand % Oil / Oil:Water Ratio Rm @ Measured Temp (degC)	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76 1.49 / Smith Mi616VBPX 1,070 138.6 / 115.8 KCL Polymer 1.15 / 69.00 48,000 9.20 / 4.0 19 / 12.45 4.1 / 1 0 / 0:92 N/A @ N/A	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1 1.35 / Smith Mi616VBPX 1,103 96.0 / 141.6 KCI Polymer 1.16 / 64.00 40,000 8.60 / 5.0 18 / 18.19 4.8 / 0.8 0 / 0:92 N/A @ N/A	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21 1.33 / HTC MXL-1X 1,079.00 93.6 / 141.0 KCI Polymer 1.2 / 50.00 48,000 9.00 / 5.0 16 / 18.67 4.1 / 0.75 0 / 0:92 N/A @ N/A	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m) Bit TFA(in2) / Bit Type Flow Rate (gpm) Max AV (mpm) / CV (mpm) @ MWD Fluid Type Density (sg) / Viscosity (spl) Filtrate CL (ppm) pH / Fluid Loss (cptm) PV (cP) / YP (pa) % Solids / % Sand % Oil / Oil:Water Ratio Rm @ Measured Temp (degC) Rmf @ Measured Temp (degC)	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76 1.49 / Smith Mi616VBPX 1,070 138.6 / 115.8 KCL Polymer 1.15 / 69.00 48,000 9.20 / 4.0 19 / 12.45 4.1 / 1 0 / 0:92 N/A @ N/A N/A @ N/A	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1 1.35 / Smith Mi616VBPX 1,103 96.0 / 141.6 KCI Polymer 1.16 / 64.00 40,000 8.60 / 5.0 18 / 18.19 4.8 / 0.8 0 / 0:92 N/A @ N/A	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21 1.33 / HTC MXL-1X 1,079.00 93.6 / 141.0 KCI Polymer 1.2 / 50.00 48,000 9.00 / 5.0 16 / 18.67 4.1 / 0.75 0 / 0:92 N/A @ N/A N/A @ N/A	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Drill/Wipe End Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m) Bit TFA(in2) / Bit Type Flow Rate (gpm) Max AV (mpm) / CV (mpm) @ MWD Fluid Type Density (sg) / Viscosity (spl) Filtrate CL (ppm) pH / Fluid Loss (cptm) PV (cP) / YP (pa) % Solids / % Sand % Oil / Oil:Water Ratio Rm @ Measured Temp (degC) Rmf @ Measured Temp (degC) Rmc @ Measured Temp (degC)	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76 1.49 / Smith Mi616VBPX 1,070 138.6 / 115.8 KCL Polymer 1.15 / 69.00 48,000 9.20 / 4.0 19 / 12.45 4.1 / 1 0 / 0:92 N/A @ N/A	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1 1.35 / Smith Mi616VBPX 1,103 96.0 / 141.6 KCI Polymer 1.16 / 64.00 40,000 8.60 / 5.0 18 / 18.19 4.8 / 0.8 0 / 0:92 N/A @ N/A	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21 1.33 / HTC MXL-1X 1,079.00 93.6 / 141.0 KCI Polymer 1.2 / 50.00 48,000 9.00 / 5.0 16 / 18.67 4.1 / 0.75 0 / 0:92 N/A @ N/A	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m) Bit TFA(in2) / Bit Type Flow Rate (gpm) Max AV (mpm) / CV (mpm) @ MWD Fluid Type Density (sg) / Viscosity (spl) Filtrate CL (ppm) pH / Fluid Loss (cptm) PV (cP) / YP (pa) % Solids / % Sand % Oil / Oil:Water Ratio Rm @ Measured Temp (degC) Rmf @ Measured Temp (degC)	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76 1.49 / Smith Mi616VBPX 1,070 138.6 / 115.8 KCL Polymer 1.15 / 69.00 48,000 9.20 / 4.0 19 / 12.45 4.1 / 1 0 / 0:92 N/A @ N/A N/A @ N/A	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1 1.35 / Smith Mi616VBPX 1,103 96.0 / 141.6 KCI Polymer 1.16 / 64.00 40,000 8.60 / 5.0 18 / 18.19 4.8 / 0.8 0 / 0:92 N/A @ N/A N/A @ N/A	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21 1.33 / HTC MXL-1X 1,079.00 93.6 / 141.0 KCI Polymer 1.2 / 50.00 48,000 9.00 / 5.0 16 / 18.67 4.1 / 0.75 0 / 0:92 N/A @ N/A N/A @ N/A	
MWD Run Number Date run completed Rig Bit Number Bit Size (mm) Tool Nominal OD (mm) Log Start Depth (MD, m) Log End Depth (MD, m) Drill or Wipe Drill/Wipe Start Date and Time Min Inc (deg) @ Depth (MD, m) Max Inc (deg) @ Depth (MD, m) Bit TFA(in2) / Bit Type Flow Rate (gpm) Max AV (mpm) / CV (mpm) @ MWD Fluid Type Density (sg) / Viscosity (spl) Filtrate CL (ppm) pH / Fluid Loss (cptm) PV (cP) / YP (pa) % Solids / % Sand % Oil / Oil: Water Ratio Rm @ Measured Temp (degC) Rmc @ Measured Temp (degC) Rmc @ Measured Temp (degC) Max Tool Temp (degC) / Source	100 26-Feb-08 3 311 203 862.00 1,797.00 Drilling 23-Feb-08 00:48 25-Feb-08 16:06 0.2 @ 886.60 32.52 @ 1,770.76 1.49 / Smith Mi616VBPX 1,070 138.6 / 115.8 KCL Polymer 1.15 / 69.00 48,000 9.20 / 4.0 19 / 12.45 4.1 / 1 0 / 0:92 N/A @ N/A N/A @ N/A N/A @ N/A	200 27-Feb-08 4 311 203 1,797.00 1,900.00 Drilling 26-Feb-08 22:25 27-Feb-08 08:47 32.89 @ 1,801.91 34.60 @ 1,831.1 1.35 / Smith Mi616VBPX 1,103 96.0 / 141.6 KCI Polymer 1.16 / 64.00 40,000 8.60 / 5.0 18 / 18.19 4.8 / 0.8 0 / 0:92 N/A @ N/A N/A @ N/A N/A @ N/A 58 / BAT	300 01-Mar-08 5 311 203 1,900.00 2,313.00 Drilling 28-Feb-08 03:44 01-Mar-08 05:30 34.34 @ 1,890.59 48.08 @ 2,243.21 1.33 / HTC MXL-1X 1,079.00 93.6 / 141.0 KCI Polymer 1.2 / 50.00 48,000 9.00 / 5.0 16 / 18.67 4.1 / 0.75 0 / 0:92 N/A @ N/A N/A @ N/A N/A @ N/A 65 / BAT	

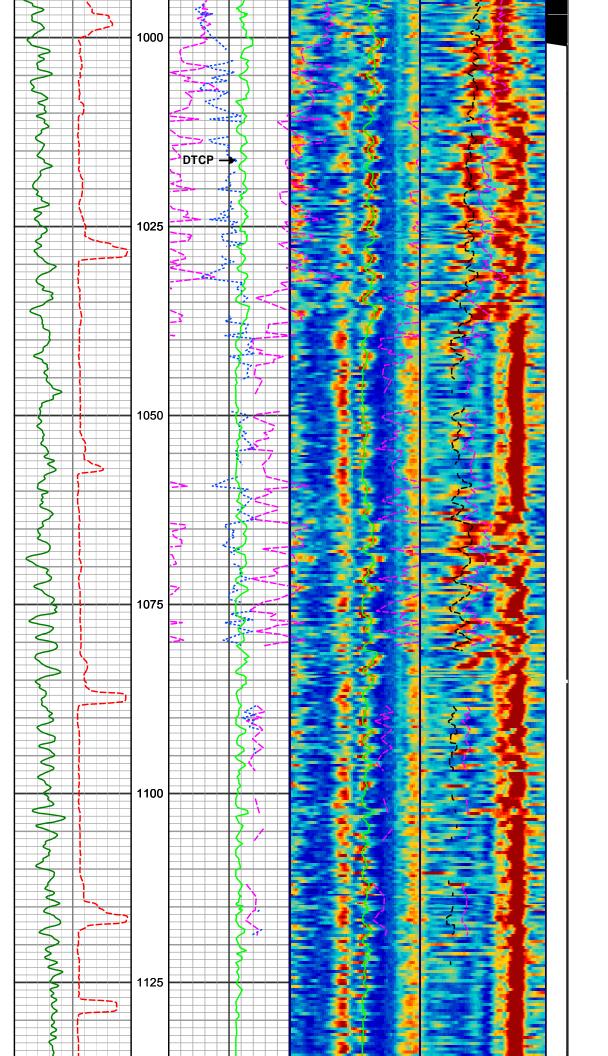
SENSOR INFORMATION

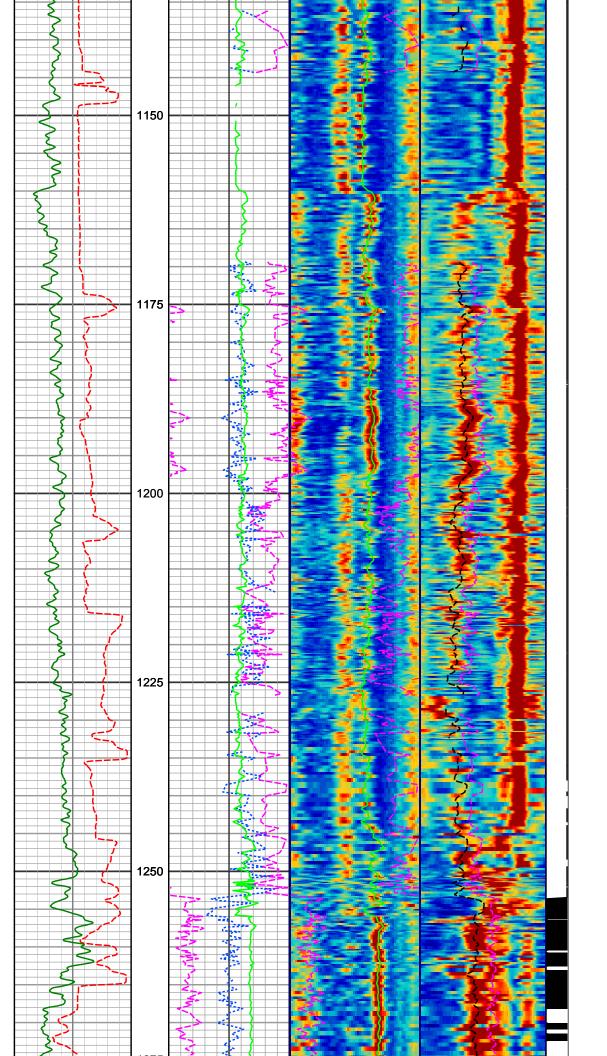
Sonic Sensor Information									
Tool Type	BAT	BAT	BAT						
Distance From Bit (m)	30.54	30.26	30.29						
Recorded Sample Period (sec)	16	16	16						
Sub Serial Number	163150	163150	163150						
Receiver Insert Serial Number	139060	139060	139060						
Transmitter Insert Serial Number	160293	160293	160293						
MIT File	R5Max_Run.mit	R5Max_Run.mit	R5Max_Run.mit						
Config File	R5Max_Run.cfn	R5Max_Run.cfn	R5Max_Run.cfn						
Real-Time Window (uspf)	N/A - N/A	N/A - N/A	N/A - N/A						
Battery Serial Insert Number	157038	157038	157038						
MCM Software Version	4.45	4.45	4.45						
DAQ1/DAQ2 Software Version	1	1	1						
DSM Software Version									

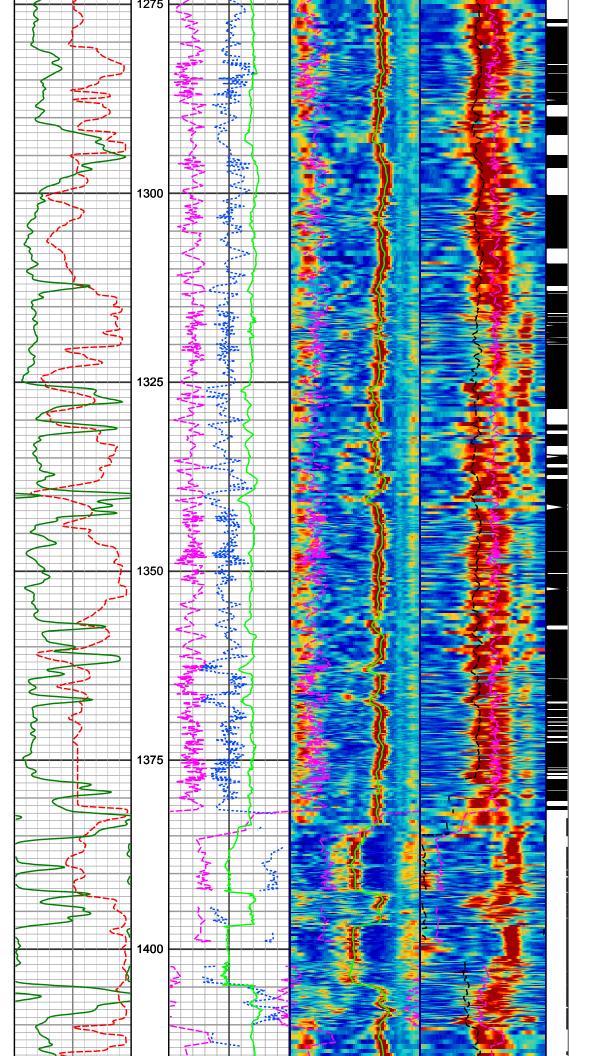
REMARKS

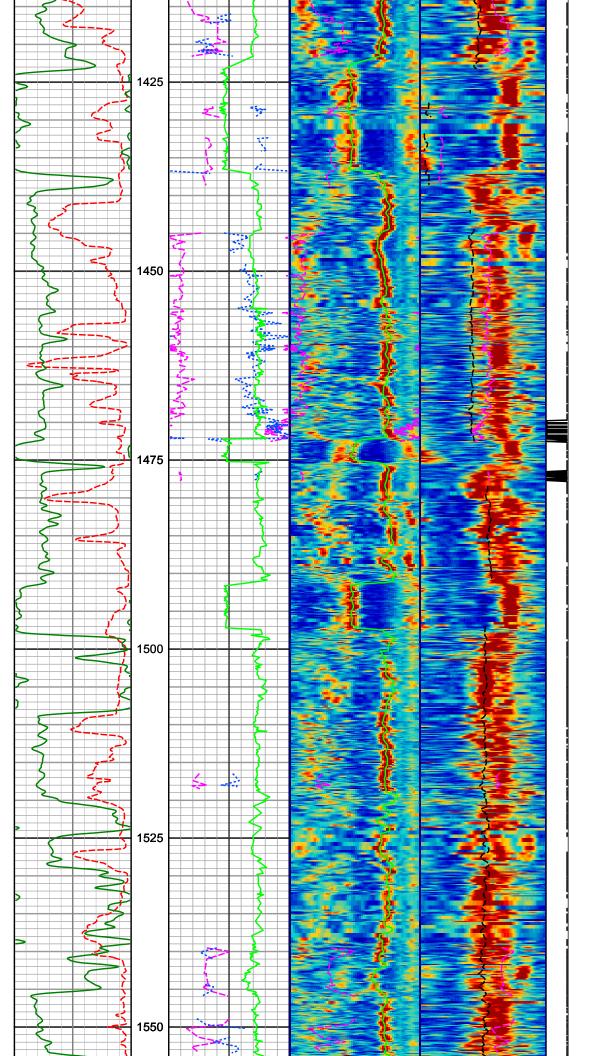
- 1. All depths are bit depthes and are referenced to the drillers tally unless otherwise noted as aquired from Anadrill.
- AV/CV is calculated at the MWD collar using powers law for water based muds.
- 3. Curve mnemonics used are:

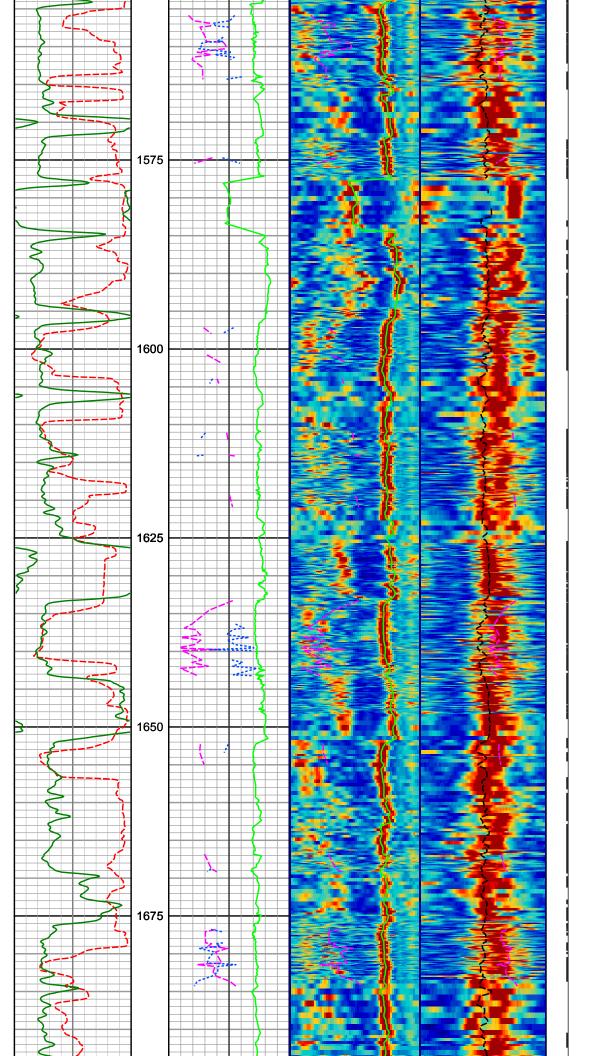

SROP: Smoothed Rate of Penetration (Anadrill), m/hr LIS_GR: Smoothed Gamma Ray(Anadrill), api

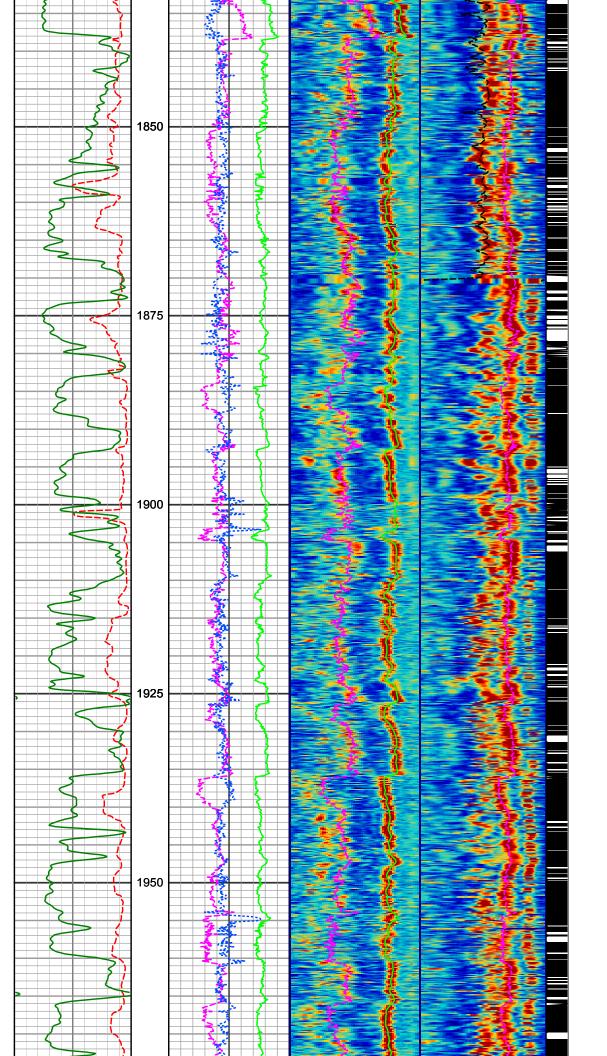

DTCP: Smoothed BAT Processed Compressional Slowness(Sperry), usec/ft
DTSP: Smoothed BAT Processed Shear Slowness(Sperry), usec/ft
VPVS: Smoothed BAT Compressional velocity to Shear Velocity ratio(Sperry)
DTIM: Smoothed BAT Processed Interface Mode Slowness(Sperry), usec/ft

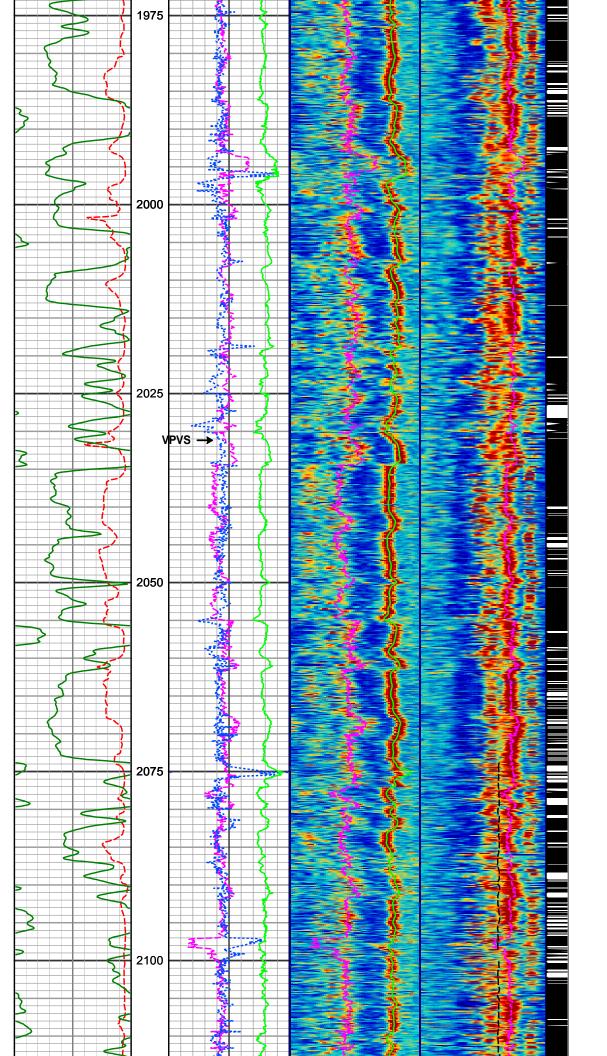

WARRANTY

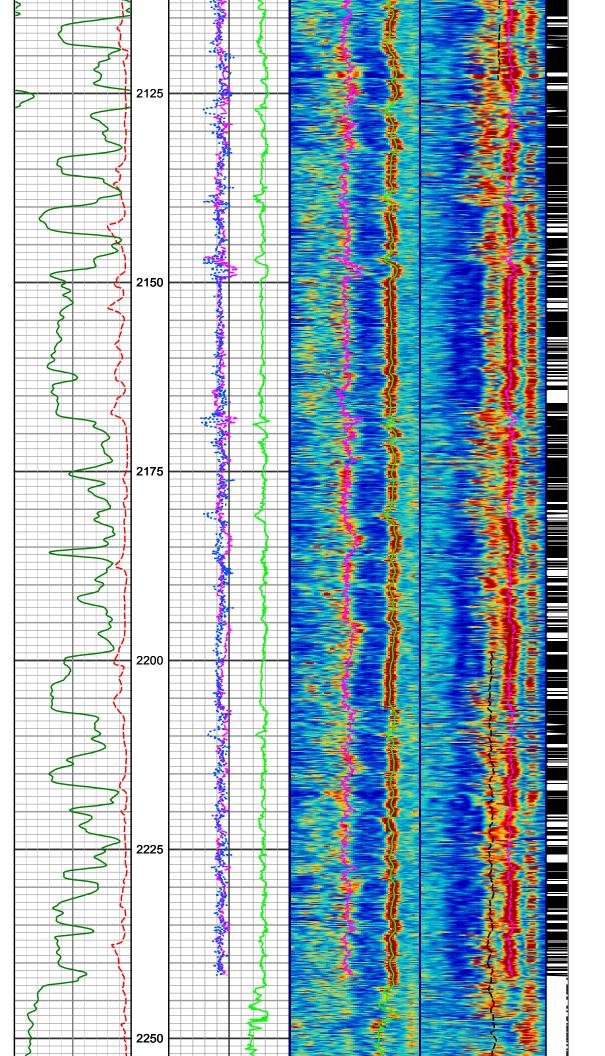

HALLIBURTON WILL USE ITS BEST EFFORTS TO FURNISH CUSTOMERS WITH ACCURATE INFORMATION AND INTERPRETATIONS THAT ARE PART OF, AND INCIDENT TO, THE SERVICES PROVIDED. HOWEVER, HALLIBURTON CANNOT AND DOES NOT WARRANT THE ACCURACY OR CORRECTNESS OF SUCH INFORMATION AND INTERPRETATIONS. UNDER NO CIRCUMSTANCES SHOULD ANY SUCH INFORMATION OR INTERPRETATION BE RELIED UPON AS THE SOLE BASIS FOR ANY DRILLING, SHOULD ANY SUCH INFORMATION OR INTERPRETATION BE RELIED UPON AS THE SOLE BASIS FOR ANY DRILLING, COMPLETION, PRODUCTION, OR FINANCIAL DECISION OR ANY PROCEDURE INVOLVING ANY RISK TO THE SAFETY OF ANY DRILLING VENTURE, DRILLING RIG OR ITS CREW OR ANY OTHER THIRD PARTY. THE CUSTOMER HAS FULL RESPONSIBILITY FOR ALL DRILLING, COMPLETION AND PRODUCTION OPERATION. HALLIBURTON MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE SERVICES RENDERED. IN NO EVENT WILL HALLIBURTON BE LIABLE FOR FAILURE TO OBTAIN ANY PARTICULAR RESULTS OR FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, RESULTING FROM THE USE OF ANY INFORMATION OR INTERPRETATION PROVIDED BY HALLIBURTON.

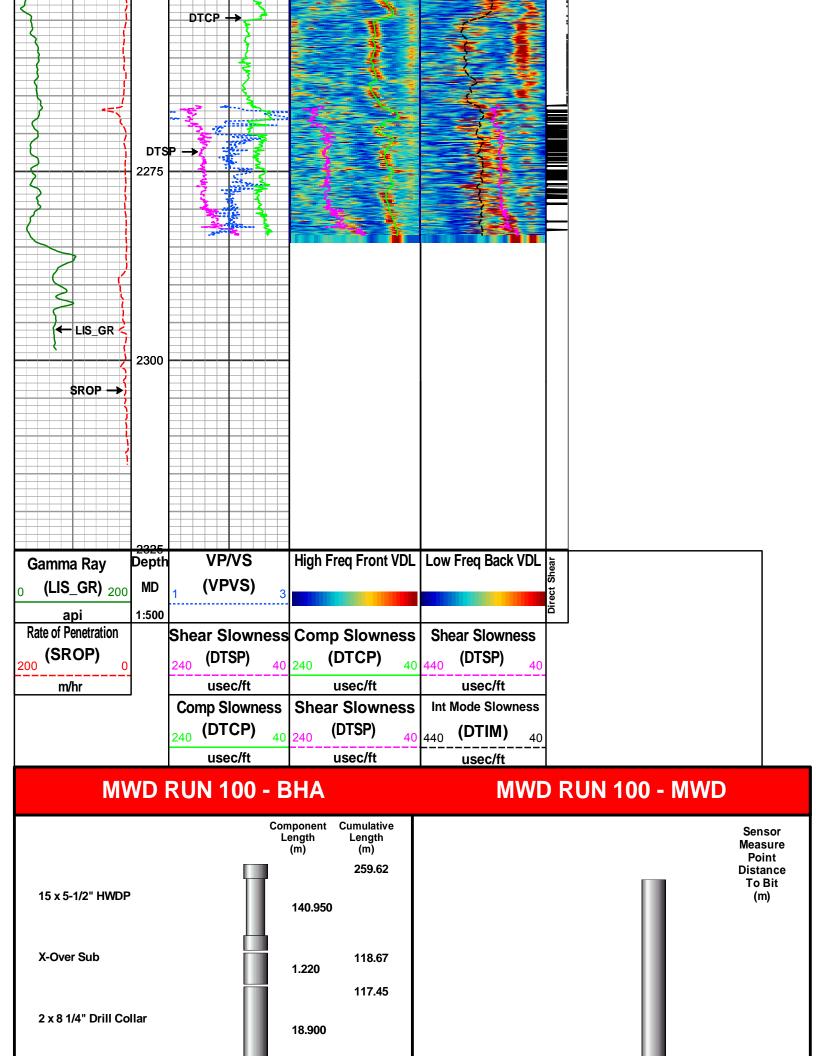

			Comp Slowness	Shear Slowness	Int Mode Slowness
			₂₄₀ (DTCP) ₄₀	₂₄₀ (DTSP) ₄₀	440 (DTIM) 40
			usec/ft	usec/ft	usec/ft
Rate of I	Penetration		Shear Slowness	Comp Slowness	Shear Slowness
200 (SF	ROP) ₀		₂₄₀ (DTSP) ₄₀	₂₄₀ (DTCP) ₄₀	440 (DTSP) 40
n	n/hr		usec/ft	usec/ft	usec/ft
Gamn	na Ray	Depth	VP/VS	High Freq Front VDL	Low Freq Back VDL
o (LIS	S_GR) ₂₀₀	MD	1 (VPVS) 3		
	api	1:500			

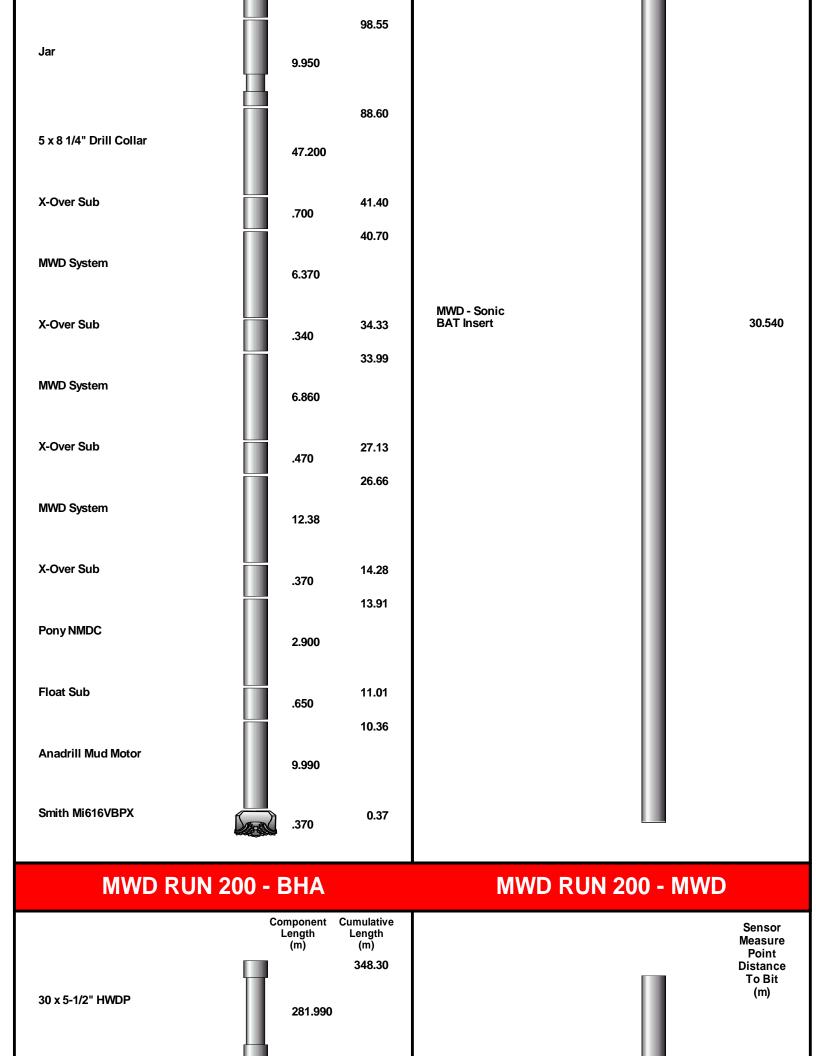


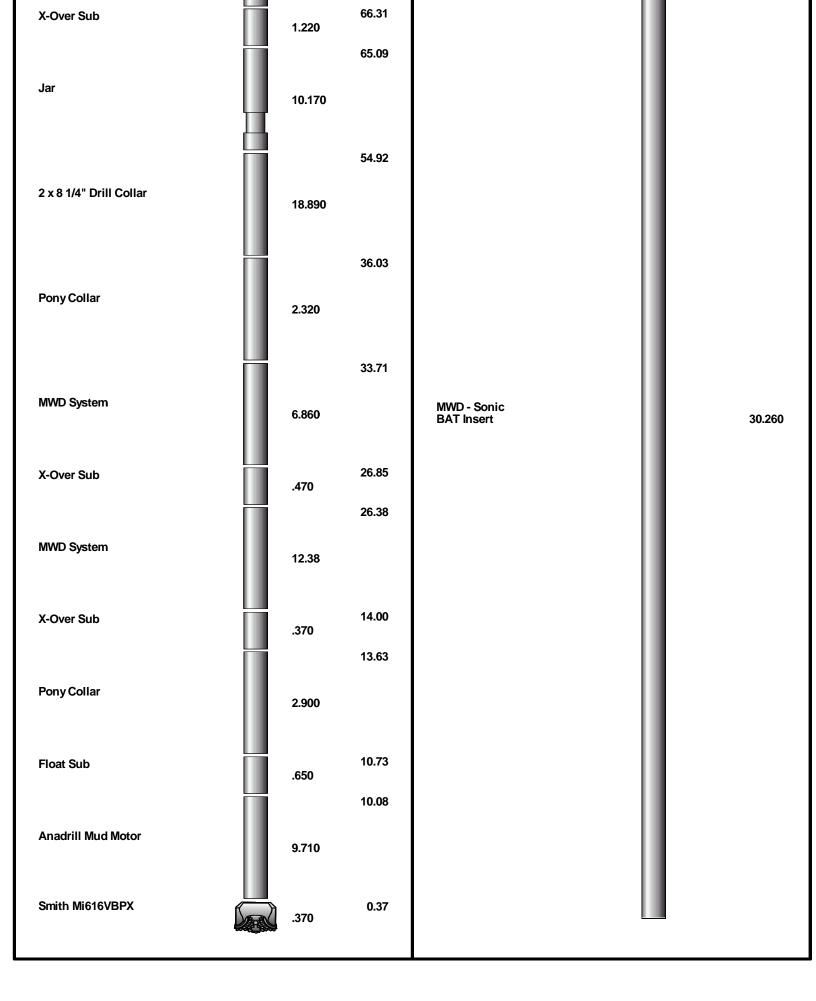












Apache Northwest Pty Ltd

WIRELINE LOGGING REPORT

GENERAL WELL DATA

Well Name : Wasabi-1

Permit: VIC/P-58

Latitude: 038° 29' 18.157" South Longitude: 147° 15' 49.147" East Easting (m): 522,993.588 E

Northing (m): 5,739,963.350 S

UTM Zone: 55

Geo. Datum: NAD83, GDA94

Ellipsoid: Geodetic Reference System

1980

Suite: 1

Date 1st Log: 01-Mar-2008

Date Last Log:

Depth Ref.: Recorded LWD GR

Depth Ref. Elev.: 39.0 (m) **Service Comp.**: Schlumberger

Water Depth: 27.0
With existes hank, H. Little

GL Elevation:

Enĝibeeris A. Dandi, M.

Dawson

Rig:

HOLE DATA

Hole Size: 311 (mm)

Driller's Depth: 2,313.0 (m)

Logger's Depth:

Survey Type : Static MWD

 Seabed Temp :
 15.0 (°C)

 Surface Temp :
 17.0 (°C)

 50.0 (°C)
 50.0 (°C)

Max BHT: 59.0 (°C)

Max Hole Dev : 48.0 (°)

Max Dev Depth : 2,243.0 (m)

West Triton

27.0 (m)

Hole Problems: Tight hole experienced from 2194-2166m, 2082-1945m &1847-1837m on MAD run.

Tight hole from 2186.0 - 2115.0 mMDRT

required pump / reaming whilst POOH on trip prior to first run.

Hung up at 1500m on MDT & CST VSI hung up at 1390.0 mMDRT.

Comments: Rig Heading 119.76° True 340 mm (13 3/8") casing shoe at 857.0 mMDRT

CASING DATA						
Casing String	Shoe Depth (mMDRT)	Shoe Depth (mTVDRT)	Casing OD (mm)	Casing ID (mm)	Weight (lbm/ft)	Hole Size (mm)
20" Conductor	101.1	101.1	508	476	129.70	660
13 3/8" Surface Casing	857.0	857.0	340	312	67.90	406

WATER BASE MUD DATA											
Date Mud	Date Time	Circ	Mud Type	MW	KCI	CI	Barite	Rmf	Rm	Rmc	
Check	Circ Stopped	Time									
		(h)		(sg)	(%)	(mg/L)	(%)	(ohm.m)	(ohm.m)	(ohm.m)	
01-Mar-2008	1-Mar-2008 6:4	1.00	KCL Polymer	1.15	10.0	49000.0	4.40	0.070 @ 20.0°	0.080 @ 20.0°	0.090 @ 20.0 °	
02-Mar-2008	3-Mar-2008 10:2	0.70	KCL / Polymer	1.21	9.0	49000.0	5.00	0.079 @ 22.1 °	0.091 @ 22.2°	0.109 @ 21.8°	
03-Mar-2008	3-Mar-2008 10:2	0.80	KCL /Polymer	1.24	10.0	51000.0	5.00	0.080 @ 22.1 °	0.091 @ 22.2°	0.109 @ 21.8°	
04-Mar-2008	5-Mar-2008 13:1	3.50	KCL / Polymer	1.23	10.0	50000.0	5.00	79.000 @ 22.1	0.091 @ 22.2°	109.000 @ 21	

WIRELINE RUN TEMPERATURE DATA

Date of I	Mud Check: 01-Mar-2	2008 Date / Tin	ne Circ. St	opped: 0	1-Mar-20	08 6:45	Circ. Time: 1	1.00 (h)	
Run #	Run Date	Tool String				Max BHT	Max BHT TVD Depth (m)	Date Time Logger on Bottom	Time Since Circ. Stopped (h)
1 2	01-Mar-2008 02-Mar-2008	VSI PEX-SP-MSI	P			60.0 59.0	1326.0 1388.5	02-Mar-2008 3:34 02-Mar-2008 13:14	20.82
Date of Mud Check: 03-Mar-2008 Date / Time Circ. Stopped: 03-Mar-2008 10:20 Circ. Time: 0.80 (h)									
Run #	Run Date	Tool String				Max BHT	Max BHT TVD Depth (m)	Date Time Logger on Bottom	Time Since Circ. Stopped (h)
3 4	04-Mar-2008 03-Mar-2008	MDT CST				60.0 61.0	1437.1 1472.5	04-Mar-2008 15:19 04-Mar-2008 21:44	28.98 35.40
Date of I	Mud Check: 04-Mar-2	2008 Date / Tin	ne Circ. St	opped: 0	5-Mar-20	08 13:10	Circ. Time :	3.50 (h)	
Run #	Run Date	Tool String				Max BHT	Max BHT TVD Depth (m)	Date Time Logger on Bottom	Time Since Circ. Stopped (h)
5	05-Mar-2008	VSI through I	Drill Pipe.					05-Mar-2008 17:00	3.83
WIRELI	NE RUN SUMMARY	DATA							
Run #	Tool String		Log From Depth (m)	Log To Depth (m)	From Depth (m)	Repeat To Depth (m)	Comments		
2	VSI PEX-SP-MSIP		1385.5	70.1 66.0	792.0 1350.0	1250.0	Tools hung there. Total mMDRT. Check shot PEX-SP-MS	hung up on RIH at 1390.0 n	o surface from le at 540.0
3	MDT		1440.1	1268.5			up as per OOWL Sonic from hang point to surface Preliminary logging program - 13 pre tests (1440m-1268.5m) 2 sample points - 3 sample chambers used. Last on bottom circulation time 10:20 am 03/03/2008 Last circulation time following ADN logs at 1740.0 mMDRT - 21:30 03/03/2008 MDT 13 pretests completed. 9 Good tests - 3 no seal & 2 flow line blockages.		
4 5	CST VSI through Drill Pipe	.	1477.2 2300.0	1250.0 1265.5			CST: 30 cor RIH open er Last circulat every 30min	chambers taken at 1328m. res, 29 recovered. Indeed drill pipe and circulated ion 13:10pm 05/03/2008. Mas during logging operations ydrostatically stuck.	ove drill pipe

Survey type: Zero Offset VSP survey

Company: Apache Northwest Pty Ltd

Well: WASABI-1

Field: Apache/VIC/P-58/WASABI-1

Location: Bass Strait

Country: Australia

Run: 1 & 5

Date: March 2&5 2008

Recorded by: A. Dandi/M.Dawson/K. AlBarhi QC & Reported by: S. Nakanishi /A. Dandi

Witnessed by: H.Little / A.Cruickshank

Report Contents

Section	Page Number
Introduction Well Information Well Sketch Well Inclinometry List Tool Sketch Tool Configuration Operating Time Summary VSP Survey Information Source Information Well Profile Geometry Information (X-Y) Geometry Information (X-Z) Geometry Information (Y-Z) Time/Depth Plot Velocity Plot Stack Summary Listing	3 4 5 6 7 8 9 10 12 13 14 15 16 17 18
Field Processing Report Process flow and parameter Process Parameter Raw Stack (Z) plot Raw Stack (X) plot Raw Stack (Y) plot Raw Stack (Z) Magnified plot Raw Stack (TRY) plot Raw Stack (HMX) plot HMX angle plot TRY angle plot VSP Raw Stack (Z) FK VSP Raw Stack (Z) FZ VSP Downgoing plot VSP Upgoing plot VSP Waveshape Decon Downgoing plot VSP Waveshape Decon Upgoing FK plot VSP Waveshape Decon Upgoing FK plot VSP Corridor Stack Output plot	26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
Source Signature QC Report Amplitude QC Report Shot and Observers Report GR Correlation Log Report Tidal Water Level Report Tool Evaluation Test Report	45 48 56 68 118 121

Client: Apache Northwest Pty Ltd Field: Apache/VIC/P-58/WASABI-1

Introduction

A borehole seismic survey was recorded in suite 1 Run1 & 5 in the deviated (max. 48 deg) offshore exploration well Wasabii-1 on 02 & 05 March 2007. This survey included rig source VSP measurements from 2300 m MD to 70 m MD. The data were acquired using 4 shuttles VSIT-G (15.24 m spacing) downhole.

Run1 was unable to pass below 1390 m MD due to the hole condition. VSP survey was made from OH (12 $\frac{1}{4}$ inch) and through 13 3/8 inch CSG. The survey interval was from 1385 m MD to 70 m MD. Run2 was conducted through Drill-Pipe with Slim-VSI configuration. The survey interval was from 2300 m MD to 1280 m MD). This report combined two runs.

Data Acquisition

A parallel cluster air gun (2 x 150 cu. Inch G-Gun) was deployed at fixed 25 m offset from the well head with an azimuth of 29 deg. The guns were submerged from a buoy to 5.4 meters below water surface. 2 hydrophones were deployed 5 meters below the center of the gun cluster. The detail of the source set-up is explained in the source information page.

The cluster gun was auto tuned using TGS-8 gun controller during the survey.

QC shots were acquired at 1998.7 m MD and 1325.5 m MD while RIH. A minimum good 5 shots were recorded for each VSP level.

GR log was recorded simultaneously during the survey. Depth offset was within 1.0 m comparing with reference log (LWD GeoVision 01 March 2008).

Data Quality

Overall data quality is good. Good data quality of run 1 was obtained till very shallow depth (70 m MD) The data from run 2 (through drill-pipe) has high frequency (120 Hz) harmonic noise in some intervals. Ringing noise is observed dominantly above 1700 m MD, where the drill-pipe has less coupling to the borehole in less deviated section. Transit time discrepancy between two runs was observed within 2 msec.

Transit Time Measurement

The measured transit time corresponds to a difference between the surface reference time and arrivals recorded by the downhole sensors. The surface reference time is the Hydrophone signal deployed with the air gun. First break picking algorithms were applied on the transformed geophone data using an inflection point tangent algorithm.

Transit Time Correction to Datum

The correction of the survey geometry and a static shift were applied to the stack data in order to obtain vertical travel time using simple straight path method. The downhole receiver positions are corrected using well directional survey. A surface velocity of 1524 m/sec was used for static correction. No Tide correction was applied in this report.

Depth correction +0.9 m in Run 1 and -0.4 m in Run5 were made. Additionally correction of receiver spacing (15.12 m to 15.24 m) was applied to each receiver depth in this report as well as the digital data (SEG-Y and LDF).

Quick VSP processing is provided in this report for QC purpose.

Well: WASABI-1

Well Information

Company	Apache Northwest Pty Ltd
Well	Wasabi-1
Field	Apache/VIC/P-58/Wasabi-1
Country	Australia
State	Victoria
Logging Date	2-Mar-08
Run Number	1,5
Service Order	AUSL08349210
Well Head (Latitude)	38 29' 18.157" S
Well Head (Longitude)	147 15' 49.147" E
Well Head (X Coordinate)	E 522993.588 m
Well Head (Y Coordinate)	N 5739963.350 m
Total Depth - Driller	2313m
Total Depth - Logger	Not Tagged
Maximum Hole Deviation	48 deg
Azimuth of Maximum Deviation	320.7 deg
Program Version	15C0-309
Bit Size	12.25"
Recorded by	K. Barhi/A. Dandi/M. Dawson
Witnessed by	A. Cruickshank/ H. Little

Elevation Information

Permanent Datum	AHD
Elevation Permanent Datum	0.0 m
Above Permanent Datum	39.0 m
Drilling Measured From	Drill Floor
Derrick Floor	39.0 m
Ground Level	-27.0 m
Kelly Bush	39
Log Measured From	Drill Floor
Elevation Log Zero	39.0 m

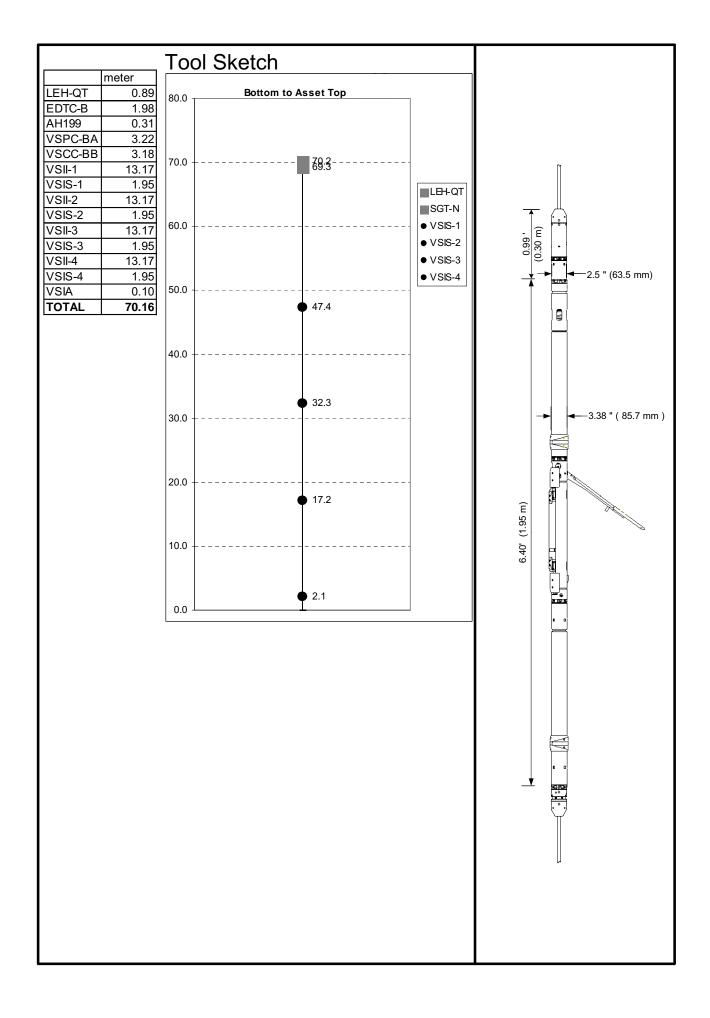
Depth Corrected Information

Water Velocity	1524.0 m/s
Seismic Reference Datum	0.0 m

Remarks

Log Correlated to MWD Log Dated 1.Mar.2008, Wasabi.1 GEOVISION Resistivity RM 200.
Maximum Recorded Temperature was 59 degC taken from thermometers in Logging Head.
Tools got hold up @ 1390m MD. Client decided to start the survey from 1390m to surface.
Additional mud properties taken from Mud Report dated 1.Mar.2008:
Chlorides = 49,000 mg/L.
KCL = 10 (% by Wt.), Barite = 4.4 %.

Well: WASABI-1


Client: Apache Northwest Pty Ltd

Well: Wasabi-1

Field: Apache/VIC/P-58/WASABI- Rig Name: West Triton
State: Victoria Reference Datum: AHD
Country: Australia Elevation: 39.0 m

Country: Australia		Elevation:	39.0 m	
Production String	(in) (m) OD ID MD	Well Schematic	(m) (in) MD OD ID	Casing String
Kelly Bushing Elevation Derrick Floor Elevation Mean Sea Level Selamic Gun depth below MSL	39.0 39.0 0.0 5.4		27.0 20.000 101.1 20.000	Casing String Casing Shoe
All depths are driller's depths.			857.0 13375 857.0 12250	Casing Shoe Borehole Segment

Well Inclinometry List					
Measured Depth	Inclination	Azimuth	True Vertical Depth		
(m)	(deg.)	(deg.)	(m)		
0.00	0.00	0.00	0.00		
115.45	0.14	336.08	115.45		
142.86	0.18	296.21	142.86		
170.39	0.09	303.79	170.39		
201.95	0.09	130.71	201.95		
229.75	0.10	88.12	229.75		
494.63	0.28	191.25	494.63		
553.43	0.48	178.29	553.43		
700.75	0.84	171.77	700.74		
759.92	0.78	172.15	759.90 700.45		
789.17	0.56	166.34	789.15		
818.74 886.60	0.38 0.20	176.04 232.91	818.72 886.58		
1034.55	0.55	198.33	1034.52		
1180.90	0.38	233.51	1180.87		
1239.98	3.38	334.13	1239.92		
1270.01	6.32	334.23	1269.83		
1298.75	8.02	326.45	1298.35		
1328.72	8.15	333.60	1328.02		
1358.00	9.08	336.28	1356.97		
1388.32	11.22	337.32	1386.82		
1447.39	16.50	340.87	1444.15		
1476.79	18.71	341.36	1472.17		
1506.00	21.47	336.96	1499.60		
1535.79	23.81	336.52	1527.09		
1564.88	26.29	336.35	1553.44		
1594.25	28.63	333.72	1579.50		
1624.03	29.21	334.37	1605.57		
1653.53	29.76	330.72	1631.25		
1683.37	30.78	329.89	1657.02		
1712.48	31.44	331.04	1681.95		
1741.60	32.10	330.46	1706.70		
1770.76	32.52	328.16 325.39	1731.35 1757.56		
1801.91 1831.13	32.89 34.60	325.39	1781.86		
1860.48	34.24	324.51	1806.07		
1890.59	34.34	324.56	1830.95		
1919.28	39.56	321.67	1853.87		
1948.88	41.97	319.68	1876.29		
1978.21	44.07	317.65	1897.73		
2008.18	45.45	317.25	1919.01		
2037.55	46.14	317.73	1939.49		
2066.69	46.95	318.03	1959.53		
2096.38	47.60	318.28	1979.67		
2125.42	47.49	318.95	1999.28		
2155.49	47.85	318.70	2019.53		
2185.00	47.98	319.61	2039.30		
2214.22	48.00	319.92	2058.86		
2230.00	48.04	320.29	2069.41		
2243.21	48.08	320.67	2078.24		
2272.78	47.76	323.36	2098.06		
2313.00	48.00	323.50	2125.04		

Downhole Equipment Information

TIGHT C
VSIT-G
WASM-AB 912 ,TGS-8
EDTC-B, EDTH-B 8378
4
15.24 m
No
GAC-D 3-axis orthogonal
0.5 V/G 3%
20 Hz
N/A
1500 Ohms 3% @25 degC
> 105 dB at 36 dB
<-90 dB
0.3 Hz, -6 dB/Oct
None
Averaging by surface software
Linear phase at down hole
+- 0.01 dB
<-130 dB
80% of Nyquist frequency
<-110 dB
ENP 08
ENP 08
ENP 100
ENP 94
ENP 93
ENP 87
ENP 96
ENP 96
ENP 98
ENP 95
ENP 19

Operation Time Summary

DATE	Time Start	Time	OPERATION
		Taken Hr	
		: min	
Run 1			ZVSP in OH
02-Mar-08	0:10	0:35	JSA and waiting for Rig Floor to be cleared for Rig Up
	0:45	0:40	Rig Up
	1:25	0:03	Surface Check
	1:28	0:47	RIH
	2:15	0:10	QC Shot @ 791.9m
	2:25	0:28	RIH
	2:53	0:22	Tool hold up @ 1393m bottom shuttle depth
	3:15	0:14	Log up for correlation
	3:29	0:09	RIH
	3:38	3:36	Start 1st shot @ 1385.5m
	7:14	0:16	POOH
	7:30	0:17	Finish lay down tool string
	7:47	0:00	Waiting on client decision, preparation for next run
Run 2			ZVSP Through Drill Pipe
05-Mar-08	10:45	0:14	JSA
	11:00	2:15	Rig Up Sheave Wheels
	1:15	0:30	Start picking up tools
	1:45	0:42	Pass logging head through ball valve, and move drill pipe
	2:28	0:26	RIH
	2:55	0:03	Moving drill pipe @ 536m
	2:58	0:22	RIH/ Guns deployed in water
	3:21	0:03	Moving drill pipe @ 1043m
	3:25	0:22	RIH
	3:48	0:02	Moving drill pipe @ 1325.5m
	3:50	0:11	Start QC shot @ 1325.5m
	4:01	0:15	RIH
	4:17	0:02	Moving drill pipe @ 1698.5m
	4:20	0:18	RIH
	4:38	0:06	QC Shot @ 1998.7m
	4:45	0:02	Moving drill pipe @ 1998.7m
	4:47	0:14	RIH
	5:02	3:16	Logger @ bottom, Start VSP survey
	8:19	0:56	POOH
	9:15	0:54	Rig Down
1	10:10	10 =0	Rig down completed, well released
		18:50	HRS -TOTAL OPERATING TIME

Borehole Seismic Source Information

	Well Name: ₩	Taylor/ K. Barhi/ A. asabi-1 'est Triton	Dandi/ M. Dawson Date: 02-N	/lar-2008	
Geometrical Coordinates> <utm coordinates=""></utm>	_	17 15' 49.146" E 22993.588 E	Latitude: 38 29' 18 Northing: 5379963.		
Permanent Datum: Log Measured From:		Elev. 39.0		Unit: m	
SRD (Seismic Reference Water Depth: 27.0	Datum): MSL	Elev. 0.0	from SLB zero:	39.0 (SRDS)	
	ujunanju.	N (Grid)	RIG Heading: Rig Crane used: Rig Crane azimuth (from	Port side Rig Heading):	119.8 deg Starboard side 135.0 deg
_			Gun Azimuth (Grid N	lorth):	29.0 deg (GAZI)
The state of the s			Hy1 Azimuth (Grid N Hy2 Azimuth (Grid N Hy3 Azimuth (Grid N	lorth):	29.0 deg 29.0 deg deg
	Epil 1		Gun (Offset:	25.0 (GOFF)
		SLB Z	ero Hydrophone-1 (Hydrophone-2 (Hydrophone-3 (Offset:	25.0 25.0
		▼ Perm.	Datum		
			Surface Velocity:	1524 m/s (SVEI	_)
Gun Off	fset				
Cluster Gun Type: ✓ WSGC-F	P90 WSGC-T9	Gun Type:	✓ WSG-G150 (G-Gun	150cu.inch)	
		GU	WSG-G250 (G-Gun IN-1 sn: 54537 IN-2 sn: 54530 IN-3 sn: 000000	250cu.inch)	
GUN-1	GUN-1	Gun Depth	from Local Tide 5.4	Gun De	epth from SLB 44.4 (GDSZ)
	dia .	Hydrophor Hydrophor Hydrophor			
	GUN-3 GUN-2	Hy 1 Depth	n from Gun Hy 1 Depth 5.0	from LT Hy	1 Depth from SLB zero 49.4
	3014-2	Hy 2 Depth			2 Depth from SLB zero 49.4
		Hy 3 Depth			3 Depth from SLB zero
Air Gun Firing	Pressure: 1800 psi	Ac	cumulator Pressure (Inlet p	ressure): 2400 p	osi
Source of Air Air Controller	supply: Rig Suppl (Regulator) Type: WA		sn: 000000		
Sea Condition	Sea Condition: cal	m (rippled) W a	ve Height: 0.0		
т	ide Table available:	✓ Yes	No		
HSE	Safe Distance: 0	.0			
Observation	of Marine Mammals Marine Mammals sight		are the curvey	Yes ✓ No	

Borehole Seismic Gun Tuning Information

Surface Sensor Channels / Gun Controller

WSAM (WSI) sn:	WSAM	:000000	o / WSI	:000000)
		Gun I	No TB	Hy No	SSPS
S1 (W	SI-SS2)			1	\checkmark
S2 (W	SI-SS3)			2	
S3 (W	SI-SS4)	1	\checkmark		
S4 (W	SI-SS5)	2	\checkmark		
S5 (W	SI-SS6)				
S6 (W	SI-SS7)				

TGS-8	sn:	RL:000000 SL:000000			
		Gun No	TB	Hy No	
	Ch1	1	✓		
	Ch2	2	\checkmark		
	Ch3				
	Ch4				
	Ch5				
	Ch6				
	Sig			1	
	Aux1 S	Sig			
	Aux2 S	Sig			
	P1	Depth S		Pres. S.	
	P2	Depth S		Pres. S.	
	P3	Depth S		Pres. S.	
	P4	Depth S		Pres. S.	

Cluster Gun Tuning / Quality Control

Tuning Sensor used
√ Time Break Sensor
Hydrophone

WSI	Gun No	Gun Delay(ms)
FS1	1	30.0
FS2	2	30.0
FS3		0.0

TGS-8	Gun No	Gun Delay(ms)	Threshold(v)
Ch1	1	0.0	0.5
Ch2	2	0.0	0.5
Ch3		0.0	0.5
Ch4		0.0	0.0
Ch5		0.0	0.0
Ch6		0.0	0.0

ClusterTuning (Break Time of Tuning Sensors)

	FS1 / Ch	FS2 / Ch	FS3 / Ch
Shot-1	0.0	0.0	0.0
Shot-2	0.0	0.0	0.0
Shot-3	0.0	0.0	0.0
Shot-4	0.0	0.0	0.0
Shot-5	0.0	0.0	0.0
Shot-6	0.0	0.0	0.0
Shot-7	0.0	0.0	0.0
Average	0.0	0.0	0.0

Quality Check Surface Signals / Filling Time (air Regulator)

	S1 Time Break	/ PP	S2 TT(ms) /	PP	S3 TT(ms) /	PP	S4 TT(ms) /	PP	S5 TT(ms) /	PP	S6 TT(ms) / PP		Filling Time (sec)
Shot-1	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0
Shot-2	0.0 /	0	0.0 /	0	1.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0
Shot-3	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0
Shot-4	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0
Shot-5	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0

Other Logs Information

Sonic Log:	<service name=""></service>	Interval:	from	0.0	to	0.0	Date:	dd/mmm/yy
Density Log:	<service name=""></service>	Interval:	from	0.0	to	0.0	Date:	dd/mmm/vv

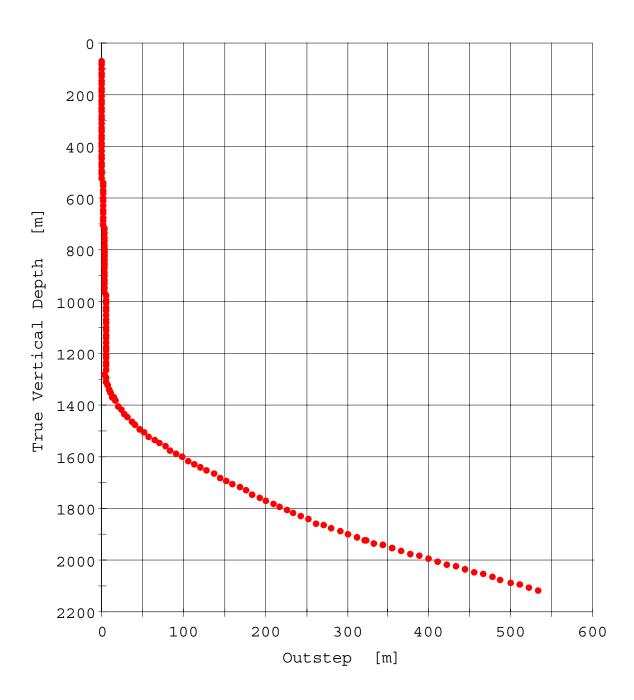
Remarks

APG BHS Job Sheet V4c AirgunZVSP by SN $\,$

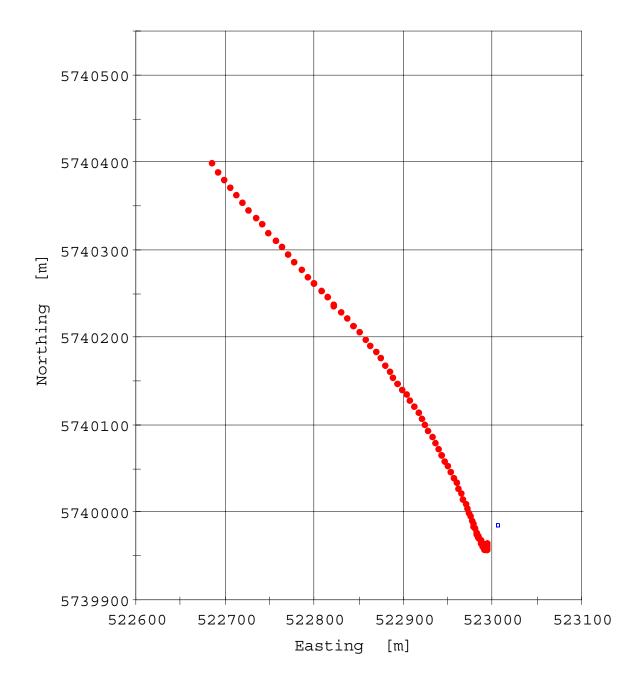
Logging date: 4-Mar-2008 Page 11 Schlumberger

Client: Apache Northwest Pty Ltd

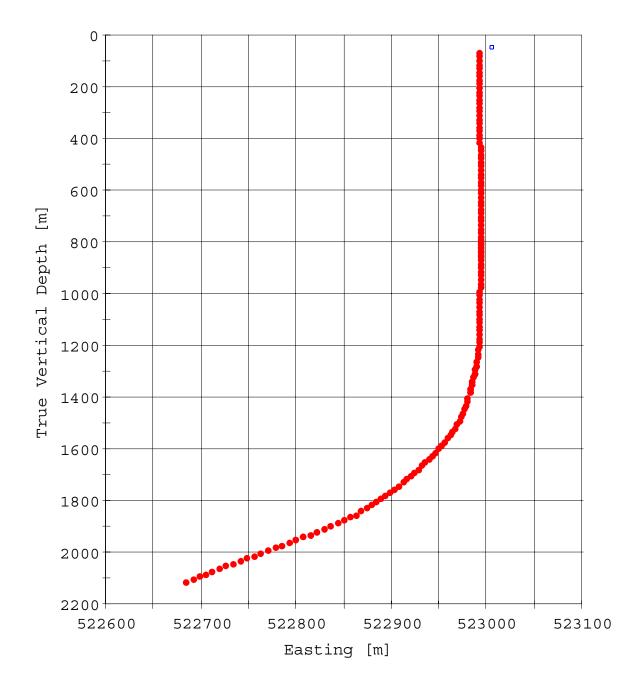
Field: Apache/VIC/P-58/WASABI-1


General Information

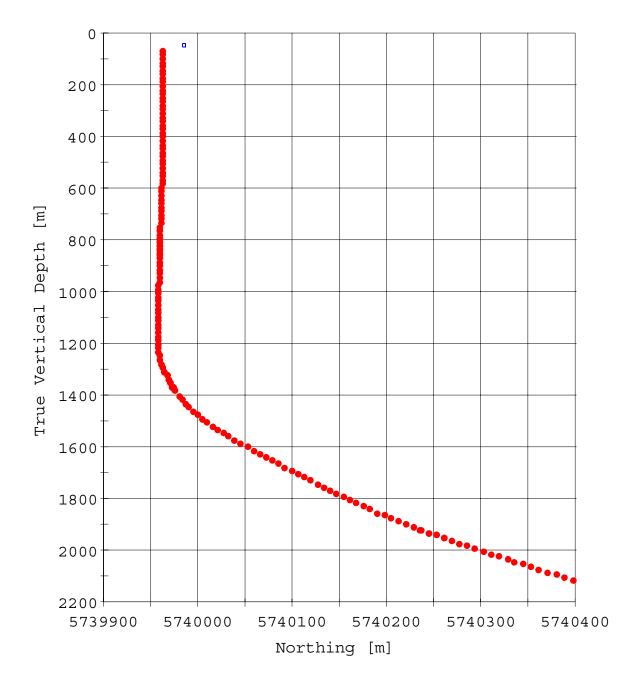
Survey Type	Zero Offset VSP
Surface Recording Length	1000.0 ms
Suface Sampling Rate	1.00 ms
Downhole Recording Length	5000.0 ms
Downhole Sampling Rate	1.0 ms
Top of Survey	69.8 m
Bottom of Survey	2299.9 m
Number of Shots	230
Number of Downhole Traces	920
Number of Downhole Traces used for Processing	871


Well: WASABI-1

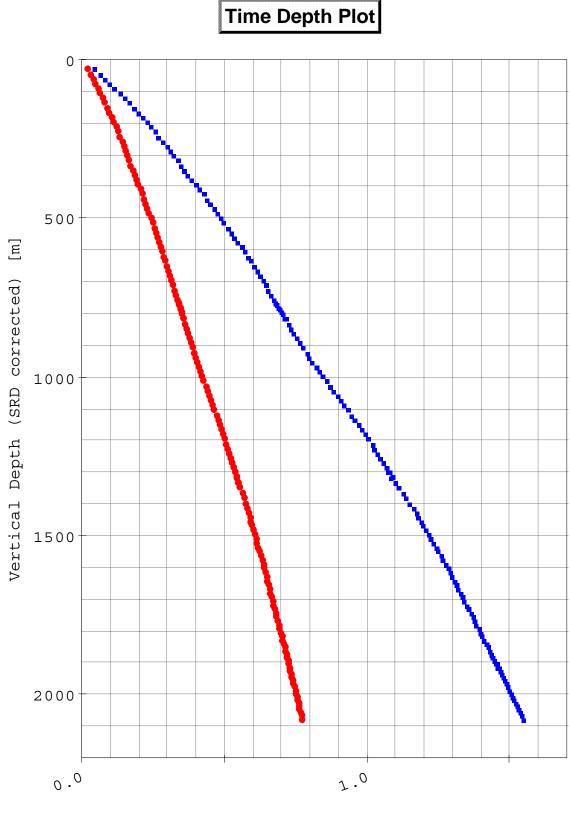
Receiver Position


Geometry Infomation (X-Y)

Receiver PositionSource Position

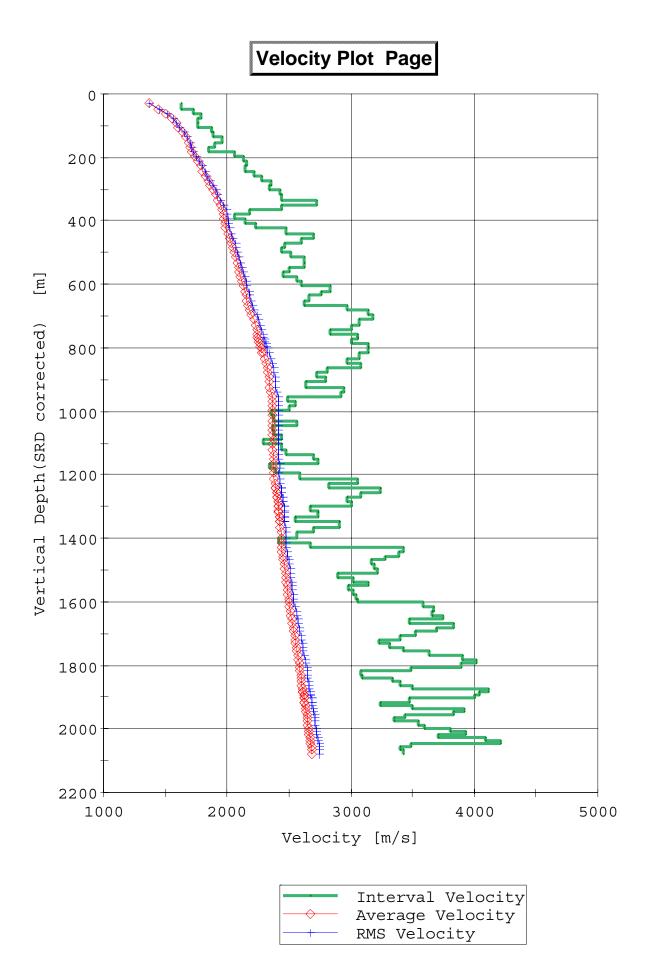

Page 14

Geometry Infomation (X-Z)



Receiver PositionSource Position

Geometry Infomation (Y-Z)



Receiver PositionSource Position

Vertical Time [s]

One-way Vertical TimeTwo-way Vertical Time

Stack Summary Listing (1/6) from VSI_901_A_geo_wavefield_z.ldf

Stack Number	Measured Depth [m]	True Vertical Depth [m]	Measured Time [s]		Two-way Vertical Time	Interval Velocity	Average Velocity	RMS Velocity
	0	0	0	[s]	[s] 0	[m/s]	[m/s]	[m/s]
	Ů			Ů	Ů	1373.4		
23	69.5	30.5	0.0264	0.0222	0.0445	1626.0	1373.4	1373.4
23	84.8	45.8	0.0331	0.0316	0.0632	1723.4	1448.3	1452.9
23	100.0	61.0	0.0405	0.0404	0.0809		1508.4	1516.2
23	115.3	76.3	0.0482	0.0490	0.0980	1782.8	1556.3	1566.0
22	129.1	90.1	0.0556	0.0568	0.1136	1768.1	1585.4	1595.3
						1764.2		
22	144.3	105.3	0.0638	0.0654	0.1309	1871.1	1609.0	1618.6
22	159.5	120.5	0.0717	0.0736	0.1472	1890.8	1638.0	1648.4
22	174.8	135.8	0.0796	0.0816	0.1633	1962.8	1663.0	1673.9
21	190.7	151.7	0.0875	0.0898	0.1795	1902.6	1690.1	1702.0
21	205.9	166.9	0.0954	0.0978	0.1956	1899.3	1707.2	1719.1
21	221.2	102.2	0.1025	0.1060		1853.5	1710 6	
21	221.2	182.2	0.1035	0.1060	0.2120	2064.4	1718.6	1729.9
21	236.4	197.4	0.1108	0.1134	0.2268	2126.5	1741.1	1753.6
20	251.2	212.2	0.1177	0.1203	0.2407		1763.4	1777.3
20	266.4	227.4	0.1247	0.1274	0.2548	2155.2	1785.1	1800.3
20	281.7	242.7	0.1317	0.1345	0.2690	2143.5	1804.0	1820.1
20	296.9	257.9	0.1385	0.1414	0.2828	2217.6	1824.1	1841.4
19	311.7	272.7	0.1450	0.1479	0.2958	2279.8	1844.2	1862.8
						2349.3		
19	327.0	288.0	0.1514	0.1544	0.3087	2341.2	1865.4	1885.8
19	342.2	303.2	0.1579	0.1609	0.3218	2433.3	1884.6	1906.3
19	357.4	318.4	0.1641	0.1671	0.3343	2442.5	1905.2	1928.7
18	372.1	333.1	0.1701	0.1732	0.3463		1923.9	1948.8
18	387.4	348.4	0.1757	0.1788	0.3575	2720.7	1948.8	1977.6
18	402.6	363.6	0.1819	0.1850	0.3700	2436.5	1965.3	1994.8
18	417.9	378.9	0.1889	0.1920	0.3840	2180.8	1973.2	2001.9
						2057.3		
17	432.7	393.7	0.1961	0.1992	0.3984	2143.7	1976.2	2003.9
17	447.9	408.9	0.2032	0.2063	0.4126	2226.5	1982.0	2008.9
17	463.1	424.1	0.2100	0.2131	0.4263	2475.9	1989.8	2016.2
17	478.4	439.4	0.2161	0.2193	0.4386		2003.5	2030.6
16	493.2	454.2	0.2216	0.2248	0.4496	2698.8	2020.4	2049.5
16	508.4	469.4	0.2274	0.2307	0.4613	2600.1	2035.2	2065.3
16	523.7	484.7	0.2336	0.2368	0.4736	2469.9	2046.5	2076.8
10	343.1	404./	0.2330	0.2308	0.4/30	2438.9	2040.3	2070.8

Stack Summary Listing (2/6) from VSI_901_A_geo_wavefield_z.ldf

Stack	1	True Vertical	Measured	One-way	vavefield_z. Two-way	Interval	Average	RMS
Number	Depth [m]	Depth [m]	Time [s]		Vertical Time	Velocity	Velocity	Velocity
16	538.9	499.9	0.2399	[s] 0.2431	[s] 0.4861	[m/s]	[m/s] 2056.6	[m/s] 2086.9
10	336.9	499.9	0.2399	0.2431	0.4601	2519.3	2030.0	2080.9
15	553.6	514.5	0.2457	0.2489	0.4978		2067.4	2098.0
						2620.0		
15	568.8	529.8	0.2515	0.2547	0.5094	2619.4	2080.0	2111.4
15	584.0	545.0	0.2573	0.2605	0.5210	2019.4	2092.1	2124.1
						2505.8		
15	599.3	560.3	0.2634	0.2666	0.5332	2452.0	2101.5	2133.5
14	614.1	575.1	0.2694	0.2726	0.5453	2453.0	2109.3	2141.1
		0,000	0,207	3127.23	0.0	2568.4		
14	629.3	590.3	0.2753	0.2786	0.5571	2500.2	2119.1	2151.1
14	644.6	605.5	0.2812	0.2844	0.5689	2598.3	2128.9	2161.3
	011.0	003.3	0.2012	0.2011	0.5007	2836.9	2120.5	2101.5
14	659.8	620.8	0.2865	0.2898	0.5796		2142.1	2175.7
13	673.8	634.7	0.2916	0.2949	0.5897	2761.3	2152.7	2187.1
13	073.8	034.7	0.2910	0.2343	0.3897	2660.2	2132.7	2107.1
13	689.0	650.0	0.2973	0.3006	0.6012		2162.4	2197.0
13	704.2	665.2	0.3031	0.3064	0.6128	2628.0	2171.2	2206.0
13	704.2	003.2	0.3031	0.3004	0.0128	2973.6	21/1.2	2200.0
13	719.5	680.5	0.3082	0.3115	0.6230		2184.4	2220.7
10	724.0	605.0	0.2121	0.2164	0.6220	3141.0	2100.2	2220.0
12	734.9	695.9	0.3131	0.3164	0.6329	3173.8	2199.3	2238.0
12	750.2	711.2	0.3179	0.3212	0.6425	3173.0	2213.8	2254.8
						3068.2		22.40.4
12	765.4	726.4	0.3229	0.3262	0.6524	3000.4	2226.8	2269.4
12	780.7	741.6	0.3280	0.3313	0.6626	3000.4	2238.7	2282.4
						2832.4		
11	795.5	756.5	0.3332	0.3365	0.6730	3054.1	2247.9	2291.9
1	805.8	766.7	0.3363	0.3396	0.6791	3034.1	2247.9	2291.9
						3054.1		
11	810.7	771.7	0.3382	0.3415	0.6830	3002.0	2259.7	2304.9
1	821.0	782.0	0.3412	0.3445	0.6891	3002.0	2259.7	2304.9
						3002.0		
11	826.0	786.9	0.3433	0.3466	0.6932	3140.1	2270.6	2316.6
1	836.2	797.2	0.3462	0.3495	0.6991	3140.1	2270.6	2316.6
						3140.1		
11	841.2	802.2	0.3481	0.3514	0.7029	3143.1	2282.6	2329.9
1	851.5	812.5	0.3511	0.3545	0.7089	3143.1	2282.6	2329.9
						3143.1		
10	856.1	817.1	0.3528	0.3562	0.7123	2072.0	2294.0	2342.6
10	871.3	832.3	0.3578	0.3611	0.7223	3072.9	2304.7	2354.2
	0,710		0.5570	0.0011	017220	2965.5	250	2552
10	886.6	847.5	0.3629	0.3663	0.7325	2002.4	2314.0	2363.8
10	901.8	862.8	0.3679	0.3712	0.7424	3083.4	2324.2	2374.9
10	701.0	002.0	0.5079	0.3/12	0.7424	2806.0	2324.2	2314.9
9	916.5	877.5	0.3731	0.3764	0.7529		2330.9	2381.4
9	931.7	892.7	0.3787	0.3821	0.7641	2718.0	2336.6	2386.7
<u> </u>	731.7	072.1	0.3767	0.3621	0.7041	2797.6	2330.0	2300.7
9	947.0	907.9	0.3842	0.3875	0.7750		2343.1	2392.9
						2630.9		

Stack Summary Listing (3/6) from VSI_901_A_geo_wavefield_z.ldf

Stack Number	Measured Depth [m]	True Vertical Depth [m]	Measured Time [s]	One-way Vertical Time [s]	Two-way Vertical Time [s]	Interval Velocity [m/s]	Average Velocity [m/s]	RMS Velocity [m/s]
9	962.2	923.2	0.3900	0.3933	0.7866	[III/S]	2347.3	2396.6
	702.2	723.2	0.3700	0.3733	0.7000	2943.8	2347.3	2370.0
8	977.0	937.9	0.3950	0.3983	0.7966	2020.2	2354.8	2404.3
8	992.2	953.2	0.4002	0.4035	0.8070	2920.3	2362.1	2411.6
8	1007.4	968.4	0.4063	0.4097	0.8193	2483.4	2364.0	2412.7
				311371		2554.1		
8	1022.7	983.7	0.4123	0.4156	0.8312	2500.1	2366.7	2414.8
7	1037.5	998.5	0.4182	0.4216	0.8431	2356.8	2368.6	2416.0
7	1052.7	1013.7	0.4247	0.4280	0.8560		2368.4	2415.2
7	1068.0	1028.9	0.4311	0.4344	0.8688	2383.7	2368.6	2414.7
						2565.3		
7	1083.2	1044.2	0.4370	0.4404	0.8807	2370.1	2371.3	2416.8
6	1097.8	1058.8	0.4432	0.4465	0.8930		2371.2	2416.2
6	1113.1	1074.0	0.4496	0.4529	0.9058	2379.7	2371.4	2415.6
6	1128.3	1089.3	0.4558	0.4592	0.9183	2444.3	2372.4	2416.0
0						2289.5		
6	1143.5	1104.5	0.4624	0.4658	0.9316	2436.0	2371.2	2414.3
5	1158.2	1119.2	0.4685	0.4718	0.9437		2372.0	2414.6
5	1173.5	1134.4	0.4746	0.4780	0.9560	2476.7	2373.4	2415.4
5	1188.7	1149.7	0.4803	0.4836	0.9673	2696.3	2377.1	2418.8
						2731.5		
5	1203.9	1164.9	0.4858	0.4892	0.9784	2346.9	2381.2	2422.6
4	1218.9	1179.9	0.4922	0.4956	0.9912	2396.6	2380.7	2421.7
4	1234.2	1195.1	0.4986	0.5019	1.0039		2380.9	2421.3
4	1249.4	1210.3	0.5044	0.5078	1.0157	2582.5	2383.3	2423.3
4	1264.6	1225.5	0.5094	0.5128	1.0256	3055.1	2389.8	2430.2
	1204.0	1223.3	0.3094	0.3128	1.0230	2826.0	2309.0	2430.2
3	1279.5	1240.3	0.5146	0.5180	1.0361	3244.6	2394.2	2434.5
173	1280.7	1241.4	0.5135	0.5169	1.0338		2394.2	2434.5
3	1294.8	1255.4	0.5193	0.5227	1.0454	3244.6	2401.8	2442.9
173	1295.9	1256.5	0.5185	0.5219	1.0438	3078.6	2401.8	2442.9
						3078.6		
3	1310.0	1270.5	0.5242	0.5276	1.0552	2970.0	2408.0	2449.6
173	1311.2	1271.6	0.5233	0.5267	1.0535		2408.0	2449.6
3	1325.2	1285.6	0.5292	0.5327	1.0654	2970.0	2413.4	2455.1
173	1326.4	1286.7	0.5288	0.5322	1.0644	3003.3	2413.4	2455.1
						3003.3		
2	1339.9	1300.1	0.5341	0.5375	1.0750	2676.2	2418.7	2460.5
172	1341.2	1301.3	0.5335	0.5369	1.0738	2676.2	2418.7	2460.5
2	1355.1	1315.1	0.5397	0.5431	1.0863		2421.4	2462.9
						2739.4		

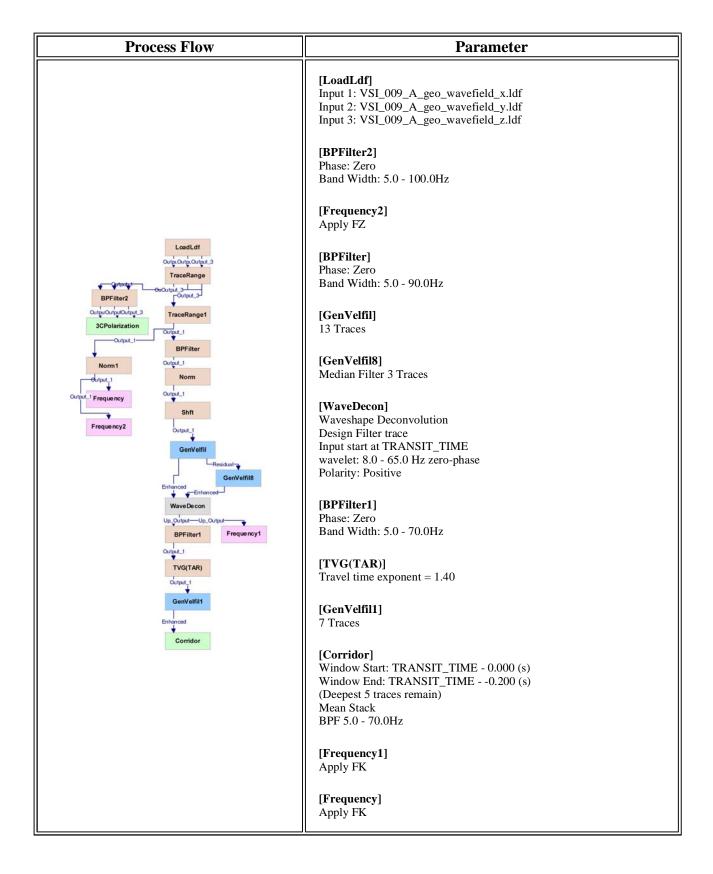
Stack Summary Listing (4/6) from VSI_901_A_geo_wavefield_z.ldf

Stack Number	Measured Depth [m]	True Vertical Depth [m]	Measured Time [s]	One-way Vertical Time [s]	Two-way Vertical Time [s]	Interval Velocity [m/s]	Average Velocity [m/s]	RMS Velocity [m/s]
172	1356.4	1316.4	0.5387	0.5421	1.0843	[III/S]	2421.4	2462.9
172	1550.4	1310.4	0.5507	0.5421	1.0043	2739.4	2721.7	2402.7
2	1370.4	1330.1	0.5452	0.5486	1.0972		2424.5	2465.8
172	1071.6	1221.4	0.7440	0.5402	1.0065	2555.1	2424.5	2465.0
172	1371.6	1331.4	0.5448	0.5483	1.0965	2555.1	2424.5	2465.8
2	1385.6	1345.1	0.5510	0.5545	1.1090	2333.1	2425.9	2466.7
						2909.8		
172	1386.9	1346.4	0.5504	0.5538	1.1077	2000.0	2425.9	2466.7
171	1408.9	1367.8	0.5588	0.5623	1.1245	2909.8	2432.6	2473.4
	1.00.5	1507.0	0.000	0.0020	1112.10	2693.1	2.02.0	21,611
171	1424.1	1382.6	0.5643	0.5678	1.1355		2435.1	2475.6
171	1439.4	1397.4	0.5701	0.5735	1.1470	2565.1	2436.5	2476.6
1/1	1437.4	1377.4	0.3701	0.5755	1.1470	2409.8	2430.3	2470.0
171	1454.6	1412.0	0.5762	0.5796	1.1592		2436.2	2475.9
170	1460.4	1406.1	0.5015	0.5040	1.1600	2678.6	2420.4	0.477.0
170	1469.4	1426.1	0.5815	0.5849	1.1698	3424.8	2438.4	2477.8
170	1484.7	1440.6	0.5857	0.5891	1.1782	5.2	2445.4	2485.8
						3390.6		
170	1499.9	1454.9	0.5900	0.5933	1.1866	3282.4	2452.1	2493.4
170	1515.2	1469.0	0.5943	0.5976	1.1952	3202.4	2458.1	2500.0
						3171.3		
169	1529.9	1482.7	0.5987	0.6019	1.2038	2102.0	2463.2	2505.4
169	1545.2	1496.6	0.6031	0.6063	1.2126	3193.9	2468.5	2511.0
107	1343.2	1470.0	0.0031	0.0003	1.2120	3209.4	2400.3	2311.0
169	1560.4	1510.4	0.6075	0.6106	1.2212		2473.7	2516.6
1.00	1575.6	1524.0	0.6122	0.6152	1.2206	2892.2	2476.0	2510.7
169	1575.6	1524.0	0.6123	0.6153	1.2306	3017.3	2476.9	2519.7
168	1590.3	1537.0	0.6168	0.6196	1.2392		2480.7	2523.5
1.50	1.50.7.5	1770 1	0.6211	0.5220	1.2455	3146.4	2405.2	2520.2
168	1605.6	1550.4	0.6211	0.6239	1.2477	2976.2	2485.2	2528.3
168	1620.8	1563.7	0.6258	0.6283	1.2567	2710.2	2488.7	2531.8
						3017.0		
168	1636.1	1577.0	0.6303	0.6327	1.2655	3040.7	2492.4	2535.5
167	1650.9	1589.9	0.6347	0.6370	1.2740	3040.7	2496.0	2539.2
						3049.3		
167	1666.1	1603.1	0.6392	0.6413	1.2826	2500.1	2499.7	2542.9
167	1681.3	1616.2	0.6431	0.6450	1.2900	3580.1	2505.9	2550.1
107	1001.0	1010.2	0.0.01	0.0.00	1.2,00	3665.8	2000.5	200011
167	1696.6	1629.3	0.6469	0.6485	1.2971		2512.3	2557.5
166	1711.4	1642.0	0.6506	0.6520	1.3040	3659.3	2518.4	2564.6
100	1/11.4	1042.0	0.0300	0.0320	1.3040	3740.5	2310.4	2304.0
166	1726.6	1654.9	0.6543	0.6555	1.3109		2524.8	2572.2
166	17/1 0	1667.0	0.6592	0.6502	1 2104	3474.8	2520.2	2579.2
166	1741.8	1667.9	0.6582	0.6592	1.3184	3828.5	2530.2	2578.2
166	1757.1	1680.8	0.6619	0.6626	1.3251	3 0 2 0 10	2536.8	2586.1
	455: 0	1.000.0	0.5:55	0.6170	1.0010	3700.2	27.12.	2505.5
165	1771.9	1693.3	0.6655	0.6659	1.3319	3527.1	2542.7	2593.0
165	1787.1	1706.1	0.6694	0.6696	1.3391	JJ21.1	2548.0	2599.0
						3403.4		
165	1802.4	1718.9	0.6735	0.6733	1.3467		2552.8	2604.1

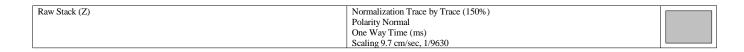
Stack Summary Listing (5/6) from VSI_901_A_geo_wavefield_z.ldf

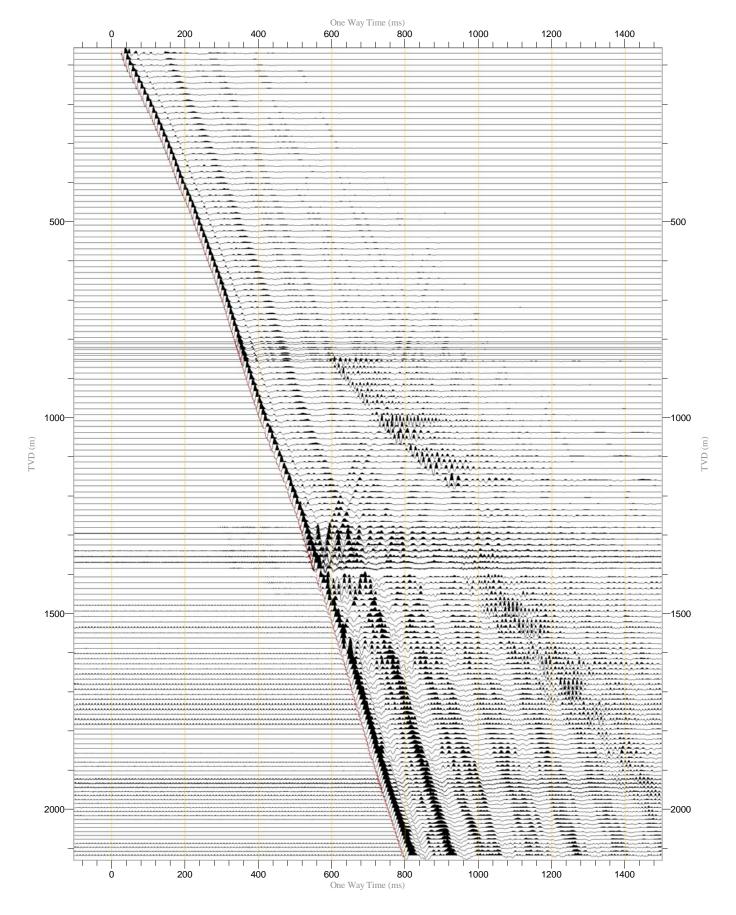
Stack Number	Measured Depth [m]	True Vertical Depth [m]	Measured Time [s]		Two-way Vertical Time	Interval Velocity	Average Velocity	RMS Velocity
165	1817.6	1731.6	0.6777	[s] 0.6773	[s] 1.3545	[m/s]	[m/s] 2556.7	[m/s] 2608.2
103	1017.0	1/31.0	0.0777	0.0773	1.3343	3310.1	2330.7	2008.2
164	1832.3	1743.8	0.6818	0.6810	1.3619		2560.8	2612.5
164	1047.6	17756.4	0.6050	0.6046	1.2602	3424.7	25.65.5	2617.5
164	1847.6	1756.4	0.6858	0.6846	1.3693	3633.5	2565.5	2617.5
164	1862.8	1769.0	0.6896	0.6881	1.3762	3033.3	2570.8	2623.6
						3909.9		
164	1878.1	1781.6	0.6932	0.6913	1.3826	4010.0	2577.1	2631.1
163	1892.8	1793.7	0.6966	0.6943	1.3886	4018.0	2583.3	2638.7
						3895.6		
163	1908.0	1805.8	0.7001	0.6974	1.3949	2490.2	2589.2	2645.6
163	1923.2	1817.9	0.7039	0.7009	1.4018	3489.2	2593.6	2650.4
	57.25.2		017.007	311.007	2,,,,,,	3077.9		
163	1938.5	1829.4	0.7082	0.7046	1.4093	2000.2	2596.2	2652.9
162	1953.2	1840.4	0.7122	0.7082	1.4164	3090.3	2598.7	2655.3
102	1733.2	1040.4	0.7122	0.7002	1.4104	3340.4	2370.1	2033.3
162	1968.4	1851.6	0.7161	0.7115	1.4231		2602.2	2658.9
162	1983.7	1862.6	0.7199	0.7148	1.4296	3400.3	2605.8	2662.7
102	1903.7	1802.0	0.7199	0.7148	1.4290	3501.1	2003.8	2002.7
162	1998.9	1873.4	0.7236	0.7179	1.4358		2609.6	2666.9
1 - 1	2012.0	1002.0	0.50	0.5204	1 1100	4116.1	2517.0	2552.4
161	2013.8	1883.9	0.7267	0.7204	1.4409	4037.7	2615.0	2673.4
27	2013.9	1883.9	0.7261	0.7198	1.4397	1037.7	2615.0	2673.4
						4037.7		
161	2029.0	1894.5	0.7299	0.7231	1.4461	4001.1	2620.2	2679.7
27	2029.1	1894.6	0.7298	0.7229	1.4459	4001.1	2620.2	2679.7
						4001.1		
161	2044.3	1905.1	0.7332	0.7257	1.4514	3475.4	2625.2	2685.6
27	2044.3	1905.1	0.7343	0.7268	1.4536	3473.4	2625.2	2685.6
						3475.4		
161	2059.5	1915.6	0.7368	0.7287	1.4574	3234.9	2628.7	2689.4
27	2059.6	1915.6	0.7373	0.7292	1.4584	3234.9	2628.7	2689.4
						3234.9		
160	2074.2	1925.6	0.7406	0.7318	1.4636	2402.5	2631.3	2691.9
160	2089.5	1936.0	0.7443	0.7348	1.4696	3492.5	2634.7	2695.6
			***************************************			3913.2		
160	2104.7	1946.3	0.7476	0.7374	1.4748	2022.6	2639.3	2701.0
160	2119.9	1956.6	0.7510	0.7401	1.4802	3833.6	2643.6	2705.9
100	2117.0	1900.0	0.7010	077.101	11.1002	3435.9	20.5.6	27.00.13
159	2134.7	1966.5	0.7547	0.7430	1.4860	22.40.4	2646.7	2709.2
159	2150.0	1976.8	0.7584	0.7461	1.4921	3348.1	2649.6	2712.1
137	2130.0	1770.0	0.7304	0.7401	1.4721	3547.7	2047.0	2712.1
159	2165.2	1987.0	0.7621	0.7489	1.4979		2653.1	2715.8
159	2180.4	1997.2	0.7658	0.7518	1.5036	3596.4	2656.6	2719.7
139	2100.4	1991.4	0.7038	0.7318	1.5050	3805.2	2030.0	2/19./
158	2195.1	2007.1	0.7691	0.7544	1.5087		2660.6	2724.1
150	2210.4	2017.2	0.7705	0.7570	1.5120	3934.7	2664.0	2720.2
158	2210.4	2017.3	0.7725	0.7570	1.5139	3712.4	2664.9	2729.2
158	2225.6	2027.4	0.7761	0.7597	1.5194		2668.7	2733.4
						4093.3		

Stack Summary Listing (6/6) from VSI_901_A_geo_wavefield_z.ldf

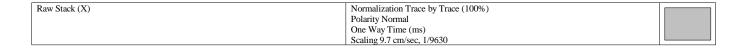

Stack Number	Measured Depth [m]	True Vertical Depth [m]	Measured Time [s]	One-way Vertical Time [s]	Two-way Vertical Time [s]	Interval Velocity [m/s]	Average Velocity [m/s]	RMS Velocity [m/s]
158	2240.8	2037.6	0.7794	0.7622	1.5244		2673.4	2738.9
						4214.4		
157	2255.6	2047.5	0.7825	0.7645	1.5291		2678.1	2744.6
						3490.7		
157	2270.8	2057.7	0.7863	0.7675	1.5349		2681.2	2747.9
						3394.8		
157	2286.0	2067.9	0.7902	0.7705	1.5409		2684.0	2750.7
						3421.0		
157	2301.3	2078.1	0.7941	0.7735	1.5469		2686.8	2753.6

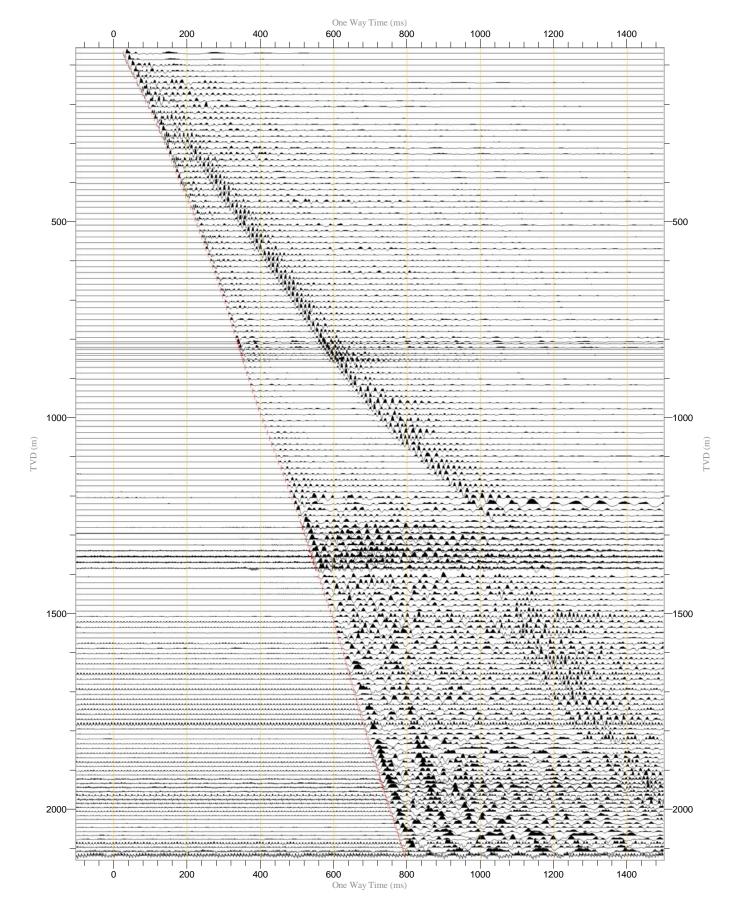
Field: Apache/VIC/P-58/WASABI-1

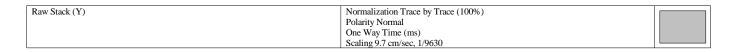

Field VSP Processing Report

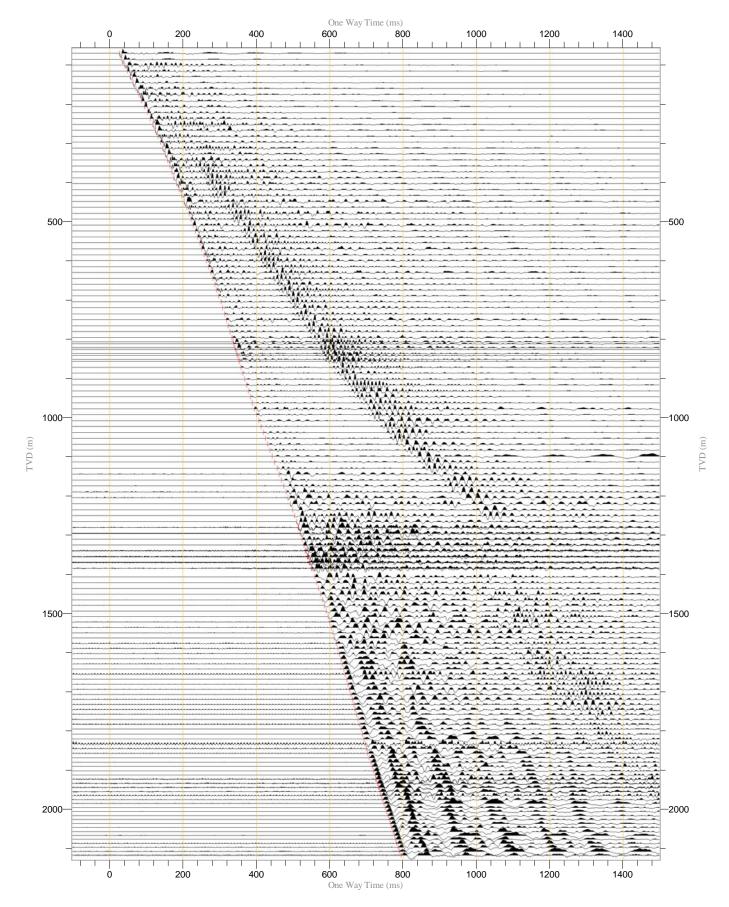


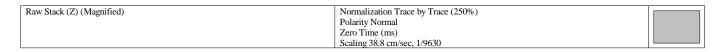
Well: WASABI-1

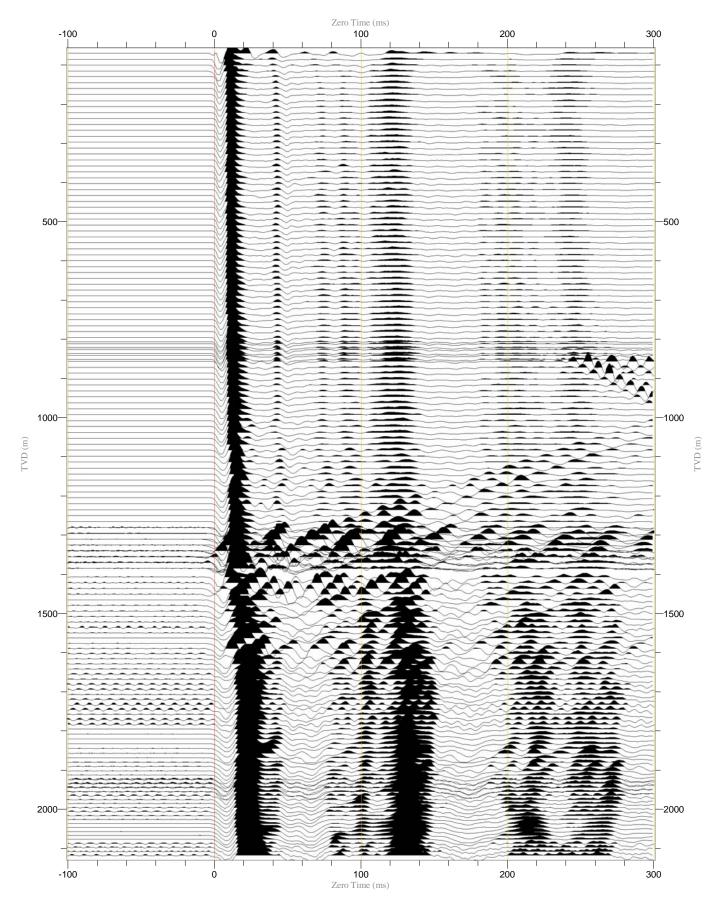


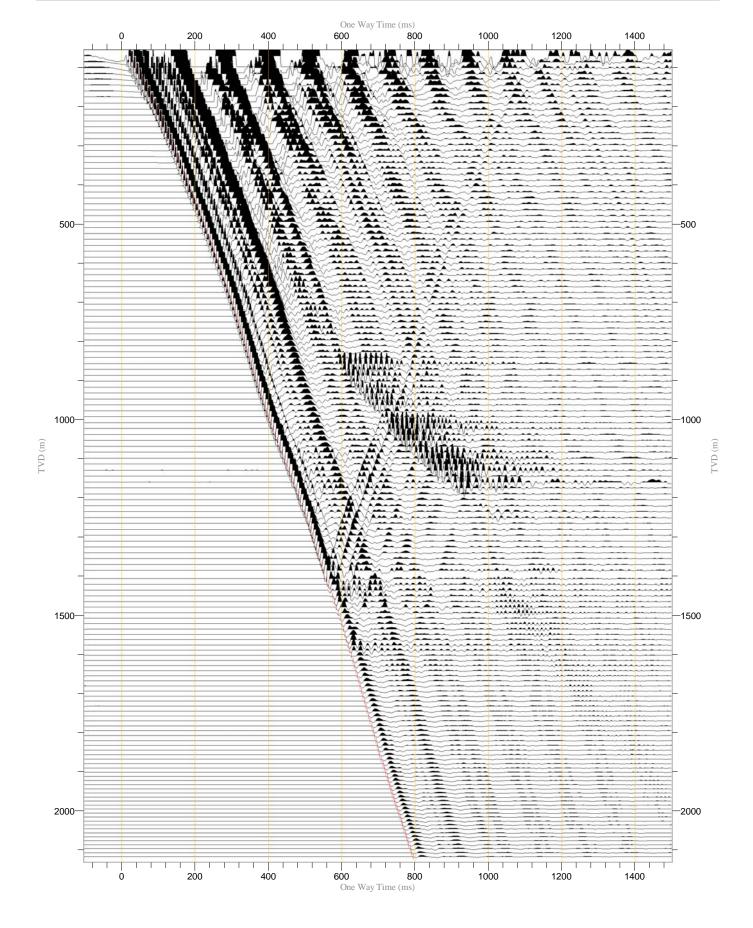


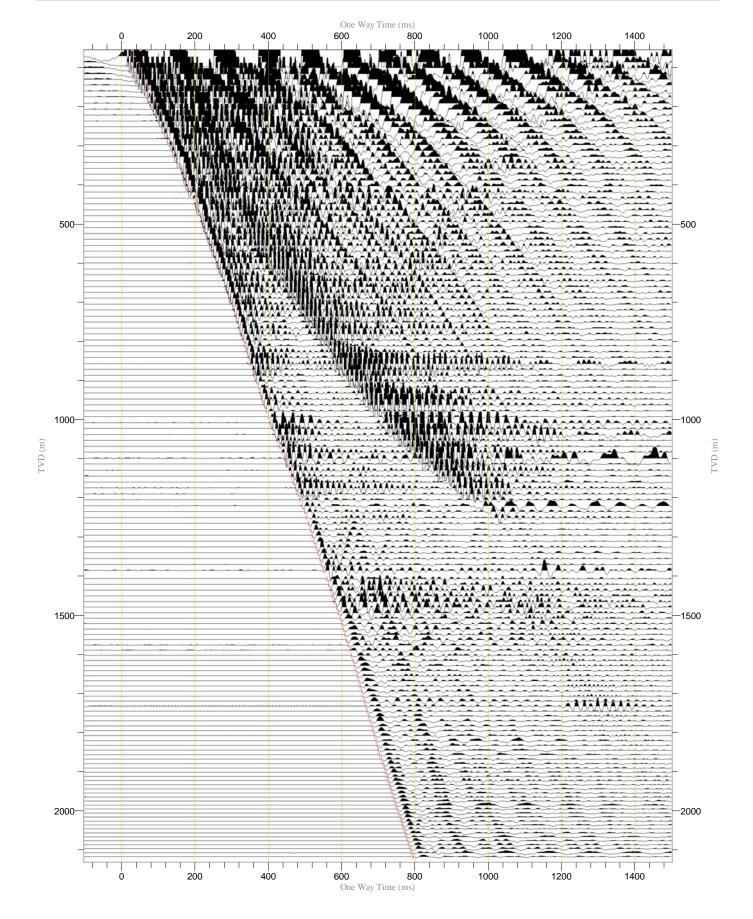




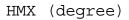


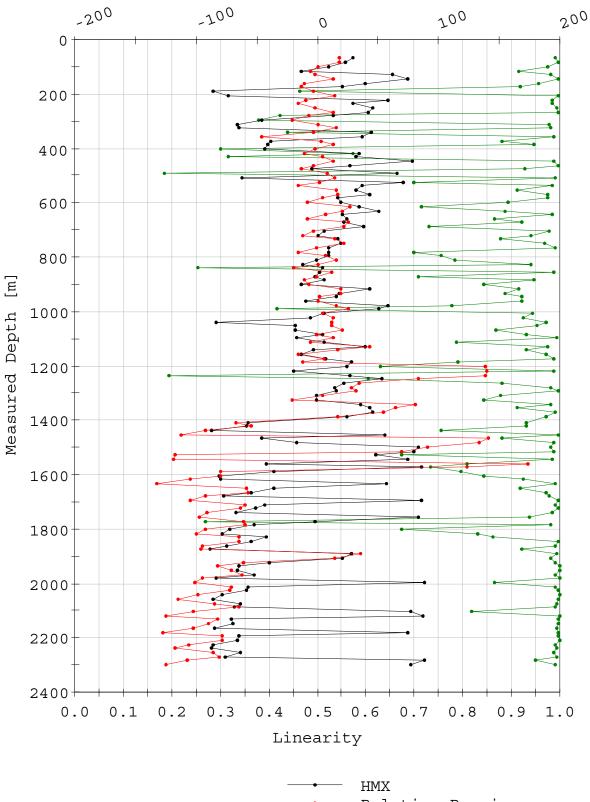




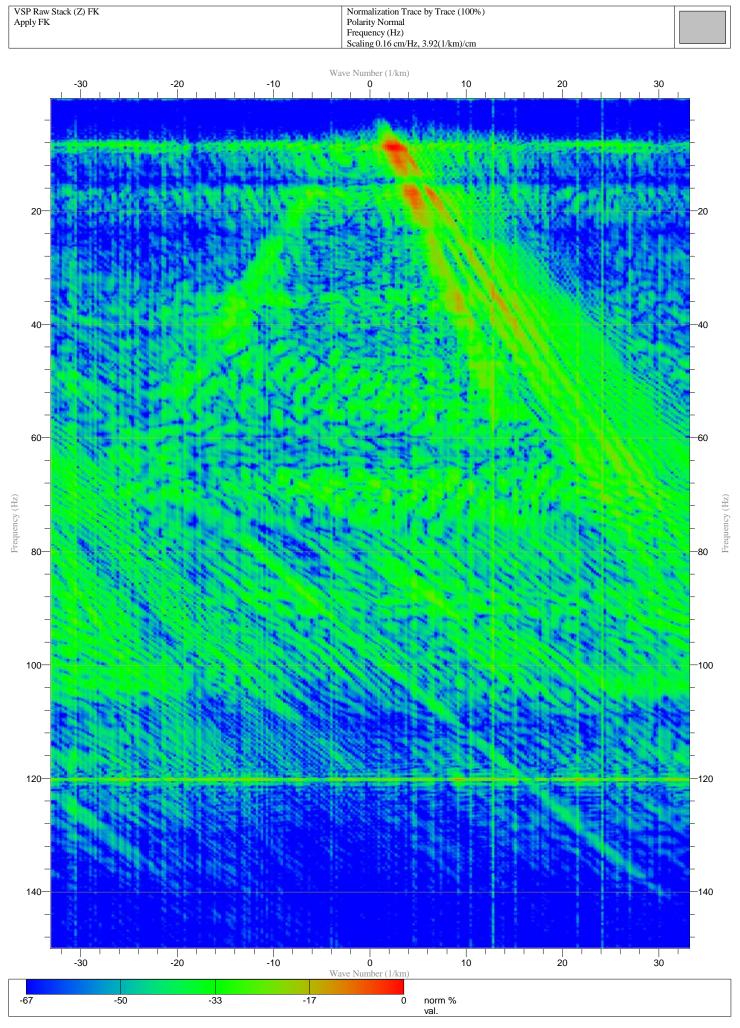


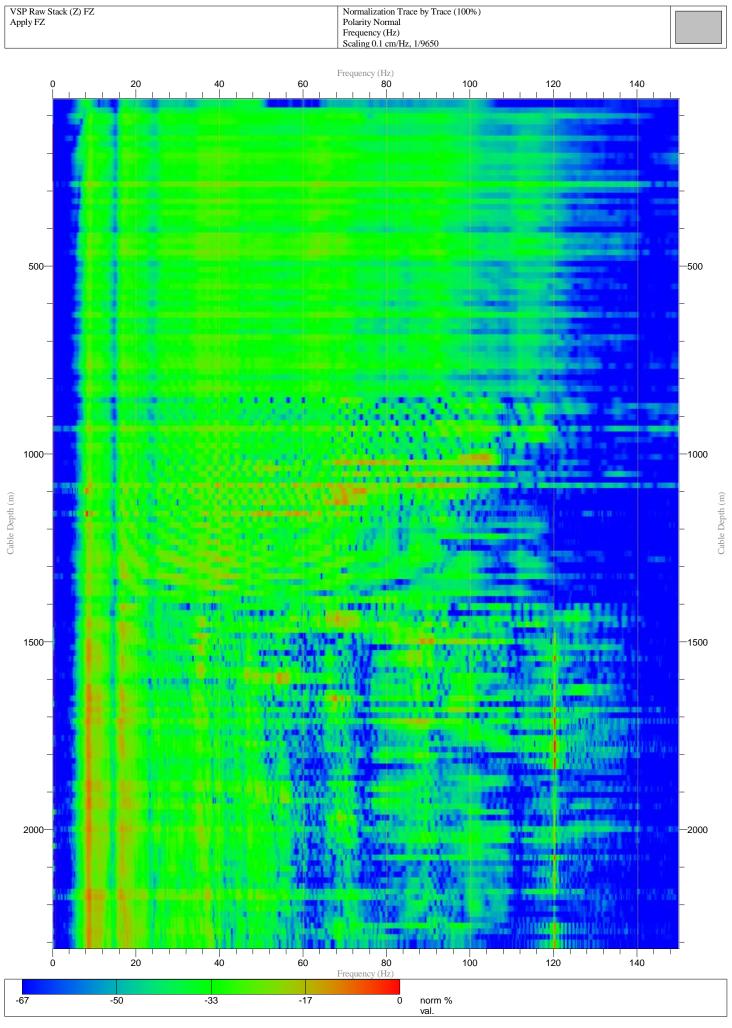
Raw Stack (TRY)
BPF 5.0 - 100.0Hz
Polarity Normal
One Way Time (ms)
Scaling 9.7 cm/sec, 1/9650

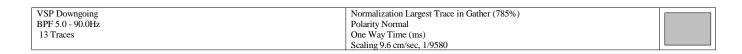


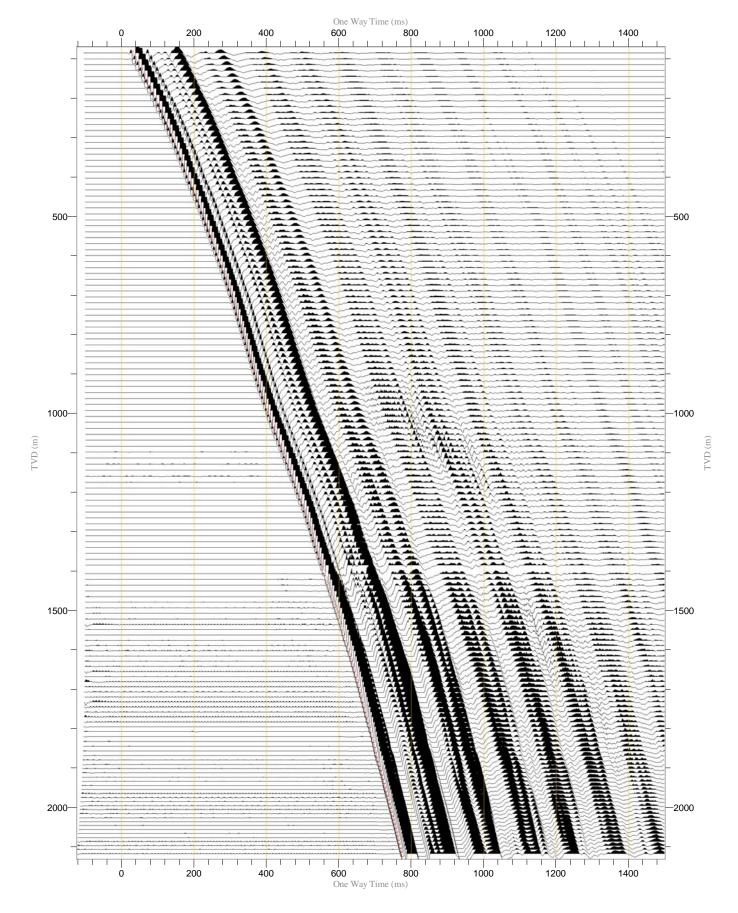

Raw Stack (HMX)
BPF 5.0 - 100.0Hz
Polarity Normal
One Way Time (ms)
Scaling 9.7 cm/sec, 1/9650

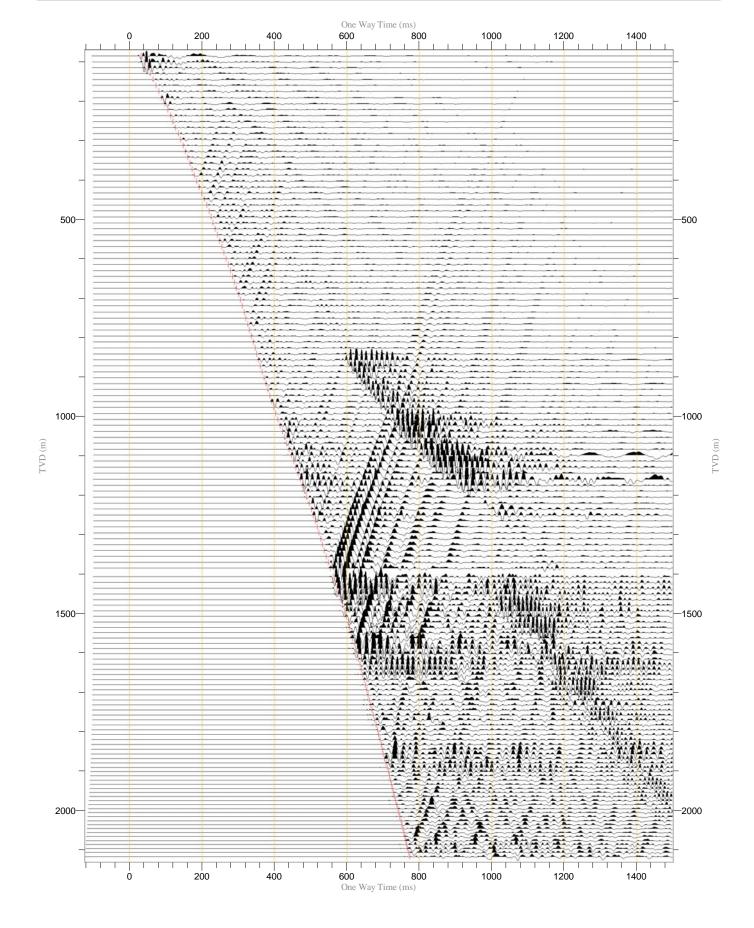
HMX Angle

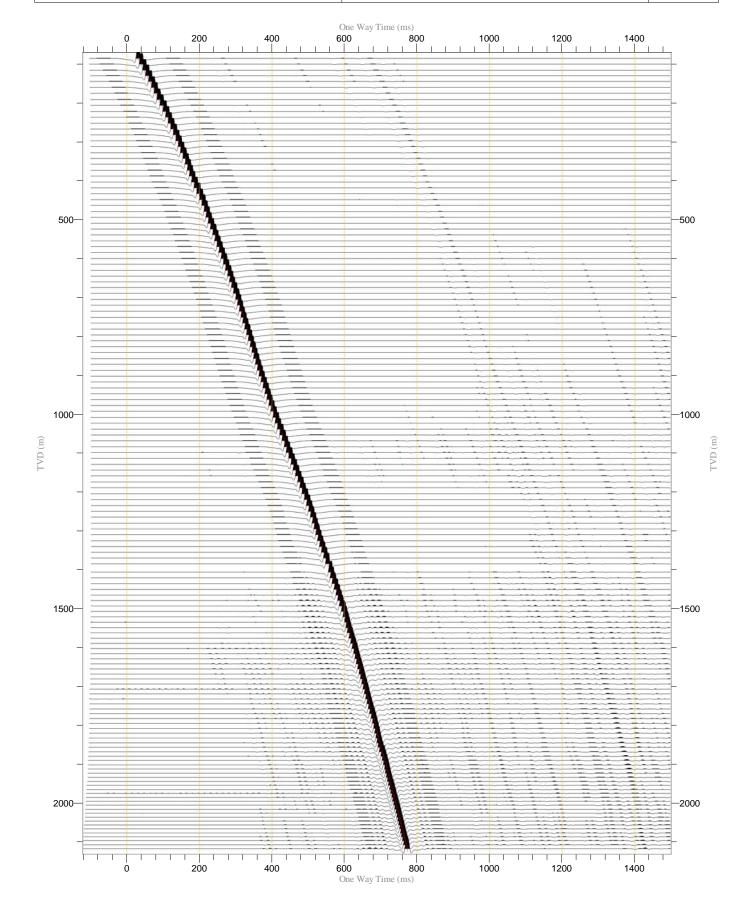

HMX
Relative Bearing
Linearity




TRY Angle

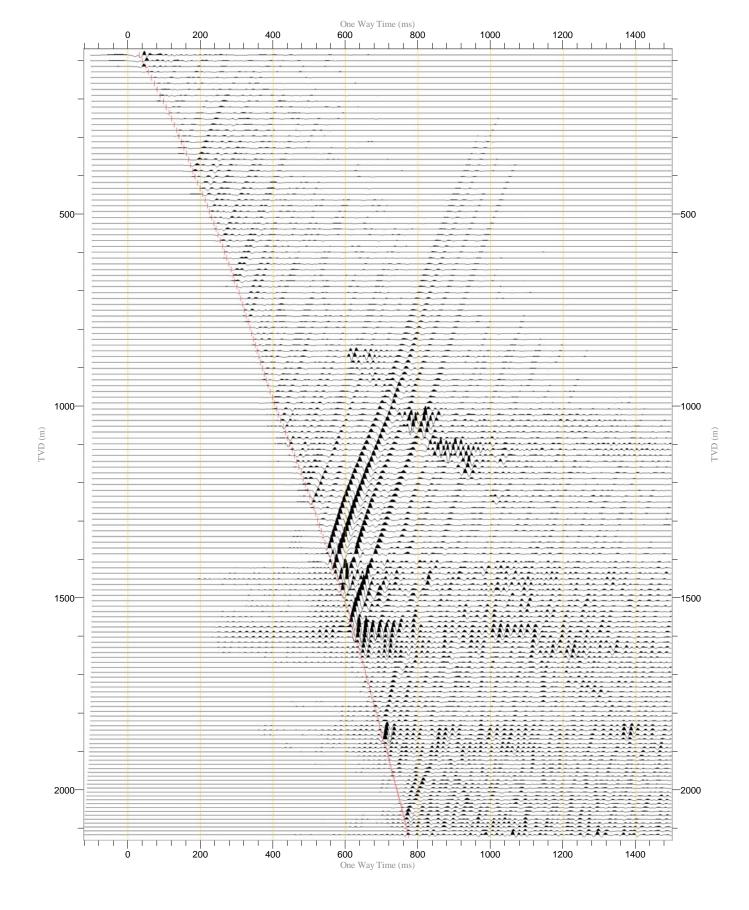




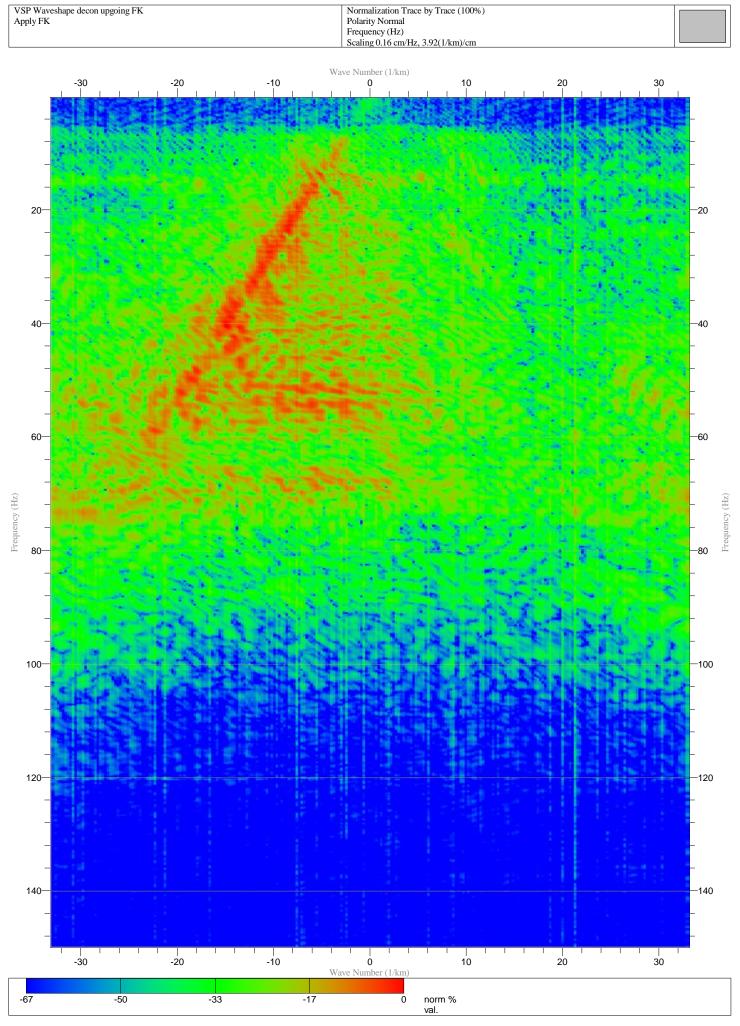

VSP Upgoing
BPF 5.0 - 90.0Hz
Polarity Normal
One Way Time (ms)
Scaling 9.6 cm/sec, 1/9580

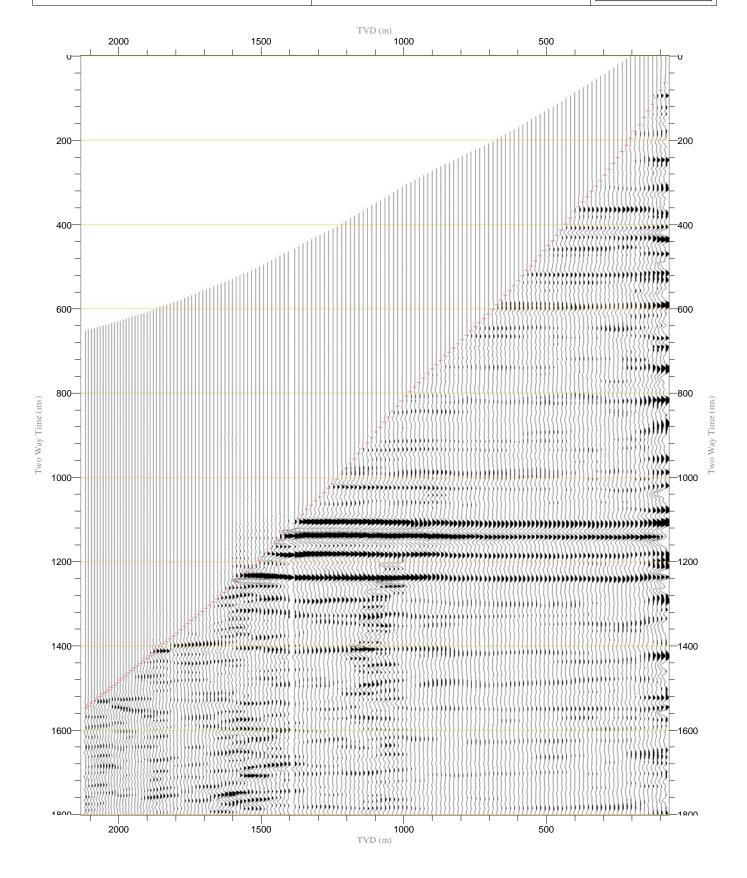
VSP Waveshape decon downgoing
BPF 5.0 - 90.0Hz
13 Traces
Waveshape Decon.(wavelet: 8.0 - 65.0 Hz zero-phase)

Normalization Largest Trace in Gather (300%)
Polarity Normal
One Way Time (ms)
Scaling 9.6 cm/sec, 1/9700



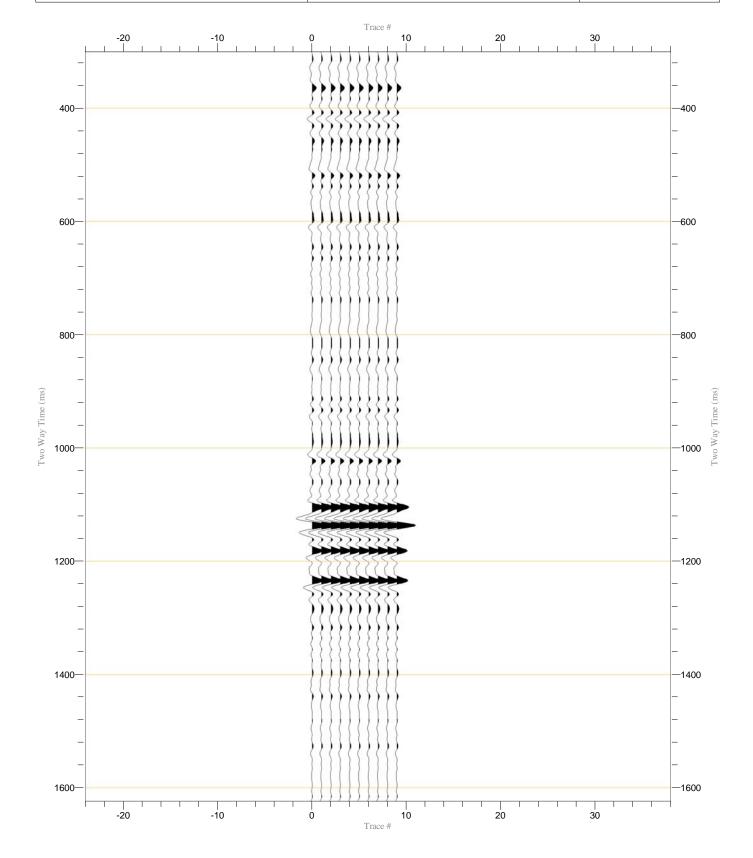
VSP Waveshape decon upgoing BPF 5.0 - 90.0Hz 13 Traces Median Filter 3 Traces Waveshape Decon.(wavelet: 8.0 - 65.0 Hz zero-phase)

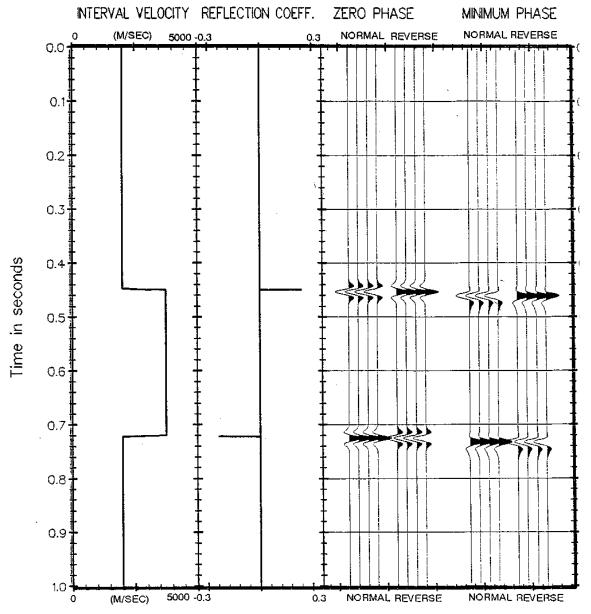

Normalization Largest Trace in Gather (300%)
Polarity Normal
One Way Time (ms)
Scaling 9.6 cm/sec, 1/9830



Logging date: 4-Mar-2008

VSP Corridor Stack (Input)
BPF 5.0 - 90.0Hz
13 Traces
Median Filter 3 Traces
Maveshape Decon.(wavelet: 8.0 - 65.0 Hz zero-phase)
BPF 5.0 - 70.0Hz
Travel time exponent = 1.40
7 Traces

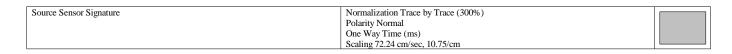

Normalization Largest Trace in Gather (300%)
Polarity Normal
Two Way Time (ms)
Scaling 11.2 cm/sec, 1/13240

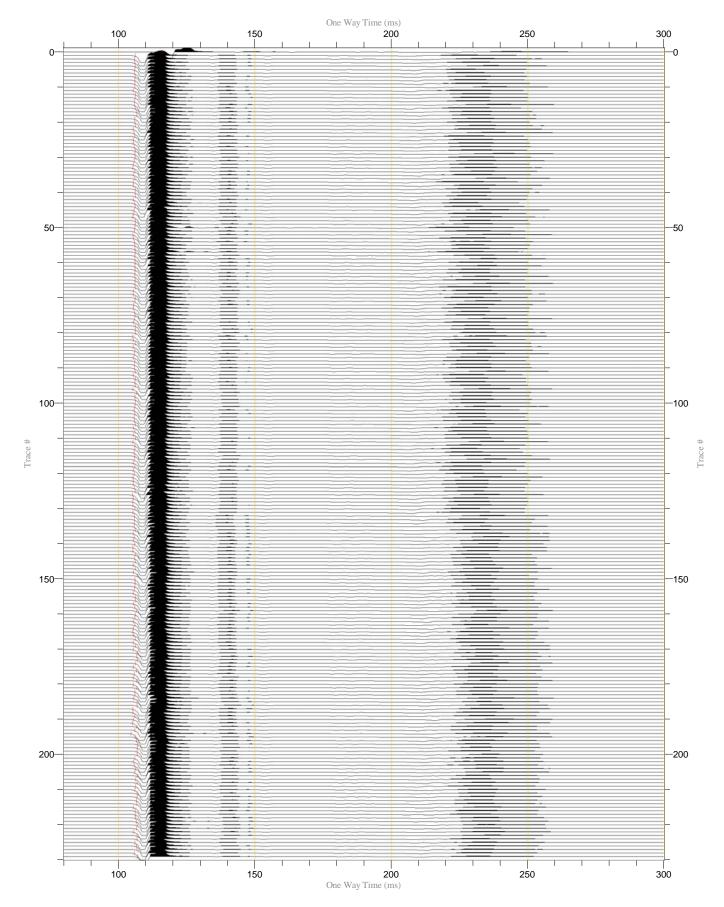

VSP Corridor Stack (output)
BPF 5.0 - 90.0Hz
13 Traces
Median Filter 3 Traces
Waveshape Decon.(wavelet: 8.0 - 65.0 Hz zero-phase)
BPF 5.0 - 70.0Hz
Travel time exponent = 1.40
7 Traces
Corridor Stack (Mean): BPF 5.0 - 70.0Hz

Normalization Largest Trace in Gather (200%)
Polarity Normal
Two Way Time (ms)
Scaling 15.00 cm/sec, 4.00/cm

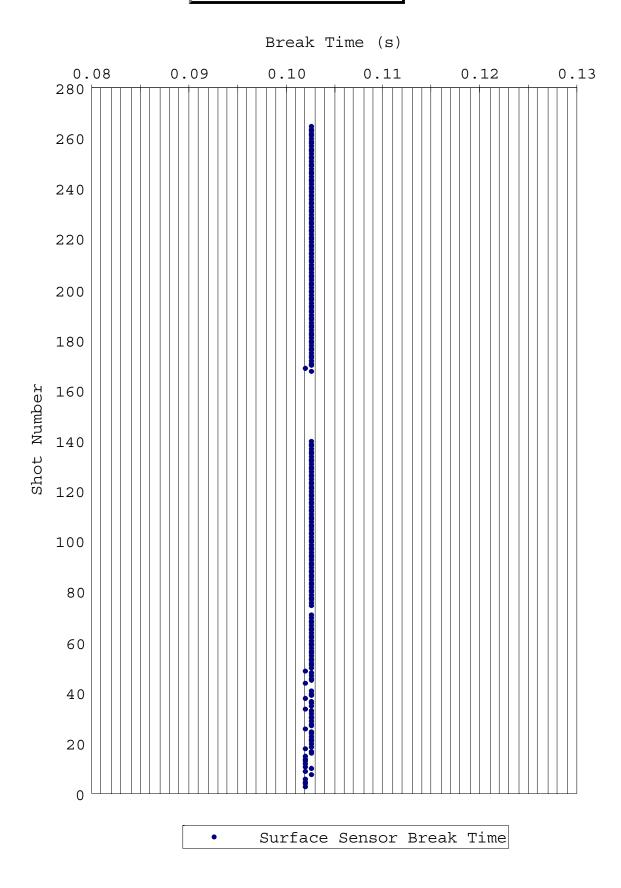
SCHLUMBERGER (SEG-1976) WAVELET POLARITY CONVENTION

Schlumberger Wavelet Polarity Convention




Client: Apache Northwest Pty Ltd	Field: Apache/VIC/P-58/WASABI-1

Source Signature QC Report

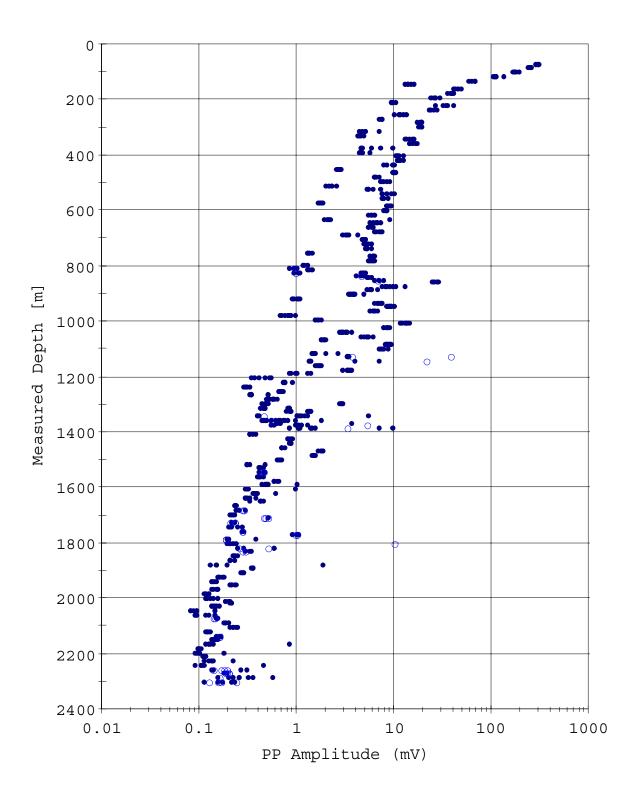


Well: WASABI-1

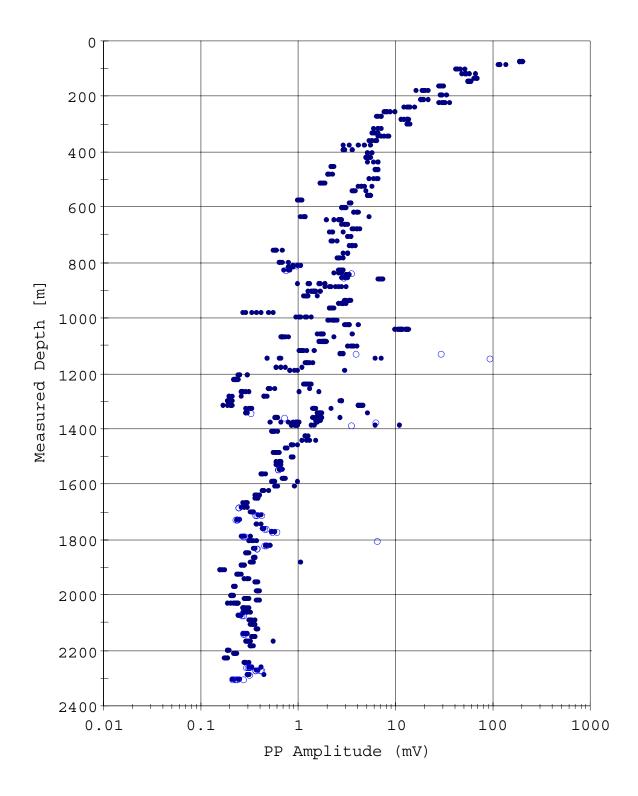
Surface Sensor QC Plot Page

Client: Apache Northwest Pty Ltd	Field: Apache/VIC/P-58/WASABI-1
- · · · · · · · · · · · · · · · · · · ·	

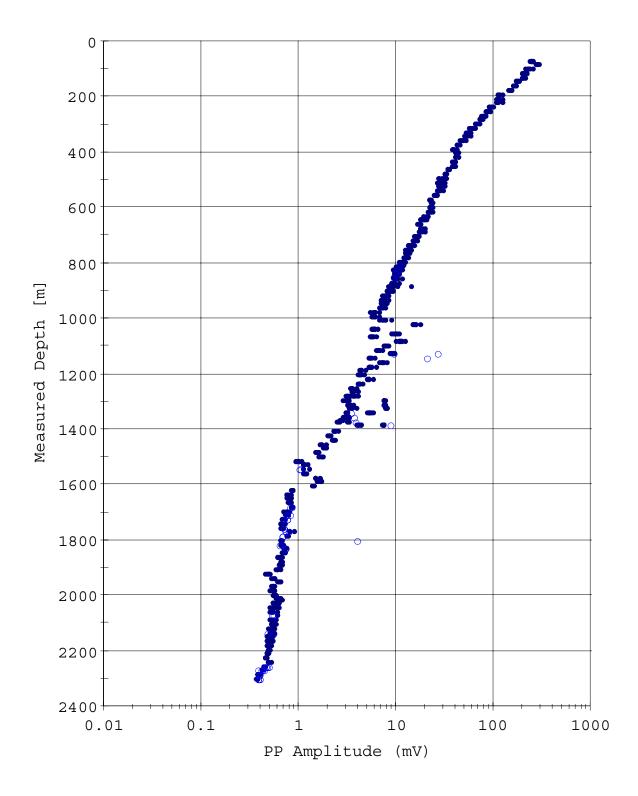
Well: WASABI-1


RMS amplitude Plot

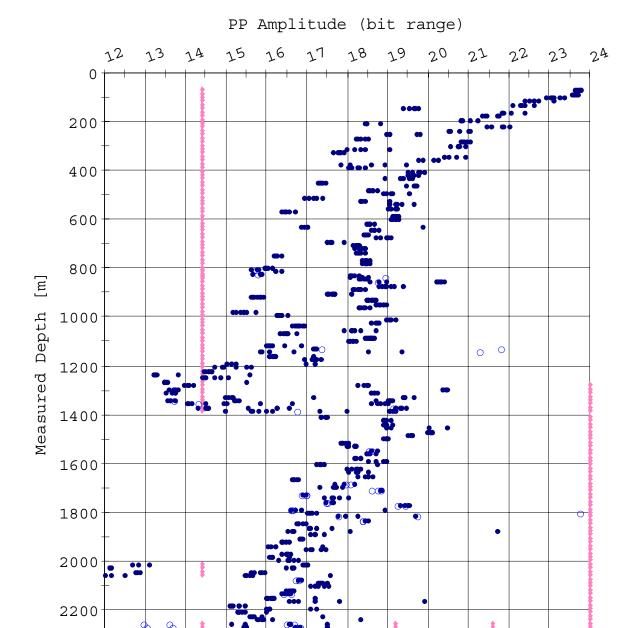
 ${\tt RMS \ Amplitude (mV) \ First \ P-wave \ arrival \ in \ time \ window}$


RMS Amplitude (mV)MAX Amplitude (mV)

Peak To Peak Plot (X)


PP Amplitude (mV) accepted for stackPP Amplitude (mV) rejected

Peak To Peak Plot (Y)


PP Amplitude (mV) accepted for stack
 PP Amplitude (mV) rejected

Peak To Peak Plot (Z)

PP Amplitude (mV) accepted for stackPP Amplitude (mV) rejected

Amplitude QC Plot (X)

PP Amplitude (bit range) accepted for stack

Acquisition Gain

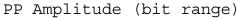
8

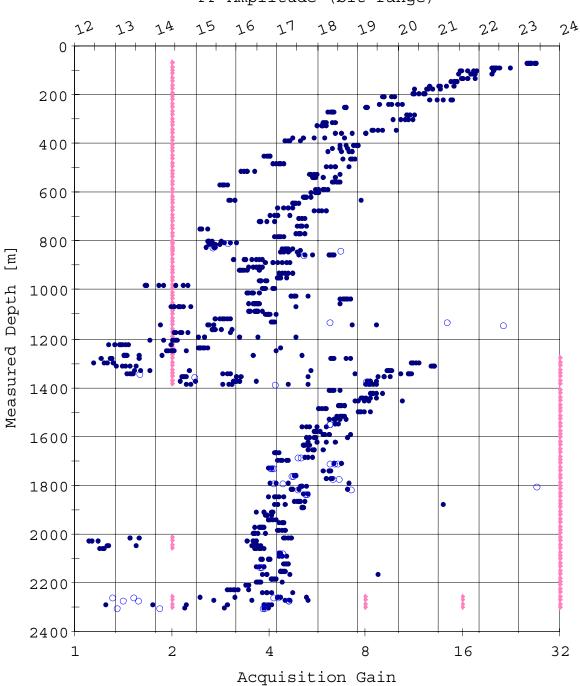
16

4

- O PP Amplitude (bit range) rejected
- Acquisition Gain

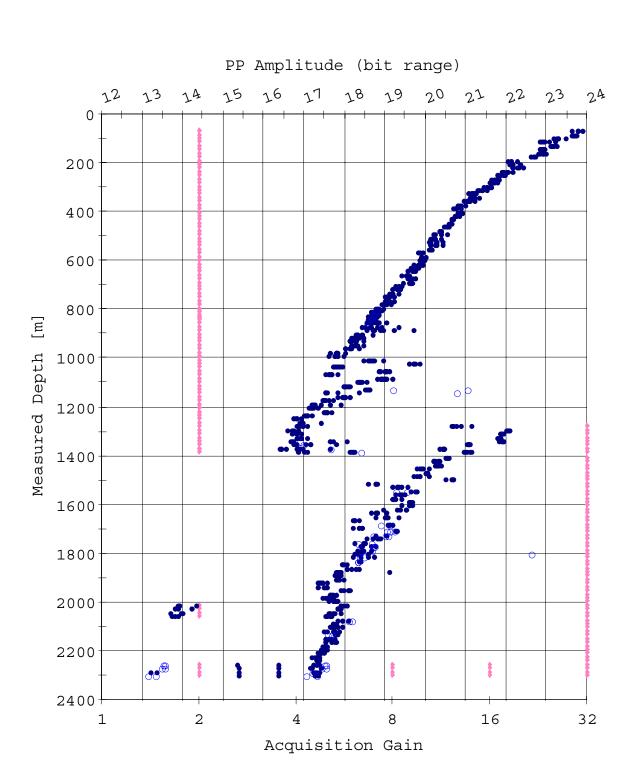
2


32


Logging date: 4-Mar-2008 Page 53

2400

1


Amplitude QC Plot (Y)

- PP Amplitude (bit range) accepted for stack
- PP Amplitude (bit range) rejected
- Acquisition Gain

Amplitude QC Plot (Z)

- PP Amplitude (bit range) accepted for stack
- o PP Amplitude (bit range) rejected
- Acquisition Gain

Client: Apache Northwest Pty Ltd	Field: Apache/VIC/P-58/WASABI-1	Well: WASABI-1
----------------------------------	---------------------------------	----------------

Shot Summary Listing (1/6)

Measured Depth [m]	Tool	Stack	Relative Bearing [deg]	Caliper [in]	Anchoring force [kg]	Shot number
806.0	1	1	-7.3	13.6	788.5	3, 5, 6
821.2	2	1	-1.0	13.3	884.9	3, 5, 6
836.3	3	1	-29.6	13.3	800.5	3, 5, 6
851.4	4	1	-42.3	13.3	850.4	3, 5, 6
1340.2	1	2	80.5	12.6	655.0	9, 10, 11, 12, 13, 168, 169, 170, 256, 257, 258, 259, 260
1355.3	2	2	64.4	12.2	834.6	9, 10, 11, 12, 13, 168, 169, 170, 256, 257, 258, 259, 260
1370.4	3	2	55.1	12.2	647.2	9, 10, 11, 12, 13, 168, 169, 170, 256, 257, 258, 259, 260
1385.5	4	2	16.8	22.6	818.4	9, 10, 11, 12, 13
1279.8	1	3	27.7	13.7	742.3	14, 15, 16, 17, 18, 261, 262, 263, 264, 265
1294.9	2	3	31.8	13.5	888.9	14, 15, 16, 17, 18, 261, 262, 263, 264, 265
1310.0	3	3	3.8	14.1	771.1	14, 15, 16, 17, 18, 261, 262, 263, 264, 265
1325.2	4	3	-20.7	13.4	806.7	14, 15, 16, 17, 18, 261, 262, 263, 264, 265
1219.2	1	4	140.0	19.8	769.2	19, 20, 21, 22, 23, 24, 25, 26
1234.3	2	4	138.5	15.9	824.3	19, 20, 21, 22, 23, 24, 25, 26
1249.4	3	4	83.5	13.9	766.4	19, 20, 21, 22, 23, 24, 25, 26
1264.6	4	4	34.3	13.5	826.8	19, 20, 21, 22, 23, 24, 25, 26
1158.5	1	5	-16.2	16.4	667.3	27, 28, 29, 30, 31, 32
1173.6	2	5	5.2	18.2	777.3	27, 28, 29, 30, 31, 32
1188.7	3	5	-11.8	14.1	772.9	27, 28, 29, 30, 31, 32
1203.9	4	5	138.9	14.9	818.7	27, 28, 29, 30, 31, 32
1098.1	1	6	12.9	14.8	744.8	33, 34, 35, 36, 37, 38, 39
1113.2	2	6	-5.8	17.8	816.7	33, 34, 35, 36, 37, 38, 39
1128.3	3	6	43.3	17.7	732.9	35, 36, 37, 38, 39
1143.5	4	6	17.5	15.4	796.6	33, 35, 36, 37, 38, 39
1037.8	1	7	12.4	15.7	809.5	40, 41, 44, 45, 46, 47, 48, 49, 50
1052.9	2	7	11.3	14.2	892.3	40, 41, 44, 45, 46, 47, 48, 49, 50
1068.0	3	7	20.2	13.4	763.5	40, 41, 44, 45, 46, 47, 48, 49, 50
1083.1	4	7	-0.2	17.2	780.7	40, 41, 44, 45, 46, 47, 48, 49, 50
977.2	1	8	16.1	13.4	810.8	51, 52, 53, 54, 55, 56, 57
992.4	2	8	25.8	13.5	904.9	51, 52, 53, 54, 55, 56, 57

Shot Sur		,	· · · · · · · · · · · · · · · · · · ·	Colin	A m a h =!	
Measured Depth [m]	Tool Number	Stack Number	Relative Bearing [deg]	Caliper [in]	Anchoring force [kg]	Shot number
1007.5	3	8	4.6	13.8	812.7	51, 52, 53, 54, 55, 56, 57
1022.6	4	8	12.6	14.9	768.7	51, 52, 53, 54, 55, 56, 57
916.8	1	9	19.0	13.7	740.8	58, 59, 60, 61, 62, 63, 64
931.9	2	9	19.4	13.6	908.2	58, 59, 60, 61, 62, 63, 64
947.0	3	9	2.0	13.8	816.7	58, 59, 60, 61, 62, 63, 64
962.1	4	9	0.8	13.7	887.6	58, 59, 60, 61, 62, 63, 64
856.4	1	10	12.0	17.5	718.4	65, 66, 67, 68, 69, 70, 71
871.5	2	10	-0.2	13.7	903.8	65, 66, 67, 68, 69, 70, 71
886.6	3	10	-10.7	13.5	746.6	65, 66, 67, 68, 69, 70, 71
901.7	4	10	-7.1	14.0	873.5	65, 66, 67, 68, 69, 70, 71
795.8	1	11	6.5	13.5	825.8	75, 76, 77, 78, 79
810.9	2	11	15.9	13.4	907.4	75, 76, 77, 78, 79
826.0	3	11	0.0	13.5	799.5	75, 76, 77, 78, 79
841.1	4	11	-19.4	13.5	890.8	75, 76, 77, 78, 79
735.2	1	12	14.8	13.4	831.8	80, 81, 82, 83, 84
750.3	2	12	21.7	13.3	850.6	80, 81, 82, 83, 84
765.5	3	12	-0.7	13.5	776.3	80, 81, 82, 83, 84
780.6	4	12	-15.8	13.5	839.3	80, 81, 82, 83, 84
674.0	1	13	25.1	13.5	830.5	85, 86, 87, 88, 89
689.2	2	13	21.5	13.4	880.2	85, 86, 87, 88, 89
704.3	3	13	-3.3	13.6	806.5	85, 86, 87, 88, 89
719.4	4	13	-12.0	13.5	878.9	85, 86, 87, 88, 89
614.4	1	14	26.3	13.5	829.4	90, 91, 92, 93, 94
629.5	2	14	20.2	13.4	897.9	90, 91, 92, 93, 94
644.6	3	14	7.5	13.6	801.6	90, 91, 92, 93, 94
659.7	4	14	-8.6	13.5	900.3	90, 91, 92, 93, 94
553.8	1	15	15.1	13.6	822.5	95, 96, 97, 98, 99
569.0	2	15	17.2	13.4	899.7	95, 96, 97, 98, 99

584.1

599.2

3

4

15

15

4.7

-8.6

13.6

13.5

794.5

900.5

95, 96, 97, 98, 99

95, 96, 97, 98, 99

Shot Summary Listing (3/6)											
Measured Depth [m]	Tool Number	Stack Number	Relative Bearing [deg]	Caliper [in]	Anchoring force [kg]	Shot number					
493.5	1	16	8.7	13.6	829.3	100, 101, 102, 103, 104					
508.6	2	16	14.6	13.4	912.0	100, 101, 102, 103, 104					
523.7	3	16	1.8	13.6	799.8	100, 101, 102, 103, 104					
538.8	4	16	-15.2	13.5	860.6	100, 101, 102, 103, 104					
432.9	1	17	4.8	13.6	820.4	105, 106, 107, 108, 109					
448.1	2	17	13.7	13.4	915.3	105, 106, 107, 108, 109					
463.2	3	17	-3.6	13.6	811.3	105, 106, 107, 108, 109					
478.3	4	17	-13.5	13.5	900.5	105, 106, 107, 108, 109					
372.4	1	18	3.1	13.6	821.5	110, 111, 112, 113, 114					
387.5	2	18	13.8	13.4	901.7	110, 111, 112, 113, 114					
402.7	3	18	-2.0	13.6	811.1	110, 111, 112, 113, 114					
417.8	4	18	-11.2	13.5	892.9	110, 111, 112, 113, 114					
312.0	1	19	1.1	13.6	820.7	115, 116, 117, 118, 119					
327.1	2	19	15.7	13.4	908.8	115, 116, 117, 118, 119					
342.2	3	19	-3.6	13.6	778.5	115, 116, 117, 118, 119					
357.4	4	19	-45.5	13.5	906.7	115, 116, 117, 118, 119					
251.5	1	20	-2.1	13.6	816.0	120, 121, 122, 123, 124					
266.6	2	20	13.7	13.4	910.7	120, 121, 122, 123, 124					
281.7	3	20	-6.8	13.6	810.8	120, 121, 122, 123, 124					
296.8	4	20	-20.7	13.6	902.9	120, 121, 122, 123, 124					
191.0	1	21	-3.3	13.6	809.2	125, 126, 127, 128, 129					
206.1	2	21	14.7	13.4	901.2	125, 126, 127, 128, 129					
221.2	3	21	-9.8	13.6	817.1	125, 126, 127, 128, 129					
236.3	4	21	-15.5	13.5	894.0	125, 126, 127, 128, 129					
129.3	1	22	-2.3	13.3	853.1	130, 131, 132, 133, 134					
144.5	2	22	13.0	13.4	909.9	130, 131, 132, 133, 134					
159.6	3	22	-11.3	13.6	824.8	130, 131, 132, 133, 134					
174.7	4	22	-13.5	13.6	903.6	130, 131, 132, 133, 134					
69.8	1	23	18.7	19.3	785.9	135, 136, 137, 138, 139, 140					

18.5

19.2

922.9

135, 136, 137, 138, 139, 140

2

23

84.9

Shot Sun						
Measured Depth [m]	Tool Number	Stack Number	Relative Bearing [deg]	Caliper [in]	Anchoring force [kg]	Shot number
100.1	3	23	0.0	19.7	851.6	135, 136, 137, 138, 139, 140
115.2	4	23	-5.5	19.6	878.5	135, 136, 137, 138, 139, 140
1339.6	1	155	-100.6	5.3	815.4	9, 10, 11, 12, 13, 168, 169, 170, 256, 257, 258, 259, 260
1354.7	2	155	-72.2	5.7	863.6	9, 10, 11, 12, 13, 168, 169, 170, 256, 257, 258, 259, 260
1369.8	3	155	-105.3	5.6	793.7	9, 10, 11, 12, 13, 168, 169, 170, 256, 257, 258, 259, 260
1385.0	4	155	-120.1	5.8	789.7	168, 169, 170, 256, 257, 258, 259, 260
2012.8	1	156	-81.4	5.4	733.4	171, 172, 173, 200, 201, 202, 203, 204
2028.0	2	156	-57.3	5.8	827.0	171, 172, 173, 200, 201, 202, 203, 204
2043.1	3	156	-100.3	5.3	791.5	171, 172, 173, 200, 201, 202, 203, 204
2058.2	4	156	-123.9	5.1	812.7	171, 172, 173, 200, 201, 202, 203, 204
2254.5	1	157	-85.6	5.5	753.0	176, 177, 178, 180, 182
2269.7	2	157	-81.0	5.5	854.2	176, 177, 178, 180, 182
2284.8	3	157	-107.3	5.2	798.8	174, 175, 176, 177, 178, 179, 180, 182
2299.9	4	157	-125.0	5.2	823.4	176, 177, 178, 180, 182
2194.1	1	158	-78.4	5.5	734.9	183, 184, 185, 186, 187, 188
2209.2	2	158	-78.3	5.5	845.2	183, 184, 185, 186, 187, 188
2224.3	3	158	-105.8	5.2	787.6	183, 184, 185, 186, 187, 188
2239.5	4	158	-116.9	5.1	850.4	183, 184, 185, 186, 187, 188
2133.7	1	159	-81.9	5.5	754.6	189, 191, 192, 193
2148.8	2	159	-89.8	4.9	850.9	189, 190, 191, 192, 193, 194
2163.9	3	159	-102.0	5.3	706.5	189, 190, 191, 192, 193, 194
2179.1	4	159	-126.7	5.2	768.7	189, 190, 191, 192, 193, 194
2073.2	1	160	-84.0	5.5	741.0	197, 198, 199
2088.3	2	160	-64.5	5.8	844.6	195, 196, 197, 198, 199
2103.4	3	160	-102.0	5.5	769.8	195, 196, 197, 198, 199
2118.6	4	160	-125.3	5.1	831.4	195, 196, 197, 198, 199
2012.8	1	161	-70.8	5.5	721.9	171, 172, 173, 200, 201, 202, 203, 204
2027.9	2	161	-71.8	5.6	831.7	171, 172, 173, 200, 201, 202, 203, 204
2043.0	3	161	-99.0	5.2	791.2	171, 172, 173, 200, 201, 202, 203, 204
2058.1	4	161	-115.3	5.1	838.4	171, 172, 173, 200, 201, 202, 203, 204

Shot Sur	nmarv l	Listing	(5/6)			
Measured Depth [m]	Tool	Stack Number	Relative Bearing [deg]	Caliper [in]	Anchoring force [kg]	Shot number
1952.2	1	162	-70.6	5.2	811.7	205, 206, 207, 208, 209
1967.3	2	162	-62.4	5.7	845.5	205, 206, 207, 208, 209
1982.4	3	162	-95.1	5.3	738.3	205, 206, 207, 208, 209
1997.5	4	162	-100.5	5.7	753.5	205, 206, 207, 208, 209
1891.7	1	163	35.7	5.6	750.1	210, 211, 212, 213, 214
1906.9	2	163	14.1	5.8	817.7	210, 211, 212, 213, 214
1922.0	3	163	-61.4	5.0	771.3	210, 211, 212, 213, 214
1937.1	4	163	-82.7	5.8	777.7	210, 211, 212, 213, 214
1831.3	1	164	-64.8	5.6	705.8	215, 216, 219
1846.4	2	164	-64.5	5.6	862.8	215, 216, 217, 218, 219
1861.6	3	164	-95.2	5.3	772.9	215, 216, 217, 218, 219
1876.7	4	164	-96.2	5.8	799.9	215, 216, 217, 218, 219
1770.9	1	165	-60.8	5.6	700.6	220, 221, 222, 224
1786.0	2	165	-59.8	5.6	854.2	220, 221, 222, 224
1801.1	3	165	-91.5	5.3	770.2	221, 222, 223, 224, 225
1816.2	4	165	-99.4	5.8	753.2	220, 221, 222, 224
1710.3	1	166	-59.4	5.6	704.8	226, 230
1725.5	2	166	-63.0	5.6	857.0	226, 230
1740.6	3	166	-90.7	5.3	794.5	226, 227, 228, 229, 230
1755.7	4	166	-96.9	5.8	761.7	226, 227, 230
1649.8	1	167	-57.7	5.6	761.9	231, 232, 233, 234, 235
1665.0	2	167	-57.6	5.4	860.2	231, 232, 233, 234, 235
1680.1	3	167	-92.0	5.3	786.7	231, 232, 233
1695.2	4	167	-104.5	5.8	788.6	231, 232, 233, 234, 235
1589.3	1	168	-79.4	5.5	761.7	236, 237, 238, 239, 240
1604.4	2	168	-79.4	5.1	868.0	236, 237, 238, 239, 240
1619.6	3	168	-104.6	5.3	788.0	236, 237, 238, 239, 240
1634.7	4	168	-131.9	4.8	792.5	236, 237, 238, 239, 240
1528.9	1	169	-117.1	5.4	795.2	241, 242, 243, 244, 245
1544.0	2	169	-118.8	5.6	875.5	241, 242, 245

Shot Sur	Shot Summary Listing (6/6)												
Measured Depth [m]	Tool Number	Stack Number	Relative Bearing [deg]	Caliper [in]	Anchoring force [kg]	Shot number							
1559.1	3	169	174.0	5.7	724.0	241, 242, 243, 244, 245							
1574.3	4	169	123.0	5.3	819.4	241, 242, 243, 244, 245							
1468.4	1	170	140.7	5.9	802.0	246, 247, 248, 249, 250							
1483.5	2	170	133.2	5.8	867.2	246, 247, 248, 249, 250							
1498.7	3	170	90.7	5.8	788.3	246, 247, 248, 249, 250							
1513.8	4	170	69.3	5.9	794.4	246, 247, 248, 249, 250							
1407.9	1	171	-67.0	5.3	830.4	251, 252, 253, 254, 255							
1423.0	2	171	-54.4	5.6	861.2	251, 252, 253, 254, 255							
1438.1	3	171	-92.1	5.4	777.1	251, 252, 253, 254, 255							
1453.2	4	171	-112.4	5.7	852.0	251, 252, 253, 254, 255							
1340.1	1	172	113.5	5.9	803.7	9, 10, 11, 12, 13, 168, 169, 170, 256, 257, 258, 259, 260							
1355.3	2	172	112.5	5.8	884.9	9, 10, 11, 12, 13, 168, 169, 170, 256, 257, 258, 259, 260							
1370.4	3	172	71.4	5.9	778.7	9, 10, 11, 12, 13, 168, 169, 170, 256, 257, 258, 259, 260							
1385.5	4	172	49.3	5.9	806.0	168, 169, 170, 256, 257, 258, 259, 260							
1279.7	1	173	117.5	5.4	837.6	14, 15, 16, 17, 18, 261, 262, 263, 264, 265							
1294.8	2	173	123.8	5.8	882.4	14, 15, 16, 17, 18, 261, 262, 263, 264, 265							
1309.9	3	173	81.1	5.7	784.7	14, 15, 16, 17, 18, 261, 262, 263, 264, 265							
1325.0	4	173	60.5	5.9	812.9	14, 15, 16, 17, 18, 261, 262, 263, 264, 265							

Observer's Note (1/5)

	Observer's Note (1/5)											
Well depth	Time	Shot Type	Shot#	Stack#	Source	Remarks						
[m]					204100	11011111111						
851.5	01:20:24	SHAK	1									
851.5	01:20:45	BKGD	2			0.000.000.000						
851.5	01:21:11	SHOT	3	1	<u>A</u>	QC @ 791.9m						
851.5	01:21:52	SHOT	4	1	A	QC @ 791.9m						
851.5	01:23:06	SHOT	5	1	A	QC @ 791.9m						
851.5	01:23:47	SHOT	6	1	A	QC @ 791.9m						
1385.6	02:38:09	SHAK	7									
1385.6	02:38:54	SHOT	8	2	A	G G T. 11						
1385.6	02:39:36	SHOT	9	2	A	Start Survey Tool hung-up						
1385.6	02:40:17	SHOT	10	2	<u>A</u>							
1385.6	02:40:58	SHOT	11	2	A							
1385.6	02:41:39	SHOT	12	2	A							
1385.6	02:42:20	SHOT	13	2	A							
1325.2	02:50:34	SHOT	14	3	A							
1325.2	02:51:15	SHOT	15	3	A							
1325.2	02:51:56	SHOT	16	3	A							
1325.2	02:52:38	SHOT	17	3	A							
1325.2	02:53:19	SHOT	18	3	A							
1264.6	03:01:04	SHOT	19	4	A							
1264.6	03:01:45	SHOT	20	4	A							
1264.6 1264.6	03:02:26	SHOT	21	4	A							
	03:03:08	SHOT	22		A							
1264.6 1264.6	03:03:49 03:04:30	SHOT	23	4	A A							
1264.6	03:04:30	SHOT	25	4	A							
1264.6 1203.9	03:05:52 03:13:30	SHOT	26 27	5	A A							
1203.9 1203.9	03:14:25 03:15:06	SHOT	28 29	5	A A							
1203.9	03:15:48	SHOT	30	5	A							
1203.9	03:15:48	SHOT	31	5	A							
1203.9	03:17:10	SHOT	32	5	A							
1143.5	03:17:10	SHOT	33	6	A							
1143.5	03:24:41	SHOT	34	6	A							
1143.5	03:23:22	SHOT	35	6	A							
1143.5	03:27:14	SHOT	36	6	A							
1143.5	03:28:46	SHOT	37	6	A							
1143.5	03:29:27	SHOT	38	6	A							
1143.5	03:29:27	SHOT	39	6	A							
1083.2	03:38:01	SHOT	40	7	A							
1083.2	03:38:42	SHOT	41	7	A							
1083.2	03:38:57	BKGD	42	'	A							
1083.2	03:38:37	BKGD	43	\vdash								
1083.2	03:39:13	SHOT	44	7	A							
1083.2	03:40:19	SHOT	45	7	A							
1083.2	03:40:19	SHOT	46	7	A							
1083.2	03:41:41	SHOT	47	7	A							
1083.2	03:41:41	SHOT	48	7	A							
1083.2	03:42:50	SHOT	49	7	A							
1083.2	03:42:30	SHOT	50	7	A							
1083.2	03:50:19	SHOT	51	8	A							
1022.7	03:51:00	SHOT	52	8	A							
1022.7	03:51:41	SHOT	53	8	A							
1022.7	03:52:22	SHOT	54	8	A							
1022.7	03:53:03	SHOT	55	8	A							
1022.7	03:53:17	SHOT	56	8	A							
1022.7	03:53:58	SHOT	57	8	A							
962.2	03.33.38	SHOT	58	9	A							
962.2	04:00:47	SHOT	59	9	A							
962.2	04:01:28	SHOT	60	9	A							
962.2	04:02:09	SHOT	61	9	A							
962.2	04:02:30	SHOT	62	9	A							
962.2	04:03:31	SHOT	63	9	A							
962.2	04:03:31	SHOT	64	9	A							
901.8	04:04:32	SHOT	65	10	A							
701.0	07.12.30	51101	1 05	10	А							

Observer's Note (2/5)

	Observer's Note (2/5)										
Well	Time	Shot Type	Shot#	Stack#	Source	Remarks					
depth[m]						11011012 110					
901.8	04:13:19	SHOT	66	10	A						
901.8	04:14:32	SHOT	67	10	A						
901.8	04:15:13	SHOT	68	10	A						
901.8	04:15:54	SHOT	69	10	A						
901.8	04:17:31 04:18:12	SHOT	70 71	10	A						
		SHOT	72	10	A						
901.8	04:18:44	ENLO ENHI	73								
901.8	04:19:13 04:20:00	SHAK	74								
841.2	04:20:00	SHOT	75	11	Α						
841.2	04:27:00	SHOT	76	11	A A						
841.2	04:27:41	SHOT	77	11	A						
841.2	04:28:22	SHOT	78	11	A						
841.2	04:29:45	SHOT	79	11	A A						
780.7	04:25:49	SHOT	80	12	A						
780.7	04:36:31	SHOT	81	12	A						
780.7	04:37:12	SHOT	82	12	A						
780.7	04:37:53	SHOT	83	12	A						
780.7	04:38:34	SHOT	84	12	A						
719.5	04:43:49	SHOT	85	13	A						
719.5	04:44:31	SHOT	86	13	A						
719.5	04:45:12	SHOT	87	13	A						
719.5	04:45:53	SHOT	88	13	A						
719.5	04:46:34	SHOT	89	13	A						
659.8	04:52:24	SHOT	90	14	A						
659.8	04:53:05	SHOT	91	14	A						
659.8	04:53:46	SHOT	92	14	A						
659.8	04:54:27	SHOT	93	14	A						
659.8	04:55:08	SHOT	94	14	A						
599.3	05:00:06	SHOT	95	15	A						
599.3	05:00:47	SHOT	96	15	A						
599.3	05:01:28	SHOT	97	15	A						
599.3	05:02:09	SHOT	98	15	A						
599.3	05:02:50	SHOT	99	15	A						
538.9	05:09:03	SHOT	100	16	A						
538.9	05:09:44	SHOT	101	16	A						
538.9	05:10:25	SHOT	102	16	A						
538.9	05:11:06	SHOT	103	16	A						
538.9	05:11:47	SHOT	104	16	A						
478.4	05:17:05	SHOT	105	17	A						
478.4	05:17:46	SHOT	106	17	A						
478.4	05:18:27	SHOT	107	17	A						
478.4	05:19:08	SHOT	108	17	A						
478.4 417.9	05:19:49 05:25:18	SHOT	109	17	A						
417.9	05:25:18	SHOT SHOT	110 111	18 18	A A						
417.9	05:25:39	SHOT	111	18	A						
417.9	05:26:40	SHOT	113	18	A						
417.9	05:27:21	SHOT	113	18	A						
357.4	05:33:31	SHOT	115	19	A						
357.4	05:34:13	SHOT	116	19	A						
357.4	05:34:54	SHOT	117	19	A						
357.4	05:35:35	SHOT	118	19	A						
357.4	05:36:16	SHOT	119	19	A						
296.9	05:40:27	SHOT	120	20	A						
296.9	05:41:08	SHOT	121	20	A						
296.9	05:41:49	SHOT	122	20	A						
296.9	05:42:31	SHOT	123	20	A						
296.9	05:43:12	SHOT	124	20	A						
236.4	05:47:53	SHOT	125	21	A						
236.4	05:48:35	SHOT	126	21	A						
236.4	05:49:16	SHOT	127	21	A						
236.4	05:49:57	SHOT	128	21	A						
236.4	05:51:17	SHOT	129	21	A						
174.8	05:58:05	SHOT	130	22	A						
						•					

Observer's Note (3/5)

Observer's Note (3/5)											
Well depth	Time	Shot Type	Shot#	Stack#	Source	Remarks					
[m]						ACMINI III					
174.8	05:58:46	SHOT	131	22	A						
174.8	05:59:27	SHOT	132	22	A						
174.8	06:00:08	SHOT	133	22	A						
174.8	06:00:49	SHOT	134	22	A						
115.3	06:09:27	SHOT	135	23	A	 					
115.3	06:10:08	SHOT	136	23	A						
115.3	06:10:49	SHOT	137	23	A	 					
115.3	06:11:30	SHOT	138	23	A						
115.3	06:12:11	SHOT	139	23	A						
115.3	06:12:52	SHOT	140	23	A						
115.3	06:16:56	ENLO	141								
115.3	06:17:20	ENHI	142								
115.3	06:17:29	ETHD	143								
115.3	06:17:43	DRNG	144								
115.3	06:17:58	GA02	145								
115.3	06:18:08	GA04	146								
115.3	06:18:17	GA08	147	\vdash							
115.3	06:18:27	GA16	148								
115.3	06:18:37	GA32	149	\vdash							
115.3	06:18:53	XTLK	150								
115.3	06:19:11 06:19:30	XTLK XTLK	151								
115.3			152								
115.3 1079.7	06:19:48 14:15:53	EIMP ENLO	153 154								
1079.7	14:15:53	ENLO	154								
				-							
1079.7 1079.7	14:16:29 14:16:45	ETHD DRNG	156 157								
1079.7 1079.7	14:17:01 14:17:13	GA02 GA04	158 159								
1079.7	14:17:13	GA04 GA08	160								
1079.7	14:17:24	GA08	161								
1079.7	14:17:48	GA32	162								
1079.7	14:17:48	XTLK	163	\vdash							
1079.7	14:18:25	XTLK	164								
1079.7	14:18:46	XTLK	165								
1079.7	14:19:05	EIMP	166								
1386.3	14:57:43	SHOT	168	26	A	QC @ 1385m this is TDS survey					
1386.3	14:57:45	SHOT	169	26	A	QC @ 1385m					
1386.3	14:59:26	SHOT	170	26	A	QC @ 1385m					
2059.6	15:40:37	SHOT	171	27	A	QC @ 2085.2m					
2059.6	15:41:18	SHOT	172	27	A	QC @ 2085.2m					
2059.6	15:41:59	SHOT	173	27	A	QC @ 2085.2m					
2301.3	16:07:15	SHOT	174	28	A	QC @ 2003.2III					
2301.3	16:07:56	SHOT	175	28	A						
2301.3	16:08:56	SHOT	176	28	A						
2301.3	16:09:37	SHOT	177	28	A	1					
2301.3	16:10:24	SHOT	178	28	A						
2301.3	16:11:05	SHOT	179	28	A						
2301.3	16:11:46	SHOT	180	28	A						
2301.3	16:12:27	SHOT	181	28	A						
2301.3	16:13:08	SHOT	182	28	A						
2240.8	16:26:59	SHOT	183	29	A						
2240.8	16:27:40	SHOT	184	29	A						
2240.8	16:28:21	SHOT	185	29	A						
2240.8	16:29:12	SHOT	186	29	A						
2240.8	16:29:53	SHOT	187	29	A						
2240.8	16:30:34	SHOT	188	29	A						
2180.4	16:36:16	SHOT	189	30	A						
2180.4	16:36:57	SHOT	190	30	A						
2180.4	16:37:38	SHOT	191	30	A						
2180.4	16:38:19	SHOT	192	30	A						
2180.4	16:39:00	SHOT	193	30	A						
2180.4	16:39:42	SHOT	194	30	A						
2119.9	16:50:21	SHOT	195	31	A						
2119.9	16:51:02	SHOT	196	31	A						
	10.01.02	21101	170	J.		1					

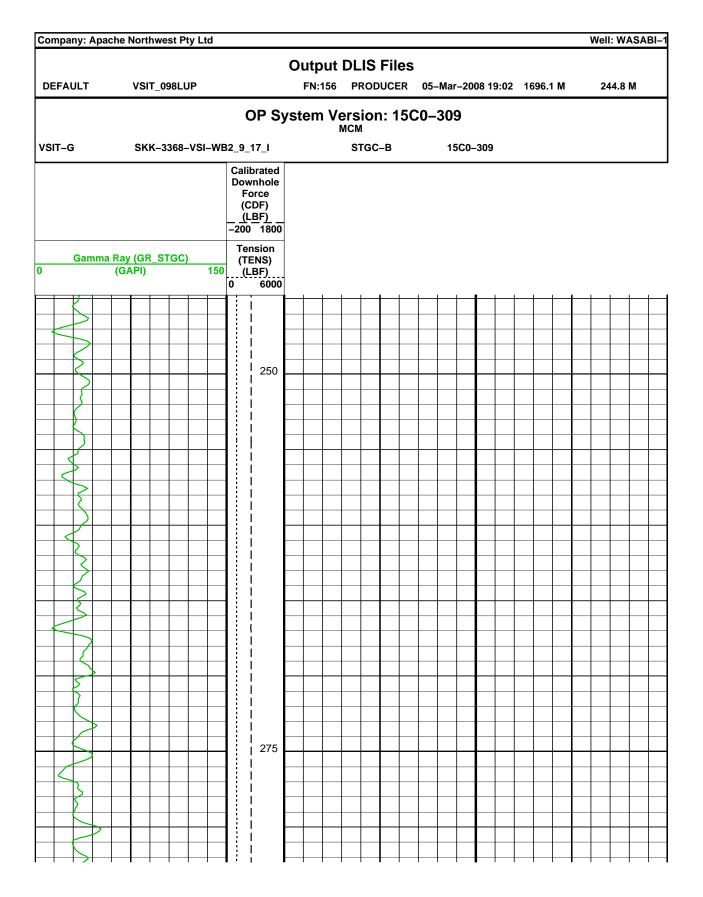
Observer's Note (4/5)

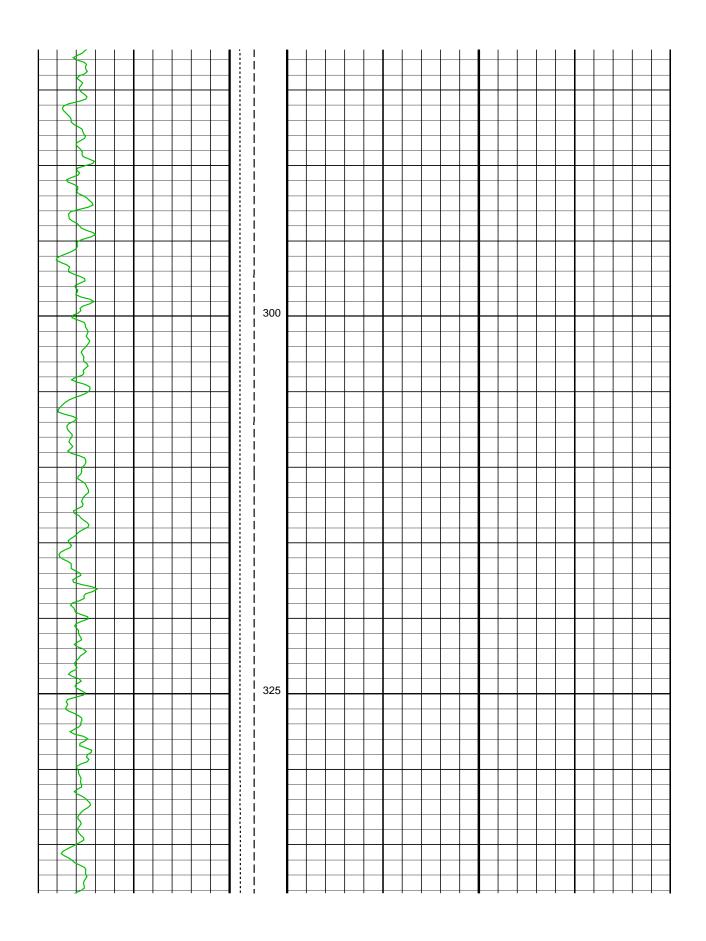
	Observer's Note (4/5)										
Well depth	Time	Shot Type	Shot#	Stack#	Source	Remarks					
[m]						Remains					
2119.9	16:52:00	SHOT	197	31	A						
2119.9	16:52:41	SHOT	198	31	A						
2119.9	16:53:22	SHOT	199	31	A						
2059.5	16:58:16	SHOT	200	32	A						
2059.5	16:58:57	SHOT	201	32	A						
2059.5	16:59:38	SHOT	202	32	A						
2059.5	17:00:19	SHOT	203	32	A						
2059.5	17:01:00	SHOT	204	32	A						
1998.9	17:06:00	SHOT	205	33	A						
1998.9	17:06:41	SHOT	206	33	A						
1998.9	17:07:22	SHOT	207	33	A						
1998.9	17:08:04	SHOT	208	33	A						
1998.9	17:08:45	SHOT	209	33	A						
1938.5	17:20:13	SHOT	210	34	A						
1938.5	17:20:54	SHOT	211	34	A						
1938.5	17:21:35	SHOT	212	34	A						
1938.5	17:22:16	SHOT	213	34	A						
1938.5	17:22:57	SHOT	214	34	A						
1878.1	17:29:33	SHOT	215	35	A						
1878.1	17:30:14	SHOT	216	35	A						
1878.1	17:31:12	SHOT	217	35	A						
1878.1	17:31:53	SHOT	218	35	A						
1878.1	17:32:34	SHOT	219	35	A						
1817.6	17:37:47	SHOT	220	36	A						
1817.6	17:38:39	SHOT	221	36	A						
1817.6	17:41:12	SHOT	222	36	A						
1817.6	17:41:53	SHOT	223	36	A						
1817.6	17:42:34	SHOT	224	36	A						
1817.6	17:43:23	SHOT	225	36	A						
1757.1	17:58:19	SHOT	226	37	A						
1757.1	17:59:00	SHOT	227	37	A						
1757.1	17:59:41	SHOT	228	37	A						
1757.1	18:00:22	SHOT	229	37	A						
1757.1	18:01:13	SHOT	230	37	A						
1696.6	18:08:49	SHOT	231	38	A						
1696.6	18:09:30	SHOT	232	38	A						
1696.6	18:10:11	SHOT	233	38	A						
1696.6	18:10:52	SHOT	234	38	A						
1696.6	18:11:34	SHOT	235	38	A						
1636.1	18:24:52	SHOT	236	39	A						
1636.1	18:25:33	SHOT	237	39	A						
1636.1	18:26:14	SHOT	238	39	A						
1636.1	18:26:55	SHOT	239	39	A						
1636.1	18:27:36	SHOT	240	39	A						
1575.6	18:32:41	SHOT	241	40	A						
1575.6	18:33:22	SHOT	242	40	A	<u> </u>					
1575.6	18:34:03	SHOT	243	40	A	<u> </u>					
1575.6	18:34:44	SHOT	244	40	A	<u> </u>					
1575.6	18:35:25	SHOT	245	40	A	<u>. </u>					
1515.2	18:40:03	SHOT	246	41	A						
1515.2	18:40:44	SHOT	247	41	A						
1515.2	18:41:26	SHOT	248	41	A	1					
1515.2	18:42:07	SHOT	249	41	A						
1515.2	18:42:48	SHOT	250	41	A						
1454.6	18:53:17	SHOT	251	42	A						
1454.6	18:53:58	SHOT	252	42	A						
1454.6	18:54:39	SHOT	253	42	A						
1454.6	18:55:20	SHOT	254	42	A						
1454.6	18:55:20	SHOT	254	42	A						
1386.9	19:02:29	SHOT									
1386.9	19:02:29	SHOT	256 257	43	A						
					A						
1386.9	19:03:51	SHOT	258	43	A	<u> </u>					
1386.9	19:04:32	SHOT	259	43	A						
1386.9	19:05:14	SHOT	260	43	A						
1326.4	19:10:17	SHOT	261	44	A	<u> </u>					

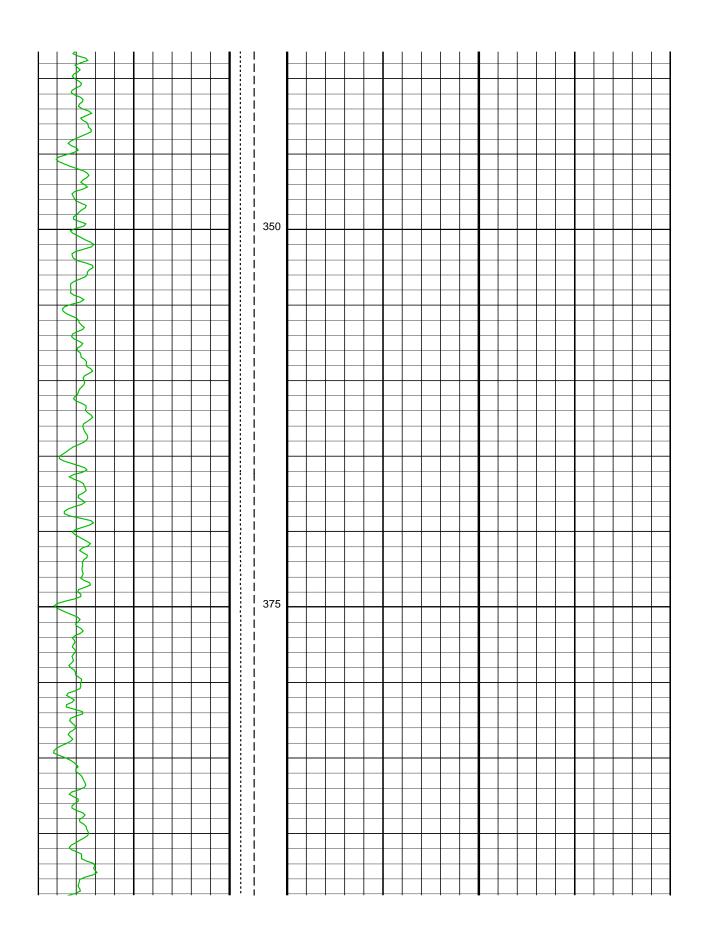
Client: Apache Northwest Pty Ltd

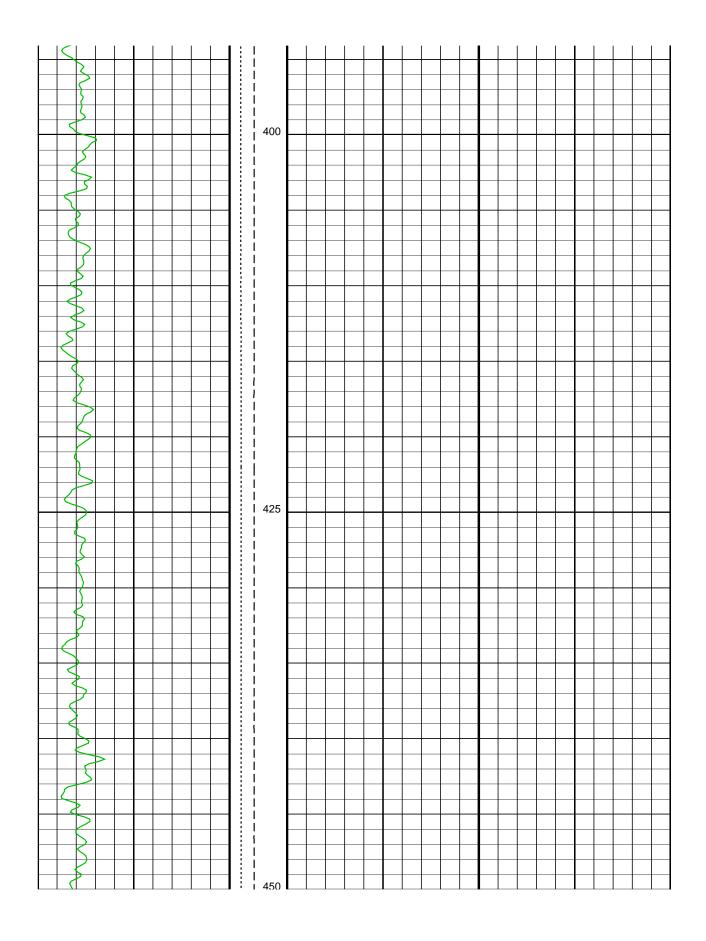
Field: Apache/VIC/P-58/WASABI-1

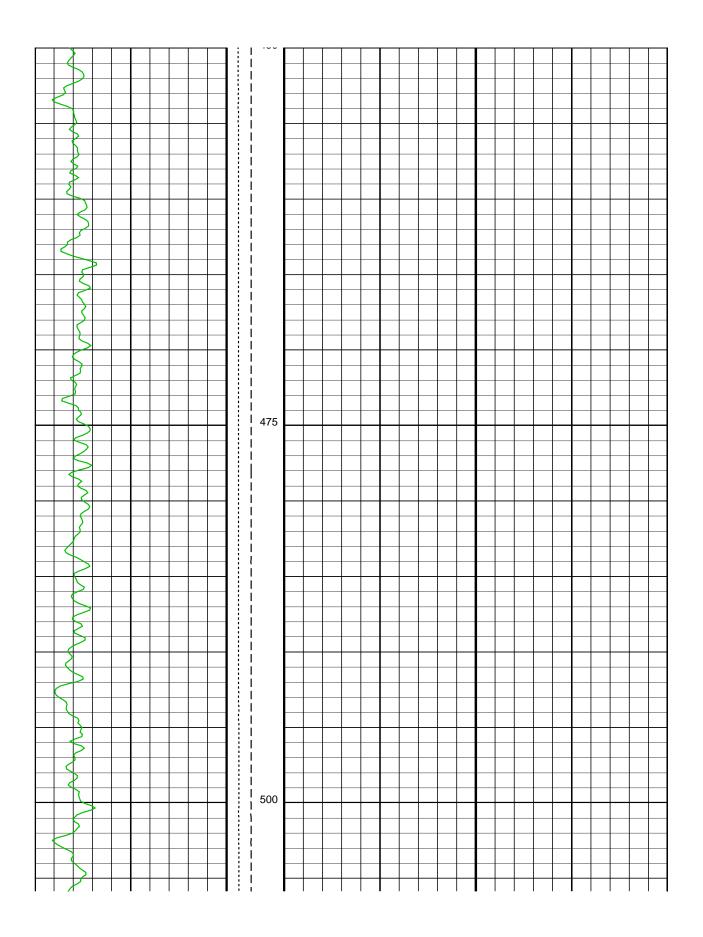
Observer's Note (5/5)

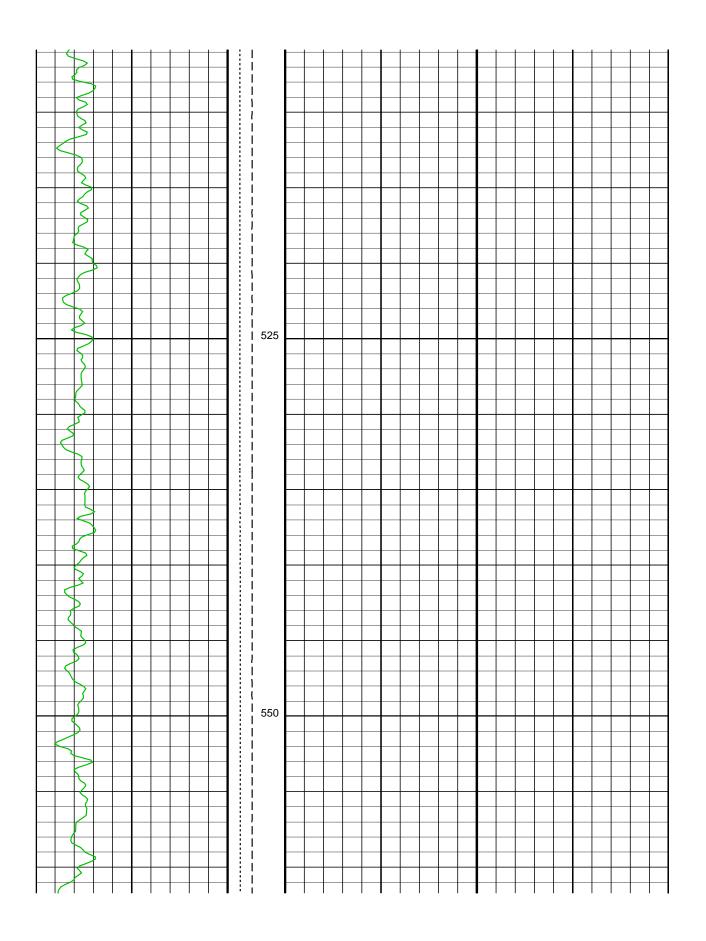

Well depth [m]	Time	Shot Type	Shot#	Stack#	Source	Remarks
1326.4	19:10:58	SHOT	262	44	A	
1326.4	19:11:39	SHOT	263	44	A	
1326.4	19:12:20	SHOT	264	44	A	
1326.4	19:13:01	SHOT	265	44	A	

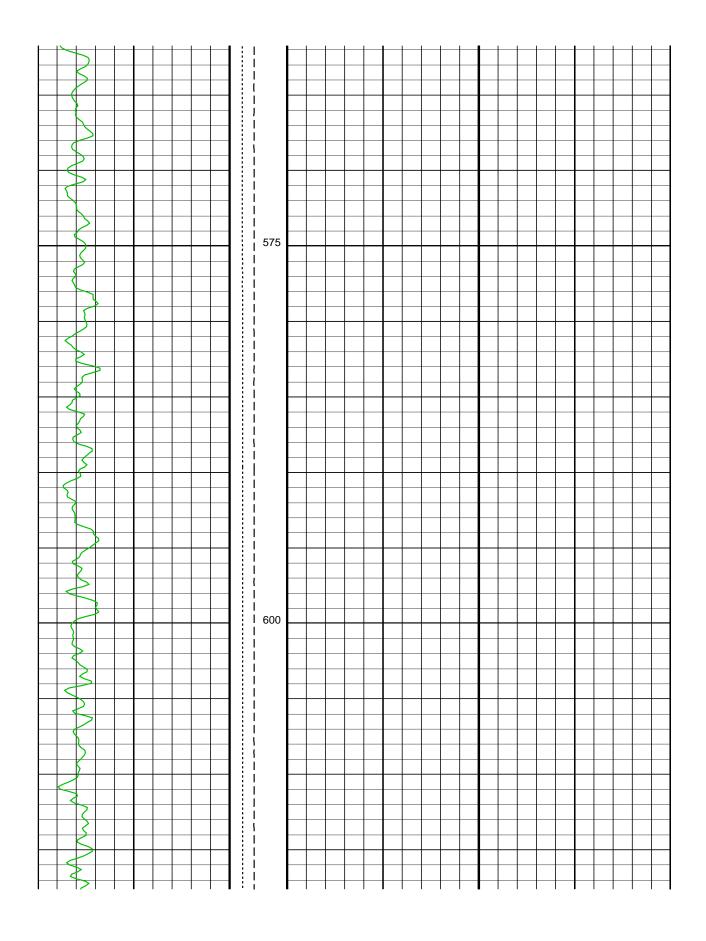


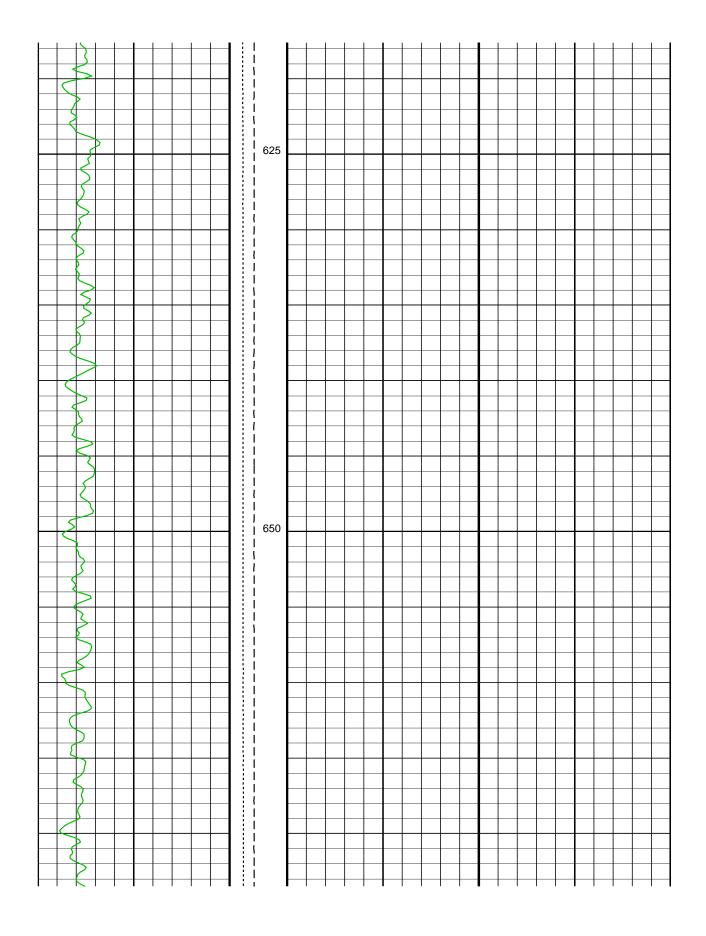

Well: WASABI-1

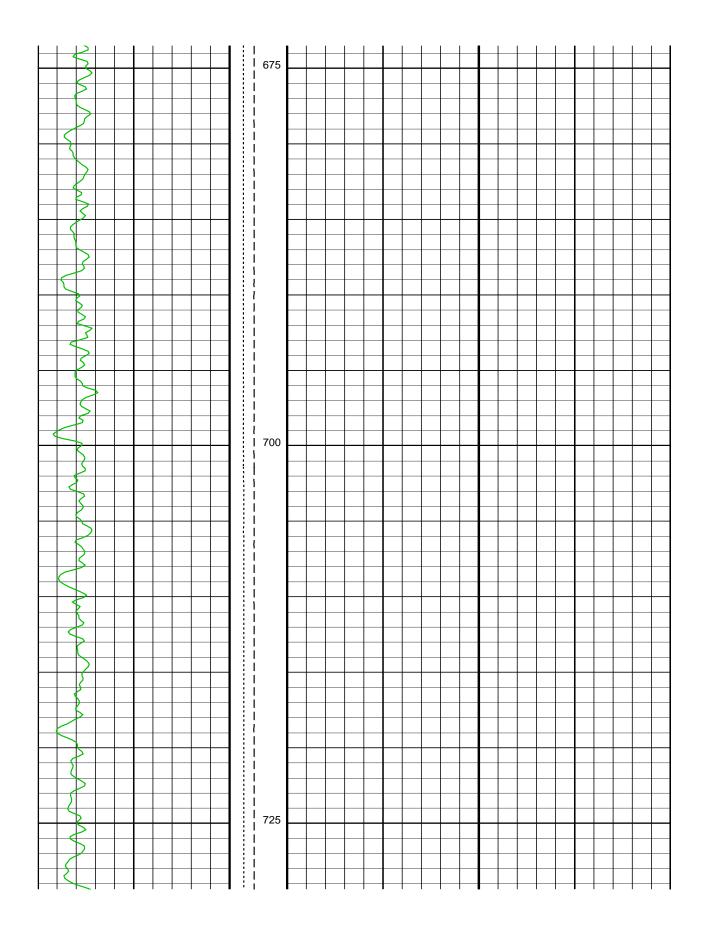

GR Correlation Report

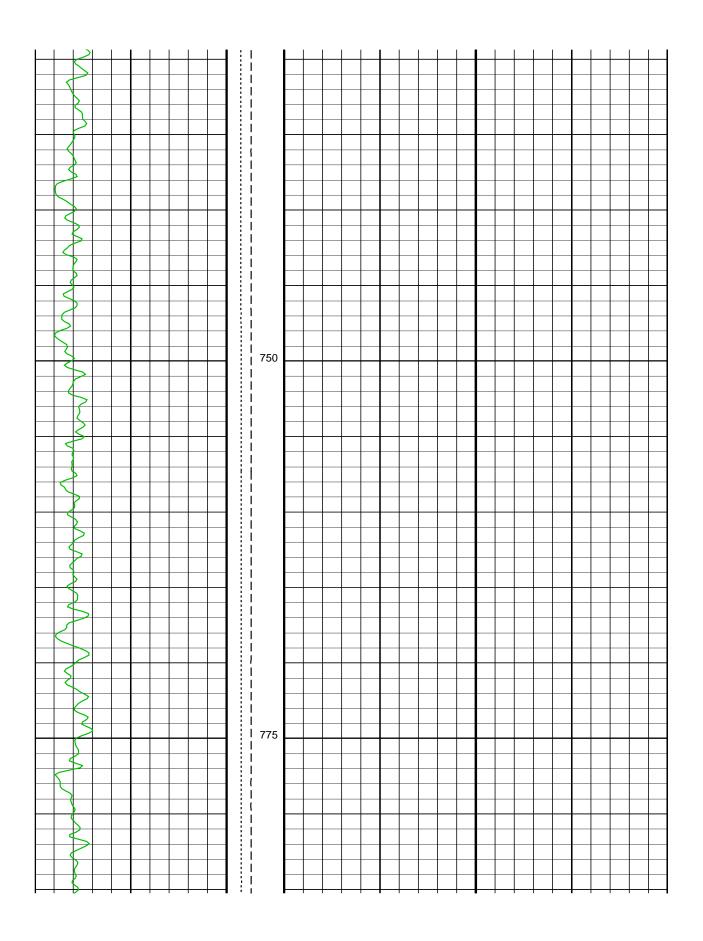


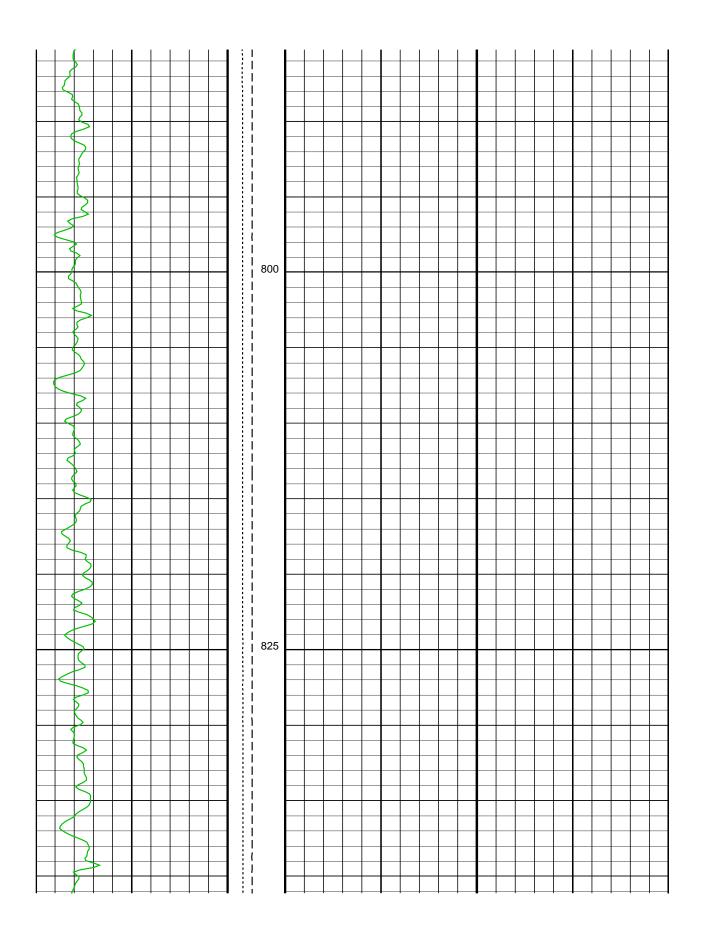


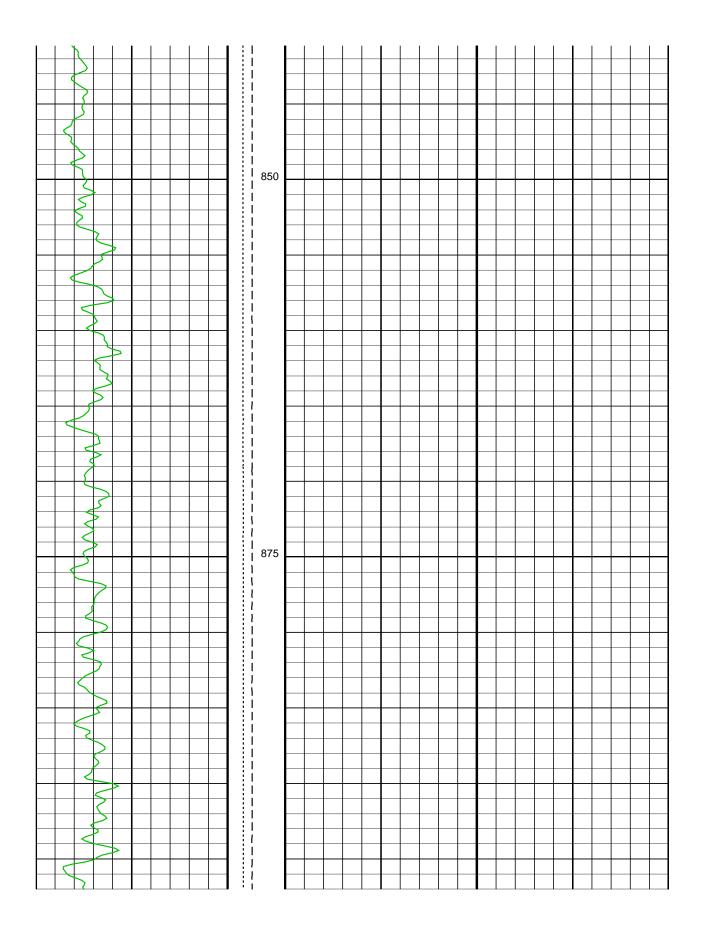


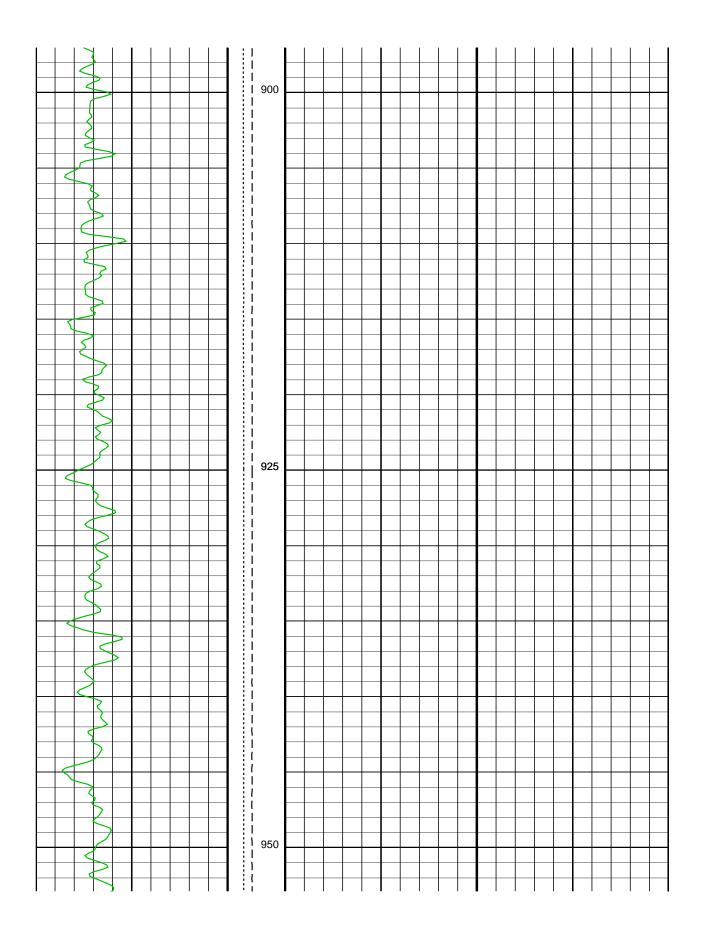


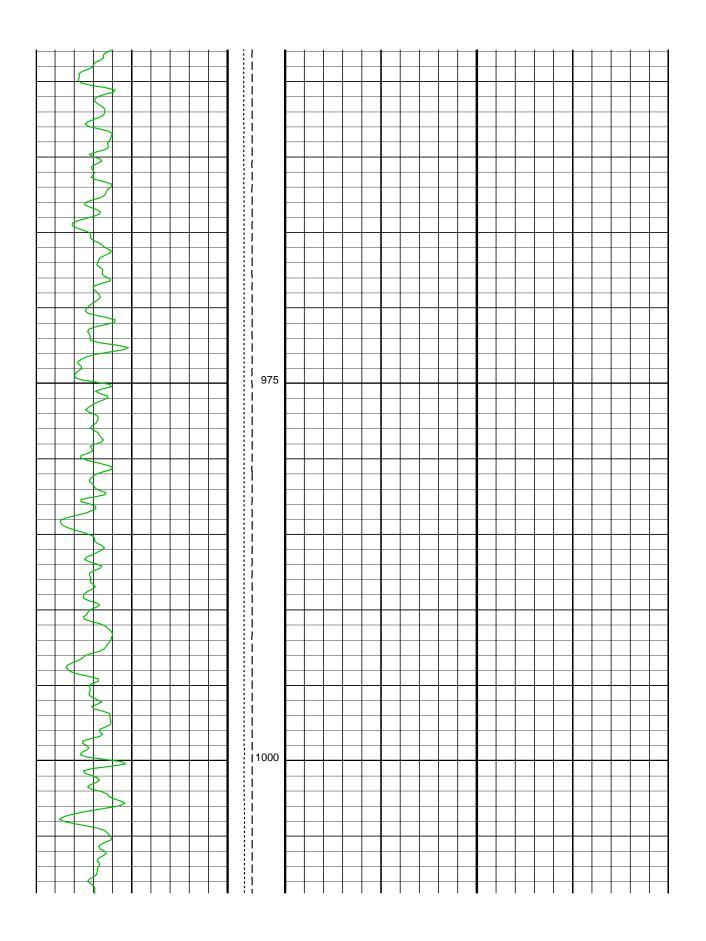


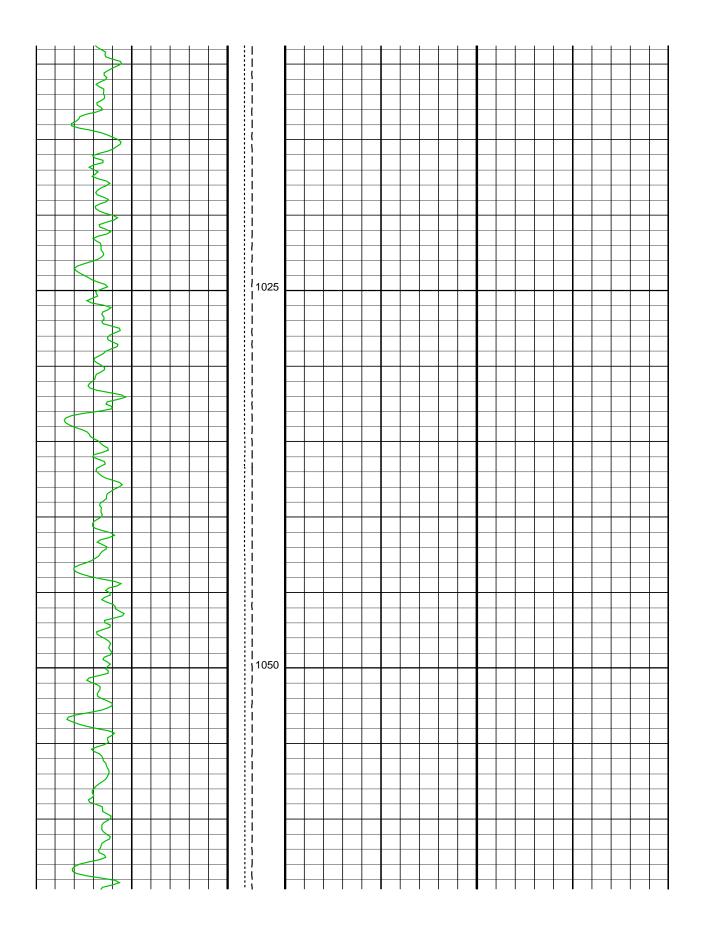


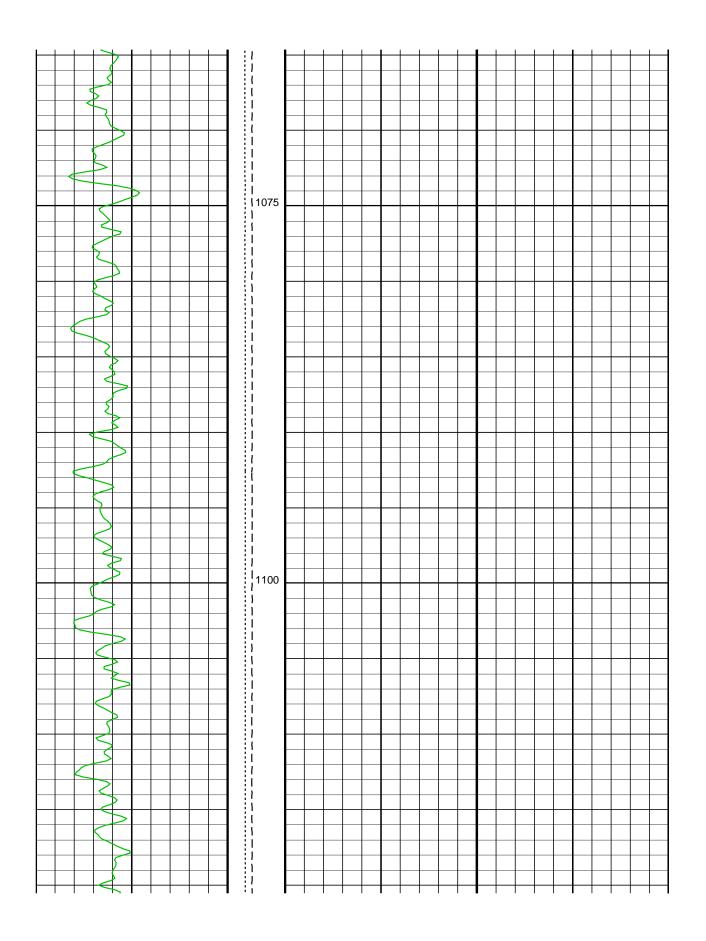


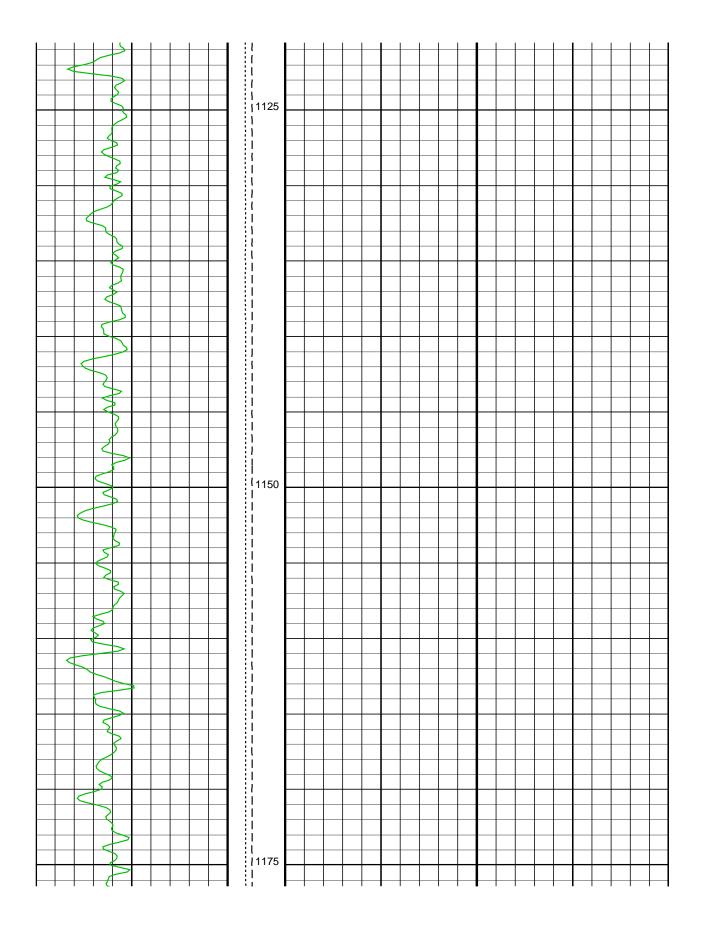


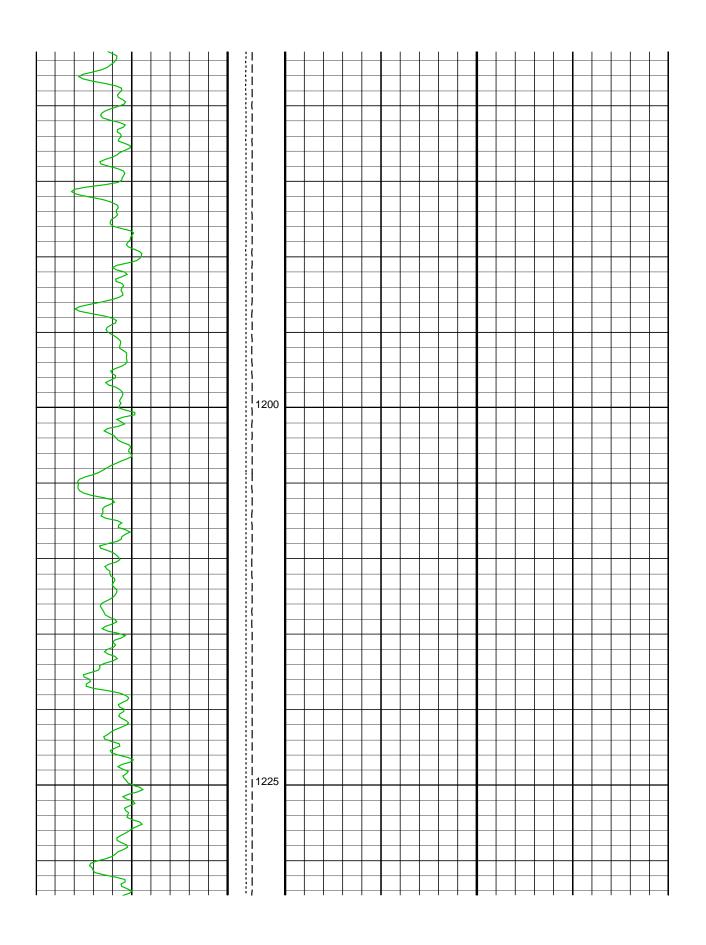


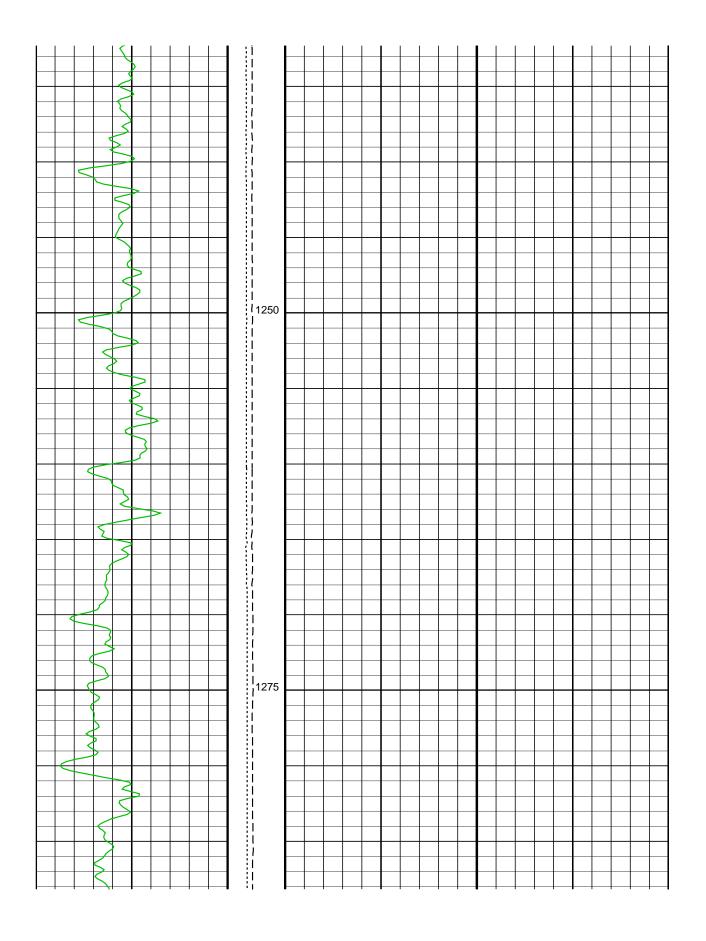


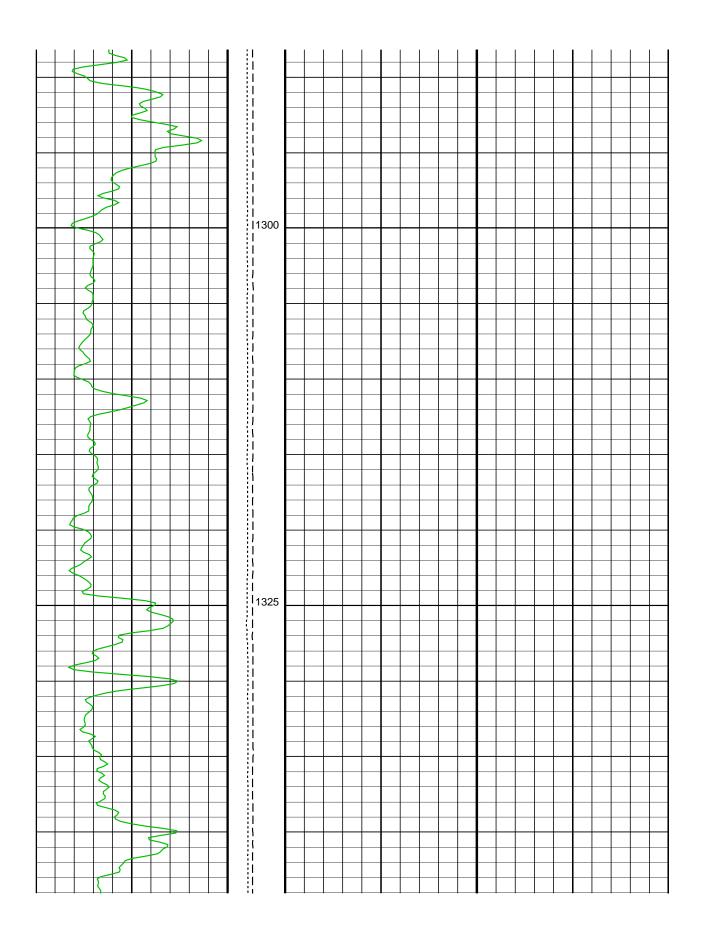


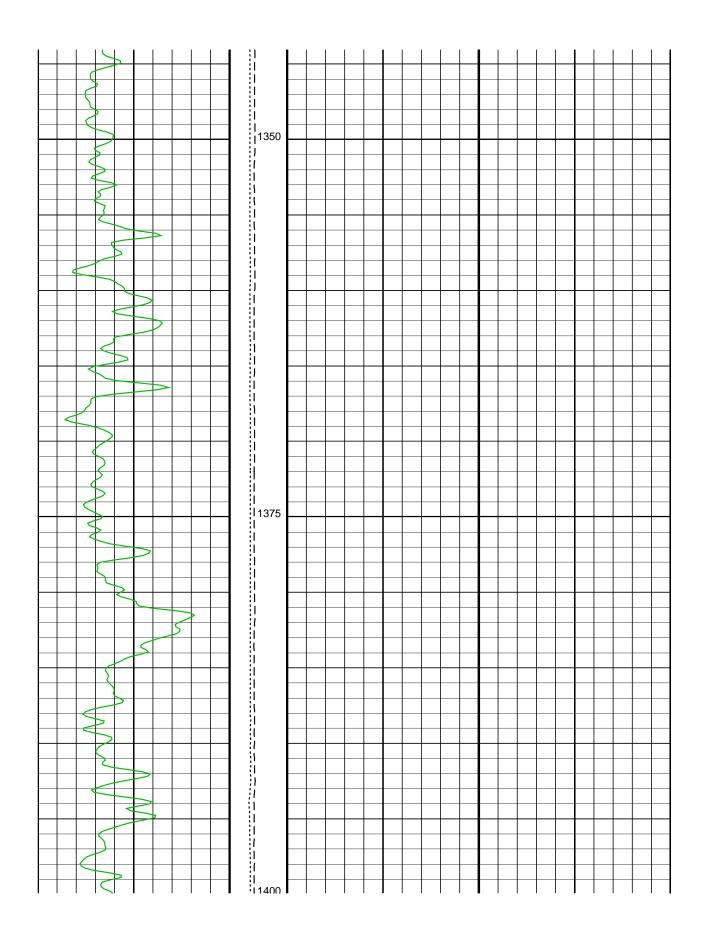


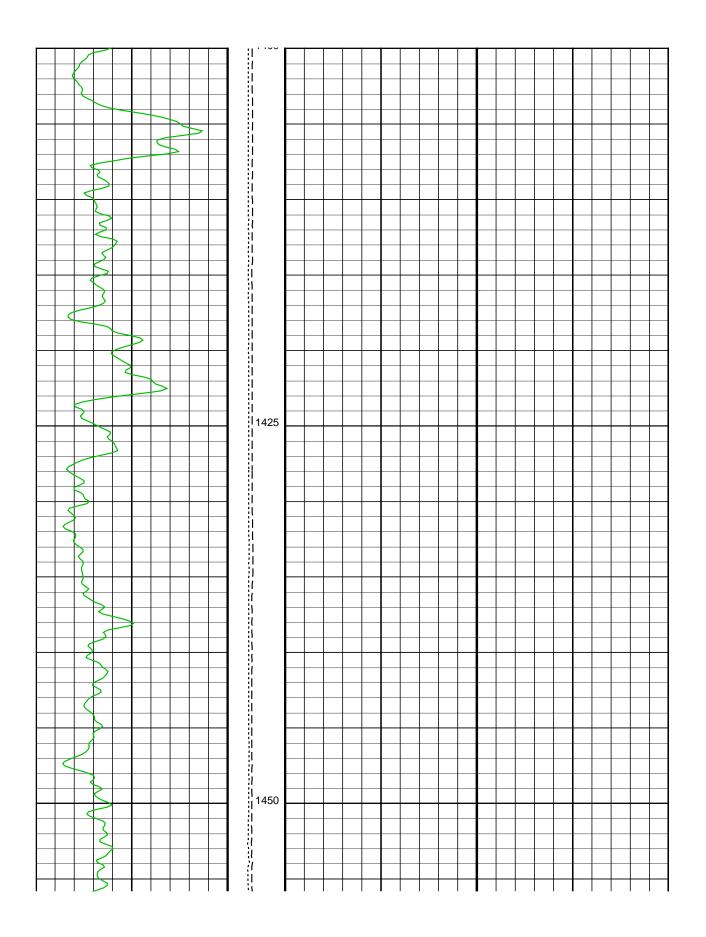


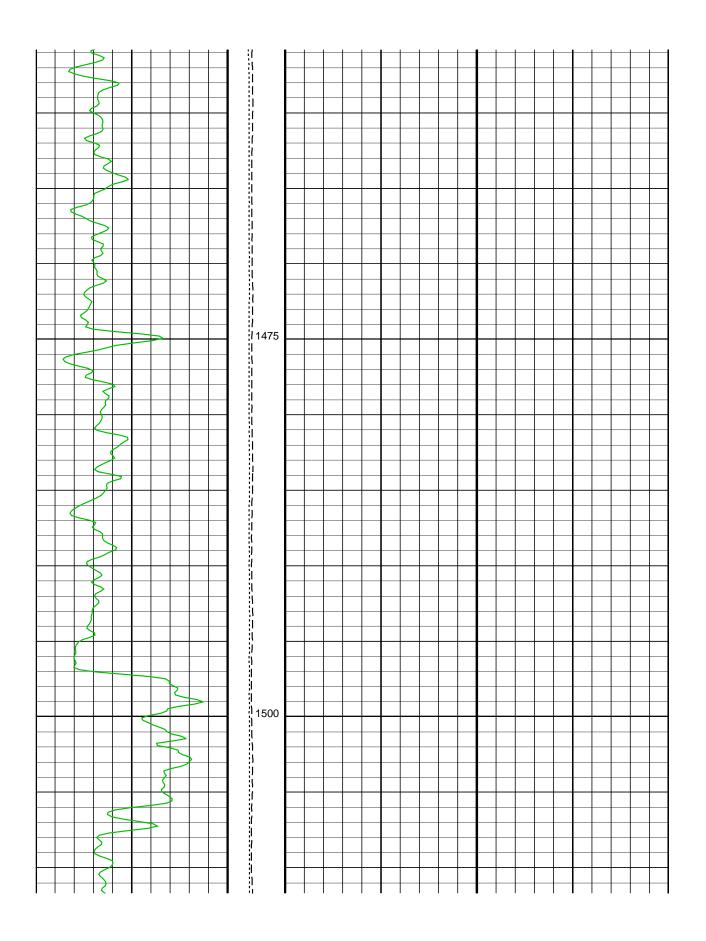


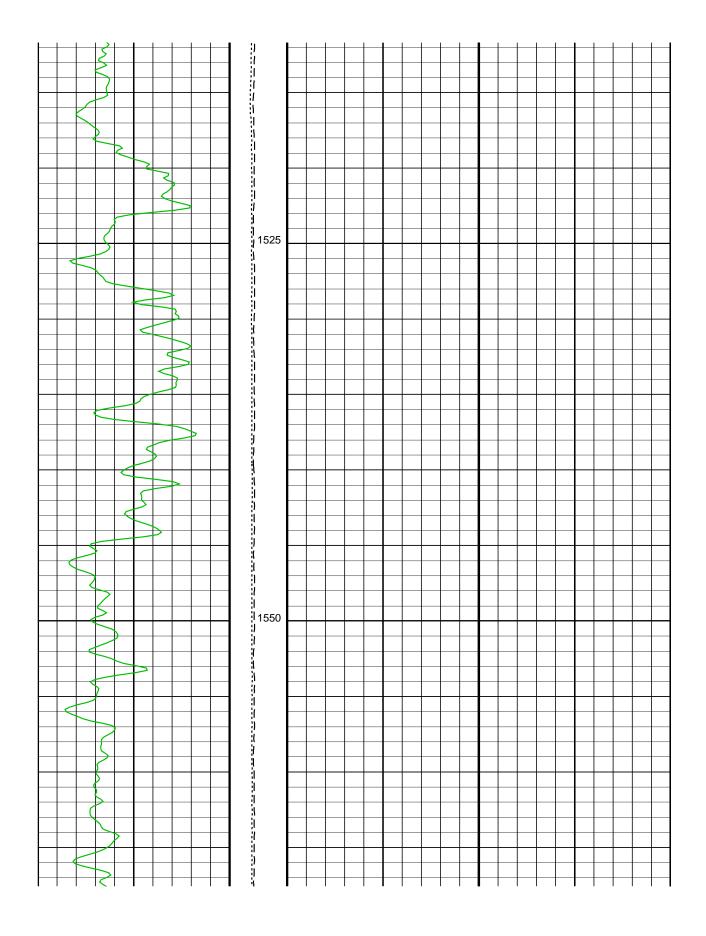


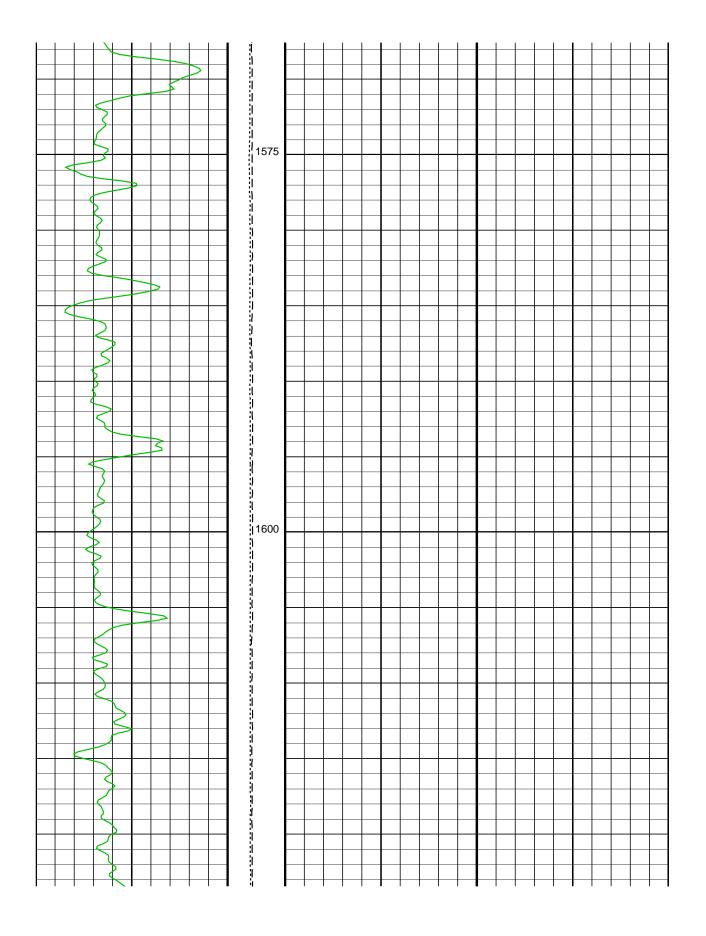


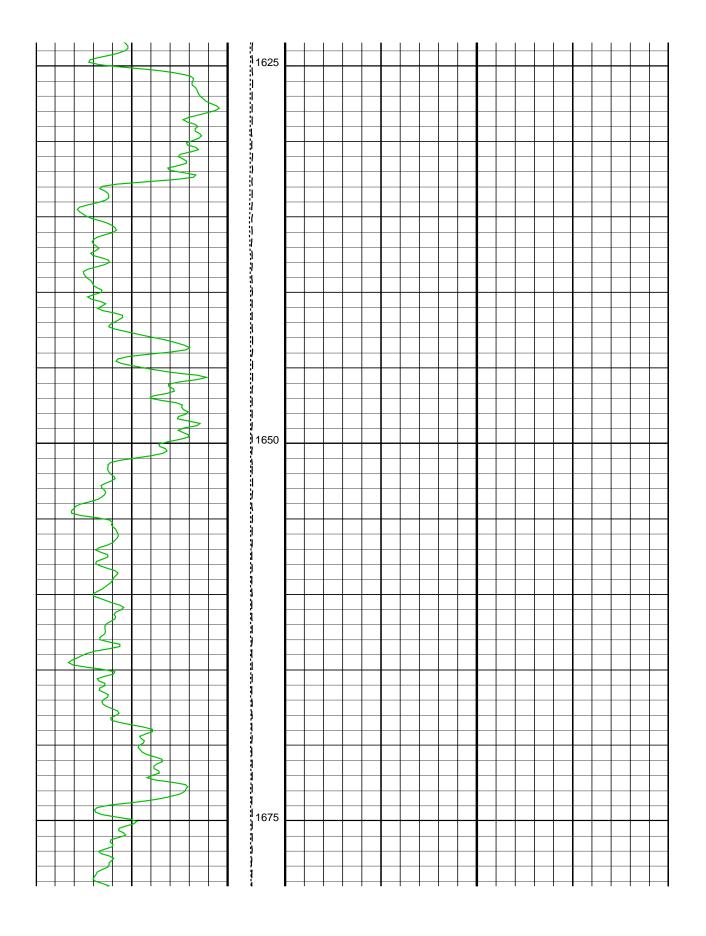


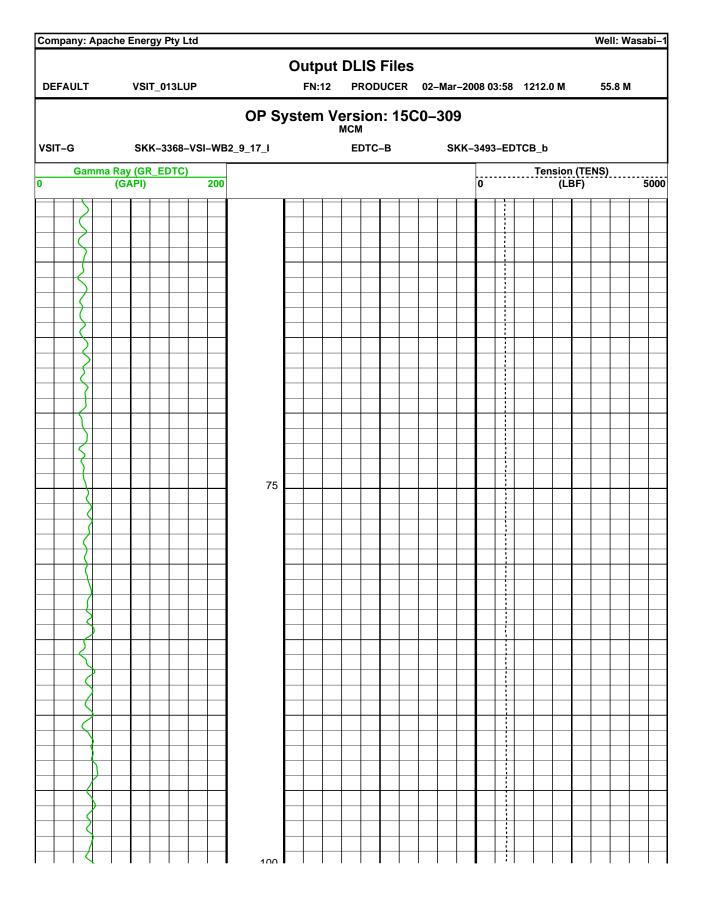


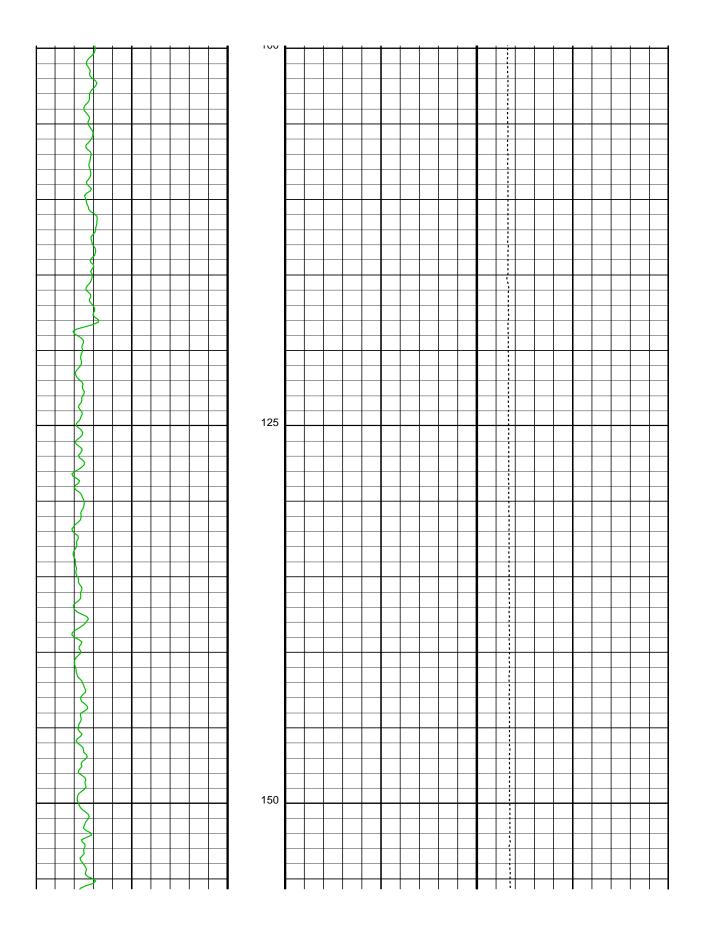


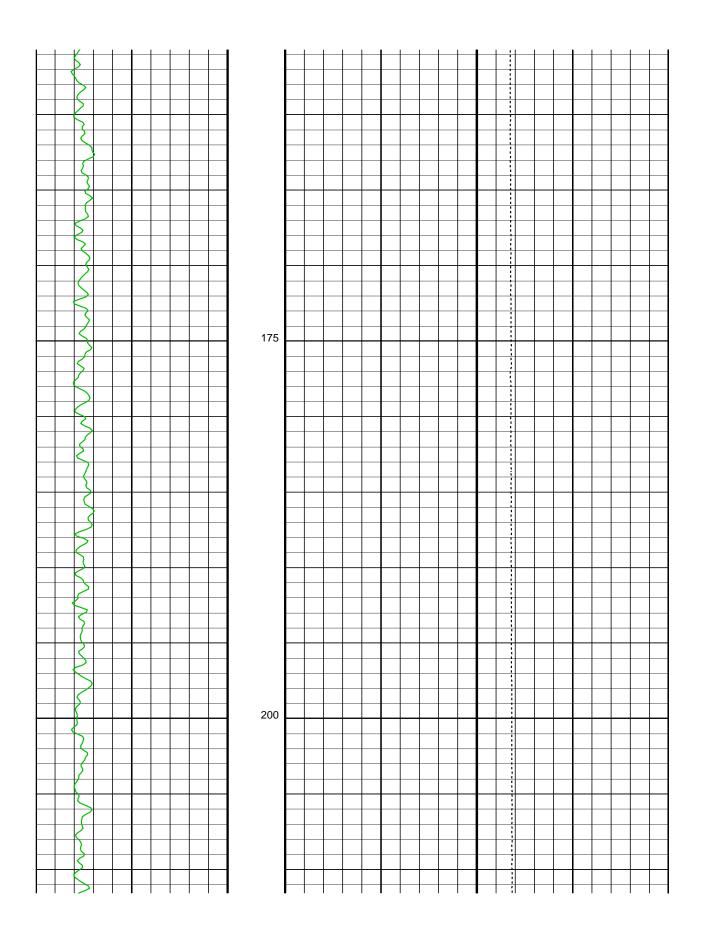


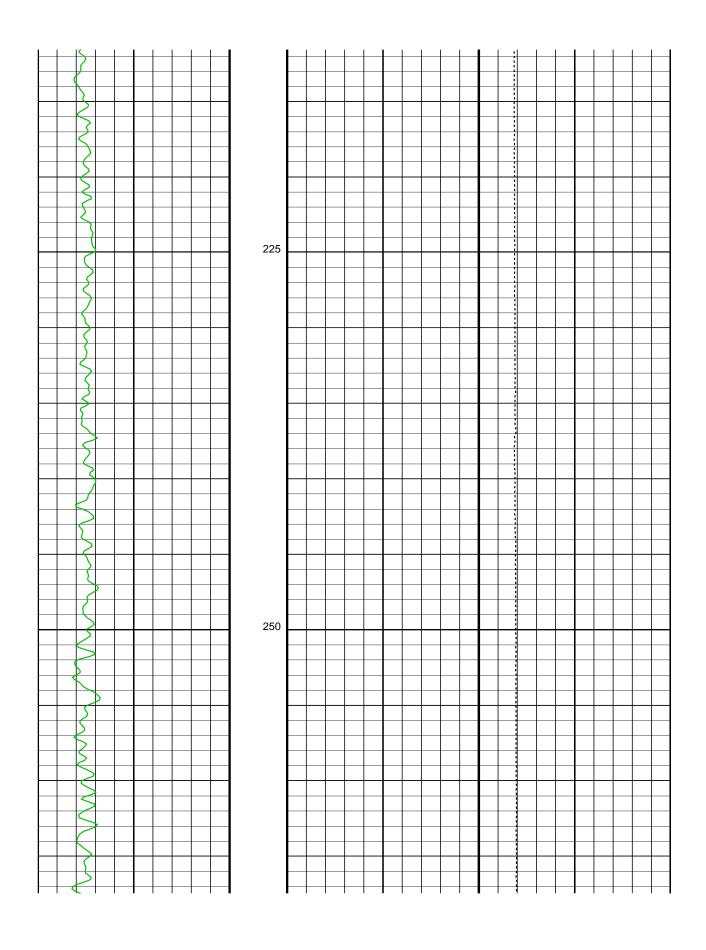


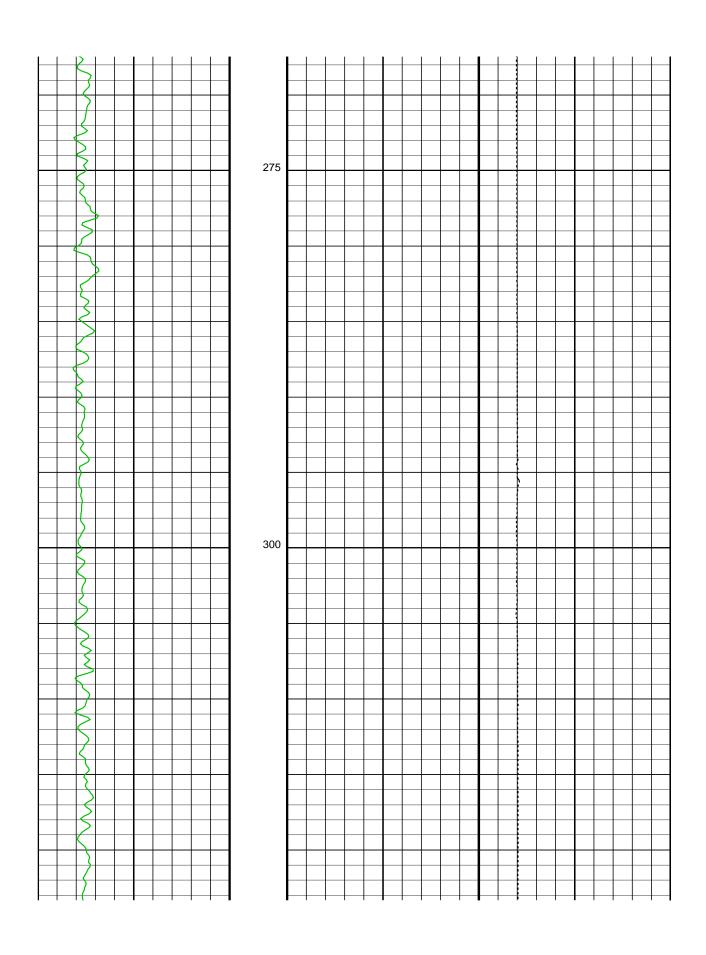


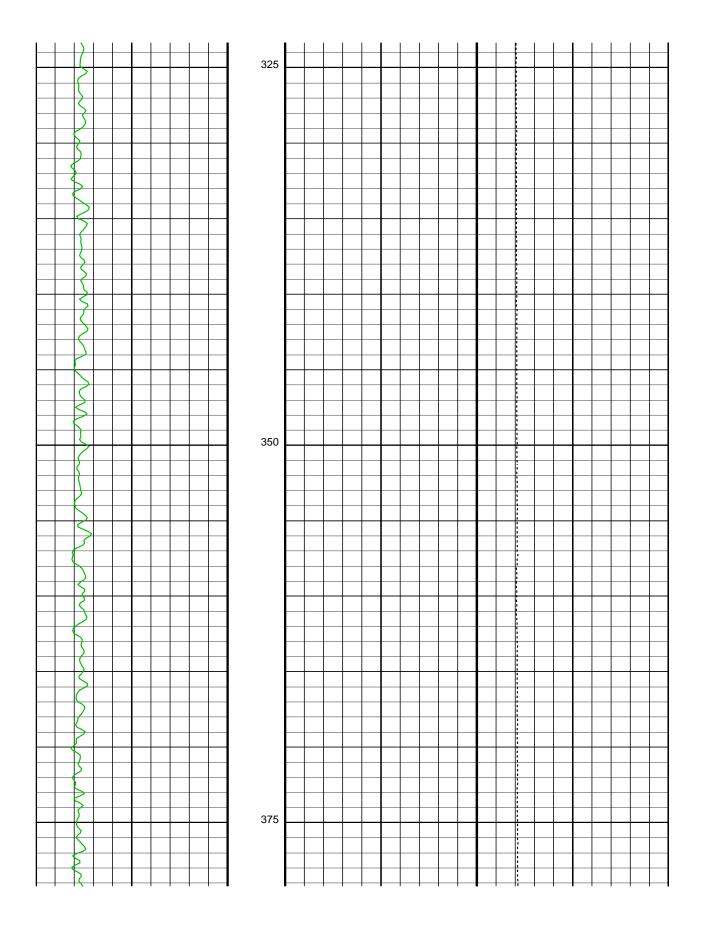


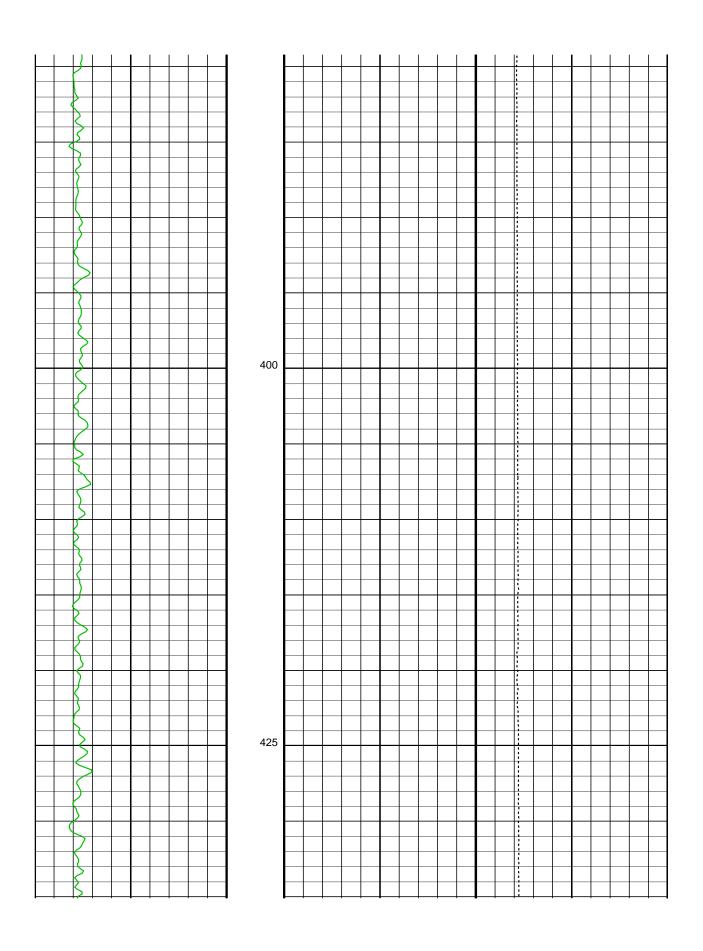


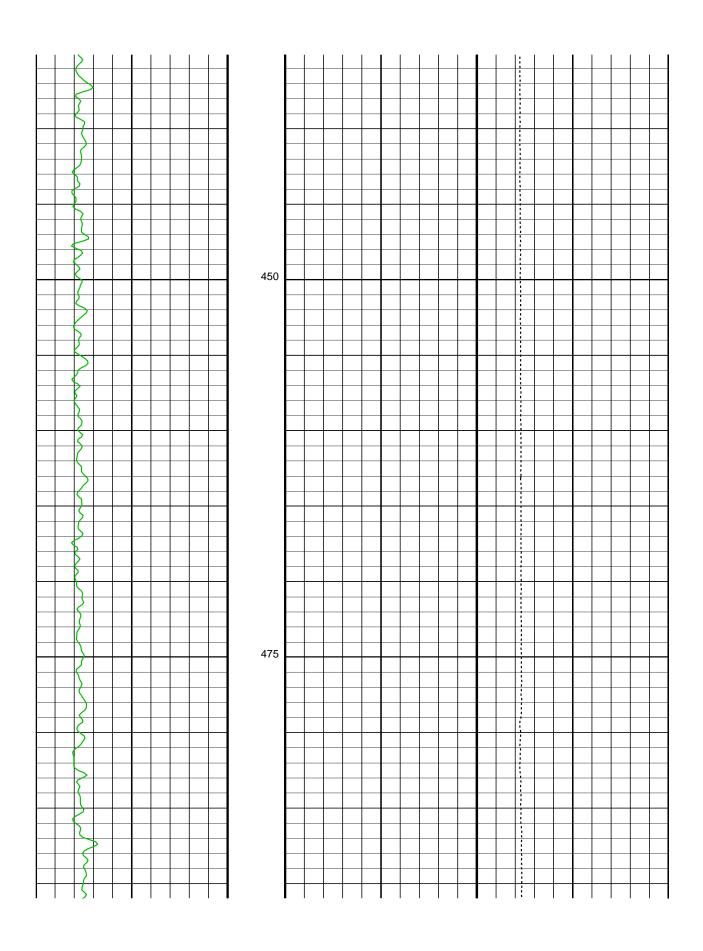


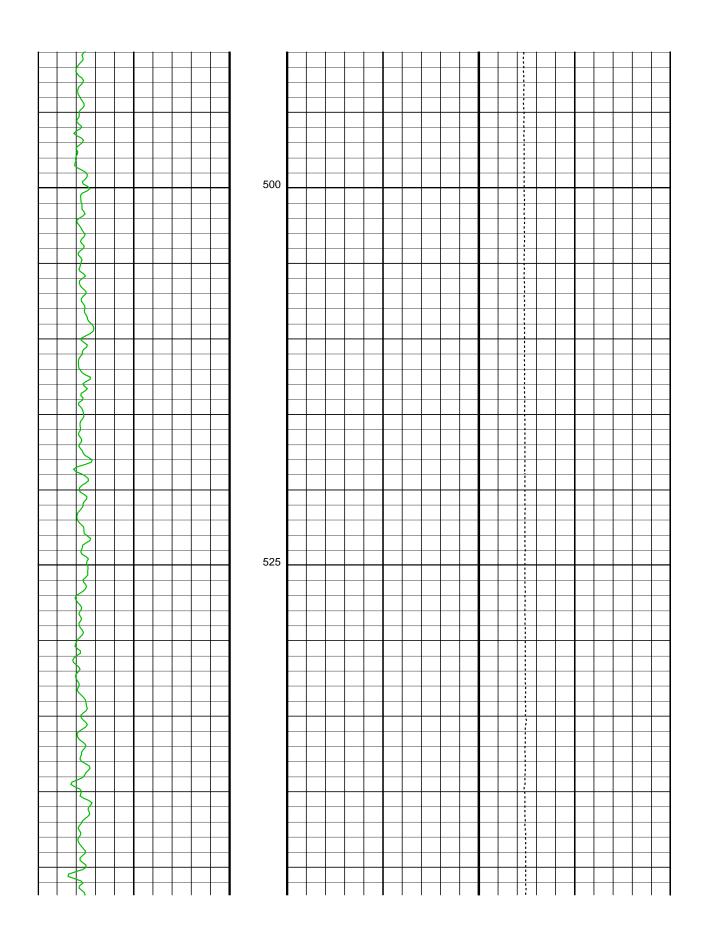


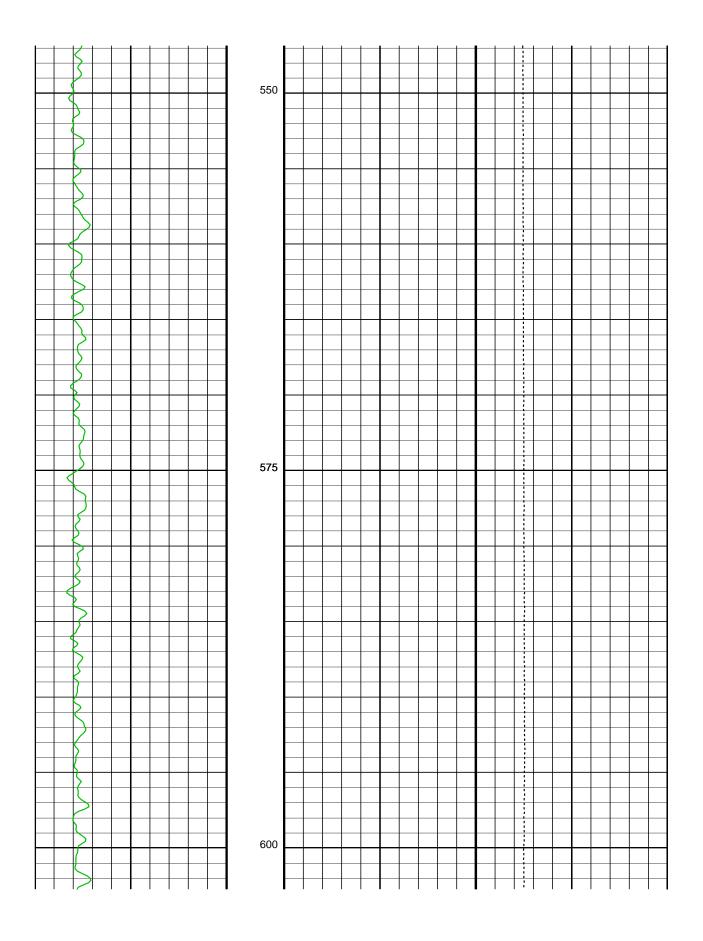


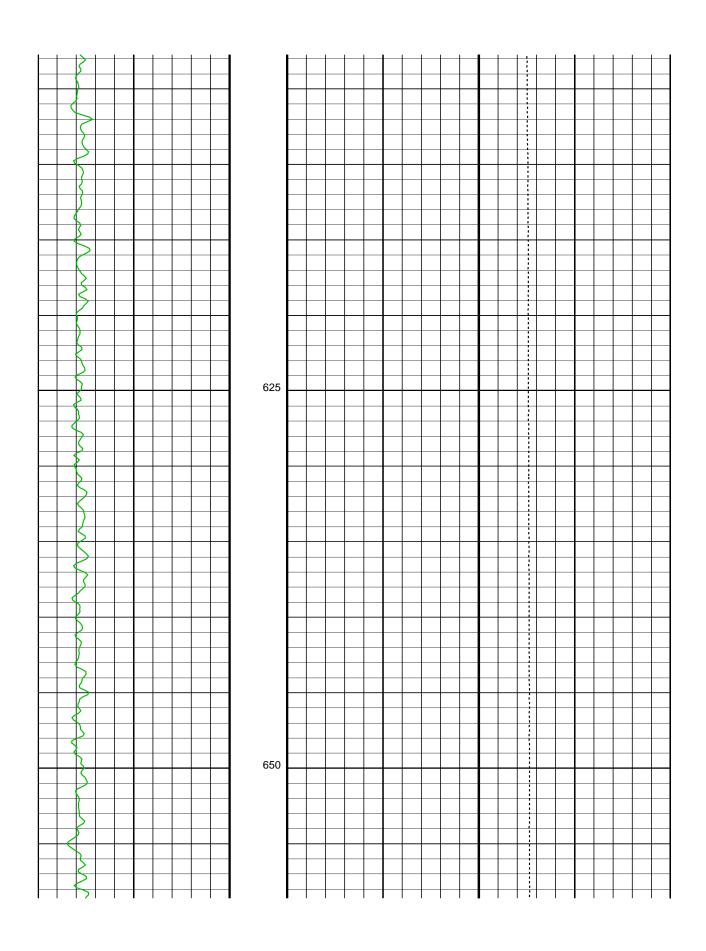


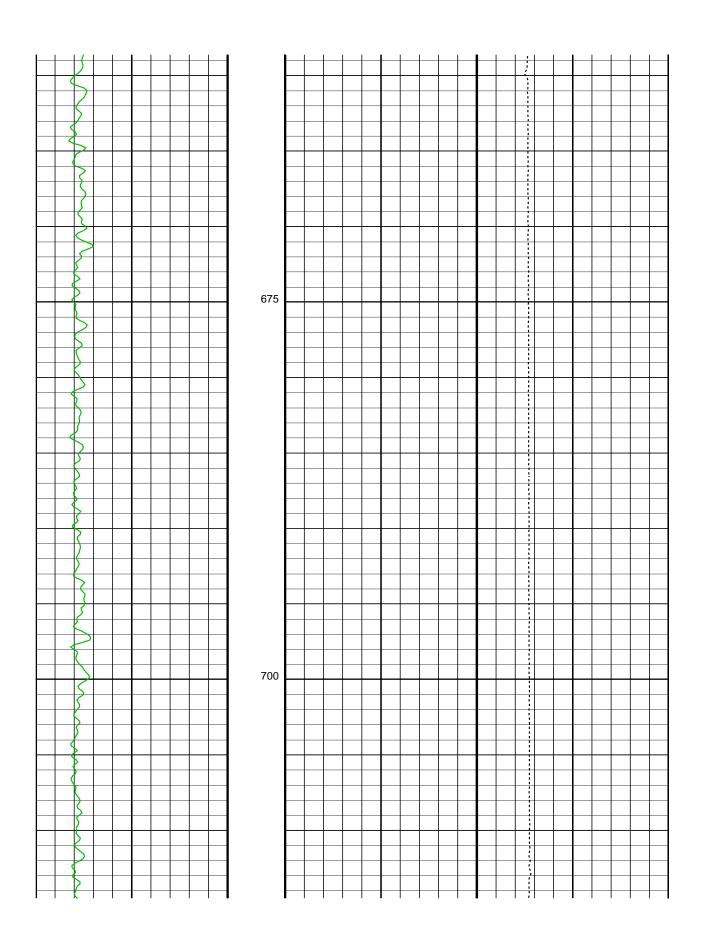


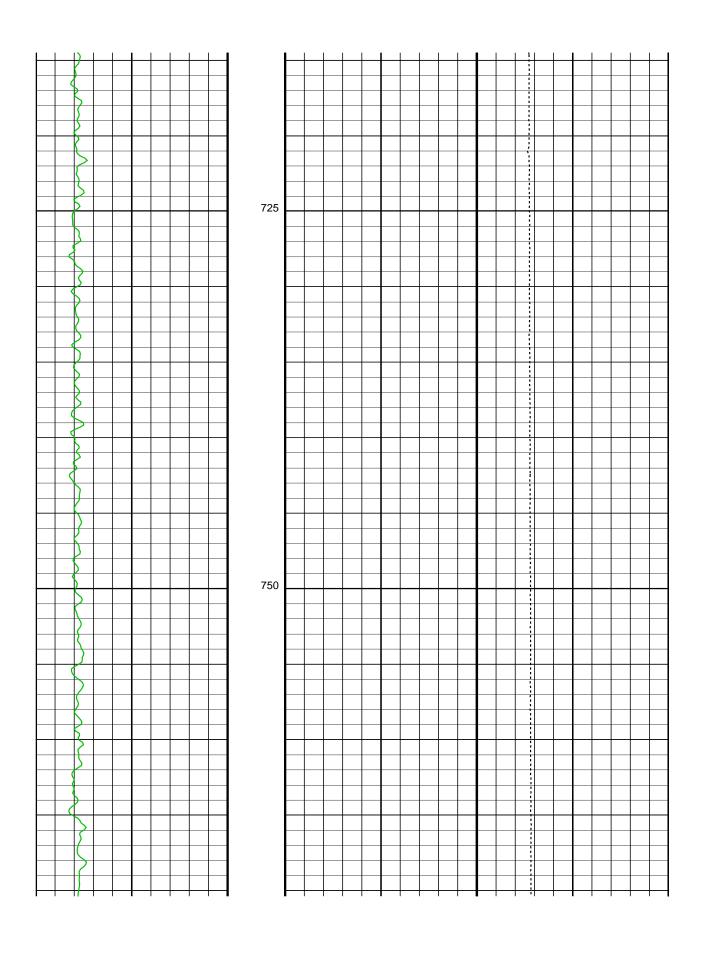


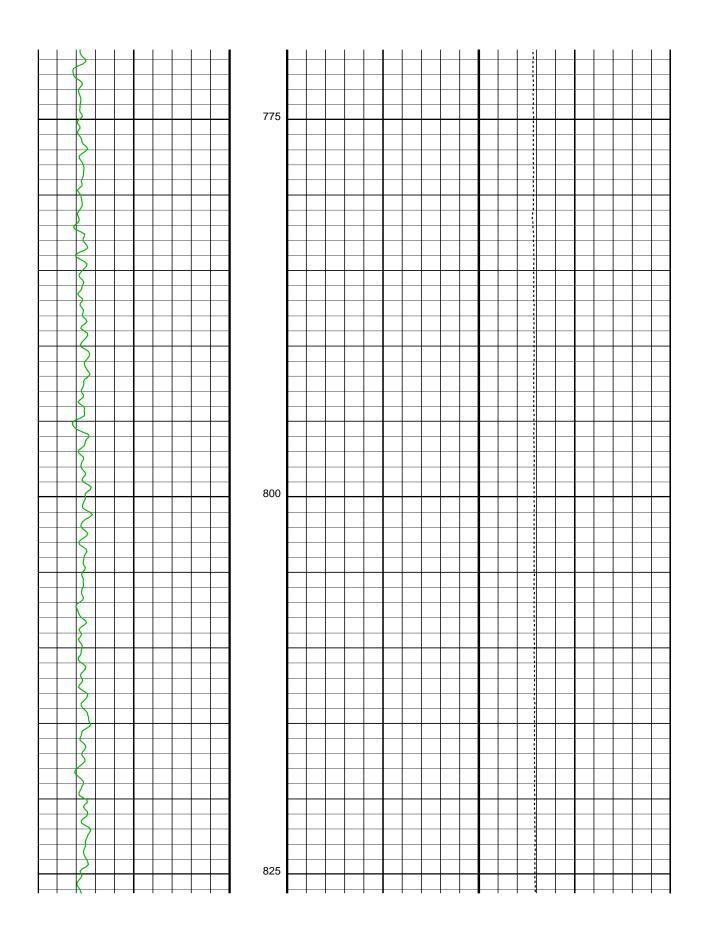


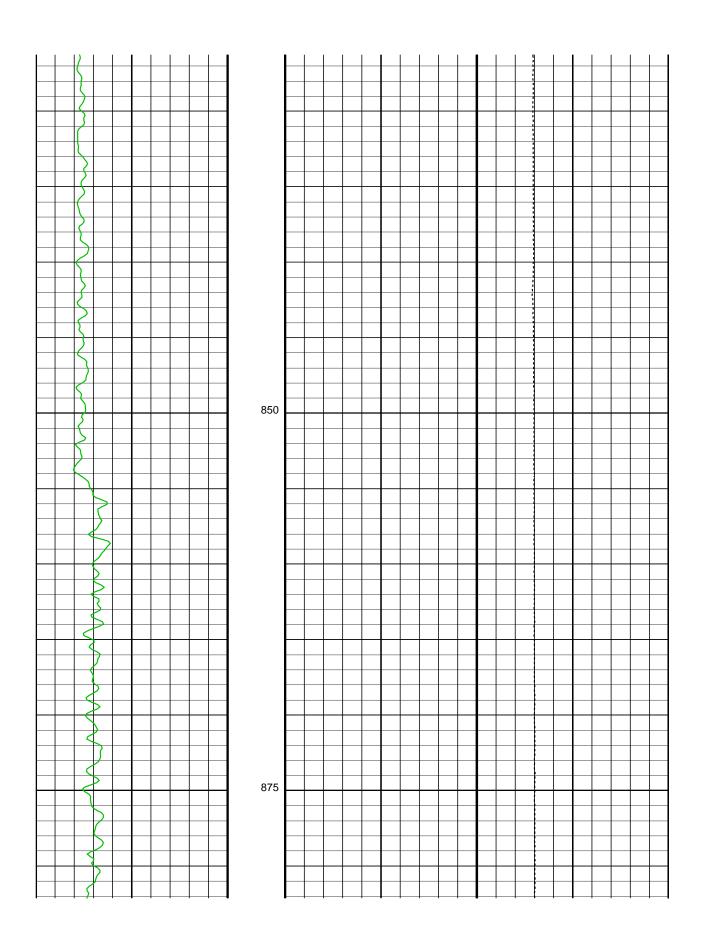


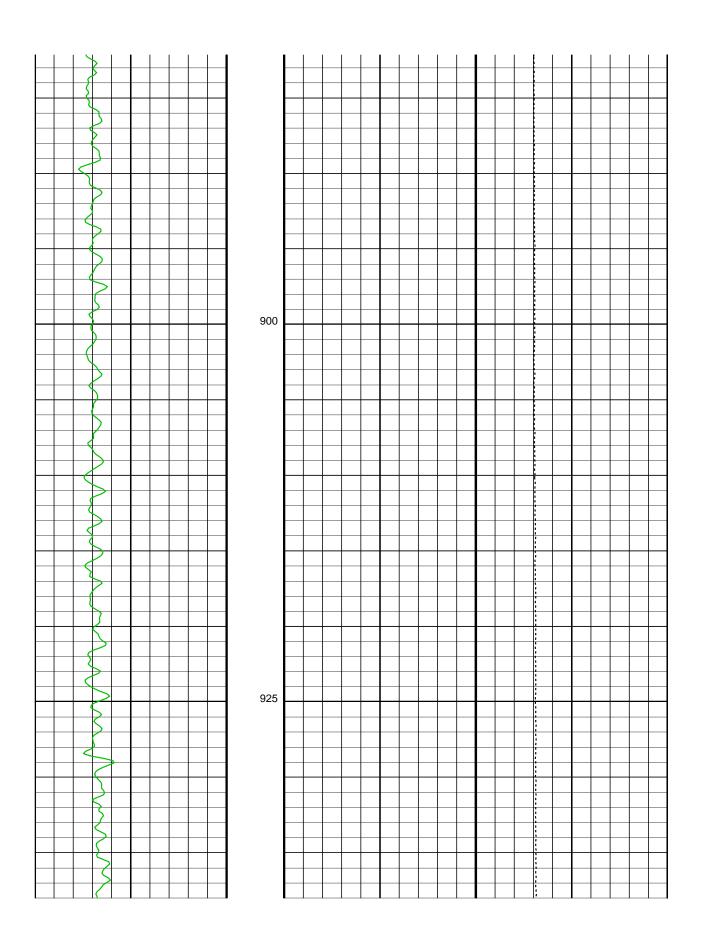


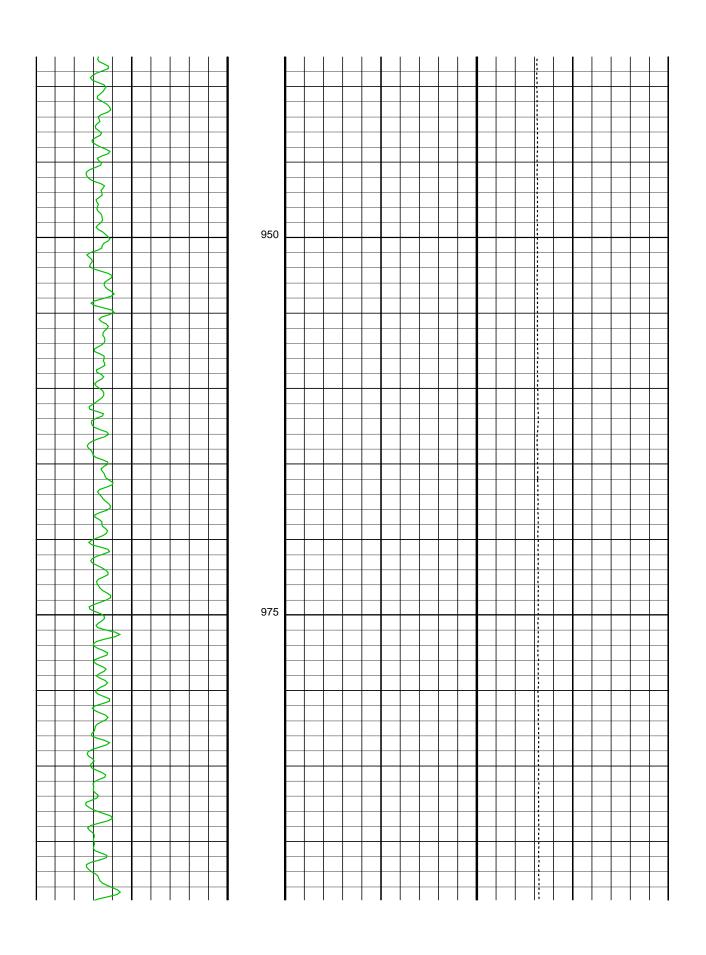


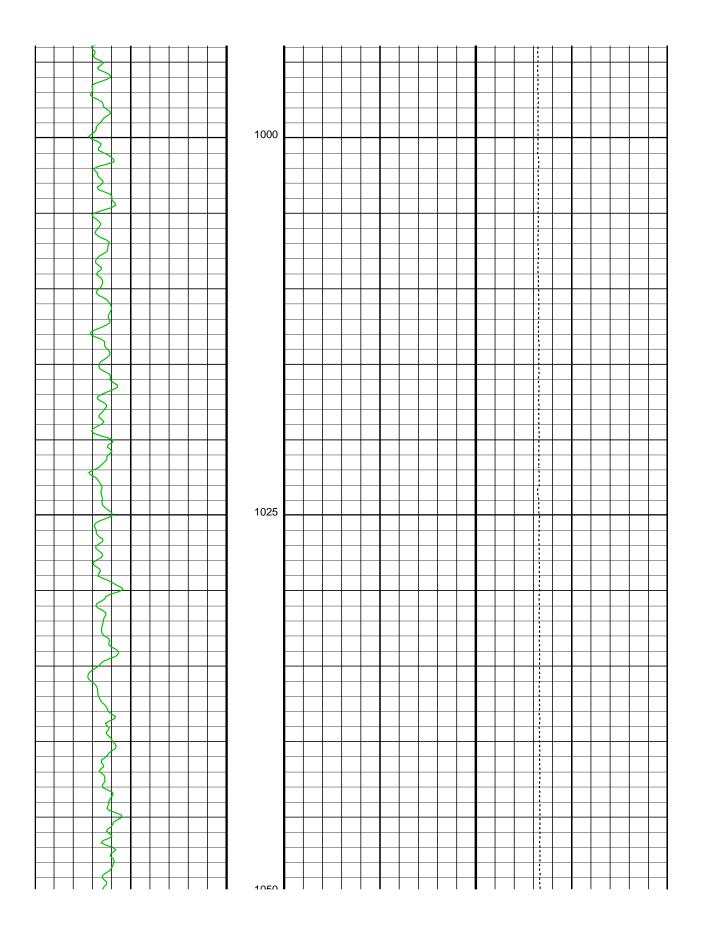


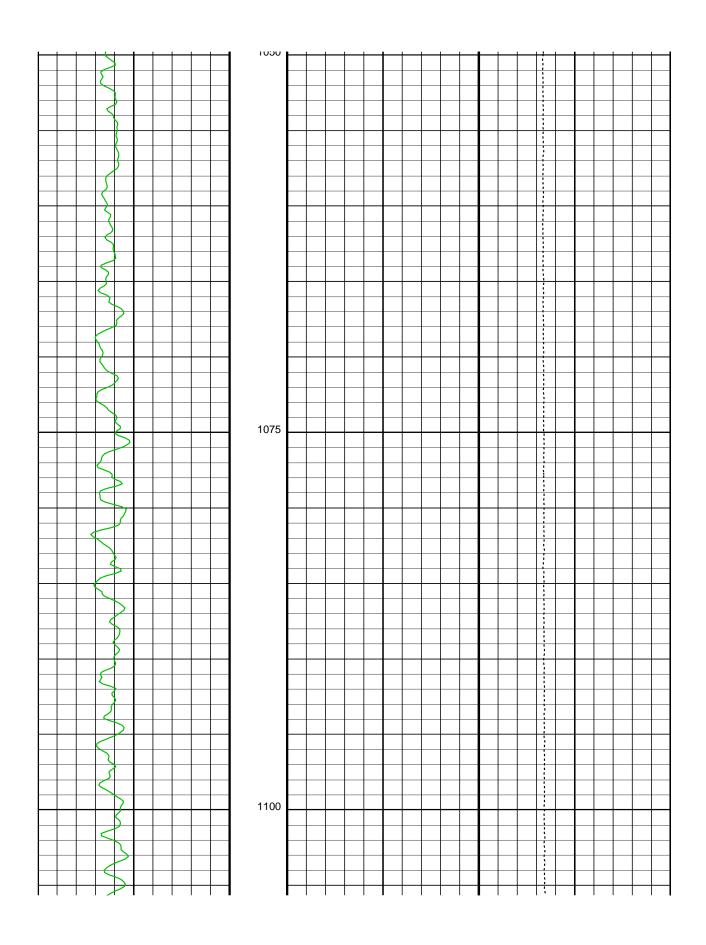


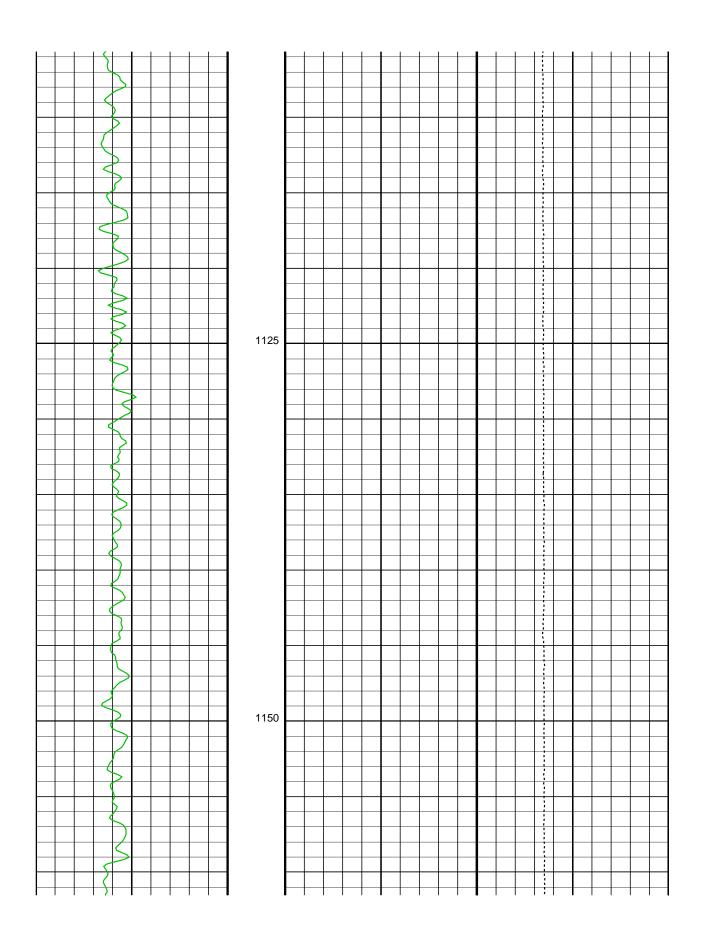


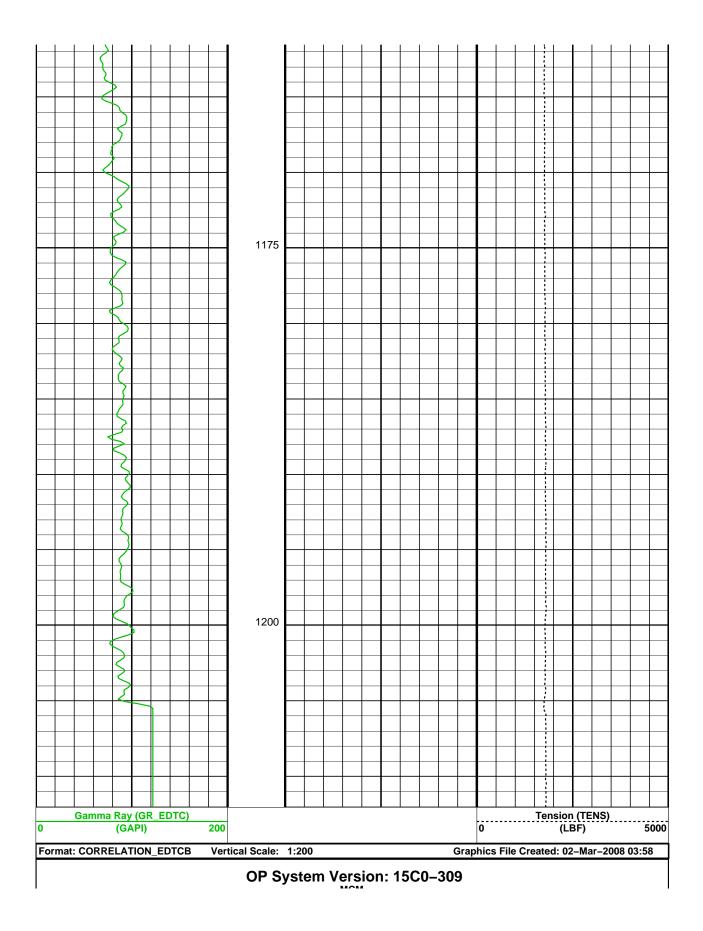






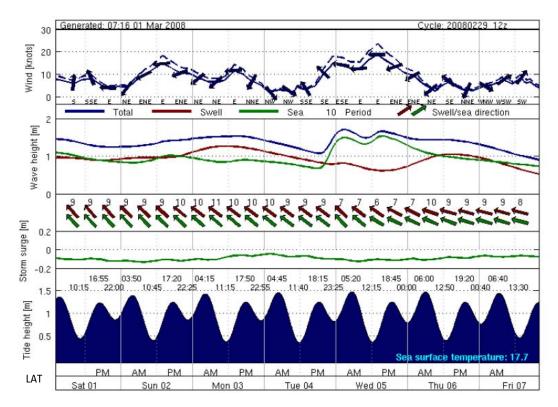






Client: Apache Northwest Pty Ltd Field: Apache/VIC/P-58/WASABI-1

I		MCM						
VSIT-G	SKK-3368-VSI-WB2_9_17_I	EDTC-B	SKK-3493-EDTCB_b					
Output DLIS Files								
DEFAULT	VSIT_013LUP	FN:12 PRODUCER	02-Mar-2008 03:58					



Well: WASABI-1

Tidal Water Level Report

MetOcean Forecast Report for **Wasabi 1** [38.4883S 147.264E] Issued at 2008-02-29 18:43 UTC

		Total			Sw	Swell Sea			Wind			
Time	Hs	Hx	Тр	Dp	Dpm	Hs	Dpm	Hs	Dpm	Wsp	Gst	Wd
UTC+8	m	m	s	deg	deg	m	deg	m	deg	kts	kts	deg
2008-03-01 01:00:00	1.4	2.7	9.0	139	139	0.9	139	1.1	139	7	8	190
2008-03-01 04:00:00	1.4	2.6	8.9	139	139	0.9	139	1.0	138	5	6	216
2008-03-01 07:00:00	1.4	2.5	8.9	139	139	0.9	139	1.0	138	5	6	226
2008-03-01 10:00:00	1.3	2.4	8.8	139	138	0.9	138	0.9	138	7	8	196
2008-03-01 13:00:00	1.2	2.3	8.8	138	138	0.9	138	0.9	137	8	10	168
2008-03-01 16:00:00	1.2	2.3	8.7	138	138	0.8	138	0.9	137	6	8	145
2008-03-01 19:00:00	1.2	2.2	8.7	137	137	0.8	137	0.9	136	5	5	119
2008-03-01 22:00:00	1.2	2.2	8.7	136	136	0.8	136	0.9	136	4	5	85
2008-03-02 01:00:00	1.2	2.3	8.8	135	135	0.9	135	0.9	135	4	5	61
2008-03-02 04:00:00	1.3	2.3	8.9	134	134	0.9	134	0.9	135	4	5	53
2008-03-02 07:00:00	1.3	2.4	9.0	133	133	0.9	133	0.9	134	6	7	62
2008-03-02 10:00:00	1.3	2.4	9.0	133	132	0.9	132	0.9	133	10	12	83
2008-03-02 13:00:00	1.4	2.5	9.1	132	132	1.0	132	0.9	133	13	16	89
2008-03-02 16:00:00	1.4	2.7	9.1	131	131	1.0	131	1.0	132	14	17	83

			Total			Sw	ell	s	ea		Wind	
2008-03-02 19:00:00	1.5	2.8	9.4	131	131	1.0	131	1.1	132	12	15	71
2008-03-02 22:00:00	1.5	2.9	9.9	127	127	1.1	127	1.1	131	11	13	59
2008-03-03 01:00:00	1.6	2.9	10.3	127	127	1.2	127	1.0	131	10	12	47
2008-03-03 04:00:00	1.6	3.0	10.6	126	126	1.2	126	1.0	130	8	10	35
2008-03-03 07:00:00	1.6	3.0	10.7	126	126	1.3	126	0.9	130	6	8	31
2008-03-03 10:00:00	1.6	3.0	10.7	126	126	1.3	126	0.9	130	6	8	62
2008-03-03 13:00:00	1.6	2.9	10.6	126	126	1.3	126	0.9	130	10	12	80
2008-03-03 16:00:00	1.6	2.9	10.5	126	126	1.3	126	0.9	129	11	13	71
2008-03-03 19:00:00	1.5	2.9	10.3	126	126	1.2	126	0.9	129	10	12	44
2008-03-03 22:00:00	1.5	2.8	10.2	126	126	1.2	126	0.9	128	8	10	18
2008-03-04 01:00:00	1.4	2.7	10.1	126	126	1.1	126	0.9	128	6	7	11
2008-03-04 04:00:00	1.4	2.5	10.0	126	126	1.1	126	0.9	127	4	5	321
2008-03-04 07:00:00	1.3	2.4	9.8	126	126	1.0	126	0.8	126	7	8	270
2008-03-04 10:00:00	1.2	2.2	9.6	126	126	0.9	126	0.8	125	10	13	227
2008-03-04 13:00:00	1.1	2.1	9.3	126	126	0.9	126	0.7	125	14	17	200
2008-03-04 16:00:00	1.3	2.3	9.1	126	126	0.8	126	0.9	126	13	16	153
2008-03-04 19:00:00	1.9	3.5	7.6	133	133	1.0	133	1.6	133	17	21	125
2008-03-04 22:00:00	2.2	4.1	7.8	133	133	1.2	132	1.8	133	18	22	116
2008-03-05 01:00:00	2.1	3.9	7.8	131	131	1.1	131	1.8	131	16	20	111
2008-03-05 04:00:00	1.9	3.6	7.6	130	130	0.9	129	1.7	130	16	20	105
2008-03-05 07:00:00	1.8	3.4	7.1	127	127	0.8	128	1.6	127	17	21	98
2008-03-05 10:00:00	1.8	3.3	6.9	125	126	0.7	127	1.6	126	16	20	94
2008-03-05 13:00:00	1.6	3.1	6.8	124	124	0.6	125	1.5	124	16	20	90
2008-03-05 16:00:00	1.6	3.0	6.7	123	121	0.6	124	1.5	121	16	19	82
2008-03-05 19:00:00	1.5	2.8	6.5	121	119	0.6	123	1.4	119	15	18	75
2008-03-05 22:00:00	1.5	2.8	6.6	120	118	0.7	120	1.3	118	14	17	73
2008-03-06 01:00:00	1.5	2.7	6.9	119	119	0.8	116	1.2	119	13	16	68
2008-03-06 04:00:00	1.5	2.7	9.9	107	107	0.9	107	1.2	116	11	13	60
2008-03-06 07:00:00	1.4	2.7	9.8	106	106	0.9	106	1.1	113	8	9	58
2008-03-06 10:00:00	1.4	2.6	9.7	106	106	1.0	106	1.0	111	6	7	92
2008-03-06 13:00:00	1.4	2.6	9.5	104	104	1.0	104	1.0	109	7	9	107
2008-03-06 16:00:00	1.4	2.5	9.2	103	104	1.0	104	0.9	107	5	6	104
2008-03-06 19:00:00	1.3	2.5	9.0	103	104	1.0	104	0.9	106		1	90
2008-03-06 22:00:00	1.3	2.4	8.9	103	104	0.9	104	0.9	106	6	7	250
2008-03-07 01:00:00	1.3	2.3	8.8	104	104	0.9	104	0.9	105	10	11	246
2008-03-07 04:00:00	1.2	2.3	8.6	104	104	0.8	104	0.9	105	9	11	252
2008-03-07 07:00:00	1.2	2.2	8.5	104	105	0.8	105	0.9	105	8	10	240

 Hs:
 Total significant wave height
 Hx:
 Spectral estimate of maximum wave
 Tp:
 Peak Period

 Dp:
 Peak direction
 Dpm:
 Mean direction at peak frequency
 Wsp:
 Mean wind speed

Gst: Typical gust speed Wd: Wind direction

VSI Tool Evaluation Test Report

			Evaluation Repo				
2000/02/05 15 15 52	EL	ECTRICA	AL NOISE LOW TEST				
2008/03/05 15:15:53 Shot No: 1			Station Depth: 1	079 21 m			
Evaluation Item	Shuttle	Channel	Value	Unit	Lower Limit	Upper Limit	Result
DC Offset	1	X	-25.1572	milli V	-100.0000	100.0000	PASS
RMS Noise Level	1	X	0.1481	micro V	-	0.5000	PASS
Noise Peak	1	X	0.5902	micro V	-	2.0000	PASS
DC Offset	1	Y	-25.2649	milli V	-100.0000	100.0000	PASS
RMS Noise Level	1	Y	0.1344	micro V	-	0.5000	PASS
Noise Peak	1	Y	0.4893		-	2.0000	PASS
DC Offset	1	Z	-25.1555	milli V	-100.0000	100.0000	PASS
RMS Noise Level	1	Z	0.1285	micro V	-	0.5000	PASS
Noise Peak	1	Z	0.5479	micro V	-	2.0000	PASS
DC Offset	2	X	-25.2719	milli V	-100.0000	100.0000	PASS
RMS Noise Level	2	X	0.1289	micro V	-	0.5000	PASS
Noise Peak	2	X	0.5234	micro V	-	2.0000	PASS
DC Offset	2	Y	-25.2503	milli V	-100.0000	100.0000	PASS
RMS Noise Level	2 2	Y Y	0.1294 0.4645	micro V micro V	-	0.5000 2.0000	PASS
Noise Peak DC Offset	2	Z	-25.2660	micro V milli V	-100.0000	100.0000	PASS PASS
RMS Noise Level	2	Z	0.1284		-100.0000	0.5000	PASS
Noise Peak	2	Z	0.1284	micro V		2.0000	PASS
DC Offset	3	X	-25.2366	milli V	-100.0000	100.0000	PASS
RMS Noise Level	3	X	0.1327	micro V	-100.0000	0.5000	PASS
Noise Peak	3	X	0.4503			2.0000	PASS
DC Offset	3	Y	-25.4020	milli V	-100.0000	100.0000	PASS
RMS Noise Level	3	Y	0.1364		-	0.5000	PASS
Noise Peak	3	Y	0.4919	micro V	_	2.0000	PASS
DC Offset	3	Z	-25.2583	milli V	-100.0000	100.0000	PASS
RMS Noise Level	3	Z	0.1265	micro V	-	0.5000	PASS
Noise Peak	3	Z	0.4647	micro V	-	2.0000	PASS
DC Offset	4	X	-25.1746	milli V	-100.0000	100.0000	PASS
RMS Noise Level	4	X	0.1277	micro V	_	0.5000	PASS
Noise Peak	4	X	0.5231	micro V	_	2.0000	PASS
DC Offset	4	Y	-25.4283	milli V	-100.0000	100.0000	PASS
RMS Noise Level	4	Y	0.1448			0.5000	PASS
Noise Peak	4	Y	0.4648	micro V	-	2.0000	PASS
DC Offset	4	Z	-25.2405	milli V	-100.0000	100.0000	PASS
RMS Noise Level	4	Z	0.1249	micro V	-	0.5000	PASS
Noise Peak	4	Z	0.4569	micro V		2.0000	PASS
2008/03/05 15:16:19	EL	<u>ECTRICA</u>	L NOISE HIGH TEST	Γ			
Shot No: 2			Station Depth: 1	078.31 m			
Evaluation Item	Shuttle	Channel	Value	Unit	Lower Limit	Upper Limit	Result
DC Offset	1	X	-23.9378	milli V	-100.0000	100.0000	PASS
RMS Noise Level	1	X	0.1300	micro V	-	0.5000	PASS
Noise Peak	1	X	0.4837	micro V	_	2.0000	PASS
DC Offset	1	Y	-25.9460	milli V	-100.0000	100.0000	PASS
RMS Noise Level	1	Y	0.1291	micro V		0.5000	PASS
Noise Peak	1	Y	0.4292	micro V		2.0000	PASS
DC Offset	1	Z	-24.8840	milli V	-100.0000	100.0000	PASS
RMS Noise Level	1	Z	0.1254		-	0.5000	PASS
Noise Peak	1	Z	0.4698	micro V	-	2.0000	PASS
DC Offset	2	X	-24.3633	milli V	-100.0000	100.0000	PASS
RMS Noise Level	2	X	0.1220		-	0.5000	PASS
Noise Peak	2	X	0.4048	micro V	-	2.0000	PASS
DC Offset	2	Y	-25.2371	milli V	-100.0000	100.0000	PASS
RMS Noise Level	2	Y	0.1317	micro V	-	0.5000	PASS
Noise Peak	2	Y	0.4521	micro V	100 0000	2.0000	PASS
DC Offset	2	Z	-25.0111	milli V	-100.0000	100.0000	PASS

RMS Noise Level	2	Z	0.1266	micro V	-	0.5000	PASS
Noise Peak	2	Z	0.5274	micro V	_	2.0000	PASS
DC Offset	3	X	-24.6450	milli V	-100.0000	100.0000	PASS
RMS Noise Level	3	X	0.1305	micro V	-	0.5000	PASS
Noise Peak	3	X	0.4830	micro V	_	2.0000	PASS
DC Offset	3	Y	-25.8079	milli V	-100.0000	100.0000	PASS
RMS Noise Level	3	Y	0.1302	micro V	-	0.5000	PASS
Noise Peak	3	Y	0.4743	micro V	_	2.0000	PASS
DC Offset	3	Z	-24.8328	milli V	-100.0000	100.0000	PASS
RMS Noise Level	3	Z	0.1293	micro V	-	0.5000	PASS
Noise Peak	3	Z	0.4591	micro V	-	2.0000	PASS
DC Offset	4	X	-24.5309	milli V	-100.0000	100.0000	PASS
RMS Noise Level	4	X	0.1249	micro V	-	0.5000	PASS
Noise Peak	4	X	0.4569	micro V	-	2.0000	PASS
DC Offset	4	Y	-26.5537	milli V	-100.0000	100.0000	PASS
RMS Noise Level	4	Y	0.1267	micro V	-	0.5000	PASS
Noise Peak	4	Y	0.4554	micro V	-	2.0000	PASS
DC Offset	4	Z	-24.3538	milli V	-100.0000	100.0000	PASS
RMS Noise Level	4	Z	0.1268	micro V	-	0.5000	PASS
Noise Peak	4	Z	0.5074	micro V	_	2.0000	PASS
	Tr I	ECTDICA	I DICTORTION TEC	г			

ELECTRICAL DISTORTION TEST

20	<u> 108/</u>	03/	<u> 05</u>	15:1	6:29

Shot No: 3 Station Depth: 1078.31 m Lower Upper **Evaluation Item** Shuttle Channel Value Unit Result Limit Limit dB PASS -101.3496 **Total Harmonic Distortion** -90.0000 dΒ -90.0000 1 Y -101.6085 PASS Total Harmonic Distortion Z dΒ -90.0000 **Total Harmonic Distortion** 1 -99.1830 PASS Total Harmonic Distortion 2 X -99.0730 dΒ -90.0000 **PASS** 2 Y -97.5717 dΒ -90.0000 PASS Total Harmonic Distortion -98.7248 2 -90.0000 Total Harmonic Distortion Z dΒ PASS Total Harmonic Distortion 3 X -102.0585 dΒ -90.0000 **PASS** Y 3 dΒ -90.0000 PASS Total Harmonic Distortion -101.5743 Z -90.0000 3 dΒ PASS Total Harmonic Distortion -100.5992 Total Harmonic Distortion 4 -100.3988 dΒ -90.0000 PASS -99.5966 Total Harmonic Distortion 4 dΒ -90.0000 PASS 4 -90.0000 PASS Total Harmonic Distortion Z -103.4201 dΒ

SYSTEM DYNAMIC RANGE TEST

2008/03/05 15:16:45

Shot No: 4	Station Depth: 10	Station Depth: 1078.31 m					
Evaluation Item	Shuttle	Channel	Value	Unit	Lower Limit	Upper Limit	Result
System Dynamic Range	1	X	108.0226	dB	103.0000	-	PASS
System Dynamic Range	1	Y	107.9481	dB	103.0000	-	PASS
System Dynamic Range	1	Z	107.9384	dB	103.0000	_	PASS
System Dynamic Range	2	X	107.6075	dB	103.0000	-	PASS
System Dynamic Range	2	Y	107.7226	dB	103.0000	-	PASS
System Dynamic Range	2	Z	107.3482	dB	103.0000	-	PASS
System Dynamic Range	3	X	107.0977	dB	103.0000	-	PASS
System Dynamic Range	3	Y	107.3249	dB	103.0000	-	PASS
System Dynamic Range	3	Z	107.1382	dB	103.0000	-	PASS
System Dynamic Range	4	X	107.8019	dB	103.0000	-	PASS
System Dynamic Range	4	Y	107.3409	dB	103.0000	-	PASS
System Dynamic Range	4	Z	106.8546	dB	103.0000	-	PASS

AMPLIFIER GAIN 2 TEST

2008/03/05 15:17:01	
Shot No: 5	Station

Shot No: 5	Station Depth: 10	Station Depth: 1078.31 m					
Evaluation Item	Shuttle	Channel	Value	Unit	Lower Limit	Upper Limit	Result
Gain Accuracy	1	X	0.1287	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	1	X	0.0000	dB	-0.5000	0.5000	PASS
Gain Accuracy	1	Y	0.1209	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	1	Y	0.0000	dB	-0.5000	0.5000	PASS

Gain Step Accuracy	3	X	0.0000	dB	-0.5000	0.5000	PASS
Gain Accuracy	3	X	0.1227	dB	-0.5000	0.5000	PASS
• • • • • • • • • • • • • • • • • • • •							
Gain Accuracy	3	Y	0.1221	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	3	Y	0.0000	dB	-0.5000	0.5000	PASS
Gain Accuracy	3	Z	0.1211	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	3	Z	0.0000	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	X	0.1358	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4	X	0.0000	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	Y	0.1336	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4	Y	0.0000	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	Z	0.1370	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4	Z	0.0000	dВ	-0.5000	0.5000	PASS

AMPLIFIER GAIN 4 TEST

2008/03/05 15:17:13 Shot No: 6

Station Depth: 1078.31 m

Shot 110. 0			Station Depth. 10	770.51 111			
Evaluation Item	Shuttle	Channel	Value	Unit	Lower Limit	Upper Limit	Result
Gain Accuracy	1	X	0.1270	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	1	X	0.0017	dB	-0.5000	0.5000	PASS
Gain Accuracy	1	Y	0.1221	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	1	Y	-0.0013	dB	-0.5000	0.5000	PASS
Gain Accuracy	1	Z	0.1225	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	1	Z	0.0028	dB	-0.5000	0.5000	PASS
Gain Accuracy	2	X	0.0972	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	2	X	0.0175	dB	-0.5000	0.5000	PASS
Gain Accuracy	2	Y	0.1228	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	2	Y	0.0014	dB	-0.5000	0.5000	PASS
Gain Accuracy	2	Z	0.1264	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	2	Z	0.0016	dB	-0.5000	0.5000	PASS
Gain Accuracy	3	X	0.1197	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	3	X	0.0030	dB	-0.5000	0.5000	PASS
Gain Accuracy	3	Y	0.1184	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	3	Y	0.0037	dB	-0.5000	0.5000	PASS
Gain Accuracy	3	Z	0.1182	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	3	Z	0.0028	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	X	0.1328	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4	X	0.0030	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	Y	0.1300	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4	Y	0.0035	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	Z	0.1363	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4	Z	0.0007	dB	-0.5000	0.5000	PASS

AMPLIFIER GAIN 8 TEST

2008/03/05 15:17:24

Gain Accuracy

Shot No: 7 Station Depth: 1078.31 m Lower Upper Shuttle Channel Unit **Evaluation Item** Result Limit Limit 0.1253 dΒ -0.5000 0.5000 **PASS** Gain Accuracy 0.0034 dΒ -0.5000 0.5000 **PASS** Gain Step Accuracy Y 1 0.1243 dΒ -0.5000 0.5000 PASS Gain Accuracy Y -0.0034 -0.5000 0.5000 PASS Gain Step Accuracy 1 dΒ Z 0.1224 -0.5000 0.5000 PASS Gain Accuracy 1 dΒ Gain Step Accuracy 1 Z 0.0029 dΒ -0.5000 0.5000 **PASS** 2 X 0.0915 dΒ -0.5000 0.5000 PASS Gain Accuracy 2 X 0.0233 dB -0.5000 0.5000 PASS Gain Step Accuracy

0.1233

dB

-0.5000

0.5000

PASS

2

Gain Step Accuracy	2	Y	0.0009	dB	-0.5000	0.5000	PASS
Gain Accuracy	2	Z	0.1269	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	2	Z	0.0011	dB	-0.5000	0.5000	PASS
Gain Accuracy	3	X	0.1185	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	3	X	0.0041	dB	-0.5000	0.5000	PASS
Gain Accuracy	3	Y	0.1173	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	3	Y	0.0047	dB	-0.5000	0.5000	PASS
Gain Accuracy	3	Z	0.1181	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	3	Z	0.0030	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	X	0.1318	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4	X	0.0040	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	Y	0.1286	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4	Y	0.0050	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	Z	0.1370	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4	Z	0.0000	dB	-0.5000	0.5000	PASS

AMPLIFIER GAIN 16 TEST

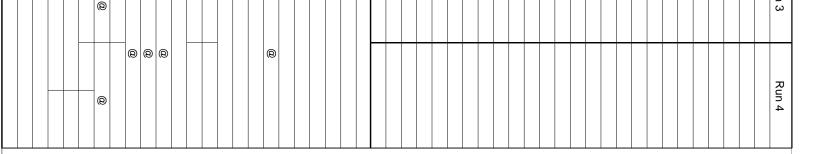
2008/03/05 15:17:.	36
--------------------	----

Shot No: 8 Station Depth: 1078.31 m							
Evaluation Item	Shuttle	Channel	Value	Unit	Lower Limit	Upper Limit	Result
Gain Accuracy	1	X	0.1230	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	1	X	0.0057	dB	-0.5000	0.5000	PASS
Gain Accuracy	1	Y	0.1203	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	1	Y	0.0006	dB	-0.5000	0.5000	PASS
Gain Accuracy	1	Z	0.1201	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	1	Z	0.0052	dB	-0.5000	0.5000	PASS
Gain Accuracy	2	X	0.0883	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	2	X	0.0264	dB	-0.5000	0.5000	PASS
Gain Accuracy	2	Y	0.1212	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	2	Y	0.0030	dB	-0.5000	0.5000	PASS
Gain Accuracy	2	Z	0.1206	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	2	Z	0.0075	dB	-0.5000	0.5000	PASS
Gain Accuracy	3	X	0.1133	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	3	X	0.0094	dB	-0.5000	0.5000	PASS
Gain Accuracy	3	Y	0.1135	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	3	Y	0.0086	dB	-0.5000	0.5000	PASS
Gain Accuracy	3	Z	0.1159	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	3	Z	0.0051	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	X	0.1257	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4	X	0.0101	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	Y	0.1273	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4	Y	0.0063	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	Z	0.1318	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4	Z	0.0051	dB	-0.5000	0.5000	PASS

AMPLIFIER GAIN 32 TEST

<u> 2008</u>	<u>/03/</u>	<u>′05</u>	15:1	7:4	8

Shot No: 9			Station Depth: 10	Station Depth: 1078.31 m				
Evaluation Item	Shuttle	Channel	Value	Unit	Lower Limit	Upper Limit	Result	
Gain Accuracy	1	X	0.1251	dB	-0.5000	0.5000	PASS	
Gain Step Accuracy	1	X	0.0036	dB	-0.5000	0.5000	PASS	
Gain Accuracy	1	Y	0.1201	dB	-0.5000	0.5000	PASS	
Gain Step Accuracy	1	Y	0.0007	dB	-0.5000	0.5000	PASS	
Gain Accuracy	1	Z	0.1248	dB	-0.5000	0.5000	PASS	
Gain Step Accuracy	1	Z	0.0004	dB	-0.5000	0.5000	PASS	
Gain Accuracy	2	X	0.0894	dB	-0.5000	0.5000	PASS	
Gain Step Accuracy	2	X	0.0253	dB	-0.5000	0.5000	PASS	
Gain Accuracy	2	Y	0.1258	dB	-0.5000	0.5000	PASS	
Gain Step Accuracy	2	Y	-0.0016	dB	-0.5000	0.5000	PASS	
Gain Accuracy	2	Z	0.1246	dB	-0.5000	0.5000	PASS	
Gain Step Accuracy	2	Z	0.0035	dB	-0.5000	0.5000	PASS	
Gain Accuracy	3	X	0.1197	dB	-0.5000	0.5000	PASS	
Gain Step Accuracy	3	X	0.0030	dB	-0.5000	0.5000	PASS	
						l		


			0.1161	15	0.5000	0.5000	2.00
Gain Accuracy	3	Y	0.1161	dB	-0.5000	0.5000	PASS
Gain Step Accuracy			0.0060	dB	-0.5000	0.5000	PASS
Gain Accuracy	3	Z	0.1190	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	3	Z	0.0021 0.1255	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	X	0.1255	dB dB	-0.5000 -0.5000	0.5000 0.5000	PASS PASS
Gain Step Accuracy							
Gain Accuracy	4	Y	0.1277	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4	Y	0.0059	dB	-0.5000	0.5000	PASS
Gain Accuracy	4	Z Z	0.1382	dB	-0.5000	0.5000	PASS
Gain Step Accuracy	4		-0.0012	dB	-0.5000	0.5000	PASS
2008/03/05 15:18:05		CROS	S TALK X TEST				
Shot No: 10			Station Depth: 10	78.31 m			
Evaluation Item	Shuttle	Channel	Value	Unit	Lower	Upper	Result
		Channel			Limit	Limit	
Cross Talk X-Y	1	-	-99.4508	dB	-	-90.0000	PASS
Cross Talk X-Z	1	-	-99.9949	dB	-	-90.0000	PASS
Cross Talk X-Y	2	-	-99.6220	dB	-	-90.0000	PASS
Cross Talk X-Z	2	-	-99.7794	dB	-	-90.0000	PASS
Cross Talk X-Y	3	-	-99.7799	dB	-	-90.0000	PASS
Cross Talk X-Z	3	-	-100.0375	dB	-	-90.0000	PASS
Cross Talk X-Y	4	-	-100.0864	dB	-	-90.0000	PASS
Cross Talk X-Z	4	-	-99.6811	dB	-	-90.0000	PASS
		CROSS	S TALK Y TEST				
2008/03/05 15:18:25			C4-4' D4b- 16	70 21			
Shot No: 11			Station Depth: 10		Lower	Upper	
Evaluation Item	Shuttle	Channel	Value	Unit	Limit	Limit	Result
Cross Talk Y-Z	1	-	-99.7419	dB	-	-90.0000	PASS
Cross Talk Y-X	1	_	-99.4512	dB	-	-90.0000	PASS
Cross Talk Y-Z	2	-	-99.7991	dB	-	-90.0000	PASS
Cross Talk Y-X	2	_	-99.5626	dB	_	-90.0000	PASS
Cross Talk Y-Z	3	_	-99.8088	dB	_	-90.0000	PASS
Cross Talk Y-X	3	-	-99.5592	dB	-	-90.0000	PASS
Cross Talk Y-Z	4	-	-99.9557	dB	-	-90.0000	PASS
Cross Talk Y-X	4	_	-99.6567	dB	_	-90.0000	PASS
		CROSS	S TALK Z TEST				
2008/03/05 15:18:46							
Shot No: 12		I I	Station Depth: 10	078.31 m			
Evaluation Item	Shuttle	Channel	Value	Unit	Lower Limit	Upper Limit	Result
Cross Talk Z-X	1	-	-98.8214	dB	-	-90.0000	PASS
Cross Talk Z-Y	1	_	-99.7788	dB	-	-90.0000	PASS
Cross Talk Z-X	2	_	-99.0421	dB	-	-90.0000	PASS
Cross Talk Z-Y	2	_	-98.4888	dB	-	-90.0000	PASS
Cross Talk Z-X	3	-	-98.7811	dB	-	-90.0000	PASS
Cross Talk Z-Y	3	-	-99.3707	dB	-	-90.0000	PASS
Cross Talk Z-X	4	-	-99.0389	dB	-	-90.0000	PASS
Cross Talk Z-Y	4	-	-99.6681	dB	-	-90.0000	PASS
		IMPULSE	RESPONSE TEST				
2008/03/05 15:19:05							
Shot No: 13			Station Depth: 10	078.31 m	T	***	
Evaluation Item	Shuttle	Channel	Value	Unit	Lower Limit	Upper Limit	Result
Amplitude (0.3Hz)	1	X	-1.4994	dB	-5.0000		PASS
Amplitude (400Hz)	1	X	-3.5761	dB	-5.0000		PASS
Impulse Amplitude	1	X	572.7488	milli V	-	-	-
Phase Diff. at 0.3Hz from X1	1	X	0.0000	degree	-	- 1	_
Amplitude (0.3Hz)	1	Y	-1.4989	dB	-5.0000	-	PASS
Amplitude (400Hz)	1	Y	-3.5766	dB	-5.0000	-	PASS
Impulse Amplitude	1	Y	572.5405	milli V	-	-	-
Phase Diff. at 0.3Hz from X1	1	Y	-0.1641	degree	-	-	-
Amplitude (0.3Hz)	1	Z	-1.5121	dB	-5.0000	-	PASS

Amplitude (400Hz)	1	Z	-3.5768	dB	-5.0000	-	PASS
Impulse Amplitude	1	Z	572.7220	milli V	-	-	-
Phase Diff. at 0.3Hz from X1	1	Z	0.0145	degree	-	-	-
Amplitude (0.3Hz)	2	X	-1.6141	dB	-5.0000	-	PASS
Amplitude (400Hz)	2	X	-3.5756	dB	-5.0000	-	PASS
Impulse Amplitude	2	X	571.3664	milli V	-	-	-
Phase Diff. at 0.3Hz from X1	2	X	0.9346	degree	-	_	-
Amplitude (0.3Hz)	2	Y	-1.5926	dB	-5.0000	-	PASS
Amplitude (400Hz)	2	Y	-3.5775	dB	-5.0000	-	PASS
Impulse Amplitude	2	Y	572.2194	milli V	-	-	-
Phase Diff. at 0.3Hz from X1	2	Y	0.7340	degree	-	-	-
Amplitude (0.3Hz)	2	Z	-1.5345	dB	-5.0000	-	PASS
Amplitude (400Hz)	2	Z	-3.5773	dB	-5.0000	-	PASS
Impulse Amplitude	2	Z	572.4417	milli V	-	-	_
Phase Diff. at 0.3Hz from X1	2	Z	0.2699	degree	-	-	-
Amplitude (0.3Hz)	3	X	-1.5067	dB	-5.0000	-	PASS
Amplitude (400Hz)	3	X	-3.5780	dB	-5.0000	-	PASS
Impulse Amplitude	3	X	571.7280	milli V	-	-	_
Phase Diff. at 0.3Hz from X1	3	X	-0.2759	degree	-	-	-
Amplitude (0.3Hz)	3	Y	-1.6145	dB	-5.0000	-	PASS
Amplitude (400Hz)	3	Y	-3.5767	dB	-5.0000	-	PASS
Impulse Amplitude	3	Y	571.7051	milli V	-	-	-
Phase Diff. at 0.3Hz from X1	3	Y	0.8946	degree	-	-	-
Amplitude (0.3Hz)	3	Z	-1.5530	dB	-5.0000	-	PASS
Amplitude (400Hz)	3	Z	-3.5767	dB	-5.0000	-	PASS
Impulse Amplitude	3	Z	571.6976	milli V	-	-	-
Phase Diff. at 0.3Hz from X1	3	Z	0.1111	degree	-	-	-
Amplitude (0.3Hz)	4	X	-1.4945	dB	-5.0000	-	PASS
Amplitude (400Hz)	4	X	-3.5774	dB	-5.0000	-	PASS
Impulse Amplitude	4	X	572.9066	milli V	-	-	-
Phase Diff. at 0.3Hz from X1	4	X	-0.4238	degree	-	-	-
Amplitude (0.3Hz)	4	Y	-1.5014	dB	-5.0000	-	PASS
Amplitude (400Hz)	4	Y	-3.5788	dB	-5.0000	-	PASS
Impulse Amplitude	4	Y	572.4818	milli V	_	-	-
Phase Diff. at 0.3Hz from X1	4	Y	0.2423	degree	_	-	-
Amplitude (0.3Hz)	4	Z	-1.6175	dB	-5.0000	-	PASS
Amplitude (400Hz)	4	Z	-3.5777	dB	-5.0000	-	PASS
Impulse Amplitude	4	Z	572.9537	milli V	_	_	
Phase Diff. at 0.3Hz from X1	4	Z	1.3322	degree	_	-	_

		Coki umhona		Run 1	Run 2	Rur
		ગુણાવાલા મુક્ત				
Company: Apache	Apache Northwest Pty Ltd					
Well: WASABI-1	BI-1					
	Apache/VIC/P-58/WASABI-1					
	riton Country:	/∶ Australia				
	RLA-MSIP-					
	Log					
t Pty	:500					
		Elev.:				
VIC/F ait –1 North	Northing : 5739963.350 m					
Str Str ABI	Easting: 522993.588 m	D.F. 39 m				
Bass VAS Npac	ſ	Elev: 0 m				
A B _i W : A	red From: DRILL FLOOR (RT)	_ 39.0 m above Perm. Datum	um			
any:	Drilling Measured From: DRILL FLOOR (RT)	-		<u> </u>		
Rig: Field: Locati Well: Comp State:	Max. Well Deviation 48.1 deg	Latitude Latitude 147 15' 49.147" E 38 29' 18.15	titude 18.157" S			
Logging Date	1-Mar-2008	-	Logging Date			
Run Number	2		Run Number			
Depth Driller	2313 m		Depth Driller			
Schlumberger Depth Bottom I og Interval	Not Tagged		Schlumberger Depth Rottom I og Interval			
Top Log Interval	854 m		Top Log Interval			
Casing Driller Size @ Depth	13.375 in @ 857 m	@	Casing Driller Size @ Depth		@	
Casing Schlumberger	854 m		Casing Schlumberger			
Bit Size	12.250 in		Bit Size			
Type Fluid In Hole Density Viscosity	1.15 g/cm3 50 s		Type Fluid In Hole Density Viscosity			
Fluid Loss PH	5 cm3 8.7					
)					
RM @ Measured Temperature	9		RM @ Measured Temperature		(9)	
RMF @ Measured Temperature	9 (9		RMF @ Measured Temperature		9 0	
Source RMF RMC	Press Press	(6)	Source RMF RMC		(6)	
	@ 59	@	RM @ MRT	MRT @	@	
Maximum Recorded Temperatures Circulation Stopped Time	s 59 degC 59 18:45		Maximum Recorded Temperatures Circulation Stopped Time	ratures Time		
-		-	Logger On Bottom	Time		
Unit Number Location	41 AUSL		Unit Number Location	tion		
Withoused By	A. Dandi/M.Dawson/K. AlBarhi		Recorded By Withogond By			
Witnessed By	H.Little / A.Cruickshank		Witnessed By			

DEPTH SUMMARY LISTING

Date Created: 2-MAR-2008 16:47:03

Depth System Equipment

Depth Measuring	Device	Tension De	vice	Loggin	g Cable
Type: Serial Number: Calibration Date:	IDW-H 796 29-Jan-2008	Type: Serial Number: Calibration Date:	CMTD-B/A 1721 27-FEB-2008	Type: Serial Number: Length:	7–46ZV–XS 77178 7699.86 M
Calibrator Serial Number: Calibration Cable Type: Wheel Correction 1: Wheel Correction 2:	1009 7–46ZV–XS –5 –5	Calibrator Serial Number: Calibration Gain: Calibration Offset:	0.81	Conveyance Method: Rig Type:	Wireline Offshore_Fixed

Depth Control Parameters

Log Sequence: Subsequent Log In the Well

Reference Log Name: Wasabi–1 GeoVISION Resistivity RM 200D

Reference Log Run Number:

Reference Log Date: 01–March–2008

Depth Control Remarks

- 1. Schlumberger Depth Control Policy Followed
- 2. IDW used as primary depth reference
- 3. Z-Chart used as secondary depth reference

4.

5.

6

DISCLAIMER

THE USE OF AND RELIANCE UPON THIS RECORDED-DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS AFFILIATES, PARTNERS, REPRESENTATIVES, AGENTS, CONSULTANTS AND EMPLOYEES) IS SUBJECT TO THE TERMS AND CONDITIONS AGREED UPON BETWEEN SCHLUMBERGER AND THE COMPANY, INCLUDING: (a) RESTRICTIONS ON USE OF THE RECORDED-DATA; (b) DISCLAIMERS AND WAIVERS OF WARRANTIES AND REPRESENTATIONS REGARDING COMPANY'S USE OF AND RELIANCE UPON THE RECORDED-DATA; AND (c) CUSTOMER'S FULL AND SOLE RESPONSIBILITY FOR ANY INFERENCE DRAWN OR DECISION MADE IN CONNECTION WITH THE USE OF THIS RECORDED-DATA.

 OTHER SERVICES1
 OTHER SERVICES2

 OS1:
 VSI
 OS1:

 OS2:
 MDT-GR
 OS2:

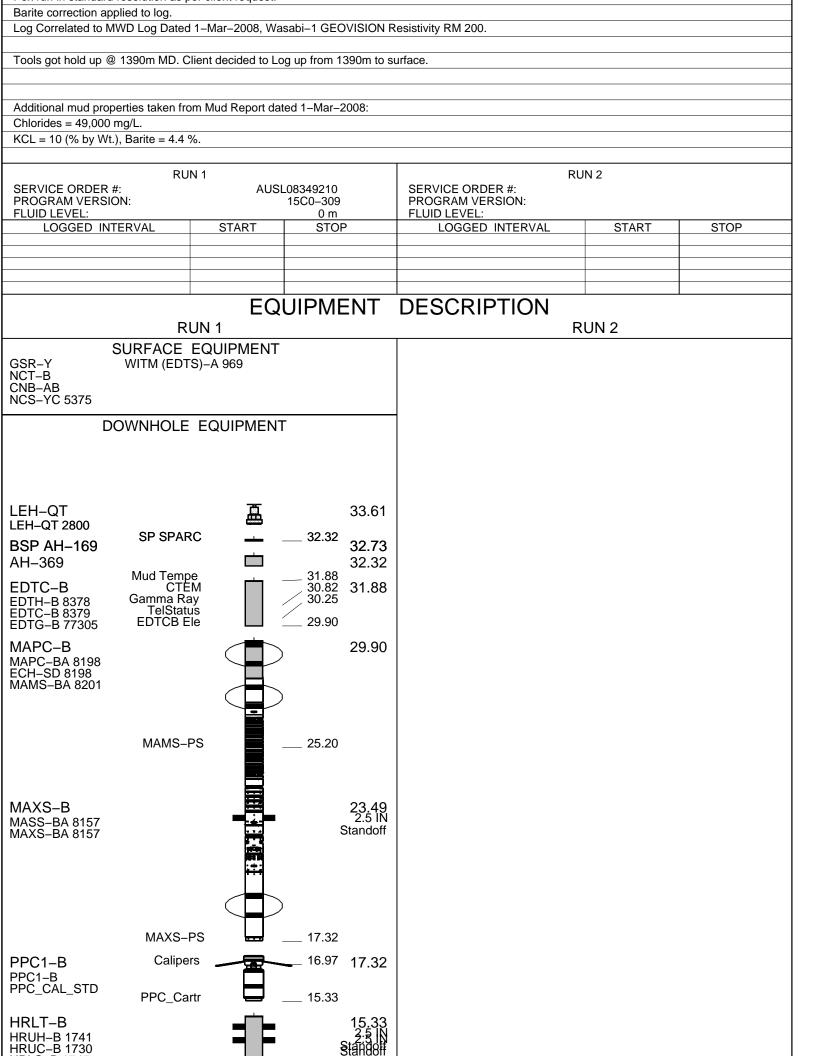
 OS2:
 MDT-GR
 OS2:

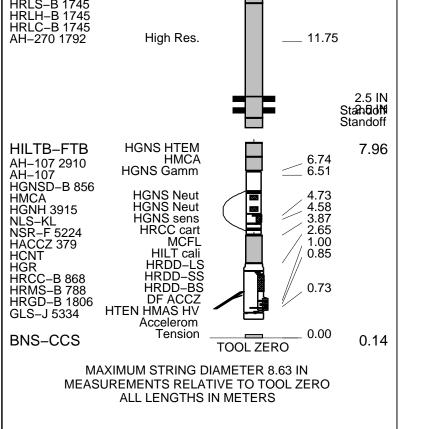
 OS3:
 CST-GR
 OS3:

 OS4:
 VSI
 OS4:

 OS5:
 OS5:

REMARKS: RUN NUMBER 1 REMARKS: RUN NUMBER 2


Tools run as per tool sketch, using 5x standoffs, 3x LCMEs and a bow spring.

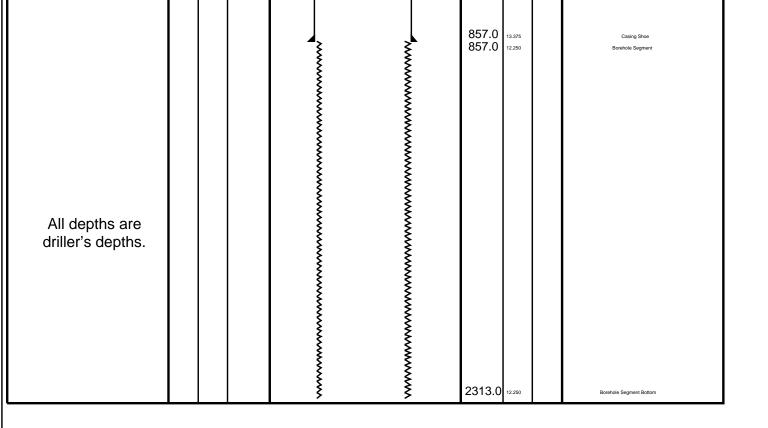

Maximum Recorded Temperature was 59 degC taken from thermometers in Logging Head.

Neutron Environment Corrections: Hole Size, Borehole and formation Salinity, Mud Weight, Mud Cake, Standoff and Press./ Temp.

Density Environment Corrections : Hole Size, using BS, and Mud Weight.

Pex run in standard resolution as per client request

Client: Apache Northwest Pty Ltd


Well: Wasabi-1

Field: Apache/VIC/P-58/WASABI-

State: Victoria Country: Australia Drawing Date:7-Mar-2008

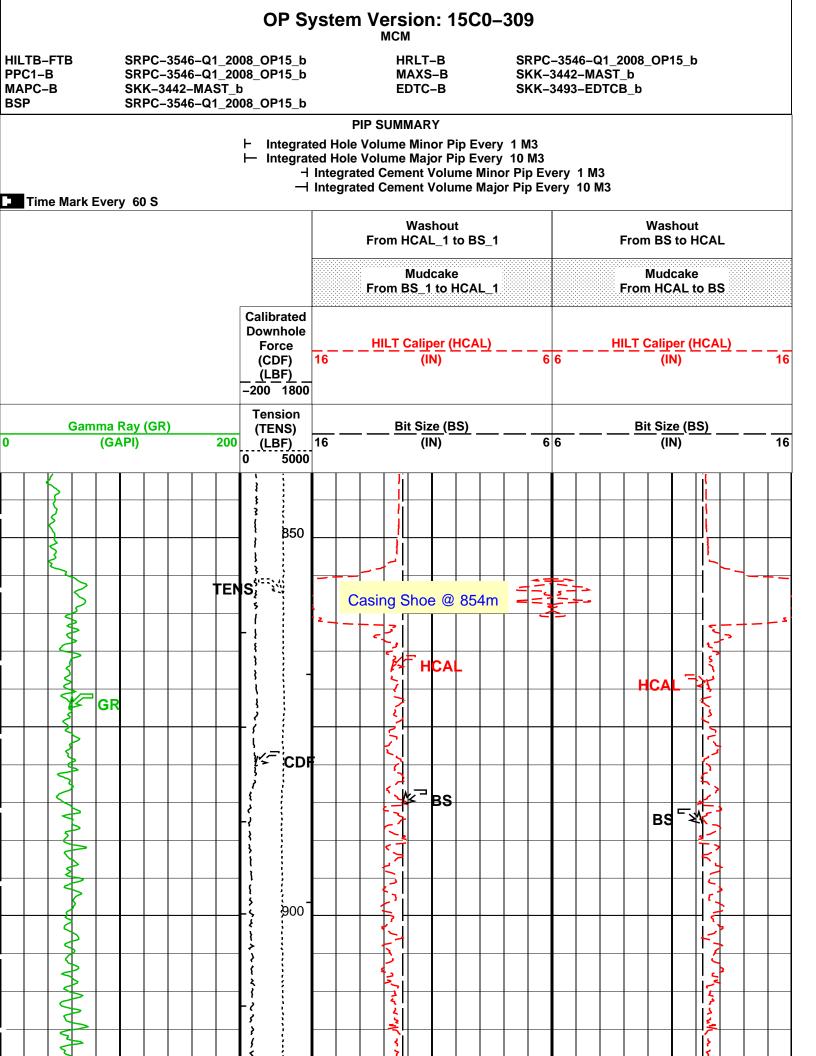
Rig Name: West Triton
Reference Datum: AHD
Elevation: 39.0

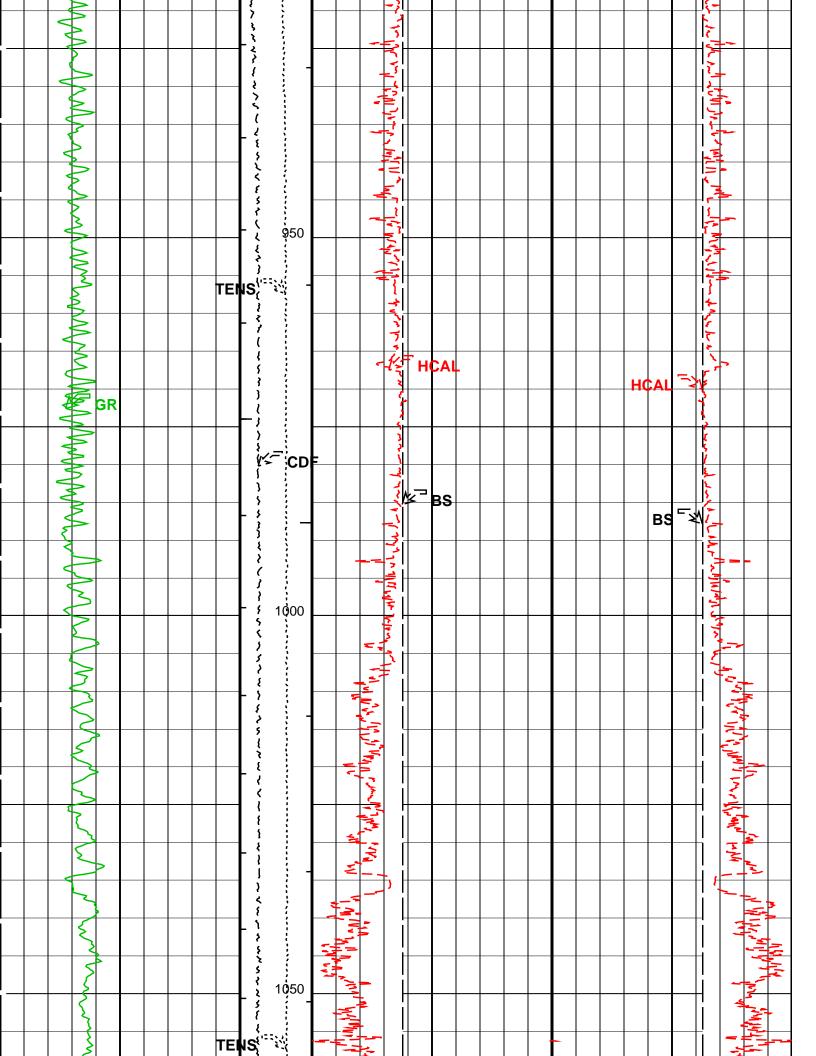
Production String	(in) (m) OD ID MD	Well Schematic	(m) (in) (D) (D)	Casing String
Kelly Bushing Elevation Derrick Floor Elevation Mean Sea Level	39.0 39.0		27.0 20.000 101.1 20.000	Casing String Casing Shoe

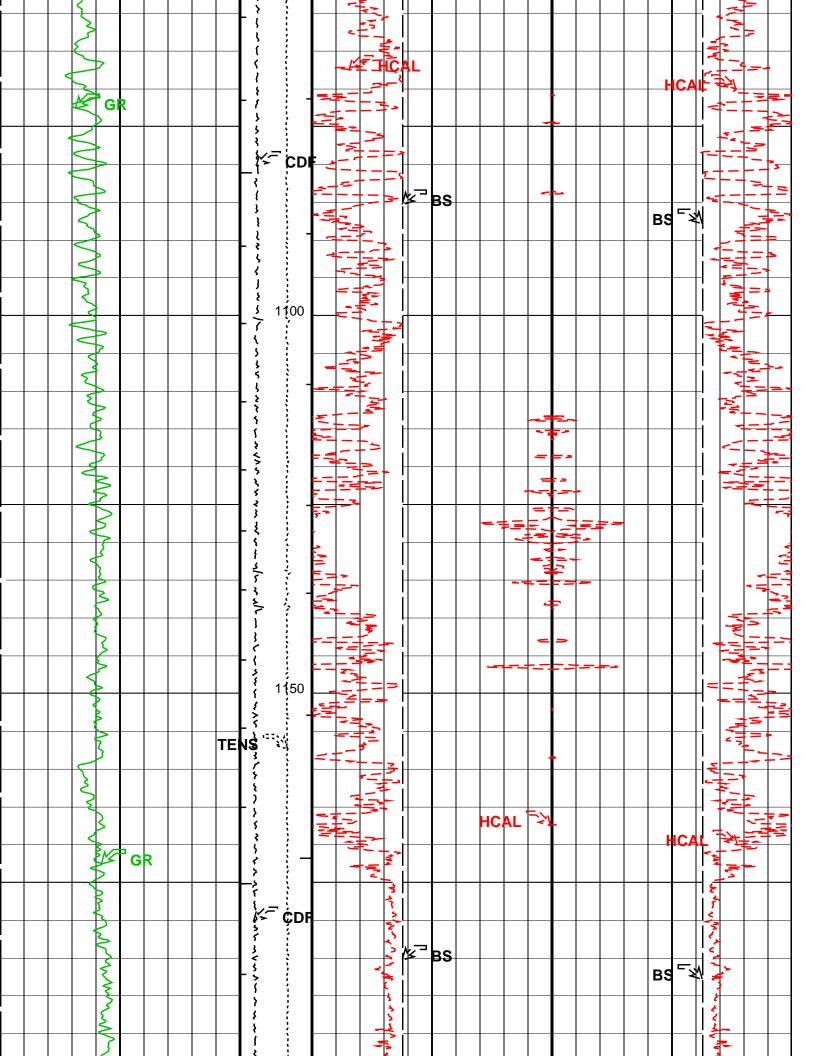
Schlumberger

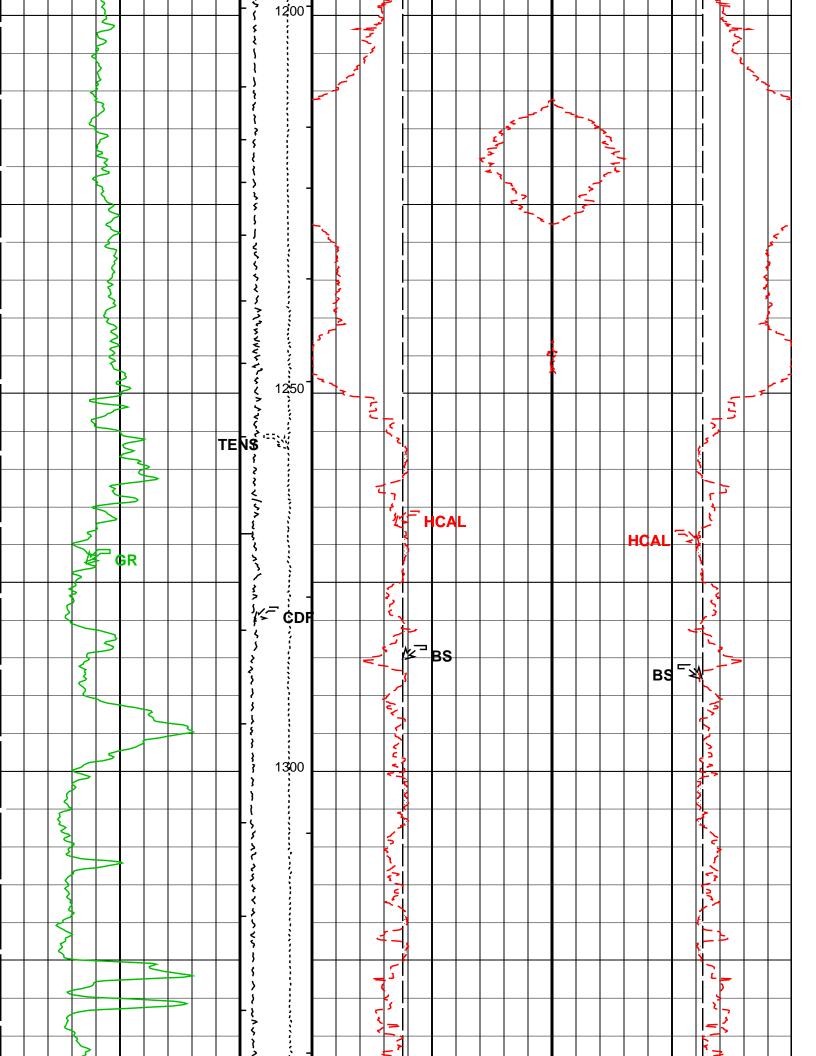
Main Pass 1391 m - 840 m

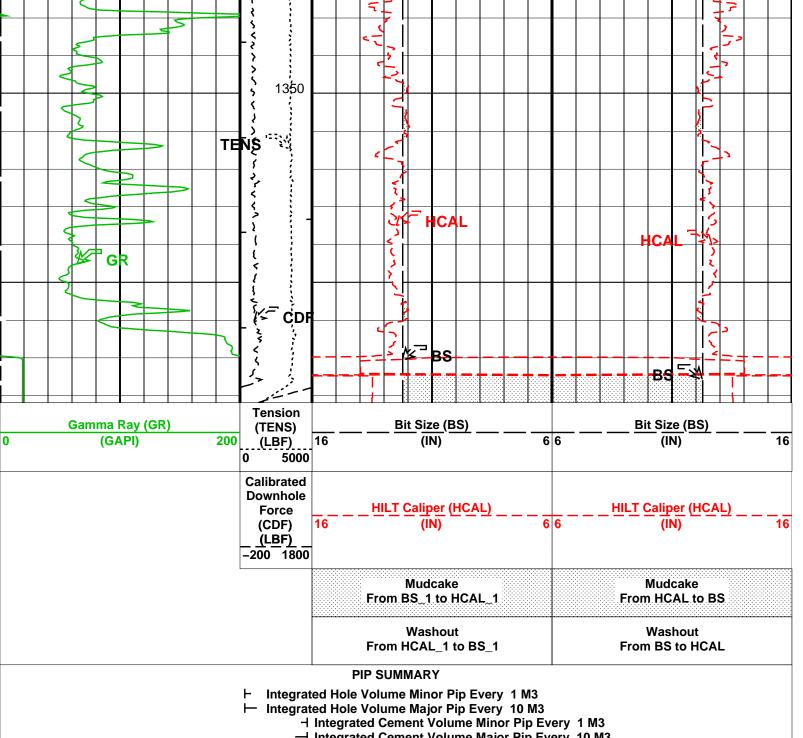
MAXIS Field Log


Company: Apache	Northwest Pty Ltd					Well: WASABI-1					
		Input [DLIS Files								
DEFAULT	TLD_MCFL_CNL_HRLA_038PUP	FN:51	PRODUCER	12-Mar-2008 01:24	1391.0 M	840.5 M					
	Output DLIS Files										
DEFAULT	TLD_MCFL_CNL_HRLA_035PUP	FN:36	PRODUCER	12-Mar-2008 01:47	1391.0 M	841.4 M					
CUSTOMER	TLD_MCFL_CNL_HRLA_035PUC	FN:37	CUSTOMER	12-Mar-2008 01:47	1391.0 M	841.4 M					


Integrated Hole/Cement Volume Summary


Hole Volume = 49.69 M3


Cement Volume = 24.62 M3 (assuming 9.63 IN casing O.D.)


Computed from 1391.0 M to 857.1 M using data channel(s) HCAL

── Integrated Cement Volume Major Pip Every 10 M3

Time Mark Every 60 S

Parameters

DLIS	Name	Description	Valu	ie
DC	MAPC-B: Multimode	Array Sonic Power Cartridge	40.050	INI
BS	HOLEV: Integrated Ho	Bit Size ole/Cement Volume	12.250	IN
FCD	•	Future Casing (Outer) Diameter	9.625	IN
HVCS		Integrated Hole Volume Caliper Selection	HCAL	
	System and Miscellar			
DO	-	Depth Offset for Playback	0.0	М
PP		Playback Processing	RECOMPUTE	
TD		Total Depth	2313	M
Format: Ca	aliperLog Vertical S	Scale: 1:500	Graphics File Created:	12-Mar-2008 01:47

OP System Version: 15C0-309

MCM

SRPC-3546-Q1_2008_OP15_b HILTB-FTB PPC1-B SRPC-3546-Q1_2008_OP15_b HRLT-B MAXS-B SRPC-3546-Q1_2008_OP15_b SKK-3442-MAST_b

3KK-344Z-IVIA3 I_D 3KK-3493-ED1CB_D SRPC-3546-Q1_2008_OP15_b

Input DLIS Files

FN:51 PRODUCER **DEFAULT** TLD_MCFL_CNL_HRLA_038PUP 12-Mar-2008 01:24 1391.0 M 840.5 M

Output DLIS Files

PRODUCER TLD_MCFL_CNL_HRLA_035PUP FN:36 **DEFAULT** 12-Mar-2008 01:47 **CUSTOMER** TLD_MCFL_CNL_HRLA_035PUC FN:37 **CUSTOMER** 12-Mar-2008 01:47

Schlumberger

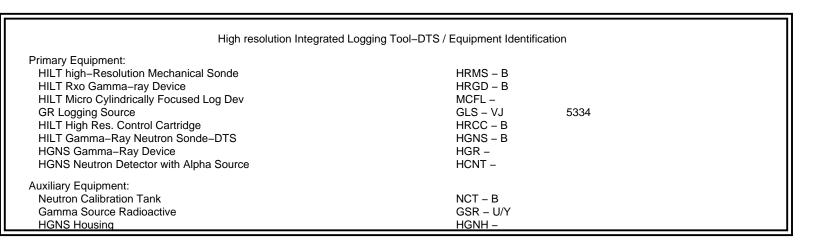
WAFC-D

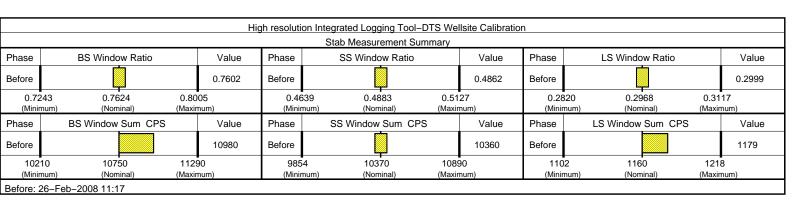
BSP

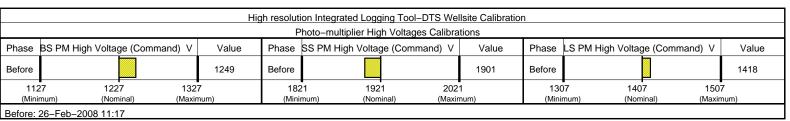
Calibrations

MAXIS Field Log

		Calibration and	Check Summary				
Measurement	Nominal	Master	Before	After	Change	Limit	Units
ligh resolution Integrated Logging Tool-D	TS Wellsite Calibra	tion – Stab Mea	surement Summa	ary			
Before: 26-Feb-2008 11:17				•			
BS Window Ratio	0.7624	N/A	0.7602	N/A	N/A	N/A	
BS Window Sum	10750	N/A	10980	N/A	N/A	N/A	CPS
SS Window Ratio	0.4883	N/A	0.4862	N/A	N/A	N/A	
SS Window Sum	10370	N/A	10360	N/A	N/A	N/A	CPS
LS Window Ratio	0.2968	N/A	0.2999	N/A	N/A	N/A	
LS Window Sum	1160	N/A	1179	N/A	N/A	N/A	CPS
ligh resolution Integrated Logging Tool–D	TS Wellsite Calibra	tion – Photo–mu	ultiplier High Volta	iges Calibration	S		
Before: 26-Feb-2008 11:17 BS PM High Voltage (Command)	1227	N/A	1249	N/A	N/A	N/A	V
SS PM High Voltage (Command)	1921	N/A N/A	1249	N/A N/A	N/A N/A	N/A N/A	V V
LS PM High Voltage (Command)	1921	N/A N/A	1418	N/A N/A	N/A N/A	N/A N/A	V V
L3 FW High Voltage (Command)	1407	IN/A	1410	IN/A	IN/A	IN/A	V
ligh resolution Integrated Logging Tool-Diserore: 26-Feb-2008 11:17	TS Wellsite Calibra	tion – Crystal Q	uality Resolutions	Calibration			
BS Crystal Resolution	9.875	N/A	9.867	N/A	N/A	N/A	%
SS Crystal Resolution	10.56	N/A	10.33	N/A	N/A	N/A	%
LS Crystal Resolution	9.503	N/A	9.278	N/A	N/A	N/A	%
ligh resolution Integrated Logging Tool-Diseror: 26-Feb-2008 13:17	TS Wellsite Calibra	tion – MCFL Ca	libration				
Raw B0 Resistivity	3875	N/A	3878	N/A	N/A	N/A	OHMM
Raw B1 Resistivity	3830	N/A	3831	N/A	N/A	N/A	OHMM
Raw B2 Resistivity	3830	N/A	3834	N/A	N/A	N/A	OHMM
ligh resolution Integrated Logging Tool–Di	TS Wellsite Calibra	tion – HILT Cali	per Calibration				
HILT Caliper Zero Measurement	8.000	N/A	8.163	N/A	N/A	N/A	IN
HILT Caliper Plus Measurement	12.00	N/A	12.39	N/A	N/A	N/A	IN
ligh resolution Integrated Logging Tool–Disefore: 29–Feb–2008 20:22	TS Wellsite Calibra	tion – Detector (Calibration				
Gamma Ray Background	30.00	N/A	9.320	N/A	N/A	N/A	GAPI
Gamma Ray (Jig – Bkg)	184.0	N/A	184.0	N/A	N/A	16.73	GAPI
Gamma Ray (Galibrated)	165.0	N/A	165.0	N/A	N/A	15.00	GAPI
Canina Nay (Calibrated)	100.0	14/74	100.0	1 1/73	11/73	10.00	OAI I
ligh resolution Integrated Logging Tool-D Master: 20-Feb-2008 19:21 Before: 26-I		tion – Zero Mea	surement				
CNTC Background	29.71	29.71	28.10	N/A	N/A	4.457	CPS
CFTC Background	33.75	33.75	30.26	N/A	N/A	5.063	CPS


Master: 20-Feb-2008 19:21							
Thermal Near Corr. (Tank)	5800	5605	N/A	N/A	N/A	N/A	CPS
Thermal Far Corr. (Tank)	2400	2340	N/A	N/A	N/A	N/A	CPS
CNTC/CFTC (Tank)	2.159	2.395	N/A	N/A	N/A	N/A	
High resolution Integrated Logging Tool-DTS We	alleite Calibration	- Acceleromete	r Calibration				
Before: Calibration not done	chisite Calibration	- Acceleronnete	Calibration				
Z-Axis Acceleration	9.810	N/A	9.810	N/A	N/A	N/A	M/S2
High resolution Integrated Logging Tool–DTS Ma	ster Calibration	 Inversion result 	is				
Master: 20–Feb–2008 21:02	0.500	2.002					0/02
Rho Aluminum Rho Magnesium	2.596 1.686	2.602 1.685				 	G/C3 G/C3
Pe Aluminum	2.570	2.571					0/00
Pe Magnesium	2.650	2.634					
-							
High resolution Integrated Logging Tool–DTS Ma	ster Calibration	 Deviation Sum 	mary				
Master: 20–Feb–2008 21:02	0	0.5701					0/
BS Average Deviation BS Max Deviation	0	0.5701 1.350					% %
SS Average Deviation	0	0.3068					%
SS Max Deviation	0	0.7734					%
LS Average Deviation	0	0.6760					%
LS Max Deviation	0	1.772					%
High Resolution Lateralog Arrey P Wallaite Cal	ibration LDIT	MO1					
High Resolution Laterolog Array – B Wellsite Cal Before: 29–Feb–2008 19:20	iviativii – MKLI	IVIU I					
HRLT M0-M1 Voltage Plus - 0	0	N/A	-318.2	N/A	N/A	9.681	UV
HRLT M0-M1 Voltage Plus - 1	0	N/A	-355.9	N/A	N/A	9.681	UV
HRLT M0-M1 Voltage Plus - 2	0	N/A	-358.0	N/A	N/A	9.681	UV
HRLT M0-M1 Voltage Plus - 3	0	N/A	-342.3	N/A	N/A	9.681	UV
HRLT M0-M1 Voltage Plus - 4	0	N/A N/A	-325.3 -329.9	N/A N/A	N/A N/A	9.681 9.681	UV UV
HRLT M0-M1 Voltage Plus - 5 HRLT M0-M1 Voltage Plus - 6	0	N/A N/A	-329.9 315.1	N/A N/A	N/A N/A	9.681	UV
HRLT M0-M1 Voltage Plus - 7	0	N/A	-322.7	N/A	N/A	9.681	UV
G							
High Resolution Laterolog Array – B Wellsite Cal	ibration – HRLT	M12					
Before: 29–Feb–2008 19:20		N1/A	4740	N1/A	N 1/A	50.40	107
HRLT M1-M2 Voltage Plus - 0 HRLT M1-M2 Voltage Plus - 1	0	N/A N/A	1749	N/A N/A	N/A N/A	53.42 53.42	UV UV
HRLT M1-M2 Voltage Plus - 1 HRLT M1-M2 Voltage Plus - 2	0	N/A N/A	1957 1963	N/A N/A	N/A N/A	53.42 53.42	UV
HRLT M1-M2 Voltage Plus - 3	0	N/A	1876	N/A	N/A	53.42	υν
HRLT M1-M2 Voltage Plus - 4	0	N/A	1783	N/A	N/A	53.42	UV
HRLT M1-M2 Voltage Plus - 5	0	N/A	1810	N/A	N/A	53.42	UV
HRLT M1-M2 Voltage Plus - 6	0	N/A	-1741	N/A	N/A	53.42	UV
HRLI M1–M2 Voltage Plus – 7	0	N/A	1781	N/A	N/A	53.42	UV
High Resolution Laterolog Array – B Wellsite Cal Before: 29–Feb–2008 19:20	ibration – HRLT	M23					
HRLT M2-M3 Voltage Plus - 0	0	N/A	1736	N/A	N/A	53.42	UV
HRLT M2-M3 Voltage Plus - 1	0	N/A	1947	N/A	N/A	53.42	UV
HRLT M2-M3 Voltage Plus - 2	0	N/A	1956	N/A	N/A	53.42	UV
HRLT M2–M3 Voltage Plus – 3	0	N/A	1875	N/A	N/A	53.42	UV
HRLT M2-M3 Voltage Plus - 4	0 0	N/A N/A	1778	N/A N/A	N/A N/A	53.42 53.42	UV UV
HRLT M2-M3 Voltage Plus - 5 HRLT M2-M3 Voltage Plus - 6	0	N/A N/A	1806 -1721	N/A N/A	N/A N/A	53.42 53.42	UV
HRLT M2-M3 Voltage Plus - 7	Ö	N/A	1781	N/A	N/A	53.42	ÜΫ
Ç							
High Resolution Laterolog Array – B Wellsite Cal	ibration – HRLT	V34					
Before: 29-Feb-2008 19:20 HRLT A3-A4 Voltage Plus - 0	0	N/A	68550	N/A	N/A	2100	UV
HRLT A3-A4 Voltage Plus - 0 HRLT A3-A4 Voltage Plus - 1	0	N/A N/A	77150	N/A N/A	N/A N/A	2100	UV
HRLT A3-A4 Voltage Plus - 2	0	N/A	77730	N/A	N/A	2100	UV
HRLT A3–A4 Voltage Plus – 3	0	N/A	74680	N/A	N/A	2100	UV
HRLT A3-A4 Voltage Plus - 4	0	N/A	70640	N/A	N/A	2100	UV
HRLT A3-A4 Voltage Plus - 5	0	N/A	71700	N/A	N/A	2100	UV
HRLT A3-A4 Voltage Plus - 6	0 0	N/A N/A	-67220 70000	N/A N/A	N/A N/A	2100 2100	UV UV
HRLT A3-A4 Voltage Plus - 7	U	IN/A	10000	IN/A	IN/A	Z 100	ΟV
High Resolution Laterolog Array – B Wellsite Cal	ibration – HRLT	V45					
Before: 29-Feb-2008 19:20							
HRLT A4-A5 Voltage Plus - 0	0	N/A	68390	N/A	N/A	2100	UV
HRLT A4-A5 Voltage Plus - 1	0	N/A	77030	N/A	N/A	2100	UV
HRLT A4-A5 Voltage Plus - 2 HRLT A4-A5 Voltage Plus - 3	0 0	N/A N/A	77590 74510	N/A N/A	N/A N/A	2100 2100	UV UV
HRLT A4–A5 Voltage Plus – 3 HRLT A4–A5 Voltage Plus – 4	0	N/A N/A	70470	N/A N/A	N/A N/A	2100	UV
HRLT A4–A5 Voltage Plus – 5	0	N/A	71520	N/A	N/A	2100	UV
HRLT A4-A5 Voltage Plus - 6	0	N/A	-67110	N/A	N/A	2100	UV
HRLT A4-A5 Voltage Plus - 7	0	N/A	70000	N/A	N/A	2100	UV
High Decolution Lateralay Array D. Wallatt Call	ibration LIDIT	VEC					
High Resolution Laterolog Array – B Wellsite Cal	IDIALIUII – MKLI	v บับ					

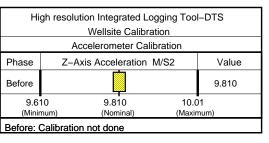

Before: 29-Feb-2008 19:20							
HRLT A5-A6 Voltage Plus - 0	0	N/A	68510	N/A	N/A	2100	UV
HRLT A5-A6 Voltage Plus - 1	0	N/A	77320	N/A	N/A	2100	UV
HRLT A5-A6 Voltage Plus - 2	0	N/A	77840	N/A	N/A	2100	UV
HRLT A5-A6 Voltage Plus - 3	0	N/A	74720	N/A	N/A	2100	UV
HRLT A5-A6 Voltage Plus - 4	0	N/A	70600	N/A	N/A	2100	UV
HRLT A5-A6 Voltage Plus - 5	0	N/A	71640	N/A	N/A	2100	UV
HRLT A5-A6 Voltage Plus - 6	0	N/A	-67390	N/A	N/A	2100	UV
HRLT A5-A6 Voltage Plus - 7	0	N/A	70000	N/A	N/A	2100	ŪV
· · · · · · · · · · · · · · · · · · ·	-						
High Resolution Laterolog Array – B We Before: 29–Feb–2008 19:20	ellsite Calibration – HR	RLT VTP					
HRLT Torpedo-M0 Voltage - 0	0	N/A	-68130	N/A	N/A	2100	UV
HRLT Torpedo-M0 Voltage - 1	0	N/A	-77110	N/A	N/A	2100	UV
HRLT Torpedo-M0 Voltage - 2	0	N/A	-77730	N/A	N/A	2100	UV
HRLT Torpedo-M0 Voltage - 3	0	N/A	-74700	N/A	N/A	2100	UV
HRLT Torpedo-M0 Voltage - 4	0	N/A	-70660	N/A	N/A	2100	UV
HRLT Torpedo-M0 Voltage - 5	0	N/A	-71700	N/A	N/A	2100	ŪV
HRLT Torpedo-M0 Voltage - 6	0	N/A	67120	N/A	N/A	2100	ÜV
HRLT Torpedo–M0 Voltage – 7	0	N/A	-70000	N/A	N/A	2100	ÜV
z. respecte me remage	· ·	,, .	. 5555	,, .		2.00	
High Resolution Laterolog Array – B We Before: 29–Feb–2008 19:20	ellsite Calibration – HR	RLT VBD					
HRLT Bridle#9-M0 Voltage - 0	0	N/A	-68070	N/A	N/A	2100	UV
HRLT Bridle#9-M0 Voltage - 1	0	N/A	-76870	N/A	N/A	2100	UV
HRLT Bridle#9–M0 Voltage – 2	0	N/A	-77500	N/A	N/A	2100	ÜV
HRLT Bridle#9-M0 Voltage - 3	0	N/A	-74520	N/A	N/A	2100	ÜV
HRLT Bridle#9–M0 Voltage – 4	0	N/A	-70540	N/A	N/A	2100	ÜV
HRLT Bridle#9–M0 Voltage – 5	0	N/A	-71630	N/A	N/A	2100	UV
HRLT Bridle#9–M0 Voltage – 6	0	N/A	66910	N/A	N/A	2100	UV
HRLT Bridle#9–M0 Voltage – 7	0	N/A	-70000	N/A	N/A	2100	UV
TITE I Bridle#9-IVIO Voltage - 1	O	IN/A	-70000	IN/A	IN/A	2100	O v
High Resolution Laterolog Array – B We Before: 29–Feb–2008 19:20	ellsite Calibration – HR	RLT ISO					
HRLT Source Current Plus - 0	0	N/A	283.9	N/A	N/A	8.520	UA
HRLT Source Current Plus – 1	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 2	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 3	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 4	Ö	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 5	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 6	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 7	0	N/A	281.1	N/A	N/A	8.520	UA
TIRET Source Current Plus - 7	U	IN/A	201.1	IN/A	IN/A	0.320	UA
High Resolution Laterolog Array – B We Before: 29–Feb–2008 19:20	ellsite Calibration – HR	RLT MV					
HRLT Vertical Voltage PI – 0	0	N/A	-320.5	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 1	0	N/A	-351.4	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 2	0	N/A	-351.9	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 3	0	N/A	-334.5	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 4	0	N/A	-314.4	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 5	0	N/A	-334.3	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 6	0	N/A	324.3	N/A	N/A	9.681	ÜΥ
HRLT Vertical Voltage PI = 7	0	N/A	-322.7	N/A	N/A	9.681	υv
Tite i vertical voltage i i = 'i	O	13/73	-322.1	13/73	14/74	3.001	O v
Powered Positioning Deveice/Caliper 1 Before: Calibration out of date 19–Jun		PPC1 Caliper C	Calibration				
PPC1 Radius 1 Raw Small Radius	3.500	N/A	3.996	N/A	N/A	0.5000	IN
PPC1 Radius 1 Raw Large Radius	8.000	N/A	8.071	N/A	N/A	0.5000	İN
PPC1 Radius 2 Raw Small Radius	3.500	N/A	3.288	N/A	N/A	0.5000	IN
PPC1 Radius 2 Raw Large Radius	8.000	N/A	7.596	N/A	N/A	0.5000	IN
PPC1 Radius 3 Raw Small Radius	3.500	N/A	3.747	N/A	N/A	0.5000	İN
PPC1 Radius 3 Raw Large Radius	8.000	N/A	8.101	N/A	N/A	0.5000	IN
PPC1 Radius 4 Raw Small Radius	3.500	N/A	3.359	N/A	N/A	0.5000	IN
PPC1 Radius 4 Raw Large Radius	8.000	N/A	7.738	N/A	N/A	0.5000	IN
O . Madido + Man Largo Madido	0.000	14// 1	7.700	. 4// 1	14//1	3.0000	•
Enhanced DTS Cartridge Wellsite Calib Before: Calibration not done	ration – EDTC Accele	rometer Calibra	tion				
EDTC Z-Axis Acceleration	9.810	N/A	9.807	N/A	N/A	N/A	M/S2
Enhanced DTS Cartridge Wellsite Calib Before: 29–Feb–2008 19:22	ration – Detector Calib	oration					
Gamma Ray (Jig – Bkg)	166.4	N/A	166.4	N/A	N/A	15.12	GAPI
Gamma Ray (Calibrated)	165.0	N/A	165.0	N/A	N/A	15.00	GAPI


The GLS-VJ source activity is acceptable.

The HGNS Neutron Master Calibration was done with the following parameters :

NCT-B Water Temperature 20.0 DEGC. Thermal Housing Size 3.376 IN. NSR-F serial number 5224

		Hi	gh resolution	on Integrated Loggir	ng Tool-DTS We	llsite Calibration	on			
				Crystal Quality Res	olutions Calibrati	on	_			
Phase	BS Crystal Resolution %	Value	Phase	SS Crystal Res	solution %	Value	Phase	LS Crystal Resolution	%	Value
Before		9.867	Before			10.33	Before			9.278
8.87 (Minin).87 ximum)	9.55 (Minim				8.503 (Minimu		10.5 (Maxim	
Before: 2	26-Feb-2008 11:17				•					


		Hi	gh resoluti	on Integrated Logging Tool-[DTS Wells	ite Calibratio	n			
				MCFL Calibration	ı					
Phase	Raw B0 Resistivity OHMM	Value	Phase	Raw B1 Resistivity OHN	MM	Value	Phase	Raw B2 Resistivity OHMM	Value	
Before		3878	Before			3831	Before	ļ	3834	
356 (Minim		85 imum)	352 (Minir		4136 (Maximu	ım)	3524 (Minim		136 aximum)	
Before: 2	efore: 26–Feb–2008 13:17									

High resolution Integrated Logging Tool-DTS Wellsite Calibration									
HILT Caliper Calibration									
Phase HILT Caliper Zero Measurement IN Value Phase HILT Caliper Plus Measurement IN Value									
Before	efore 8.163 Before 12.39						12.39		
6.000 8.000 10.00 9.000 12.00 15.00 (Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum)									
Before: 26-Feb-2008 11:25									

	High resolution Integrated Logging Tool-DTS Wellsite Calibration									
Detector Calibration										
Phase	Phase Gamma Ray Background GAPI Value Phase Gamma Ray (Jig – Bkg) GAPI Value Phase Gamma Ray (Calibrated) GAPI Value									
Before	9.320 Before 184.0 Before 165.0									
0 30.00 120.0 167.3 184.0 200.7 150.0 165.0 180.0 (Minimum) (Nominal) (Maximum) (Mominal) (Maximum) (Mominal) (Maximum)										
Before: 2	Before: 29-Feb-2008 20:22									

		High resolu	ution Inte	egrated Logging	Tool-D7	S Wellsite Calibration				
	Zero Measurement									
Phase	Phase CNTC Background CPS Value Phase CFTC Background CPS Value									
Master				29.71	Master			33.75		
Before				28.10	Before			30.26		
	5.000 29.71 40.00 5.000 33.75 40.00 (Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum)									
Master: 2	Master: 20-Feb-2008 19:21 Before: 26-Feb-2008 11:15									

	High resolution Integrated Logging Tool-DTS Wellsite Calibration									
	Ratio Measurement									
Phase	Thermal Near Corr. (Tank) CPS	Value	Phase	Thermal Far Cor	rr. (Tank) CPS	Value	Phase	CNTC/CF1	ΓC (Tank)	Value
Master		5605	Master			2340	Master			2.395
	4700 5800 6900 1900 2400 2900 2.120 2.159 2.540 (Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum)									
Master: 2	laster: 20–Feb–2008 19:21									

	High resolution Integrated Logging Tool-DTS Master Calibration									
	Inversion results									
Phase	Rho	Aluminum G/C3		Value	Phase	Rho Magnesium G	G/C3	Value		
Master	1aster Page 1			2.602	Master	ļ				
_			2.60 (Maxin		1.6 (Mini		1.69 (Maxim			
Phase		Pe Aluminum		Value	Phase	Pe Magnesium		Value		
Master				2.571	Master					
		2.67 (Maxin		2.5 (Mini	50 2.650 mum) (Nominal)	2.75 (Maxim				
Master:	Master: 20-Feb-2008 21:02									

			Hiç	gh resoluti	ion Integrated Logo	ging Tool-DTS Ma	ster Calibration				
	Deviation Summary										
Phase	BS Average Deviation	%	Value	Phase	SS Average I	Deviation %	Value	Phase	LS Average	Deviation %	Value
Master			0.5701	Master			0.3068	Master			0.6760
-0.60 (Minin		0.600 (Maxim		–1.0 (Minir		1.00 iinal) (Maxii		–1.50 (Minim		1.50 ninal) (Maxir	-
Phase	BS Max Deviation %)	Value	Phase	SS Max De	eviation %	Value	Phase	LS Max De	eviation %	Value
Master			1.350	Master			0.7734	Master			1.772
-1.6 (Minin		1.60 (Maxim		–2.5 (Minir		2.50 inal) (Maxi		–3.50 (Minim		3.50 inal) (Maxir	-
,	Master: 20-Feb-2008 21:02										

	High resolution Integrated Logging Tool-DTS Master Calibration								
Zero Measurement									
Phase CNTC Background CPS Value Phase CFTC Background CPS Value									
Master 29.71 Master					33.75				
5.000 29.71 40.00 5.000 33.75 40.00									
(Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum) Master: 20-Feb-2008 19:21									
WIGSTOL.	20 1 60-2	.000 10.21							

	High resolution Integrated Logging Tool-DTS Master Calibration										
	Tank Measurement										
Phase	Thermal Near Corr. (Tank) CPS	Value	Phase	Thermal Far Corr. (Tank) CPS	Value	Phase	CNTC/CFTC (Tank)		Value	
Master		5605	Master			2340	Master			2.395	
	4700 5800 6900 1900 2400 2900 2.120 2.159 2.540 (Minimum) (Nominal) (Maximum) (Mominal) (Maximum) (Mominal) (Maximum)										
Master: 2	Master: 20-Feb-2008 19:21										

High Resolution Laterolog Array – B / Equipment Identification

Primary Equipment:
HRLT Sonde
HRLS – B

Auxiliary Equipment:
HRLT lower Housing
HRLT Lower Cartridge
HRLT Lower Cartridge
HRLT upper Housing
HRLT upper Housing
HRUH – B
HRLT Upper Cartridge
HRUC – B

		High Resolution Laterolog	-	llsite Calibratio	n						
		H	RLT M01								
ldx	Phase	HRLT M0-M1 Voltage Plus UV	Value	Nominal	Maximum	Minimum					
0	Before		-318.2	-322.7	-280.7	-379.7					
1	Before		-355.9	-322.7	-280.7	-379.7					
2	Before		-358.0	-322.7	-280.7	-379.7					
3	Before		-342.3	-322.7	-280.7	-379.7					
4	Before		-325.3	-322.7	-280.7	-379.7					
5	Before		-329.9	-322.7	-280.7	-379.7					
6	Before		315.1	322.7	379.7	280.7					
7	Before		-322.7	-322.7	-280.7	-379.7					
	(Minimum) (Nominal) (Maximum)										
Befo	re: 29-Fe	eb-2008 19:20									

	High Resolution Laterolog Array – B Wellsite Calibration										
		H	RLT M12								
ldx	Phase	HRLT M1-M2 Voltage Plus UV	Value	Nominal	Maximum	Minimum					
0	Before		1749	1781	2095	1549					
1	Before		1957	1781	2095	1549					
2	Before		1963	1781	2095	1549					
3	Before		1876	1781	2095	1549					
4	Before		1783	1781	2095	1549					
5	Before		1810	1781	2095	1549					
6	Before		-1741	-1781	-1549	-2095					
7	Before		1781	1781	2095	1549					
	(Minimum) (Nominal) (Maximum)										
Befo	re: 29–Fe	eb-2008 19:20									

	High Resolution Laterolog Array – B Wellsite Calibration										
	HRLT M23										
ldx	Phase	HRLT M2-M3 Voltage Plus UV	Value	Nominal	Maximum	Minimum					
0	Before		1736	1781	2095	1549					
1	Before		1947	1781	2095	1549					
2	Before		1956	1781	2095	1549					
١	D-f		4075	4704	0005	4540					

3	Before		1875	1781	2095	1549
4	Before		1778	1781	2095	1549
5	Before		1806	1781	2095	1549
6	Before		-1721	-1781	-1549	-2095
7	Before		1781	1781	2095	1549
	(Minir	num) (Nominal) (Maxir	num)			
Befo	re: 29–Fe	eb-2008 19:20	•	•	•	

		High Resolution Laterolog	g Array – B We	Ilsite Calibratio	n	
		Н	RLT V34			
ldx	Phase	HRLT A3-A4 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		68550	70000	82360	60900
1	Before		77150	70000	82360	60900
2	Before		77730	70000	82360	60900
3	Before		74680	70000	82360	60900
4	Before		70640	70000	82360	60900
5	Before		71700	70000	82360	60900
6	Before		-67220	-70000	-60900	-82360
7	Before		70000	70000	82360	60900
	(Minir	num) (Nominal) (Maxin	num)			
Befo	re: 29-Fe	eb-2008 19:20				

		High Reso	lution Laterolo	og Array – B We	ellsite Calibratio	n	
			H	HRLT V45			
ldx	Phase	HRLT A4-A5 Volta	ge Plus UV	Value	Nominal	Maximum	Minimum
0	Before			68390	70000	82360	60900
1	Before			77030	70000	82360	60900
2	Before			77590	70000	82360	60900
3	Before			74510	70000	82360	60900
4	Before			70470	70000	82360	60900
5	Before			71520	70000	82360	60900
6	Before			-67110	-70000	-60900	-82360
7	Before			70000	70000	82360	60900
	(Minir	num) (Nominal)	(Maxi	imum)			
Befo	re: 29-Fe	eb-2008 19:20					

		High Resolution Laterological	g Array – B W	ellsite Calibratio	on	
		Н	RLT V56			
ldx	Phase	HRLT A5-A6 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		68510	70000	82360	60900
1	Before		77320	70000	82360	60900
2	Before		77840	70000	82360	60900
3	Before		74720	70000	82360	60900
4	Before		70600	70000	82360	60900
5	Before		71640	70000	82360	60900
6	Before		-67390	-70000	-60900	-82360
7	Before		70000	70000	82360	60900
	(Minir	num) (Nominal) (Maxir	num)			
Befo	re: 29-Fe	eb-2008 19:20	·	·	·	
	·	•	•	•	•	

		High Resolution Laterolog	g Array – B We	Ilsite Calibratio	n	
		-	RLT VTP			
ldx	Phase	HRLT Torpedo-M0 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		-68130	-70000	-60900	-82360
1	Before		-77110	-70000	-60900	-82360
2	Before		-77730	-70000	-60900	-82360
3	Before		-74700	-70000	-60900	-82360
4	Before		-70660	-70000	-60900	-82360
5	Before		-71700	-70000	-60900	-82360
6	Before		67120	70000	82360	60900
7	Before		-70000	-70000	-60900	-82360
	(Minir	mum) (Nominal) (Maxin	num)			
Befo	re: 29-Fe	eb-2008 19:20				
		High Resolution Laterolog	g Array – B We	llsite Calibratio	n	
		HI	RLT VBD			
ldx	Phase	HRLT Bridle#9-M0 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		-68070	-70000	-60900	-82360
1	Before		-76870	-70000	-60900	-82360
2	Before		-77500	-70000	-60900	-82360
3	Before		-74520	-70000	-60900	-82360

		_				
0	Before		-68070	-70000	-60900	-82360
1	Before		-76870	-70000	-60900	-82360
2	Before		-77500	-70000	-60900	-82360
3	Before		-74520	-70000	-60900	-82360
4	Before		-70540	-70000	-60900	-82360
5	Before		-71630	-70000	-60900	-82360
6	Before		66910	70000	82360	60900
7	Before		-70000	-70000	-60900	-82360
		,				
	(Minir	num) (Nominal) (Maxin	num)			
Befo	re: 29-Fe	eb-2008 19:20				

		High Resolution Laterolog	g Array – B W	ellsite Calibratio	n	
		H	RLT ISO			
ldx	Phase	HRLT Source Current Plus UA	Value	Nominal	Maximum	Minimum
0	Before		283.9	284.0	334.1	247.0
1	Before		281.1	281.1	330.7	244.4
2	Before		281.1	281.1	330.7	244.4
3	Before		281.1	281.1	330.7	244.4
4	Before		281.1	281.1	330.7	244.4
5	Before		281.1	281.1	330.7	244.4
6	Before		281.1	281.1	330.7	244.4
7	Before		281.1	281.1	330.7	244.4
	(3.5)	(1)				
Pofo	(Minir	num) (Nominal) (Maxir eb-2008 19:20	num)			
Бего	ле. ∠9–ге	:U-2000 19.20				

	(Minir	num) (Nominal) (Maxi	mum)			
Befo	re: 29-Fe	eb-2008 19:20				
		High Resolution Laterolo	g Array – B We	ellsite Calibratio	n	
		ŀ	IRLT MV			
ldx	Phase	HRLT Vertical Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		-320.5	-322.7	-280.7	-379.7
1	Before		-351.4	-322.7	-280.7	-379.7
2	Before		-351.9	-322.7	-280.7	-379.7
3	Before		-334.5	-322.7	-280.7	-379.7
4	Before		-314.4	-322.7	-280.7	-379.7

5	Before			-334.3	-322.7	-280.7	-379.7
6	Before			324.3	322.7	379.7	280.7
7	Before			-322.7	-322.7	-280.7	-379.7
	(Minir	mum) (Nom	inal) (Maxir	num)			
Rofo	ro: 20 E	sh 2008 10:20					

Powered Positioning Deveice/Caliper 1 / Equipment Identification

Primary Equipment:

PPC Powered Positioning Device/Caliper

PPC1 Caliper Standard

PPC1 – B PPC_-

Auxiliary Equipment:

		Powered Posi	tioning Deveice/	Caliner 1 \	Nellsite Cali	ihration		
		1 OWCICG 1 OSI	PPC1 Calipe	•		ioration		
Phase P	PC1 Radius 1 Ra	aw Small Radius	N Value	Phase F	PC1 Radiu	s 1 Raw Large Ra	adius IN	Value
Before			3.996	Before				8.071
1.20 (Minim			600 kimum)	6.1 (Mini		8.000 (Nominal)	9.700 (Maximu	
Phase P	PC1 Radius 2 Ra	aw Small Radius I	N Value	Phase F	PC1 Radiu	s 2 Raw Large Ra	adius IN	Value
Before			3.288	Before				7.596
1.20			600	6.1		8.000	9.700	
(Minim	num) (No	ominal) (Ma:	kimum)	(Minii	mum)	(Nominal)	(Maximu	ım)
Phase P	PC1 Radius 3 Ra	aw Small Radius I	N Value	Phase F	PC1 Radiu	s 3 Raw Large Ra	adius IN	Value
Before			3.747	Before				8.101
1.20	0 3.5	500 5.0	500	6.1	00	8.000	9.700)
(Minim	num) (No	ominal) (Ma:	kimum)	(Minii	mum)	(Nominal)	(Maximu	ım)
Phase P	PC1 Radius 4 Ra	aw Small Radius I	N Value	Phase F	PC1 Radiu	s 4 Raw Large Ra	adius IN	Value
Before			3.359	Before				7.738
1.20 (Minim			600 kimum)	6.1 (Mini		8.000 (Nominal)	9.700 (Maximu	
Before: C	Calibration out of	date 19-Jun-20	07 15:30					

Multimode Array Sonic Power Cartridge / Equipment Identification

Primary Equipment:
Multimode Array Sonic Minimum Service So
Multimode Array Sonic Control Cartridge MAMS - BA 8201 MAPC - BA 8198

Auxiliary Equipment:

Electronics Cartridge Housing ECH - SD 8198

Enhanced DTS Cartridge / Equipment Identification

Primary Equipment:

EDTC Gamma Ray Detector EDTG - A/B Enhanced DTS Cartridge EDTC - B

Auxiliary Equipment: EDTC Housing

EDTH – B

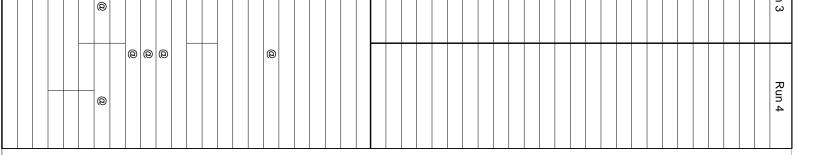
Er	hanced D	TS Cartridge Wel	Isite Calib	oration
	EDTC	Accelerometer C	alibration	
Phase	EDTC Z-	-Axis Acceleration	n M/S2	Value
Before				9.807
9.6	10	9.810	10.0	01
(Minii	num)	(Nominal)	(Maxir	mum)
Before:	Calibration	not done		

				Er	nhanced DTS Cartri	dge Wellsite Calil	oration				
					Detector	Calibration					
Phase	Gamma Ray Bad	kground GAPI	Value	Phase	Gamma Ray (Jig	g – Bkg) GAPI	Value	Phase	Gamma Ray (Ca	librated) GAPI	Value
Before			7.742	Before			166.4	Before			165.0
0 (Minir	30.0 mum) (Nom			151 (Minir			.5 mum)	150 (Minir			
Before: 2	29-Feb-2008 19:2	2									

Company: Apache Northwest Pty Ltd

Schlumberger

Well: WASABI-1


Field: Apache/VIC/P-58/WASABI-1

Rig: West Triton
Country: Australia

PEX-GR-HRLA-MSIP-5

Caliper Log Scale 1:500

		Schlumhonnon		Run 1	Run 2	Rur
Company: Apache	Apache Northwest Pty Ltd					
Well: WASABI-1	31–1					
1:	Apache/VIC/P-58/WASABI-1					
Rig: West Triton	r iton Country:	y: Australia				
	PEX-GR-HRLA-MSIP-(
	Compressional and Shear Slowness	ness				
was st Pty Scale 1:200	200					
		Elev.:				
/IC/Pait -1 North	Northing : 5739963.350 m	G.L. –27 m				
he/\ Stra ABI- he N	2993.588 m	D.F. 39 m				
Sass VASA Apach	Datum: AHD	Elev.: 0 m				
A _l Ba W : A _l	ed From: DRILL FLOOR (RT)	39.0 m above Perm. Datum				
	sured From: DRILL FLOOR (RT)	.				
Rig: Field: Locati Well: Comp State:	Max. Well Deviation 48.1 deg	Longitude Latitude 147 15' 49.147" E 38 29' 18.157"	S			
Logging Date	1-Mar-2008		Logging Date			
Run Number	2002		Run Number			
Schlumberger Depth	Not Tagged		Schlumberger Depth			
Bottom Log Interval	1387 m		Bottom Log Interval			
Top Log Interval)		Top Log Interval			
Casing Driller Size @ Depth	13.375 in @ 857 m	@	Casing Driller Size @ Depth		@	
Casing Schlumberger Bit Size	854 m 12.250 in		Casing Schlumberger Bit Size			
Type Fluid In Hole	KCI/Polymer		Type Fluid In Hole			
Density	cm3		Density			
M Fluid Loss PH	5 cm3 8.7		M Fluid Loss PH			
RM @ Measured Temperature	0.082 ohm.m @ 20 deaC	@	RM @ Measured Temperature		@	
RMF @ Measured Temperature	@ 21		RMF @ Measured Temperature		@	
RMC @ Measured Temperature	@		RMC @ Measured Temperature		@	
71	Press		"			
RM @ MRT RMF @ MRT	@ 59	@	RM @ MRT RMF @ MRT	(9)	@	
Circulation Stopped Time	1-Mar-2008 18:45		Circulation Stopped Time			
Logger On Bottom Time	3-Mar-2008 11:28		Logger On Bottom Time	-		-
Unit Number Location	41 AUSL		Unit Number Location			
Recorded By	A. Dandi/M.Dawson/K. AlBarhi		Recorded By			
Witnessed By	H.Little / A.Cruickshank		Witnessed By			

DEPTH SUMMARY LISTING

Date Created: 2-MAR-2008 16:47:03

Depth System Equipment

Depth Measuring Device		Tension De	vice	Logging Cable		
Type: Serial Number: Calibration Date:	IDW-H 796 29-Jan-2008	Type: Serial Number: Calibration Date:	CMTD-B/A 1721 27-FEB-2008	Type: Serial Number: Length:	7–46ZV–XS 77178 7699.86 M	
Calibrator Serial Number: Calibration Cable Type: Wheel Correction 1: Wheel Correction 2:	1009 7–46ZV–XS –5 –5	Calibrator Serial Number: Calibration Gain: Calibration Offset:	1051 0.81 –610.00	Conveyance Method: Rig Type:	Wireline Offshore_Fixed	

Depth Control Parameters

Log Sequence: Subsequent Log In the Well

Reference Log Name: Wasabi-1 GeoVISION Resistivity RM 200D

Reference Log Run Number:

Reference Log Date: 01–March–2008

Depth Control Remarks

- 1. Schlumberger Depth Control Policy Followed
- 2. IDW used as primary depth reference
- 3. Z-Chart used as secondary depth reference
- 4.
- 5.
- 6

OS5:

DISCLAIMER

THE USE OF AND RELIANCE UPON THIS RECORDED—DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS AFFILIATES, PARTNERS, REPRESENTATIVES, AGENTS, CONSULTANTS AND EMPLOYEES) IS SUBJECT TO THE TERMS AND CONDITIONS AGREED UPON BETWEEN SCHLUMBERGER AND THE COMPANY, INCLUDING: (a) RESTRICTIONS ON USE OF THE RECORDED—DATA; (b) DISCLAIMERS AND WAIVERS OF WARRANTIES AND REPRESENTATIONS REGARDING COMPANY'S USE OF AND RELIANCE UPON THE RECORDED—DATA; AND (c) CUSTOMER'S FULL AND SOLE RESPONSIBILITY FOR ANY INFERENCE DRAWN OR DECISION MADE IN CONNECTION WITH THE USE OF THIS RECORDED—DATA.

OS5:

 OTHER SERVICES1
 OTHER SERVICES2

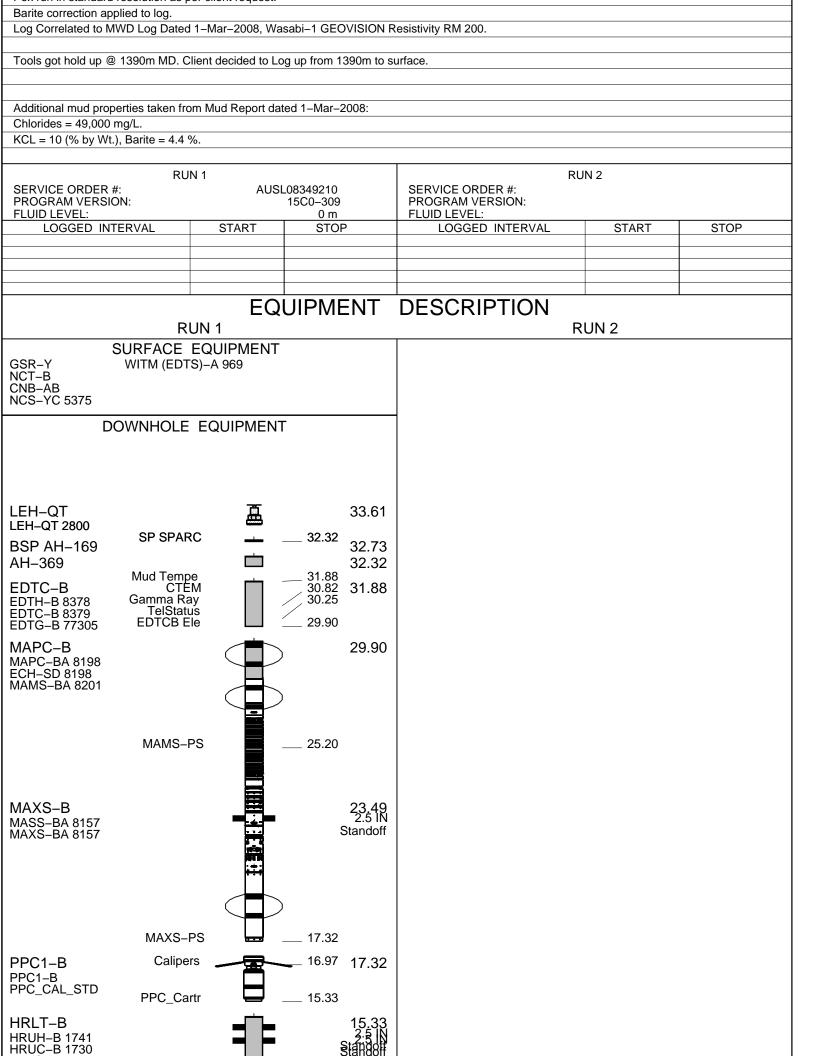
 OS1:
 VSI
 OS1:

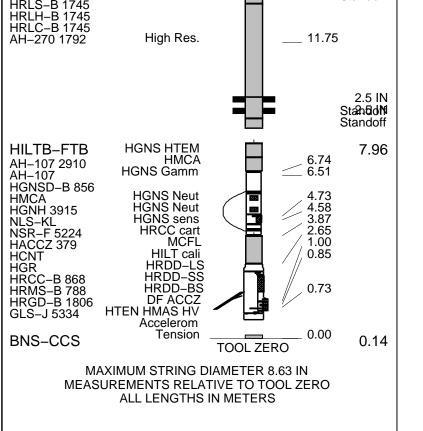
 OS2:
 MDT-GR
 OS2:

 OS3:
 CST-GR
 OS3:

 OS4:
 VSI
 OS4:

REMARKS: RUN NUMBER 1 REMARKS: RUN NUMBER 2


Tools run as per tool sketch, using 5x standoffs, 3x LCMEs and a bow spring.


Maximum Recorded Temperature was 59 degC taken from thermometers in Logging Head.

Neutron Environment Corrections: Hole Size, Borehole and formation Salinity, Mud Weight, Mud Cake, Standoff and Press./ Temp.

Density Environment Corrections : Hole Size, using BS, and Mud Weight.

Pex run in standard resolution as per client request.

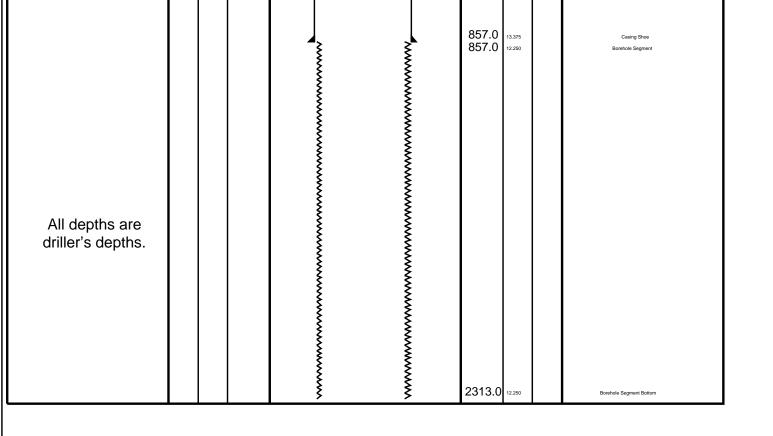
Client: Apache Northwest Pty Ltd

Well: Wasabi-1

Field:

State:

Apache/VIC/P-58/WASABI-


Victoria

Reference Datum: AHD Country: Australia Flevation: 30 N m

Country: Australia			Elevation	1. 3	39.0	m	
Production String	(in) (m)	ⁿ⁾	Well Schematic		(m) (in) (n) D		Casing String
Kelly Bushing Elevation Derrick Floor Elevation Mean Sea Level	39	9.0 9.0				20.000	Casing String Casing Shoe

Rig Name:

West Triton

Schlumberger

Monopole Compressional Slowness 1:200

MAXIS Field Log

Company: Apache Northwest Pty Ltd

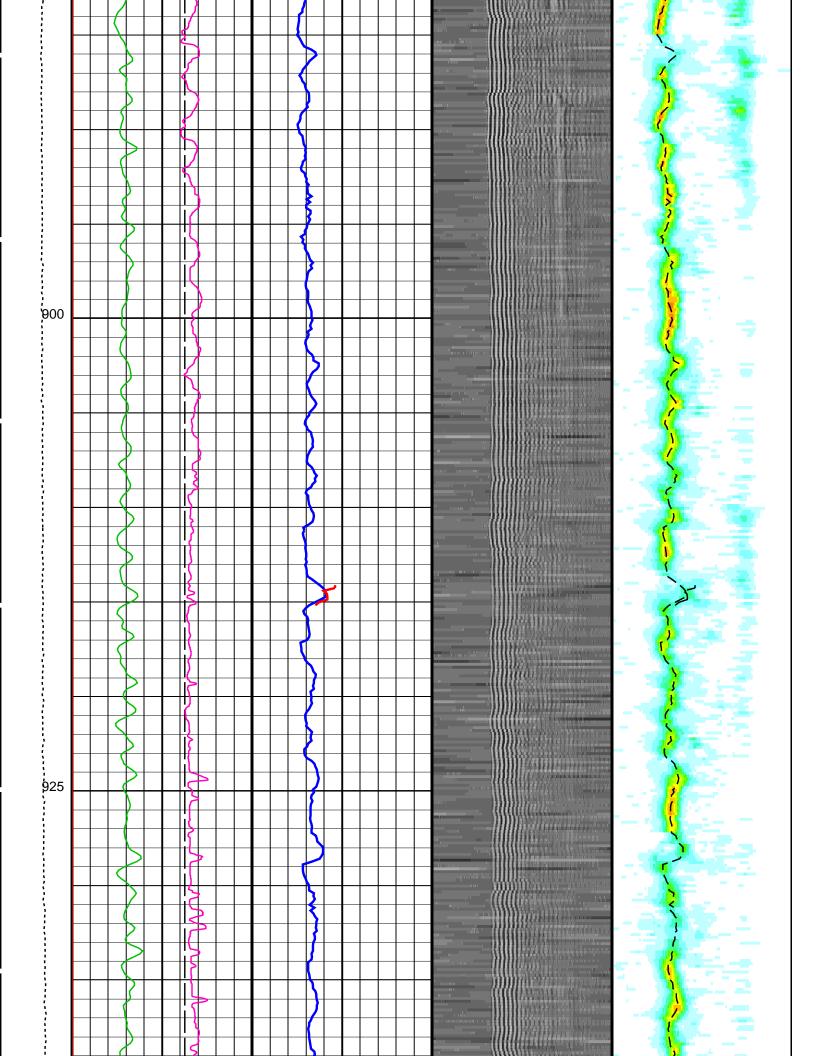
Input DLIS Files

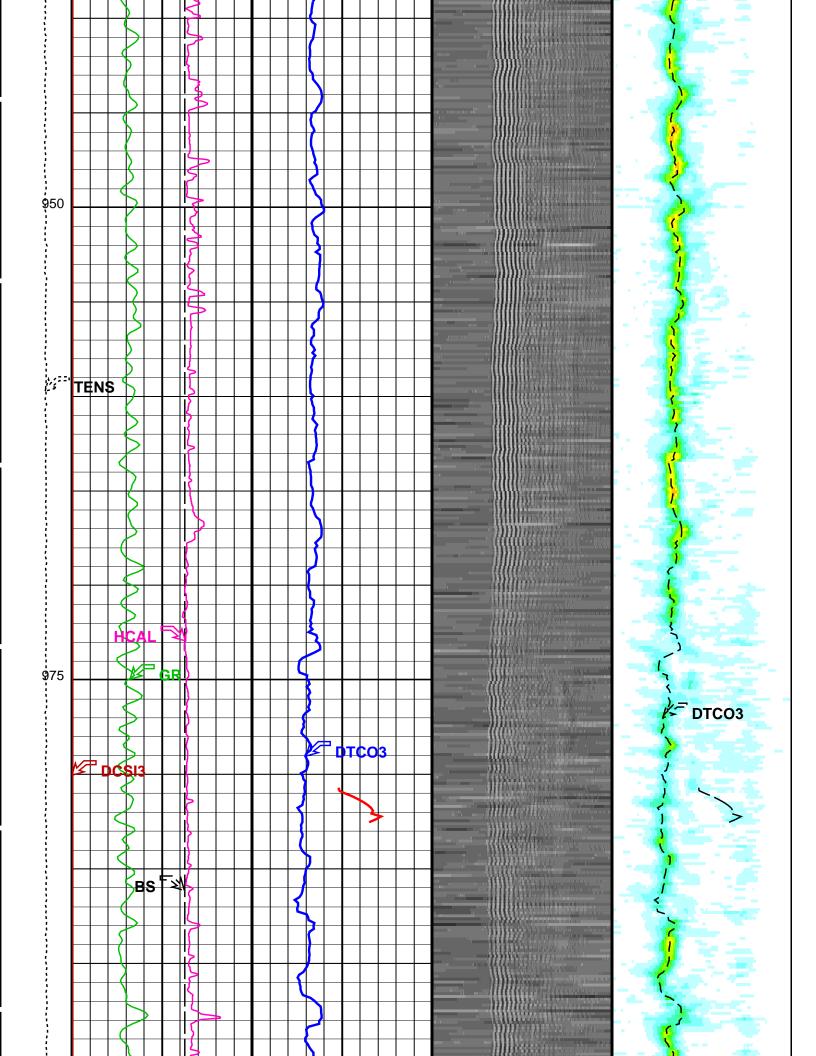
20-Mar-2008 08:35

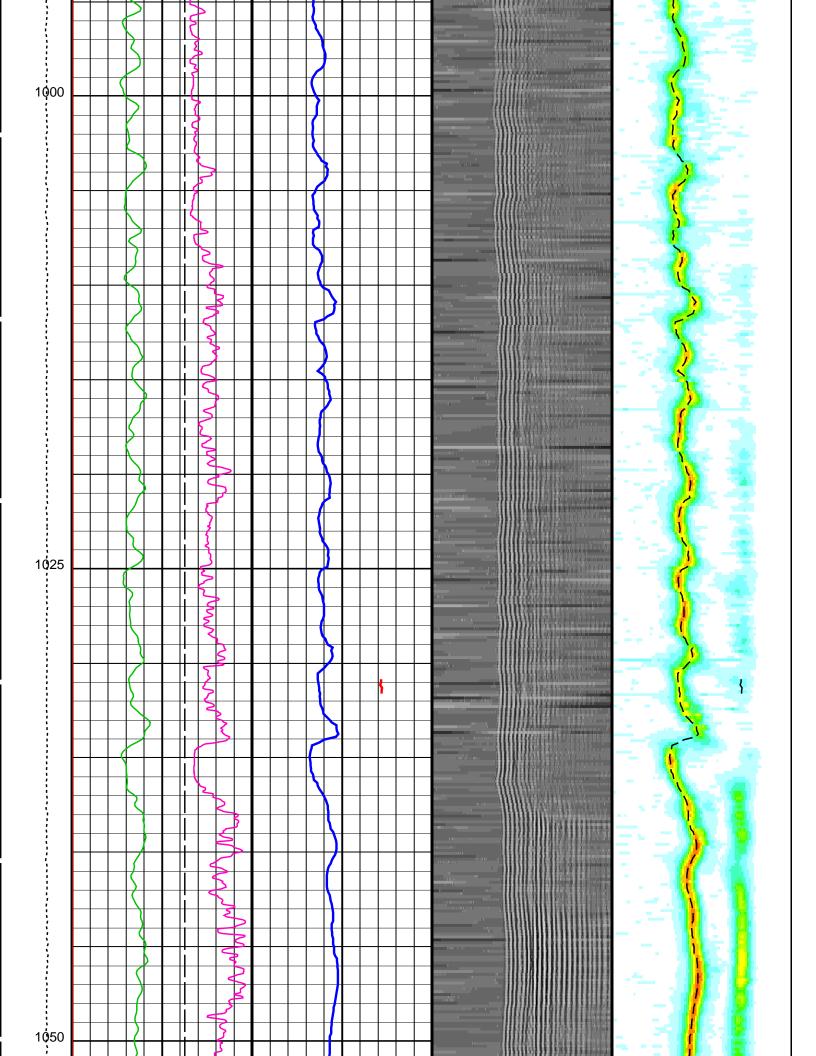
Output DLIS Files

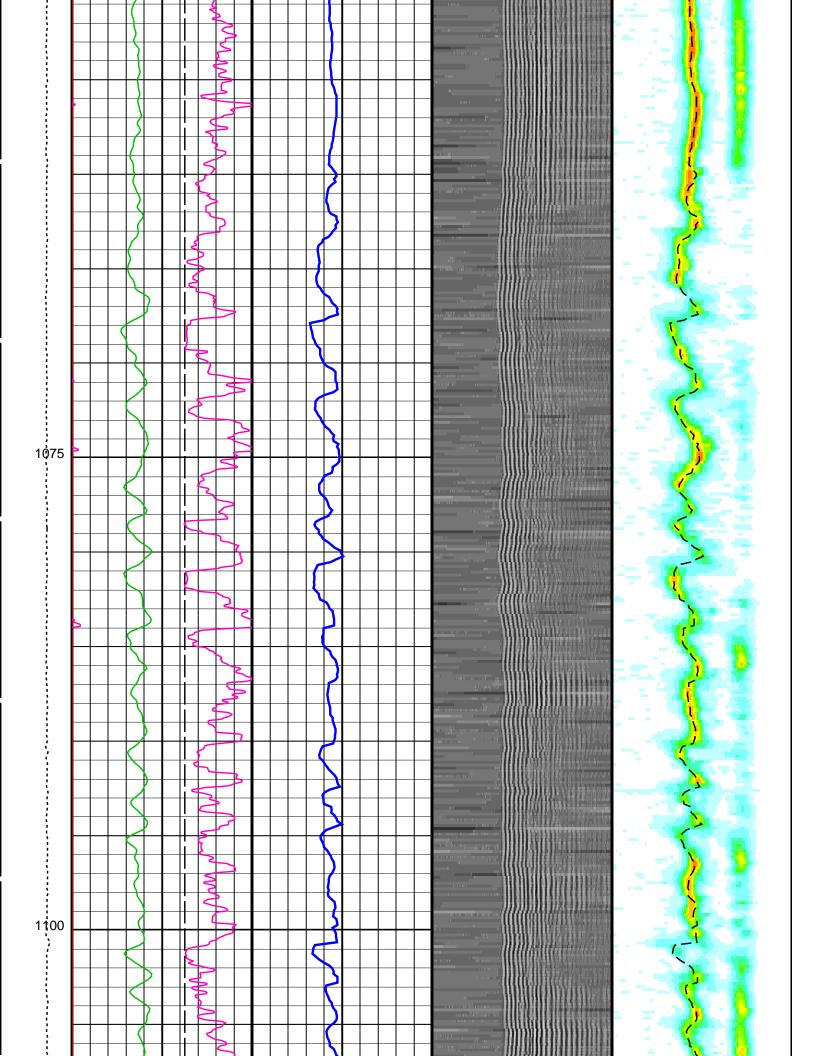
DEFAULT TLD_MCFL_CNL_HRLA_101PUP FN:6 PRODUCER 20-Mar-2008 11:10 1391.0 M 842.3 M

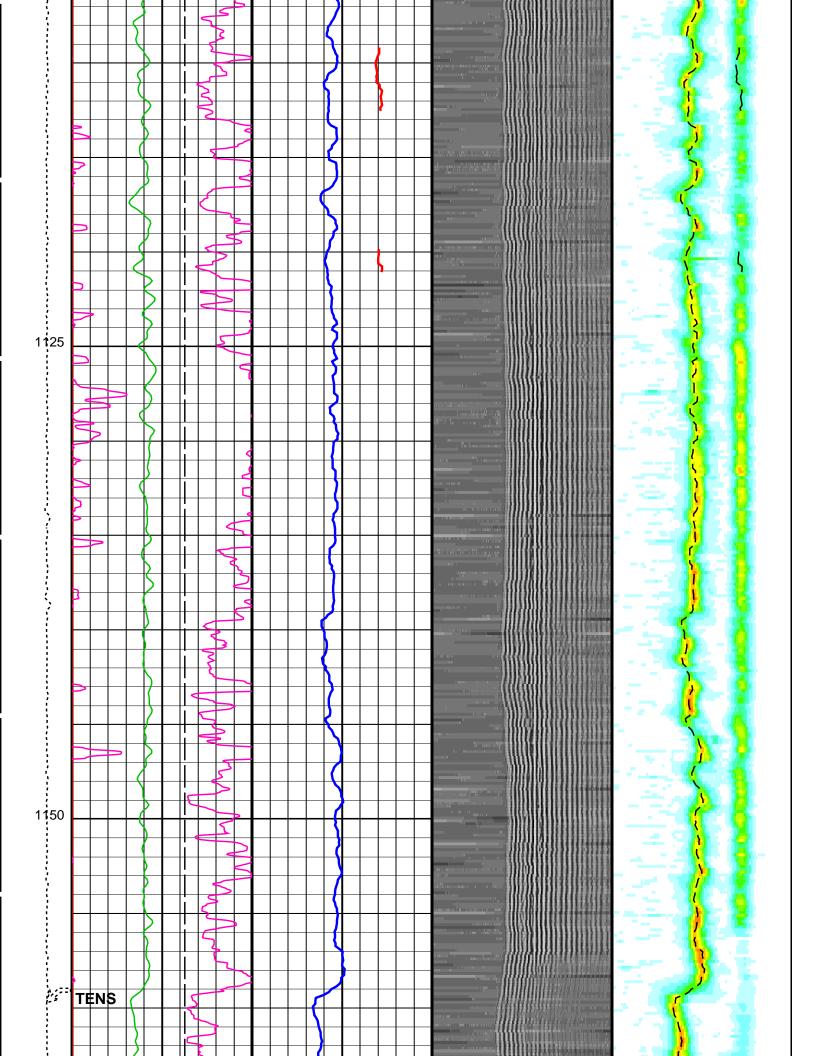
OP System Version: 15C0–309

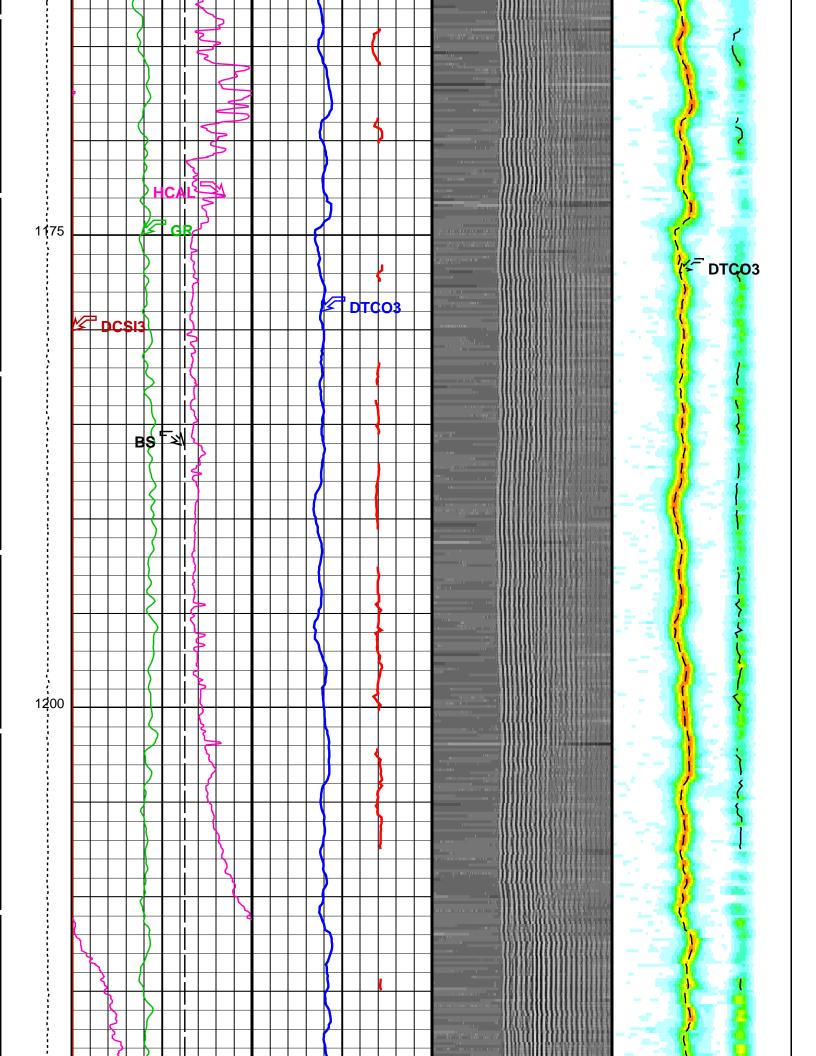

MCM

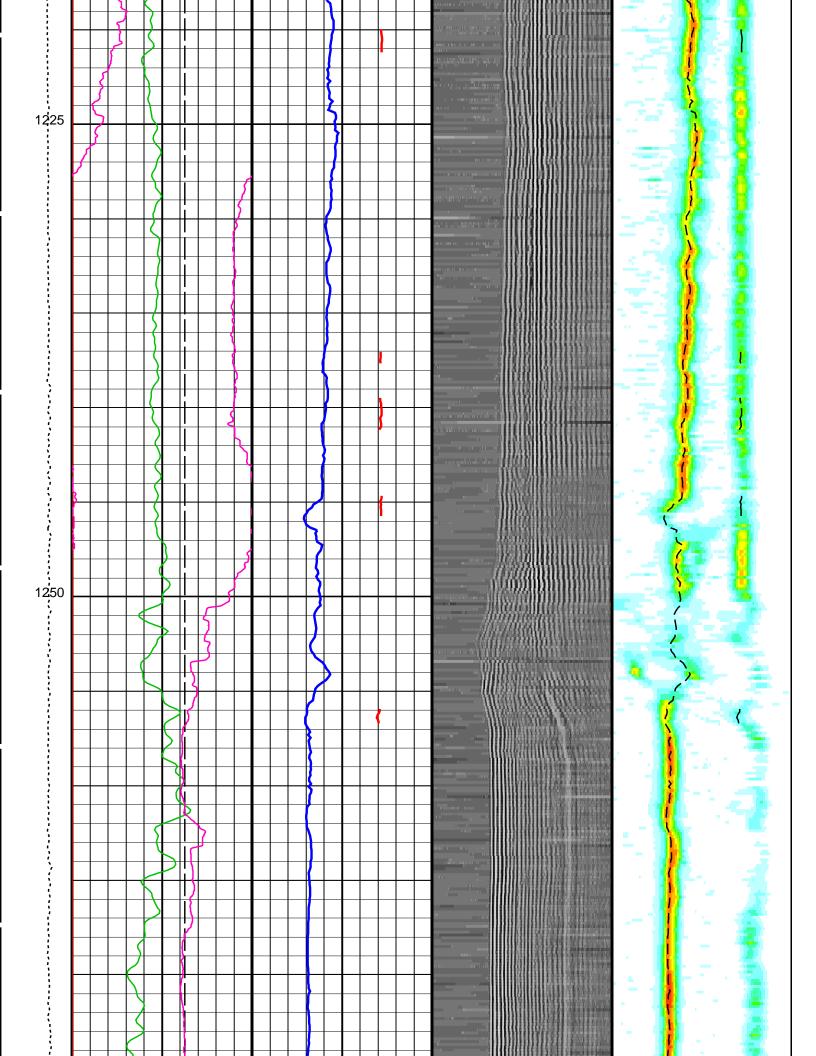

HILTB-FTB SRPC-3546-Q1_2008_OP15
PPC1-B SRPC-3546-Q1_2008_OP15
MAPC-B SKK-3442-MAST
BSP SRPC-3546-Q1_2008_OP15

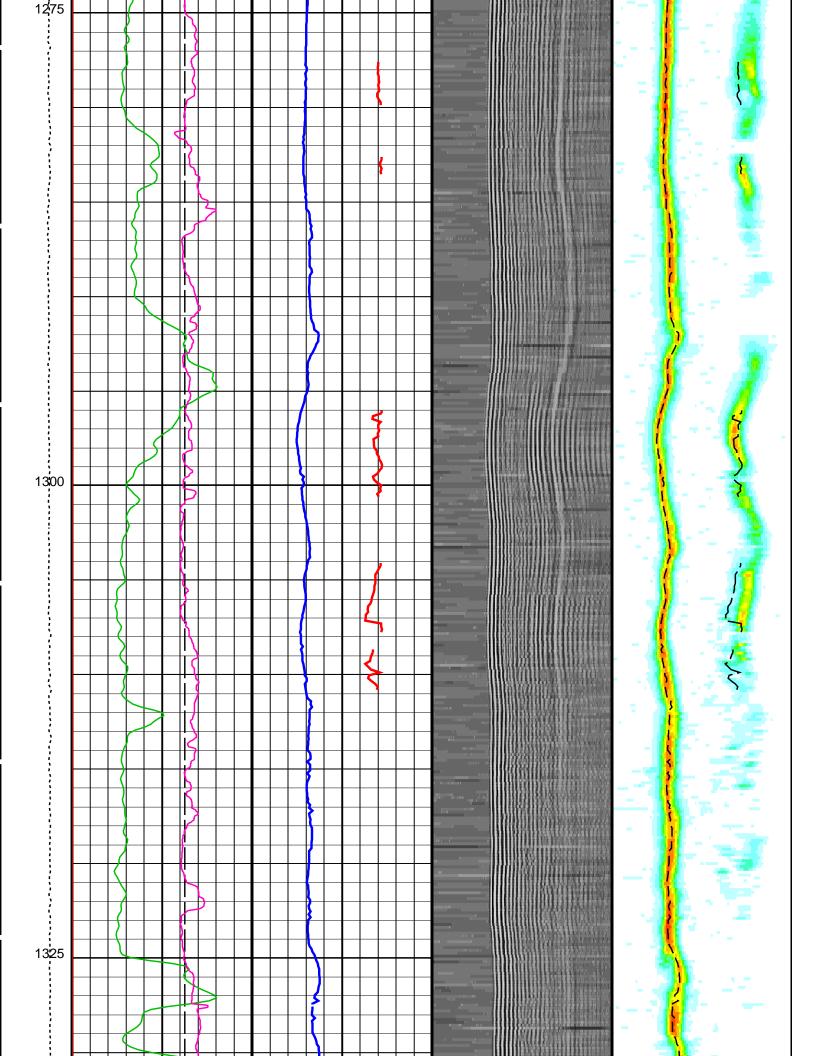

HRLT-B MAXS-B EDTC-B SRPC-3546-Q1_2008_OP15 SKK-3442-MAST Well: WASABI-

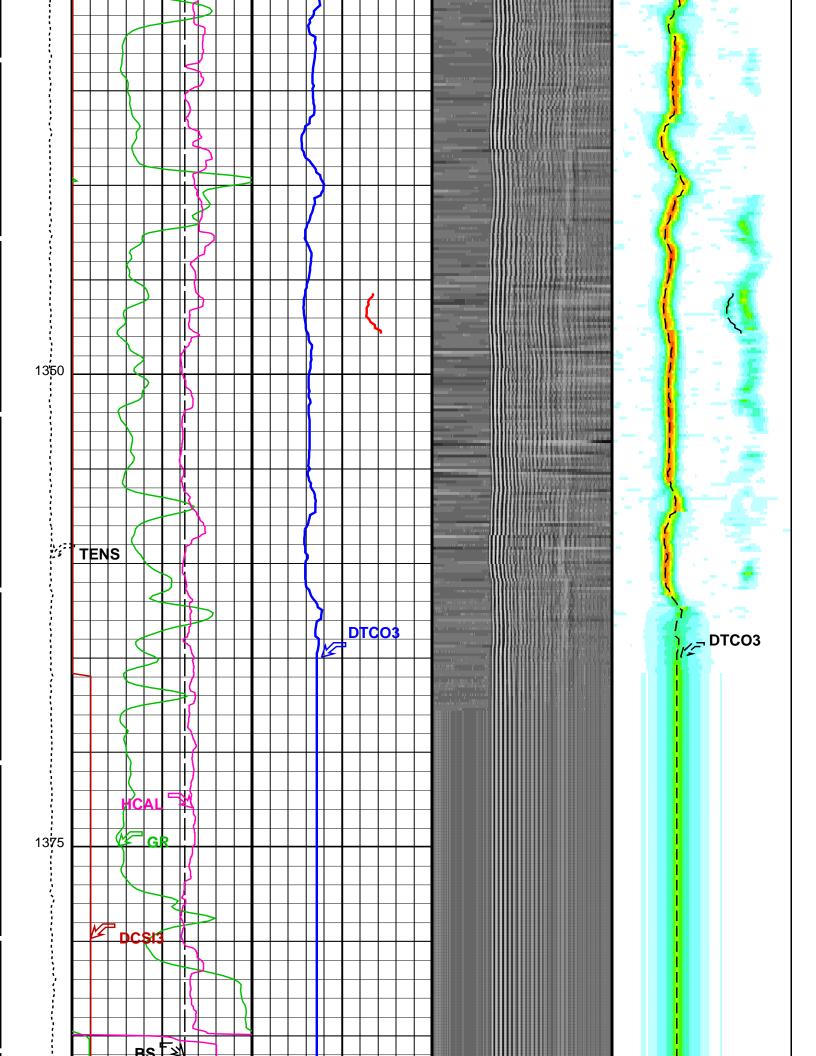

SKK-3493-EDTCB

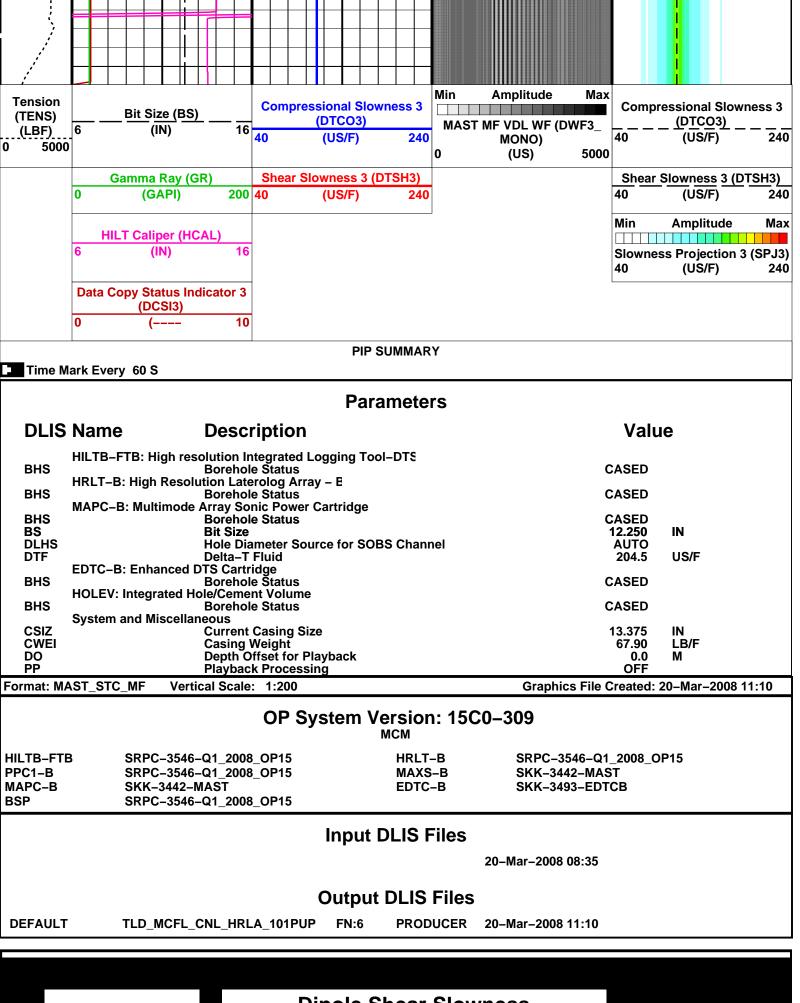

DID CIL

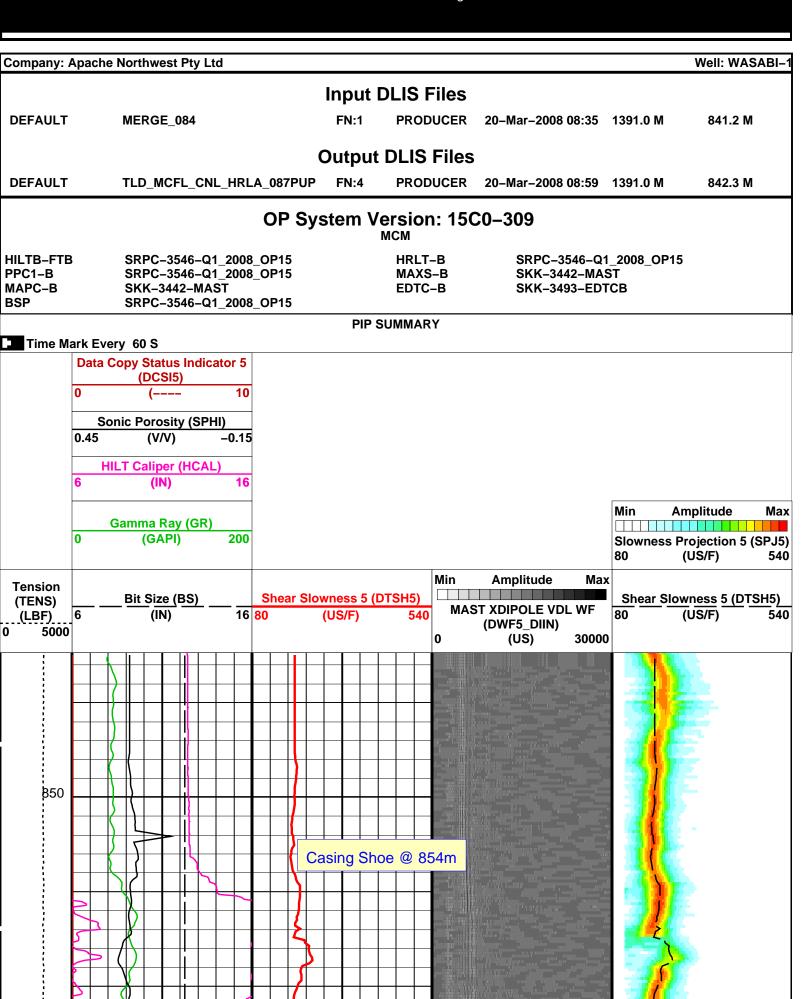


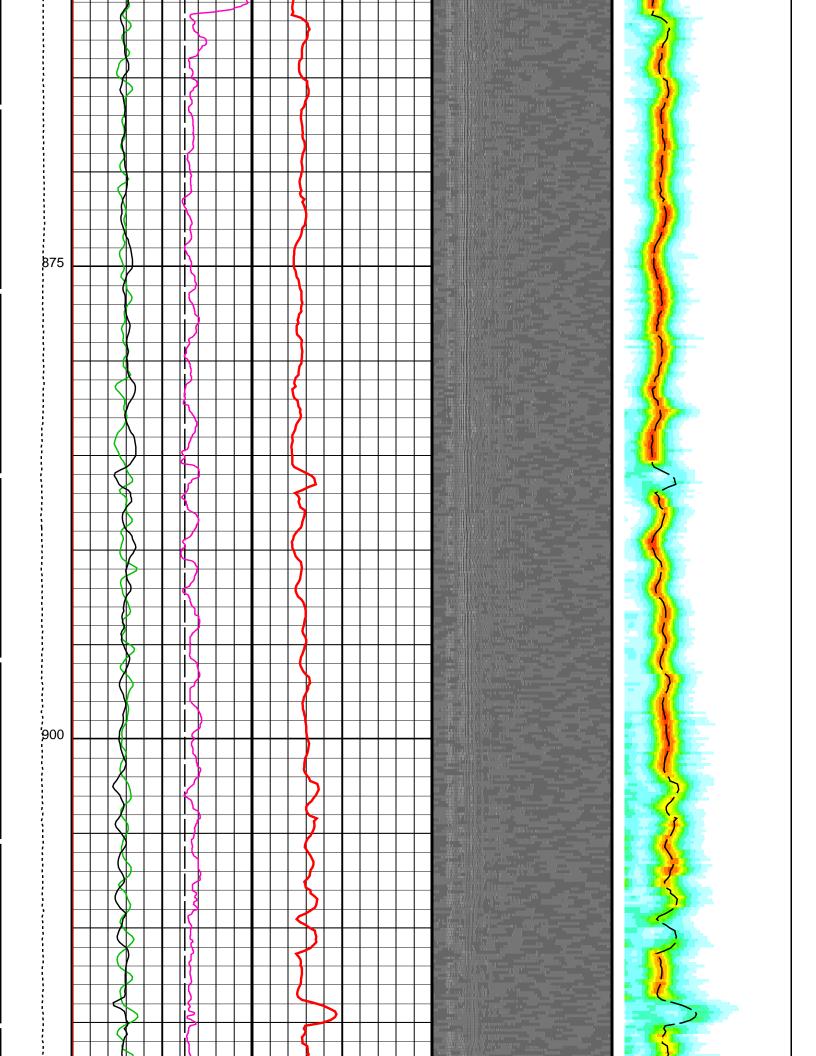


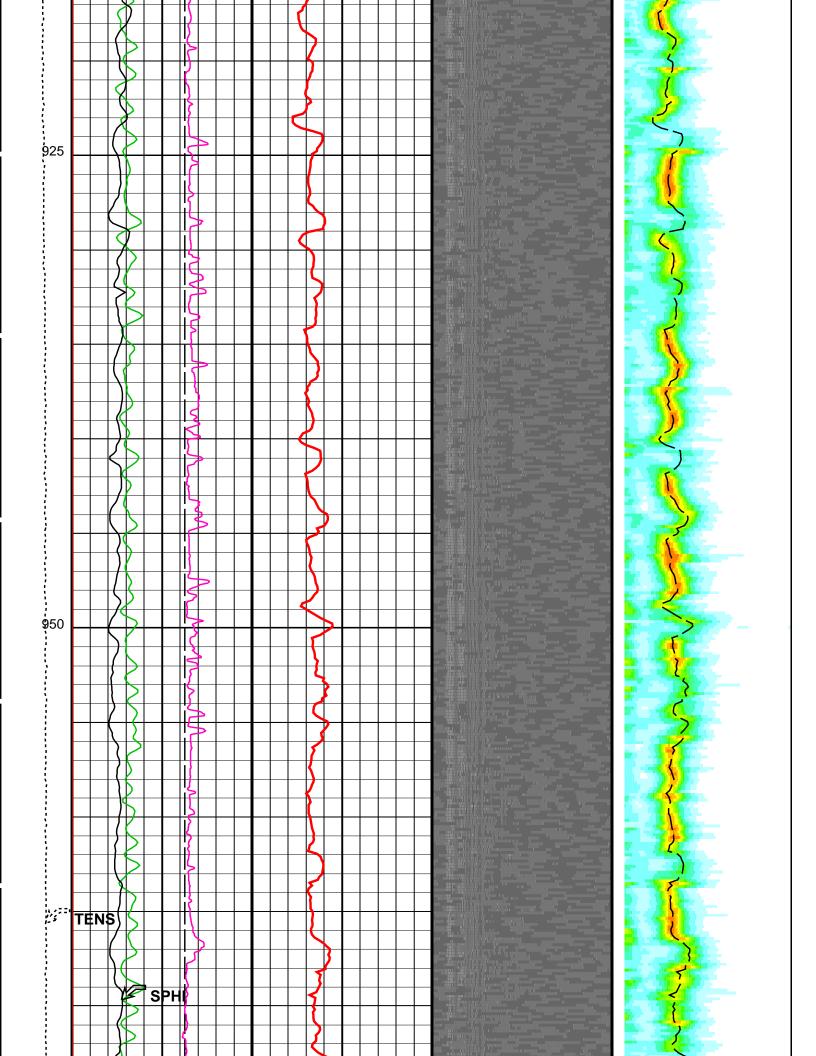


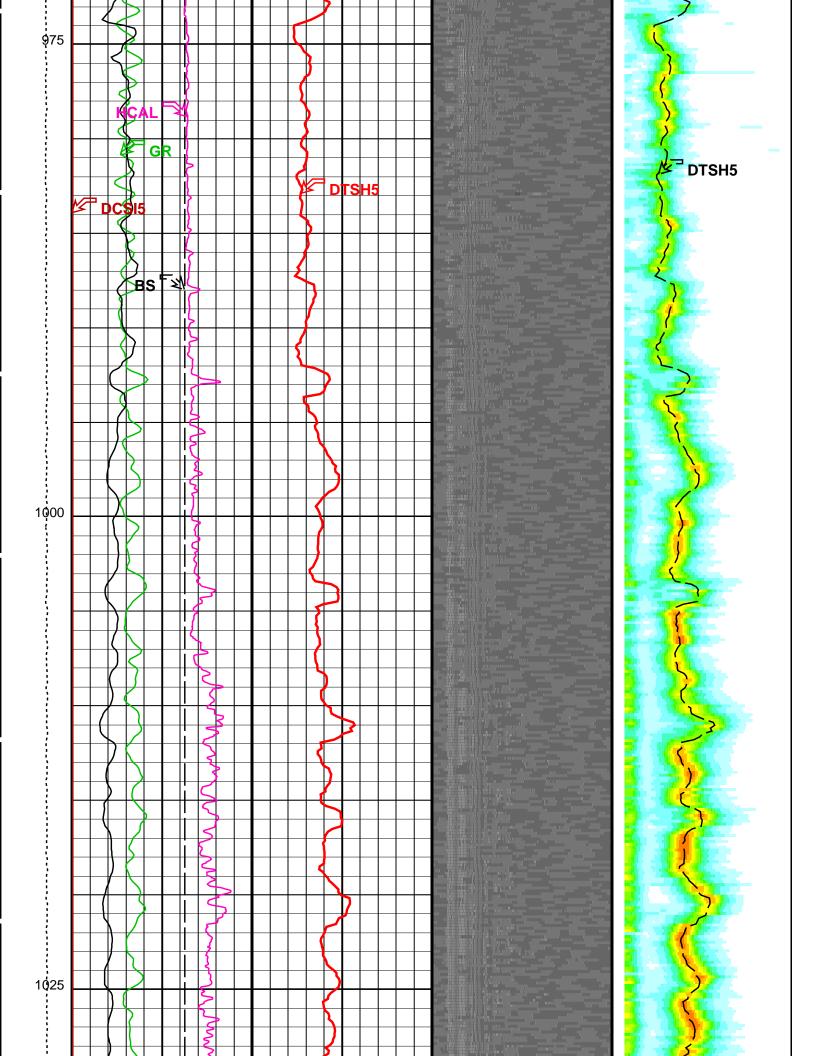


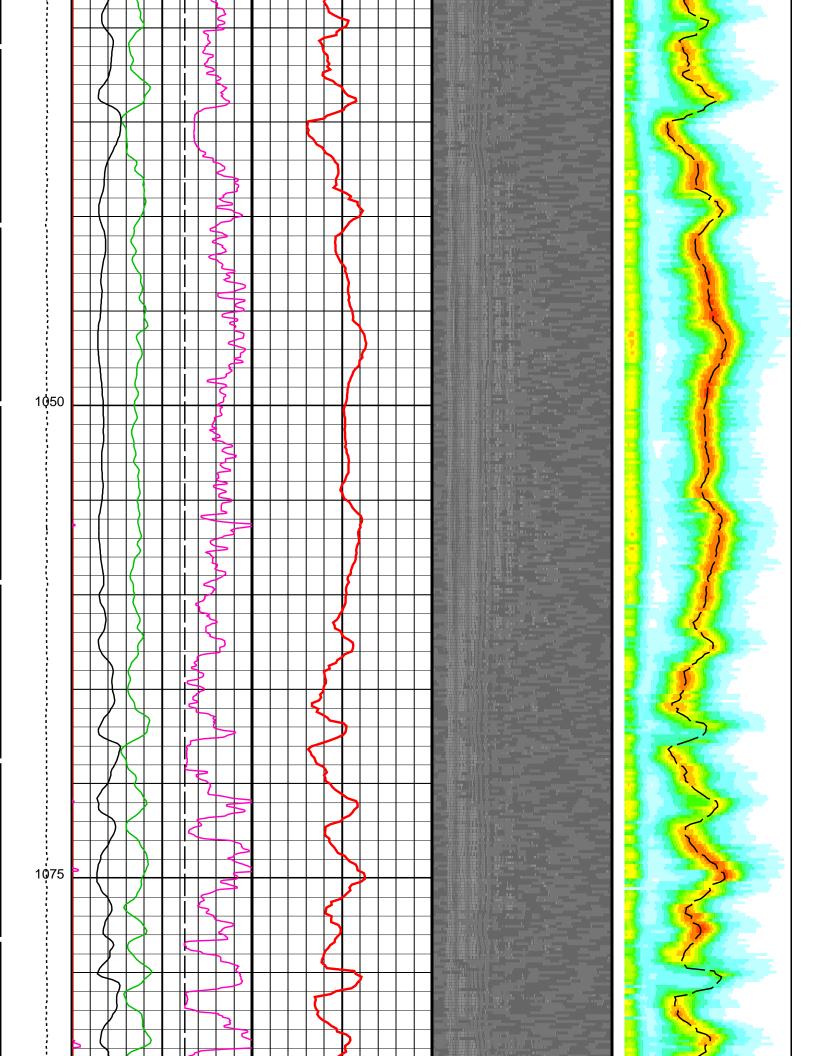


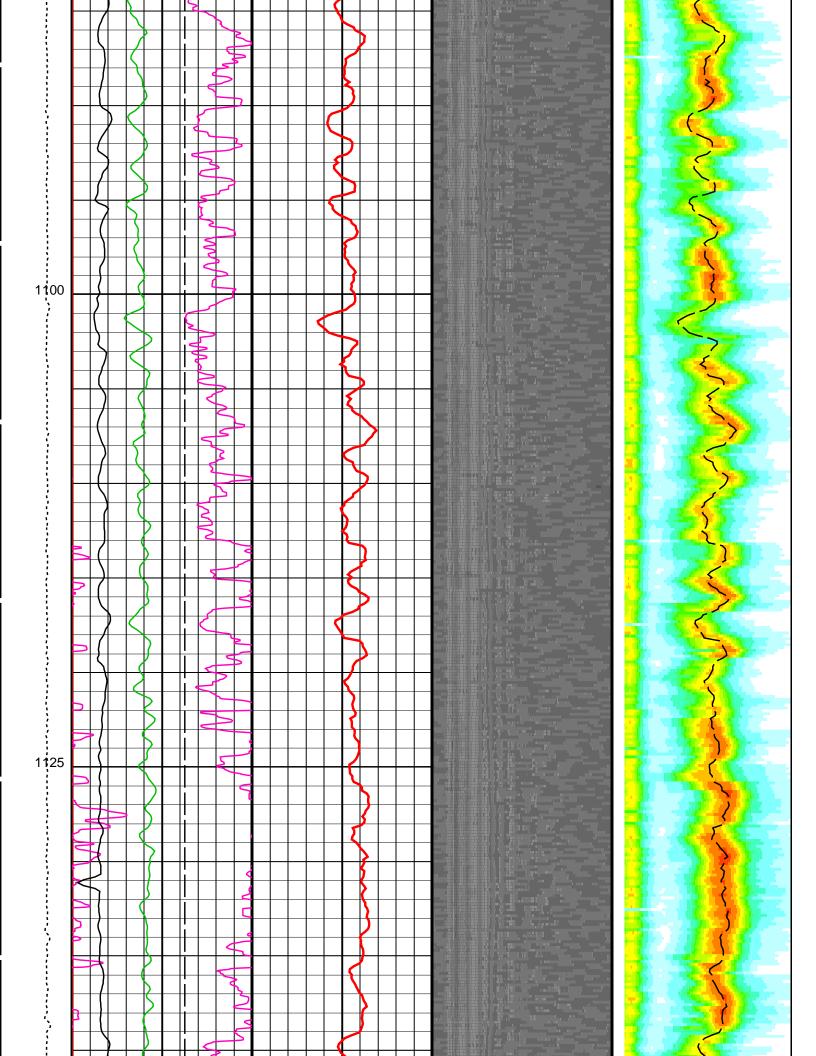


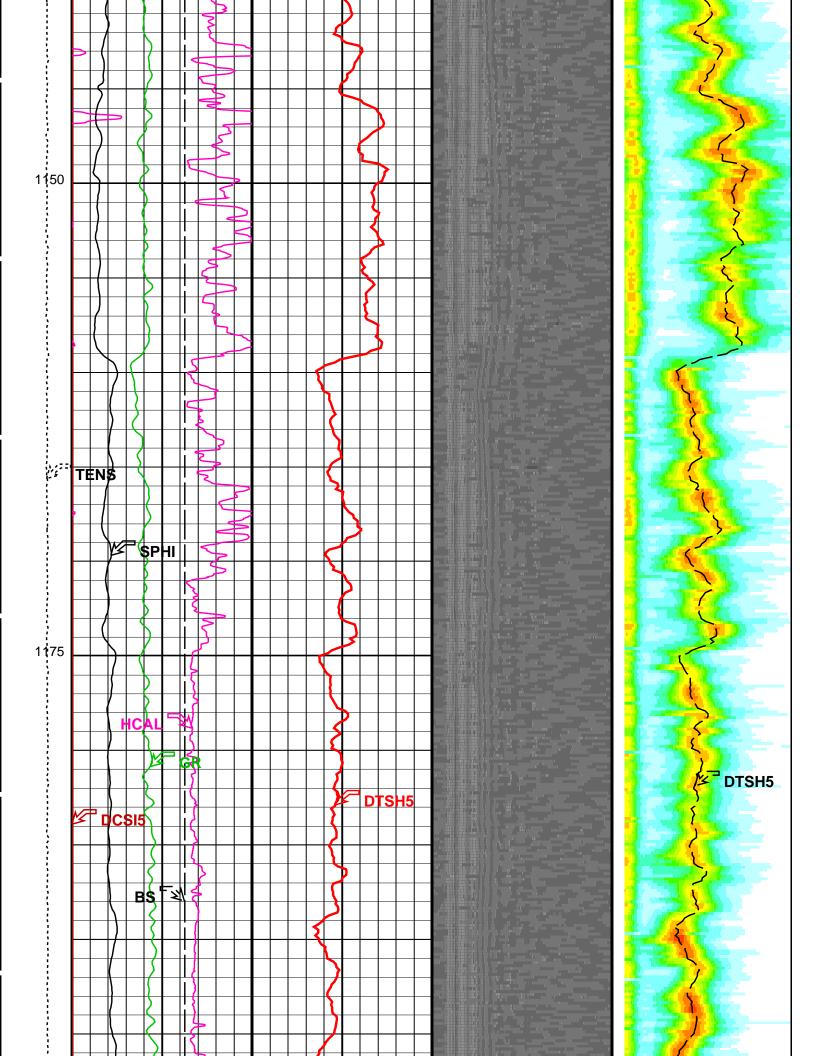


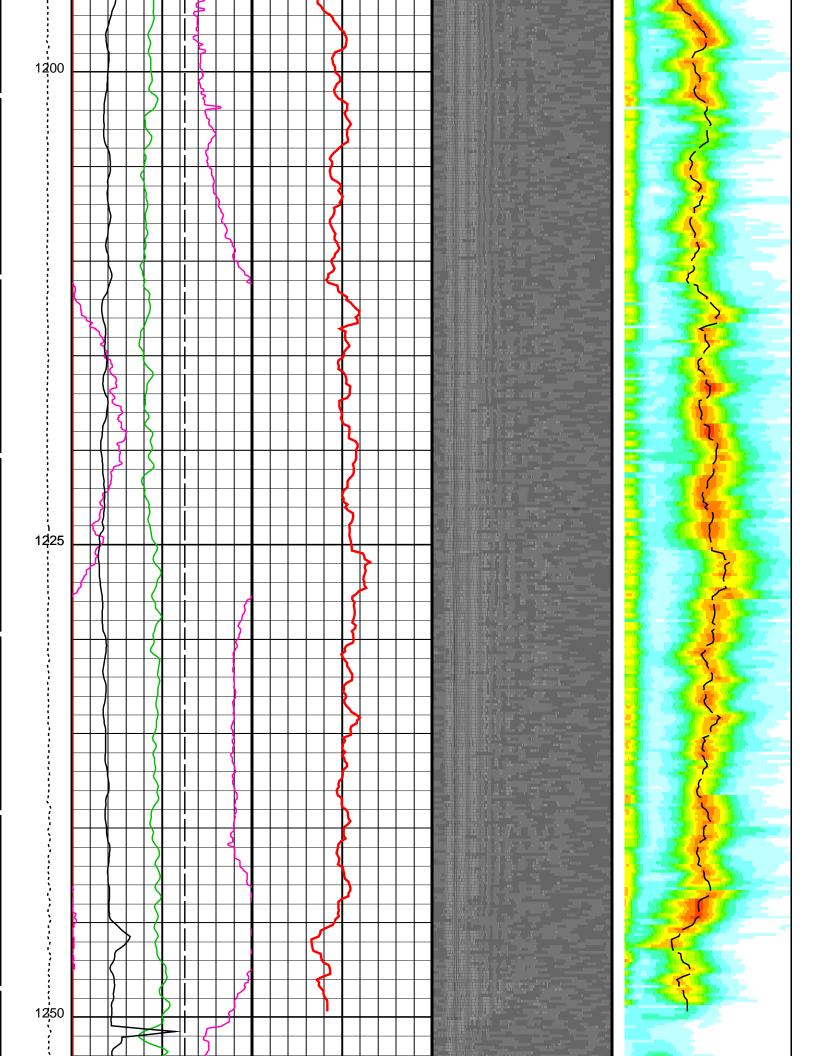


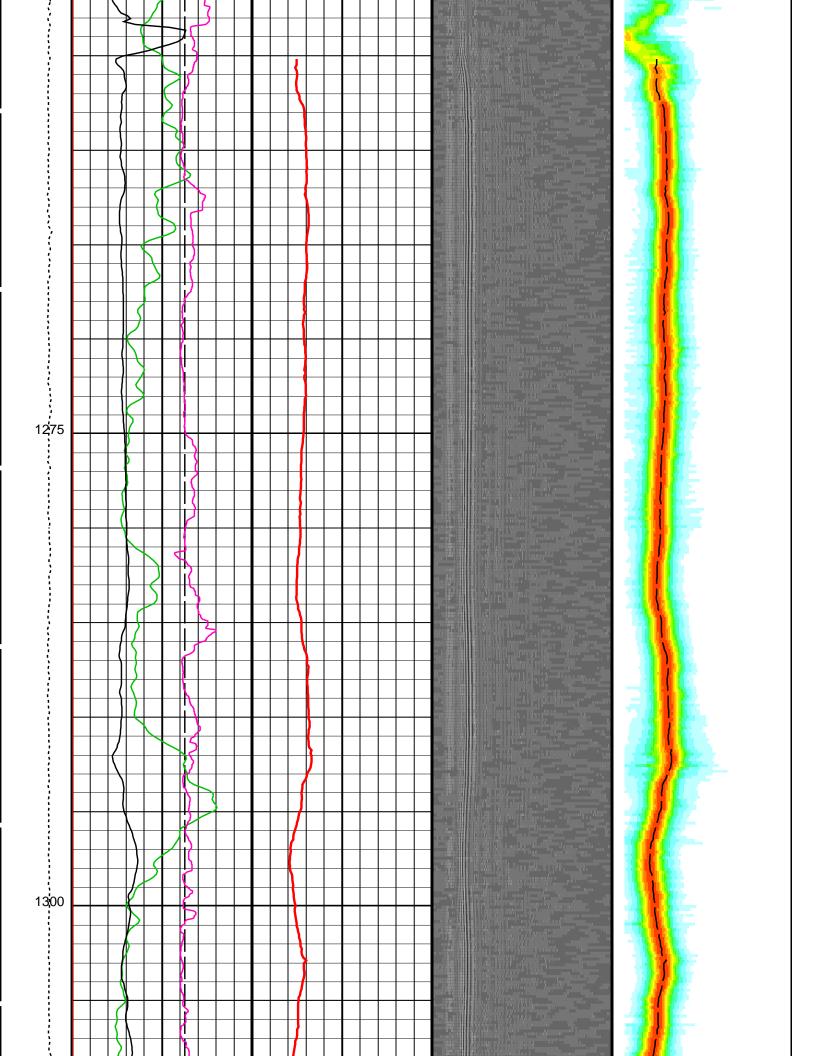



Schlumberger

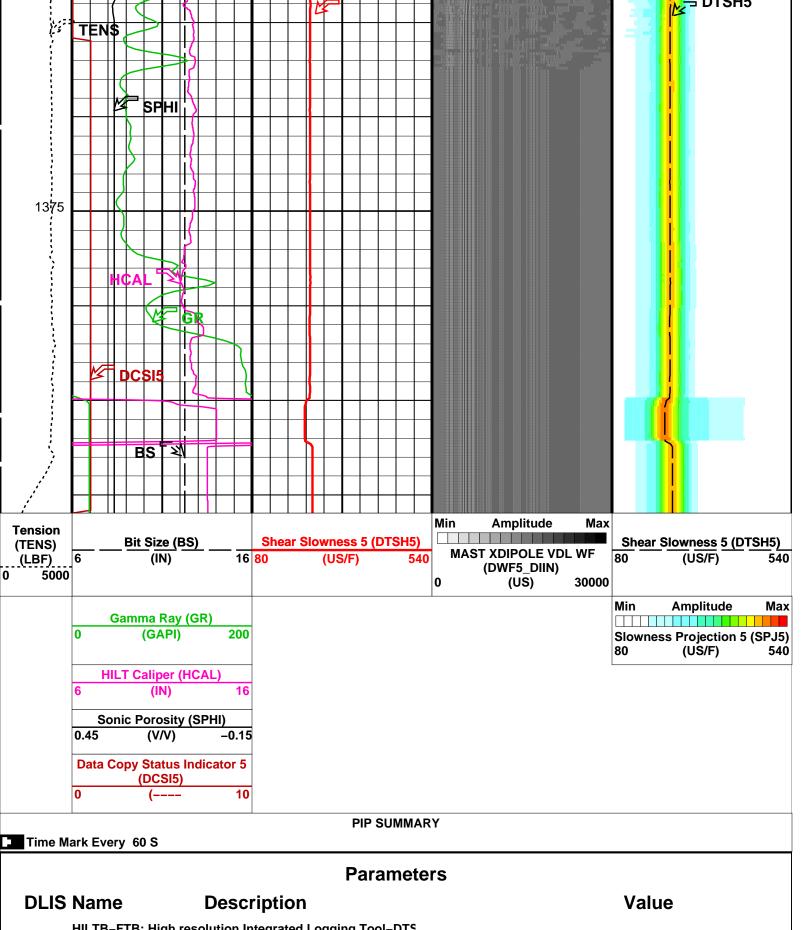












HILTB-FTB: High resolution Integrated Logging Tool-DTS BHS **Borehole Status OPEN** HRLT-B: High Resolution Laterolog Array - E BHS **Borehole Status OPEN** MAPC-B: Multimode Array Sonic Power Cartridge BHS **OPEN Borehole Status** BS Bit Size 12.250 US/F **CDTS** C-Delta-T Shale 100 **DLHS Hole Diameter Source for SOBS Channel AUTO** US/F DTF Delta-T Fluid 204.5 Delta_T Matri

RAYMER HUNT **SPFS** Sonic Porosity Formula **SPSO** Sonic Porosity Source DTCO EDTC-B: Enhanced DTS Cartridge BHS **OPEN Borehole Status HOLEV: Integrated Hole/Cement Volume** BHS **Borehole Status OPEN System and Miscellaneous** CSIZ **Current Casing Size** 13.375 IN **CWEI Casing Weight** 67.90 LB/F DO **Depth Offset for Playback** 0.0 M **Playback Processing OFF** Format: MAST_DSTC_XD Vertical Scale: 1:200 Graphics File Created: 20-Mar-2008 08:59

OP System Version: 15C0-309

MCM

HILTB-FTB SRPC-3546-Q1_2008_OP15 HRLT-B SRPC-3546-Q1_2008_OP15

PPC1-B SRPC-3546-Q1_2008_OP15 MAXS-B SKK-3442-MAST MAPC-B SKK-3442-MAST EDTC-B SKK-3493-EDTCB

BSP SRPC-3546-Q1_2008_OP15

Input DLIS Files

DEFAULT MERGE_084 FN:1 PRODUCER 20-Mar-2008 08:35 1391.0 M 841.2 M

Output DLIS Files

DEFAULT TLD_MCFL_CNL_HRLA_087PUP FN:4 PRODUCER 20-Mar-2008 08:59

Schlumberger

Calibrations 1:200

MAXIS Field Log

	Calibration and Check Summary											
Measurement	Nominal	Master	Before	After	Change	Limit	Units					
High resolution Integrated Logging Tool-D	TS Wellsite Calibra	ation – Stab Mea	surement Summa	ary								
Before: 26-Feb-2008 11:17				-								
BS Window Ratio	0.7624	N/A	0.7602	N/A	N/A	N/A						
BS Window Sum	10750	N/A	10980	N/A	N/A	N/A	CPS					
SS Window Ratio	0.4883	N/A	0.4862	N/A	N/A	N/A						
SS Window Sum	10370	N/A	10360	N/A	N/A	N/A	CPS					
LS Window Ratio	0.2968	N/A	0.2999	N/A	N/A	N/A						
LS Window Sum	1160	N/A	1179	N/A	N/A	N/A	CPS					
High resolution Integrated Logging Tool–D Before: 26–Feb–2008 11:17	TS Wellsite Calibra	ation – Photo-m	ultiplier High Volta	ges Calibration	S							
BS PM High Voltage (Command)	1227	N/A	1249	N/A	N/A	N/A	V					
SS PM High Voltage (Command)	1921	N/A	1901	N/A	N/A	N/A	V					
LS PM High Voltage (Command)	1407	N/A	1418	N/A	N/A	N/A	V					
High resolution Integrated Logging Tool–Di Before: 26–Feb–2008 11:17	TS Wellsite Calibra	ation – Crystal Q	uality Resolutions	Calibration								
BS Crystal Resolution	9.875	N/A	9.867	N/A	N/A	N/A	%					
SS Crystal Resolution	10.56	N/A	10.33	N/A	N/A	N/A	%					
LS Crystal Resolution	9.503	N/A	9.278	N/A	N/A	N/A	%					
High resolution Integrated Logging Tool–Di Before: 26–Feb–2008 13:17	TS Wellsite Calibra	ation – MCFL Ca	libration									
Raw B0 Resistivity	3875	N/A	3878	N/A	N/A	N/A	OHMM					
Raw B1 Resistivity	3830	N/A	3831	N/A	N/A	N/A	ОНММ					
Raw B2 Resistivity	3830	N/A	3834	N/A	N/A	N/A	OHMM					

High resolution Integrated Logging Tool-DTS Wellsite Calibration - HILT Caliper Calibration Before: 26-Feb-2008 11:25 HILT Caliper Zero Measurement 8.000 N/A N/A N/A IN Е

HILT Caliper Zero Measurement HILT Caliper Plus Measurement	8.000 12.00	N/A N/A	8.163 12.39	N/A N/A	N/A N/A	N/A N/A	IN IN
·				IN//X	19/73	IN/A	114
High resolution Integrated Logging Tool–DT Before: 29–Feb–2008 20:22	S Wellsite Calibra	tion – Detector C	alibration				
Gamma Ray Background	30.00	N/A	9.320	N/A	N/A	N/A	GAPI
Gamma Ray (Jig – Bkg)	184.0	N/A	184.0	N/A	N/A	16.73	GAPI
Gamma Ray (Calibrated)	165.0	N/A	165.0	N/A	N/A	15.00	GAPI
High resolution Integrated Logging Tool–DT		tion – Zero Meas	urement				
Master: 20-Feb-2008 19:21 Before: 26-Fe CNTC Background	29.71	29.71	28.10	N/A	N/A	4.457	CPS
CFTC Background	33.75	33.75	30.26	N/A N/A	N/A N/A	5.063	CPS
CF IC Background	33.73	33.73	30.20	IN/A	IN/A	5.005	CF3
High resolution Integrated Logging Tool-DT Master: 20-Feb-2008 19:21							
Thermal Near Corr. (Tank)	5800	5605	N/A	N/A	N/A	N/A	CPS
Thermal Far Corr. (Tank)	2400	2340	N/A	N/A	N/A	N/A	CPS
CNTC/CFTC (Tank)	2.159	2.395	N/A	N/A	N/A	N/A	
High resolution Integrated Logging Tool-DT Before: Calibration not done	S Wellsite Calibra	tion – Accelerom	eter Calibration				
Z-Axis Acceleration	9.810	N/A	9.810	N/A	N/A	N/A	M/S2
				•	- "	•	–
High resolution Integrated Logging Tool–DT Master: 20–Feb–2008 21:02			sults				
Rho Aluminum	2.596	2.602					G/C3
Rho Magnesium	1.686	1.685					G/C3
Pe Aluminum	2.570	2.571					
Pe Magnesium	2.650	2.634					
High resolution Integrated Logging Tool–DT Master: 20–Feb–2008 21:02	S Master Calibrati	ion – Deviation S	ummary				
BS Average Deviation	0	0.5701					%
BS Max Deviation	0	1.350					%
SS Average Deviation	0	0.3068					%
SS Max Deviation	0	0.7734					%
LS Average Deviation	0	0.6760					%
LS Max Deviation	0	1.772					%
High Resolution Laterolog Array – B Wellsite	e Calibration – HR	RLT M01					
Before: 29-Feb-2008 19:20							
HRLT M0-M1 Voltage Plus - 0	0	N/A	-318.2	N/A	N/A	9.681	UV
HRLT M0-M1 Voltage Plus - 1	0	N/A	-355.9	N/A	N/A	9.681	UV
HRLT M0-M1 Voltage Plus – 2	0	N/A	-358.0	N/A	N/A	9.681	UV
HRLT M0–M1 Voltage Plus – 3	0	N/A	-342.3	N/A	N/A	9.681	UV
HRLT M0-M1 Voltage Plus - 4	0	N/A	-325.3	N/A	N/A	9.681	UV
HRLT M0–M1 Voltage Plus – 5	0	N/A	-329.9	N/A	N/A	9.681	UV
HRLT M0-M1 Voltage Plus - 6 HRLT M0-M1 Voltage Plus - 7	0 0	N/A N/A	315.1 -322.7	N/A N/A	N/A N/A	9.681 9.681	UV UV
HKLI WO-WIT VOILage Plus – 7	U	IN/A	-322.1	IN/A	IN/A	9.001	ΟV
High Resolution Laterolog Array – B Wellsite Before: 29–Feb–2008 19:20	e Calibration – HR	RLT M12					
HRLT M1–M2 Voltage Plus – 0	0	N/A	1749	N/A	N/A	53.42	UV
HRLT M1-M2 Voltage Plus - 1	0	N/A	1957	N/A	N/A	53.42	ŪV
HRLT M1-M2 Voltage Plus - 2	0	N/A	1963	N/A	N/A	53.42	UV
HRLT M1-M2 Voltage Plus – 3	0	N/A	1876	N/A	N/A	53.42	UV
HRLT M1-M2 Voltage Plus – 4	0	N/A	1783	N/A	N/A	53.42	UV
HRLT M1-M2 Voltage Plus – 5	0	N/A	1810	N/A	N/A	53.42	UV
HRLT M1-M2 Voltage Plus - 6	0	N/A	-1741	N/A	N/A	53.42	UV
HRLT M1-M2 Voltage Plus - 7	0	N/A	1781	N/A	N/A	53.42	UV
High Resolution Laterolog Array – B Wellsite	e Calibration – HR	RLT M23					
Before: 29-Feb-2008 19:20	_						
HRLT M2-M3 Voltage Plus - 0	0	N/A	1736	N/A	N/A	53.42	UV
HRLT M2-M3 Voltage Plus - 1	0	N/A	1947	N/A	N/A	53.42	UV
HRLT M2-M3 Voltage Plus - 2	0	N/A	1956 1875	N/A N/A	N/A N/A	53.42 53.42	UV

HRLT M2-M3 Voltage Plus - 5 0 1806 N/A N/A N/A HRLT M2-M3 Voltage Plus - 6 0 N/A -1721 N/A N/A HRLT M2-M3 Voltage Plus - 7 N/A 1781 N/A N/A High Resolution Laterolog Array - B Wellsite Calibration - HRLT V34 Before: 29-Feb-2008 19:20

N/A

N/A

0

0

HRLT M2-M3 Voltage Plus - 3

HRLT M2-M3 Voltage Plus - 4

0 N/A 68550 N/A N/A 2100 U٧ HRLT A3-A4 Voltage Plus - 0 HRLT A3-A4 Voltage Plus - 1 0 2100 UV N/A 77150 N/A N/A HRLT A3-A4 Voltage Plus - 2 0 N/A 77730 N/A N/A 2100 UV

1875

1778

N/A

N/A

N/A

N/A

UV

UV UV

UV

UV

53.42

53.42

53.42

53.42

53.42

HRL1 A3-A4 Voltage Plus - 3	0	N/A	74680	N/A	N/A	2100	UV	
HRLT A3-A4 Voltage Plus - 4	0	N/A	70640	N/A	N/A	2100	ÚΫ	
HRLT A3-A4 Voltage Plus - 5	0	N/A	71700	N/A	N/A	2100	UV	
HRLT A3-A4 Voltage Plus - 6	0	N/A	-67220	N/A	N/A	2100	UV	
HRLT A3-A4 Voltage Plus - 7	0	N/A	70000	N/A	N/A	2100	UV	
		. =						
High Resolution Laterolog Array – B Wells	site Calibration – HR	RLT V45						
Before: 29–Feb–2008 19:20	0	NI/A	00000	N1/A	N1/A	0400	1157	
HRLT A4_A5 Voltage Plus = 0	0	N/A N/A	68390	N/A N/A	N/A N/A	2100 2100	UV UV	
HRLT A4–A5 Voltage Plus – 1 HRLT A4–A5 Voltage Plus – 2	0 0	N/A N/A	77030 77590	N/A N/A	N/A N/A	2100	UV	
HRLT A4–A5 Voltage Plus – 3	0	N/A	74510	N/A	N/A N/A	2100	UV	
HRLT A4-A5 Voltage Plus - 4	0	N/A	70470	N/A	N/A	2100	UV	
HRLT A4-A5 Voltage Plus - 5	0	N/A	71520	N/A	N/A	2100	UV	
HRLT A4–A5 Voltage Plus – 6	0	N/A	-67110	N/A	N/A	2100	UV	
HRLT A4–A5 Voltage Plus – 7	0	N/A	70000	N/A	N/A	2100	ÜV	
5 5 7 9 5								
High Resolution Laterolog Array - B Wells	site Calibration – HR	LT V56						
Before: 29-Feb-2008 19:20								
HRLT A5-A6 Voltage Plus - 0	0	N/A	68510	N/A	N/A	2100	UV	
HRLT A5-A6 Voltage Plus - 1	0	N/A	77320	N/A	N/A	2100	UV	
HRLT A5-A6 Voltage Plus - 2	0	N/A	77840	N/A	N/A	2100	UV	
HRLT A5-A6 Voltage Plus - 3	0	N/A	74720	N/A	N/A	2100	UV	
HRLT A5-A6 Voltage Plus - 4	0	N/A	70600	N/A	N/A	2100	UV	
HRLT A5-A6 Voltage Plus - 5	0	N/A	71640	N/A	N/A	2100	UV	
HRLT A5-A6 Voltage Plus - 6	0 0	N/A N/A	-67390 70000	N/A N/A	N/A N/A	2100	UV UV	
HRLT A5–A6 Voltage Plus – 7	U	IN/A	70000	IN/A	IN/A	2100	υv	
High Resolution Laterolog Array – B Wells	site Calibration – HR	IT VTP						
Before: 29–Feb–2008 19:20	site Calibration – Th	LI VII						
HRLT Torpedo–M0 Voltage – 0	0	N/A	-68130	N/A	N/A	2100	UV	
HRLT Torpedo-M0 Voltage - 1	0	N/A	-77110	N/A	N/A	2100	UV	
HRLT Torpedo–M0 Voltage – 2	0	N/A	-77730	N/A	N/A	2100	UV	
HRLT Torpedo-M0 Voltage - 3	0	N/A	-74700	N/A	N/A	2100	ÜV	
HRLT Torpedo-M0 Voltage - 4	0	N/A	-70660	N/A	N/A	2100	UV	
HRLT Torpedo-M0 Voltage - 5	0	N/A	-71700	N/A	N/A	2100	UV	
HRLT Torpedo-M0 Voltage - 6	0	N/A	67120	N/A	N/A	2100	UV	
HRLT Torpedo-M0 Voltage - 7	0	N/A	-70000	N/A	N/A	2100	UV	
High Resolution Laterolog Array – B Wells	site Calibration – HR	LT VBD						
Before: 29-Feb-2008 19:20	_							
HRLT Bridle#9–M0 Voltage – 0	0	N/A	-68070	N/A	N/A	2100	UV	
HRLT Bridle#9–M0 Voltage – 1	0	N/A	-76870	N/A	N/A	2100	UV	
HRLT Bridle#9–M0 Voltage – 2	0	N/A	-77500 74500	N/A	N/A	2100	UV	
HRLT Bridle#9-M0 Voltage - 3	0	N/A	-74520	N/A	N/A	2100	UV UV	
HRLT Bridle#9-M0 Voltage - 4 HRLT Bridle#9-M0 Voltage - 5	0 0	N/A N/A	-70540 -71630	N/A N/A	N/A N/A	2100 2100	UV	
HRLT Bridle#9=M0 Voltage = 6	0	N/A N/A	66910	N/A N/A	N/A N/A	2100	UV	
HRLT Bridle#9–M0 Voltage – 7	0	N/A	-70000	N/A	N/A N/A	2100	UV	
Tite Blidie#3-Wo Voltage - T	U	IN/A	-70000	IN/A	IN/A	2100	Ov	
High Resolution Laterolog Array – B Wells	site Calibration – HR	LT ISO						
Before: 29–Feb–2008 19:20								
HRLT Source Current Plus – 0	0	N/A	283.9	N/A	N/A	8.520	UA	
HRLT Source Current Plus – 1	0	N/A	281.1	N/A	N/A	8.520	UA	
HRLT Source Current Plus - 2	0	N/A	281.1	N/A	N/A	8.520	ŪA	
HRLT Source Current Plus - 3	0	N/A	281.1	N/A	N/A	8.520	UA	
HRLT Source Current Plus – 4	0	N/A	281.1	N/A	N/A	8.520	UA	
HRLT Source Current Plus - 5	0	N/A	281.1	N/A	N/A	8.520	UA	
HRLT Source Current Plus – 6	0	N/A	281.1	N/A	N/A	8.520	UA	
HRLT Source Current Plus – 7	0	N/A	281.1	N/A	N/A	8.520	UA	
The Decide to the Second	-14-0-19 0 0	LT MY						
High Resolution Laterolog Array – B Wells	site Calibration – HR	LI MV						
Before: 29–Feb–2008 19:20	0	NI/A	220 5	NI/A	N1/A	0.604	111/7	
HRLT Vertical Voltage PI – 0 HRLT Vertical Voltage PI – 1	0 0	N/A N/A	-320.5 -351.4	N/A N/A	N/A N/A	9.681 9.681	UV UV	
HRLT Vertical Voltage PI = 1 HRLT Vertical Voltage PI = 2	0	N/A N/A	-351.4 -351.9	N/A N/A	N/A N/A	9.681 9.681	UV	
HRLT Vertical Voltage PI = 2 HRLT Vertical Voltage PI = 3	0	N/A N/A	-331.9 -334.5	N/A N/A	N/A N/A	9.681	UV	
HRLT Vertical Voltage PI = 3 HRLT Vertical Voltage PI = 4	0	N/A N/A	-334.5 -314.4	N/A N/A	N/A N/A	9.681	UV	
HRLT Vertical Voltage PI = 4 HRLT Vertical Voltage PI = 5	0	N/A	-314.4 -334.3	N/A	N/A N/A	9.681	UV	
HRLT Vertical Voltage PI – 6	0	N/A	324.3	N/A	N/A	9.681	UV	
HRLT Vertical Voltage PI – 7	0	N/A	-322.7	N/A	N/A	9.681	UV	
	-	: ex • •	~ ··	·		-:00.		
Powered Positioning Deveice/Caliper 1 W	ellsite Calibration -	PPC1 Caliper C	Calibration					
Before: Calibration out of date 19–Jun–	2007 15:30		-					
PPC1 Radius 1 Raw Small Radius	3.500	N/A	3.996	N/A	N/A	0.5000	IN	
PPC1 Radius 1 Raw Large Radius	8.000	N/A	8.071	N/A	N/A	0.5000	IN	
PPC1 Radius 2 Raw Small Radius	3.500	N/A	3.288	N/A	N/A	0.5000	IN	
								- 1
PPC1 Radius 2 Raw Large Radius	8.000	N/A	7.596	N/A	N/A	0.5000	IN	
PPC1 Radius 3 Raw Small Radius	8.000 3.500	N/A	3.747	N/A	N/A	0.5000	IN	
PPC1 Radius 3 Raw Small Radius PPC1 Radius 3 Raw Large Radius	8.000 3.500 8.000	N/A N/A	3.747 8.101	N/A N/A	N/A N/A	0.5000 0.5000	IN IN	
PPC1 Radius 3 Raw Small Radius	8.000 3.500	N/A	3.747	N/A	N/A	0.5000	IN	

Enhanced DTS Cartridge Wellsite Calibration – EDTC Accelerometer Calibration

Before: Calibration not done

9.807

N/A

N/A

N/A

M/S2

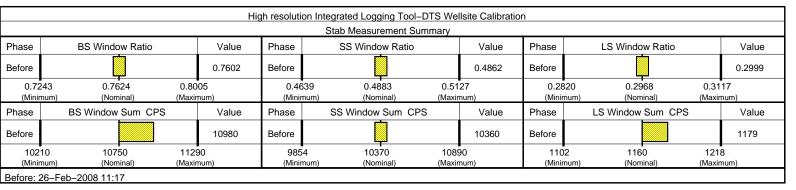
N/A

Enhanced DTS Cartridge Wellsite Calibration – Detector Calibration

9.810

Before: 29-Feb-2008 19:22

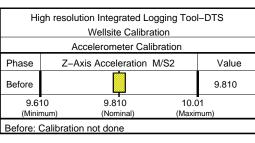
EDTC Z-Axis Acceleration


166.4 N/A **GAPI** Gamma Ray (Jig - Bkg) 166.4 N/A N/A 15.12 Gamma Ray (Calibrated) 165.0 N/A 165.0 N/A N/A 15.00 **GAPI**

The GLS-VJ source activity is acceptable.

The HGNS Neutron Master Calibration was done with the following parameters :

NCT-B Water Temperature 20.0 DEGC. Thermal Housing Size 3.376 IN. NSR-F serial number 5224


High resolution Integrated L	ogging Tool–DTS / Equipment Identificati	ion	
Primary Equipment:			
HILT high-Resolution Mechanical Sonde	HRMS – B		
HILT Rxo Gamma-ray Device	HRGD – B		
HILT Micro Cylindrically Focused Log Dev	MCFL -		
GR Logging Source	GLS – VJ	5334	
HILT High Res. Control Cartridge	HRCC – B		
HILT Gamma-Ray Neutron Sonde-DTS	HGNS – B		
HGNS Gamma-Ray Device	HGR –		
HGNS Neutron Detector with Alpha Source	HCNT -		
Auxiliary Equipment:			
Neutron Calibration Tank	NCT – B		
Gamma Source Radioactive	GSR – U/Y		
HGNS Housing	HGNH –		

		Hi	gh resoluti	on Integrated Loggir	ng Tool-DTS Wel	Isite Calibratio	n							
	Photo-multiplier High Voltages Calibrations													
Phase	ase BS PM High Voltage (Command) V Value Phase SS PM High Voltage (Command) V Value Phase LS PM High Voltage (Command) V Value													
Before		1249	Before			1901	Before			1418				
112 (Minir	· · · · · · · · · · · · · · · · · · ·	1327 laximum)	182 (Mini	21 1921 mum) (Nomin	202° al) (Maxin	-	130 (Mini	07 1407 mum) (Nomin	150 al) (Maxir					
Before: 2	sefore: 26-Feb-2008 11:17													

	High resolution Integrated Logging Tool-DTS Wellsite Calibration													
	Crystal Quality Resolutions Calibration													
Phase	ase BS Crystal Resolution % Value Phase SS Crystal Resolution % Value Phase LS Crystal Resolution % Value													
Before		9.867	Before			10.33	Before		9.278					
8.87 (Minin			9.55 (Minin		11.5 (Maxim	-	8.503 (Minim		i.50 kimum)					
,	26–Feb–2008 11:17	,	(14111111	(Normital)	(IVICAIII	,	(141111111	(was						

Phase	Raw B0 Resistivity C	НММ	Value	Phase	Raw B1 Resistivity OHMM	Value	Phase	Raw B2 Resistivity OHMM	Value
Before			3878	Before		3831	Before		3834
356		418		352			352		36
(Minin	num) (Nominal) 26-Feb-2008 13:17	(Maxin	num)	(Minin	num) (Nominal) (Maxi	mum)	(Minir	mum) (Nominal) (Ma	ximum)
20.0.0.2	20 1 00 2000 10								
	High res	solution Inte	egrated Logging	Tool-DT	S Wellsite Calibration]		
			HILT Caliper	Calibratio	n				
Phase	HILT Caliper Zero Measur	ement IN	Value	Phase	HILT Caliper Plus Measurement IN	Value			
Before			8.163	Before		12.39			
6.00 (Minin		10.0 (Maxin		9.00 (Minin					
Before: 2	26-Feb-2008 11:25								
			Hig	h resolution	on Integrated Logging Tool-DTS We	ellsite Calibratio	n		
Phase	Gamma Ray Backgroun	d CVDI	Value	Phase	Detector Calibration Gamma Ray (Jig – Bkg) GAPI	Value	Phase	Gamma Ray (Calibrated) GAPI	Value
Before	Gamma Ray Backgroun	u GAPI	9.320	Before	Gamma Ray (Jig – Bkg) GAPI	184.0	Before	Gariina Ray (Calibrated) GAPT	165.0
0	30.00	120.		167	3 184.0 200		150	0.0 165.0 18	30.0
(Minir	num) (Nominal)	(Maxin		(Minin		mum)	(Minir		ximum)
Before: 2	29-Feb-2008 20:22								
	I link and			Taal DT	C Wallaita Calibration		1		
	High res	solution inte	grated Logging Zero Meas		S Wellsite Calibration		1		
Phase	CNTC Background	CPS	Value	Phase	CFTC Background CPS	Value]		
Master			29.71	Master		33.75			
Before			28.10	Before		30.26			
5.00 (Minin		40.0 (Maxin		5.00 (Minin					
Master: 2	20-Feb-2008 19:21			Before: 2	6-Feb-2008 11:15]		
			Hig	h resolution	on Integrated Logging Tool-DTS We	ellsite Calibratio	n		
Phase	Thermal Near Corr. (Tar	nk) CPS	Value	Phase	Ratio Measurement Thermal Far Corr. (Tank) CPS	Value	Phase	CNTC/CFTC (Tank)	Value
Master	memarivear Con. (Tar	IK) UFO	5605	Master	memarrar con. (rank) CPS	2340	Master	GIVIO/GITO (Talik)	2.395
470	0 5800	690		190) 2400 290		2.12	20 2.159 2.	540
(Minir	num) (Nominal)	(Maxin		(Minin			(Minir		ximum)
Master: 2	20-Feb-2008 19:21								
	ala anna latina de Como C. C.	andre To	DTC						
Hi	gh resolution Integrated Lo	ogging 100l	-12						

		High resolut	tion Inte	grated Loggi	ing Tool-D	ΓS Master	Calibration			
				Inversion	on results					
Phase	Rh	o Aluminum G/C3		Value	Phase	Rho	C3	Value		
Master		<u> </u>		2.602	Master					
2.586 2.596 (Minimum) (Nominal)		2.606 (Maximum)		1.6 (Minir		1.686 (Nominal)	1.696 (Maximu			
Phase		Pe Aluminum		Value	Phase		Pe Magnesium		Value	
Master				2.571	Master				2.634	
	2.470 2.570 (Minimum) (Nominal)		2.670 (Maximu		2.55 (Minir		2.650 (Nominal)	2.750 (Maximu		
Master: 2	20-Feb-20	008 21:02		·				·		

								1					
	High resolution Integrated Logging Tool-DTS Master Calibration												
	Deviation Summary												
Phase	BS Average Deviation %	Value	Phase	SS Average Deviation %	Value	Phase	LS Average Deviation %	Value					
Master 0.5701 Master 0.3068 Master 0.6760													

-0.60 (Minin		0 (Nominal)	0 0.6000 (Nominal) (Maximum)		-1.000 (Minimum)		0 (Nominal)		1.000 (Maximum)		00 mum)	0 (Nominal)		num)
Phase		BS Max Deviation %		Value	Phase		SS Max Deviat	ion %	Value	Phase		LS Max Deviation %		Value
Master				1.350	Master				0.7734	Master				1.772
-1.6 (Minin		0 (Nominal)	1.60 (Maxir		–2.5 (Minir	00 mum)	0 (Nominal)		inum)	–3.5 (Minir		0 (Nominal)	3.50 (Maxin	-
Master: 20-Feb-2008 21:02								·	•					

	High resolution Integrated Logging Tool-DTS Master Calibration											
				Zero Mea	surement							
Phase CNTC Background CPS Value Phase CFTC Background CPS Value												
Master	er			29.71	Master	Master						
5.000 29.71 40.00 5.000 33.75 40.00 (Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum)												
Master: 20-Feb-2008 19:21												

	High resolution Integrated Logging Tool–DTS Master Calibration													
	Tank Measurement													
Phase	Thermal Near Corr. (Tan	nk) CPS	Value	Phase	Thermal Far Co	rr. (Tank) CPS	Value	Phase	CNTC/CFTC	(Tank)	Value			
Master			5605	Master			2340	Master			2.395			
470		6900 (Mayin		190				2.120 (Minimum)	2.159 (Namin					
	(Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum) (Minimum) (Mominal) (Maximum) Master: 20_Feb_2008 19:21													

High Resolution Laterolog Array – B / Equipment Identification

Primary Equipment:
HRLT Sonde
HRLS – B

Auxiliary Equipment:
HRLT lower Housing
HRLT Lower Cartridge
HRLT Lower Cartridge
HRLT upper Housing
HRUH – B
HRLT Upper Cartridge
HRUC – B

		High Resolution Laterolo	g Array – B We	Ilsite Calibration	n	
			RLT M01			
ldx	Phase	HRLT M0-M1 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		-318.2	-322.7	-280.7	-379.7
1	Before		-355.9	-322.7	-280.7	-379.7
2	Before		-358.0	-322.7	-280.7	-379.7
3	Before		-342.3	-322.7	-280.7	-379.7
4	Before		-325.3	-322.7	-280.7	-379.7
5	Before		-329.9	-322.7	-280.7	-379.7
6	Before		315.1	322.7	379.7	280.7
7	Before		-322.7	-322.7	-280.7	-379.7
	(Minir	num) (Nominal) (Maxi	mum)			
Befo	re: 29–Fe	eb-2008 19:20				

		High Resolution Laterological	g Array – B We	Ilsite Calibratio	n	
		HI	RLT M12			
ldx	Phase	HRLT M1-M2 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		1749	1781	2095	1549
1	Before		1957	1781	2095	1549
2	Before		1963	1781	2095	1549
3	Before		1876	1781	2095	1549
4	Before		1783	1781	2095	1549
5	Before		1810	1781	2095	1549
	Delote	<u> </u>	1010	1701	2093	1043

	(Minir	num) (Nomi	nal) (Max	imum)			
Befo	re: 29-Fe	eb-2008 19:20					
		High R	esolution Laterol	og Array – B We	llsite Calibratio	n	
			ŀ	IRLT M23			
ldx	Phase	HRLT M2-M3 V	oltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before			1736	1781	2095	1549
1	Before			1947	1781	2095	1549
2	Before			1956	1781	2095	1549
3	Before			1875	1781	2095	1549
4	Before			1778	1781	2095	1549
5	Before			1806	1781	2095	1549
6	Before			-1721	-1781	-1549	-2095
7	Before			1781	1781	2095	1549
	(Minir	num) (Nomi	nal) (Max	imum)			
Befo	re: 29-Fe	eb-2008 19:20					

-1741

1781

-1781

1781

-1549

2095

-2095

1549

Before

Before

7

ldx	Phase	HRLT A3-A4 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		68550	70000	82360	60900
1	Before		77150	70000	82360	60900
2	Before		77730	70000	82360	60900
3	Before		74680	70000	82360	60900
4	Before		70640	70000	82360	60900
5	Before		71700	70000	82360	60900
6	Before		-67220	-70000	-60900	-82360
7	Before		70000	70000	82360	60900
	(Minii	mum) (Nominal) (Maxir	num)			
Befo	re: 29–Fe	eb-2008 19:20				

High Resolution Laterolog Array – B Wellsite Calibration HRLT V34

		2000 10:20				
		High Resolution Laterolog	g Array – B We	ellsite Calibratio	n	
		Н	RLT V45			
ldx	Phase	HRLT A4-A5 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		68390	70000	82360	60900
1	Before		77030	70000	82360	60900
2	Before		77590	70000	82360	60900
3	Before		74510	70000	82360	60900
4	Before		70470	70000	82360	60900
5	Before		71520	70000	82360	60900
6	Before		-67110	-70000	-60900	-82360
7	Before		70000	70000	82360	60900
	(Minir	num) (Nominal) (Maxir	num)			
Befo	re: 29-Fe	eb-2008 19:20				

		High Resolution Laterolo	g Array - B We	Ilsite Calibratio	n	
		Н	RLT V56			
ldx	Phase	HRLT A5-A6 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Refere		69510	70000	92260	60000

0	Deloie			00510	70000	02300	00900
1	Before			77320	70000	82360	60900
2	Before			77840	70000	82360	60900
3	Before			74720	70000	82360	60900
4	Before			70600	70000	82360	60900
5	Before			71640	70000	82360	60900
6	Before			-67390	-70000	-60900	-82360
7	Before			70000	70000	82360	60900
	(Minir	mum) (Nom	ninal) (Maxir	mum)			
Befo	re: 29-Fe	eb-2008 19:20					
							·
	•	High R	Resolution Laterolog	g Array – B We	Ilsite Calibratio	n	

		ŀ	IRLT VTP			
ldx	Phase	HRLT Torpedo-M0 Voltage Plus UV	/ Value	Nominal	Maximum	Minimum
0	Before		-68130	-70000	-60900	-82360
1	Before		-77110	-70000	-60900	-82360
2	Before		-77730	-70000	-60900	-82360
3	Before		-74700	-70000	-60900	-82360
4	Before		-70660	-70000	-60900	-82360
5	Before		-71700	-70000	-60900	-82360
6	Before		67120	70000	82360	60900
7	Before		-70000	-70000	-60900	-82360
	(Mini	mum) (Nominal) (Max	imum)			

Before: 29-Feb-2008 19:20

		High Resolution Laterolog	g Array – B We	ellsite Calibratio	n	
		HI	RLT VBD			
ldx	Phase	HRLT Bridle#9-M0 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		-68070	-70000	-60900	-82360
1	Before		-76870	-70000	-60900	-82360
2	Before		-77500	-70000	-60900	-82360
3	Before		-74520	-70000	-60900	-82360
4	Before		-70540	-70000	-60900	-82360
5	Before		-71630	-70000	-60900	-82360
6	Before		66910	70000	82360	60900
7	Before		-70000	-70000	-60900	-82360
	(Mini	mum) (Nominal) (Maxin	num)			
Befo	re: 29-F	eb-2008 19:20				
		-			•	•

		High Resolution Laterolo	g Array – B We	Ilsite Calibratio	n	
		Н	RLT ISO			
ldx	Phase	HRLT Source Current Plus UA	Value	Nominal	Maximum	Minimum
0	Before		283.9	284.0	334.1	247.0
1	Before		281.1	281.1	330.7	244.4
2	Before		281.1	281.1	330.7	244.4
3	Before		281.1	281.1	330.7	244.4
4	Before		281.1	281.1	330.7	244.4
5	Before		281.1	281.1	330.7	244.4
6	Before		281.1	281.1	330.7	244.4

		High Resolution Laterolo	og Arrav – B We	ellsite Calibratio	n	
		-	HRLT MV		-	
ldx	Phase	HRLT Vertical Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		-320.5	-322.7	-280.7	-379.7
1	Before		-351.4	-322.7	-280.7	-379.7
2	Before		-351.9	-322.7	-280.7	-379.7
3	Before		-334.5	-322.7	-280.7	-379.7
4	Before		-314.4	-322.7	-280.7	-379.7
5	Before		-334.3	-322.7	-280.7	-379.7
6	Before		324.3	322.7	379.7	280.7
7	Before		-322.7	-322.7	-280.7	-379.7
	(Minir	num) (Nominal) (Maxi	- mum)			
Befo	re: 29–Fe	eb-2008 19:20	•	•		

281.1

(Maximum)

281.1

330.7

244.4

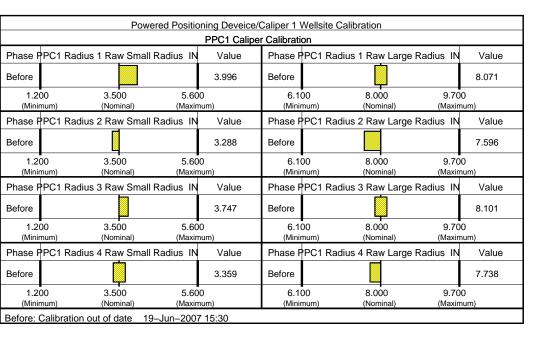
Powered Positioning Deveice/Caliper 1 / Equipment Identification

Primary Equipment:

Before

(Minimum)

Before: 29-Feb-2008 19:20


(Nominal)

PPC Powered Positioning Device/Caliper

PPC1 Caliper Standard

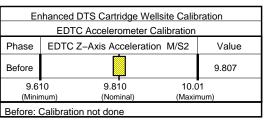
PPC1 – B PPC_ –

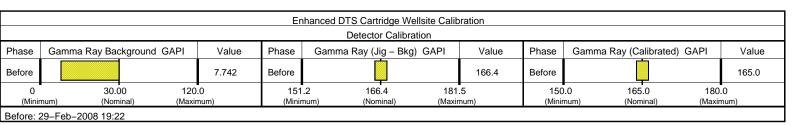
Auxiliary Equipment:

Multimode Array Sonic Power Cartridge / Equipment Identification

Primary Equipment:

Multimode Array Sonic Minimum Service SoMAMS – BA8201Multimode Array Sonic Control CartridgeMAPC – BA8198


Auxiliary Equipment:


Electronics Cartridge Housing ECH – SD 8198

EDTC Gamma Ray Detector Enhanced DTS Cartridge

Auxiliary Equipment: EDTC Housing EDTG – A/B EDTC – B

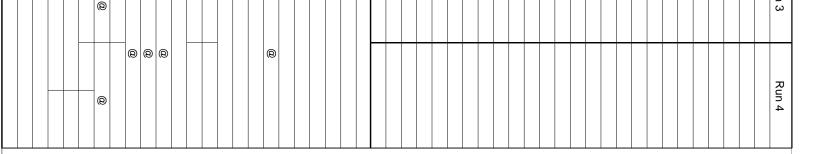
EDTH – B

Company: Apache Northwest Pty Ltd

Schlumberger

Well: WASABI-1

Field: Apache/VIC/P-58/WASABI-1


Rig: West Triton
Country: Australia

PEX-GR-HRLA-MSIP-5

Compressional and Shear Slowness

Scale 1:200

				Schlur	Schlumhenner	3			Run 1	Run 2	Rur
					inei Ae						
Company:	Apache N	Apache Northwest Ptv Ltd	Ltd								
Well:	WASABI-1										
Field:	Apache/\	Apache/VIC/P–58/WASABI–1	ABI-1								
Rig:	West Triton		Country:	Australia	a						
1	PEX-GR-	PEX-GR-HRLA-MSIP-									
SABI-	Density-N	Density-Neutron-GR-Resistivity-S	esistivity	လ							
s/WAS	Scale 1:500	00									
	Bass Strait			Elev.:							
/IC/F ait -1 North		963.350 m		G.L.	–27 m						
he/\ Stra ABI- he N	Easting : 522993.588 m)3.588 m		D.F.	39 m	Ļ					
Bass VAS	Permanent Datum:	um: AHD		Elev:: 0 m							
Ar Ba W Ar	Log Measured From:	From: DRILL FLOOR (RT)	OR (RT)	39.0 m above	above Perm. Datum	3					
	Drilling Measured From:	ed From: DRILL FLOOR (RT)	OR (RT)								
Rig: Field: Locati Well: Comp	State: Victoria	Max. Well Deviation 48.1 deg	_	Longitude 147 15' 49.147" E	Latitude 38 29' 18.15	titude 18.157" S					
Logging Date		1-Mar-2008					Logging Date				
Run Number		2				_	Run Number				
Depth Driller		2313 m					Depth Driller	È			
Bottom Log Interval		1387 m				_	Bottom Log Interval	val epin			
Top Log Interval		854 m					Top Log Interval				
Casing Driller Size @ Depth	@ Depth	13.375 in @	857 m		@		Casing Driller Size @	ize @ Depth	,	@	
Casing Schlumberger	er	854 m					Casing Schlumberger	erger			
Type Fluid In Hole		KCI/Polymer				<u> </u>	Type Fluid In Hole	JD			
Density	Viscosity	1.15 g/cm3 50 s				D	_	Viscosity			
	PH	5 cm3 8.7				MUI	_	PH			
								ple			
RM @ Measured Temperature	mperature		20 degC		(9)		RM @ Measured Temperature	d Temperature		(9)	
RMF @ Measured Temperature	emperature		21 degC		9		RMF @ Measured Temperature	ed Temperature		(9)	
sured	[emperature	ohm.m	20 degC		(9)		RMC @ Measured Temperature	ed Temperature		@	
	RME @ MBT	® 50	9	9	9		Source RMT	RMC MPT	9	9	
Maximum Recorded Temperatures	Temperatures	59 degC 59		(6)	(6)		Maximum Recor	Maximum Recorded Temperatures	(6)	(6)	
Circulation Stopped	Time	008	18:45				Circulation Stopped	ped Time			
Logger On Bottom	Time	3-Mar-2008	11:28	_			Logger On Bottom	m Time	_		
Unit Number	Location	41 AUSL	; :				Unit Number	Location			
Recorded By		A. Dandi/M.Dawson/K. AlBarhi	AlBarhi				Recorded By				
Witnessed By		H.Little / A.Cruickshank					Witnessed By				

DEPTH SUMMARY LISTING

Date Created: 2-MAR-2008 16:47:03

Depth System Equipment

Depth Measuring Device		Tension Device		Logging Cable	
Type: Serial Number: Calibration Date:	IDW-H 796 29-Jan-2008	Type: Serial Number: Calibration Date:	CMTD-B/A 1721 27-FEB-2008	Type: Serial Number: Length:	7–46ZV–XS 77178 7699.86 M
Calibrator Serial Number: Calibration Cable Type: Wheel Correction 1: Wheel Correction 2:	1009 7–46ZV–XS –5 –5	Calibrator Serial Number: Calibration Gain: Calibration Offset:	0.81	Conveyance Method: Rig Type:	Wireline Offshore_Fixed

Depth Control Parameters

Log Sequence: Subsequent Log In the Well

Reference Log Name: Wasabi–1 GeoVISION Resistivity RM 200D

Reference Log Run Number:

Reference Log Date: 01–March–2008

Depth Control Remarks

- 1. Schlumberger Depth Control Policy Followed
- 2. IDW used as primary depth reference
- 3. Z-Chart used as secondary depth reference

4.

5.

6

DISCLAIMER

THE USE OF AND RELIANCE UPON THIS RECORDED-DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS AFFILIATES, PARTNERS, REPRESENTATIVES, AGENTS, CONSULTANTS AND EMPLOYEES) IS SUBJECT TO THE TERMS AND CONDITIONS AGREED UPON BETWEEN SCHLUMBERGER AND THE COMPANY, INCLUDING: (a) RESTRICTIONS ON USE OF THE RECORDED-DATA; (b) DISCLAIMERS AND WAIVERS OF WARRANTIES AND REPRESENTATIONS REGARDING COMPANY'S USE OF AND RELIANCE UPON THE RECORDED-DATA; AND (c) CUSTOMER'S FULL AND SOLE RESPONSIBILITY FOR ANY INFERENCE DRAWN OR DECISION MADE IN CONNECTION WITH THE USE OF THIS RECORDED-DATA.

 OTHER SERVICES1
 OTHER SERVICES2

 OS1:
 VSI
 OS1:

 OS2:
 MDT-GR
 OS2:

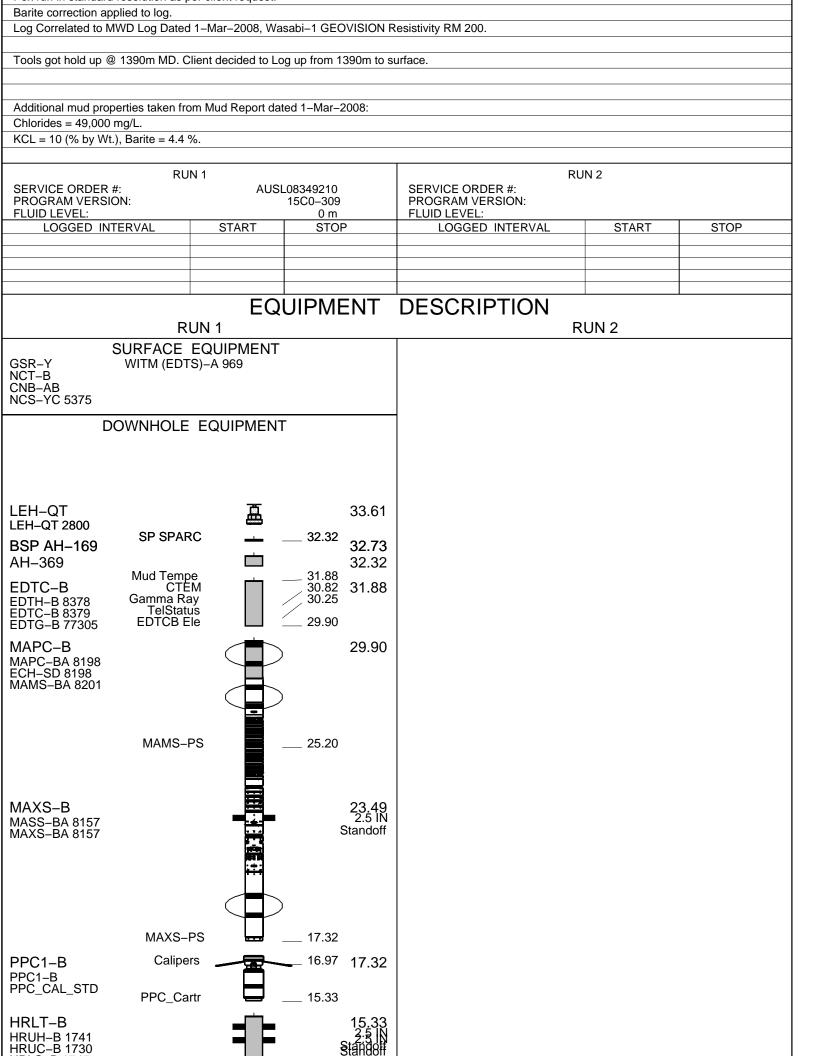
 OS2:
 MDT-GR
 OS2:

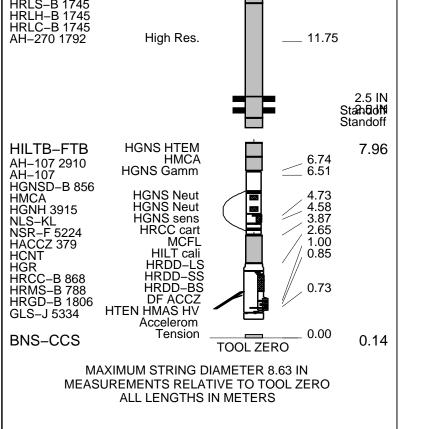
 OS3:
 CST-GR
 OS3:

 OS4:
 VSI
 OS4:

 OS5:
 OS5:

REMARKS: RUN NUMBER 1 REMARKS: RUN NUMBER 2


Tools run as per tool sketch, using 5x standoffs, 3x LCMEs and a bow spring.

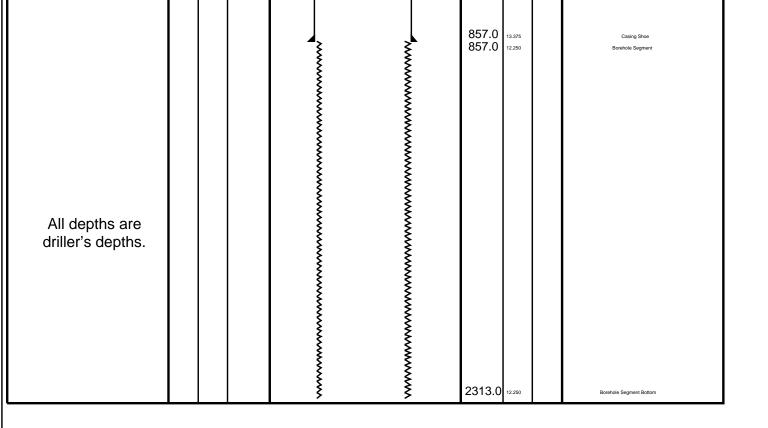

Maximum Recorded Temperature was 59 degC taken from thermometers in Logging Head.

Neutron Environment Corrections: Hole Size, Borehole and formation Salinity, Mud Weight, Mud Cake, Standoff and Press./ Temp.

Density Environment Corrections : Hole Size, using BS, and Mud Weight.

Pex run in standard resolution as per client request

Client: Apache Northwest Pty Ltd


Well: Wasabi-1

Field: Apache/VIC/P-58/WASABI-

State: Victoria Country: Australia Drawing Date:7-Mar-2008

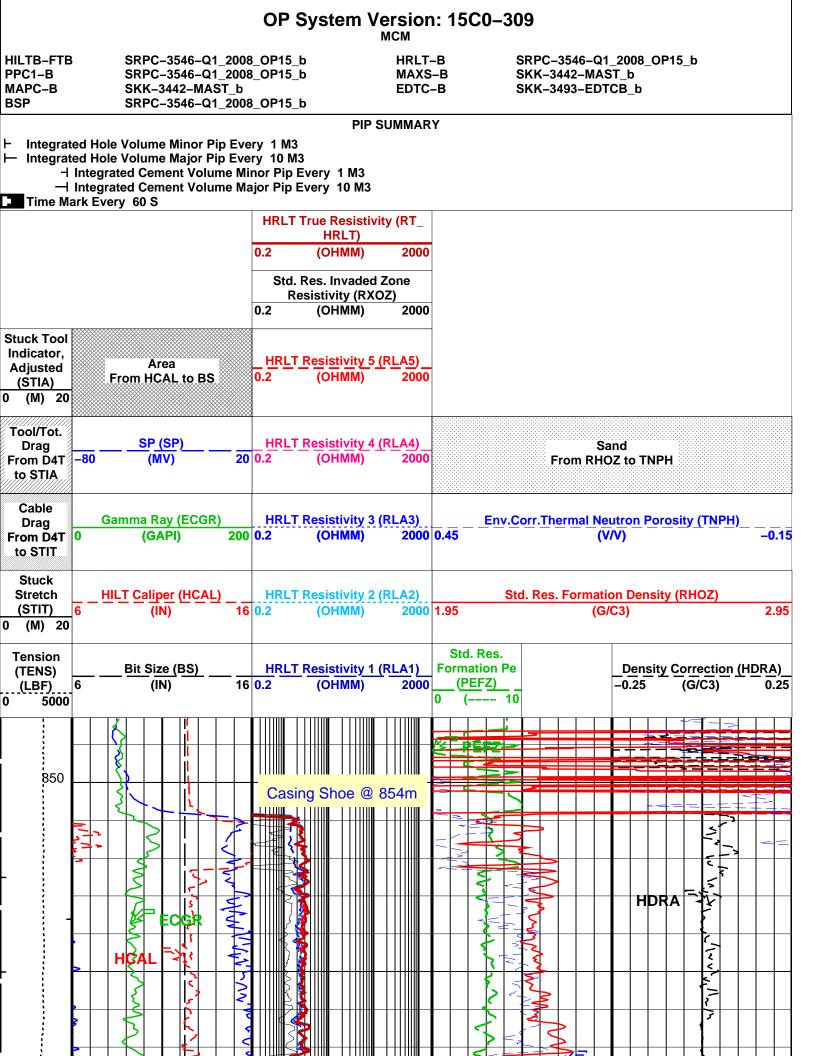
Rig Name: West Triton
Reference Datum: AHD
Elevation: 39.0

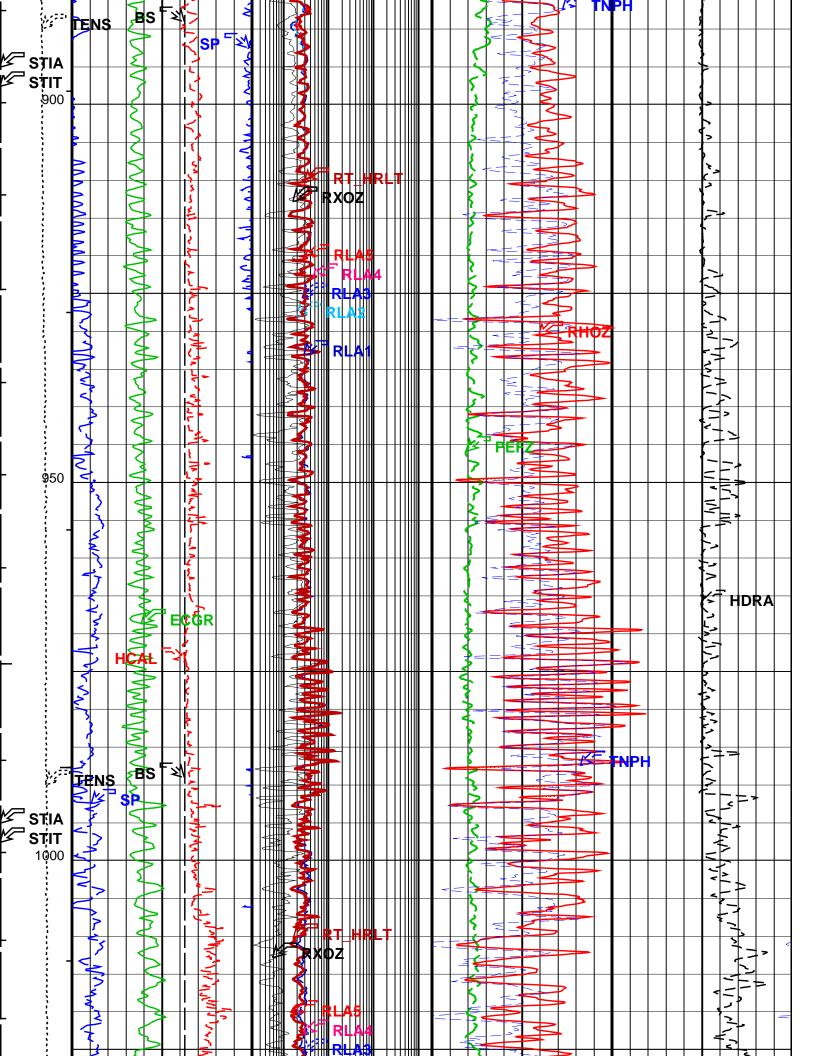
Production String	(in) (m) OD ID MD	Well Schematic	(m) (in) (D) (D)	Casing String
Kelly Bushing Elevation Derrick Floor Elevation Mean Sea Level	39.0 39.0		27.0 20.000 101.1 20.000	Casing String Casing Shoe

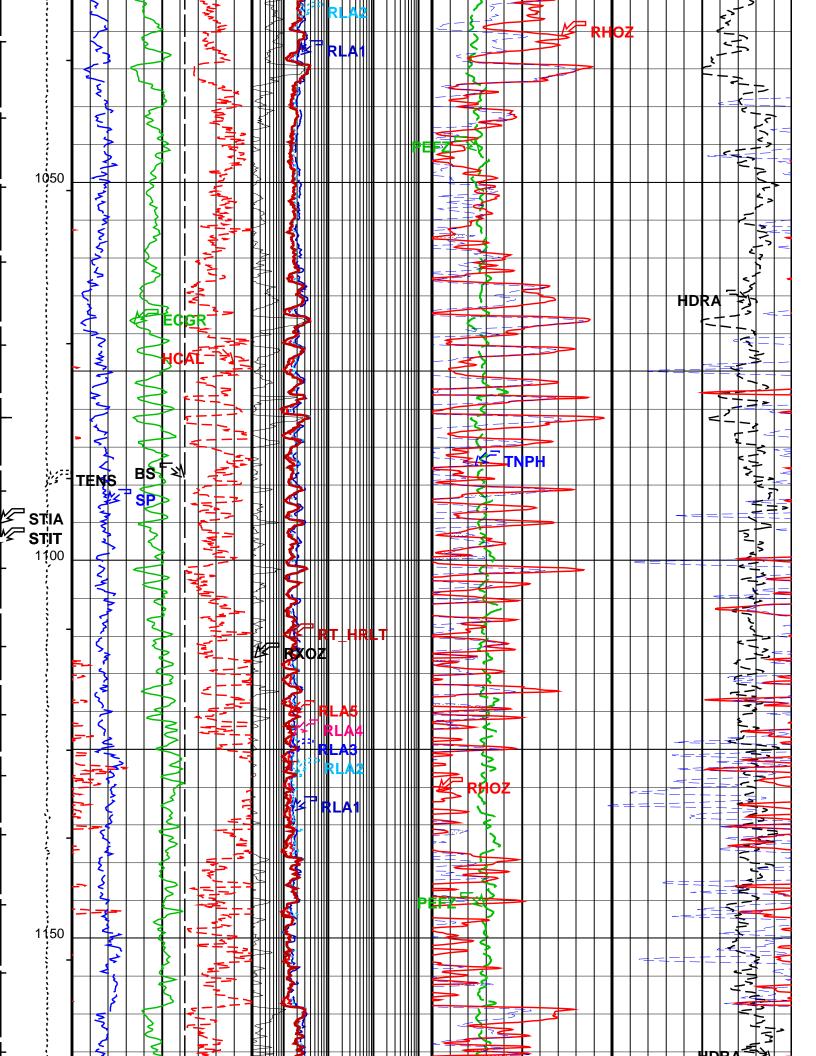
Schlumberger

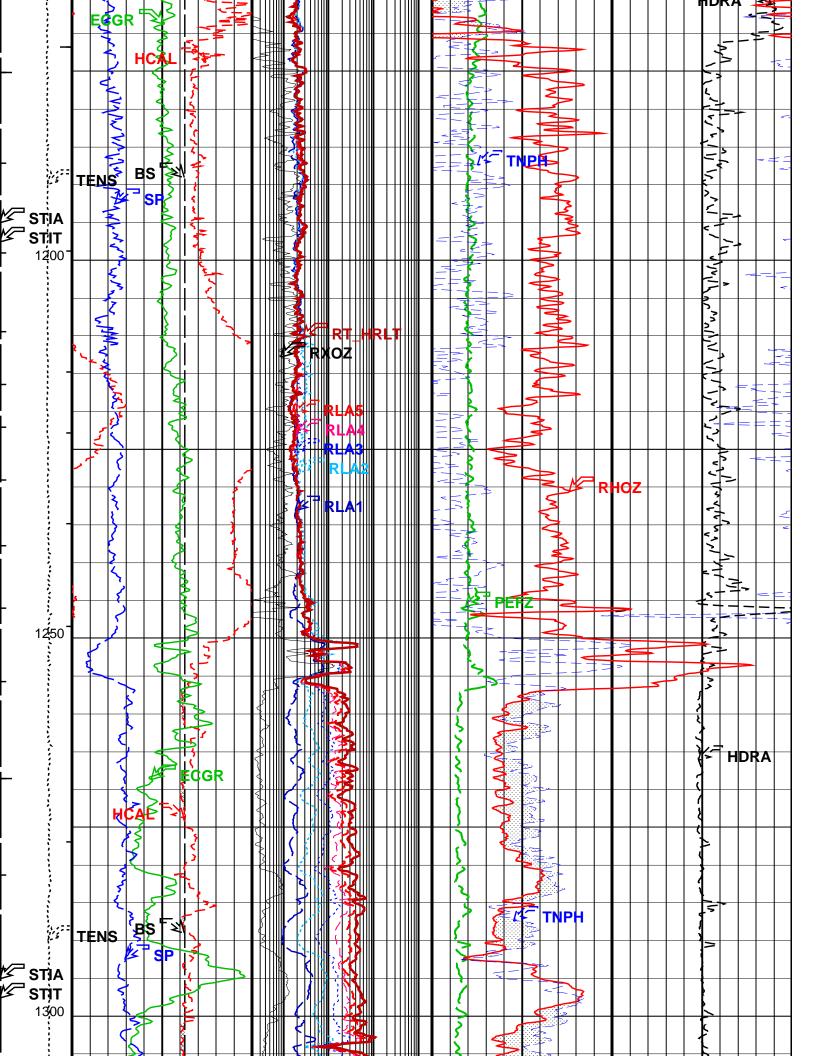
Main Pass 1391 m - 840 m

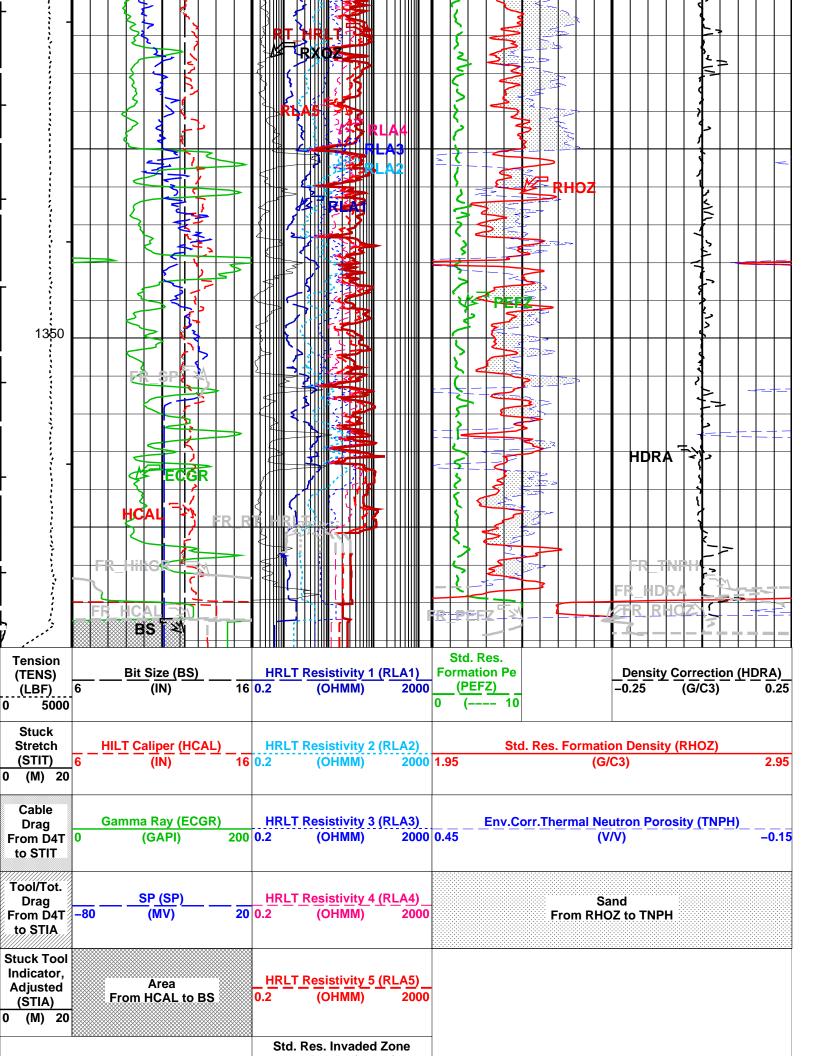
MAXIS Field Log


Company: Apache	Northwest Pty Ltd					Well: WASABI-1
Input DLIS Files						
DEFAULT	TLD_MCFL_CNL_HRLA_038PUP	FN:51	PRODUCER	12-Mar-2008 01:24	1391.0 M	840.5 M
Output DLIS Files						
DEFAULT	TLD_MCFL_CNL_HRLA_035PUP	FN:36	PRODUCER	12-Mar-2008 01:47	1391.0 M	841.4 M
CUSTOMER	TLD_MCFL_CNL_HRLA_035PUC	FN:37	CUSTOMER	12-Mar-2008 01:47	1391.0 M	841.4 M


Integrated Hole/Cement Volume Summary


Hole Volume = 49.69 M3


Cement Volume = 24.62 M3 (assuming 9.63 IN casing O.D.)


Computed from 1391.0 M to 857.1 M using data channel(s) HCAL

Resistivity (RXOZ)			
0.2	(OHMM)	2000	
HRL'	T True Resistivit	y (RT_	
	HRLT)	, –	
0.2	(OHMM)	2000	
	•		

PIP SUMMARY

- Integrated Hole Volume Minor Pip Every 1 M3
 Integrated Hole Volume Major Pip Every 10 M3
 Integrated Cement Volume Minor Pip Every 1 M3
 Integrated Cement Volume Major Pip Every 10 M3
 Time Mark Every 60 S

Parameters

DLIS Name	Description	Valu	е		
HILTB-FTB: High resolution Integrated Logging Tool-DTS					
BHFL	Borehole Fluid Type	WATER			
BHFL_TLD	HILT Nuclear Mud Base	WATER			
BHS	Borehole Status	OPEN	5500		
BHT	Bottom Hole Temperature (used in calculations)	59 V50	DEGC		
BSCO	Borehole Salinity Correction Option	YES			
CCCO DHC	Casing & Cement Thickness Correction Option	NO Be			
DPPM	Density Hole Correction Density Porosity Processing Mode	BS HIRS			
EXSICL	External Shale Indicator Clean Value	20			
EXSISH	External Shale Indicator Shale Value	150			
FD	Fluid Density	1	G/C3		
FEXP	Form Factor Exponent	2			
FNUM	Form Factor Numerator	1			
FPHI	Form Factor Porosity Source	DPHZ			
FSAL	Formation Salinity	-50000	PPM		
FSCO	Formation Salinity Correction Option	YES			
GCLF	Germany Coal-like Formation Option	NO			
GCSE	Generalized Caliper Selection	HCAL	DEC		
GDEV	Average Angular Deviation of Borehole from Normal	0 019227	DEG DC/M		
GGRD GRSE	Geothermal Gradient Generalized Mud Resistivity Selection	0.018227 CHART_GEN_9	DC/IVI		
GTSE	Generalized Temperature Selection	LINEAR_ESTIMATE			
HACPP	Accelerometer PROM Presence	PRESENT_FILE			
HART	Accelerometer Reference Temperature	20	DEGC		
HDCOD	HILT Density Coal detection	2	G/C3		
HDSAD	HILT Density Salt detection	2.1	G/C3		
HILT_GAS_DENSITY	HILT Gas Downhole Density	0	G/C3		
HILT_GAS_OPTION	HILT Gas Computation Option	OFF			
HNCOD	HILT Neutron Coal detection	45	PU		
HNSAD	HILT Neutron Salt detection	5	PU		
HPHIECUT	HILT effective Porosity Cutoff	5	PU		
HSCO	Hole Size Correction Option	YES			
HSIS HSSO	HILT Shale Indicator Selection	GR NORMAL			
HSWCUT	HRDD Nuclear Source Strength Option HILT Water Saturation from AITH cutoff	NORWAL 50	%		
ISSBAR	Barite Mud Switch	BARITE	/0		
MATR	Rock Matrix for Neutron Porosity Corrections	LIMESTONE			
MCCO	Mud Cake Correction Option	YES			
MCOR	Mud Correction	BARI			
MDEN	Matrix Density	2.71	G/C3		
MHC0	MCFL B0 Contrast Correction Coefficient	2.2e-005	OHMS		
MHC1	MCFL B1 Contrast Correction Coefficient	3.2e-005	OHMS		
MHCC	MCFL High Contrast Correction Switch	NO			
MPOF	MCFL Processing Operation Mode	ON			
MWCO	Mud Weight Correction Option HRDD APS Activation Correction	YES			
NAAC NMT	HILT Nuclear Mud Type	OFF BARITE			
NPRM	HRDD Processing Mode	StdRes			
NSAR	HRDD Depth Sampling Rate	otakes 1	IN		
PEA_FILTER	PEA Filter	NO FILTER			
PEFC_FILTER	PEFC Filter	NO_FILTER			
PHIMĀX	HILT max porosity	35	PU		
PTCO	Pressure/Temperature Correction Option	YES			
SDAT	Standoff Data Source	SOCN			
SEXP_HILT	HILT Saturation Exponent	2			
SHT	Surface Hole Temperature	20	DEGC		
SOCN	Standoff Distance	0	IN		
SOCO	Standoff Correction Option	YES			
	ıtion Laterolog Array – E Borehole Status	OPEN			
BHS BHT	Bottom Hole Temperature (used in calculations)	59	DEGC		
CALSTAT	HRLTB Calibration Status	SHALLOW_DONE	DEGC		
CALTEMP	UDI TD Calibration Tomorous	51.1/12.517_DOI1E	DEOC		

CALTEMP	HKLIB Calibration Temperature	63.4 ∠6	DEGC
FREQ0	HRLT Frequency Index for Mode 0	32	
FREQ1	HRLT Frequency Index for Mode 1	128	
FREQ2 FREQ3	HRLT Frequency Index for Mode 2 HRLT Frequency Index for Mode 3	104 86	
FREQ4	HRLT Frequency Index for Mode 4	56	
FREQ5	HRLT Frequency Index for Mode 5	44	
FREQ6	HRLT Frequency Index for Mode 6	116	
GCSE	Generalized Caliper Selection	HCAL	556
GDEV GGRD	Average Angular Deviation of Borehole from Normal Geothermal Gradient	0 0.018227	DEG DC/M
GRSE	Generalized Mud Resistivity Selection	CHART GEN 9	DC/IVI
GTSE	Generalized Temperature Selection	LINEAR_ESTIMATE	
ISSBAR	Barite Mud Switch	BARITE	
KFAC_HRLT	HRLT K Factor Option	SONDE	
LOOPCOEF_S	HRLT Loop Coefficient for Shallow Modes	LOW	
LOOPMOD0 LOOPMOD1	HRLT Mode 0 Loop Mode	OFF OFF	
LOOPMOD1 LOOPMOD2	HRLT Mode 1 Loop Mode HRLT Mode 2 Loop Mode	OFF	
LOOPMOD3	HRLT Mode 3 Loop Mode	OFF	
LOOPMOD4	HRLT Mode 4 Loop Mode	OFF	
LOOPMOD5	HRLT Mode 5 Loop Mode	OFF	
LOOPMOD6	HRLT Mode 6 Loop Mode	OFF	
MATR PROCINV	Rock Matrix for Neutron Porosity Corrections Inversion Selection	LIMESTONE ON	
PROCMFL		NO_EXTERNAL_RXO	
PROCMSO	Mechanical Standoff Fin Size	2.5	IN
PROCRM	Processing Mud Resistivity Select	HRLT_Compute	
PROCSPO	Sonde Position	Eccentered	
SHT	Surface Hole Temperature	20	DEGC
PPC1-B: Powered PC	ositioning Deveice/Caliper 1 PPC1 Caliper Type	CAL_STD	
CLBD_PPC	PPC Calibration data selection	ROM	
PWEL_PPC	PPC Primary Tool for WellCAD	NONE	
SWEL_PPC	PPC Secondary Tool for WellCAD (45 Degrees Rotatio	n PPC Tool) NONE	
WRDR_PPC	PPC Rotation Direction for Secondary Tool	NONE	
	Array Sonic Xmitter Sonde	** V **	
FIRING_TABLE TX_AMP	MAST Firing Table Transmitter Amplitude Factor	** V **	
U_CE_CBLG7	CBL Gate Width 7 for Cement Evaluation	80	US
U_CE_CBLG8	CBL Gate Width 8 for Cement Evaluation	80	ÜS
U_CE_NMSG7	Near Minimum Sliding Gate 7 for Cement Evaluation	220	US
U_CE_NMSG8	Near Minimum Sliding Gate 8 for Cement Evaluation	<u> 220</u>	US
U_CE_SGDT7	Sliding Gate Delta-T 7 for Cement Evaluation	57 57	US/F
U_CE_SGDT8 MAPC_B: Multimode	Sliding Gate Delta-T 8 for Cement Evaluation Array Sonic Power Cartridge	57	US/F
AZIM_SELECT	Azimuth Selection	P1AZ	
BHS	Borehole Status	OPEN	
BHT	Bottom Hole Temperature (used in calculations)	59	DEGC
BS	Bit Size	12.250	IN HC/E
CDTS CE_DCBLSEL	C-Delta-T Shale DCBL Selection for Cement Evaluation	100 3 5FT	US/F
CE_DOBLISEL CE_VDLGRA	VDL Manual Gain Rate Array for Cement Evaluation	** V **	
CE_VDLSEL	VDL Selection for Cement Evaluation	MU_5FT	
CE_VDL_MODE	DCBL/VDL Mode for Cement Evaluation	STANDARD	
CE_VFILSWA	VDL Filter Switch Array for Cement Evaluation	** V **	
CRVIN_MF	Alteration Detection Input Number for Monopole Far	DISALLOW	
CRVIN_ML CRVIN_MU	Alteration Detection Input Number for Monopole Lowe Alteration Detection Input Number for Monopole Uppe	r DISALLOW r DISALLOW	
DCRMVL	DC Offset Removal Option	DC_MULTIPLE	
DLHS	Hole Diameter Source for SOBS Channel	AUTO	
DTCO_SELECT	Delta-T Compressional Selection for DSTC	MF	
DTF	Delta-T Fluid	204.5	US/F
DTM	Delta-T Matrix	56 VD	US/F
DTSH_SELECT DWF7_SPEC	Delta-T Shear Selection for DSTC Channel/Station/Azimuth for VDL (DWF7) of Measuren	XD nent 7 WFA7/9/1	
DWF8_SPEC	Channel/Station/Azimuth for VDL (DWF8) of Measuren	nent 8 WFA8/5/1	
FIRING_TABLE	MAST Firing Table	** V **	
GCSE	Generalized Caliper Selection	HCAL	
GDEV	Average Angular Deviation of Borehole from Normal	0	DEG
GGRD	Geothermal Gradient	0.018227	DC/M
GRSE GTSE	Generalized Mud Resistivity Selection Generalized Temperature Selection	CHART_GEN_9 LINEAR_ESTIMATE	
IMG_DTCO_SEL_MAST	Imaging Input DT Compressional Selection	CONSTANT_DTCO	
IMG_EST_DTCO_MAST	Imaging Estimated DT Compressional	120	US/F
IMG_RBS	Imaging Relative Bearing Selection	RB1	
ISSBAR	Barite Mud Switch	BARITE	
ITTS MATE	Integrated Transit Time Source	DTCO	
MATR NRSA	Rock Matrix for Neutron Porosity Corrections Number of Receivers in Sub-Array	LIMESTONE ** V **	
RBC	Relative Bearing Correction Allow/Disallow	DISALLOW	
ROTIN_XD	Alford Rotation X Dipole Measurement Number	DISALLOW	
ROTIN_YD	Alford Rotation Y Dipole Measurement Number	DISALLOW	
ROTWINDOW_CTRL ROT_AI	Alford Rotation Window Control	ON	
	Dipole Waveform Rotation Averaging Depth Interval	0	M

ROT_FIL_LENG	Alford Rotation Filter Length	0	
ROT_TWD	Alford Rotation Window Time Width Alford Rotation Window Time Offset	0 0	US US
ROT_TWO ROT_XFH	Alford Rotation Window Time Offset Alford Rotation Filter High Cutoff	0	HZ
ROT_XFL	Alford Rotation Filter Low Cutoff	0	HZ
SHT SPFS	Surface Hole Temperature Sonic Porosity Formula	20 RAYMER_HUNT	DEGC
SPSO	Sonic Porosity Source	DTCO	
STCAL	STC Algorithm	** V **	
STCSEL1 STCSEL2	Station Selection for STC for Measurement 1 Station Selection for STC for Measurement 2	** V **	
STCSEL3	Station Selection for STC for Measurement 3	** V **	
STCSEL4	Station Selection for STC for Measurement 4	** V **	
STCSEL5 STCSEL6	Station Selection for STC for Measurement 5 Station Selection for STC for Measurement 6	** V **	
STCSEL_FAST	Station Selection for STC for DT_FAST	** V **	
STCSEL_SLOW TRMIN	Station Selection for STC for DT_SLOW Alteration Detection Minimum Transmitter Receiver Sp	** V **	
IKWIIN	Alteration Detection willimidin Transmitter Receiver Sp	3.0	FT
TX_AMP	Transmitter Amplitude Factor	** V **	
U_CE_CBLG7 U CE CBLG8	CBL Gate Width 7 for Cement Evaluation CBL Gate Width 8 for Cement Evaluation	80 80	US US
U CE NMSG7	Near Minimum Sliding Gate 7 for Cement Evaluation	220	US
U_CE_NMSG8	Near Minimum Sliding Gate 8 for Cement Evaluation	220	US
U_CE_SGDT7 U_CE_SGDT8	Sliding Gate Delta-T 7 for Cement Evaluation Sliding Gate Delta-T 8 for Cement Evaluation	57 57	US/F US/F
U_SLL1_MAST	MAST DSTC Slowness Lower Limit 1	40	US/F
U_SLL2_MAST	MAST DSTC Slowness Lower Limit 2	40	US/F
U_SLL3_MAST U_SLL4_MAST	MAST DSTC Slowness Lower Limit 3 MAST DSTC Slowness Lower Limit 4	40 0	US/F US/F
U_SLL5_MAST	MAST DSTC Slowness Lower Limit 5	112	US/F
U_SLL6_MAST	MAST DSTC Slowness Lower Limit 6	112	US/F
U_SLL_FAST_MAST U_SLL_SLOW_MAST	MAST DSTC Slowness Lower Limit Fast MAST DSTC Slowness Lower Limit Slow	0	US/F US/F
U_SUL1_MAST	MAST DSTC Slowness Upper Limit 1	240	US/F
U_SUL2_MAST	MAST DSTC Slowness Upper Limit 2	240	US/F
U_SUL3_MAST U_SUL4_MAST	MAST DSTC Slowness Upper Limit 3 MAST DSTC Slowness Upper Limit 4	240 0	US/F US/F
U_SUL5_MAST	MAST DSTC Slowness Upper Limit 5	772	US/F
U_SUL6_MAST	MAST DSTC Slowness Upper Limit 6	772	US/F
U_SUL_FAST_MAST U_SUL_SLOW_MAST	MAST DSTC Slowness Upper Limit Fast MAST DSTC Slowness Upper Limit Slow	0	US/F US/F
EDTC-B: Enhanced I	OTS Cartridge	WATER	
BHFL BHS	Borehole Fluid Type Borehole Status	WATER OPEN	
ВНТ	Bottom Hole Temperature (used in calculations)	59	DEGC
BSCO	Borehole Salinity Correction Option	YES	
DPPM	Casing & Cement Thickness Correction Option Density Porosity Processing Mode	NO HIRS	
FSCO	Formation Salinity Correction Option	YES	
GCSE GDEV	Generalized Caliper Selection Average Angular Deviation of Borehole from Normal	HCAL 0	DEG
GGRD	Geothermal Gradient	0.018227	DC/M
GRSE	Generalized Mud Resistivity Selection	CHART_GEN_9	
GTSE HSCO	Generalized Temperature Selection Hole Size Correction Option	LINEAR_ESTIMATE YES	
ISSBAR	Barite Mud Switch	BARITE	
ISSBAR_EDTC	Nuclear Mud Type	NOBARITE	
MATR MCCO	Rock Matrix for Neutron Porosity Corrections Mud Cake Correction Option	LIMESTONE YES	
MCOR	Mud Correction	BARI	
MWCO	Mud Weight Correction Option	YES	
PTCO SDAT	Pressure/Temperature Correction Option Standoff Data Source	YES SOCN	
SHT	Surface Hole Temperature	20	DEGC
SOCN SOCO	Standoff Distance	0 YES	IN
TPOS EDTC	Standoff Correction Option EDTC Tool Centered/Eccentered	Eccentered	
BSP: Bridle SP	CD Novt Volve	•	BAV/
SPNV HOLEV: Integrated H	SP Next Value ole/Cement Volume	0	MV
BHS	Borehole Status	OPEN	
BHT FCD	Bottom Hole Temperature (used in calculations)	59 0.635	DEGC
GCSE	Future Casing (Outer) Diameter Generalized Caliper Selection	9.625 HCAL	IN
GDEV	Average Angular Deviation of Borehole from Normal	0	DEG
GGRD GRSE	Geothermal Gradient	0.018227 CHART GEN 9	DC/M
GRSE GTSE	Generalized Mud Resistivity Selection Generalized Temperature Selection	CHART_GEN_9 LINEAR_ESTIMATE	
HVCS	Integrated Hole Volume Caliper Selection	HCAL	
ISSBAR MATR	Barite Mud Switch Rock Matrix for Neutron Porosity Corrections	BARITE LIMESTONE	
SHT	Surface Hole Temperature	LIMESTONE 20	DEGC
STI: Stuck Tool Indic	ator	_	= =
IRED	Trigger for MAXIS First Positing Label	TDI	

	א וכ	Inggerior MAXIS First Neading Laber	IDL		
S	ΓKT	STI Stuck Threshold	0.762	M	
TI	DD	Total Depth – Driller	2313.00	M	
TI	DL	Total Depth – Logger	1388.00	M	
	System and Miscella				
A	LTDPCHAN	Name of alternate depth channel	MeasuredDepth		
	SAL	Borehole Salinity	80850.00	PPM	
	SIZ	Current Casing Size	13.375	IN	
_	WEI	Casing Weight	67.90	LB/F	
_	FD	Drilling Fluid Density	1.15	G/C3	
D		Depth Offset for Playback	0.0	M	
	_EV	Fluid Level	0.00	M	
	ST	Mud Sample Temperature	20.20	DEGC	
	BVSADP	Use alternate depth channel for playback	NO		
PI	_	Playback Processing	RECOMPUTE		
	MFS	Resistivity of Mud Filtrate Sample	0.0710	ОНММ	
R		Resistivity of Connate Water	1.0000	OHMM	
				-	
TI T\	O WS	Total Depth Temperature of Connate Water Sample	2313 37.78	M DEGC	

Format: APACHE_D500 Vertical Scale: 1:500 Graphics File Created: 12-Mar-2008 01:47

OP System Version: 15C0-309

MCM

HILTB-FTB SRPC-3546-Q1_2008_OP15_b HRLT-B SRPC-3546-Q1_2008_OP15_b

PPC1-B SRPC-3546-Q1_2008_OP15_b MAXS-B SKK-3442-MAST_b SKK-3442-MAST_b EDTC-B SKK-3493-EDTCB_b

BSP SRPC-3546-Q1_2008_OP15_b

Input DLIS Files

DEFAULT TLD_MCFL_CNL_HRLA_038PUP FN:51 PRODUCER 12-Mar-2008 01:24 1391.0 M 840.5 M

Output DLIS Files

DEFAULT TLD_MCFL_CNL_HRLA_035PUP FN:36 PRODUCER 12-Mar-2008 01:47 CUSTOMER TLD_MCFL_CNL_HRLA_035PUC FN:37 CUSTOMER 12-Mar-2008 01:47

Schlumberger

Calibrations

MAXIS Field Log

		Calibration and	Check Summary				
Measurement	Nominal	Master	Before	After	Change	Limit	Units
High resolution Integrated Logging Tool–D	TS Wellsite Calibra	tion – Stab Mea	surement Summa	ary			
Before: 26-Feb-2008 11:17							
BS Window Ratio	0.7624	N/A	0.7602	N/A	N/A	N/A	
BS Window Sum	10750	N/A	10980	N/A	N/A	N/A	CPS
SS Window Ratio	0.4883	N/A	0.4862	N/A	N/A	N/A	
SS Window Sum	10370	N/A	10360	N/A	N/A	N/A	CPS
LS Window Ratio	0.2968	N/A	0.2999	N/A	N/A	N/A	
LS Window Sum	1160	N/A	1179	N/A	N/A	N/A	CPS
High resolution Integrated Logging Tool–D	TS Wellsite Calibra	tion – Photo-m	ultiplier High Volta	ges Calibration	S		
Before: 26-Feb-2008 11:17							
BS PM High Voltage (Command)	1227	N/A	1249	N/A	N/A	N/A	V
SS PM High Voltage (Command)	1921	N/A	1901	N/A	N/A	N/A	V
LS PM High Voltage (Command)	1407	N/A	1418	N/A	N/A	N/A	V
High resolution Integrated Logging Tool-D	TS Wellsite Calibra	tion – Crystal Q	uality Resolutions	Calibration			
Before: 26-Feb-2008 11:17		,	,				
PS Crystal Passilytian	0.075	NI/A	0.067	NI/A	NI/A	NI/A	0/

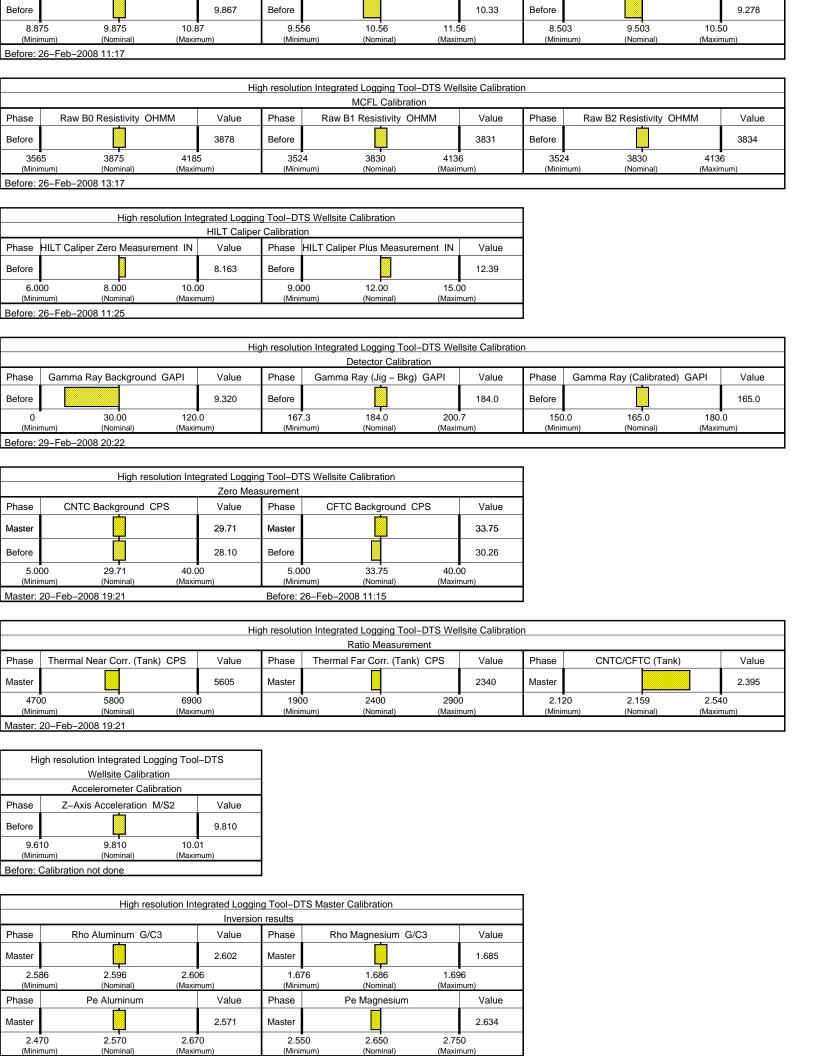
BS Crystal Resolution	9.675	N/A	9.007	N/A	N/A	N/A	70
SS Crystal Resolution	10.56	N/A	10.33	N/A	N/A	N/A	%
LS Crystal Resolution	9.503	N/A	9.278	N/A	N/A	N/A	%
High resolution Integrated Logging Tool-DTS W	alleita Calibratio	n – MCEL Calibr	ation				
Before: 26–Feb–2008 13:17	elisite Calibration	II - IVICI L Calibr	ation				
Raw B0 Resistivity	3875	N/A	3878	N/A	N/A	N/A	ОНММ
Raw B1 Resistivity	3830	N/A	3831	N/A	N/A	N/A	OHMM
Raw B2 Resistivity	3830	N/A	3834	N/A	N/A	N/A	OHMM
			0				
High resolution Integrated Logging Tool–DTS W Before: 26–Feb–2008 11:25	elisite Calibration	n – HILT Caliper	Calibration				
HILT Caliper Zero Measurement	8.000	N/A	8.163	N/A	N/A	N/A	IN
HILT Caliper Plus Measurement	12.00	N/A	12.39	N/A	N/A	N/A	iN
High resolution Integrated Logging Tool-DTS W	ellsite Calibration	n – Detector Cali	ibration				
Before: 29-Feb-2008 20:22							
Gamma Ray Background	30.00	N/A	9.320	N/A	N/A	N/A	GAPI
Gamma Ray (Jig – Bkg) Gamma Ray (Calibrated)	184.0 165.0	N/A N/A	184.0 165.0	N/A N/A	N/A N/A	16.73 15.00	GAPI GAPI
Ganina Ray (Galibrateu)	103.0	IN/A	103.0	IN/A	IN/A	13.00	GAFI
High resolution Integrated Logging Tool-DTS W	ellsite Calibratio	n – Zero Measur	ement				
Master: 20-Feb-2008 19:21 Before: 26-Feb-2							
CNTC Background	29.71	29.71	28.10	N/A	N/A	4.457	CPS
CFTC Background	33.75	33.75	30.26	N/A	N/A	5.063	CPS
		5 14					
High resolution Integrated Logging Tool–DTS W Master: 20–Feb–2008 19:21	elisite Calibration	n – Ratio Measu	rement				
Thermal Near Corr. (Tank)	5800	5605	N/A	N/A	N/A	N/A	CPS
Thermal Near Corr. (Tank)	2400	2340	N/A	N/A	N/A	N/A	CPS
CNTC/CFTC (Tank)	2.159	2.395	N/A	N/A	N/A	N/A	0. 0
, ,							
High resolution Integrated Logging Tool-DTS W	ellsite Calibration	n – Acceleromet	er Calibration				
Before: Calibration not done							
Z–Axis Acceleration	9.810	N/A	9.810	N/A	N/A	N/A	M/S2
High resolution Integrated Logging Tool-DTS Ma	actor Calibration	Inversion resu	ılte				
Master: 20–Feb–2008 21:02	aster Calibration	- IIIversion resc	ii (5				
Rho Aluminum	2.596	2.602					G/C3
Rho Magnesium	1.686	1.685					G/C3
Pe Aluminum	2.570	2.571					
Pe Magnesium	2.650	2.634					
		5					
High resolution Integrated Logging Tool–DTS M	aster Calibration	 Deviation Sun 	nmary				
Master: 20-Feb-2008 21:02 BS Average Deviation	0	0.5701					%
BS Max Deviation	0	1.350					%
SS Average Deviation	0	0.3068					%
SS Max Deviation	0	0.7734					%
LS Average Deviation	0	0.6760					%
LS Max Deviation	0	1.772					%
High Resolution Laterolog Array – B Wellsite Ca	libration – HRLI	M01					
Before: 29-Feb-2008 19:20 HRLT M0-M1 Voltage Plus - 0	0	N/A	-318.2	N/A	N/A	9.681	UV
HRLT M0-M1 Voltage Plus – 0 HRLT M0-M1 Voltage Plus – 1	0	N/A N/A	-316.2 -355.9	N/A N/A	N/A N/A	9.681	UV
HRLT M0-M1 Voltage Plus – 2	0	N/A	-358.0	N/A	N/A	9.681	ÜV
HRLT M0-M1 Voltage Plus – 3	0	N/A	-342.3	N/A	N/A	9.681	UV
HRLT M0-M1 Voltage Plus - 4	0	N/A	-325.3	N/A	N/A	9.681	UV
HRLT M0-M1 Voltage Plus - 5	0	N/A	-329.9	N/A	N/A	9.681	UV
HRLT M0-M1 Voltage Plus – 6	0	N/A	315.1	N/A	N/A	9.681	UV
HRLT M0-M1 Voltage Plus - 7	0	N/A	-322.7	N/A	N/A	9.681	UV
· · · · · · · · · · · · · · · · · · ·	likanatian IIDIT						
High Resolution Laterolog Array – B Wellsite Ca	libration – HRLT	M12					
Before: 29-Feb-2008 19:20			1749	N/A	N/A	53.42	UV
Before: 29–Feb–2008 19:20 HRLT M1–M2 Voltage Plus – 0	libration – HRLT 0 0	M12 N/A N/A	1749 1957	N/A N/A	N/A N/A	53.42 53.42	UV UV
Before: 29-Feb-2008 19:20	0	N/A					
Before: 29-Feb-2008 19:20 HRLT M1-M2 Voltage Plus - 0 HRLT M1-M2 Voltage Plus - 1 HRLT M1-M2 Voltage Plus - 2 HRLT M1-M2 Voltage Plus - 3	0 0	N/A N/A N/A N/A	1957 1963 1876	N/A N/A N/A	N/A N/A N/A	53.42 53.42 53.42	UV
Before: 29-Feb-2008 19:20 HRLT M1-M2 Voltage Plus - 0 HRLT M1-M2 Voltage Plus - 1 HRLT M1-M2 Voltage Plus - 2 HRLT M1-M2 Voltage Plus - 3 HRLT M1-M2 Voltage Plus - 4	0 0 0 0	N/A N/A N/A N/A N/A	1957 1963 1876 1783	N/A N/A N/A N/A	N/A N/A N/A N/A	53.42 53.42 53.42 53.42	UV UV UV
Before: 29-Feb-2008 19:20 HRLT M1-M2 Voltage Plus - 0 HRLT M1-M2 Voltage Plus - 1 HRLT M1-M2 Voltage Plus - 2 HRLT M1-M2 Voltage Plus - 3 HRLT M1-M2 Voltage Plus - 4 HRLT M1-M2 Voltage Plus - 5	0 0 0 0 0	N/A N/A N/A N/A N/A N/A	1957 1963 1876 1783 1810	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	53.42 53.42 53.42 53.42 53.42	UV UV UV UV
Before: 29-Feb-2008 19:20 HRLT M1-M2 Voltage Plus - 0 HRLT M1-M2 Voltage Plus - 1 HRLT M1-M2 Voltage Plus - 2 HRLT M1-M2 Voltage Plus - 3 HRLT M1-M2 Voltage Plus - 4 HRLT M1-M2 Voltage Plus - 5 HRLT M1-M2 Voltage Plus - 6	0 0 0 0 0 0	N/A N/A N/A N/A N/A N/A	1957 1963 1876 1783 1810 –1741	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	53.42 53.42 53.42 53.42 53.42 53.42	UV UV UV UV UV
Before: 29-Feb-2008 19:20 HRLT M1-M2 Voltage Plus - 0 HRLT M1-M2 Voltage Plus - 1 HRLT M1-M2 Voltage Plus - 2 HRLT M1-M2 Voltage Plus - 3 HRLT M1-M2 Voltage Plus - 4 HRLT M1-M2 Voltage Plus - 5	0 0 0 0 0	N/A N/A N/A N/A N/A N/A	1957 1963 1876 1783 1810	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	53.42 53.42 53.42 53.42 53.42	UV UV UV UV
Before: 29-Feb-2008 19:20 HRLT M1-M2 Voltage Plus - 0 HRLT M1-M2 Voltage Plus - 1 HRLT M1-M2 Voltage Plus - 2 HRLT M1-M2 Voltage Plus - 3 HRLT M1-M2 Voltage Plus - 4 HRLT M1-M2 Voltage Plus - 5 HRLT M1-M2 Voltage Plus - 6 HRLT M1-M2 Voltage Plus - 7	0 0 0 0 0 0 0	N/A N/A N/A N/A N/A N/A N/A	1957 1963 1876 1783 1810 –1741	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	53.42 53.42 53.42 53.42 53.42 53.42	UV UV UV UV UV
Before: 29-Feb-2008 19:20 HRLT M1-M2 Voltage Plus - 0 HRLT M1-M2 Voltage Plus - 1 HRLT M1-M2 Voltage Plus - 2 HRLT M1-M2 Voltage Plus - 3 HRLT M1-M2 Voltage Plus - 4 HRLT M1-M2 Voltage Plus - 5 HRLT M1-M2 Voltage Plus - 6 HRLT M1-M2 Voltage Plus - 7 High Resolution Laterolog Array - B Wellsite Ca	0 0 0 0 0 0 0	N/A N/A N/A N/A N/A N/A N/A	1957 1963 1876 1783 1810 –1741	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	53.42 53.42 53.42 53.42 53.42 53.42	UV UV UV UV UV
Before: 29-Feb-2008 19:20 HRLT M1-M2 Voltage Plus - 0 HRLT M1-M2 Voltage Plus - 1 HRLT M1-M2 Voltage Plus - 2 HRLT M1-M2 Voltage Plus - 3 HRLT M1-M2 Voltage Plus - 4 HRLT M1-M2 Voltage Plus - 5 HRLT M1-M2 Voltage Plus - 6 HRLT M1-M2 Voltage Plus - 7	0 0 0 0 0 0 0	N/A N/A N/A N/A N/A N/A N/A	1957 1963 1876 1783 1810 –1741	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	53.42 53.42 53.42 53.42 53.42 53.42	UV UV UV UV UV
Before: 29-Feb-2008 19:20 HRLT M1-M2 Voltage Plus - 0 HRLT M1-M2 Voltage Plus - 1 HRLT M1-M2 Voltage Plus - 2 HRLT M1-M2 Voltage Plus - 3 HRLT M1-M2 Voltage Plus - 4 HRLT M1-M2 Voltage Plus - 5 HRLT M1-M2 Voltage Plus - 6 HRLT M1-M2 Voltage Plus - 7 High Resolution Laterolog Array - B Wellsite Ca Before: 29-Feb-2008 19:20	0 0 0 0 0 0 0 0	N/A N/A N/A N/A N/A N/A N/A N/A	1957 1963 1876 1783 1810 –1741 1781	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	53.42 53.42 53.42 53.42 53.42 53.42 53.42	UV UV UV UV UV UV
Before: 29-Feb-2008 19:20 HRLT M1-M2 Voltage Plus - 0 HRLT M1-M2 Voltage Plus - 1 HRLT M1-M2 Voltage Plus - 2 HRLT M1-M2 Voltage Plus - 3 HRLT M1-M2 Voltage Plus - 4 HRLT M1-M2 Voltage Plus - 5 HRLT M1-M2 Voltage Plus - 6 HRLT M1-M2 Voltage Plus - 7 High Resolution Laterolog Array - B Wellsite Ca Before: 29-Feb-2008 19:20 HRLT M2-M3 Voltage Plus - 0 HRLT M2-M3 Voltage Plus - 1 HRLT M2-M3 Voltage Plus - 2	0 0 0 0 0 0 0 0 libration – HRLT 0 0	N/A N/A N/A N/A N/A N/A N/A N/A	1957 1963 1876 1783 1810 –1741 1781	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	53.42 53.42 53.42 53.42 53.42 53.42 53.42	UV UV UV UV UV UV UV
Before: 29-Feb-2008 19:20 HRLT M1-M2 Voltage Plus - 0 HRLT M1-M2 Voltage Plus - 1 HRLT M1-M2 Voltage Plus - 2 HRLT M1-M2 Voltage Plus - 3 HRLT M1-M2 Voltage Plus - 4 HRLT M1-M2 Voltage Plus - 5 HRLT M1-M2 Voltage Plus - 6 HRLT M1-M2 Voltage Plus - 7 High Resolution Laterolog Array - B Wellsite Ca Before: 29-Feb-2008 19:20 HRLT M2-M3 Voltage Plus - 0 HRLT M2-M3 Voltage Plus - 1 HRLT M2-M3 Voltage Plus - 2 HRLT M2-M3 Voltage Plus - 2 HRLT M2-M3 Voltage Plus - 2 HRLT M2-M3 Voltage Plus - 3	0 0 0 0 0 0 0 0 libration – HRLT 0 0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1957 1963 1876 1783 1810 –1741 1781 1736 1947 1956 1875	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	53.42 53.42 53.42 53.42 53.42 53.42 53.42 53.42 53.42 53.42 53.42	UV UV UV UV UV UV UV UV
Before: 29-Feb-2008 19:20 HRLT M1-M2 Voltage Plus - 0 HRLT M1-M2 Voltage Plus - 1 HRLT M1-M2 Voltage Plus - 2 HRLT M1-M2 Voltage Plus - 3 HRLT M1-M2 Voltage Plus - 4 HRLT M1-M2 Voltage Plus - 5 HRLT M1-M2 Voltage Plus - 6 HRLT M1-M2 Voltage Plus - 7 High Resolution Laterolog Array - B Wellsite Ca Before: 29-Feb-2008 19:20 HRLT M2-M3 Voltage Plus - 0 HRLT M2-M3 Voltage Plus - 1 HRLT M2-M3 Voltage Plus - 2	0 0 0 0 0 0 0 0 libration – HRLT 0 0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1957 1963 1876 1783 1810 –1741 1781 1736 1947	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	53.42 53.42 53.42 53.42 53.42 53.42 53.42 53.42 53.42 53.42	UV UV UV UV UV UV UV

HRLT M2-M3 Voltage Plus - 6 HRLT M2-M3 Voltage Plus - 7	0 0	N/A N/A	-1721 1781	N/A N/A	N/A N/A	53.42 53.42	UV UV
High Resolution Laterolog Array – B We	-			14//	1471	00.12	0.
Before: 29–Feb–2008 19:20		IIVET VOT					
HRLT A3-A4 Voltage Plus - 0	0	N/A	68550	N/A	N/A	2100	UV
HRLT A3-A4 Voltage Plus - 1	0	N/A	77150	N/A	N/A	2100	UV
HRLT A3-A4 Voltage Plus - 2	0	N/A	77730	N/A	N/A	2100	UV
HRLT A3-A4 Voltage Plus - 3	0	N/A	74680	N/A	N/A	2100	UV
HRLT A3-A4 Voltage Plus - 4	0	N/A	70640	N/A	N/A	2100	UV
HRLT A3–A4 Voltage Plus – 5	0	N/A	71700	N/A	N/A	2100	UV
HRLT A3–A4 Voltage Plus – 6	0	N/A	-67220	N/A	N/A	2100	UV
HRLT A3-A4 Voltage Plus - 7	0	N/A	70000	N/A	N/A	2100	UV
High Resolution Laterolog Array – B We	llsite Calibration – F	HRLT V45					
Before: 29–Feb–2008 19:20	0	NI/A	00000	NI/A	NI/A	2400	111/
HRLT A4-A5 Voltage Plus - 0	0 0	N/A N/A	68390	N/A N/A	N/A	2100	UV UV
HRLT A4-A5 Voltage Plus - 1 HRLT A4-A5 Voltage Plus - 2	0	N/A N/A	77030 77590	N/A N/A	N/A N/A	2100 2100	UV
HRLT A4–A5 Voltage Plus – 3	0	N/A	74510	N/A	N/A	2100	UV
HRLT A4–A5 Voltage Plus – 4	0	N/A	70470	N/A	N/A	2100	UV
HRLT A4–A5 Voltage Plus – 5	Õ	N/A	71520	N/A	N/A	2100	UV
HRLT A4–A5 Voltage Plus – 6	0	N/A	-67110	N/A	N/A	2100	UV
HRLT A4–A5 Voltage Plus – 7	0	N/A	70000	N/A	N/A	2100	UV
ring relagerise	ŭ						0.
High Resolution Laterolog Array – B We	llsite Calibration – F	HRLT V56					
Before: 29–Feb–2008 19:20	•	N1/A	00540	N1/A	N1/A	0400	1.07
HRLT A5-A6 Voltage Plus - 0	0	N/A	68510	N/A	N/A	2100	UV
HRLT A5-A6 Voltage Plus - 1	0 0	N/A N/A	77320 77840	N/A	N/A N/A	2100	UV UV
HRLT A5-A6 Voltage Plus - 2	0	N/A N/A		N/A N/A	N/A N/A	2100	UV
HRLT A5-A6 Voltage Plus - 3	0	N/A N/A	74720 70600			2100	UV
HRLT A5-A6 Voltage Plus - 4 HRLT A5-A6 Voltage Plus - 5	0	N/A N/A	70600 71640	N/A N/A	N/A N/A	2100 2100	UV
HRLT A5–A6 Voltage Plus – 6	0	N/A	-67390	N/A	N/A	2100	UV
HRLT A5–A6 Voltage Plus – 7	0	N/A	70000	N/A	N/A	2100	UV
THE THE THE VEHEGE THE	v	1471	70000	1471		2100	0.
High Resolution Laterolog Array - B We	llsite Calibration – H	IRLT VTP					
Before: 29-Feb-2008 19:20							
HRLT Torpedo-M0 Voltage - 0	0	N/A	-68130	N/A	N/A	2100	UV
HRLT Torpedo-M0 Voltage - 1	0	N/A	-77110	N/A	N/A	2100	UV
HRLT Torpedo-M0 Voltage - 2	0	N/A	-77730	N/A	N/A	2100	UV
HRLT Torpedo-M0 Voltage - 3	0	N/A	-74700	N/A	N/A	2100	UV
HRLT Torpedo-M0 Voltage - 4	0	N/A	-70660	N/A	N/A	2100	UV
HRLT Torpedo–M0 Voltage – 5	0	N/A	–71700	N/A	N/A	2100	UV
HRLT Torpedo–M0 Voltage – 6	0	N/A	67120	N/A	N/A	2100	UV
HRLT Torpedo-M0 Voltage - 7	0	N/A	-70000	N/A	N/A	2100	UV
High Resolution Laterolog Array – B We	llsite Calibration – F	HRLT VBD					
Before: 29-Feb-2008 19:20 HRLT Bridle#9-M0 Voltage - 0	0	N/A	-68070	N/A	N/A	2100	UV
HRLT Bridle#9-M0 Voltage - 0 HRLT Bridle#9-M0 Voltage - 1	0	N/A N/A	-68070 -76870	N/A N/A	N/A N/A	2100	UV
HRLT Bridle#9–M0 Voltage – 2	0	N/A	-77500	N/A	N/A	2100	UV
HRLT Bridle#9–M0 Voltage – 3	0	N/A	-74520	N/A	N/A	2100	UV
HRLT Bridle#9–M0 Voltage – 4	0	N/A	-70540	N/A	N/A	2100	UV
HRLT Bridle#9–M0 Voltage – 5	Õ	N/A	-71630	N/A	N/A	2100	UV
HRLT Bridle#9–M0 Voltage – 6	0	N/A	66910	N/A	N/A	2100	UV
HRLT Bridle#9-M0 Voltage - 7	0	N/A	-70000	N/A	N/A	2100	UV
High Resolution Laterolog Array – B We	llsite Calibration – F	IRLT ISO					
Before: 29-Feb-2008 19:20							
HRLT Source Current Plus - 0	0	N/A	283.9	N/A	N/A	8.520	UA
HRLT Source Current Plus – 1	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 2	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 3	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 4	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 5	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 6 HRLT Source Current Plus – 7	0 0	N/A N/A	281.1 281.1	N/A N/A	N/A N/A	8.520 8.520	UA UA
TINE TOURGE OUTERLETUS - 1	U	11/7	201.1	111/71	IN/A	0.320	07
High Resolution Laterolog Array – B We Before: 29–Feb–2008 19:20	llsite Calibration – F	HRLT MV					
HRLT Vertical Voltage PI – 0	0	N/A	-320.5	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 1	0	N/A	-351.4	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI = 1	0	N/A	-351.4 -351.9	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI = 2	0	N/A	-331.9 -334.5	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI = 3	0	N/A	-334.3 -314.4	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 5	0	N/A	-314.4 -334.3	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI = 3	0	N/A	324.3	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI = 7	0	N/A	-322.7	N/A	N/A	9.681	UV
	Ŭ		V,	. 47.1	. 4// 1	0.001	J.
Powered Positioning Deveice/Caliper 1 \	Wellsite Calibration	 PPC1 Caliper C 	alibration				

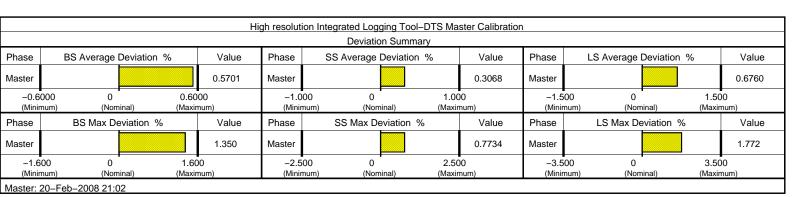
Before: Calibration out of date 19-Jun-200	7 15:30						
PPC1 Radius 1 Raw Small Radius	3.500	N/A	3.996	N/A	N/A	0.5000	IN
PPC1 Radius 1 Raw Large Radius	8.000	N/A	8.071	N/A	N/A	0.5000	IN
PPC1 Radius 2 Raw Small Radius	3.500	N/A	3.288	N/A	N/A	0.5000	IN
PPC1 Radius 2 Raw Large Radius	8.000	N/A	7.596	N/A	N/A	0.5000	IN
PPC1 Radius 3 Raw Small Radius	3.500	N/A	3.747	N/A	N/A	0.5000	IN
PPC1 Radius 3 Raw Large Radius	8.000	N/A	8.101	N/A	N/A	0.5000	IN
PPC1 Radius 4 Raw Small Radius	3.500	N/A	3.359	N/A	N/A	0.5000	IN
PPC1 Radius 4 Raw Large Radius	8.000	N/A	7.738	N/A	N/A	0.5000	IN
Enhanced DTS Cartridge Wellsite Calibration Before: Calibration not done	n – EDTC Acceler	ometer Calibrat	ion				
EDTC Z-Axis Acceleration	9.810	N/A	9.807	N/A	N/A	N/A	M/S2
Enhanced DTS Cartridge Wellsite Calibration Before: 29–Feb–2008 19:22	n – Detector Calib	ration					
Gamma Ray (Jig – Bkg)	166.4	N/A	166.4	N/A	N/A	15.12	GAPI
Gamma Ray (Calibrated)	165.0	N/A	165.0	N/A	N/A	15.00	GAPI

The GLS-VJ source activity is acceptable.

The HGNS Neutron Master Calibration was done with the following parameters :


NCT-B Water Temperature 20.0 DEGC. Thermal Housing Size 3.376 IN. NSR-F serial number 5224

High resolution Integrated L	ogging Tool-DTS / Equipment Identification	
Primary Equipment: HILT high-Resolution Mechanical Sonde HILT Rxo Gamma-ray Device HILT Micro Cylindrically Focused Log Dev GR Logging Source HILT High Res. Control Cartridge HILT Gamma-Ray Neutron Sonde-DTS HGNS Gamma-Ray Device	HRMS – B HRGD – B MCFL – GLS – VJ 5334 HRCC – B HGNS – B HGR –	
HGNS Neutron Detector with Alpha Source	HCNT -	
Auxiliary Equipment:	NOT D	
Neutron Calibration Tank	NCT – B	
Gamma Source Radioactive	GSR – U/Y	
HGNS Housing	HGNH –	


			Hig	h resolutio	on Integrated Logging Tool-DT	S Wel	Isite Calibratio	n			
	Stab Measurement Summary										
Phase	BS Window Ratio		Value	Phase	SS Window Ratio		Value	Phase	LS Window Ratio		Value
Before			0.7602	Before			0.4862	Before			0.2999
0.72 (Minir		0.80 (Maxim		0.46 (Minim		0.51 (Maxin		0.2820 (Minimum	0.2968) (Nominal)	0.31 (Maxin	
Phase	BS Window Sum CPS		Value	Phase	SS Window Sum CPS		Value	Phase	LS Window Sum CPS		Value
Before			10980	Before	<u> </u>		10360	Before			1179
102 (Minir		1129 (Maxim	-	9854 (Minim		1089 (Maxin		1102 (Minimum	1160) (Nominal)	1218 (Maxin	
Before: 2	26-Feb-2008 11:17										

			Hiç	h resoluti	ion Integrated Loggi	ng Tool-DTS Wel	Isite Calibratio	n			
				Р	hoto-multiplier High	n Voltages Calibra	tions				
Phase	BS PM High Voltag	ge (Command) V	Value	Phase	SS PM High Voltag	e (Command) V	Value	Phase	LS PM High Voltag	ge (Command) V	Value
Before			1249	Before			1901	Before			1418
	1127 1227 1327 1821 1921 2021 1307 1407 1507 (Minimum) (Nominal) (Maximum) (Minimum) (Mominal) (Maximum) (Minimum) (Mominal) (Maximum)										
Before: 2	efore: 26-Feb-2008 11:17										

		Hig	h resoluti	on Integrated Logging Tool-DTS We	Isite Calibration	า				
	Crystal Quality Resolutions Calibration									
Phase	BS Crystal Resolution %	Value	Phase	SS Crystal Resolution %	Value	Phase	LS Crystal Resolution %	Value		
4										

Master: 20-Feb-2008 21:02

	High resolution Integrated Logging Tool-DTS Master Calibration											
	Zero Measurement											
Phase	Phase CNTC Background CPS Value Phase CFTC Background CPS Value											
Master				29.71	Master			33.75				
5.000 29.71 40.00 5.000 33.75 40.00 (Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum)												
Master:	Master: 20–Feb–2008 19:21											

	High resolution Integrated Logging Tool-DTS Master Calibration											
	Tank Measurement											
Phase	nase Thermal Near Corr. (Tank) CPS Value Phase Thermal Far Corr. (Tank) CPS Value Phase CNTC/CFTC (Tank) Value											
Master		5605	Master			2340	Master			2.395		
470 (Minir		00 imum)	190 (Minin				2.120 (Minimu			540 kimum)		
Master: 2	aster: 20–Feb–2008 19:21											

High Resolution Laterolog Array – B / Equipment Identification

Primary Equipment:
HRLT Sonde
HRLS – B

Auxiliary Equipment:
HRLT lower Housing
HRLT Lower Cartridge
HRLT Lower Cartridge
HRLT upper Housing
HRUT = B
HRLT upper Cartridge
HRUT = B
HRUT = B

	High Resolution Laterolog Array – B Wellsite Calibration												
	HRLT M01												
ldx	Idx Phase HRLT M0-M1 Voltage Plus UV Value Nominal Maximum Minimum												
0	Before		-318.2	-322.7	-280.7	-379.7							
1	Before		-355.9	-322.7	-280.7	-379.7							
2	Before		-358.0	-322.7	-280.7	-379.7							
3	Before		-342.3	-322.7	-280.7	-379.7							
4	Before		-325.3	-322.7	-280.7	-379.7							
5	Before		-329.9	-322.7	-280.7	-379.7							
6	Before		315.1	322.7	379.7	280.7							
7	Before		-322.7	-322.7	-280.7	-379.7							
	(Minimum) (Nominal) (Maximum)												
Befo	re: 29-Fe	eb-2008 19:20											
	Selote, 23-1 60-2000 13.20												

		High Resolution Laterolo	g Array – B We	Ilsite Calibratio	n		
		H	RLT M12				
Idx Phase HRLT M1-M2 Voltage Plus UV Value Nominal Maximum Minimum							
0	Before		1749	1781	2095	1549	
1	Before		1957	1781	2095	1549	

2	Before			1963	1781	2095	1549
3	Before			1876	1781	2095	1549
4	Before			1783	1781	2095	1549
5	Before			1810	1781	2095	1549
6	Before			-1741	-1781	-1549	-2095
7	Before			1781	1781	2095	1549
	(Minir	num) (Nom	inal) (Maxir	num)			
Befo	re: 29-Fe	eb-2008 19:20					

		High Resolution Laterolog	g Array – B We	ellsite Calibratio	n	
		HI	RLT M23			
ldx	Phase	HRLT M2-M3 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		1736	1781	2095	1549
1	Before		1947	1781	2095	1549
2	Before		1956	1781	2095	1549
3	Before		1875	1781	2095	1549
4	Before		1778	1781	2095	1549
5	Before		1806	1781	2095	1549
6	Before		-1721	-1781	-1549	-2095
7	Before		1781	1781	2095	1549
	(Minir	num) (Nominal) (Maxir	num)			
Befo	re: 29-Fe	eb-2008 19:20				
				•		

		High Resolution Laterolog	g Array – B We	Ilsite Calibratio	n					
		Н	RLT V34							
ldx	Phase	HRLT A3-A4 Voltage Plus UV	Value	Nominal	Maximum	Minimum				
0	Before		68550	70000	82360	60900				
1	Before		77150	70000	82360	60900				
2	Before		77730	70000	82360	60900				
3	Before		74680 70000 82360							
4	Before		70640	70000	82360	60900				
5	Before		71700	70000	82360	60900				
6	Before		-67220	-70000	-60900	-82360				
7	Before		70000	70000	82360	60900				
	(Minir	num) (Nominal) (Maxin	num)							
Befo	re: 29-Fe	eb-2008 19:20								

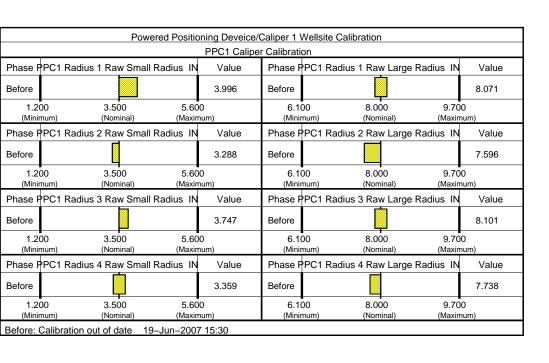
		High Resolution Laterological	g Array – B We	Ilsite Calibratio	n	
		Н	RLT V45			
ldx	Phase	HRLT A4-A5 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		68390	70000	82360	60900
1	Before		77030	70000	82360	60900
2	Before		77590	70000	82360	60900
3	Before		74510	70000	82360	60900
4	Before		70470	70000	82360	60900
5	Before		71520	70000	82360	60900
6	Before		-67110	-70000	-60900	-82360
7	Before		70000	70000	82360	60900

	(Minir		num)			
Beto	re: 29–Fe	eb-2008 19:20				
		High Resolution Laterolo	g Array – B We RLT V56	Ilsite Calibratio	n	
ldx	Phase	HRLT A5-A6 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		68510	70000	82360	60900
1	Before		77320	70000	82360	60900
2	Before		77840	70000	82360	60900
3	Before		74720	70000	82360	60900
4	Before		70600	70000	82360	60900
5	Before		71640	70000	82360	60900
6	Before		-67390	-70000	-60900	-82360
7	Before		70000	70000	82360	60900
	(Minir	num) (Nominal) (Maxir	num)			
Befo	re: 29–Fe	eb-2008 19:20				
		High Resolution Laterolo	g Array – B We	ellsite Calibratio	n	
ldx	Phase	H HRLT Torpedo-M0 Voltage Plus UV	RLT VTP Value	Nominal	Maximum	Minimum
0	Before	TIKET Torpedo-Ivio Voltage Flus OV	-68130	-70000	-60900	-82360
1	Before		-77110	-70000	-60900	-82360
2	Before		-77730	-70000	-60900	-82360
3	Before		-74700	-70000	-60900	-82360
4	Before		-70660	-70000	-60900	-82360
5	Before		-71700	-70000	-60900	-82360
6	Before		67120	70000	82360	60900
7	Before		-70000	-70000	-60900	-82360
	(Minir	num) (Nominal) (Maxir	num)			
Befo		eb-2008 19:20				
		High Resolution Laterolo	α Array – R We	lleite Calibratio	n	
			RLT VBD	none Galibratio		
ldx		HRLT Bridle#9-M0 Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		-68070	-70000	-60900	-82360
1	Before		-76870	-70000	-60900	-82360
2	Before		-77500	-70000	-60900	-82360
3	Before		-74520	-70000 	-60900	-82360
4	Before		-70540 	-70000 	-60900	-82360
5	Before		-71630	-70000 	-60900	-82360
6	Before		66910	70000	82360	60900
7	Before	<u> </u>	-70000	-70000	-60900	-82360
Befo	(Minir	mum) (Nominal) (Maxir eb-2008 19:20	num)			
2010	.5.20 16					
		High Resolution Laterolo	g Array – B We RLT ISO	llsite Calibratio	n	
ldx	Phase	HRLT Source Current Plus UA	Value	Nominal	Maximum	Minimum
0	Before		283.9	284.0	334.1	247.0
1	Before		281.1	281.1	330.7	244.4
2	Before		281.1	281.1	330.7	244.4

	D = f = ==		004.4	004.4	222.7	044.4
3	Before	L.	281.1	281.1	330.7	244.4
4	Before		281.1	281.1	330.7	244.4
5	Before		281.1	281.1	330.7	244.4
6	Before		281.1	281.1	330.7	244.4
7	Before		281.1	281.1	330.7	244.4
	(Minir	num) (Nominal) (Maxir	num)			
Befo	re: 29-Fe	eb-2008 19:20				

1			grandy DVVC	Ilsite Calibratio	I I	
		Н	RLT MV			
ldx	Phase	HRLT Vertical Voltage Plus UV	Value	Nominal	Maximum	Minimum
0	Before		-320.5	-322.7	-280.7	-379.7
1	Before		-351.4	-322.7	-280.7	-379.7
2	Before		-351.9	-322.7	-280.7	-379.7
3	Before		-334.5	-322.7	-280.7	-379.7
4	Before		-314.4	-322.7	-280.7	-379.7
5	Before		-334.3	-322.7	-280.7	-379.7
6	Before		324.3	322.7	379.7	280.7
7	Before		-322.7	-322.7	-280.7	-379.7
	(Minir	num) (Nominal) (Maxin	num)			
Befor	re: 29–Fe	eb-2008 19:20				

Powered Positioning Deveice/Caliper 1 / Equipment Identification


Primary Equipment:

PPC Powered Positioning Device/Caliper

PPC1 Caliper Standard

Auxiliary Equipment:

PPC1 – B PPC_ –

Multimode Array Sonic Power Cartridge / Equipment Identification

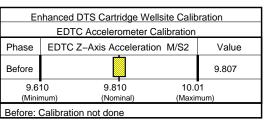
Primary Equipment:
Multimode Array Sonic Minimum Service So

Multimode Array Sonic Control Cartridge

MAMS – BA 8201 MAPC – BA 8198 Electronics Cartridge Housing

ECH - SD

8198


Enhanced DTS Cartridge / Equipment Identification

Primary Equipment:

EDTC Gamma Ray Detector EDTG – A/B Enhanced DTS Cartridge EDTC – B

Auxiliary Equipment: EDTC Housing

EDTH – B

			Er	hanced DTS Cartridge We	ellsite Calib	ration				
				Detector Calibra	ation					
Phase	Gamma Ray Background GAPI	Value	Phase	Gamma Ray (Jig – Bkg) GAPI	Value	Phase	Gamma Ray (Calibrated)	GAPI	Value
Before		7.742	Before			166.4	Before			165.0
0 (Minir	30.00 120 num) (Nominal) (Maxii		151 (Minir		181 (Maxin		150 (Minir		180. (Maxin	
Refore: 1	29_Feb_2008 19:22									

Company: Apache Northwest Pty Ltd

Schlumberger

Well: WASABI-1

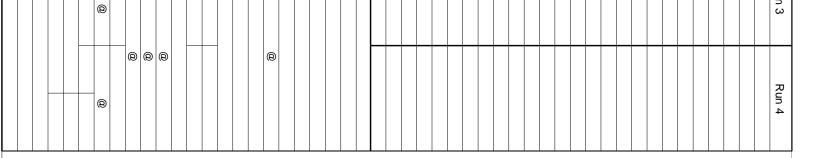
Field: Apache/VIC/P-58/WASABI-1

Rig: West Triton
Country: Australia

PEX-GR-HRLA-MSIP-5

Density-Neutron-GR-Resistivity-S

Scale 1:500


Wasabi -1 WASABI-1 SUITE-1 RUN-3, HLS RDT PRESSURE POINT & SAMPLING PROGRAMME 3/04/2008

RT-AHD = 39.02

			RT-AHD =	39.02										
	Actual	Actual	Actual		Time	Initial	Final		Initial	Final	Buildup	Time		
Pressure	Depth	Depth	Depth	Mobility	Pad	Hydrostation	Hydrostatio		Drawdown	Buildup	Time	Pad	Temp.	Remarks
Point #	mMDRT	mTVDRT	mTVDAHD	md/cp	Set	Pressure	Pressure	Volume	Pressure	Pressure	mins	Retracted	deg C	
				•		psia	psia	CC	psia	psia				
						•				·				
Suite 1 Run 3, Unable to RI	H pact 1500	m due to n	oor hole c	anditions										
Suite i Ruii 3, Oliable to Ri	li past 1500	ill due to p	l lole c	Jiiditions										
Wasabi-1														
Suite 1 Run 3														
04/03/08														
Correlated against Su	iite 1 - Run	2 Pex - Sor	nic. File #48	3 1500 - 12	65m.									
1	1268.5	1268.3	1229.3	1353.1	10:32	2295.39	2295.56	20		1761.04	-	10:37	56.80	20 cc draw down - insant build up. File 50
· ·				7000.1									00.00	
2	1274.5	1274.2	1235.2	1274.8	10:44	2306.45	2306.40	20		1769.79		10:48	56.50	20 cc draw down - instant build up. File 51
	1274.3	1214.2	1233.2	1274.0	10.44	2300.43	2300.40	20		1709.79		10.46	30.30	20 CC draw down - instant build up. 1 lie 31
3	1278	1277.7	1238.7	1161.7	10:53	2312.88	2312.83	20		1774.77		10:59	56.20	20 cc draw down - instant build up. File 52
4	1288	1287.6	1248.6	709.5	11:04	2330.42	2330.41			1788.56		11:09	56.30	20 cc draw down - instant build up. File 53
														Correlated against Suite 1 - Run 2 Pex - Sonic. File
														#54 1360m - 1315m.
														Partial lost seal - recycle DD (40cc) as did not draw
5	1328	1327.2	1288.2	2060.3	11:24	2401.34	2401.43	40		1841.5		11:33	56.6	below formation pressure. File #55
	1320	1321.2	1200.2	2000.3	11.24	2401.34	2401.43	40		1041.5		11.55	30.0	below formation pressure. The #55
	4000	4000.0	4000.0		44.40	0400.00	0400.04	00				44.44	F0 7	00 as draw days. No sast 51: "50
6	1329	1328.2	1289.2		11:40	2403.29	2403.34	20				11:44	56.7	20 cc draw down - No seal. File #56
6a	1329.5	1328.7	1289.7		11:52	2404.16	2404.11	20				11:58	56.7	20 cc draw down - No seal. File #57
6b	1328.8	1328.0	1289.0	1623.1	12:04	2402.88	2402.61	20		1842.49		12:07	56.6	20 cc draw down - Instant build up. File #58
Correlated against LWD fin	al data. File	#59	-											
7	1440	1437.0	1398.0	3032.0	12:28	2598.70	2598.64	20		1985.9		12:33	57.8	20 cc draw down - Instant build up. File #60
			.000.0	3002.0									00	
											}			

_	Actual	Actual	Actual		Time	Initial	Final		Initial	Final	Buildup	Time	_	
Pressure	Depth	Depth	Depth	Mobility	Pad	Hydrostatio					Time	Pad	Temp.	Remarks
Point #	mMDRT	mTVDRT	mTVDAHD	md/cp	Set		Pressure				mins	Retracted	deg C	
						psia	psia	CC	psia	psia				
1	1328	1327.2	1288.2	11270.8	13:02	2401.80	2401.82			1841.42		14:30		2 attempts due to plugging
														file #59-67
					13:26					1839.5psi -				
					13:30					flowing, res				
					13:34					rough 5.5Lti				
					13:42					res 0.331oh				
					13:51					/sec, res 0.4	ohm			
					14:01			se to 023 co						
					14:20		Fill chambe	er 1, 2, 3 SN	1 3300, SN :	3347 & SN 3	3351 @ 23	cc/sec, res	0.63 ohm	
					14:27		Chambers	filled to 380	0 psi over h	ydrostatic, 1	1841psi, 0.	63 ohm.		
					14:30		Off point							
2	1440.0	1437.0	1398.0	3032.0	15:21	2599.63	2599.60			1986.24			59.6	First attempt - partial blockage of flowline - pick up
														Second attempt lost seal - pick up & move 0.1m
					15:24		Commence	pump thro	ugh, 4.5cc/s	sec, 1986 ps	si flowing p	ressure, res	s 0.087 ohi	file #70-72
					15:27									
					15:35									
					15:37					nple. 3.4L p		07ohm		
										i i				
2	1440.0	1437.0	1398.0	3032.0	15:24 15:27 15:35		Commence 5cc/min, 18 Pressure fl	384psi and outling - s	dropping. 0. sanding up.	sec, 1986 ps 07ohm. Flov Pump at 6c	w line block c/sec	king.		Second attempt lost seal - pick up & move (

		Cablus				Run 1	Run 2	Ru
		O GIII UII	961111111111961.Âet.					
Company: Apach	Apache Northwest Pty Ltd							
,								
Well: WASABI-	\BI-1							
Field: Apach	Apache/VIC/P-58/WASABI-1							
Rig: West Triton	Triton Country:	y: Australia	2					
MDT-GR	GR GR							
	Suite-1 Run-3							
was MDT Pretest	retest							
	#	Elev.:						
IC/P nit -1 lorth	Northing: 5,739,963.350 m	G.L.	–27 m					
Stra ABI- he N ATIO	Easting : 522,993.588 m	D.F.	39 m					
pacl ass /AS/ pacl	nt Datum: AHD	Elev: 0 m						
A _l	Log Measured From: Drill Floor (RT)	_ 39.0 m above	above Perm. Datum					
any:	Drilling Measured From: Drill Floor (RT)							
Rig: Field: Locat Well: Comp	Max. Well Deviation 48 deg	Longitude 147 15' 49.147" E	Latitude 38 29' 18.157" S					
Logging Date	4-Mar-2008			Logging Date				
Run Number	3			Run Number				
Schlimberger Denth	Not Toggod			Schlimberger D	onth			
Bottom Log Interval	1440 m			Bottom Log Interval	val			
Top Log Interval	1268.5 m			Top Log Interval				
Casing Driller Size @ Depth	13.375 in @ 2313 m		@	Casing Driller Size @	lize @ Depth		(9)	
Casing Schlumberger	854 m			Casing Schlumberger	berger			
Type Fluid In Hole	KCI/Polymer			Type Fluid In Hole	ole			
	1.21 g/cm3 50 s			_	Viscosity			
M Fluid Loss PH	5 cm3 8.7			M Fluid Loss	PH			
	9 22		3		DIE		9	
RMF @ Measured Temperature	0.079 ohm.m @ 22 degC		9 (9	RMF @ Measured Temperature	RMF @ Measured Temperature		(P)	
RMC @ Measured Temperature	@		@	RMC @ Measu	RMC @ Measured Temperature		@	
TT	Press Press			Source RMF	RMC			
RM @ MRT RMF @ MRT	0.049 @ 59	(9)	@	RM @ MRT	RMF @ MRT	@	@	
Circulation Stopped Time	es 59 degC 59 10:25			Circulation Stopped	Circulation Stopped Time			
Logger On Bottom Time	me 4-Mar-2008 12:27	-		Logger On Bottom	om Time			
Unit Number Location	41 AUSL			Unit Number	Location			
Recorded By	A. Dandi/M.Dawson/K. AlBarhi			Recorded By				
Witnessed By	H.Little / A.Cruickshank			Witnessed By				

DEPTH SUMMARY LISTING

Date Created: 2-MAR-2008 16:47:03

Depth System Equipment

Depth Measuring	Device	Tension De	vice	Logging Cable			
Type: Serial Number: Calibration Date:	IDW-H 796 29-Jan-2008	Type: Serial Number: Calibration Date:	CMTD-B/A 1721 27-FEB-2008	Type: Serial Number: Length:	7–46ZV–XS 77178 7699.86 M		
Calibrator Serial Number: Calibration Cable Type: Wheel Correction 1: Wheel Correction 2:	1009 7–46ZV–XS –5 –5	Calibrator Serial Number: Calibration Gain: Calibration Offset:	1051 0.81 –610.00	Conveyance Method: Rig Type:	Wireline Offshore_Fixed		

Depth Control Parameters

Log Sequence: Subsequent Log In the Well

Reference Log Name: Wasabi-1 GeoVISION Resistivity RM 200D

Reference Log Run Number:

Reference Log Date: 01-March-2008

Depth Control Remarks

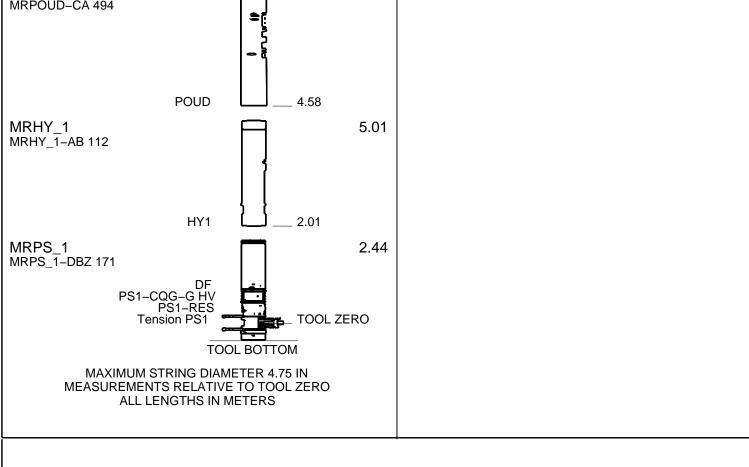
- 1. Schlumberger Depth Control Policy Followed
- 2. IDW used as primary depth reference
- 3. Z-Chart used as secondary depth reference
- 5.

DISCLAIMER

THE USE OF AND RELIANCE UPON THIS RECORDED—DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS AFFILIATES, PARTNERS, REPRESENTATIVES, AGENTS, CONSULTANTS AND EMPLOYEES) IS SUBJECT TO THE TERMS AND CONDITIONS AGREED UPON BETWEEN SCHLUMBERGER AND THE COMPANY, INCLUDING: (a) RESTRICTIONS ON USE OF THE RECORDED-DATA; (b) DISCLAIMERS AND WAIVERS OF WARRANTIES AND REPRESENTATIONS REGARDING COMPANY'S USE OF AND RELIANCE UPON THE RECORDED-DATA; AND (c) CUSTOMER'S FULL AND SOLE RESPONSIBILITY FOR ANY INFERENCE DRAWN OR DECISION MADE IN CONNECTION WITH THE USE OF THIS RECORDED-DATA.

OTHER SERVICES1 OTHER SERVICES2 OS1: OS1: OS2: PEX-HRLA-MSIP-GR-S OS2: OS3: CST-GR OS3: OS4: OS4: VSI OS5: OS5: REMARKS: RUN NUMBER 1 REMARKS: RUN NUMBER 2 Tool string run as per tool sketch.

Log correlated to Schlumberger GeoVISION Resistivity Log dated 1-Mar-2008.


Large Hole Kit and Large-Diameter probe used.

9 pretest pressures attempted as per client request: 7 Normal Tests.

2 Lost Seals.

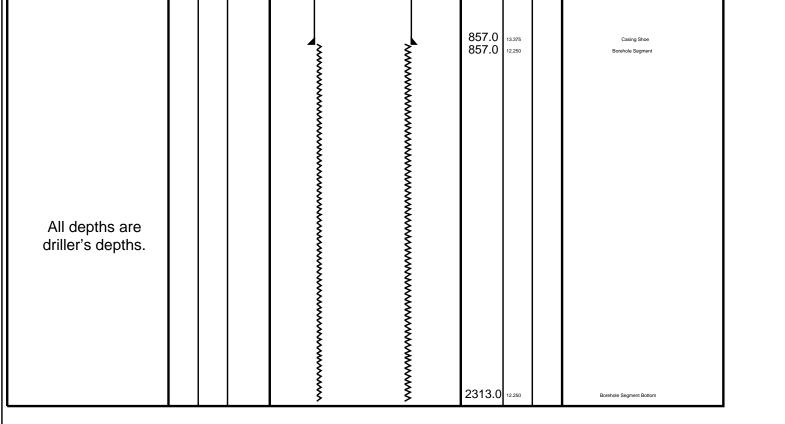
attempted from Top to Dottom as nor client reques

Quartz gauge corrections applied: QGCA (Both), QGFD (1 g/cc), QGDA (As per deviation survey).						
Max. recorded tempera						
wax. recorded tempera	itule was 38 ueg	C Sourced IIOI	II LLII-QI (IIBIIIIOII	iotora.		
Tool got hold up @ 150	00m MD, client d	ecided to abor	t lower points and P	ООН.		
Additional mud properti			ed 2-Mar-2008:			
Chlorides = 49,000 mg/	L, Barite = 5.00	%.				
KCL = 9 (% by Wt.)						
RL SERVICE ORDER #: PROGRAM VERSION:			08349210 15C0–309	SERVICE ORDER #: PROGRAM VERSION:	RUN 2	
FLUID LEVEL: LOGGED INTER	N/A1	START	CTOD	FLUID LEVEL: LOGGED INTERVAL	CTADT	CTOD
LOGGED INTER	VAL	START	STOP	LOGGED INTERVAL	START	STOP
				-		
	RUN		JIPMENT	DESCRIPTION	RUN 2	
<u> </u>					INDIN Z	
MRPP-AA GSR-U/Y WITM (CTS)-A	RFACE EQ	UIPMENT				
				」		
DOV	VNHOLE EC	QUIPMENT	•			
LELL OT		-	40.00			
LEH-QT			18.82			
LEH-QT 2800		122 8888				
		<u> </u>				
TCC-BF			17.93			
ECH-KC 2653	TalOtatus		40.50			
TCC-BF 653	TelStatus		_ 16.58			
SGT-L	Gamma Ray	<u> </u>	_ 16.30 17.01			
SGH-K 403	y					
SGC-SA 735						
SGD-TAB 3465						
MRPC		_	15.34			
MRPC-BB			15.34			
IVII (I O-DD						
	_					
	PC	— —	_ 13.39			
MRMS_1			13.82			
BOTT 6-AA 3358			13.02			
BOTT_5-AA 3354						
BOTT_4-AA 3353 BOTT_3-AA 3351		[星]				
BOTT 2-AA 3347						
BOTT_1-AA 3300 MRMS_1-CA 324						
MRMS_1-CA 324						
	MS1	_ ك	_ 9.37			
. = .						
LFA			9.80			
MRFA-EA 8011						
	FA-BA		_ 7.82			
MDDO LID		Д	0.05			
MRPO_UD			8.25			

Client: Apache Northwest Pty Ltd

Well: Wasabi-1

Field: Apache/VIC/P-58/WASABI-


State: Victoria Country: Australia Rig Name: West Triton

Drawing Date:7-Mar-2008

Reference Datum: AHD

Elevation: 39.0 m

Country: Australia					Elevation	n: ;	39.0	m		
Production String	(in)	ID	m) MD	١	Well Schemati	С	m) MD	(in) OD	ID	Casing String
Kelly Bushing Elevation Derrick Floor Elevation Mean Sea Level			39.0 39.0 0.0				27.0 101.1	20.000 20.000		Casing String Casing Shoe

Schlumberger

General Pretest Summary

MAXIS Field Log

Tool:

Client: Apache Northwest Pty Ltd

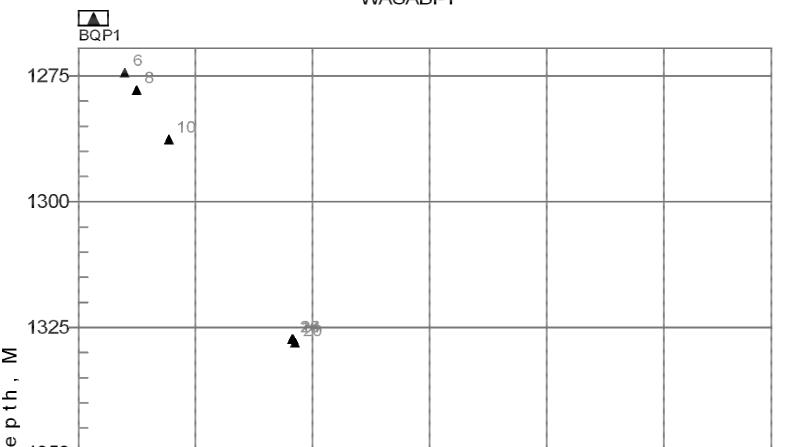
Field: Apache/VIC/P-58/WASABI-1 Probe Type: Large Diameter Probe

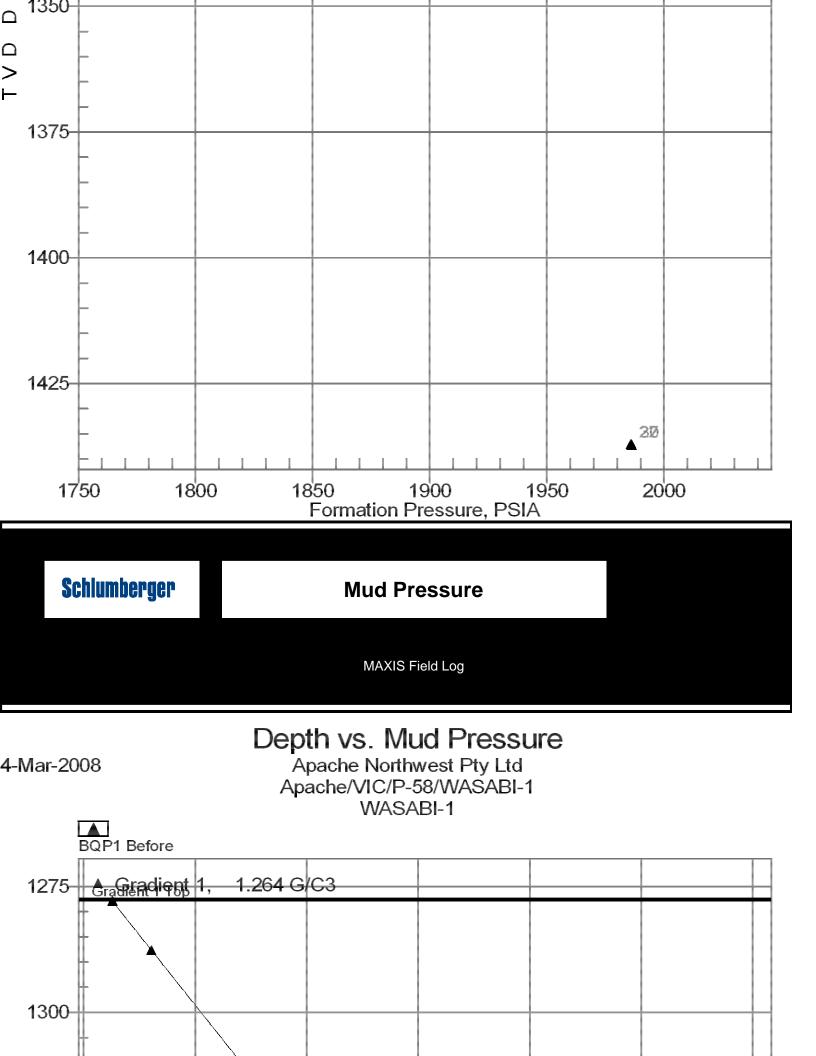
Well: WASABI-1 Run date: 4-Mar-2008 Gauge: BQP1
Gauge Resolution: 0.010 psi

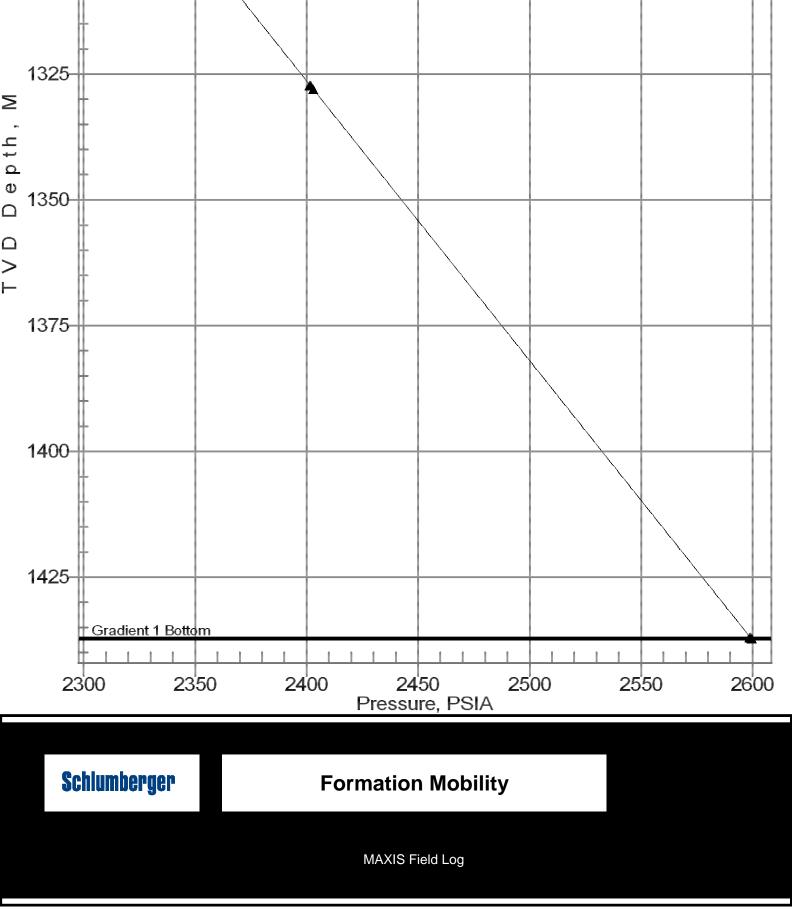
MRPS_1-

Test	File	Depth	TVD	Drawdown	Mud Pressur	е	Last read	Formation	Test Type
		М	М	Mobility MD/CP	Before PSIA	After PSIA	build-up Pres PSIA	Pressure PSIA	
4	50	1268.46	1268.29	1353.13	2293.87	2294.03	1759.52	1759.52	Volumetric Limited draw-down
6	51	1274.54	1274.33	1274.84	2304.93	2304.87	1768.27	1768.27	Volumetric Limited draw-down
8	52	1278.05	1277.81	1161.72	2311.36	2311.30	1773.24	1773.24	Volumetric Limited draw-down
10	53	1287.97	1287.66	709.47	2328.90	2328.90	1787.04	1787.04	Volumetric Limited draw-down
14	55	1327.99	1327.30	2060.26	2399.83	2399.91	1839.98	1839.98	Volumetric Limited draw-down
16	56	1220 05	1220 24		2401 77	2401 77			Loct Soal

9	20	1320.93	1320.24		2401.//	2401.//			LUSI Seal	
18	57	1329.48	1328.77		2402.65	2402.59			Lost Seal	İ
20	58	1328.76	1328.06	1623.11	2401.37	2401.09	1840.97	1840.97	Volumetric Limited draw-down	İ
22	60	1439.99	1437.03	3032.33	2597.25	2597.20	1984.45	1984.45	Volumetric Limited draw-down	l
										1

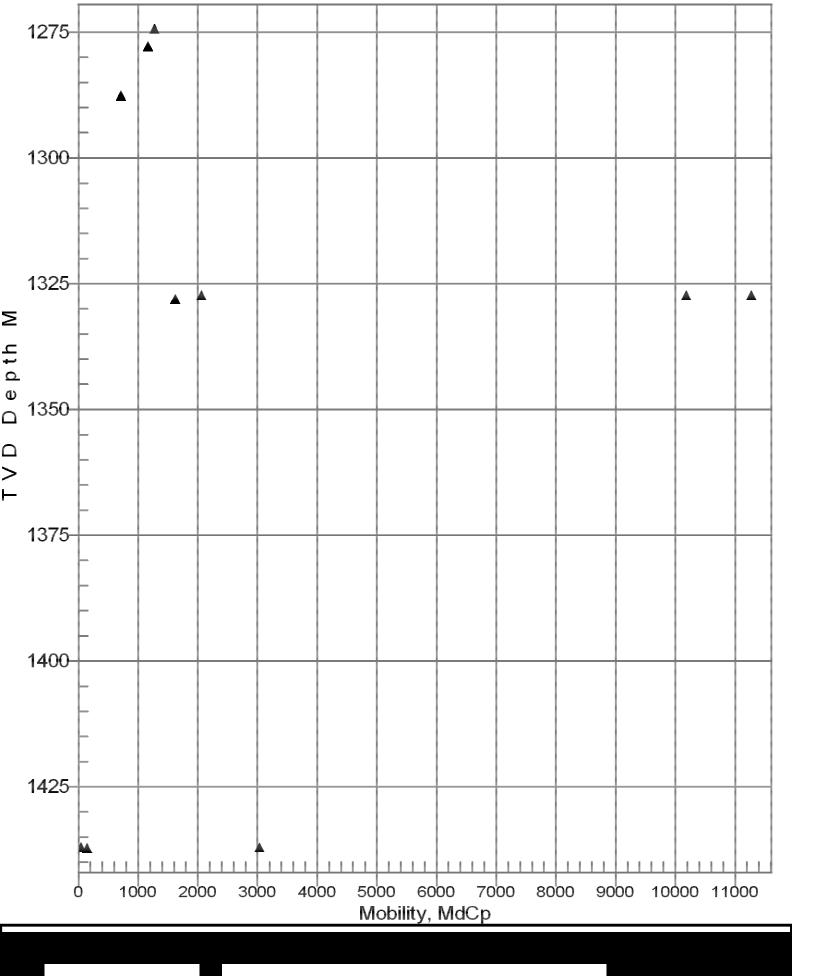

4-Mar-2008

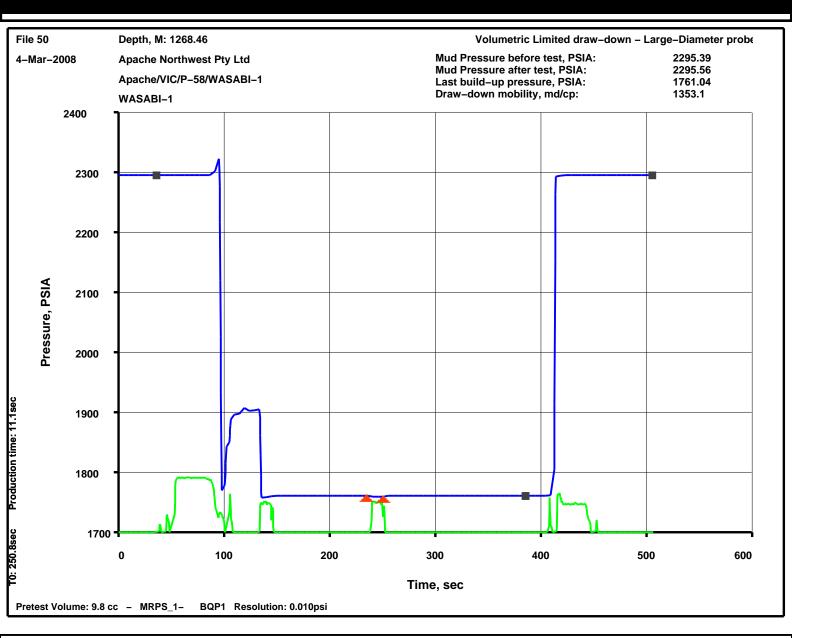

Formation Pressure


MAXIS Field Log

Depth vs. Formation Pressure

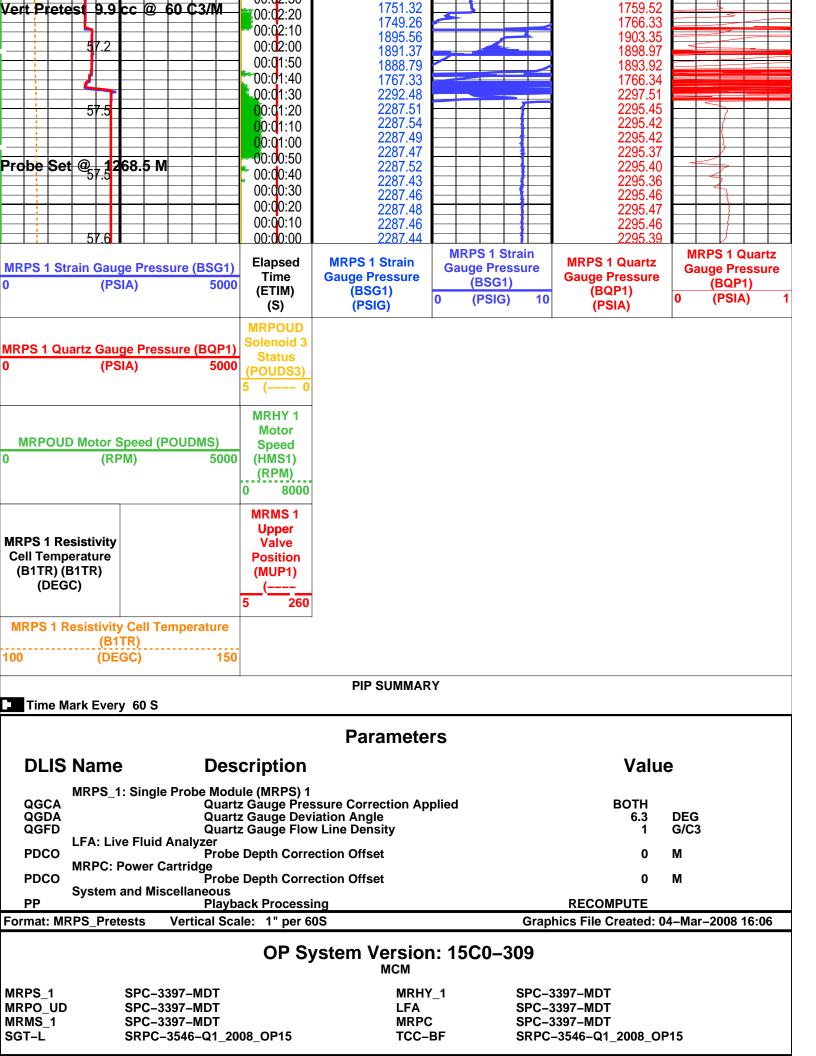
Apache Northwest Pty Ltd Apache/VIC/P-58/WASABI-1 WASABI-1




Depth vs. Mobility

Apache Northwest Pty Ltd Apache/VIC/P-58/WASABI-1 WASABI-1

4-Mar-2008



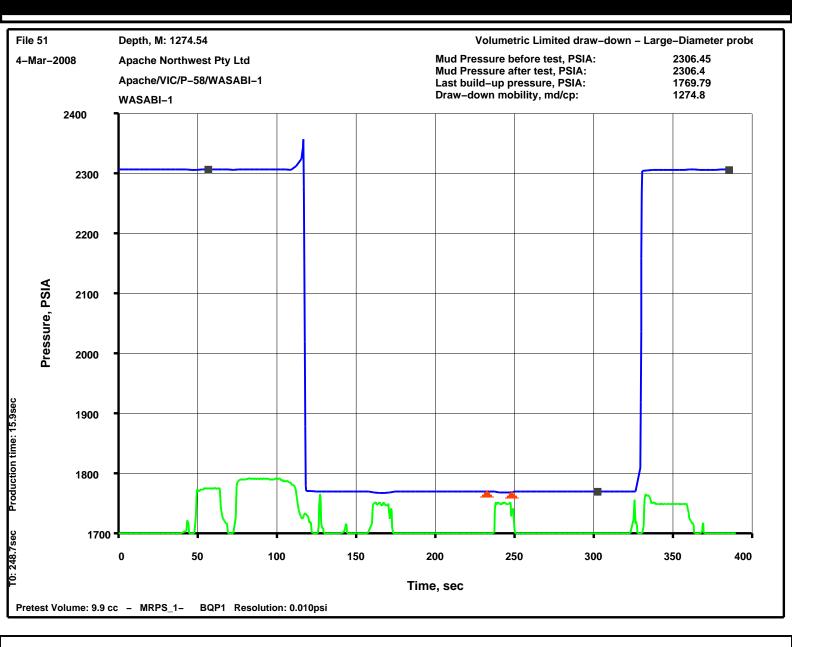
		Input D	LIS Files			
DEFAULT	MDT_OFA_050LTP	FN:75	PRODUCER	04-Mar-2008 10:30	1268.5 M	1.3 M
		Output	DLIS Files			
DEFAULT	MDT_OFA_073PTP	FN:121	PRODUCER	04-Mar-2008 16:06	1268.5 M	1.3 M
RTB	MDT_OFA_073PTP	FN:122	PRODUCER	04-Mar-2008 16:06	1268.5 M	1.3 M

Elapsed Time (s)	Event Summary
411.0	Retract Single Probe Module (MRPS) 1
234.9	Vert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1
129.0	Vert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1
49.2	Probe Set @ 1268.5 M Single Probe Module (MRPS) 1

DID CLIMMADY

Input DLIS Files

DEFAULT MDT_OFA_050LTP FN:75 PRODUCER 04-Mar-2008 10:30 1268.5 M 1.3 M

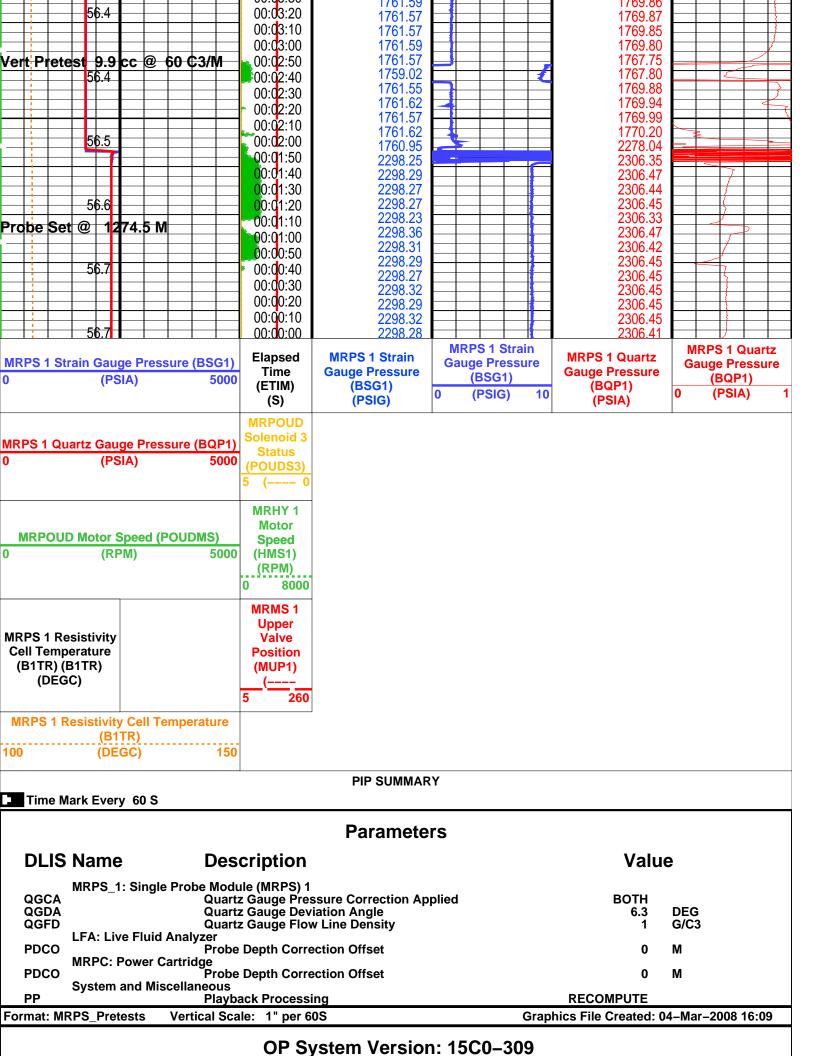

Output DLIS Files

DEFAULT MDT_OFA_073PTP FN:121 PRODUCER 04-Mar-2008 16:06
RTB MDT_OFA_073PTP FN:122 PRODUCER 04-Mar-2008 16:06

Schlumberger

Pretest @ 1274.5m

MAXIS Field Log



Input DLIS Files

DEFAULT MDT_OFA_051LTP FN:77 PRODUCER 04-Mar-2008 10:42 1274.5 M 1.0 M

Output DLIS Files

DE RT	FAULT B					074PTP 074PTP		FN:123 FN:124	PROD PROD				08 16:08 08 16:09	1274.5 M 1274.5 M) M) M	
	Elapse Time (Eve	ent Sum	mary									
Ì	327.6				etract Single Probe Module (MRPS) 1													
	232.8 155.4				/ert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1 /ert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1													
	69.9			Pro	Probe Set @ 1274.5 M Single Probe Module (MRPS) 1													
								PIP SI	UMMAR	Y								
	Time Marl		-				1	111 0										
MF 100	RPS 1 Res	(B1	y Ce TR) GC)		mpe	erature 150												
Ce	PS 1 Resis	ature					MRMS 1 Upper Valve Position											
(E	31TR) (B1 ⁻ (DEGC)						(MUP1) (5 260											
N 0	IRPOUD N		Spee PM)	ed (P	OUI	DMS) 5000	MRHY 1 Motor Speed (HMS1) (RPM)											
MRF	PS 1 Quart		ige F	Press	sure	(BQP1) 5000	0 8000 MRPOUD Solenoid 3 Status (POUDS3)											
MRI 0	PS 1 Strain		ge P	ress	ure	(BSG1) 5000	5 (0 Elapsed Time	MRPS 1 S Gauge Pre	ssure		RPS 1 Stude I	sure	Gauge	1 Quartz Pressure		auge	1 Qu Pres	sure
			<i>,</i>			0000	(ETIM) (S)	(BSG1 (PSIG)	0	(PSIG)			QP1) SIA)	0		PSIA)	
		30.4					00:06:30	2	298.17 298.28					2306.40 2306.40				
							00:0 <mark>6:20 </mark>	2	298.24 298.30					2306.40 2306.37		{		
		56.4					00:0 <mark>6:00 00:05:50 00</mark>	2	298.34 298.26					2306.37 2306.26			>	
							00:05:40	2	298.21 297.97					2306.16 2305.36		3		
Ret	ract	56.3					00:05:30 00:05:20	1	761.57	-				1770.20				
		100					00:05:10	1	761.59 761.59	#				1769.79 1769.79			+	
							00:0 <mark>5:00 00:0</mark> 4:50	1	761.62 761.59					1769.80 1769.80				
		56.3					00:0 <mark>4:40</mark>	1	761.59	#				1769.81				
							00:0 <mark>4:30 </mark>	1	761.62 761.57					1769.80 1769.77				
Ver	Protoct	a a	cc	0	_የ በ ሰ	23/M	00:04:20 00:0 <mark>4:10</mark>	1	761.59					1769.68				
▼ €1	Pretest	56.4			JU (J J V	00:04:00		759.72 761.64			#		1768.03 1769.77				
							00:0 <mark>3:50 </mark>	1	761.54					1769.64			-2	4
							00:03:40	1	761.62					1769.84				

MCM

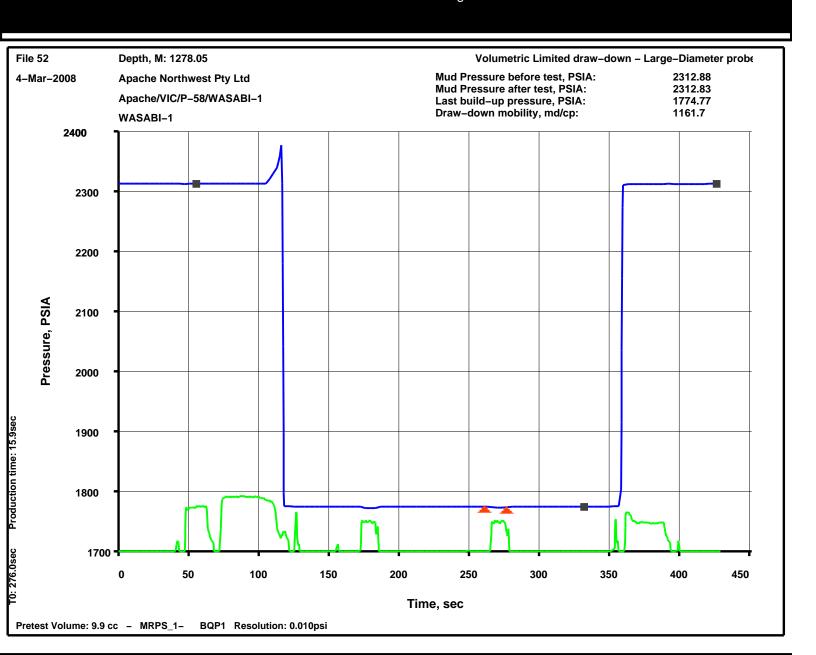
SPC-3397-MDT MRPS_1 MRPO_UD SPC-3397-MDT MRMS_1 SPC-3397-MDT SGT-L SRPC-3546-Q1_2008_OP15

MRHY_1 SPC-3397-MDT LFA SPC-3397-MDT **MRPC** SPC-3397-MDT TCC-BF

SRPC-3546-Q1_2008_OP15

Input DLIS Files

PRODUCER FN:77 04-Mar-2008 10:42 1274.5 M 1.0 M **DEFAULT** MDT_OFA_051LTP


Output DLIS Files

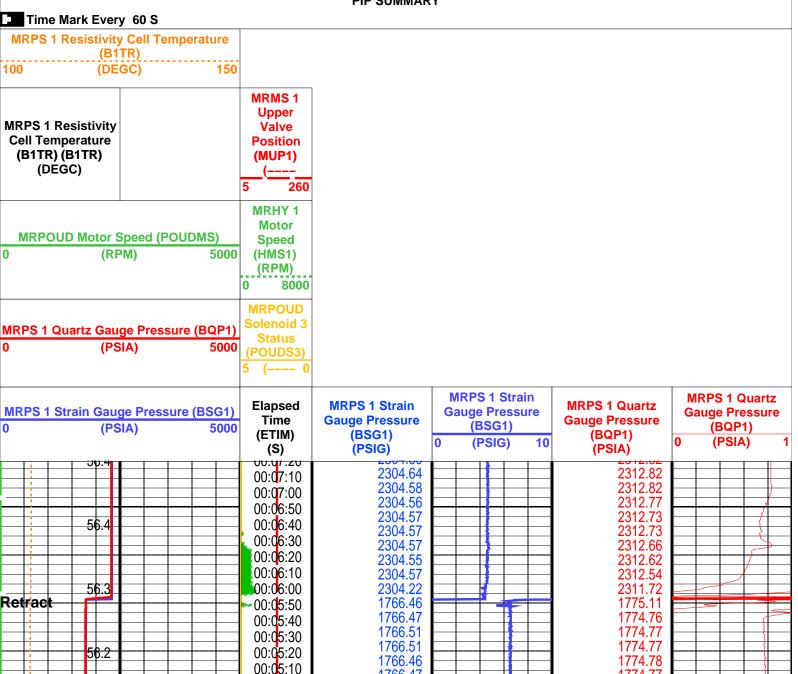
DEFAULT MDT_OFA_074PTP FN:123 **PRODUCER** 04-Mar-2008 16:08 **RTB** MDT_OFA_074PTP FN:124 **PRODUCER** 04-Mar-2008 16:09

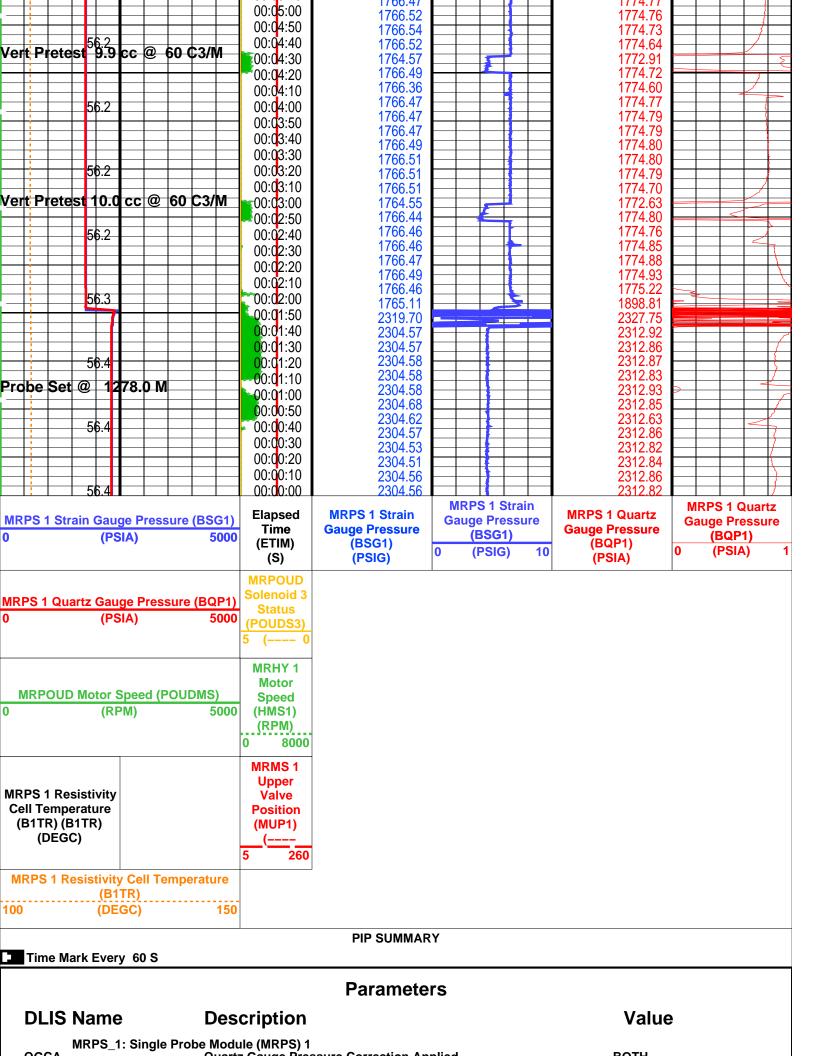
Schlumberger

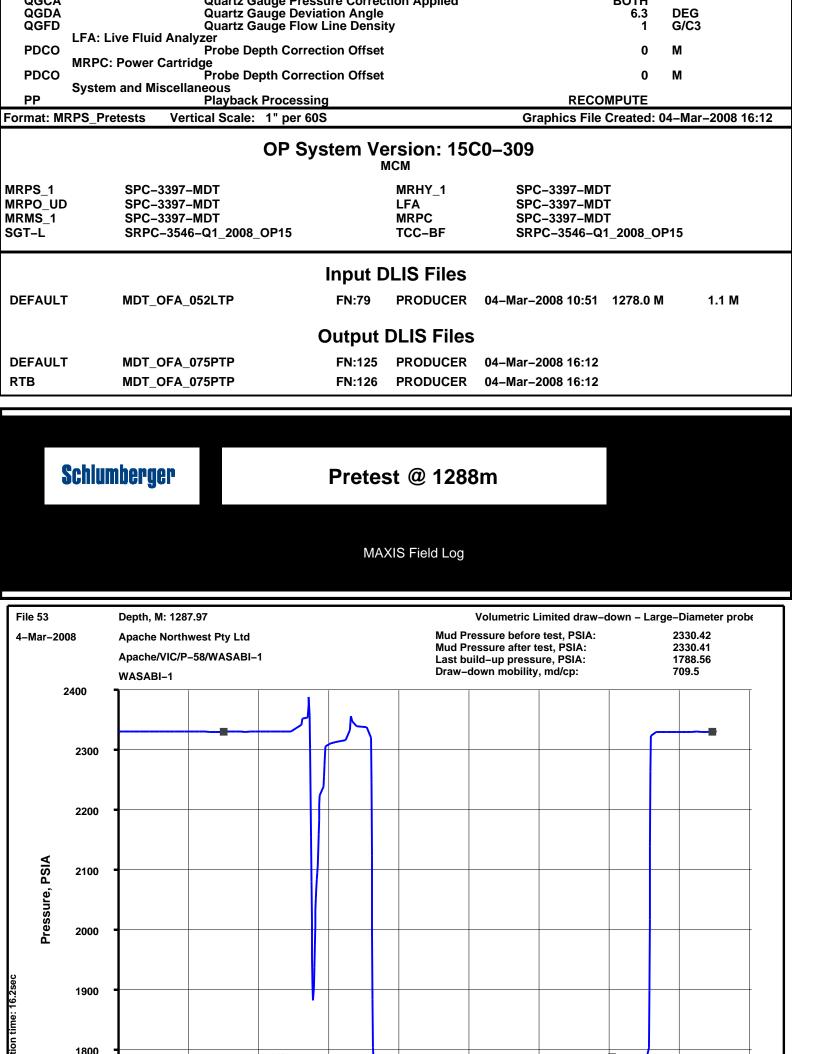
Pretest @ 1278m

MAXIS Field Log

Input DLIS Files


DEFAULT FN:79 **PRODUCER** 04-Mar-2008 10:51 1278.0 M 1.1 M MDT_OFA_052LTP


Output DLIS Files


FN:125 **PRODUCER DEFAULT** MDT_OFA_075PTP 04-Mar-2008 16:12 1278.0 M 1.1 M **PRODUCER RTB** MDT_OFA_075PTP FN:126 04-Mar-2008 16:12 1278.0 M 1.1 M

Elapsed Time (s)	Event Summary
355.5	Retract Single Probe Module (MRPS) 1
260.1	Vert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1
167.7	Vert Pretest 10.0 cc @ 60 C3/M Single Probe Module (MRPS) 1
68.7	Probe Set @ 1278.0 M Single Probe Module (MRPS) 1

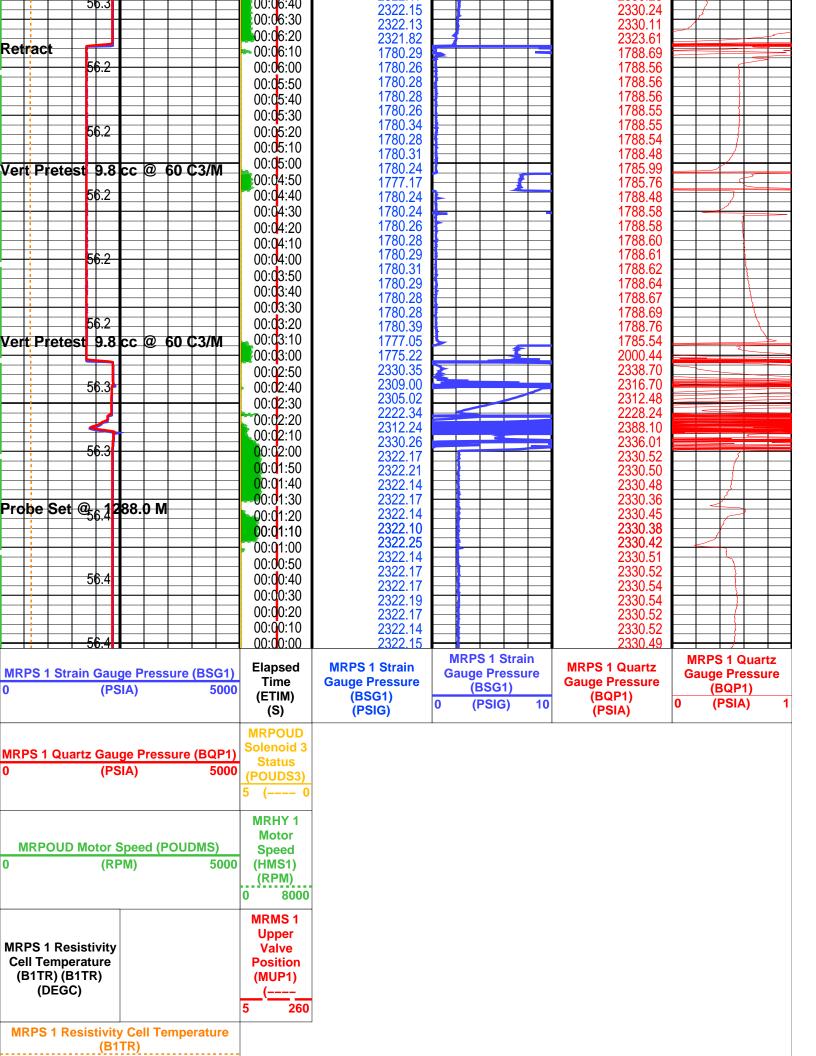
PIP SUMMARY

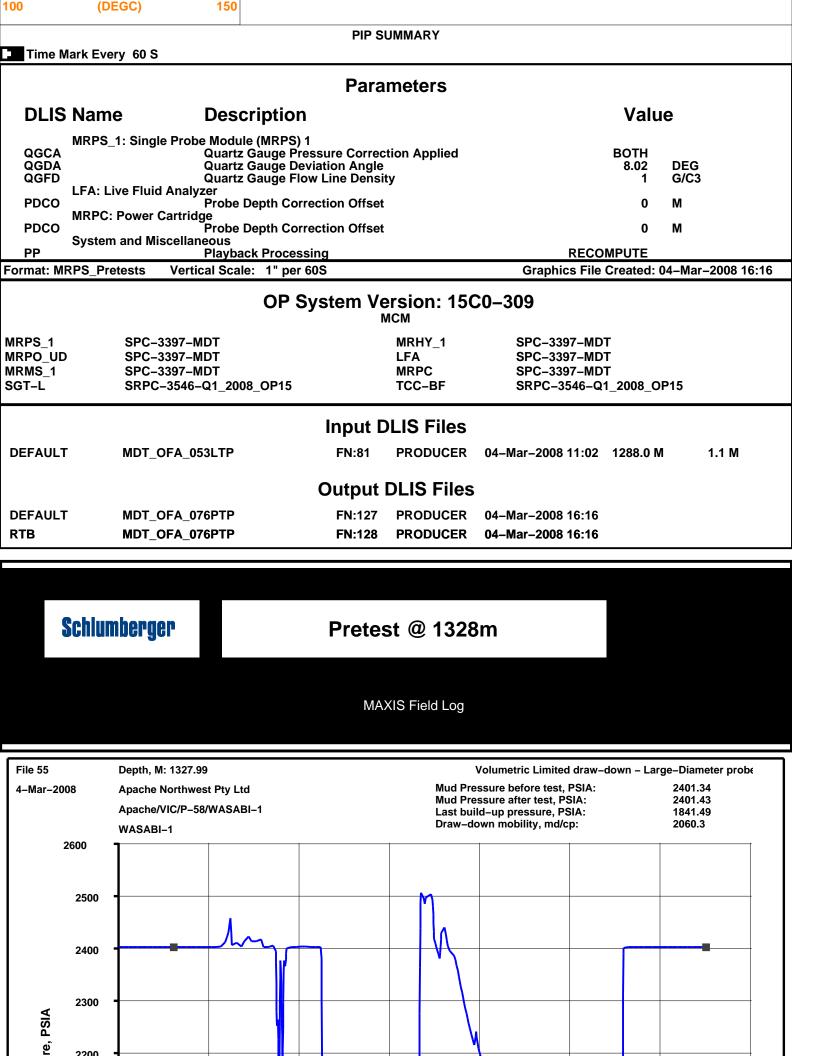
Input DLIS Files

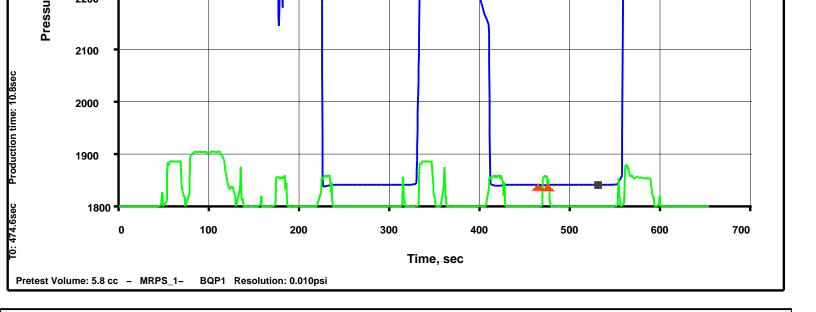
DEFAULT MDT_OFA_053LTP FN:81 **PRODUCER** 04-Mar-2008 11:02 1288.0 M 1.1 M

Output DLIS Files

FN:127 **PRODUCER DEFAULT** MDT_OFA_076PTP 04-Mar-2008 16:16 1.1 M 1288.0 M **RTB** MDT_OFA_076PTP FN:128 **PRODUCER** 04-Mar-2008 16:16 1288.0 M 1.1 M

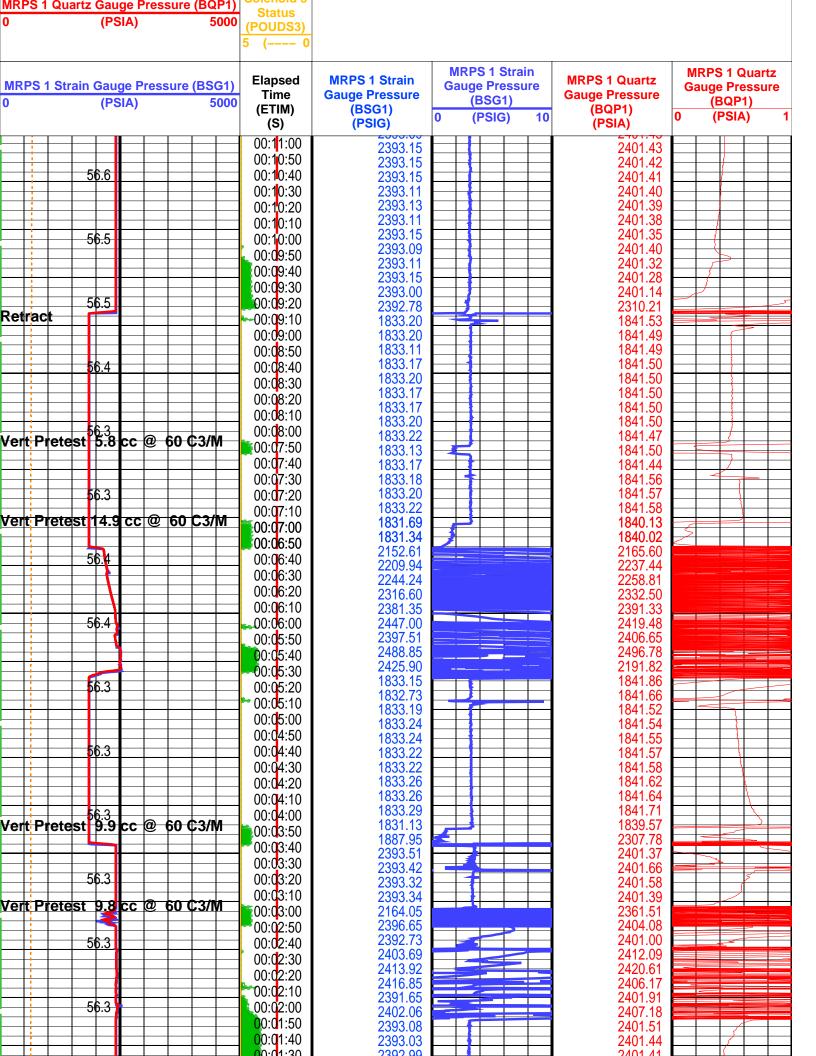

Elapsed Time (s)	Event Summary	
375.3	Retract Single Probe Module (MRPS) 1	
281.4	Vert Pretest 9.8 cc @ 60 C3/M Single Probe Module (MRPS) 1	
174.6	Vert Pretest 9.8 cc @ 60 C3/M Single Probe Module (MRPS) 1	
87.9	Probe Set @ 1288.0 M Single Probe Module (MRPS) 1	

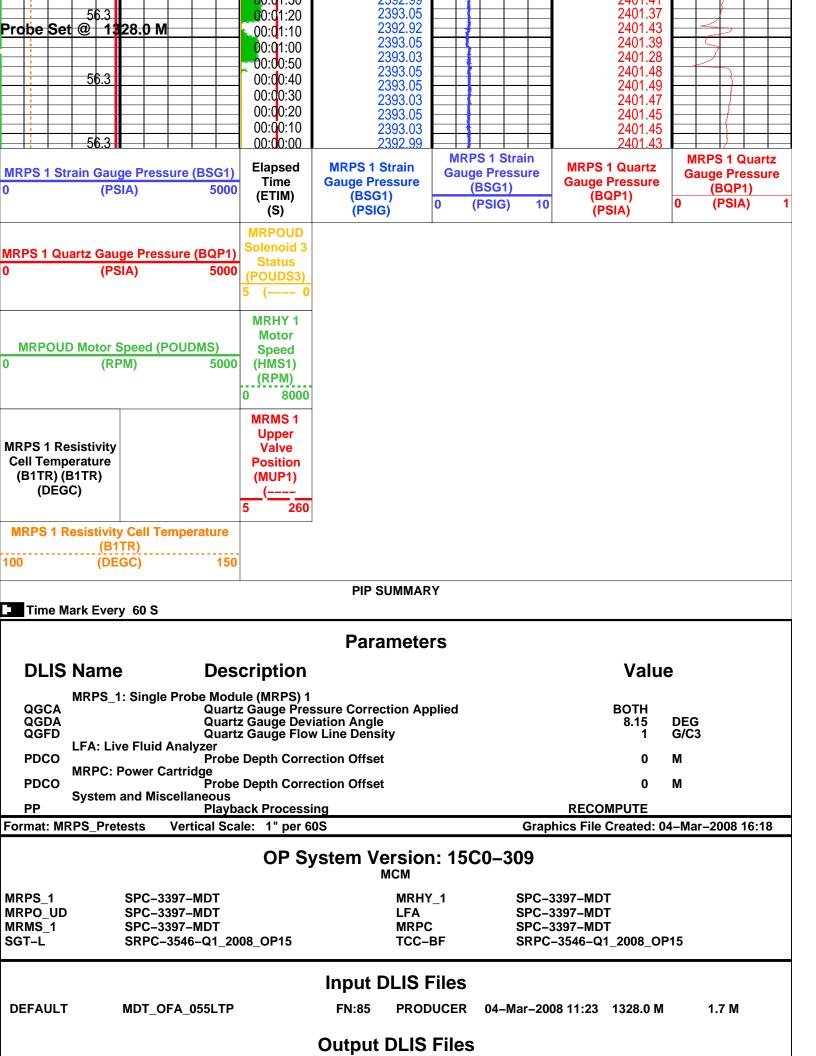

PIP SUMMARY


Time Mark Every 60 S **MRPS 1 Resistivity Cell Temperature** (B1TR) 100 150 (DEGC) MRMS₁ **Upper** MRPS 1 Resistivity **Valve Cell Temperature Position** (B1TR) (B1TR) (MUP1) (DEGC) 260 MRHY 1 **Motor MRPOUD Motor Speed (POUDMS)** Speed (RPM) 5000 (HMS1) (RPM) 0 8000 **MRPOUD** Solenoid 3 MRPS 1 Quartz Gauge Pressure (BQP1) **Status** (PSIA) (POUDS3) **MRPS 1 Strain MRPS 1 Quartz Elapsed** MRPS 1 Strain **MRPS 1 Quartz Gauge Pressure** MRPS 1 Strain Gauge Pressure (BSG1) **Gauge Pressure** Time **Gauge Pressure Gauge Pressure** (BSG1) (BQP1) 5000 (PSIA) (ETIM) (BSG1) (BQP1) (PSIG) 10 (PSIA) (PSIG) (PSIA) **(S)** 2322.21 2330.42 00:07:10 2322.25 2330.40 00:07:00 2322.19 2330.39 00:06:50

2322.17

2330.28

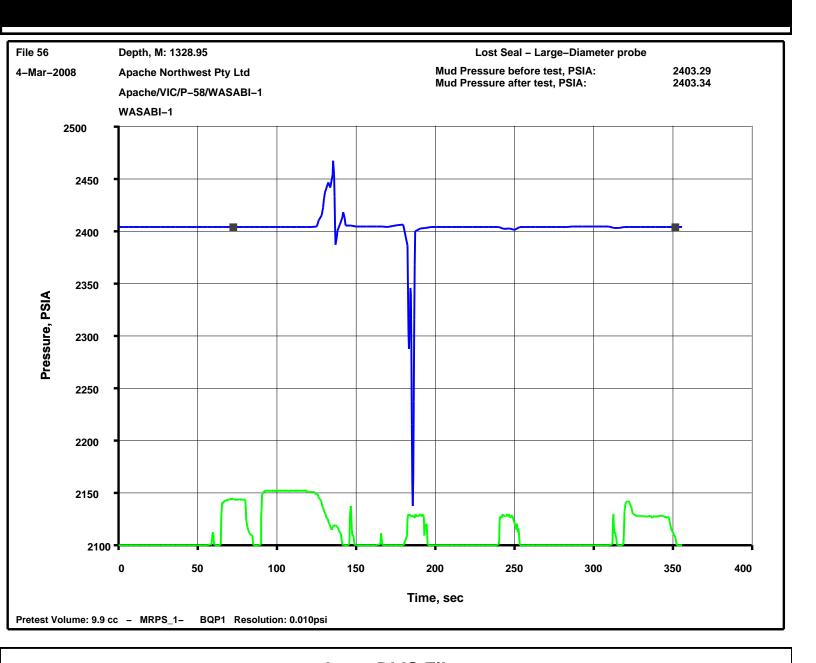




		Input D	LIS Files			
DEFAULT	MDT_OFA_055LTP	FN:85	PRODUCER	04-Mar-2008 11:23	1328.0 M	1.7 M
		Output	DLIS Files			
DEFAULT	MDT_OFA_077PTP	FN:129	PRODUCER	04-Mar-2008 16:18	1328.0 M	1.7 M
RTB	MDT_OFA_077PTP	FN:130	PRODUCER	04-Mar-2008 16:18	1328.0 M	1.7 M

Elapsed Time (s)	Event Summary
555.0	Retract Single Probe Module (MRPS) 1
463.8	Vert Pretest 5.8 cc @ 60 C3/M Single Probe Module (MRPS) 1
404.7	Vert Pretest 14.9 cc @ 60 C3/M Single Probe Module (MRPS) 1
219.6	Vert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1
169.2	Vert Pretest 9.8 cc @ 60 C3/M Single Probe Module (MRPS) 1
74.4	Probe Set @ 1328.0 M Single Probe Module (MRPS) 1

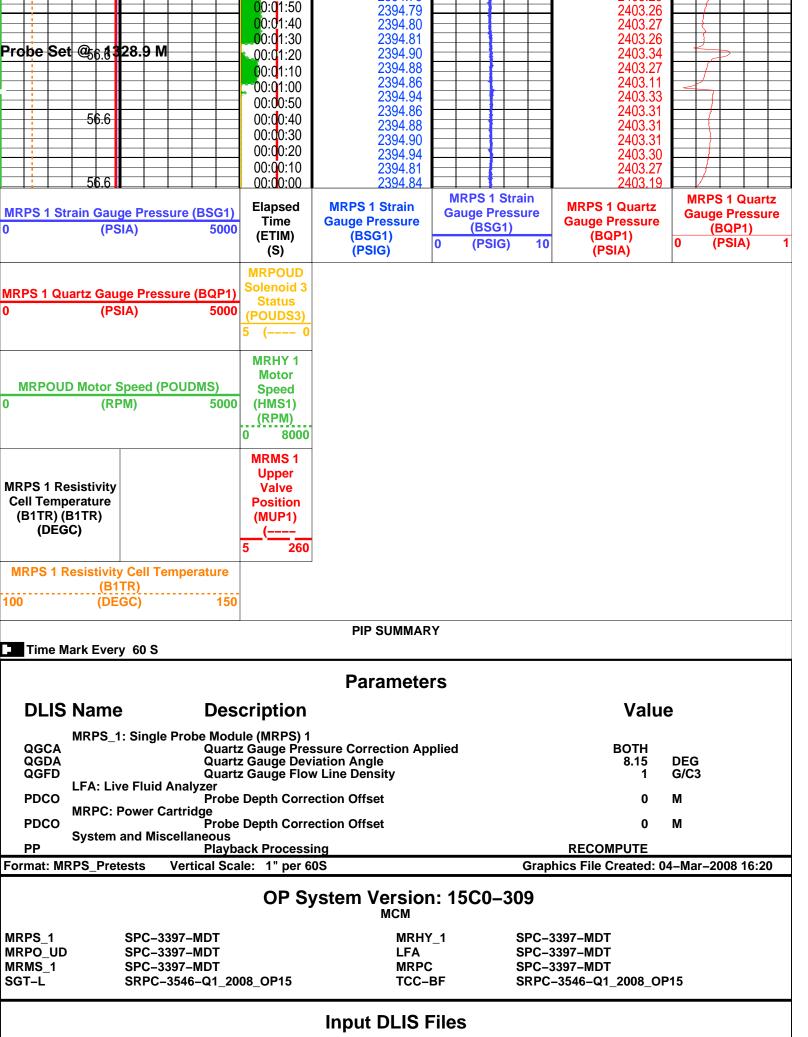
PIP SUMMARY Time Mark Every 60 S **MRPS 1 Resistivity Cell Temperature** (B1TR) 100 (DEGC) 150 MRMS 1 **Upper MRPS 1 Resistivity** Valve **Cell Temperature Position** (B1TR) (B1TR) (MUP1) (DEGC) 260 MRHY 1 Motor MRPOUD Motor Speed (POUDMS) **Speed** (RPM) 5000 (HMS1) `(RPM) 8000 **MRPOUD** Salanaid 3



DEFAULT MDT_OFA_077PTP RTB MDT_OFA_077PTP

FN:129 PRODUCER 04-Mar-2008 16:18 FN:130 PRODUCER 04-Mar-2008 16:18

Schlumberger


Pretest @ 1329m

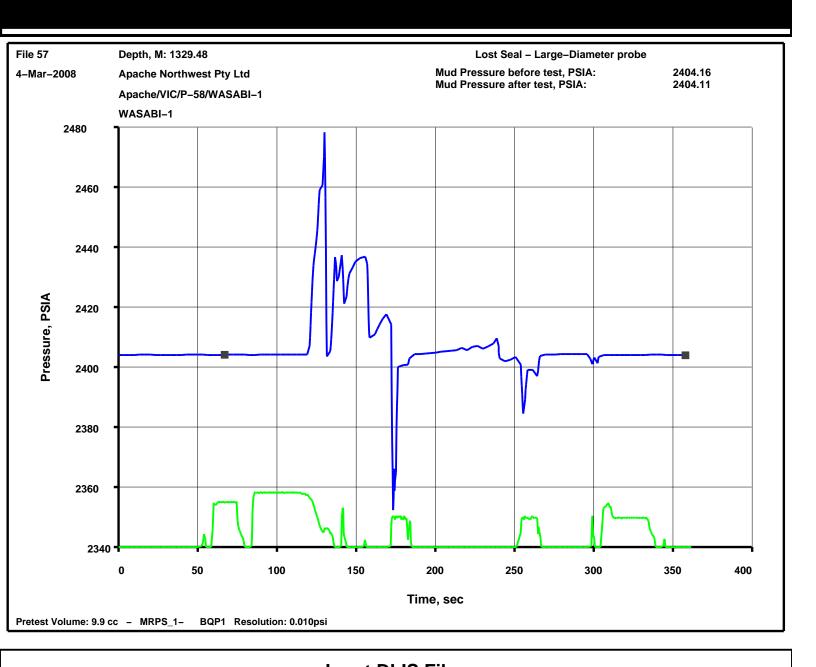
	input DLIS Files								
DEFAULT	MDT_OFA_056LTP	FN:87	PRODUCER	04-Mar-2008 11:39	1328.9 M	0.9 M			
Output DLIS Files									
DEFAULT	MDT_OFA_078PTP	FN:131	PRODUCER	04-Mar-2008 16:20	1328.9 M	0.9 M			
RTB	MDT_OFA_078PTP	FN:132	PRODUCER	04-Mar-2008 16:20	1328.9 M	0.9 M			

Elapsed Time (s)	Event Summary	
315.0	Retract Single Probe Module (MRPS) 1	
236.4	Vert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1	
177.9	Vert Pretest 10.0 cc @ 60 C3/M Single Probe Module (MRPS) 1	
85.8	Probe Set @ 1328.9 M Single Probe Module (MRPS) 1	

PIP SUMMARY Time Mark Every 60 S **MRPS 1 Resistivity Cell Temperature** (B1TR) 100 (DEGC) MRMS 1 **Upper MRPS 1 Resistivity** Valve **Cell Temperature Position** (B1TR) (B1TR) (MUP1) (DEGC) 260 MRHY 1 Motor **MRPOUD Motor Speed (POUDMS)** Speed (RPM) 5000 (HMS1) (RPM) 8000 **MRPOUD** Solenoid 3 MRPS 1 Quartz Gauge Pressure (BQP1) **Status** 0 (PSIA) (POUDS3) **MRPS 1 Strain MRPS 1 Quartz Elapsed** MRPS 1 Strain **MRPS 1 Quartz** MRPS 1 Strain Gauge Pressure (BSG1) **Gauge Pressure Gauge Pressure Time Gauge Pressure Gauge Pressure** (BSG1) (PSIA) 5000 (BQP1) (ETIM) **(BSG1)** (BQP1) (PSIA) 0 (PSIG) 10 **(S)** (PSIG) (PSIA) 00:06:00 2394.74 2403.28 2394.87 2403.41 00:05:50 2394.91 2403.29 00:05:40 2394.89 2394.61 2403.27 00:05:30 2403.13 56.6 00:05:20 2394.87 2403.21 Retract -00:05:10 2395.32 2403.69 00:05:00 2395.58 2403.81 00:04:50 2395.17 2403.58 56.6 00:04:40 2395.04 2403.45 2394.97 00:04:30 2403.36 2394.86 2403.31 00:04:20 2394.76 2402.50 Vert Pretest 9.9 cc @ 60 C3/M 00:04:10 2393.92 2400.67 56.6 F00:0<mark>4:00</mark> 2394.91 2403.30 00:03:50 2395.01 2403.37 00:03:40 2395.01 2403.38 00:03:30 2394.99 2403.34 56.6 00:03:20 2394.99 2403.30 Vert Pretest 10.0 cc @ 60 C3/M 00:03:10 2394.30 2402.06 2397.61 00:03:00 2405.69 2395.27 2403.66 00:02:50 2395.46 2403.93 56.6 00:02:40 2395.31 2403.84 00:02:30 2395.14 2403.92 00:02:20 2456.80 2441.43 00:02:10 2405.82 2404.63 56.6 00:02:00 2394 75 2403 29

DEFAULT MDT_OFA_056LTP FN:87 PRODUCER 04-Mar-2008 11:39 1328.9 M 0.9 M

Output DLIS Files


DEFAULT MDT_OFA_078PTP RTB MDT_OFA_078PTP

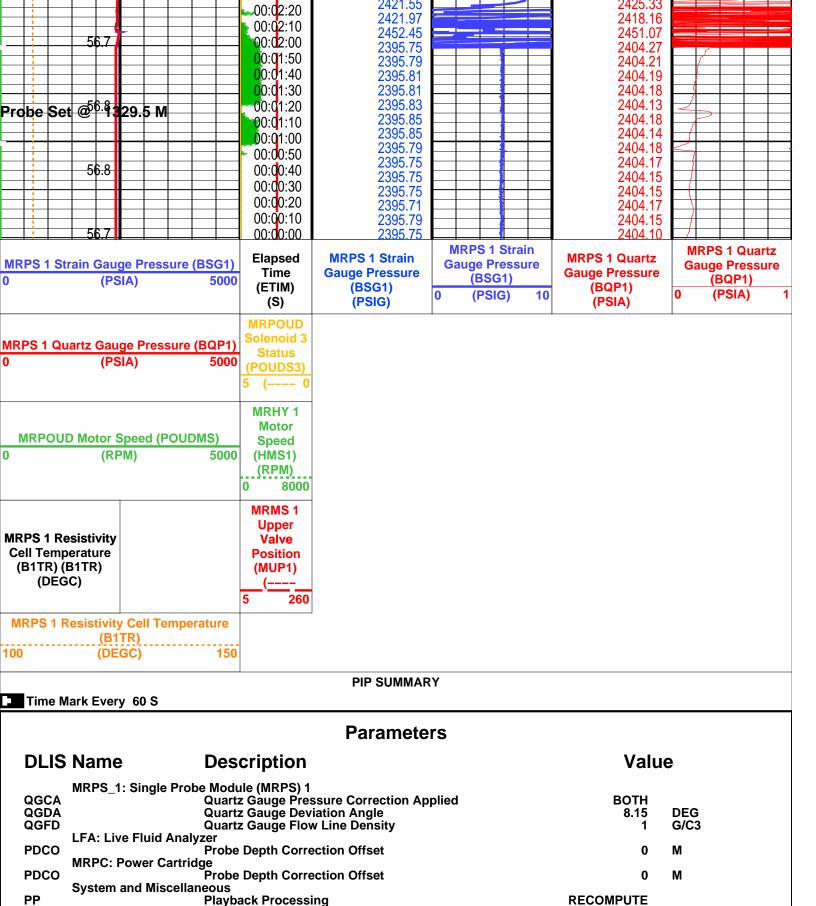
FN:131 PRODUCER 04-Mar-2008 16:20 FN:132 PRODUCER 04-Mar-2008 16:20

Schlumberger

Pretest @ 1329.5m

MAXIS Field Log

		input L	LIS FIIES		
DEFAULT	MDT_OFA_057LTP	FN:89	PRODUCER	04-Mar-2008 11:51	1329.5 M


Output DLIS Files

1.0 M

DEFAULT MDT_OFA_079PTP FN:133 PRODUCER 04-Mar-2008 16:22 1329.5 M 1.0 M RTB MDT_OFA_079PTP FN:134 PRODUCER 04-Mar-2008 16:22 1329.5 M 1.0 M

Elapsed Time (s)	Event Summary	
301.2	Retract Single Probe Module (MRPS) 1	
249.6	Vert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1	
167.7	Vert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1	
80.4	Probe Set @ 1329.5 M Single Probe Module (MRPS) 1	

PIP SUMMARY Time Mark Every 60 S **MRPS 1 Resistivity Cell Temperature** (B1TR) 100 (DEGC) MRMS 1 **Upper** MRPS 1 Resistivity **Valve Cell Temperature Position** (B1TR) (B1TR) (MUP1) (DEGC) 260 MRHY 1 Motor **MRPOUD Motor Speed (POUDMS)** Speed (RPM) (HMS1) (RPM) 8000 **MRPOUD** Solenoid 3 MRPS 1 Quartz Gauge Pressure (BQP1) **Status** (PSIA) (POUDS3) **MRPS 1 Strain MRPS 1 Quartz MRPS 1 Strain MRPS 1 Quartz Elapsed** MRPS 1 Strain Gauge Pressure (BSG1) **Gauge Pressure Gauge Pressure** Time **Gauge Pressure** Gauge Pressure (BSG1) (PSIA) (BQP1) (ETIM) (BSG1) (BQP1) (PSIG) 10 (PSIA) (PSIG) (PSIA) (S) 00:06:10 2395.73 2404.11 2395.73 2395.81 2395.71 2395.83 00:06:00 2404.11 00:05:50 2404.15 2404.17 00:05:40 2404.14 00:05:30 2395.81 2404.14 56.7 00:05:20 2395.84 2404.13 00:05:10 2395.77 2404.08 00:05:00 Retract 2394.54 2403.49 00:04:50 2396.03 2404.41 56.7 00:04:40 2396.03 2404.34 2395.96 00:04:30 2404.20 Vert Pretest 9.9 cc @ 60 C3/M 2390.22 2399.46 00:04:20 2394.76 2403.43 00:04:10 2394.14 2402.19 56.7 00:04:00 2398.95 2407.63 00:03:50 2399.14 2407.17 00:03:40 2398.46 2406.23 00:03:30 2397.28 2405.32 56.7 00:03:20 2396.44 2404.74 00:03:10 2396.05 2404.39 Vert∶Pretest 9.9 cc @ 60 C3/M 2392.58 00:03:00 2400.68 2410.79 2418.75 00:02:50 00:02:40 2403.88 2411.21 2428.68 2436.61 00:02:30

OP System Version: 15C0–309 MCM MRPS 1 SPC-3397-MDT MRHY 1 SPC-3397-MDT

Graphics File Created: 04-Mar-2008 16:22

 MRPO_UD
 SPC-3397-MDT
 LFA
 SPC-3397-MDT

 MRMS_1
 SPC-3397-MDT
 MRPC
 SPC-3397-MDT

Vertical Scale: 1" per 60S

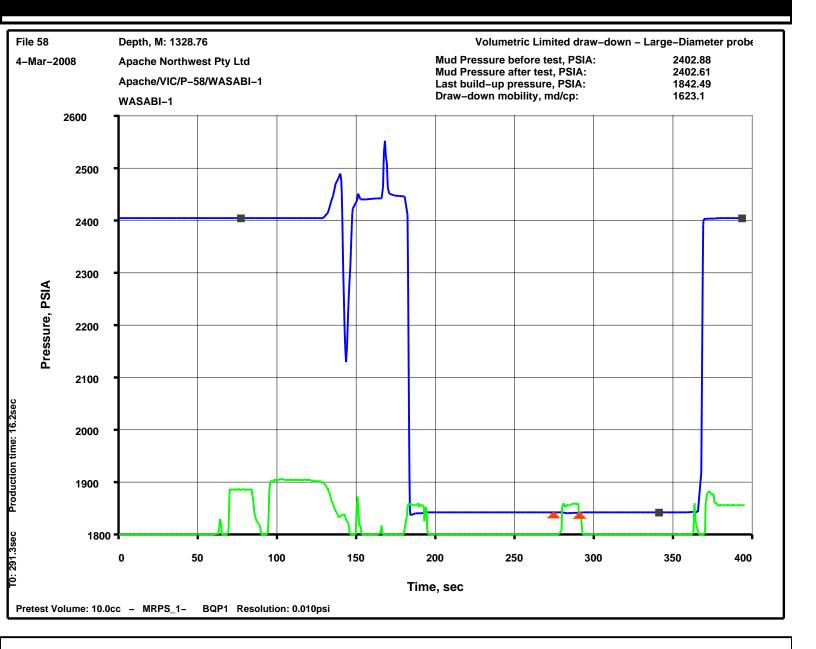
Format: MRPS_Pretests

SGT-L SRPC-3546-Q1_2008_OP15 TCC-BF SRPC-3546-Q1_2008_OP15

Input DLIS Files

DEFAULT MDT_OFA_057LTP FN:89 PRODUCER 04-Mar-2008 11:51 1329.5 M 1.0 M

Output DLIS Files

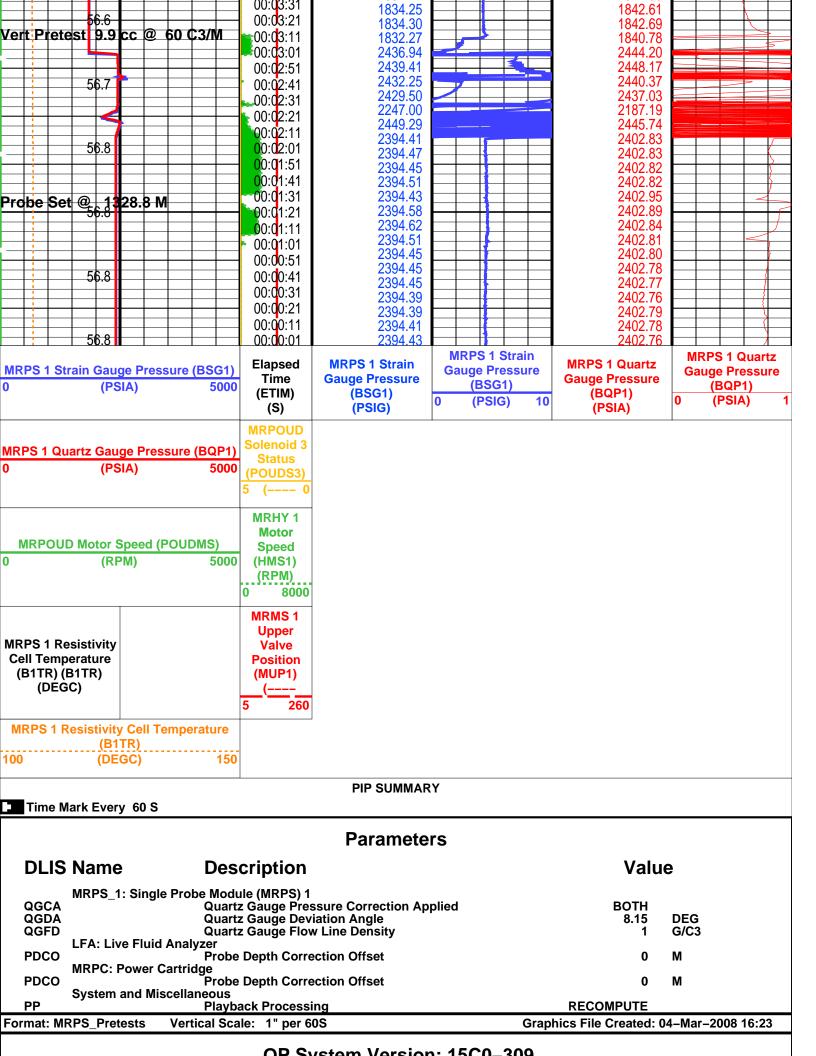

DEFAULT MDT_OFA_079PTP FN:133 PRODUCER 04-Mar-2008 16:22

RTB MDT_OFA_079PTP FN:134 PRODUCER 04-Mar-2008 16:22

Schlumberger

Pretest @ 1328.8m

MAXIS Field Log



Input DLIS Files

DEFAULT MDT_OFA_058LTP FN:91 PRODUCER 04-Mar-2008 12:01 1328.8 M 1.1 M

Output DLIS Files

	FAL	JLT						080PT			FN:135		UCER			8 16:23	1328.8 M	1.0 M
RT	В				MD	T_C	FA_	080PT	ГР		FN:136	PROD	UCER	04-M	ar–200	8 16:23	1328.8 M	1.0 M
Ι,																		,
		Elap	se	d						_	_							
		Tim	e (s	s)						Ev	ent Sum	mary						
		200			┢		4	· C:!		Nacha Madul	(MDDC) 4							1
		366 275						_		Probe Module 0 cc @ 60 C	-	robo Ma	dula (M	IDDE\ 1				
		177								cc @ 60 C3	•			•				
		90.								328.8 M Sing	_		-	. , .				
												,	-,]
											PIP SI	UMMAR	Υ					
	Tim	е Ма	ark	Eve	ry 6	0 S					•		•					
				stivit	y Ce	ell Te	emp	eratur	е									
100					GC				50									
100				נטב	.66	<u>'</u>		<u>'</u>	JU									
										MRMS 1								
				tivity						Upper Valve								
		empe R) (E								Position								
([T) (E EG(K)						(MUP1) (
										5 260								
										MRHY 1								
N	IRP	OUE) M	otor	Sne	ed (I	POU	DMS)		Motor								
0					PM)			50	00	Speed (HMS1)								
				•	ĺ					(RPM)								
										0 8000								
										MRPOUD Solenoid 3								
MRF 0	PS 1	Qua	artz				sure	(BQF	_	Status								
U				(P;	SIA)			50	00	(POUDS3) 5 (0								
										5 (0								
MD	DC 4	C4-	oin	Cou	ao I)ree	01180	(DCC	4)	Elapsed	MRPS 1 S	train		S 1 Str		MRPS	1 Quartz	MRPS 1 Quartz
0	P3 1	Str	aın		ge i SIA)		sure	(BSG 50		Time	Gauge Pre	ssure		e Press BSG1)	sure	Gauge	Pressure	Gauge Pressure (BQP1)
					,					(ETIM) (S)	(BSG1 (PSIG			PSIG)	10		QP1) SIA)	0 (PSIA) 1
	;		ı	56.8						00:06:41	2	394.28		1		· · ·	2402.59	
				70.0						00:0 <mark>6:31</mark>	2	394.34 394.40					2402.61 2402.62	
										00:06:21	2	394.45			\pm		2402.59	
Ret	rac	t		56.6						90:0 <mark>6:11 </mark>		394.15 834.20			+		2401.22 1842.53	
				1.5			1			00:0 <mark>5:51</mark>	1	834.19			\mp		1842.48	
	-				F					00:0 <mark>5:41</mark>		834.26 834.24					1842.49 1842.49	
				5 6.6						00:05:31 00:05:21	1	834.19					1842.50	
	+									00: 0 5:21	1	834.24 834.20					1842.49 1842.49	
						-				00:0 <mark>5:01</mark>	1	834.29					1842.46	
Ver	t Pı	ete		10.(6.6	CC	@	60	C3/N	1	00:0 <mark>4:51</mark> 00:04:41	1	832.90	1	*	\mp		1841.22	
				υυ.υ			1			00:04:41	1	834.22 834.20					1842.45 1842.41	
	-									00:04:21	1	834.19					1842.51	
				56.6						00:0 <mark>4:11</mark>		834.20 834.19					1842.51 1842.52	
	\pm			υυ.ο						00:0 <mark>4:01</mark> 00:03:51	1	834.22			$\perp \perp$		1842.53	
										00:0 <mark>3:41</mark>	1	834.20 834.24			$\downarrow \downarrow \downarrow$		1842.55 1842.59	
					•	4	4			000		ひして、とす		ıT			コレオム・レジ	

MCM

 MRPS_1
 SPC-3397-MDT
 MRHY_1
 SPC-3397-MDT

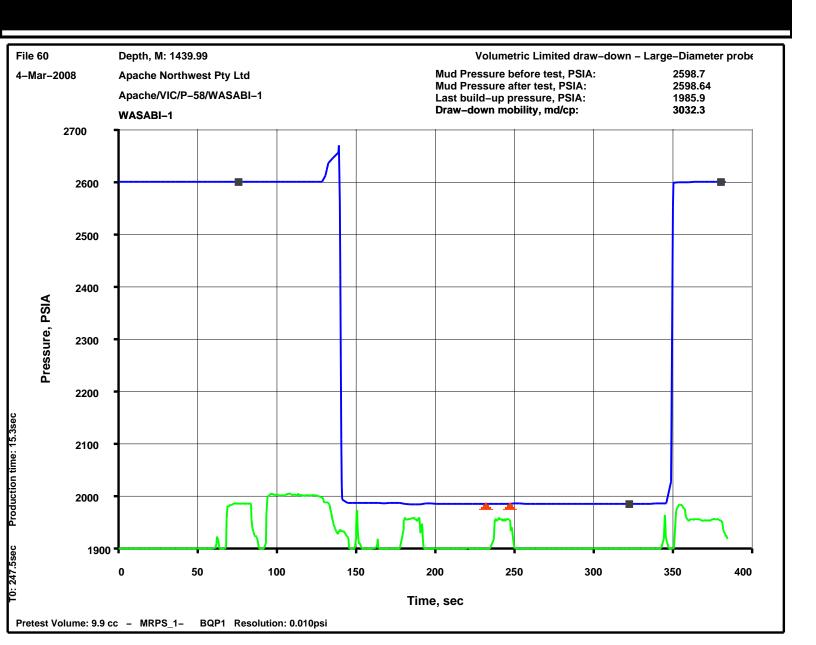
 MRPO_UD
 SPC-3397-MDT
 LFA
 SPC-3397-MDT

 MRMS_1
 SPC-3397-MDT
 MRPC
 SPC-3397-MDT

SGT-L SRPC-3546-Q1_2008_OP15 TCC-BF SRPC-3546-Q1_2008_OP15

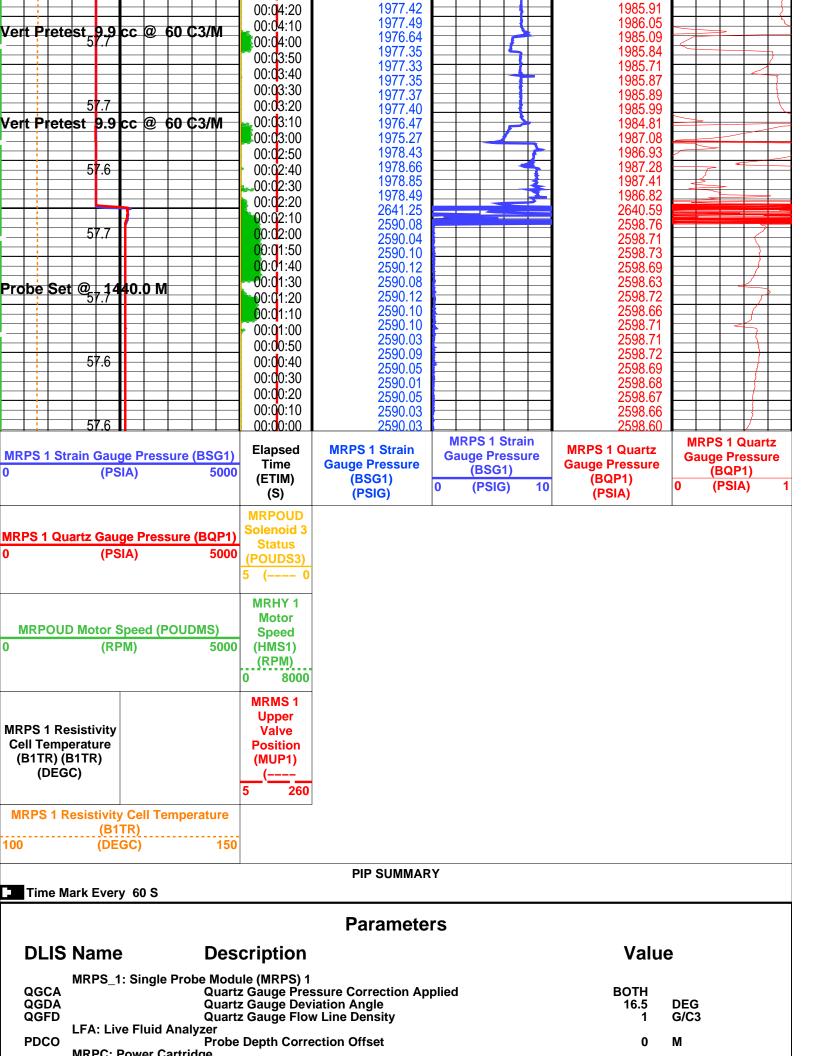
Input DLIS Files

DEFAULT MDT_OFA_058LTP FN:91 PRODUCER 04-Mar-2008 12:01 1328.8 M 1.1 M

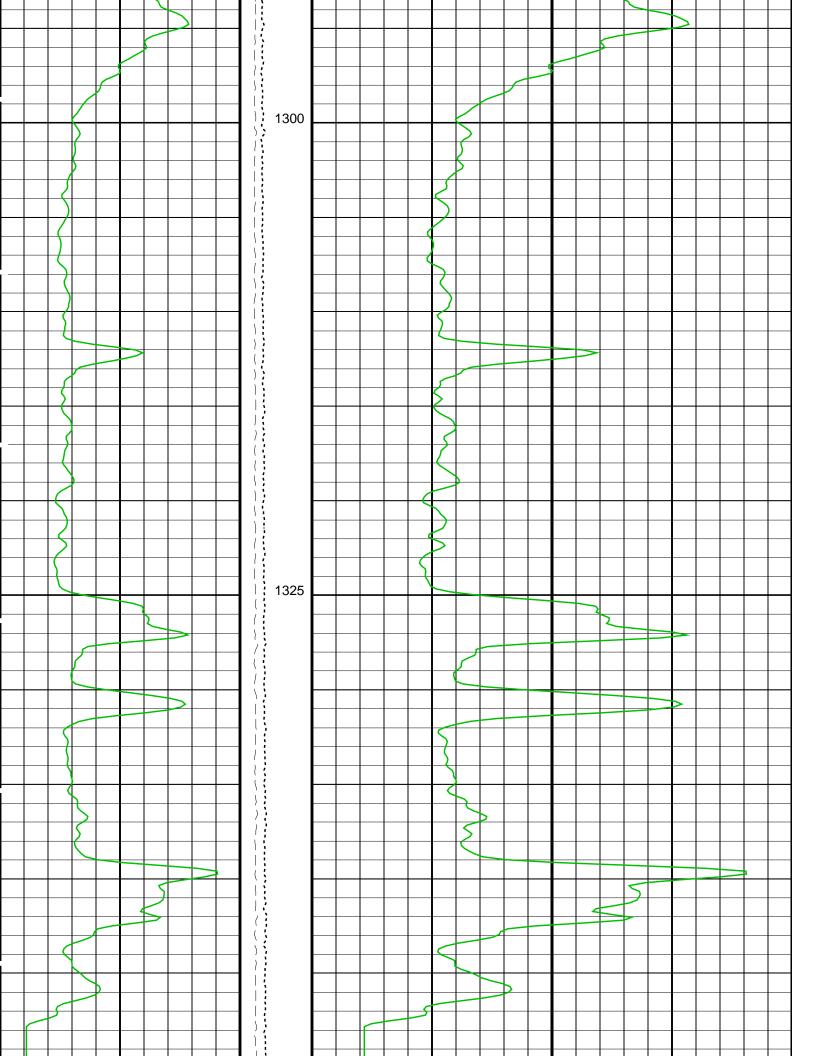

Output DLIS Files

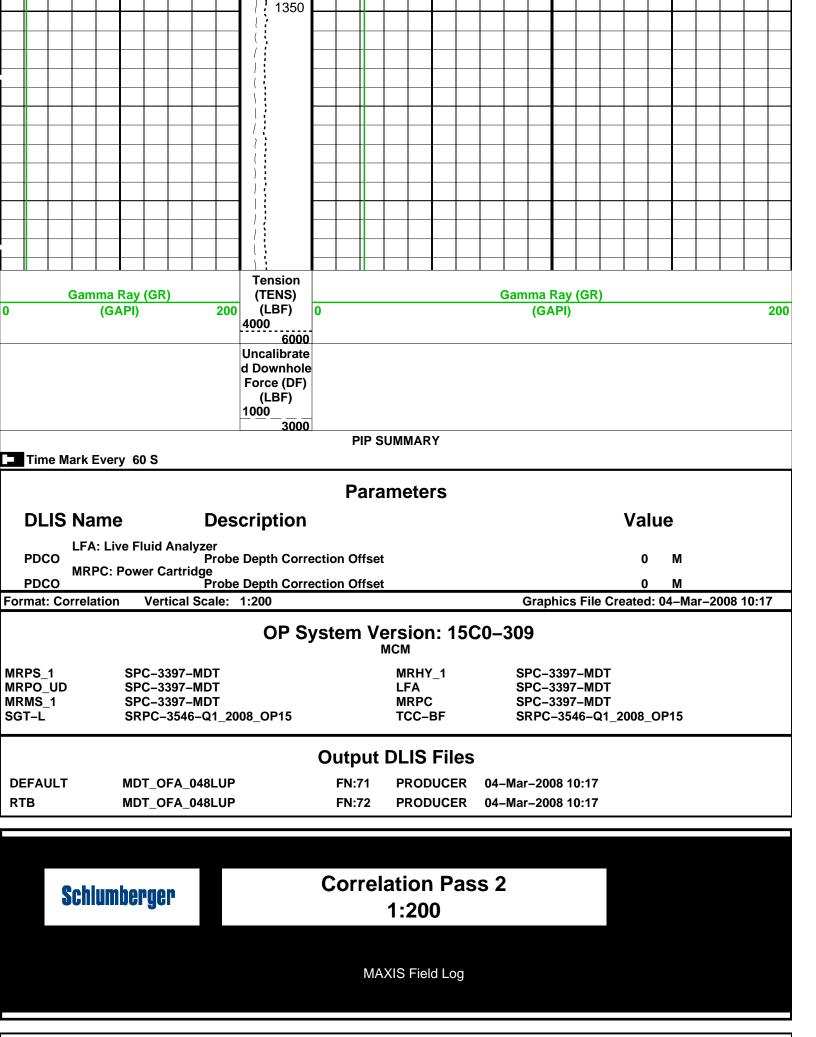
DEFAULT MDT_OFA_080PTP FN:135 PRODUCER 04-Mar-2008 16:23

RTB MDT_OFA_080PTP FN:136 PRODUCER 04-Mar-2008 16:23

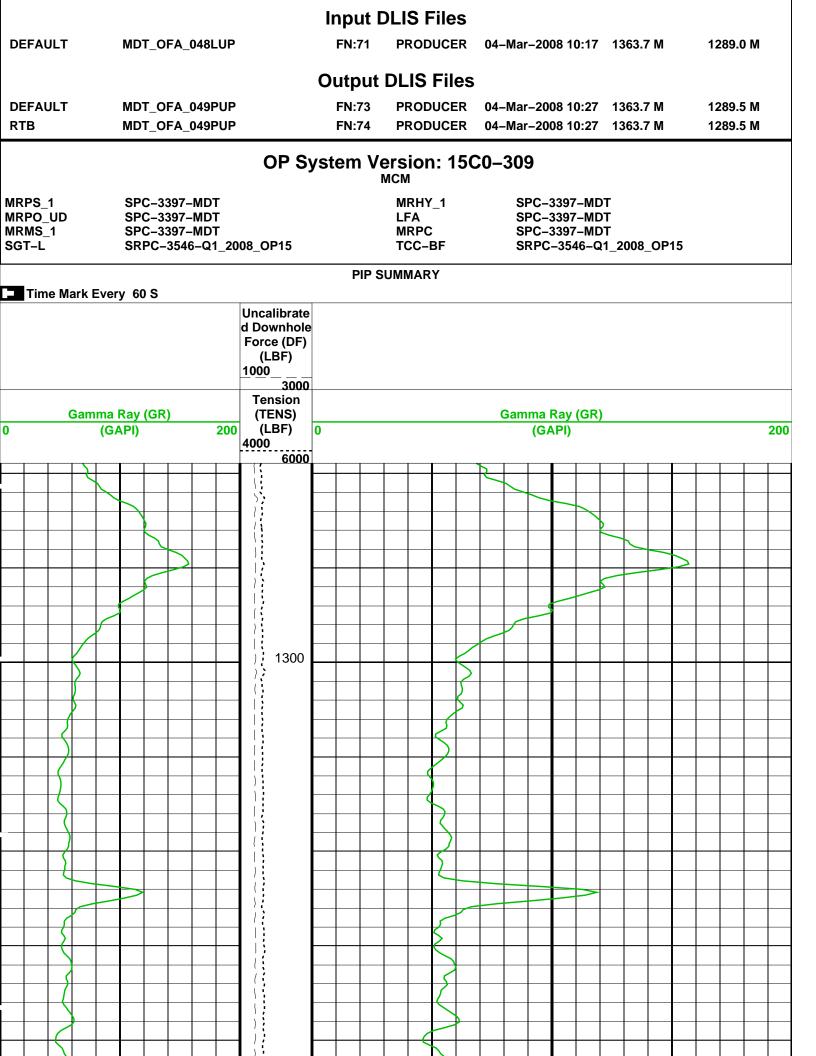

Schlumberger

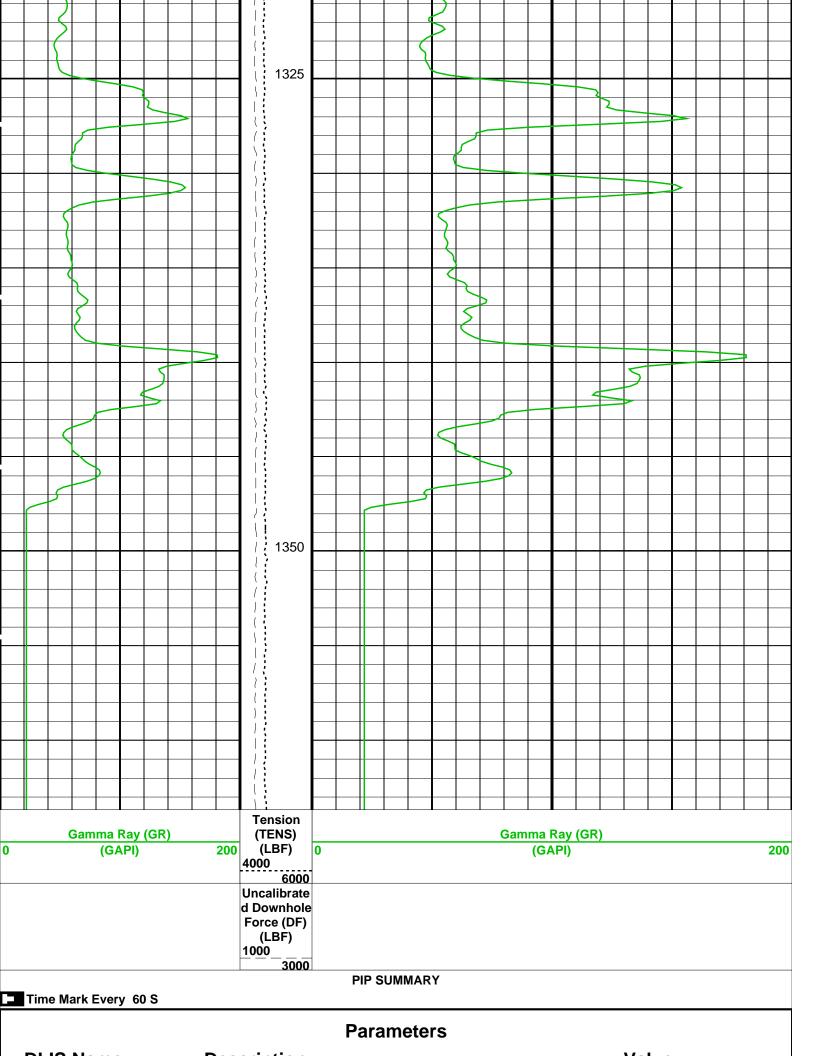
Pretest @ 1440m

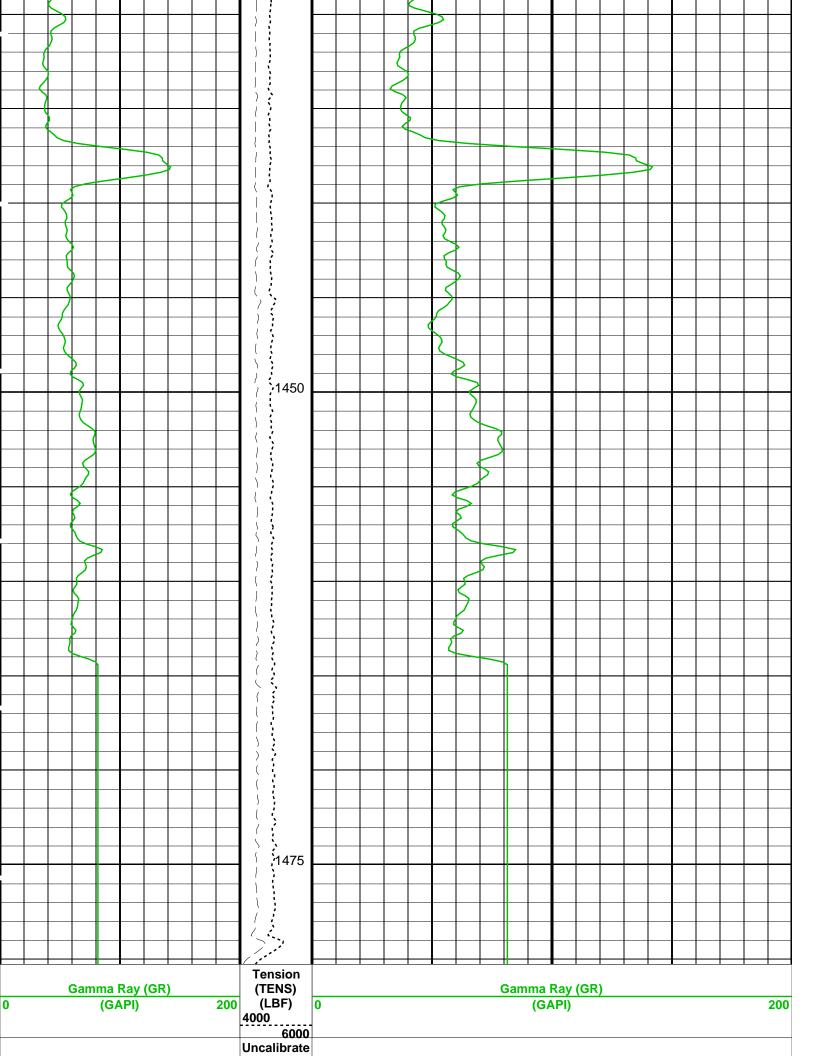



Input DLIS Files FN:95 **PRODUCER DEFAULT** MDT_OFA_060LTP 04-Mar-2008 12:27 1440.0 M 1.0 M Output DLIS Files **DEFAULT** MDT_OFA_081PTP FN:137 **PRODUCER** 04-Mar-2008 16:26 1440.0 M 1.0 M **RTB** MDT_OFA_081PTP FN:138 **PRODUCER** 04-Mar-2008 16:26 1440.0 M 1.0 M **Elapsed Event Summary** Time (s) 347.4 Retract Single Probe Module (MRPS) 1 232.2 Vert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1 175.2 Vert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1 Probe Set @ 1440.0 M Single Probe Module (MRPS) 1 89.1 **PIP SUMMARY** Time Mark Every 60 S **MRPS 1 Resistivity Cell Temperature** (B1TR) 100 (DEGC) MRMS 1 Upper MRPS 1 Resistivity **Valve Cell Temperature Position** (B1TR) (B1TR) (MUP1) (DEGC) 260 MRHY 1 **Motor MRPOUD Motor Speed (POUDMS)** Speed (RPM) 5000 (HMS1) (RPM) 8000 **MRPOUD** Solenoid 3 MRPS 1 Quartz Gauge Pressure (BQP1) **Status** (PSIA) (POUDS3) **MRPS 1 Strain MRPS 1 Quartz MRPS 1 Strain MRPS 1 Quartz Elapsed** MRPS 1 Strain Gauge Pressure (BSG1) **Gauge Pressure Gauge Pressure** Time **Gauge Pressure Gauge Pressure** (BSG1) 5000 (BQP1) (PSIA) (ETIM) (BSG1) (BQP1) 10 (PSIA) (PSIG) (PSIG) **(S)** (PSIA) 00:06:30 2590.10 2598.67 00:06:20 2590.14 2598.55 00:06:10 2590.16 2598.54 57.9 2590.08 00:06:00 2598.50 2589.79 2597.38 00:05:50 Retrac 1977.41 1986.12 00:05:40 1977.40 1985.90 00:05:30 1977.43 1985.91 57.8 00:05:20 1985.90 1977.41 00:05:10 1977.43 1985.90 00:05:00 1977.42 1985.91 00:04:50 1977.38 1985.90 57.8 00:04:40 1977.35 1985.91 00:04:30 1977.47 1985.91

0


Probe Depth Correction Offset PDCO М System and Miscellaneous PP Playback Processing **RECOMPUTE** Format: MRPS Pretests Vertical Scale: 1" per 60S Graphics File Created: 04-Mar-2008 16:26 OP System Version: 15C0-309 **MCM** MRPS_1 SPC-3397-MDT MRHY_1 SPC-3397-MDT MRPO_UD SPC-3397-MDT SPC-3397-MDT LFA MRMS_1 SPC-3397-MDT **MRPC** SPC-3397-MDT SGT-L SRPC-3546-Q1_2008_OP15 TCC-BF SRPC-3546-Q1_2008_OP15 **Input DLIS Files** FN:95 **PRODUCER DEFAULT** MDT_OFA_060LTP 04-Mar-2008 12:27 1440.0 M 1.0 M Output DLIS Files 04-Mar-2008 16:26 FN:137 **PRODUCER DEFAULT** MDT_OFA_081PTP **RTB** MDT_OFA_081PTP FN:138 **PRODUCER** 04-Mar-2008 16:26 **Correlation Pass 1** Schlumberger 1:200 MAXIS Field Log Well: WASABI-1 Company: Apache Northwest Pty Ltd Output DLIS Files **DEFAULT** MDT_OFA_048LUP FN:71 **PRODUCER** 04-Mar-2008 10:17 **RTB** MDT_OFA_048LUP FN:72 **PRODUCER** 04-Mar-2008 10:17 OP System Version: 15C0-309 MRPS_1 SPC-3397-MDT MRHY_1 SPC-3397-MDT MRPO UD SPC-3397-MDT **LFA** SPC-3397-MDT MRMS_1 SPC-3397-MDT **MRPC** SPC-3397-MDT SGT-L SRPC-3546-Q1_2008_OP15 TCC-BF SRPC-3546-Q1_2008_OP15 **PIP SUMMARY** Time Mark Every 60 S **Uncalibrate** d Downhole Force (DF) (LBF) 1000 3000 **Tension** Gamma Ray (GR) Gamma Ray (GR) (TENS) (GAPI) 200 (LBF) (GAPI) 200 4000 6000




Company: Apache Northwest Pty Ltd

Well: WASABI-1

DLIS Nam	e Des	cription				value	
LFA: L	ive Fluid Analyzer	Donth Cours	ation Officet			0 M	
	Power Cartridge	Depth Corre				0 M	
	n and Miscellaneous	Depth Corre				0 M	
DO DORL PP	Depth	n Offset for Plan Offset for Re Pack Processin	peat Analys	is	NO	0.0 M 0.0 M RMAL	
Format: Correlatio					Graphics File C	Created: 04-N	/lar-2008 10:27
		OP Sy	stem Ve	rsion: 15C	0-309		
MRPS_1	SPC-3397-MDT			MRHY_1	SPC-3397-MDT		
MRPO_UD	SPC-3397-MDT			LFA	SPC-3397-MDT	•	
MRMS_1 SGT-L	SPC-3397-MDT SRPC-3546-Q1_20	108 OP15		MRPC TCC-BF	SPC-3397-MDT SRPC-3546-Q1		
301-L	OKI 0=3340-Q1_20				3KI C-3340-Q1		
			Input D	LIS Files			
DEFAULT	MDT_OFA_048LUP		FN:71	PRODUCER	04-Mar-2008 10:17	1363.7 M	1289.0 M
			Output I	OLIS Files			
DEFAULT	MDT_OFA_049PUP		FN:73	PRODUCER	04-Mar-2008 10:27		
RTB	MDT_OFA_049PUP		FN:74	PRODUCER	04-Mar-2008 10:27		
			Correla	ation Pas	s 3		
Schlun	nberger				3 3		
				1:200			
			MAX	(IS Field Log			
Company: Apache	Northwest Pty Ltd						Well: WASABI-1
			Output I	OLIS Files			
DEFAULT	MDT_OFA_059LUP		FN:93	PRODUCER	04-Mar-2008 12:18	1480.3 M	1429.1 M
RTB	MDT_OFA_059LUP		FN:94	PRODUCER	04-Mar-2008 12:18	1480.3 M	1429.1 M
		OP Sy		rsion: 15C	0-309		
MRPS_1	SPC-3397-MDT			MRHY_1	SPC-3397-MDT		
MRPO_UD	SPC-3397-MDT			LFA	SPC-3397-MDT	•	
MRMS_1 SGT-L	SPC-3397-MDT SRPC-3546-Q1_20	008 OP15		MRPC TCC-BF	SPC-3397-MDT SRPC-3546-Q1		
	J. 1. J - 00-10-4 1_20				51(1 5 5570 QT		
			ים חום	INANADY			
Time Mark Eve	ery 60 S		PIP SU	JMMARY			
Time Mark Eve	ery 60 S	Uncalibrate	PIP SU	IMMARY			
Time Mark Eve	ery 60 S	d Downhole	PIP SU	IMMARY			
Time Mark Eve	ery 60 S	1	PIP SU	IMMARY			
Time Mark Eve	ery 60 S	d Downhole Force (DF) (LBF) 1000	PIP SU	JMMARY 			
		d Downhole Force (DF) (LBF) 1000 3000 Tension	PIP SU	IMMARY			
Gamma	ı Ray (GR)	d Downhole Force (DF) (LBF) 1000 3000 Tension (TENS)		IMMARY	Gamma Ray (GR)		200
Gamma		d Downhole Force (DF) (LBF) 1000 3000 Tension (TENS)	PIP SU	IMMARY	Gamma Ray (GR) (GAPI)		200

d Downhole Force (DF) (LBF) 1000 3000

PIP SUMMARY

Time Mark Every 60 S

PDCO

Parameters

DLIS Name Description

Value

LFA: Live Fluid Analyzer

PDCO Probe Depth Correction Offset

MRPC: Power Cartridge
Probe Depth Correction Offset 0 M

System and Miscellaneous

DORL Depth Offset for Repeat Analysis 0.0 M

Format: Correlation Vertical Scale: 1:200 Graphics File Created: 04–Mar–2008 12:18

OP System Version: 15C0–309

MCM

 MRPS_1
 SPC-3397-MDT
 MRHY_1
 SPC-3397-MDT

 MRPO_UD
 SPC-3397-MDT
 LFA
 SPC-3397-MDT

 MRMS_1
 SPC-3397-MDT
 MRPC
 SPC-3397-MDT

SGT-L SRPC-3546-Q1_2008_OP15 TCC-BF SRPC-3546-Q1_2008_OP15

Output DLIS Files

 DEFAULT
 MDT_OFA_059LUP
 FN:93
 PRODUCER
 04-Mar-2008 12:18

 RTB
 MDT_OFA_059LUP
 FN:94
 PRODUCER
 04-Mar-2008 12:18

Schlumberger

Calibrations

Calibration and Check Summary										
Measurement	Nominal	Master	Before	After	Change	Limit	Units			
Live Fluid Analyzer Wellsite Calibration – Spectrometer Channels										
Master: 18-Feb-2008 12:21 Before: 18-Feb-	2008 12:32									
Dark Mode – 0	0.02500	0.02742	0.02726	N/A	N/A	N/A	V			
Dark Mode – 1	0.02500	0.02755	0.02741	N/A	N/A	N/A	V			
Dark Mode – 2	0.02500	0.02697	0.02678	N/A	N/A	N/A	V			
Dark Mode – 3	0.02500	0.02725	0.02713	N/A	N/A	N/A	V			
Dark Mode – 4	0.02500	0.02724	0.02711	N/A	N/A	N/A	V			
Dark Mode – 5	0.02500	0.02731	0.02718	N/A	N/A	N/A	V			
Dark Mode – 6	0.02500	0.02735	0.02727	N/A	N/A	N/A	V			
Dark Mode - 7	0.02500	0.02740	0.02728	N/A	N/A	N/A	V			
Dark Mode – 8	0.02500	0.02780	0.02765	N/A	N/A	N/A	V			
Dark Mode – 9	0.02500	0.02754	0.02744	N/A	N/A	N/A	V			
Source Mode – 0	1.700	1.138	1.142	N/A	N/A	N/A	V			
Source Mode – 1	1.700	1.048	1.055	N/A	N/A	N/A	V			
Source Mode – 2	1.700	1.060	1.068	N/A	N/A	N/A	V			
Source Mode – 3	1.700	0.5809	0.5855	N/A	N/A	N/A	V			
Source Mode – 4	1.700	1.169	1.176	N/A	N/A	N/A	V			
Source Mode – 5	1.700	1.017	1.013	N/A	N/A	N/A	V			
Source Mode – 6	1.700	0.7577	0.7531	N/A	N/A	N/A	V			
Source Mode – 7	1.700	1.191	1.194	N/A	N/A	N/A	V			

Source Mode – 8 Source Mode – 9	1.700 1.700	1.069 2.440	1.081 2.457	N/A N/A	N/A N/A	N/A N/A	V
Live Fluid Analyzer Wellsite Calibration – Gas De Master: 18–Feb–2008 12:21 Before: 18–Feb–2							
Dark Mode – 0	0.02500	0.02744	0.02729	N/A	N/A	N/A	V
Dark Mode – 1	0.02500	0.02726	0.02712	N/A	N/A	N/A	V
Dark Mode – 2	0.02500	0.02713	0.02695	N/A	N/A	N/A	V
Dark Mode – 3	0.02500	0.02742	0.02730	N/A	N/A	N/A	V
Dark Mode – 4	0.02500	0.02744	0.02729	N/A	N/A	N/A	V
Dark Mode – 5	0.02500	0.02705	0.02689	N/A	N/A	N/A	V
Live Fluid Analyzer Wellsite Calibration – Gas De Master: 18–Feb–2008 12:21 Before: 18–Feb–2		tensity					
Source Intensity Dark Mode	0.02600	0.03064	0.03047	N/A	N/A	N/A	V
Source Intensity Source Mode	0.2500	0.2840	0.2846	N/A	N/A	N/A	V
Live Fluid Analyzer Master Calibration – Spectron Master: 18–Feb–2008 12:21	neter						
Dry Dark Mode – 0	0.02500	0.02742					V
Dry Dark Mode – 1	0.02500	0.02755					V
Dry Dark Mode – 2	0.02500	0.02697					V
Dry Dark Mode – 3	0.02500	0.02725					V
Dry Dark Mode – 4	0.02500	0.02724					V
Dry Dark Mode – 5 Dry Dark Mode – 6	0.02500	0.02731 0.02735					V
Dry Dark Mode – 6 Dry Dark Mode – 7	0.02500 0.02500	0.02735					V
Dry Dark Mode – 7 Dry Dark Mode – 8	0.02500	0.02780					V
Dry Dark Mode – 9	0.02500	0.02754					V
Dry Source Mode - 0	1.700	1.138					v
Dry Source Mode – 1	1.700	1.048					v
Dry Source Mode – 2	1.700	1.060					v
Dry Source Mode – 3	1.700	0.5809					V
Dry Source Mode – 4	1.700	1.169					V
Dry Source Mode – 5	1.700	1.017					V
Dry Source Mode – 6	1.700	0.7577					V
Dry Source Mode – 7	1.700	1.191					V
Dry Source Mode – 8	1.700	1.069					V
Dry Source Mode – 9	1.700	2.440					V
Dry Measure Mode – 0	2.700	2.359					V
Dry Measure Mode – 1	2.700	2.409					V
Dry Measure Mode – 2 Dry Measure Mode – 3	2.700	2.368					V
Dry Measure Mode – 3 Dry Measure Mode – 4	2.700 2.700	2.140 2.566					V
Dry Measure Mode – 5	2.700	2.493					V
Dry Measure Mode – 6	2.700	2.492					v
Dry Measure Mode – 7	2.700	2.491					V
Dry Measure Mode – 8	2.700	1.704					V
Dry Measure Mode – 9	2.700	2.292					V
Oil Dark Mode – 0	0.02500	0.02724					V
Oil Dark Mode – 1	0.02500	0.02744					V
Oil Dark Mode – 2	0.02500	0.02686					V
Oil Dark Mode – 3	0.02500	0.02714					V
Oil Dark Mode – 4	0.02500	0.02711					V
Oil Dark Mode – 5	0.02500	0.02718					V
Oil Dark Mode – 6	0.02500	0.02732					V
Oil Dark Mode - 7	0.02500	0.02728					V
Oil Dark Mode – 8 Oil Dark Mode – 9	0.02500 0.02500	0.02769 0.02743					V
Oil Source Mode – 0	1.700	1.141					V
Oil Source Mode – 1	1.700	1.053					v
Oil Source Mode – 2	1.700	1.066					v
Oil Source Mode – 3	1.700	0.5841					v
Oil Source Mode – 4	1.700	1.174					V
Oil Source Mode – 5	1.700	1.014					V
Oil Source Mode – 6	1.700	0.7532					V
Oil Source Mode – 7	1.700	1.194					V
Oil Source Mode – 8	1.700	1.078					V
Oil Source Mode – 9	1.700	2.453					V
Oil Measure Mode – 0	1.000	2.240					V
Oil Measure Mode – 1	1.000	2.790					V
Oil Measure Mode – 2	1.000	2.764					V
Oil Measure Mode – 3	1.000	2.527					V
Oil Measure Mode – 4	1.000	3.009					V
Oil Measure Mode – 5	1.000	2.872					V
Oil Measure Mode – 6	1.000	2.548					V
Oil Measure Mode – 7 Oil Measure Mode – 8	1.000 1.000	2.836 0.2992					V
Oil Measure Mode – 8 Oil Measure Mode – 9	1.000	0.2992 1.750					V
Water Dark Mode – 0	0.02500	0.02734	_ -		_ -	_ _	V
Water Dark Mode – 1	0.02500	0.02743					V
Weter Derk Mede	0.02000	0.02740					·

vvater dark iviode – Z	0.02500	0.02694		 	 V	
Water Dark Mode – 3	0.02500	0.02719		 	 V	
Water Dark Mode – 4	0.02500	0.02718		 	 V	
Water Dark Mode – 5	0.02500	0.02720		 	 V	
Water Dark Mode – 6	0.02500	0.02736		 	 V	
Water Dark Mode - 7	0.02500	0.02729		 	 V	
Water Dark Mode – 8	0.02500	0.02772		 	 V	
Water Dark Mode – 9	0.02500	0.02743		 	 V	
Water Source Mode – 0	1.700	1.137		 	 V	
Water Source Mode – 1	1.700	1.048		 	 V	
Water Source Mode – 2	1.700	1.061		 	 V	
Water Source Mode – 3 Water Source Mode – 4	1.700 1.700	0.5812 1.169		 	 V	
Water Source Mode – 4 Water Source Mode – 5	1.700	1.015		 	 V	
Water Source Mode – 5 Water Source Mode – 6	1.700	0.7537		 	 v	
Water Source Mode – 7	1.700	1.190		 	 v	
Water Source Mode – 8	1.700	1.071		 	 v	
Water Source Mode – 9	1.700	2.443		 	 v	
Water Measure Mode – 0	1.000	0.8187		 	 V	
Water Measure Mode – 1	1.000	2.666		 	 V	
Water Measure Mode – 2	1.000	2.636		 	 V	
Water Measure Mode – 3	1.000	2.400		 	 V	
Water Measure Mode – 4	1.000	2.811		 	 V	
Water Measure Mode – 5	1.000	2.204		 	 V	
Water Measure Mode – 6	1.000	0.03260		 	 V	
Water Measure Mode – 7	1.000	0.5636		 	 V	
Water Measure Mode – 8	1.000	0.5464		 	 V	
Water Measure Mode – 9	1.000	0.03018		 	 V	
Libra Flidd Anakar M. C. O. W. C. C. T.						
Live Fluid Analyzer Master Calibration – Gas Det	tector					
Master: 18–Feb–2008 12:21	0.00500	0.00744			.,	
Dry Dark Mode – 0	0.02500	0.02744		 	 V	
Dry Dark Mode - 1	0.02500	0.02726 0.02713		 	 V	
Dry Dark Mode – 2 Dry Dark Mode – 3	0.02500 0.02500	0.02713		 	 V	
Dry Dark Mode – 3 Dry Dark Mode – 4	0.02500	0.02744		 	 V	
Dry Dark Mode – 5	0.02500	0.02744		 	 v	
Dry Measure Mode – 0	0.02300	0.02703		 	 v	
Dry Measure Mode – 1	0	0.2270		 	 v	
Dry Measure Mode – 2	0	0.4472		 	 v	
Dry Measure Mode – 3	0	0.4622		 	 v	
Dry Measure Mode – 4	0	0.4372		 	 v l	
Dry Measure Mode – 5	0	0.3442		 	 v l	
Dry Normalized – 0	0	0.2703		 	 v	
Dry Normalized – 1	0	0.4594		 	 v	
Dry Normalized – 2	0	0.9660		 	 V	
Dry Normalized – 3	0	1.000		 	 V	
Dry Normalized – 4	0	0.9425		 	 V	
Dry Normalized – 5	0	0.7294		 	 V	
Water Dark Mode – 0	0.02500	0.02740		 	 V	
Water Dark Mode – 1	0.02500	0.02720		 	 V	
Water Dark Mode – 2	0.02500	0.02702		 	 V	
Water Dark Mode – 3	0.02500	0.02739		 	 V	
Water Dark Mode – 4	0.02500	0.02737		 	 V	
Water Dark Mode – 5	0.02500	0.02698		 	 V	
Water Measure Mode – 0	0	0.1338		 	 V	
Water Measure Mode – 1	0	0.1462		 	 V	
Water Measure Mode – 2	0	0.1240		 	 V	
Water Measure Mode – 3	0	0.1120		 	 V	
Water Measure Mode – 4	0	0.1106		 	 V	
Water Measure Mode – 5	0	0.1035		 	 V	
Live Fluid Analyzer Master Callbraller Co. D.	tootor Course Ind	ancity.				
Live Fluid Analyzer Master Calibration – Gas Dei Master: 18–Feb–2008 12:21	lector Source inte	ansity				
Source Intensity Dark Mode	0.02600	0.03064		 	 V	
Source Intensity Dark Mode Source Intensity Source Mode	0.02600	0.2840		 	 V	
Source intensity Source Mode	0.2300	0.2040		 	 V	
Live Fluid Analyzer Master Calibration – Absorpti	ion Coefficients					
iviaster: 18-Feb-2008 12:25					 V	
Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0	0	0 02265				
Oil Absorption Coefficie – 0	0	0.02265 -0.06452		 	 V	
Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1	0	-0.06452	 	 	 V	
Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2	0 0	-0.06452 -0.06786	 	 	 V	
Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3	0 0 0	-0.06452 -0.06786 -0.07301	 	 	 V V	
Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4	0 0 0	-0.06452 -0.06786 -0.07301 -0.06990	 	 	 V V V	
Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5	0 0 0 0	-0.06452 -0.06786 -0.07301 -0.06990 -0.06209		 	 V V V	
Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 6	0 0 0 0 0	-0.06452 -0.06786 -0.07301 -0.06990 -0.06209 -0.009911		 	 V V V V	
Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 6 Oil Absorption Coefficie – 7	0 0 0 0 0 0	-0.06452 -0.06786 -0.07301 -0.06990 -0.06209 -0.009911 -0.05688	 	 	 V V V V	
Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 6 Oil Absorption Coefficie – 7 Oil Absorption Coefficie – 8	0 0 0 0 0 0 0	-0.06452 -0.06786 -0.07301 -0.06990 -0.06209 -0.009911 -0.05688 0.7904	 	 	 V V V V V	
Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 6 Oil Absorption Coefficie – 7 Oil Absorption Coefficie – 8 Oil Absorption Coefficie – 9	0 0 0 0 0 0 0 0	-0.06452 -0.06786 -0.07301 -0.06990 -0.06209 -0.009911 -0.05688 0.7904 0.1186	 	 	 V V V V V V	
Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 6 Oil Absorption Coefficie – 7 Oil Absorption Coefficie – 8 Oil Absorption Coefficie – 9 Water Absorption Coeffic – 0	0 0 0 0 0 0 0 0	-0.06452 -0.06786 -0.07301 -0.06990 -0.06209 -0.009911 -0.05688 0.7904 0.1186 0.4692	 	 	 V V V V V V V	
Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 6 Oil Absorption Coefficie – 7 Oil Absorption Coefficie – 7 Oil Absorption Coefficie – 8 Oil Absorption Coefficie – 9	0 0 0 0 0 0 0 0	-0.06452 -0.06786 -0.07301 -0.06990 -0.06209 -0.009911 -0.05688 0.7904 0.1186	 	 	 V V V V V V	

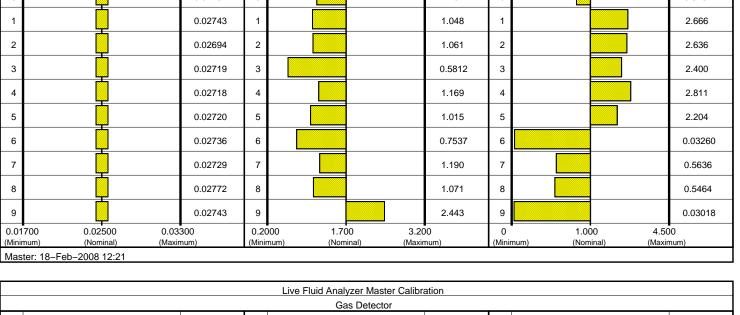
Water Absorption Coeffic -	3	0	-0.05030					V
Water Absorption Coeffic -	4	0	-0.04003					V
Water Absorption Coeffic –	5	0	0.05426					V
Water Absorption Coeffic –	6	0	2.673					V
Water Absorption Coeffic –	7	0	0.6622					V
Water Absorption Coeffic –	8	0	0.5094					V
Water Absorption Coeffic –	9	0	2.916					V
Scintillation Gamma-Ray - L W	ellsite Calibration	 Detector Calib 	oration					
Before: 4-Mar-2008 8:20								
Gamma Ray Background		30.00	N/A	5.315	N/A	N/A	N/A	GAPI
Gamma Ray (Jig – Bkg)		163.8	N/A	163.8	N/A	N/A	14.89	GAPI
Gamma Ray (Calibrated)		165.0	N/A	165.0	N/A	N/A	15.00	GAPI

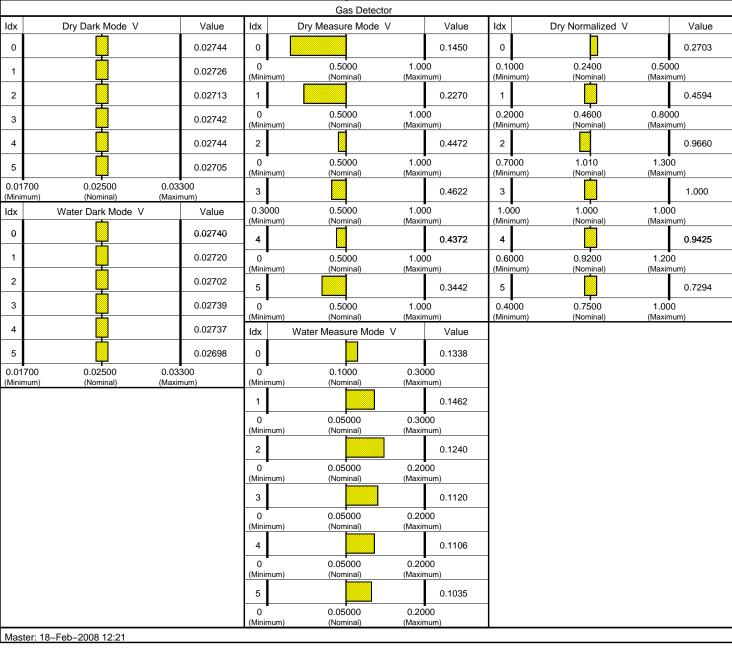
Live Fluid Analyzer / Equipment Identification

Primary Equipment: Live Fluid Analyzer (TW)

MRFA – EA 8011

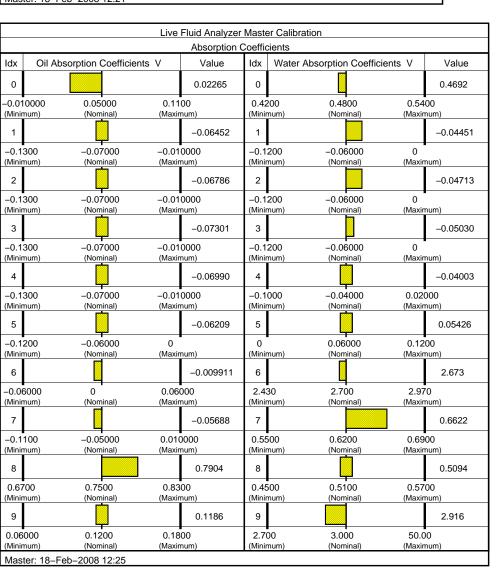
Auxiliary Equipment:

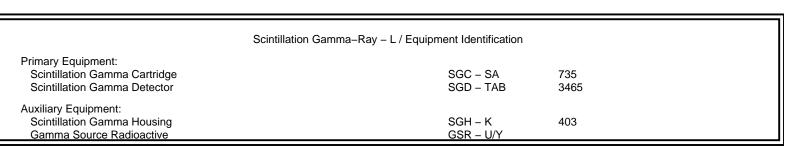

Live Fluid Analyzer Wellsite Calibration							
			Spectromete	r Cha	nnels		
ldx	Phase	Dark Mode V	Value	ldx	Phase	Source Mode V	Value
0	Master		0.02742	0	Master		1.138
	Before		0.02726		Before		1.142
1	Master		0.02755	1	Master		1.048
	Before		0.02741	'	Before		1.055
2	Master		0.02697	2	Master		1.060
	Before		0.02678		Before		1.068
3	Master		0.02725	3	Master		0.5809
3	Before		0.02713	٠ 	Before		0.5855
4	Master		0.02724	4	Master		1.169
4	Before		0.02711	4	Before		1.176
5	Master		0.02731	5	Master		1.017
5	Before		0.02718	5	Before		1.013
6	Master		0.02735	6	Master		0.7577
	Before		0.02727		Before		0.7531
7	Master		0.02740	7	Master		1.191
	Before		0.02728	,	Before		1.194
8	Master		0.02780	8	Master		1.069
8	Before		0.02765	8	Before		1.081
	Master		0.02754		Master		2.440
9	Before		0.02744	9	Before		2.457
	0.01 (Minir		3300 imum)		0.20 (Minim		200 eximum)
Mas			iniuni)	Befo			DAILINGILI)
	Master: 18–Feb–2008 12:21 Before: 18–Feb–2008 12:32						


Live Fluid Analyzer Wellsite Calibration									
Gas Detector Channels									
ldx	Phase	Dark Mode V Valu							
0	Master		0.02744						
0	Before		0.02729						
1	Master		0.02726						
	Refore		0.02712						

	Deloie				0.02712
	Master				0.02713
2	Before				0.02695
	Master				0.02742
3	Before				0.02730
	Master				0.02744
4	Before				0.02729
	Master				0.02705
5	Before				0.02689
	0.01 (Minir		0.02500 (Nominal)	0.033 (Maxim	
Mas	ter: 18-F	eb-2008 1	12:21		
Befo	re: 18–Fe	eb-2008 1	2:32		

			Live I	Fluid Analyzer	Wellsite C	alibration			
			C	Sas Detector S	ource Inte	nsity			
Phase	Source In	tensity Dark Mo	de V	Value	Phase	Source Inter	nsity Source M	lode V	Value
Master				0.03064	Master				0.2840
Before				0.03047	Before				0.2846
0.01 (Minin		0.02600 (Nominal)	0.03 (Maxir		0.19 (Mini		0.2500 (Nominal)	0.31 (Maxii	
Master:	18-Feb-200	8 12:21			Before:	18-Feb-2008	12:32		


				Live Fluid Analy	zer Master Calibr	ation				
				-	ectrometer	auon				
ldx	Dry Dark Mode V	Value	ldx	Dry Source		Value	ldx	Dry Measure M	ode V	Value
0		0.02742	0			1.138	0			2.359
1		0.02755	1			1.048	1			2.409
2		0.02697	2			1.060	2			2.368
3		0.02725	3			0.5809	3			2.140
4		0.02724	4			1.169	4			2.566
5		0.02731	5			1.017	5			2.493
6		0.02735	6			0.7577	6			2.492
7		0.02740	7			1.191	7			2.491
8		0.02780	8			1.069	8			1.704
9		0.02754	9			2.440	9			2.292
0.017		0.03300	0.20				1.35		3.20	
(Minim	um) (Nominal) (N	Maximum) Value	(Minin	num) (Nomi		wum) Value	(Minin	num) (Nominal) Oil Measure Mo	(Maxim	value
0	Cir Bail (Node V	0.02724	0	Oil Goulde	Wode v	1.141	0	On Wedgare We		2.240
1		0.02744	1			1.053	1			2.790
2		0.02686	2			1.066	2			2.764
3		0.02714	3			0.5841	3			2.527
4		0.02711	4			1.174	4			3.009
5		0.02718	5			1.014	5			2.872
6		0.02732	6			0.7532	6			2.548
7	<u> </u>	0.02728	7			1.194	7			2.836
8		0.02769	8			1.078	8			0.2992
9	<u> </u>	0.02743	9			2.453	9			1.750
0.017 (Minim		0.03300 Maximum)	0.20 (Minin				0 (Minin	1.000 num) (Nominal)	4.500 (Maxim	
ldx	Water Dark Mode V	Value	Idx	Water Source		Value	ldx	Water Measure N		Value
0		0.02734	0			1.137	0			0.8187



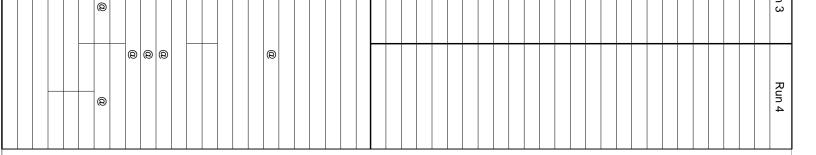
Live Fluid Analyzer Master Calibration Gas Detector Source Intensity Source Intensity Dark Mode V Value Source Intensity Source Mode V Value 0.03064 0.2840 0.01700 0.1900 0.02600 0.03500 0.2500 0.3100 (Minimum) (Nominal) (Maximum) (Nominal) (Maximum)

Master: 18-Feb-2008 12:21

			Scir	ntillation Gamma-Ra	y – L Wellsite Ca	alibration				
				Detector (Calibration					
Phase	Gamma Ray Background GAPI	Value	Phase	Gamma Ray (Jig	– Bkg) GAPI	Value	Phase	Gamma Ray (Calibrated)	GAPI	Value
Before		5.315	Before			163.8	Before			165.0
0 (Minir	30.00 120 mum) (Nominal) (Maxir		148 (Minir				150 (Minir		180. (Maxin	
Before:	4-Mar-2008 8:20					•				

Aguiraning 201

Well: WASABI-1


Field: Apache/VIC/P-58/WASABI-1

Rig: West Triton
Country: Australia

MDT-GR

Suite-1 Run-3 MDT Pretest

								Run 1	Run 2	Rur
				36 III III	oemminer.ñer.					
Company:	Apache l	Apache Northwest Pty Ltd	oty Ltd							
-										
Well:	WASABI-1									
Field:	Apache/	Apache/VIC/P-58/WASABI-1	ASABI-1							
Rig:	West Triton	ton	Country:	: Australia	Э					
1	MDT-GR									
SABI-	Suite-1 Run-3	{un−3								
t Pty	MDT Sampling	npling								
	Bass Strait			Elev.:						
/IC/P ait -1 Jorth		39,963.350 m		G.L.	–27 m					
he/\ Stra ABI he N	Easting : 522,993.588 m)93.588 m		D.F.	39 m			+		
ass VAS		tum: AHD		Elev.: 0 m						
A _l Ba W : A _l	Log Measured From:	ı	Drill Floor (RT)	39.0 m above	above Perm. Datum					
	Drilling Measured From:		Drill Floor (RT)							
Rig: Field: Locati Well: Comp	State: Victoria	Max. Well Deviation 48 deg	Deviation eg	Longitude 147 15' 49.147" E	Latitude 38 29' 18.157" S					
Logging Date		4-Mar-2008				Logging Date				
Run Number		ω				Run Number				
Septimberger Depth		Not Toggod				Depth Driller	\-:=1F			
Bottom Log Interval	-	1440 m				Bottom Log Interval	ival			
Top Log Interval		1268.5 m				Top Log Interval	_			
Casing Driller Size @ Depth	@ Depth	j.	@ 2313 m		@	Casing Driller Size @	Size @ Depth		@	
Casing Schlumberger	er	854 m				Casing Schlumberger	perger			
Type Fluid In Hole		KCI/Polymer				Type Fluid In Hole	ole			
Density	Viscosity		50 s				Viscosity			
M Fluid Loss	모		8.7			M Fluid Loss	모			
))ple)	
RME @ Measured Temperature	mperature		@ 22 degC		9 9	RME @ Measured Temperature	RME @ Measured Temperature		9 @	
RMC @ Measured Temperature	emperature	0.109 ohm.m			9 9	RMC @ Measu	RMC @ Measured Temperature		9 (
Source RMF	RMC		Press			Source RMF	RMC			
RM @ MRT	RMF @ MRT	@ 59	0.043 @ 59	@	@	RM @ MRT	RMF @ MRT	@	@	
Circulation Stopped Time	Time	3-Mar-2008	10:25			Circulation Stopped	Circulation Stopped Time	Φ 0		
Logger On Bottom	Time	4-Mar-2008	12:27	-		Logger On Bottom	_	Ф		
Unit Number	Location	41 AUSL	j			Unit Number	Location			
Recorded By		A. Dandi/M.Dawson/K. AlBarhi	n/K. AlBarhi			Recorded By				
Witnessed By		H.Little / A.Cruickshank	hank			Witnessed By				

DEPTH SUMMARY LISTING

Date Created: 2-MAR-2008 16:47:03

Depth System Equipment

Depth Measuring	Device	Tension De	vice	Loggin	g Cable
Type: Serial Number: Calibration Date:	IDW-H 796 29-Jan-2008	Type: Serial Number: Calibration Date:	CMTD-B/A 1721 27-FEB-2008	Type: Serial Number: Length:	7–46ZV–XS 77178 7699.86 M
Calibrator Serial Number: Calibration Cable Type: Wheel Correction 1: Wheel Correction 2:	1009 7–46ZV–XS –5 –5	Calibrator Serial Number: Calibration Gain: Calibration Offset:	1051 0.81 –610.00	Conveyance Method: Rig Type:	Wireline Offshore_Fixed

Depth Control Parameters

Subsequent Log In the Well Log Sequence:

Wasabi-1 GeoVISION Resistivity RM 200D Reference Log Name:

Reference Log Run Number:

Reference Log Date: 01-March-2008

Depth Control Remarks

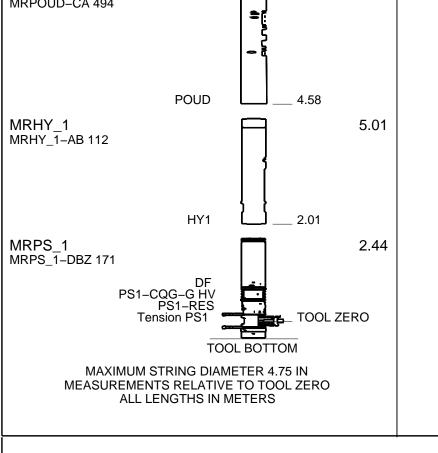
- 1. Schlumberger Depth Control Policy Followed
- 2. IDW used as primary depth reference
- 3. Z-Chart used as secondary depth reference
- 4.
- 5.

DISCLAIMER

THE USE OF AND RELIANCE UPON THIS RECORDED-DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS AFFILIATES, PARTNERS, REPRESENTATIVES, AGENTS, CONSULTANTS AND EMPLOYEES) IS SUBJECT TO THE TERMS AND CONDITIONS AGREED UPON BETWEEN SCHLUMBERGER AND THE COMPANY, INCLUDING: (a) RESTRICTIONS ON USE OF THE RECORDED-DATA; (b) DISCLAIMERS AND WAIVERS OF WARRANTIES AND REPRESENTATIONS REGARDING COMPANY'S USE OF AND RELIANCE UPON THE RECORDED-DATA; AND (c) CUSTOMER'S FULL AND SOLE RESPONSIBILITY FOR ANY INFERENCE DRAWN OR DECISION MADE IN CONNECTION WITH THE USE OF THIS RECORDED-DATA.

OTHER SERVICES1 OTHER SERVICES2 OS1: VSI OS1: OS2: PEX-HRLA-MSIP-GR-S OS2: OS3: CST-GR OS3: OS4: OS4: OS5: OS5: **REMARKS: RUN NUMBER 1** REMARKS: RUN NUMBER 2

Tool string run as per tool sketch.


Log correlated to Schlumberger GeoVISION Resistivity Log dated 1-Mar-2008.

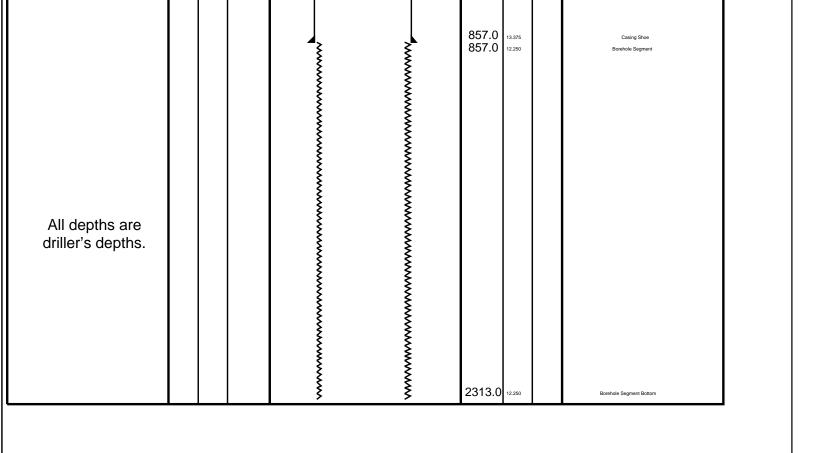
Large Hole Kit and Large-Diameter probe used. Sampling was attempted in 2 stations as per client request:

- Station @ 1328m: 3x 450cc samples were taken. Samples were transferred @ surface by PetroTech as per client request.

- Station @ 1440m: Large drawdown was encountered due to formation sanding (partial probe blockage), hence client decided to

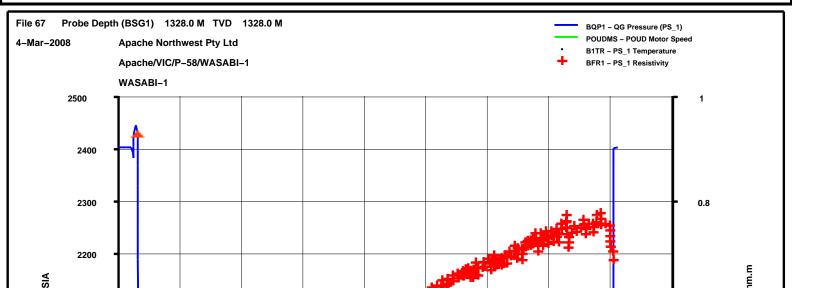
abort station arter o at						
Tool got hold up @ 15	00m MD, client dec	ided to abort lower p	oints and PC	OOH.		
Quartz gauge correction Max. recorded temper				s per deviation survey).		
Additional mud proper Chlorides = 49,000 mg KCL = 9 (% by Wt.)			r–2008:			
				T		
SERVICE ORDER #: PROGRAM VERSION FLUID LEVEL:		AUSL0834921 15C0-30	09	SERVICE ORDER #: PROGRAM VERSION: FLUID LEVEL:	RUN 2	
LOGGED INTE	RVAL S	START ST	OP	LOGGED INTERVAL	START	STOP
	RUN 1	EQUIPM	1ENT	DESCRIPTION	RUN 2	
Sl	JRFACE EQU	IPMENT			NON Z	
MRPP-AA GSR-U/Y WITM (CTS)-A						
DO'	WNHOLE EQU	JIPMENT		1		
LEH-QT LEH-QT 2800			18.82			
TCC-BF ECH-KC 2653 TCC-BF 653	TelStatus	16.58	17.93			
SGT-L SGH-K 403 SGC-SA 735 SGD-TAB 3465	Gamma Ray	16.30	17.01			
MRPC MRPC-BB		П	15.34			
MRMS_1 BOTT_6-AA 3358	PC	13.39	13.82			
BOTT_5-AA 3354 BOTT_4-AA 3353 BOTT_3-AA 3351 BOTT_2-AA 3347 BOTT_1-AA 3300 MRMS_1-CA 324						
	MS1	9.37				
LFA MRFA-EA 8011			9.80			
	FA-BA	7.82				
MRPO_UD MRPOUD-DU-AA			8.25			

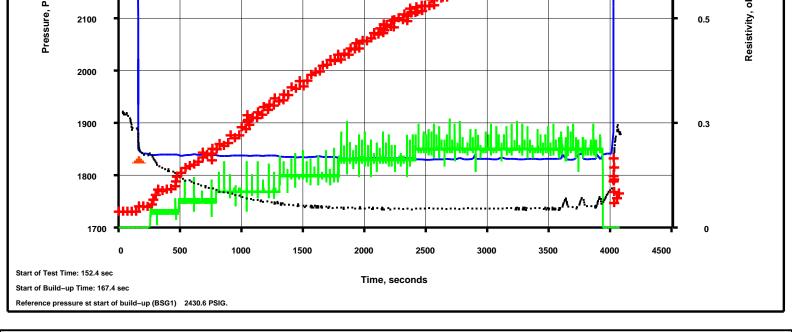
Client: Apache Northwest Pty Ltd Drawing Date:7-Mar-2008


Well: Wasabi-1

Field:

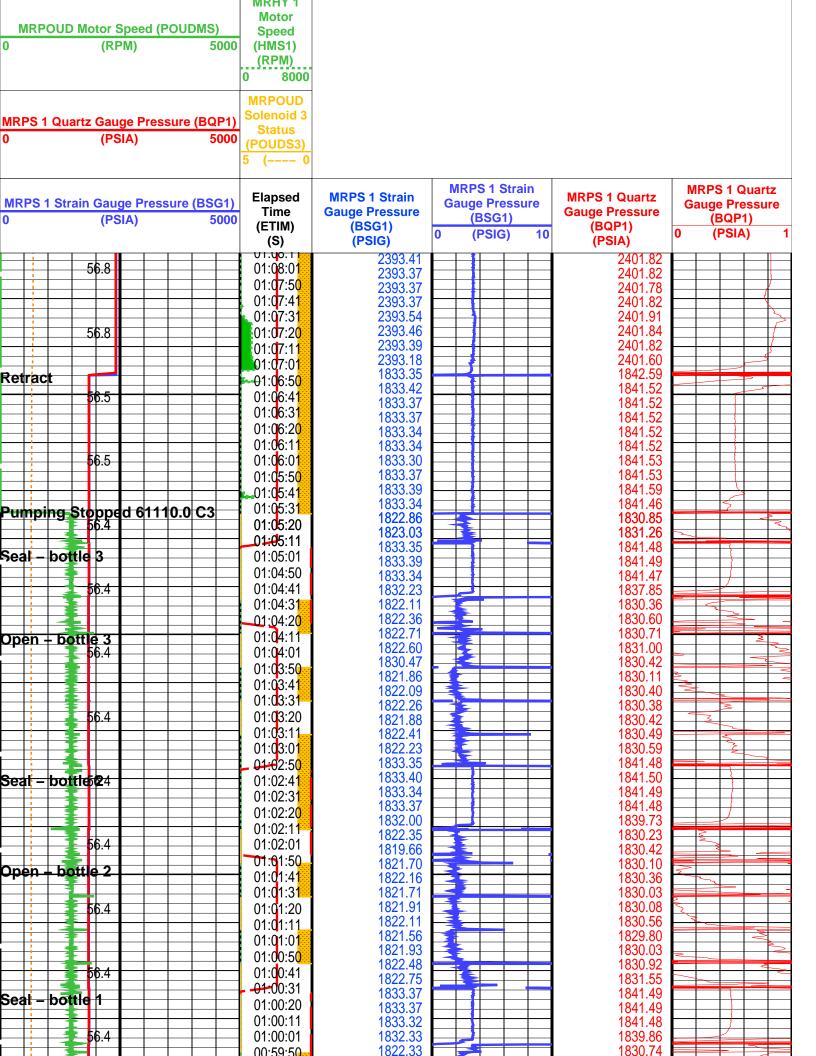
Apache/VIC/P-58/WASABI-

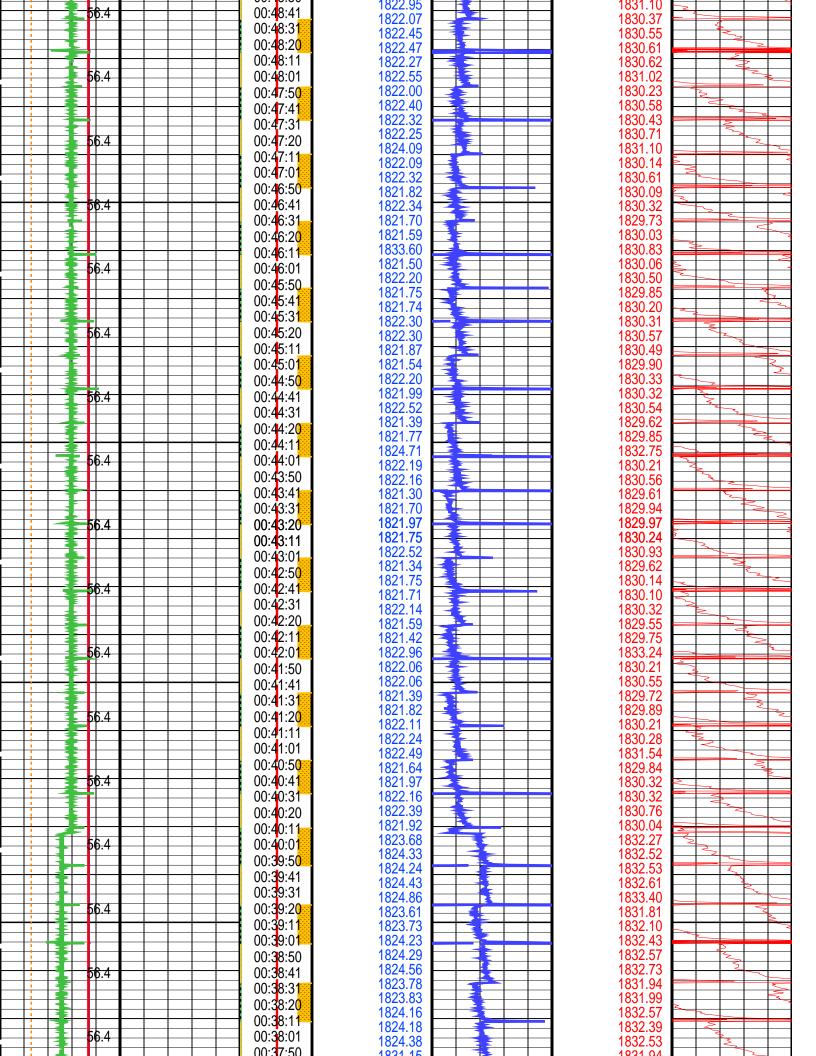

State: Victoria Country: Australia Rig Name: West Triton
Reference Datum: AHD
Elevation: 39.0 r

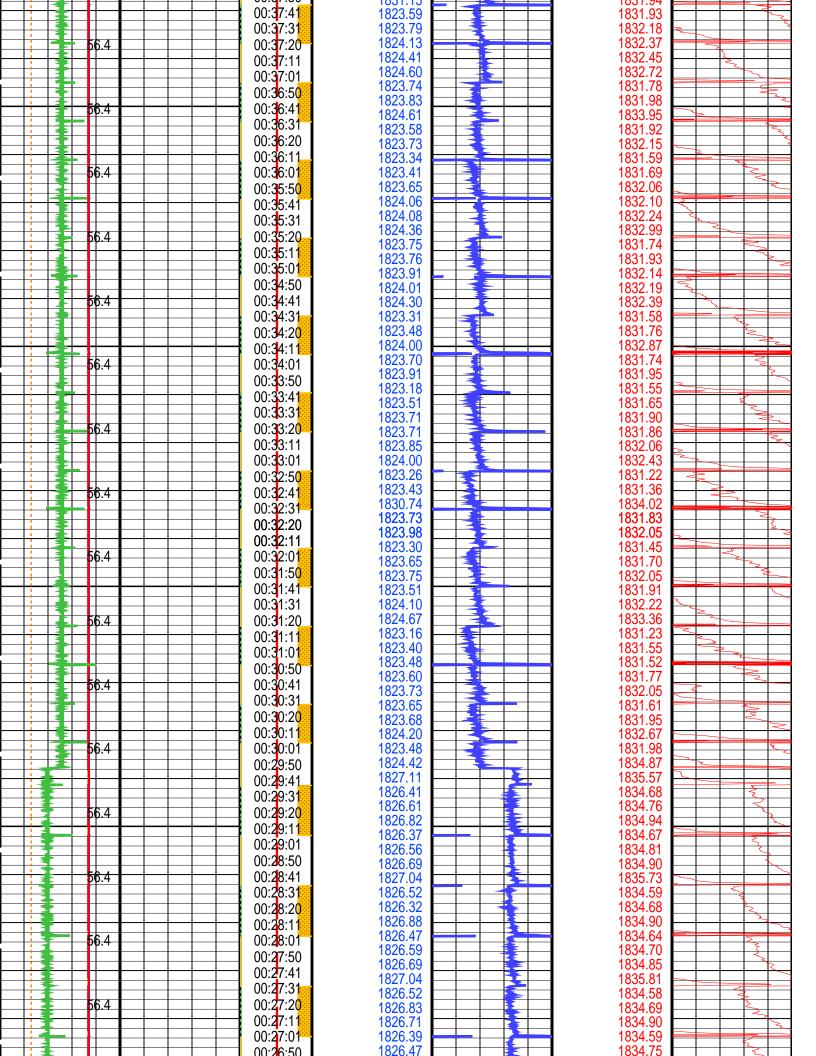

Country: Australia			Elevation:	39	<u>.0 m</u>		
Production String	(in)	, MD	Well Schematic		(m) (in) (DD (DD (DD (DD (DD (DD (DD (DD (DD (D	ID	Casing String
Kelly Bushing Elevation Derrick Floor Elevation Mean Sea Level		39.0 39.0 0.0			27.0 20.000 101.1 20.000		Casing String Casing Shoe

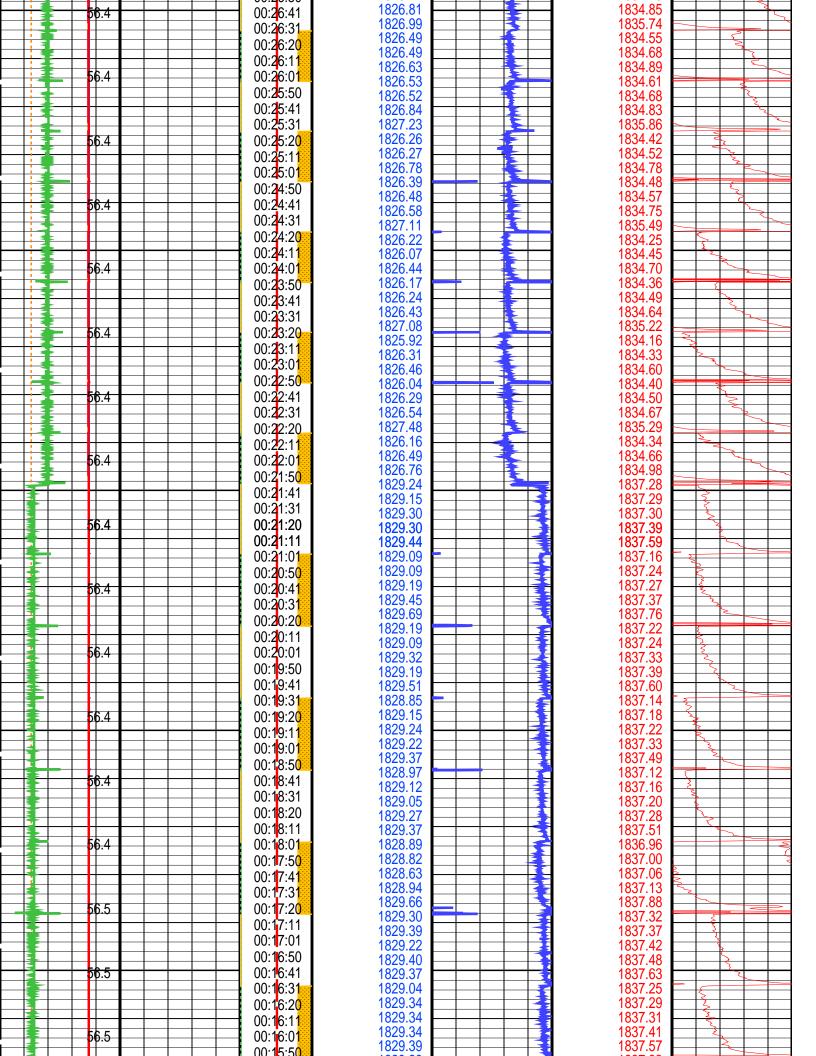
Schlumberger

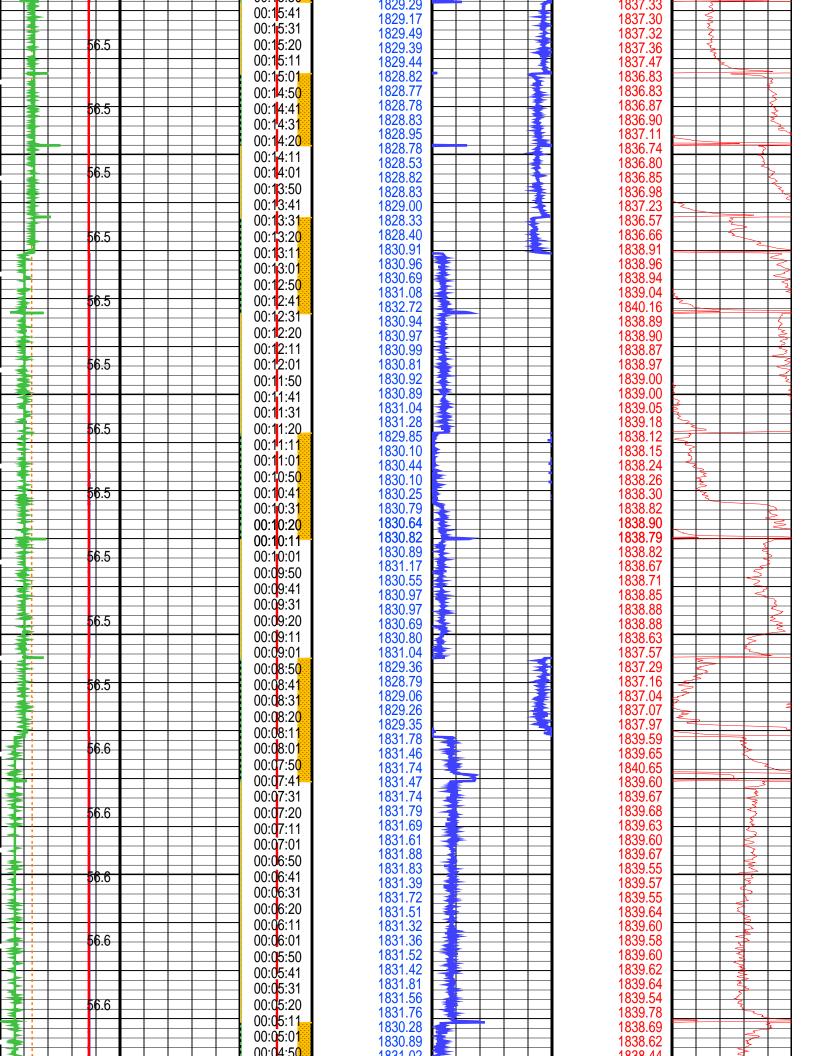
Station @ 1328m

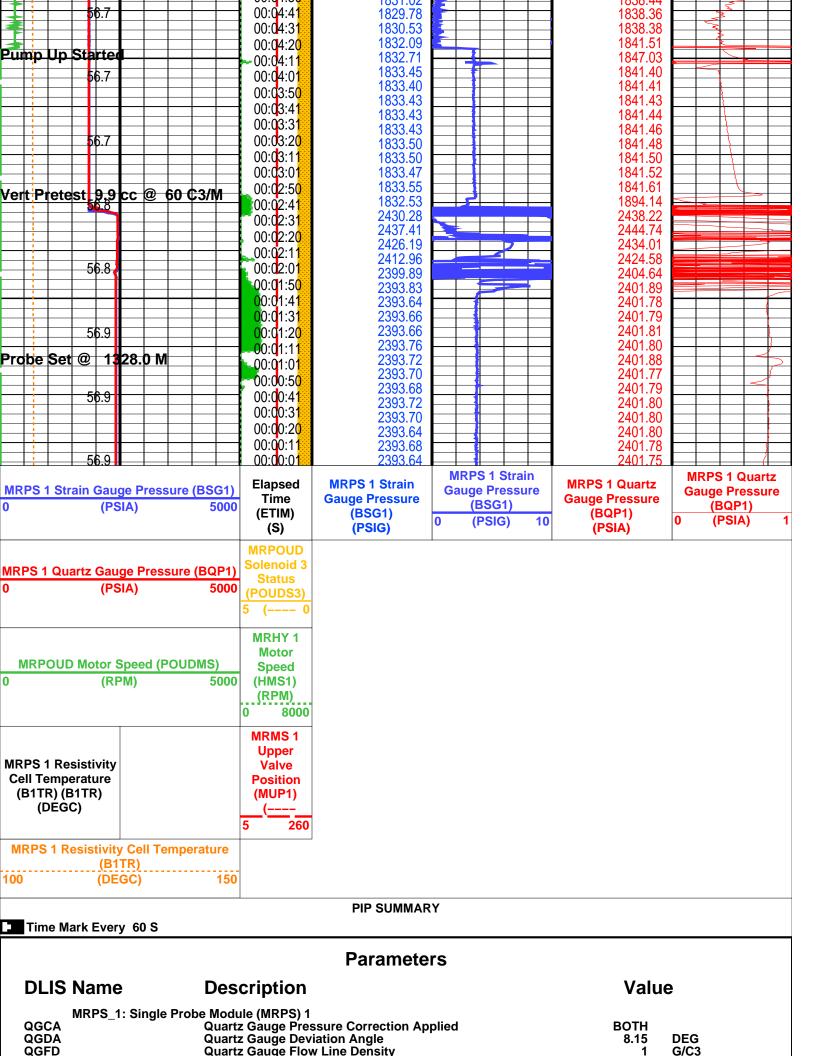


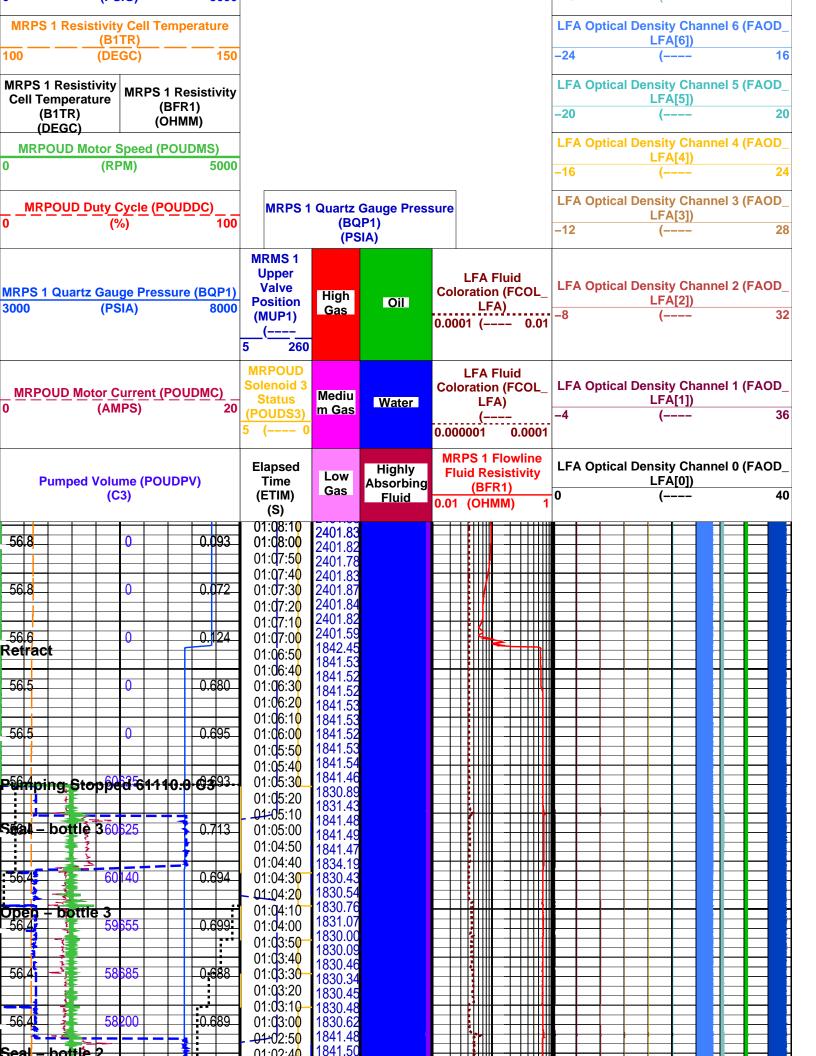

		Input D	LIS Files			
DEFAULT	MDT_OFA_067LTP	FN:109	PRODUCER	04-Mar-2008 13:21	1328.0 M	10.4 M
		Output	DLIS Files			
DEFAULT	MDT_OFA_082PTP	FN:139	PRODUCER	04-Mar-2008 16:29	1328.0 M	10.4 M
RTB	MDT_OFA_082PTP	FN:140	PRODUCER	04-Mar-2008 16:29	1328.0 M	10.4 M


Elapsed Time (s)	Event Summary
4015.8	Retract Single Probe Module (MRPS) 1
3931.8	Pumping Stopped 61110.0 C3 Dual Up-down Pumpout Module (MRPOUD)
3904.2	Seal MDT Multi-Sample (MRMS) 1, bottle 3
3852.3	Open MDT Multi-Sample (MRMS) 1, bottle 3, sample number = 3
3764.1	Seal MDT Multi-Sample (MRMS) 1, bottle 2
3707.4	Open MDT Multi-Sample (MRMS) 1, bottle 2, sample number = 2
3627.0	Seal MDT Multi-Sample (MRMS) 1, bottle 1
3567.0	Open MDT Multi-Sample (MRMS) 1, bottle 1, sample number = 1
257.7	Pump Up Started Dual Up-down Pumpout Module (MRPOUD)
152.4	Vert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1
67.5	Probe Set @ 1328.0 M Single Probe Module (MRPS) 1


Time Mark Every 60 S MRPS 1 Resistivity Cell Temperature (B1TR) 100 (DEGC) 150 MRMS 1 Upper Valve Position (MUP1) (MUP1) (DEGC) (DEGC) 5 260



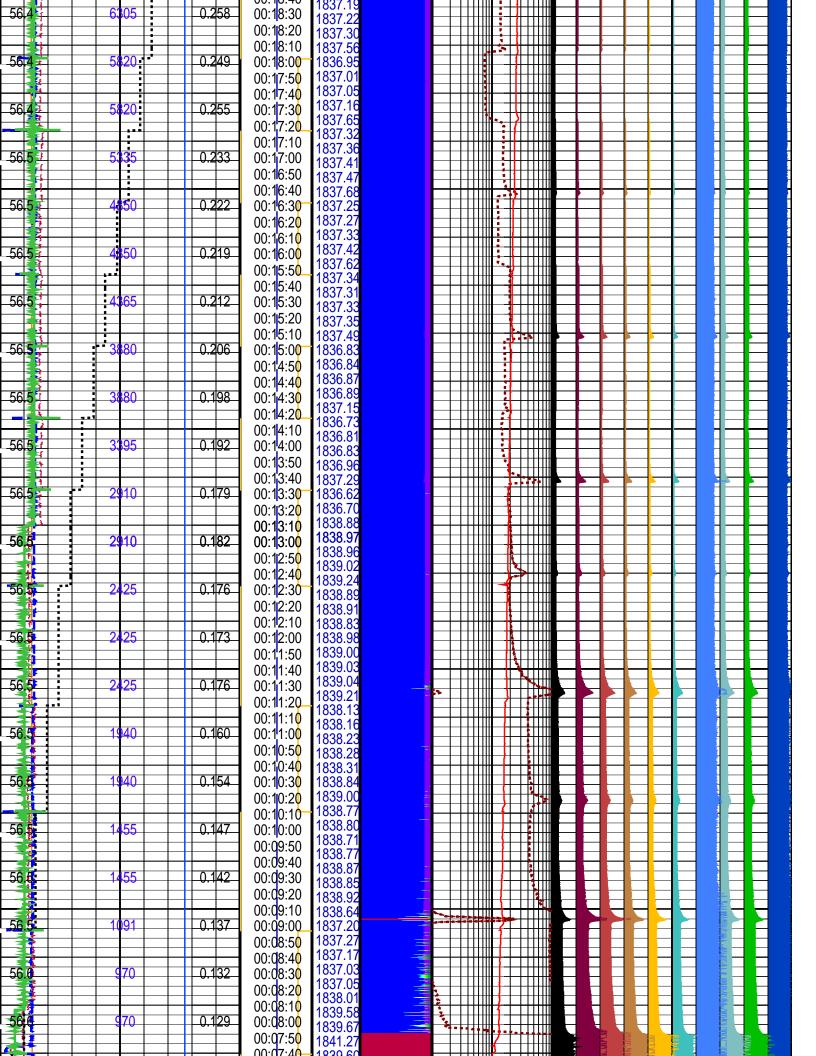

			00.00.00	4000.00	3.		4000.00		
	32		<u> </u>	1822.26			1830.80		
_			00:59:31	1823.72			1832.93 1831.44		
Ope n + I	bottle 1		00:5 <mark>9:20</mark>	1823.72 1823.23 1823.95			1831.44	2	
			00:59:11	1823.95			1831.65		
			00:5 <mark>9:01</mark>	1822.76			1830.82		S
	3		00:58:50	1822.71			1831.13	2-2	
	1 60 4			1822.88 1823.13 1823.73			1831.19 1831.40	\$	
	56.4		00:5 <mark>8:41</mark>	1823.13	= 1		1831.40	N. A.	
	*		00:5 <mark>8:31</mark>	1823.73			1832.68		
	3 -		00:5 <mark>8:20</mark>	1822.43			1830.86		
- 	₹		00:5 <mark>8:11</mark>	1823.07			1831.16	~~	
	56.4		00:58:01	1822.83 1823.12 1822.40			1831.15		
 			00:57:50	1823.12			1831.33	3	+++
	3 =		00:57:41	1822.40			1830.78		
	1		00:57:31	1822.46			1830.84		= =====================================
				1823.03			1833.00		
- 	56.4		00:57:20	1822.73	*		1831.06 1831.31		+ + 4
			00:5 <mark>7:11</mark>	1822.95			1831.31		
			00:5 <mark>7:01</mark>	1822.33			1830.62		-
	3 =		00:5 <mark>6:50</mark>	1822.73 1822.95 1822.33 1822.35			1830.69		Ž.
+++	56.4		00:5 <mark>6:41</mark>	1822 /3			1831.01	2	
			00:5 <mark>6:31</mark>	1822.93 1823.48 1822.22			1831.17	~	
!	1		00:56:20	1823.48	3		1831.62		
	F		00:56:11	1822.22			1830.61		
	56.4		00.56:01	1822.80			1830.96		-
	90.4			1822.75			1830.90		7
	*		00:5 <mark>5:50</mark>	1822.63	\$		1830.95	$\perp \downarrow \perp$	
	-		00:55:41	1822.63 1822.13 1822.42		-	1830.95 1830.34 1830.57		
1			00:5 <mark>5:31</mark>	1822.42			1830.57		2
	56.4		00:5 <mark>5:20</mark>	1822.78			1831.34		
	#		00:5 <mark>5:11</mark>	1822.75			1830.79		
			00:5 <mark>5:01</mark>	1822.75 1821.82 1822.18			1830.80 1830.15		72
			00:5 <mark>4:50</mark>	1821.82	3		1830.15		
	56.4		00:54:41	1822.18			1830.51	7	2
	10.7		00:54:31	1822.28			1830.44	کے	
	3		00:54:20	1822.32	-		1830.65	~	
				1822.85	3		1831.35		
	*		00:54:11	1822.85 1822.35 1822.33			1830.38 1830.76	- N	
	- 5 6.4		00:5 <mark>4:01</mark>	1822.33	*		1830.76		
			00:5 <mark>3:50</mark>	1822.22	3<		1830.49		
	#		00:5 <mark>3:41</mark>	1822.52			1830.65	-	
			00:53:31	1822.08			1830.30		
	56.4		00:5 <mark>3:20</mark>	1822.08 1822.28 1822.83			1830.60		2
1			00:5 <mark>3:11</mark>	1822.83			1831.62		2
	1		00:53:01	1822.78			1830.81		
1	3		00:52:50	1822.92			1831.09		
	56.4		00.52.30	1822.00 1822.42 1822.20			1830.34 1830.52	3	
	J0.4		00:52:4	1022.42			1830.52 1830.69		2
				1822.33			1000.09		23
	7		00:52:20	1022.33 1022.05		+	1830.76		1
	3-1		00:52:11	1822.85			1831.37 1830.30		
	56.4		00:5 <mark>2:01</mark>	1822.18 1822.33 1822.45			1830.30 1830.61	3	+
	4		00:5 <mark>1:50</mark>	1022.33 1922 45			1830.75		
	3		00:5 <mark>1:41</mark>	1822.80			1830.89		
	*		00:51:31	1822.13	· E		1830.43		3_
	56.4		00:5 <mark>1:20</mark>	1822.13			1030. 4 3 1830.55	*	
	*		00:51:11	1822.18 1822.74 1822.37			1830.55 1831.01		
	1		00:51:01	1822.74			1830.64		-
	₹		00:50:50	1822.50			1830.89		6
			00.50.50 00:50.41	1822.08			1830.28		~
	56.4			1822.00	*		1830.47		
			00:50:31	1822.13			1830.39		7
			00:5 <mark>0:20</mark>	1822.14 1822.32 1822.14			1830.47 1830.39 1830.51	5	
			00:5 <mark>0:11</mark>	1822.70			1831.00		
	56.4		00:5 <mark>0:01</mark>	1822.22			1830.44	1	+
	1		00:4 <mark>9:50</mark>	1822.22			1830.66	>	2
- - 	3	┱┼┼┼	00:49:41	1822.27 1822.25 1822.64		igoplus	1830.64	++	
			00:4 <mark>9:31</mark>	1822 64	3		1830.90		2
	56.4		00:49:20	1822.29	1		1830.35		~
	70.4		00:49:20	1822.30			1830.50	Ę	
	1			1822.32			1830.90		7
	1		00:49:01	1822.32 1822.59			1830.87		Ę
	I		00:4 <mark>8:50</mark>	1022.00	1		1000.07		

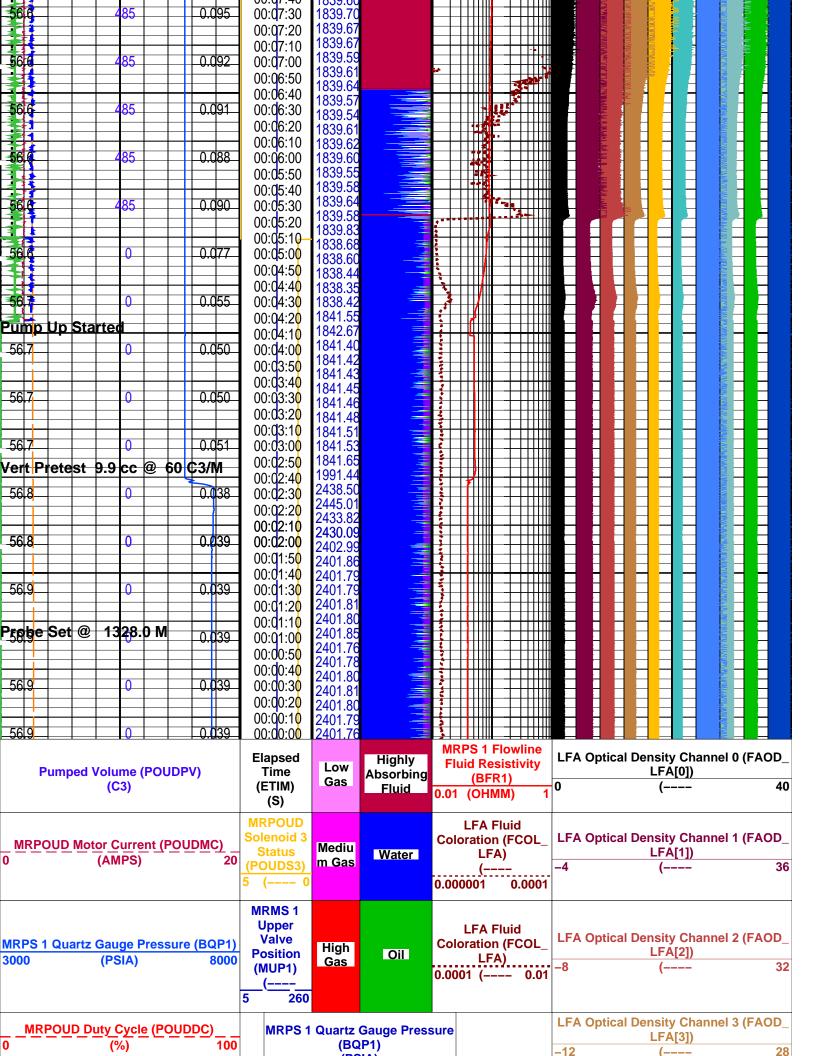


LFA: Live Fluid Analyzer **PDCO Probe Depth Correction Offset MRPC: Power Cartridge PDCO Probe Depth Correction Offset System and Miscellaneous** PP Playback Processing RECOMPUTE Vertical Scale: 1" per 60S Format: MRPS_Pretests Graphics File Created: 04-Mar-2008 16:29 OP System Version: 15C0-309 MCM MRPS_1 SPC-3397-MDT MRHY 1 SPC-3397-MDT SPC-3397-MDT MRPO_UD **LFA** SPC-3397-MDT SPC-3397-MDT MRMS_1 SPC-3397-MDT **MRPC** SGT-L SRPC-3546-Q1_2008_OP15 TCC-BF SRPC-3546-Q1_2008_OP15 Input DLIS Files MDT_OFA_067LTP FN:109 **PRODUCER** 04-Mar-2008 13:21 10.4 M **DEFAULT** 1328.0 M Output DLIS Files FN:139 **PRODUCER DEFAULT** MDT_OFA_082PTP 04-Mar-2008 16:29 **PRODUCER** 04-Mar-2008 16:29 **RTB** MDT_OFA_082PTP FN:140 Company: Apache Northwest Pty Ltd Well: WASABI-Output DLIS Files **DEFAULT** MDT_OFA_067LTP FN:109 **PRODUCER** 04-Mar-2008 13:21 1328.0 M 10.4 M **RTB** MDT_OFA_067LTP FN:110 **PRODUCER** 04-Mar-2008 13:21 1328.0 M 10.4 M **Elapsed Event Summary** Time (s) Retract Single Probe Module (MRPS) 1 4015.8 Pumping Stopped 61110.0 C3 Dual Up-down Pumpout Module (MRPOUD) 3931.8 Seal MDT Multi-Sample (MRMS) 1, bottle 3 3904.2 3852.3 Open MDT Multi-Sample (MRMS) 1, bottle 3, sample number = 3 3764.1 Seal MDT Multi-Sample (MRMS) 1, bottle 2 3707.4 Open MDT Multi-Sample (MRMS) 1, bottle 2, sample number = 2 3627.0 Seal MDT Multi-Sample (MRMS) 1, bottle 1 Open MDT Multi-Sample (MRMS) 1, bottle 1, sample number = 1 3567.0 Pump Up Started Dual Up-down Pumpout Module (MRPOUD) 257.7 152.4 Vert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1 67.5 Probe Set @ 1328.0 M Single Probe Module (MRPS) 1 **PIP SUMMARY** Time Mark Every 60 S LFA Optical Density Channel 9 (FAOD_ **LFA[9])** -36 4 **MRPOUD Hydraulic Pump Output** LFA Optical Density Channel 8 (FAOD_ Volume (POUDPV) **LFA[8])** -32 8 (C3)10000 **MRPOUD Hydraulic Pressure** LFA Optical Density Channel 7 (FAOD) (POUDHP) **LFA[7])**

-28

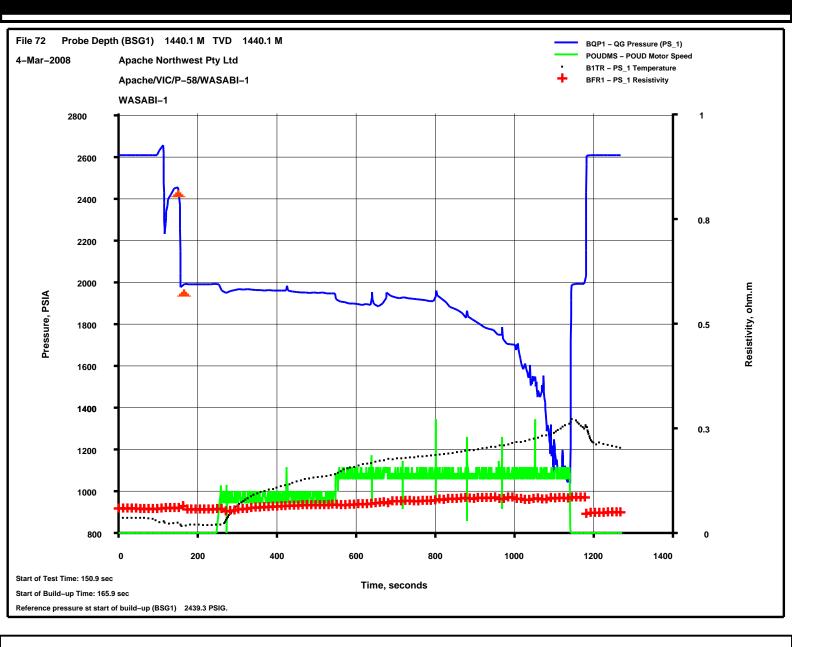
(PSIG)



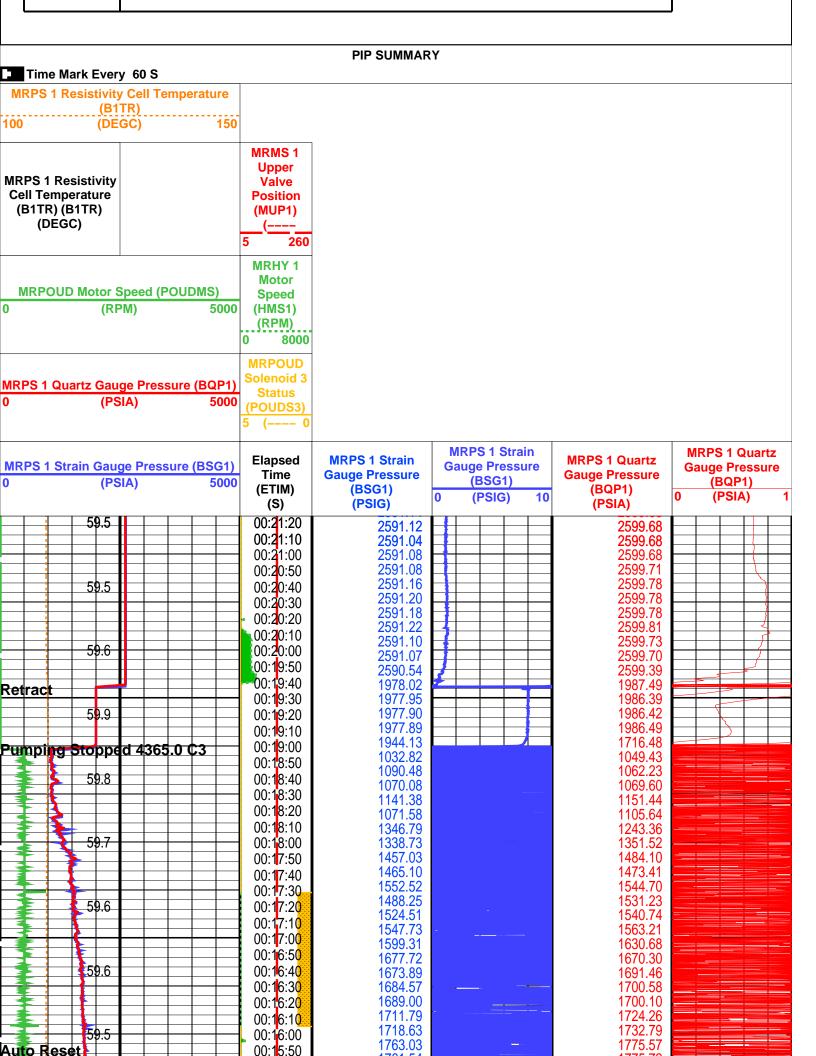

-56		Ю	5	<u>-</u> 58	200		1	0.685	01.02.70	1841.49									H
-30	4		July de	90	200		4	0.000	01:02:3 <mark>0</mark> 01:02:2 <mark>0</mark>	1841.48									H
	_					_+	. ‡	: -	01:02:10	1838.85									Ħ
-56	4 <mark>!</mark>	1		57	715			0.678	01:02:00	1830.28 1830.48									H
- 50 Op :	7	Ā	ottle	•			2.0		01:01:50	1830.03									
υþ	7	+ U	OTTIE		7.45		:	0.070	01:01:40	1830.35		101							H
_56	4			56	745	:	-	0.678	01:01:30	1830.04 1830.10				1111					H
	į	1				-11			01:0 <mark>1:20</mark> 01:01:10	1831.04			III I I	Ш					H
-56	4	3		56	260			0.663	01:01:00	1829.81									H
	1	# #				;		0.000	01:00:50	1830.07		1.00		╫					H
	7	Aut.	"M		=	_			01:0 <mark>0:40</mark>	1830.95 1831.23		<u>, </u>		╫				H-	H
56 Se a	4	bo	ttiệ	-55	77 5		-	0.685	-01 :00:30	1841.49			$\blacksquare \blacksquare$			·	<u>'</u>	H-	A
oc a	-	טט	LII Ş	1			-		01:00:20	1841.49									A
-56			1	55	7 <u>75</u>			0.685	01:00:10 01:00:00	1841.47 1838.08									A
-50	4							0.000	00:59:50	1830.74				1111					Ħ
	j				÷		_		00:59:4 <mark>0</mark>	1830.86									Ħ
_56	4		ottle	54	305			0.665	00:5 <mark>9:30</mark>	1831.71				1111					Ħ
Op	n	+ b	Ottle	+1+					00:59:20	1831.42 1831.68				1111					
F0	-	4.7		54	200	_	#	0.050	00:59:10	1830.89				###					H
-56	4	*		-54	5 <u>2</u> U		+	0.656	00:5 <mark>9:00</mark> 00:58:50	1831.14					\exists				H
	ţ			••			\pm		00:58:50	1831.22 1831.38		Ш		1111					H
-56	4	-		53	335			0.656	00:58:30	1831.99									H
	F	In acres to A							00:58:20	1830.95									Н
	İ	- -							00:5 <mark>8:10</mark>	1831.24								H-	H
-56	4	4		52	365		-	0.652	00:58:00	1831.20				╫				H	H
-		-5	. —						00:57:50	1831.36 1830.74				+HH					A
<u>56</u>	1			52	380			0.658	00:57:4 <mark>0</mark> 00:57:30	1830.86		\blacksquare	$\blacksquare \exists \exists$					H	A
-50	7	2		- 0 2	500			0.000	00:57:20	1832.94 1831.12									H
	1	•					-		00:57:10	1831.34				╫					H
-56	4			51	410			0.648	00:57:00	1830.63		\blacksquare		11111					Ħ
	ļ	- ŧ							00:56:50	1830.77	4	\blacksquare							Ħ
56	Ţ			E 0	925			0.650	00:56:40	1830.98 1831.18									H
	7			-00	920			0.000	00:5 <mark>6:30</mark> 00:56:20	1832.41									H
:	į	and the stall							00:56:10	1830.60		Ш		11111					H
-56	4	- 1		49	955			0.642	00:56:00	1830.96 1830.89									H
	1								00:55:50	1831.03		Ш							H
	1	7		40	470			1	00:55:40	1830.35									H
-56	4	3		49	17 0			0.643	00:55:30	1830.62 1832.67		Ш							H
	'						\pm	10.00	00:55:2 <mark>0</mark> 00:55:10	1830.77	H	\Box							H
-56	4			48	985		\pm	0.642	00:55:00	1830.87				##					H
	•						\pm	0.9.2	00:54:50	1830.22 1830.52		+ + + + + + + + + + + + + + + + + + +		╁					H
		1					\pm	•••	00:5 <mark>4:4</mark> 0	1830.42		++++		1	\exists				H
-56	4			48	015		\pm	0.633	00:54:30	1830.65									H
	ŀ	7							00:54:20	1831.90		Ш		\coprod					H
-56		A		<u>4</u> 7	530			0.636	00:5 <mark>4:10</mark> 00:54:0 <mark>0</mark>	1830.47 1830.78	23		!! ! ! !	_					
30	+	-		71		-		5.000	00:53:50	1830.54		+							A
	1						+		00:5 <mark>3:40</mark>	1830.71	•	тш		++				H-	H
-56	4	4		46	560	- ; ;		0.623	00:5 <mark>3:30</mark>	1830.37					\dashv				H
		44					+		00:53:20	1830.62 1832.96									H
EC	1	-		10	75		#	0.621	00:53:10	1830.80			III I I	<mark> </mark>					H
-56	4	-		40)75		\downarrow	U.021	00:53:00 00:52:50	1831.14	*								H
	•		-				\pm		00:52:50 00:5 <mark>2:40</mark>	1830.36 1830.52		Щ		##	\dashv				H
-5 6	4	\$		45	105		\pm	0.619	00:52:30	1830.66					\exists				H
	4						\pm		00:52:20	1830.80		Ш							H
	÷	4					\pm		00:52:10	1831.66	1	++++		11 611	\exists				H
-56		4 4		44	520		\pm	0.611	00:52:00	1830.32 1830.72 1830.73									H
	ŀ			; . i			$oldsymbol{oldsymbol{eta}}$		00:51:5 <mark>0</mark>	1830.73		Ш							H
	_					=	_		DO:41:40		H			- 1111					

0.05126 339.5 339.6 339.5 339.	EG /	1			· // //	135		0.611	00.91.70	1830.86								H
36 40 40 50 60 60 60 60 60 60 6	- 50 14	-			- 44	100		U.Q11		1830.44				_ 				
564 43 85 0.600 0.9100 1830.67 1 0.000 1830.67	#	-	+							1831.38			₩		++			H
56 4 41930 0.897 0.893 0.890 1.893.50 0.902 0.903 1.893.20 0.902 0.903 1.893.20 0.902 0.903 1.893.20 0.903 1.893.20 0.904 0.904 0.903 1.893.20 0.904 0	-56.4	ţ			43	165		0.605		1830.67			Ш	- 1 	++			
56 4 41710 0.590 0.50.30 1830.37		ţ								1830.90			Ш	 				
1831 25		ŧ			40	200		0.007		1830.30 1830.55	-		Ш					
1831 25	-56.4	t			42	080		0.607		1830.37		•	Ш					
180 180		į	:	,						1830.56			Ш					
56 4	56.4	ŧ	-		41	710		0.598				4	Ш	 				Н
56 4		š											Ш					
1831 18 18 18 18 18 18 1	<u> </u>	Ŀ							00:4 <mark>9:40</mark>	1830.69			₩					
1831 18 18 18 18 18 18 1	-56 4	ŧ			41	225		0.593		1830.87			Ш	- 				H
1831 18 18 18 18 18 18 1		ŧ	-	1						1830.36 1830.46								
36 4	- I I	1			40	055		0.590										R
36 4		_		4	+0	-00		0.030		1830.90			Ш					H
364 39.70 0.383 00.48:20 830.5 00.48:20 00.48:10 0	:		_							1831.16			Ш		+			H
36 A 3985 0.581 0.400 (400) 1831.08	56.4	Ĺ			39	770		0.593		1830.51			Ш		1			
564 39885 0.581 0.047.50 1830.55		Ĺ	_	4				1		1830.52			₩	<u> </u>				
56 4 3 38 815	EC /	+		1	20	005				1830.63					++			H
1		4	-		- 39	400		0.391		1831.09 1830.23			₩					H
10		4								1830.56			Щ		##			H
378 378 377 377 377 383	56.4	÷	_		38	B15		0.582		1830.50			Ш					
378 378 377 377 377 383	$= \parallel$	i		2					00:47:20	1830.73			₩					
564 3680 0.569 00.46:30 1830.14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		÷	1							1830.11		1	₩					Н
564 3680 0.569 00.46:30 1830.14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-56.4	E			_37	830		. 0.01		1830.68		,	Ш					Н
564 3680 0.569 00.46:30 1830.14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							:						Ш					
36 4	56.4	*	-	4	36	860		0.569		1830.31 1829.71		<u>, e</u>	Ш	- 1 1 1 1 1 1 1 1				Н
36 4								0.000		1830.14			Ш	- 1 				H
1	_	ł	-				1		00:4 <mark>6:10</mark>	1829.92		4.	₩		+	-		H
1	56.4	į			36	B 75		0.566					Ш	- 				H
35 405 0.560 0.46.20 0.45.20 0.45.20 0.45.20 0.46.20 0.44.20 0.44.20 0.44.20 0.44.20 0.44.20 0.44.20 0.44.20 0.44.20 0.43.30 0.43.20 0.43.		į				-				1829.83								H
1					25	105		0.560	00:45:40	1830.20			Ш					H
564 32980 0.542 0.4320	-30-4	ī			-	+00		0.300	00.45.30	1830.35			Ш					
56.4 3.4320 0.555 00:45:00 1829:90 00:44:40 1830.34 1830.34 1830.34 1830.34 1830.34 1830.34 1830.34 1830.34 1829.66 1829.93 1829.96 1829.93 1830.06 1830.06 1830.70 1830.06 1830.06 1830.70 1830.06 1830.06 1830.70 1830.06 1830.06 1830.70 1830.06 1829.94 1830.26 1830.26 1830.26 1830.26 1830.26 1830.26 1829.94 1829.94 1829.94 1829.94 1830.23 1830.23 1830.10 1830.38 1830.38 1830.23 1830.38 1830.38 1830.10 1830.38 1830.38 1830.10 1830.10 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17	_#	1								1829.71		-	Ш					H
56.4 332980 0.542 00:43:00 00:43:00 00:43:00 00:42:00 00:	56.4	Ē			34	920		0.555	00:4 <mark>5:00</mark>	1829.90			Ш	 				
56.4 332980 0.542 00:43:00 00:43:00 00:43:00 00:42:00 00:		•								1830.34			Ш					
56.4 33365 0.546 00:44:00 1830.24 1830.06 1830.24 1829.60 1829.94 1830.02 1829.94 1829.94 1829.94 1829.94 1829.94 1829.94 1829.94 1829.94 1829.94 1829.94 1829.94 1830.10 1829.94 1830.10 1829.94 1830.10 1829.94 1829.94 1829.95 1830.10 1829.95 1829					-:	105		0.500		1830.34 1830.54			Ш					
56.4 332980 0.542 00:43:00 00:43:00 00:43:00 00:42:00 00:	-20,4	ļ	-		-34	435		0.300		1829.66		; \$	Ш					
56.4 33365 0.546 00:44:00 1830.24 1830.06 1830.24 1829.60 1829.94 1830.02 1829.94 1829.94 1829.94 1829.94 1829.94 1829.94 1829.94 1829.94 1829.94 1829.94 1829.94 1830.10 1829.94 1830.10 1829.94 1830.10 1829.94 1829.94 1829.95 1830.10 1829.95 1829		4								1829.93			Щ					
564 32980 0.542 00:43:30	56.4	ŧ		\$	33	465		0.546	00:44:00	1830.06 1830.24			₩	 	\pm			H
564 32980 0.542 00:43:30 1829.94 1830.02 1830.26 1829.94 1829.95 1829.	=	;	-						00:4 <mark>3:50</mark>	1830.70			₩					H
56.4 32 010 0.537 00:43:00 00:42:50 00:42:40 1830.23 1830.23 1830.23 1830.23 1830.23 1830.23 1830.23 1830.38 00:42:20 00:42:20 00:42:10 1830.38 00:42:20 00:42:10 1830.38 1829.82 1829.53 1829.82 1829.53 1829.82 1829.53 1829.82 1830.17 1830.17 1830.57 1829.70	<u></u>	i	+		00	000		0.540		1829.60			₩		$\pm \pm$			
56.4 31525 0.535 00:42:30 1830.10 1830.38 1829.53 1829.82 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.57 1829.70	<u> 56,4</u>	1			_32	980		0.542		1829.94			₩					
56.4 31525 0.535 00:42:30 1830.10 1830.38 1829.53 1829.82 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.57 1829.70		1	-							1830.02			Щ		$\pm \pm$			
56.4 31525 0.535 00:42:30 1830.10 1830.38 1829.53 1829.82 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.57 1829.70	56.4	*			32	010		0.537		1829.94			Ш	- 				H
56.4 31525 0.535 00:42:30 1830.10 1830.38 1829.53 1829.82 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.17 1830.57 1829.70		ŧ		Y III						1829.64			₩					
564 30919 0.529 00:42:00 1831.11 00:41:50 00:41:40 1830.57 1829.70	_	Š							00:42:40	1830.23 1830 10			₩					
564 30919 0.529 00:42:00 1831.11 00:41:50 00:41:40 1830.57 1829.70	_56.4	ŀ			_31	525		0.535	00:42:30	1830.38								
564 30919 0.529 00:42:00 1831.11 00:41:50 00:41:40 1830.57 1829.70		Ĭ	1-							1829.53			∭					
00:41:40 1830.57 1829.70	56.7	Į			30	919		0.520		1829.82 1831 11				- 				H
00:41:40 1830.57 1829.70		Ī	_		- 00			0.020		1830.17			₩					H
5614 30070 0.523 00:41:30 1829.70	_	F		\$					00:4 <mark>1</mark> :40	1830.57			₩	- 	+			
r	56.4	ŧ			30	070		0.523	00:41:30	1829.70			₩					H
00:41:20 00:41:10 1829.93 1830.16		į.	1 -					-		1830.16			₩	<u></u>				
00:41:10 1830.27 00:41:00 1830.27 1830.27	— ti	t			20	505			00:41:10	1830.2 <i>1</i>			₩		##			
30/4 29/83 1 00:41:00 1830.96 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-30,4	į	_		_29	voo				1830.96								
00:40:50 1829.79		*							00.40.40	1829.79			Щ					

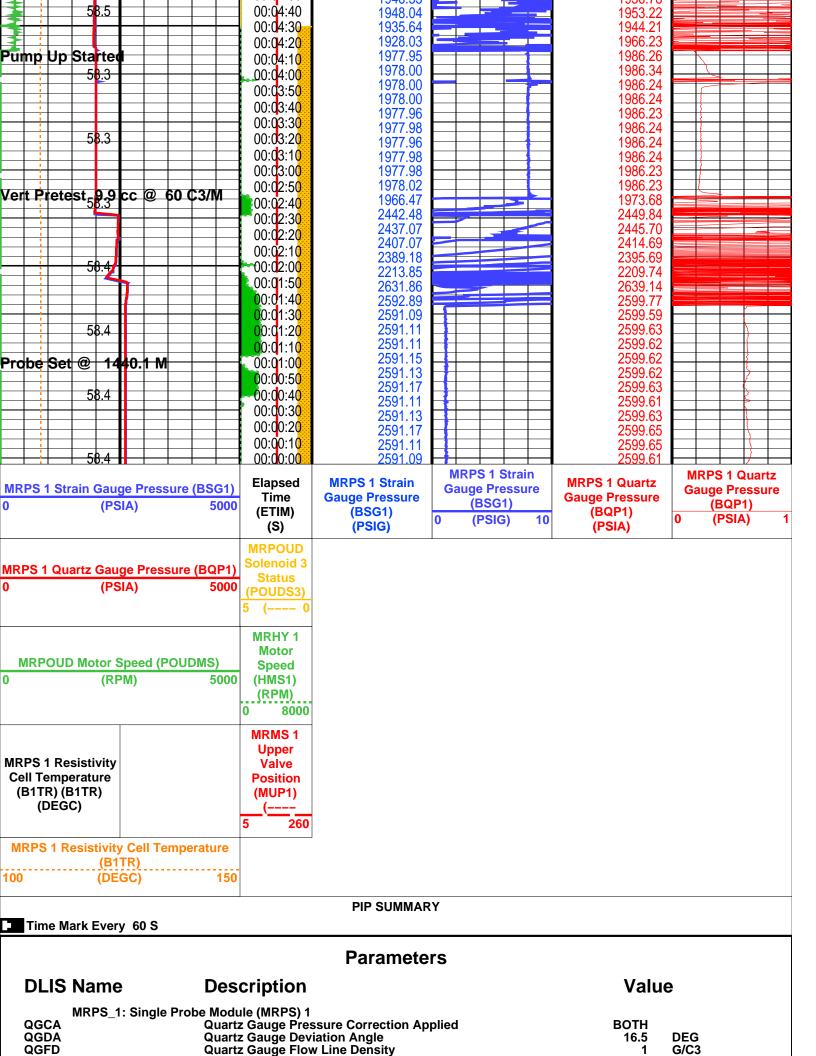
56.4	-	4	28	615		0.51/	00:40:30	1830.38	7 2		+H				\mp			H
1		i e				0.514	00:40:20	1830.79							\pm			H
3	_						00:4 <mark>0:10</mark>	1830.31							\pm			H
56.4		\$	28	130	$oxed{\Box}$	0.511	00:40:00	1832.28 1832.57	**		$+ \mathbb{H}$				E			H
	+				<u> </u>	•	00:39:5 <mark>0</mark> 00:39:40	1832.52			$\pm \pm 1$							H
56.4			27	645		0.524	00:39:40 00:3 <mark>9:30</mark>	1832.66 1833.61			$\pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm $				\pm			H
₹	-						00:3 <mark>9:2</mark> 0	1833.61			+				上			H
	***					0.500	00:39:10	1832.14	, ,	₩						1		Н
56.4			26	675		0.500	00:39:00	1832.44 1832.56		,								H
		, L					00:3 <mark>8:50</mark> 00:3 <mark>8:40</mark>	1832.76		1 1 1 1 1 1 1								H
56.4			26	190		0.495	00:38:30	1831.95										H
1	- 1	4 2 1		i i			00:3 <mark>8:20</mark>	1832.02 1832.87										Ħ
56.4			25	705		0.494	00:38:10	1832.36			-111	-						Ħ
30.4	-		_20			0.494	00:3 <mark>8:00</mark> 00:3 7 :50	1832.52 1831.74							1			Ħ
1	_						00:37:40	1831.96			-##	1111						Ħ
56.4			25	220		0.490	00:3 <mark>7:30</mark>	1832.24			-H				+			A
			_ :				00:37:20	1832.37 1832.49							$oldsymbol{\perp}$			H
56.4			24	614		0.482	00:3 <mark>7:10</mark> 00:3 <mark>7:00</mark>	1832.76			-H	1111			$oldsymbol{+}$			H
						0.704	00:37:00	1831.73							$oldsymbol{\mathbb{H}}$			
			:				00:3 <mark>6:40</mark>	1831.97 1832.99	4.								H	H
56.4			23	765		0.476	00:36:30	1831.93			+ H				\pm			H
	- 1 -						00:3 <mark>6:20</mark> 00:3 <mark>6:10</mark>	1832.21 1831.61		╢	$\perp \! \! \perp \! \! \perp \! \! \perp$			\bot	士			H
56.4			23	280		0.470	00:36:00	1831.73			-111							H
	×						00:3 <mark>5:50</mark>	1832.08										
1	Ŧ		00	705		0.400	00:35:40	1832.13 1832.24				11111		\pm				H
56.4			22	795		0.468	00:3 <mark>5:30</mark> 00:35:20	1833.39	1									Ħ
							00:35:20	1831.70 1831.90		Ш		1						
56.4			22	310		0.458	00:3 <mark>5:00</mark>	1832.16	14.		\perp	1111			+			
							00:34:50	1832.23										Ħ
56.4			21	R40		0.453	00:3 <mark>4:40</mark> 00:3 <mark>4:3</mark> 0	1832.50 1831.56		-4	-HH	 						A
	11					01.00	00:34:20	1831.78	-									
	-						00:34:10	1835.83		₩	1 1 1	11						H
56.4	_	4	_20	355		0.449	00:34:00	1831.79 1831.96			\pm							
· ·	=						00:3 <mark>3:50</mark> 00:33:4 <mark>0</mark>	1831.96 1831.61		-					┸			H
56.4			20	370		0.444	00:33:30	1831.68 1831.96										Ħ
	T.						00:33:20	1831.82 1832.05		†	+				+			H
			10	885		0.449	00:33:10 00:33:00	1832.05			-##		F	+	#			H
-56.4			13	900		0.449	00:33:00	1832.51 1831.22			+				+			Ħ
1		1			\vdash		00:3 <mark>2:4</mark> 0	1831.36		₩		F I		+	+		H	H
56.4			18	915		0.434	00:3 <mark>2:30</mark>	1831.70 1831.83		9 9 9					+			H
*							00:32:20	1832.04							$oldsymbol{\perp}$			B
56.4			18	430		0.425	00:3 <mark>2:10</mark> 00:32:0 <mark>0</mark>	1831.42							$oxed{\mathbb{F}}$			B
	1	<u>-</u>			oxdot		00:31:50	1831.73 1832.21							E			
							00:31:40	1831.93				•		+	\pm		\blacksquare	H
56.4	=		17	945		0.424	00:31:30	1832.25 1833.02							\pm			H
*					- :-		00:3 <mark>1:20</mark> 00:31:1 <mark>0</mark>	1831.30							\pm			H
-56.4	4		17	460		0.413	00:31:10	1831.51							十			H
	111				<u> </u>		00:30:50	1831.53 1831.80							#		H	
56 /	\mp		10	490		0.404	00:30:40	1832.07			2				#			H
56.4	1111		10	490		∪.4∪4	00:3 <mark>0:30</mark> 00:3 <mark>0:20</mark>	1831.64			\mp				\mp			H
				1			00:30:20	1831.91 1833.78		 					#			H
56.41	1		16	005		0.401	00:30:00	1832.01			-				+		H	H
1	t						00:29:50 00:29:40	1834.99 1835.80			\mp			\blacksquare	+			Ħ
							UU-X <mark>U</mark> -AU	1033.60		- + + + -	-++	HHHH		•	-			


56.	-	F		5520	• •	0.207	00.20.70	1834.71		III	Ш	_									
- 56 .	3 -			77-		0.397	00:29:30	1834.78			Ш	+									
				- :			00:29:2 <mark>0</mark> 00:29:1 <mark>0</mark>	1835.01			Ш										
-56			1	5035		0.391	00.29.10	1834.67		+	$\parallel \parallel$	-	$\overline{\Pi}$	\vdash	-		+		-		
- 50	٠.			0000		V.JJ 1	00:49:00	1834.80		+	₩			H							
							00:28:40	1834.91 1835.88		1111	Щ										
56	4		1	4550		0.386		1834.58			Ш										
<u>-56</u> .	*	•		:		0.000	00.28.20	1834.70		7	₩	_							-		
							00:28:10	1834.94			Щ	_	╫		_		+			\blacksquare	
-56	4	Ē		4065		0.380	$00.38\cdot00$	1834.64		###	Ш		ПП								
-56.	1		i				00:27:50	1834.72 1834.86		THH	Ш										
	F			+			00.47.40	1835.56	\vdash	+}}	1114	;	++++	$\vdash \vdash$		\dashv	+	+	-	Н	
-56 .	4	È		3580		0.373	00:2 <mark>7:30</mark>	1834.59	\vdash		₩	-	Н	$\overline{}$			_				
							00:2 <mark>7:2</mark> 0	1834.70			▓	1									
-5 6.	t						00:27:10	1834.93			Ш	. \pm									
-56 .	4	ŧ	1	3095		0.370	00:27:00	1834.60		+	╫										
	1		: -					1834.72 1834.87		Ш	₩	: -	+}+++	\vdash			_				
EG	Ä			2610		0.361	00.40.10	1835.34		Ш	\prod				\neg		\neg				
<u>-56</u> .	1		-	2010		0.301	00:26:30	1834.52			Ш	#									
	7 =						00:26:2 <mark>0</mark> 00:26:1 <mark>0</mark>	1834.71		111	1111		Ш								
-56			1	2125		0.355	00.26.10	1834.91					11				+		\blacksquare	\vdash	
	Щ.			4		0.000	00:25:50	1834.57		* •	₩			H	1		+				
	t			1				1834.71 1834.84			Ш		14111	H	#	1	丰				
56	4		1	2125		0.346	00:25:30	1835.26		4		.*			-	\perp					
<u>56</u> .	k			1-	+		00.25.20	1834.44			₩	+		$\vdash \vdash$	+	+	+				
				-			00.35.10	1834.50			₩	_					_			\blacksquare	
<u>-56</u> .	4_		1	1640		0.337	00:25:00	1834.82 1834.49			Щ,	. 🛨	ШШ								
							00:24:50	1834.49 1834.60		Ш	Ш										
	II.			+			00:2 <mark>4:40</mark>	1834.76	\vdash	++++	╫			\vdash	\dashv		+	+	╢─	Н	
56.	4		1	1155		0.349	00:2 <mark>4:30</mark>	1834.72	\vdash		-		HHII		-	_	-				
•							00:2 <mark>4:20</mark>	1834.26		111	▓	1									
-56				0070		0.000	00:2 <mark>4:10</mark>	1834.45			##	#									
-56	4		1	0670		0.332		1834.79		116		-			-						
	-							1834.36 1834.48		+H			${\color{red}{\parallel}}{\color{red}{\parallel}}$	\vdash			_	-	+		4
56	4 3	-		0185		0.320		1834.68		\square	Ш	: -									
- 20	4			Uloo		0.330		1834.23				ني ا									
							00:23:20 00:23:10	1834.23 1834.18			Ш										
56	4			9700		0.316	00:23:10	1834.34 1834.64		+++	₩	-		\vdash	-		_		╂	Н	
-56. -		E		0100		0.0101	00:22:50	1834.64 1834.41			-						_				
	4 -	_		1			00:22:40	1834.53		++++	Щ		₩	\blacksquare			\perp				
56.	4			9215		0.311	00:22:30	1834.72		Ш	Ш		ППП								
							00:22:20	1834.31			+ +	•									
$\vdash \dashv$	F			+	+	•	00: 2 2:10	1834.40	$\vdash \vdash$	┼┋╢	₩	+		$\vdash \vdash$	-	+	+		+	\blacksquare	
-56	4			8730		0.301		1834.65			##	\mp	тт		1		+				
-56. -56.	Į.	5		1			00:2 <mark>1:5</mark> 0	1835.04 1837.29 1837.26 1837.32 1837.40 1837.62			₩	+		\Box		\perp					
56. 56. 56.	Ė			1			00:21:40	1837.26		 	##	\pm	Ш				\pm				
_56.	4			8245		0.300	00:21:30	1837.32		-	₩	_					\pm				
	I	+		-	+		00:21:20	1837.40	Н	\prod		\mp		$\vdash \exists$	Ŧ	\mp	-			=	H
—	Į			7700		0.290	00:21:10	1837.62		114	#	#					\top				
-20				7760		0.490	00:21:00	1837.17		}	##	#	 	ightharpoons			\pm				
	€			上			00:20:5 <mark>0</mark> 00:20:4 <mark>0</mark>	1837.17 1837.25 1837.26 1837.38 1837.22 1837.25 1837.33 1837.63 1837.16			Ш	上		Ш		\perp	上				
56	Į.	+		7760		0.287	00:20:40	1837.38	\vdash		₩	- F	++++	$\vdash \vdash$	+	+	+			-	
	Į,				-	V.201	00:20:30	1837.82		111	₩	+		\Box			\perp				
	1			1			00:20:20	1837.22		 	#	#		Ħ		_	丰				
-56	4 1			7275		0.280	00:20:10	1837.25		Ш	₩	\pm	ППП	H							
				<u> </u>			00:19:50	1837 38		 	₩	_+		┢┼	_+	$=\vdash$	\pm				
	, i			\blacksquare			00:1 <mark>9:40</mark>	1837.63	\vdash	++++	₩	8	HH	\vdash	\dashv	-	\blacksquare			H	
-56	4 👯	1		6790		0.270	00:19:30	1837.16			Щ	\dashv	$\Pi\Pi\Pi$	H	1		\perp				
							00. I9.Z <mark>V</mark>	1001.10			₩	\perp					\pm				
-56.	ľ	1		+			$0.0 \cdot 10 \cdot 10$	1837.21	H	 	₩			┢╃	\dashv	+	+				
-56	4 į			6790		0.267	00:1 <mark>9:00</mark>	1837.35 1837.52 1837.13			\prod	$\neg \neg$	ППП	\Box			-				
	ļ	+-					00:1 <mark>8:5</mark> 0	1837.54				•		ightharpoons	\dashv		\bot				
	7			1	-		∩∩·1 <mark>8·4</mark> ∩	1007.10	\vdash	+++	Ш		++++	ш	\perp	\perp	-				

	(PSIA)	`
MRPOUD Motor Speed (POUDMS)		LFA Optical Density Channel 4 (FAOD_
0 (RPM) 5000		LFA[4])
` , ´		-10 (24
MRPS 1 Resistivity Cell Temperature (BFR1)		LFA Optical Density Channel 5 (FAOD_ LFA[5])
(B1TR) (OHMM)		-20 (20
MRPS 1 Resistivity Cell Temperature (B1TR)		LFA Optical Density Channel 6 (FAOD_ LFA[6])
100 (DEGC) 150		-24 (16
MRPOUD Hydraulic Pressure (POUDHP)		LFA Optical Density Channel 7 (FAOD_ LFA[7])
0 (PSIG) 5000		-28 (12
MRPOUD Hydraulic Pump Output		LFA Optical Density Channel 8 (FAOD_
Volume (POUDPV) 0 (C3) 10000		LFA[8]) -32 (8
		LFA Optical Density Channel 9 (FAOD_
		LFA[9]) -36 (4
	PIP SUMMARY	
Time Mark Every 60 S	TIF SUMMANT	
Time mark Every 66 6		
	Parameters	
DLIS Name Desc	cription	Value
MRPS_1: Single Probe Modu		
	Gauge Pressure Correction Applied Gauge Deviation Angle	BOTH 8.02 DEG
QGFD Quartz	Gauge Flow Line Density	1 G/C3
	umpout Module (MRPOUD) UD Displacement Unit Stroke Volume	485
LFA: Live Fluid Analyzer CEXP LFA C	oloration Exponent	4.6
DCDW_LFA LFA D	ecolor and Dewater Allow/Disallow for Gas Oil Ratio	ALLOW
	OR Allow/Disallow Mode	ALLOW LFA
	emp. Coef. Measure Mode	** V **
	emp. Coef. Source Mode	** V **
	as Indicator High Level Threshold	0.4
	as Indicator Low Level Threshold as Indicator Medium Level Threshold	0.05 0.1
	OR Disqualification Level	0.1
ODTMP LFA LFA O	otical Density Temperature Correction	ALLOW
PDCO Probe	Depth Correction Offset	0 M ** V **
TCPS_STATUS_LFA LFA To	aturation Level of Optical Density Measurement emperature Compensation Coefficient Status	VALID
MRPC: Power Cartridge PDCO Probe	Depth Correction Offset	0 M
Format: MRPS_LFA_Water Vertical S	cale: 1" per 60S Gra	phics File Created: 04-Mar-2008 13:21
	OP System Version: 15C0-309	
MRPS_1 SPC-3397-MDT		-3397-MDT
MRPO_UD SPC-3397-MDT		-3397-MDT -3397-MDT
MRMS_1 SPC-3397-MDT		-3397–MDT
SGT-L SRPC-3546-Q1_200		C-3546-Q1_2008_OP15
	Output DLIS Files	
DEEALUT MOT OF A 0671 TO	•	NOS 12-21
DEFAULT MDT_OFA_067LTP		
RTB MDT_OFA_067LTP	FN:110 PRODUCER 04-Mar-20	JUS 13:21


MAXIS Field Log




Output DLIS Files

DEFAULT MDT_OFA_072LTP FN:119 PRODUCER 04-Mar-2008 15:19 1440.1 M 3.3 M RTB MDT_OFA_072LTP FN:120 PRODUCER 04-Mar-2008 15:19 1440.1 M 3.3 M

Elapsed Time (s)	Event Summary
1179.3	Retract Single Probe Module (MRPS) 1
1141.8	Pumping Stopped 4365.0 C3 Dual Up-down Pumpout Module (MRPOUD)
953.7	Auto Reset Single Probe Module (MRPS) 1
255.3	Pump Up Started Dual Up-down Pumpout Module (MRPOUD)
150.9	Vert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1
63.3	Probe Set @ 1440.1 M Single Probe Module (MRPS) 1

LFA: Live Fluid Analyzer **PDCO Probe Depth Correction Offset**

MRPC: Power Cartridge

PDCO Probe Depth Correction Offset

М Vertical Scale: 1" per 60S Graphics File Created: 04-Mar-2008 15:19

OP System Version: 15C0–309

MCM

MRPS_1 SPC-3397-MDT MRHY_1 SPC-3397-MDT MRPO_UD SPC-3397-MDT **LFA** SPC-3397-MDT MRMS_1 SPC-3397-MDT **MRPC** SPC-3397-MDT

SGT-L TCC-BF SRPC-3546-Q1_2008_OP15 SRPC-3546-Q1_2008_OP15

Output DLIS Files

PRODUCER DEFAULT MDT_OFA_072LTP FN:119 04-Mar-2008 15:19

RTB MDT_OFA_072LTP FN:120 **PRODUCER** 04-Mar-2008 15:19

Company: Apache Northwest Pty Ltd

Format: MRPS_Pretests

Output DLIS Files

PRODUCER DEFAULT MDT_OFA_072LTP FN:119 04-Mar-2008 15:19 1440.1 M 3.3 M **RTB** MDT_OFA_072LTP FN:120 **PRODUCER** 04-Mar-2008 15:19 1440.1 M 3.3 M

Elapsed Event Summary Time (s) 1179.3 Retract Single Probe Module (MRPS) 1 1141.8 Pumping Stopped 4365.0 C3 Dual Up-down Pumpout Module (MRPOUD) 953.7 Auto Reset Single Probe Module (MRPS) 1 Pump Up Started Dual Up-down Pumpout Module (MRPOUD) 255.3 150.9 Vert Pretest 9.9 cc @ 60 C3/M Single Probe Module (MRPS) 1 63.3 Probe Set @ 1440.1 M Single Probe Module (MRPS) 1

PIP SUMMARY

Time Mark Every 60 S

MRPOUD Hydraulic Pump Output Volume (POUDPV) 0 10000 (C3)

MRPOUD Hydraulic Pressure

(POUDHP) 5000 (PSIG)

MRPS 1 Resistivity Cell Temperature (B1TR)

100 150 (DEGC)

MRPS 1 Resistivity **MRPS 1 Resistivity Cell Temperature** (BFR1) (B1TR) (OHMM) (DEGC)

MRPOUD Motor Speed (POUDMS)

(RPM) 5000 LFA Optical Density Channel 9 (FAOD_ **LFA[9])**

М

Well: WASABI-

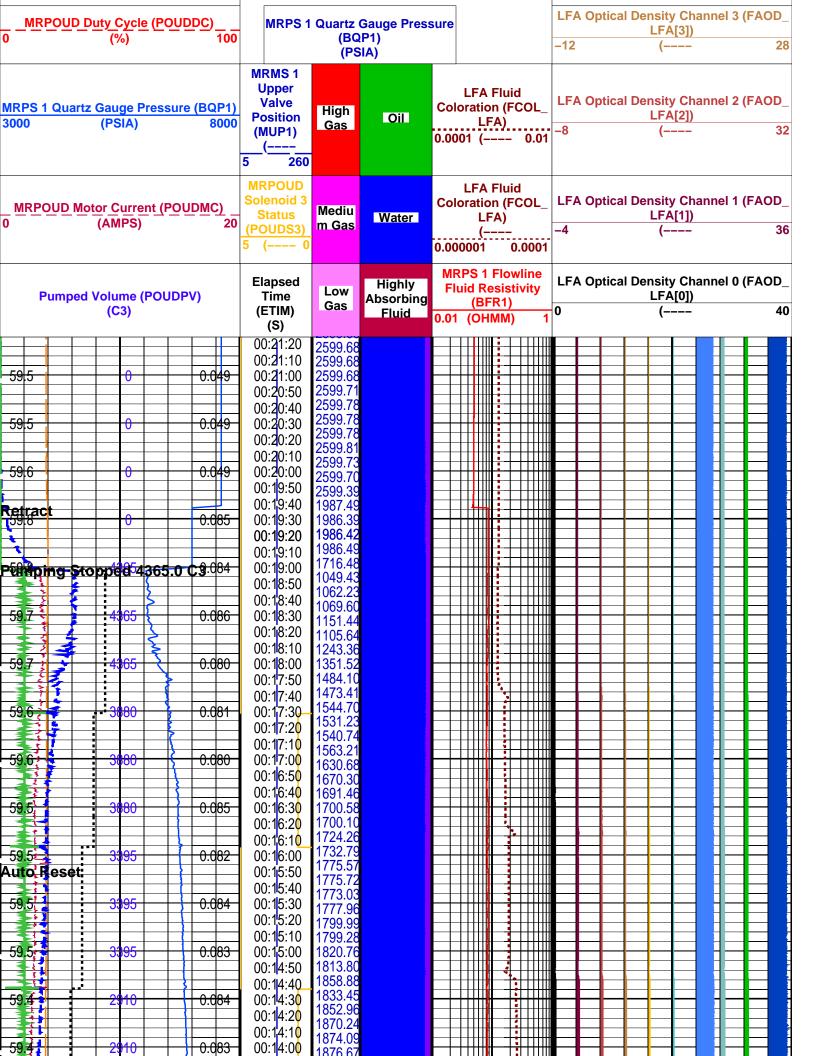
LFA Optical Density Channel 8 (FAOD) **LFA[8])**

-32

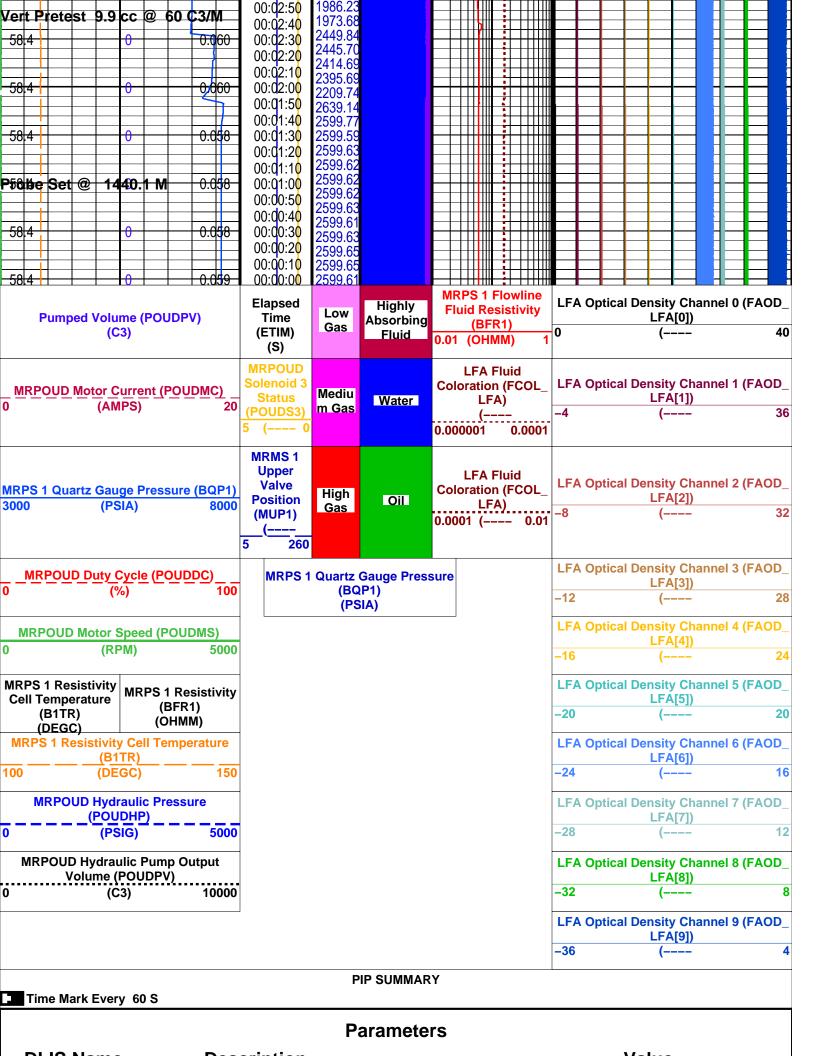
LFA Optical Density Channel 7 (FAOD

LFA[7]) -28 12

LFA Optical Density Channel 6 (FAOD_


LFA[6]) -24 16

LFA Optical Density Channel 5 (FAOD)


LFA[5]) -20 20

LFA Optical Density Channel 4 (FAOD **LFA[4])**

-16 24

- 3	1						00:1 <mark>3:50</mark>	1897.56											
	3						00:1 <mark>3:40</mark>	1912.85					Н						Н
59	4		- 2	2910		0.080	00:1 <mark>3:30</mark>	1925.04											Н
	3	。 ┃ ┃					00:1 <mark>3:20</mark>	1897.43											A
	3	1					00:13:10	1904.60 1905.71	Ш										A
-59	4			2425		0.077	00:13:00	1903.71											A
亖	1	1:					00:12:50	1912.14											Н
-59 -59	耄	1		105		0.076	00:1 <mark>2:40 </mark>	1911.45											Н
59	4		4	2420		0.076	00:12:30	1914.31		Ш									H
							00:12:20	1917.35 1918.96											A
- 59	3	# :-		2425		0.077	00:12:10	1925.38	ш		4-1								Ä
	T + T	M = -	-	- -		0.077	00:12:50	1920.33			 • 								Н
-	ij						00:11:40	1922.19					\vdash				H - H	\vdash	Н
-59	9	-	,	1940		0.077	00:11:30	1925.74	\Box			_			_		H - H	\blacksquare	A
\equiv	3						00:1 <mark>1:20</mark>	1932.31 1904.08		Щ									A
	Ĭ	1					00:11:10	1887.95		Ш									Ħ
- 59	3			1940		0.072	00:1 <mark>1:00</mark>	1881.29											Н
	<u> </u>	1					00:1 <mark>0:50</mark>	1889.08					H		_		H	-	Н
- 1	1	+				0.070	00:10:40	1884.45					H	\blacksquare					A
59	4	1		1455		0.070	00:1 <mark>0:30</mark>	1887.37 1885.07		ППП				\dashv					A
59 59 59	3	1					00:1 <mark>0:20</mark> 00:10:10	1887.03						\dashv					Ħ
-50	Ž.	1		1455		0.068	00:10:10 00:1 <mark>0:00</mark>	1894.38	Ш				\Box	\perp					Ц
J	4			1400		0.000	00:10:00	1893.94							\pm				H
-	3						00:09:30	1896.76											A
-5 9	4	Ц.	,	1455		0.067	00:09:30	1895.51 1896.32	Ш										Ä
	ŝ					0.001	00:09:20	1906.77		Ш									Ħ
3 9 W	\$ \$!					00:09:10	1938.16											Н
-59	1	H		970		0.068	00:0 <mark>9:00</mark>	1941.62		╂╫╢	╫╌╀┧┼┼┼		\vdash		_		H H	_	Н
ĘS		H					00:0 <mark>8:50</mark>	1941.59					\square						A
							00:0 <mark>8:40</mark>	1942.39 1942.96					H						À
59	0			970		0.067	00:08:30	1942.90											
_ ≤							00:08:20	1945.22					Н						
59	1	†		970		0.067	00:08:10 00:08:00	1944.89					Н		_				H
	<i>\\</i>			3/0		0.007	00:07:50	1945.22 1946.57					Н		_				
	4	1					00:07:40	1946.57					H						H
59	0			970		0.066	00:07:30	1946.82 1948.08					H		_				
				Ľ		0.000	00:07:20	1950 73											
							00:07:10	1952.13 1954.61	Ш										Н
58	9	+		485		0.064	00: 0 7:00	1954.61	++	Н					_	\vdash		_	Н
	, ,						00:0 <mark>6:50</mark>	1954.42 1954.25											A
	ま	Į.		1		0.000	00:06:40	1955.18						\dashv					
-58	V			485		0.063	00:06:30	1956.33						\Rightarrow					Ħ
1	1 1	 					00:06:20	1955.97											Ħ
60	6			485		0.062	00:06:10 00:06:00	1955.96		╁╁╫				\pm					Н
10	U 1	Ш		400		0.002	00:06:00 00:0 <mark>5:50</mark>	1958 48		╁╫╢					$\exists \vdash $	⊟			Н
	} 1	1					00:05:40	1958.32 1958.48 1959.05 1959.61					\blacksquare						A
58	7	H—		485		0.059	00:05:30	1959.61	\Box	ЩЩ				\blacksquare					H
	1			Ť		2.000	00:05:20	1960.30						\perp					Ħ
1	<u> </u>	H					00:05:10	1960.89 1961.44						\perp					H
	6			485		0.056	00:05:00	1959.64	++	╁╁╫									Н
1		H			$+ \overline{-}$		00:04:50	1956.78	-				\Box	-		\blacksquare			H
*	1			1_		0.050	00:04:40	1953.22		Щ				\dashv					A
-58 -	4			0		0.052	00:04:30	1944.21		П	11 •			=					Ħ
	<u>! </u>		Starte				00:04:20	1966.23 1986.26						\pm					H
-58		υþ	Jiai it			0.059	00:0 <mark>4:10</mark> 00:04:0 <mark>0</mark>	1986.34	Ш	Ш				\pm					Н
. JO	.J			0	$+$ \square	บ.บว	00:04:00	1986.24	$-\Pi$	H			$\vdash \exists$	$-\Gamma$		\vdash			H
	_						00:q3:50 00:q3:40	1986.24						\dashv					A
58	3			0		0.056	00:03:40	1986.23					Ħ	_					Ħ
				Ť		3.400	00:03:30	1986.24 1986.24						\pm					H
	!						00:03:10	1986.24											Н
-58	.3			0		0.057	00:03:00	1986.23	\Box	Н			H		_			\blacksquare	
	_	-		_									_	_					

MRPS_1: Single Probe Module (MRPS) 1 **QGCA Quartz Gauge Pressure Correction Applied BOTH Quartz Gauge Deviation Angle QGDA** DEG 16.5 **QGFD** Quartz Gauge Flow Line Density G/C3 MRPO_UD: Dual Up-down Pumpout Module (MRPOUĎ) **POUDDISPVOL** MRPOUD Displacement Unit Stroke Volume 485 LFA: Live Fluid Analyzer **CEXP LFA LFA Coloration Exponent** LFA Decolor and Dewater Allow/Disallow for Gas Oil Ratio DCDW_LFA **ALLOW** FAGM_LFA LFA GOR Allow/Disallow Mode **ALLOW** FAJM_LFA **LFA Job Mode** LFA FATCM_LFA LFA Temp. Coef. Measure Mode ** V ** FATCS LFA LFA Temp. Coef. Source Mode LFA Gas Indicator High Level Threshold 0.4 GASH_LFA LFA Gas Indicator Low Level Threshold LFA Gas Indicator Medium Level Threshold GASL_LFA 0.05 GASM_LFA 0.1 GORD LFA LFA GOR Disqualification Level 0.1 **LFA Optical Density Temperature Correction** ODTMP_LFA ALLOW PDCO **Probe Depth Correction Offset** 0 М LFA Saturation Level of Optical Density Measurement SATL LFA TCPS_STATUS_LFA LFA Temperature Compensation Coefficient Status **VALID MRPC: Power Cartridge PDCO Probe Depth Correction Offset** 0 M Format: MRPS_LFA_Water Vertical Scale: 1" per 60S Graphics File Created: 04-Mar-2008 15:19 OP System Version: 15C0-309 MRPS_1 SPC-3397-MDT MRHY_1 SPC-3397-MDT MRPO_UD SPC-3397-MDT LFA SPC-3397-MDT MRMS_1 SPC-3397-MDT MRPC SPC-3397-MDT SGT-L SRPC-3546-Q1 2008 OP15 TCC-BF SRPC-3546-Q1 2008 OP15 **Output DLIS Files DEFAULT** MDT_OFA_072LTP FN:119 **PRODUCER** 04-Mar-2008 15:19 **RTB** MDT_OFA_072LTP FN:120 **PRODUCER** 04-Mar-2008 15:19 Correlation Pass Schlumberger 1:200 MAXIS Field Log Well: WASABI-1 Company: Apache Northwest Pty Ltd Output DLIS Files **DEFAULT** MDT_OFA_069LUP **PRODUCER** 04-Mar-2008 14:39 1432.1 M FN:113 1476.9 M **RTB** FN:114 **PRODUCER** 04-Mar-2008 14:39 1476.9 M 1432.1 M MDT_OFA_069LUP OP System Version: 15C0-309 MCM MRPS_1 SPC-3397-MDT MRHY_1 SPC-3397-MDT MRPO_UD LFA SPC-3397-MDT SPC-3397-MDT MRMS_1 **MRPC** SPC-3397-MDT SPC-3397-MDT SGT-L SRPC-3546-Q1_2008_OP15 TCC-BF SRPC-3546-Q1_2008_OP15 **PIP SUMMARY** Time Mark Every 60 S

vaiue

DLIS Name

Description

Uncalibrate d Downhole

d Downhole Force (DF) (LBF) 1000 3000

PIP SUMMARY

Time Mark Every 60 S

Parameters

DLIS Name Description Value

LFA: Live Fluid Analyzer

PDCO Probe Depth Correction Offset 0 M

MRPC: Power Cartridge
PDCO Probe Depth Correction Offset 0 M

System and Miscellaneous

DORL Depth Offset for Repeat Analysis 0.0 M

Format: Correlation Vertical Scale: 1:200 Graphics File Created: 04–Mar–2008 14:39

OP System Version: 15C0-309

MCM

 MRPS_1
 SPC-3397-MDT
 MRHY_1
 SPC-3397-MDT

 MRPO_UD
 SPC-3397-MDT
 LFA
 SPC-3397-MDT

 MRMS_1
 SPC-3397-MDT
 MRPC
 SPC-3397-MDT

SGT-L SRPC-3546-Q1_2008_OP15 TCC-BF SRPC-3546-Q1_2008_OP15

Output DLIS Files

 DEFAULT
 MDT_OFA_069LUP
 FN:113
 PRODUCER
 04-Mar-2008 14:39

 RTB
 MDT_OFA_069LUP
 FN:114
 PRODUCER
 04-Mar-2008 14:39

Schlumberger

Calibrations

MAXIS Field Log

		Calibration and (Check Summary				
Measurement	Nominal	Master	Before	After	Change	Limit	Units
Live Fluid Analyzer Wellsite Calibration		els					
Master: 18–Feb–2008 12:21 Before:							
Dark Mode – 0	0.02500	0.02742	0.02726	N/A	N/A	N/A	V
Dark Mode – 1	0.02500	0.02755	0.02741	N/A	N/A	N/A	V
Dark Mode – 2	0.02500	0.02697	0.02678	N/A	N/A	N/A	V
Dark Mode - 3	0.02500	0.02725	0.02713	N/A	N/A	N/A	V
Dark Mode – 4	0.02500	0.02724	0.02711	N/A	N/A	N/A	V
Dark Mode – 5	0.02500	0.02731	0.02718	N/A	N/A	N/A	V
Dark Mode – 6	0.02500	0.02735	0.02727	N/A	N/A	N/A	V
Dark Mode – 7	0.02500	0.02740	0.02728	N/A	N/A	N/A	V
Dark Mode – 8	0.02500	0.02780	0.02765	N/A	N/A	N/A	V
Dark Mode – 9	0.02500	0.02754	0.02744	N/A	N/A	N/A	V
Source Mode – 0	1.700	1.138	1.142	N/A	N/A	N/A	V
Source Mode – 1	1.700	1.048	1.055	N/A	N/A	N/A	V
Source Mode – 2	1.700	1.060	1.068	N/A	N/A	N/A	V
Source Mode – 3	1.700	0.5809	0.5855	N/A	N/A	N/A	V
Source Mode – 4	1.700	1.169	1.176	N/A	N/A	N/A	V
Source Mode – 5	1.700	1.017	1.013	N/A	N/A	N/A	V
Source Mode – 6	1.700	0.7577	0.7531	N/A	N/A	N/A	V
Source Mode = 7	1.700	1 191	1 194	N/A N/A	N/A N/A	N/A N/A	V \/

Source Mode – 8 Source Mode – 9	1.700 1.700	1.069 2.440	1.081 2.457	N/A N/A	N/A N/A	N/A N/A	V V	
Live Fluid Analyzer Wellsite Calibration – Gas D Master: 18–Feb–2008 12:21 Before: 18–Feb–2	2008 12:32							
Dark Mode – 0	0.02500	0.02744	0.02729	N/A	N/A	N/A	V	
Dark Mode – 1 Dark Mode – 2	0.02500 0.02500	0.02726 0.02713	0.02712 0.02695	N/A N/A	N/A N/A	N/A N/A	V V	
Dark Mode – 2 Dark Mode – 3	0.02500	0.02713	0.02695	N/A N/A	N/A N/A	N/A N/A	V V	
Dark Mode – 4	0.02500	0.02744	0.02729	N/A	N/A	N/A	v	
Dark Mode – 5	0.02500	0.02705	0.02689	N/A	N/A	N/A	V	
Live Fluid Analyzer Wellsite Calibration – Gas D Master: 18–Feb–2008 12:21 Before: 18–Feb–2		ntensity						
Source Intensity Dark Mode	0.02600	0.03064	0.03047	N/A	N/A	N/A	V	
Source Intensity Source Mode	0.2500	0.2840	0.2846	N/A	N/A	N/A	V	
Live Fluid Analyzer Master Calibration – Spectro Master: 18–Feb–2008 12:21	meter							
Dry Dark Mode – 0	0.02500	0.02742					V	
Dry Dark Mode – 1	0.02500	0.02755					V	
Dry Dark Mode – 2	0.02500	0.02697					V	
Dry Dark Mode – 3	0.02500	0.02725					V	
Dry Dark Mode – 4	0.02500	0.02724					V V	
Dry Dark Mode – 5 Dry Dark Mode – 6	0.02500 0.02500	0.02731 0.02735					V V	
Dry Dark Mode – 7	0.02500	0.02740					V	
Dry Dark Mode – 8	0.02500	0.02780					V	
Dry Dark Mode – 9	0.02500	0.02754					V	
Dry Source Mode – 0	1.700	1.138					V	
Dry Source Mode – 1	1.700 1.700	1.048 1.060					V V	
Dry Source Mode – 2 Dry Source Mode – 3	1.700	0.5809					V V	
Dry Source Mode – 4	1.700	1.169					v	
Dry Source Mode – 5	1.700	1.017					V	
Dry Source Mode – 6	1.700	0.7577					V	
Dry Source Mode – 7	1.700	1.191					V	
Dry Source Mode – 8	1.700	1.069					V	
Dry Source Mode – 9 Dry Measure Mode – 0	1.700 2.700	2.440 2.359					V V	
Dry Measure Mode – 1	2.700	2.409					v	
Dry Measure Mode – 2	2.700	2.368					V	
Dry Measure Mode – 3	2.700	2.140					V	
Dry Measure Mode – 4	2.700	2.566					V	
Dry Measure Mode – 5	2.700	2.493					V	
Dry Measure Mode – 6 Dry Measure Mode – 7	2.700 2.700	2.492 2.491					V V	
Dry Measure Mode – 8	2.700	1.704					v	
Dry Measure Mode - 9	2.700	2.292					V	
Oil Dark Mode – 0	0.02500	0.02724					V	
Oil Dark Mode – 1	0.02500	0.02744					V	
Oil Dark Mode – 2 Oil Dark Mode – 3	0.02500	0.02686 0.02714					V V	
Oil Dark Mode – 3 Oil Dark Mode – 4	0.02500 0.02500	0.02714					V V	
Oil Dark Mode – 5	0.02500	0.02718					V	
Oil Dark Mode – 6	0.02500	0.02732					V	
Oil Dark Mode – 7	0.02500	0.02728					V	
Oil Dark Mode – 8	0.02500	0.02769					V	
Oil Dark Mode – 9 Oil Source Mode – 0	0.02500 1.700	0.02743 1.141					V V	
Oil Source Mode – 0	1.700	1.053					V	
Oil Source Mode – 2	1.700	1.066					V	
Oil Source Mode – 3	1.700	0.5841					V	
Oil Source Mode – 4	1.700	1.174					V	
Oil Source Mode – 5	1.700	1.014					V	
Oil Source Mode – 6 Oil Source Mode – 7	1.700 1.700	0.7532 1.194					V V	
Oil Source Mode – 7 Oil Source Mode – 8	1.700	1.078					V	
Oil Source Mode – 9	1.700	2.453					V	
Oil Measure Mode – 0	1.000	2.240					V	
Oil Measure Mode – 1	1.000	2.790					V	
Oil Measure Mode – 2	1.000	2.764					V	
Oil Measure Mode – 3 Oil Measure Mode – 4	1.000 1.000	2.527 3.009					V V	
Oil Measure Mode – 4 Oil Measure Mode – 5	1.000	2.872					V V	
Oil Measure Mode – 6	1.000	2.548					V	
Oil Measure Mode - 7	1.000	2.836					V	
Oil Measure Mode – 8	1.000	0.2992					V	
Oil Measure Mode – 9	1.000	1.750					V	
Water Dark Mode – 0 Water Dark Mode – 1	0.02500 0.02500	0.02734 0.02743					V V	
Water Daik Mode - 1	0.02300	0.02143		_ _			V	

Water Dark Mode – 2	0.02500	0.02694		 	 V
Water Dark Mode – 3	0.02500	0.02719			v
				 	
Water Dark Mode – 4	0.02500	0.02718		 	 V
Water Dark Mode – 5	0.02500	0.02720		 	 V
Water Dark Mode – 6	0.02500	0.02736		 	 V
Water Dark Mode - 7	0.02500	0.02729		 	 V
					v
Water Dark Mode – 8	0.02500	0.02772		 	 -
Water Dark Mode – 9	0.02500	0.02743		 	 V
Water Source Mode – 0	1.700	1.137		 	 V
Water Source Mode - 1	1.700	1.048		 	 V
Water Source Mode – 2	1.700	1.061			 v
					-
Water Source Mode – 3	1.700	0.5812		 	 V
Water Source Mode – 4	1.700	1.169		 	 V
Water Source Mode – 5	1.700	1.015		 	 V
Water Source Mode – 6	1.700	0.7537		 	 V
					v
Water Source Mode – 7	1.700	1.190		 	 -
Water Source Mode – 8	1.700	1.071		 	 V
Water Source Mode – 9	1.700	2.443		 	 V
Water Measure Mode – 0	1.000	0.8187		 	 V
Water Measure Mode – 1	1.000	2.666		 	 v
					-
Water Measure Mode – 2	1.000	2.636		 	 V
Water Measure Mode – 3	1.000	2.400		 	 V
Water Measure Mode – 4	1.000	2.811		 	 V
Water Measure Mode – 5	1.000	2.204		 	 v
Water Measure Mode – 5					V
	1.000	0.03260		 	 -
Water Measure Mode – 7	1.000	0.5636		 	 V
Water Measure Mode – 8	1.000	0.5464		 	 V
Water Measure Mode – 9	1.000	0.03018		 	 V
Tatol modelio mode		3.00010			•
Live Fluid Analyzer Master Calibration – Gas Det	ector				
Master: 18-Feb-2008 12:21					
Dry Dark Mode - 0	0.02500	0.02744		 	 V
Dry Dark Mode – 1	0.02500	0.02726			v
				 	 -
Dry Dark Mode – 2	0.02500	0.02713		 	 V
Dry Dark Mode – 3	0.02500	0.02742		 	 V
Dry Dark Mode – 4	0.02500	0.02744		 	 V
Dry Dark Mode – 5	0.02500	0.02705		 	 V
Dry Measure Mode – 0	0	0.1450			 v
•	-				-
Dry Measure Mode – 1	0	0.2270		 	 V
Dry Measure Mode – 2	0	0.4472		 	 V
Dry Measure Mode – 3	0	0.4622		 	 V
Dry Measure Mode – 4	0	0.4372		 	 V
•	-				v
Dry Measure Mode – 5	0	0.3442		 	 -
Dry Normalized – 0	0	0.2703		 	 V
Dry Normalized – 1	0	0.4594		 	 V
Dry Normalized – 2	0	0.9660		 	 V
Dry Normalized – 3	· ·	1.000			v
	0			 	
Dry Normalized – 4	0	0.9425		 	 V
Dry Normalized – 5	0	0.7294		 	 V
Water Dark Mode – 0	0.02500	0.02740		 	 V
Water Dark Mode – 1	0.02500	0.02720		 	 V
					-
Water Dark Mode – 2	0.02500	0.02702		 	 V
Water Dark Mode – 3	0.02500	0.02739		 	 V
Water Dark Mode - 4	0.02500	0.02737		 	 V
Water Dark Mode – 5	0.02500	0.02698		 	 v
					V
Water Measure Mode – 0	0	0.1338		 	 -
Water Measure Mode – 1	0	0.1462		 	 V
Water Measure Mode – 2	0	0.1240		 	 V
Water Measure Mode - 3	0	0.1120		 	 V
Water Measure Mode – 4	0	0.1106		 	 v
	-			 	
Water Measure Mode – 5	0	0.1035		 	 V
Live Fluid Analyzer Master Calibration - Gas Det	ector Source Inte	nsity			
Master: 18-Feb-2008 12:21		•			
					 V
	0.02600	U U3U64		 	
Source Intensity Dark Mode	0.02600	0.03064		 	
	0.02600 0.2500	0.03064 0.2840		 	 V
Source Intensity Dark Mode				 	
Source Intensity Dark Mode Source Intensity Source Mode	0.2500			 	
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti	0.2500			 	
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25	0.2500 on Coefficients	0.2840		 	 V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0	0.2500 on Coefficients	0.2840		 	 V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1	0.2500 on Coefficients 0 0	0.02265 -0.06452	=	 	 V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0	0.2500 on Coefficients	0.2840		 	 V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2	0.2500 on Coefficients 0 0 0	0.02265 -0.06452 -0.06786	=======================================	 	 V V V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3	0.2500 on Coefficients 0 0 0 0	0.02265 -0.06452 -0.06786 -0.07301	 		V V V V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4	0.2500 on Coefficients 0 0 0 0 0	0.02265 -0.06452 -0.06786 -0.07301 -0.06990		 	 V V V V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5	0.2500 on Coefficients 0 0 0 0 0 0 0	0.2265 -0.06452 -0.06786 -0.07301 -0.06990 -0.06209			V V V V V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4	0.2500 on Coefficients 0 0 0 0 0	0.02265 -0.06452 -0.06786 -0.07301 -0.06990 -0.06209 -0.009911	 	 	V V V V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 6	0.2500 on Coefficients 0 0 0 0 0 0 0	0.2265 -0.06452 -0.06786 -0.07301 -0.06990 -0.06209	 	 	 V V V V V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 6 Oil Absorption Coefficie – 7	0.2500 on Coefficients 0 0 0 0 0 0 0 0 0 0	0.2840 0.02265 -0.06452 -0.06786 -0.07301 -0.06990 -0.06209 -0.009911 -0.05688	 	 	 V V V V V V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 6 Oil Absorption Coefficie – 7 Oil Absorption Coefficie – 8	0.2500 on Coefficients 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2840 0.02265 -0.06452 -0.06786 -0.07301 -0.06990 -0.06209 -0.009911 -0.05688 0.7904	 	 	 V V V V V V V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 6 Oil Absorption Coefficie – 7 Oil Absorption Coefficie – 8 Oil Absorption Coefficie – 9	0.2500 on Coefficients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2840 0.02265 -0.06452 -0.06786 -0.07301 -0.06990 -0.06209 -0.009911 -0.05688 0.7904 0.1186		 	 V V V V V V V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 6 Oil Absorption Coefficie – 7 Oil Absorption Coefficie – 8 Oil Absorption Coefficie – 9 Water Absorption Coeffic – 0	0.2500 on Coefficients 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2840 0.02265 -0.06452 -0.06786 -0.07301 -0.06990 -0.06209 -0.009911 -0.05688 0.7904 0.1186 0.4692	 	 	 V V V V V V V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 6 Oil Absorption Coefficie – 7 Oil Absorption Coefficie – 8 Oil Absorption Coefficie – 9	0.2500 on Coefficients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2840 0.02265 -0.06452 -0.06786 -0.07301 -0.06990 -0.06209 -0.009911 -0.05688 0.7904 0.1186	 	 	 V V V V V V V
Source Intensity Dark Mode Source Intensity Source Mode Live Fluid Analyzer Master Calibration – Absorpti Master: 18–Feb–2008 12:25 Oil Absorption Coefficie – 0 Oil Absorption Coefficie – 1 Oil Absorption Coefficie – 2 Oil Absorption Coefficie – 3 Oil Absorption Coefficie – 4 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 5 Oil Absorption Coefficie – 6 Oil Absorption Coefficie – 7 Oil Absorption Coefficie – 8 Oil Absorption Coefficie – 9 Water Absorption Coeffic – 0	0.2500 on Coefficients 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2840 0.02265 -0.06452 -0.06786 -0.07301 -0.06990 -0.06209 -0.009911 -0.05688 0.7904 0.1186 0.4692	 	 	 V V V V V V V V

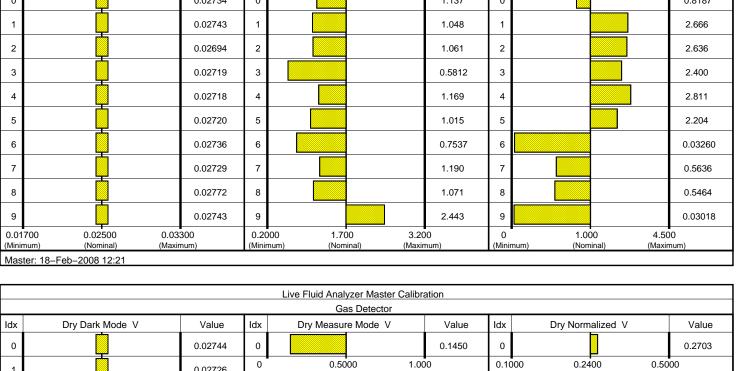
Water Absorption Coemic 2	•	0.0-17-10					V
Water Absorption Coeffic - 3	0	-0.05030					V
Water Absorption Coeffic - 4	0	-0.04003					V
Water Absorption Coeffic - 5	0	0.05426					V
Water Absorption Coeffic - 6	0	2.673					V
Water Absorption Coeffic - 7	0	0.6622					V
Water Absorption Coeffic - 8	0	0.5094					V
Water Absorption Coeffic - 9	0	2.916					V
Scintillation Gamma-Ray - L Wellsite	Calibration – Detector C	Calibration					
Before: 4-Mar-2008 8:20							
Gamma Ray Background	30.00	N/A	5.315	N/A	N/A	N/A	GAPI
Gamma Ray (Jig – Bkg)	163.8	N/A	163.8	N/A	N/A	14.89	GAPI
Gamma Ray (Calibrated)	165.0	N/A	165.0	N/A	N/A	15.00	GAPI

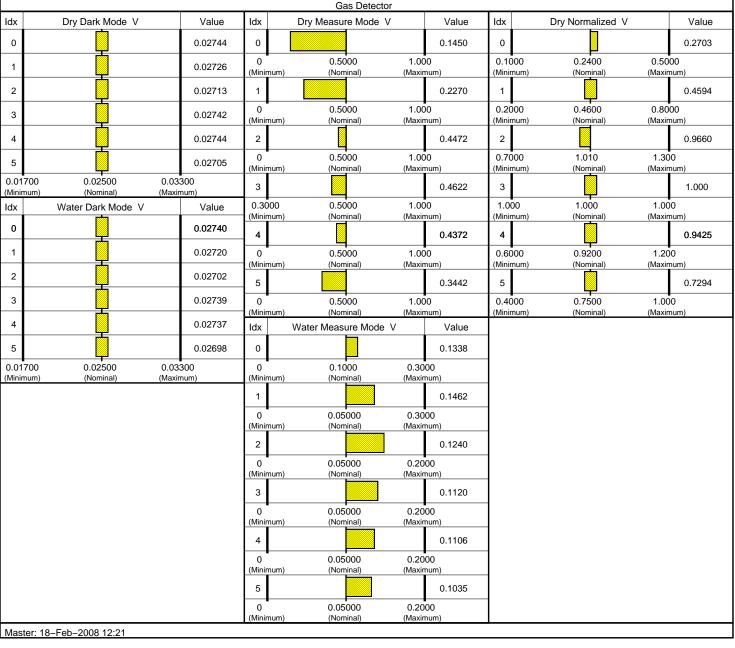
Live Fluid Analyzer / Equipment Identification

Primary Equipment: Live Fluid Analyzer (TW)

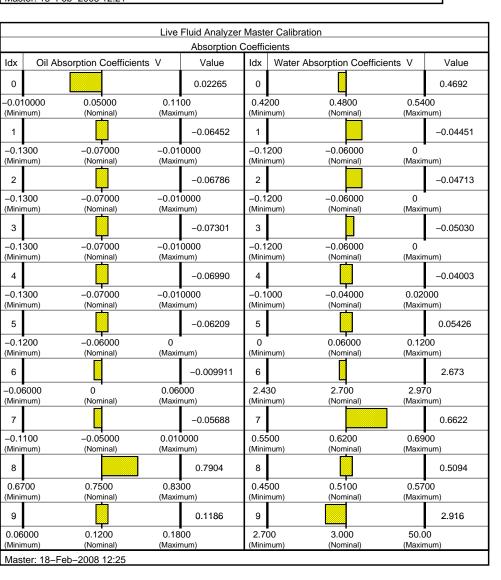
MRFA – EA 8011

Auxiliary Equipment:


			_ive Fluid Analyzer	M/Allei	te Calibra	tion	
			Spectromete			dion	
ldx	Phase	Dark Mode V	Value	ldx	Phase	Source Mode V	Value
	Master		0.02742		Master		1.138
0	Before		0.02726	0	Before		1.142
,	Master		0.02755		Master		1.048
1	Before		0.02741	1	Before		1.055
2	Master		0.02697		Master		1.060
2	Before		0.02678	2	Before		1.068
3	Master		0.02725		Master		0.5809
3	Before		0.02713	3	Before		0.5855
,	Master		0.02724		Master		1.169
4	Before		0.02711	4	Before		1.176
	Master		0.02731	_	Master		1.017
5	Before		0.02718	5	Before		1.013
	Master		0.02735		Master		0.7577
6	Before		0.02727	6	Before		0.7531
7	Master		0.02740	7	Master		1.191
,	Before		0.02728	′	Before		1.194
۰	Master		0.02780		Master		1.069
8	Before		0.02765	8	Before		1.081
9	Master		0.02754		Master		2.440
9	Before		0.02744	9	Before		2.457
	0.01 (Minir		0.03300 (Maximum)		0.20 (Minir		3.200 (Maximum)
Mas	ter: 18-Fe	eb-2008 12:21		Befo	re: 18–Fe	eb-2008 12:32	


	Live Fluid Analyzer Wellsite Calibration									
		Gas Detector Channels								
ldx	Phase	Dark Mode V	Value							
	Master		0.02744							
0	Before		0.02729							
	Master		0.02726							
1										

	Before				0.02712			
	Master				0.02713			
2	Before				0.02695			
•	Master				0.02742			
3	Before				0.02730			
	Master				0.02744			
4	Before				0.02729			
	Master				0.02705			
5	Before				0.02689			
	0.01700 0.02500 0.03300 (Minimum) (Nominal) (Maximum)							
Mas	Master: 18–Feb–2008 12:21							
Befo	re: 18–Fe	eb-2008 1	2:32					
			•					


		Live	Fluid Analyzer \	Wellsite C	Calibration			
			Gas Detector So	ource Inte	ensity			
Phase	Source Intensity	Dark Mode V	Value	Phase	Source Intensity	Source Mode V	Value	
Master			0.03064	Master			0.2840	
Before			0.03047	Before			0.2846	
0.01 (Minir				0.19 (Mini		500 0.31 ninal) (Maxi		
Master:	18_Feb_2008 12:2	 71		Before: 18-Feb-2008 12:32				

aoto	0-1 65-2000 12.21			Delote: 10-1 eb-2000 12.02	•					
				Live Fluid Analyzer Mast	er Calibr	ation				
				Spectromete		T				
ldx	Dry Dark Mode V	Value	ldx	Dry Source Mode V	<u>'</u>	Value	ldx	Dry Measure M	Node V	Value
0		0.02742	0			1.138	0			2.359
1		0.02755	1			1.048	1			2.409
2		0.02697	2			1.060	2			2.368
3		0.02725	3			0.5809	3			2.140
4		0.02724	4			1.169	4			2.566
5	_	0.02731	5			1.017	5			2.493
6		0.02735	6			0.7577	6			2.492
7	_	0.02740	7			1.191	7			2.491
8		0.02780	8			1.069	8			1.704
9		0.02754	9			2.440	9			2.292
0.01700 (Minimum)		03300 ximum)	0.20 (Minir		3.20 (Maxii		1.3 (Minir		3.20) (Maxim	
ldx	Oil Dark Mode V	Value	ldx	Oil Source Mode V		Value	ldx	Oil Measure M	lode V	Value
0		0.02724	0			1.141	0			2.240
1	<u> </u>	0.02744	1			1.053	1			2.790
2	<u> </u>	0.02686	2			1.066	2			2.764
3	<u> </u>	0.02714	3			0.5841	3			2.527
4	<u> </u>	0.02711	4			1.174	4			3.009
5	<u> </u>	0.02718	5			1.014	5			2.872
6	<u> </u>	0.02732	6			0.7532	6			2.548
7	<u> </u>	0.02728	7			1.194	7			2.836
8	<u> </u>	0.02769	8			1.078	8			0.2992
9	<u> </u>	0.02743	9			2.453	9			1.750
0.01700 (Minimum)		03300 ximum)	0.20 (Minir		3.20 (Maxii		0 (Minir	1.000 mum) (Nominal)	4.50) (Maxim	
ldx	Water Dark Mode V	Value	ldx	Water Source Mode	V	Value	ldx	Water Measure	Mode V	Value
		0.02724				1 127				0.0107

Live Fluid Analyzer Master Calibration Gas Detector Source Intensity Source Intensity Dark Mode V Source Intensity Source Mode V Value Value 0.03064 0.2840 0.01700 0.02600 0.03500 0.1900 0.2500 0.3100 (Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum)

Scintillation Gamma–Ray – L / Equipment Identification

Primary Equipment:
Scintillation Gamma Cartridge
SGC – SA 735
Scintillation Gamma Detector
SGD – TAB 3465

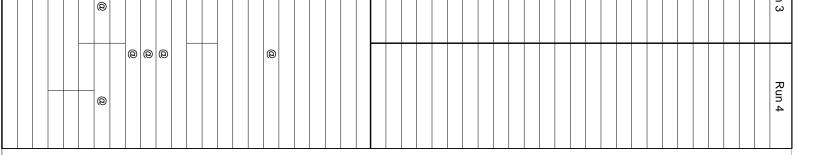
Auxiliary Equipment:
Scintillation Gamma Housing
Gamma Source Radioactive

Scintillation Gamma Housing
GSR – U/Y

			Scir	ntillation Gamma-Ray -	L Wellsite Ca	alibration				
				Detector Cali	bration					
Phase	Gamma Ray Background GAPI	Value	Phase	Gamma Ray (Jig – E	kg) GAPI	Value	Phase	Gamma Ray (Calibrated)	GAPI	Value
Before		5.315	Before	, i		163.8	Before			165.0
0 (Minir	30.00 120 num) (Nominal) (Maxir		148 (Minir		178 (Maxir		150 (Minir		180. (Maxin	
Before:	4-Mar-2008 8:20						-			

oomaninoi Soi

Well: WASABI-1


Field: Apache/VIC/P-58/WASABI-1

Rig: West Triton
Country: Australia

MDT-GR

Suite-1 Run-3 MDT Sampling

								Run 1	Run 2	Rur
				361111	acılınınıngı. Yel					
Company:	Apache N	Apache Northwest Pty Ltd	y Ltd							
Well:	WASABI-1	-1								
Field:	Apache/\	Apache/VIC/P-58/WASABI-1	SABI-1							
Rig:	West Triton	on	Country:	Australia	2					
1	CST-GR									
SABI-	Suite-1 Run-4	un-4								
/WAS	Side Wall	Side Wall Cores, Scale 1:200	1:200							
	Bass Strait			Elev.:						
/IC/F ait -1 North	Northing: 5,739,963.350 m	9,963.350 m		G.L.	–27 m					
he/\ Stra ABI- he N	Easting : 522,993.588 m	93.588 m		D.F.	39 m					
sass VAS	Permanent Datum:	um: AHD		Elev.: 0 m						
A _l B _i W	Log Measured From:	I	DRILL FLOOR (RT)	39.0 m above	above Perm. Datum					
	Drilling Measured From:		DRILL FLOOR (RT)							
Rig: Field: Locati Well: Comp	State: Victoria	Max. Well Deviation 48 deg	_	Longitude 147 15' 49.147" E	Latitude 38 29' 18.157"	σ				
Logging Date		4-Mar-2008				Logging Date				
Run Number		4				Run Number				
Schlumberger Depth		Not Tagged				Schlumberger Depth	ionth	+		
Bottom Log Interval		1477.2 m				Bottom Log Interval	rval			
Top Log Interval	:		i		ı	Top Log Interval				
Casing Driller Size @ Depth	@ Depth	13.375 in @	857 m		(9)	Casing Driller Size @ Depth	ize @ Depth	_	(9)	
Casing Schlumberger Bit Size	уг 	854 m 12.250 in				Casing Schlumberger Bit Size	erger			
Type Fluid In Hole		KCI/Polymer				Type Fluid In Hole	ole			
Density	Viscosity	bm/gal	S			_	Viscosity			
M Fluid Loss F Source Of Sample	PH	5 m3 8.7				M Fluid Loss Source Of Sample	PH			
RM @ Measured Temperature	mperature	0.091 ohm.m @	22 degC		@	RM @ Measured Temperature	d Temperature		@	
RMF @ Measured Temperature	emperature		22 degC		@	RMF @ Measur	RMF @ Measured Temperature		@	
RMC @ Measured Temperature	emperature	ohm.m			@	RMC @ Measur	RMC @ Measured Temperature		@	
"	RMC	5	9			Source RMF	RMC		0	
Maximum Recorded	Temperatures	0.049 @ 59 0.043	43 @ 59	@	@	Maximum Reco	Temperatures	@	@	
Circulation Stopped Time	Time	3-Mar-2008	10:25			Circulation Stopped	Circulation Stopped Time			
Logger On Bottom	Time	Mar-2	21:44			Logger On Bottom	m Time	_		
Unit Number	Location	41 AUSL				Unit Number	Location			
Recorded By		A. Dandi/M.Dawson/K. AlBarhi	(. AlBarhi			Recorded By				
Witnessed By		H.Little / A.Cruickshank	nk			Witnessed By				

DEPTH SUMMARY LISTING

Date Created: 2-MAR-2008 16:47:03

Depth System Equipment

Depth Measuring	Device	Tension De	vice	Logging Cable			
Type: Serial Number: Calibration Date:	IDW-H 796 29-Jan-2008	Type: Serial Number: Calibration Date:	CMTD-B/A 1721 27-FEB-2008	Type: Serial Number: Length:	7–46ZV–XS 77178 7699.86 M		
Calibrator Serial Number: Calibration Cable Type: Wheel Correction 1: Wheel Correction 2:	1009 7-46ZV-XS -5 -5	Calibrator Serial Number: Calibration Gain: Calibration Offset:	1051 0.81 –610.00	Conveyance Method: Rig Type:	Wireline Offshore_Fixed		

Depth Control Parameters

Log Sequence: Subsequent Log In the Well

Reference Log Name: Wasabi-1 GeoVISION Resistivity RM 200D

Reference Log Run Number:

Reference Log Date: 01-March-2008

Depth Control Remarks

- 1. Schlumberger Depth Control Policy Followed
- 2. IDW used as primary depth reference
- 3. Z-Chart used as secondary depth reference
- 4.
- 5.

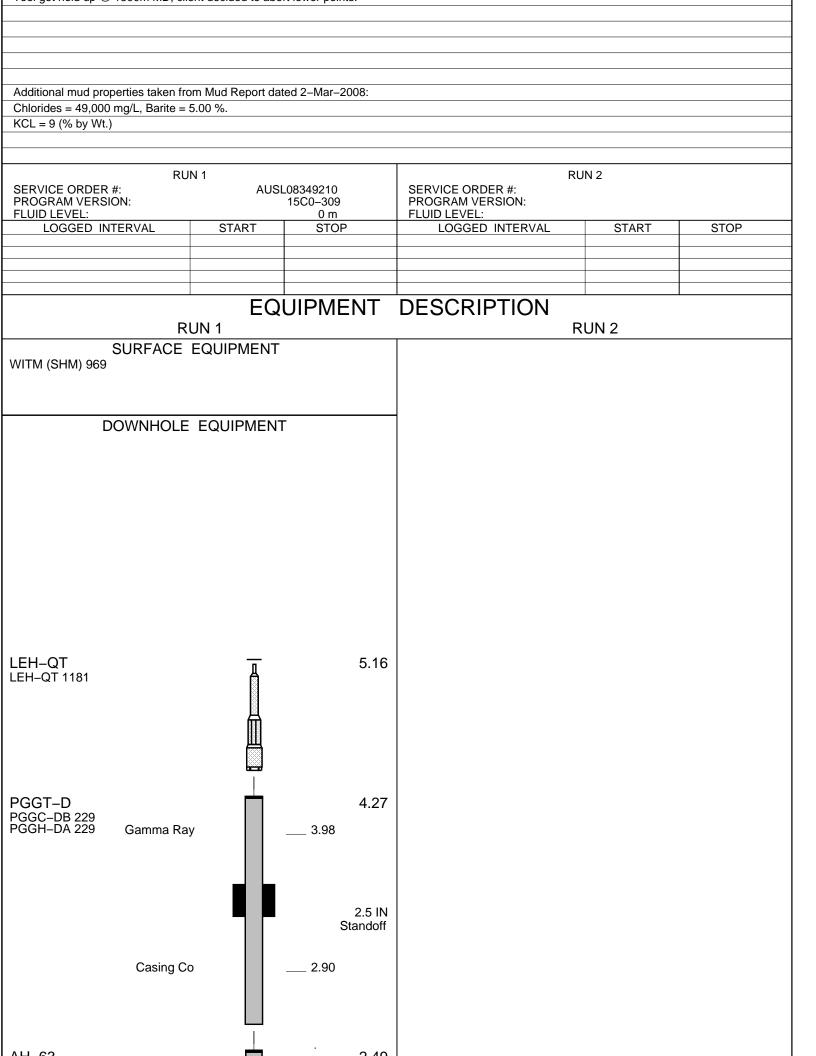
DISCLAIMER

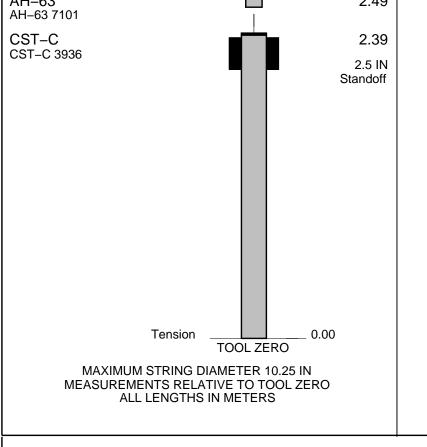
THE USE OF AND RELIANCE UPON THIS RECORDED-DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS AFFILIATES, PARTNERS, REPRESENTATIVES, AGENTS, CONSULTANTS AND EMPLOYEES) IS SÚBJECT TO THE TERMS AND CONDITIONS AGREED UPON BETWEEN SCHLUMBERGER AND THE COMPANY, INCLÚDING: (a) RESTRICTIONS ON USE OF THE RECORDED-DATA; (b) DISCLAIMERS AND WAIVERS OF WARRANTIES AND REPRESENTATIONS REGARDING COMPANY'S USE OF AND RELIANCE UPON THE RECORDED-DATA; AND (c) CUSTOMER'S FULL AND SOLE RESPONSIBILITY FOR ANY INFERENCE DRAWN OR DECISION MADE IN CONNECTION WITH THE USE OF THIS RECORDED-DATA.

OTHER SERVICES1 OTHER SERVICES2 OS1: OS1: OS2: OS2: PEX-HRLA-MSIP-GR-S OS3: MDT-GR OS3: OS4: OS4: OS5: OS5:

REMARKS: RUN NUMBER 1 REMARKS: RUN NUMBER 2

Tool string run as per tool sketch.


Log correlated to Schlumberger GeoVISION Resistivity Log dated 1–Mar–2008.


Max. recorded temperature was 59 degC sourced from LEH-QT thermometers.

30 Cores attempted, 30 Bullets fired.

29 Cores recovered, 1 empty.

Tool got hold up @ 1500m MD, client decided to abort lower points

Client: Apache Northwest Pty Ltd Drawing Date:7-Mar-2008

Well: Wasabi-1

Field:

Apache/VIC/P-58/WASABI-

State: Victoria
Country: Australia

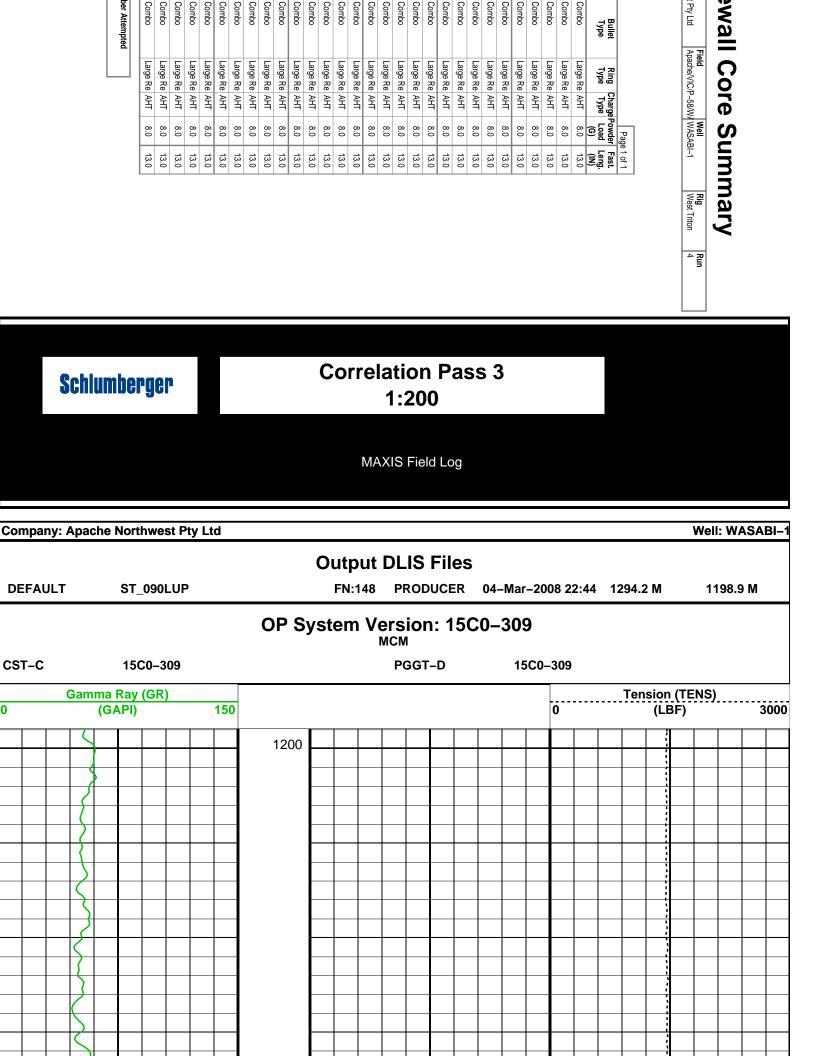
Rig Name: West Triton
Reference Datum: AHD
Elevation: 39.0 r

Country: Australia			Elevation:	3	89.0 m		
Production String	(in) OD ID	m) MD	Well Schematic		(m) (ir	i) ID	Casing String
Kelly Bushing Elevation Derrick Floor Elevation Mean Sea Level		39.0 39.0 0.0			27.0 101.1 20.000 20.000		Casing String Casing Shoe

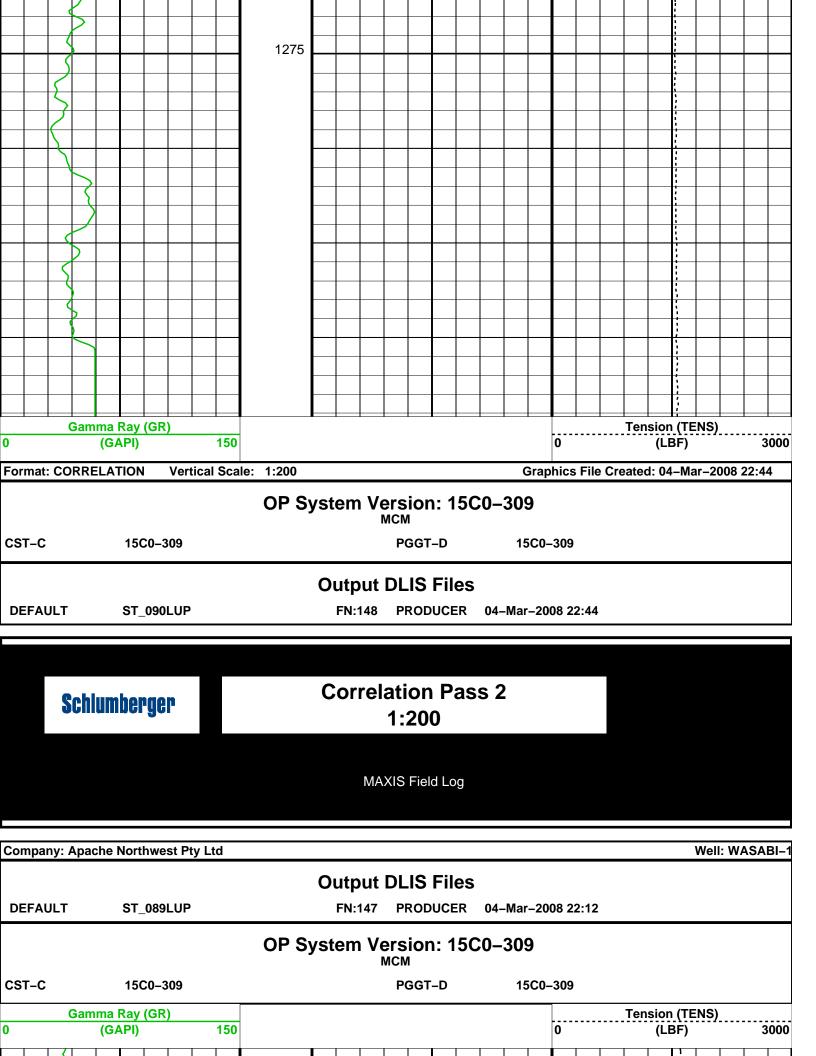
	4	**************************************	857.0 857.0	13.375 12.250	Casing Shoe Borehole Segment
All depths are driller's depths.					
		***************************************	2313.0	12.250	Borehole Segment Bottom

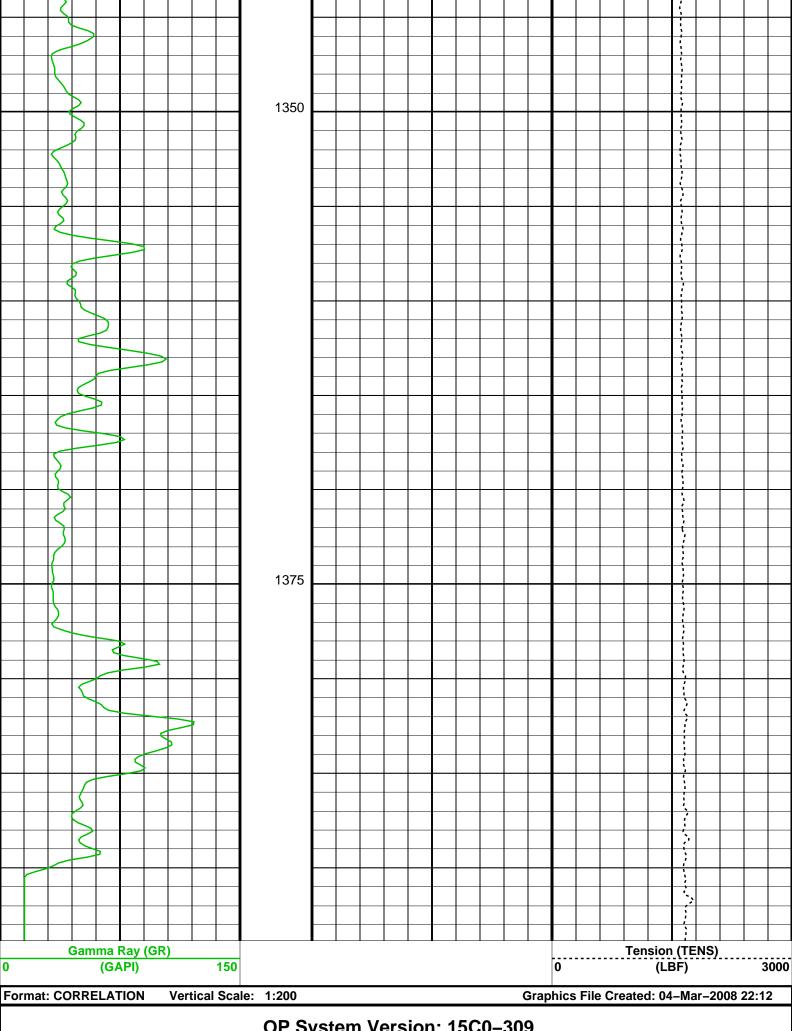
Schlumberger

Core Summary

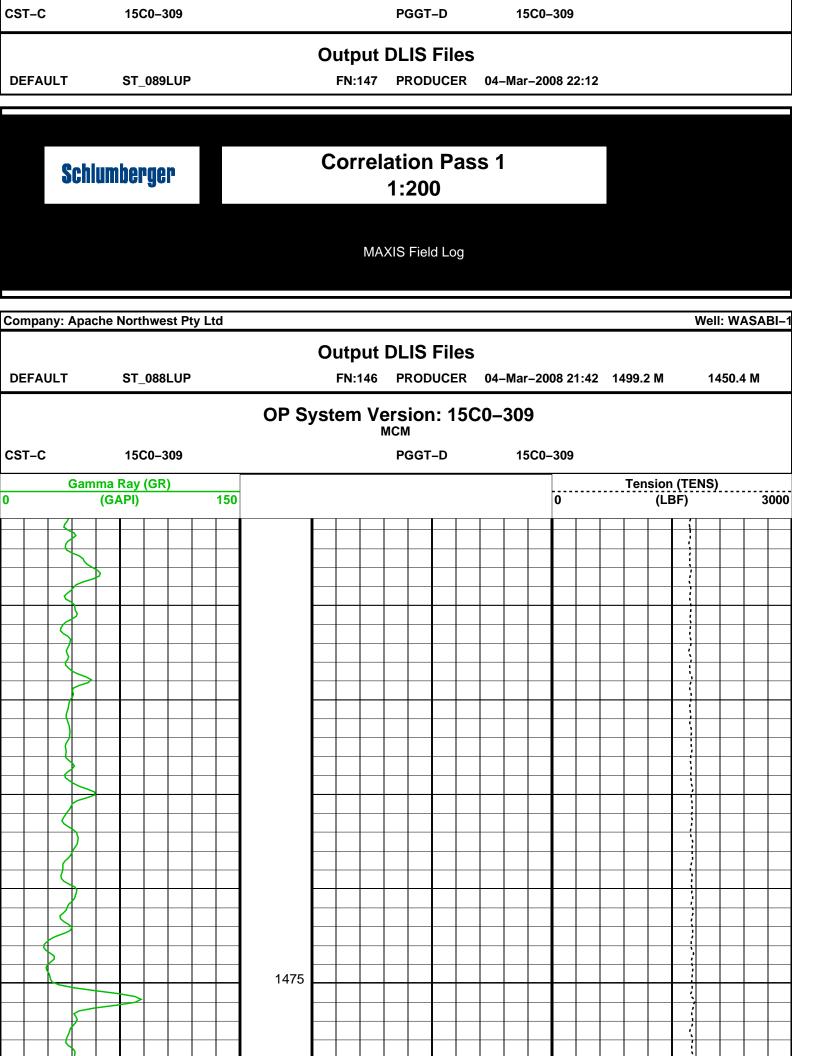

MAXIS Field Log

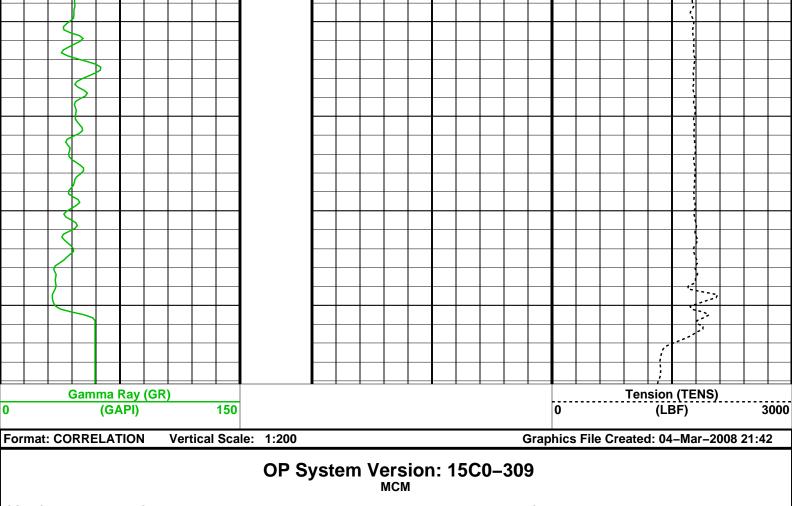
	% Recovered	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	ವ	12	⇉	10	9	∞	7	6	СЛ	4	ω	2	_	No. Bullet
	ered	1250.0	1256.4	1258.1	1259.3	1261.3	1263.0	1264.5	1276.8	1288.0	1295.1	1298.1	1303.0	1314.4	1319.2	1327.3	1328.5	1329.0	1329.4	1331.0	1344.4	1350.0	1354.1	1374.2	1379.3	1406.2	1410.4	1417.5	1438.4	1448.1	1477.1	Sample Depth (M)
00	Numb	1250.0	1256.4	1258.1	1259.3	1261.3	1262.9	1264.5	1276.8	1288.0	1295.2	1298.2	1303.0	1314.4	1319.2	1327.3	1328.5	1329.0	1329.5	1331.0	1344.4	1350.0	1354.1	1374.2	1379.3	1406.3	1410.4	1417.5	1438.4	1448.1	1477.2	Req. Depth (M)
	Number Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Recovered	Status
00	Num	261.3	340.6	402.3	294.4	21.3	284.9	220.4	315.2	367.4	225.4	0.5	214.1	212.3	389.6	794.7	240.9	143.8	22.7	147.0	373.3	184.2	240.4	204.1	776.1	74.8	0.0	332.0	108.9	139.3	0.5	Tension (KG)


chlumberger


Date Engineer
4-Mar-200 A. Dandi/M.Dawson/K. AlBarhi Apache Northwes

Side





OP System Version: 15C0-309

CST-C 15C0-309 PGGT-D 15C0-309

Output DLIS Files

DEFAULT ST_088LUP FN:146 PRODUCER 04-Mar-2008 21:42

Company: Apache Northwest Pty Ltd

Schlumberger

Well: WASABI-1

Field: Apache/VIC/P-58/WASABI-1

Rig: West Triton
Country: Australia

CST-GR

Suite-1 Run-4

Side Wall Cores, Scale 1:200

Reservoir Fluid Study

for

Apache Energy Ltd

Wasabi-1

AFL 20080019

The analyses, opinions or interpretations in this report are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of CORE_LABORATORIES_AUSTRALIA_PTY_LTD, all lerrors and omissions excepted); but CORE_LABORATORIES_AUSTRALIA_PTY_LTD and its officers and employees assume no responsibility and make no warranty or representations as to the productivity, proper operation or profitability of any oil, gas or any other mineral well formation in connection with which such report is used or relied upon.

CORE LABORATORIES AUSTRALIA PTY LTD

Reservoir Fluids Group

447-449 Belmont Avenue, Kewdale WA 6105
Tel: +61 8 9353 3944 Fax: +61 8 9353 1369 Web: http://www.corelab.com

CORE LABORATORIES AUSTRALIA PTY LTD

447-449 Belmont Avenue Kewdale, WA 6105 P.O. Box 785 Cloverdale, WA 6985

Tel: (61-8) 9353 3944 Tel: (61-8) 9353 1369

e-mail: corelab.australia@corelab.com Web: http://www.corelab.com

17th June 2008

Apache Energy Limited, Level 3, 256 St Georges Terrace, Perth, Western Australia, 6000

Attention: Kerry Graham

Dear Kerry,

Subject: Reservoir Fluid Study: Well: Wasabi-1; Our file: AFL 20080019

Three sub-surface reservoir water samples were forwarded to our Perth laboratory on 30th April 2008 for initial validation, gas-water ratio determination and 12-ion analyses. Presented in the following report are the results of the requested analyses.

Core Laboratories Australia Pty Ltd are very pleased to have been of service to Apache Energy Limited in this work. Should any questions arise concerning the data presented in this report, or if we may be of assistance in any other matter, please do not hesitate to contact us.

Yours Faithfully, For CORE LABORATORIES AUSTRALIA PTY LTD

Murray Macleod Laboratory Supervisor

Table of Contents

Section A - Summary of Analysis Methods	Page
Summary of analysis methods	A.1
Section B - Summary of Samples Received and Validation Data	
Reported well and sampling information - bottom hole samples	B.1
Summary of bottom hole samples received and validation data	B.2
Section C - BHS Water	
Detailed Flashed Water Analysis of Cylinder PT-1113 (sample no.: T.01)	D.1
Detailed Flashed Water Analysis of Cylinder PT-1092 (sample no.: T.02)	D.2
Detailed Flashed Water Analysis of Cylinder PT-2196 (sample no.: T.03)	D.3
Section D - Appendix	
Data used in gas compositional calculations	D.1
Data used in liquid compositional calculations	D.2

Section A - Summary of Analysis Methods

Summary of Analysis Methods

Sample Validation and Analysis (BHS Water)

The opening pressure of the pressurised water cylinder was recorded at ambient temperature. The sample was stabilised at 8000 psig and heated to 100°C for twenty-four hours. before being agitated thoroughly to ensure the sample was completely single phase and homogenous. The pressurised water sample was then subjected to an atmospheric (zero) flash analysis whereby the fluids were flashed from working pressure of 8000 psig and 100°C to atmospheric pressure and ambient temperature, and separated into gas and water phases. The gas-water ratio and the evolved gas composition are the data obtained from this test. A 12-ion analysis were performed on the flashed waters. The gas-water ratio was calculated from the volume of gas and weight of water obtained during the flash and denisty of flashed water.

Comments

The compositional data of all the flashed gases indicated low recovery of gas due to small volumes of gas (low gaswater ratio) evolved from the flash analyses and this resulted in greater than normal compositional inaccuracies

Compositional Analysis Databases

For all compositions reported in this study, the molecular weight and density of the individual components are tabulated in Section D of the Appendix.

Apache Energy Ltd Was <u>abi-1</u>		AFL 20080019
	Section B - Summary of Samples Received and Validation Data	

Reported Well and Sampling Information - Bottom Hole Samples

Reservoir and Well Information

Field	n/d
Well	Wasabi-1
Reservoir Fluid	water
Formation	n/d
Reservoir Pressure	n/d
Reservoir Temperature	n/d
Installation	WA-33-R
Test	West Triton
Perforations	n/d

Sampling Information

Date sampled Time sampled Type of samples Sampling company Sampling point	04-Mar-07 various Bottom Hole EXPRO 1328.0 m MDRT
Choke	n/d
Status of well	n/d
Bottomhole pressure	n/d
Bottomhole temperature	n/d
Wellhead flowing pressure	n/d
Wellhead flowing temperature	n/d
Separator pressure	n/d
Separator temperature	n/d
Pressure base	14.696 psia
Temperature base	60°F
Water flowrate	n/d
Gas gravity (Air = 1)	n/d
H2S	n/d
CO2	n/d
BS&W	n/d
Oil gravity at 60°F	n/d

Comments:

n/d - data not supplied

Summary of Bottom Hole Samples Received and Validation Data

Bottom He	ole Samples								Gas
	01 1	0 !! !	5 4	Shipp	•	Open		Sample	Water
Sample Number	Chamber NO.	Cylinder No.	Depth (m MDRT)	Pressure (psig)	Temp. (°C)	Pressure (psig)	Temp. (°C)	Volume (cm ³)	Ratio (scf/bbl)
		DT 1110							,
T.01	MPSR 3347	PT-1113	1328.0	1490.0	18.0	1142	17.6	695	1.2
T.02	MPSR 3300	PT-1092	1328.0	1555.0	17.0	55	18.1	680	0.8
T.03	MPSR 1377	PT-2196	1328.0	1480.0	16.0	1507	1220	695	0.9

Note:-

- 1) Sample volumes at 8000 psig and 100°C
- 2) Gas-Water ratio determined on all cylinders

Section C - BHS Water

<u>Detailed Flashed Water Analysis from Cylinder PT-1113</u> Sample No.: T.01

Dissolved Constituent	Units	Results
<u>lons</u>		
Calcium, Ca	mg/L	29
Magnesium, Mg	mg/L	18
Iron, Fe (soluble)	mg/L	0.39
Sodium, Na	mg/L	346
Potassium, K	mg/L	2180
Strontium, Sr	mg/L	1.0
Barium, Ba	mg/L	2.0
Manganese, Mn	mg/L	0.13
Chloride, Cl	mg/L	2284
Sulphate, SO4	mg/L	44
Bicarbonate, HCO3	mg/L	441
Carbonate, CO3	mg/L	0
Hydroxide, OH	mg/L	0
Pagio Branavias		
Basic Properties pH	pH units	7.6
Resistivity, @ 25°C	ohm-m	1.110360
Total Dissolved Solids (calculated)		5346
Total Dissolved Solids (calculated) Total Dissolved Solids (by evaporation at 110°C)	mg/L	5506
i i i i i i i i i i i i i i i i i i i	mg/L	5425
Total Dissolved Solids (by evaporation at 180°C) Density, @ 20°C	mg/L gm/cc	1.0017
Density, & 20 O	gill/CC	1.0017

<u>Detailed Flashed Water Analysis from Cylinder PT-1092</u> Sample No.: T.02

Dissolved Constituent	Units	Results
<u>lons</u>		
Calcium, Ca	mg/L	29
Magnesium, Mg	mg/L	20
Iron, Fe (soluble)	mg/L	0.26
Sodium, Na	mg/L	337
Potassium, K	mg/L	2140
Strontium, Sr	mg/L	0.98
Barium, Ba	mg/L	1.9
Manganese, Mn	mg/L	0.1
Chloride, Cl	mg/L	2302
Sulphate, SO4	mg/L	42
Bicarbonate, HCO3	mg/L	419
Carbonate, CO3	mg/L	11
Hydroxide, OH	mg/L	0
Paris Parastina		
Basic Properties pH	n Ll unita	8.0
<u> </u> -	pH units ohm-m	0.0 1.103790
Resistivity, @ 25°C	*******	5303
Total Dissolved Solids (calculated)	mg/L	5303 5445
Total Dissolved Solids (by evaporation at 110°C)	mg/L	5445 5370
Total Dissolved Solids (by evaporation at 180°C)	mg/L	
Density, @ 20°C	gm/cc	1.0017

<u>Detailed Flashed Water Analysis from Cylinder PT-2196</u> Sample No.: T.03

Dissolved Constituent	Units	Results		
Dissolved Collstituelit	Units	Results		
lons				
Calcium, Ca	m a/l	26		
	mg/L			
Magnesium, Mg	mg/L	17		
Iron, Fe (soluble)	mg/L	0.51		
Sodium, Na	mg/L	331		
Potassium, K	mg/L	2110		
Strontium, Sr	mg/L	1.0		
Barium, Ba	mg/L	2.1		
Manganese, Mn	mg/L	0.08		
Chloride, Cl	mg/L	2270		
Sulphate, SO4	mg/L	42		
Bicarbonate, HCO3	mg/L	413		
Carbonate, CO3	mg/L	8		
Hydroxide, OH	mg/L	0		
•	ŭ .			
Basic Properties				
pH	pH units	7.6		
Resistivity, @ 25°C	ohm-m	1.153888		
Total Dissolved Solids (calculated)	mg/L	5221		
Total Dissolved Solids (calculated) Total Dissolved Solids (by evaporation at 110°C)	_	5223		
	mg/L	5165		
Total Dissolved Solids (by evaporation at 180°C)	mg/L			
Density, @ 20°C	gm/cc	1.0016		

Section D - Appendix

Data Used in Gas Compositional Calculations

Component		Mole Weight	Density	Component		Mole Weight	Density
Component		(g mol-1)	(g cm-3 at 60°F			(g mol-1)	(g cm-3 at 60°F)
		(9 11101 1)	(g om o at oo r	,		(9 11101 1)	(9 011 0 01 00 1)
Hydrogen	*	2.016	N/A	33DMC5	*	100.20	0.6954
Oxygen/(Argon)	**	31.999	1.1410	Cyclohexane	*	84.16	0.7827
Nitrogen (Corrected)	**	28.013	0.8086	2MC6/23DMC5	*	100.20	0.6917
Methane	**	16.043	0.2997	11DMCYC5/3MC6	*	99.20	0.7253
Carbon Dioxide	**	44.010	0.8172	t13DMCYC5	*	98.19	0.7528
Ethane	**	30.070	0.3558	c13DMCYC5/3EC5	*	99.20	0.7262
Hydrogen Sulphide	**	34.080	0.8006	t12DMCYC5	*	98.19	0.7554
Propane	**	44.097	0.5065	Heptanes (nC7)	*	100.20	0.6875
i-Butane	**	58.123	0.5623	22DMC6	*	114.23	0.6994
n-Butane	**	58.123	0.5834	MCYC6	*	98.19	0.7740
Neo-Pentane	*	72.15	0.5968	ECYC5	*	98.19	0.7704
i-Pentane	**	72.150	0.6238	223TMC5/24&25DMC6	*	114.23	0.7060
n-Pentane	**	72.150	0.6305	ctc124TMCYC5	*	112.21	0.7511
22DMC4	*	86.18	0.6529	ctc123TMCYC5	*	112.21	0.7574
23DMC4/CYC5	*	78.16	0.7129	Toluene	*	92.14	0.8734
2MC5	*	86.18	0.6572	Octanes (nC8)	*	114.23	0.7063
3MC5	*	86.18	0.6682	E-Benzene	*	106.17	0.8735
Hexanes (nC6)	*	86.18	0.6631	M/P-Xylene	*	106.17	0.8671
22DMC5	*	100.20	0.6814	O-Xylene	*	106.17	0.8840
M-C-Pentane	*	84.16	0.7533	Nonanes (nC9)	*	128.26	0.7212
24DMC5	*	100.20	0.6757	Decanes	***	134	0.778
223TMC4	*	100.20	0.6947	Undecanes	***	147	0.789
Benzene	*	78.11	0.8820	Dodecanes	***	161	0.800

Data Source Refs:

- * ASTM Data Series Publication DS 4B (1991) Physical Constants of Hydrocarbon and Non-Hydrocarbon
- ** GPA Table of Physical Constants of Paraffin Hydrocarbons and Other Components of Natural Gas, GPA 2145-96.
- *** Journal of Petroleum Technology, Nov 1978, Pages 1649-1655. Predicting Phase Behaviour of Condensate/Crude Oil Systems Using Methane Interaction Coefficients - D.L. Katz & A. Firoozabadi.

The gas mole % compositions were calculated from the measured weight % compositions using the most detailed analysis results, involving as many of the above components as were identified. The reported component mole % compositions were then subgrouped into the generic carbon number components.

Data Used in Liquid Compositional Calculations

Component		Mole Weight (g mol-1)	Density (g cm-3 at 60°F)	Component		Mole Weight (g mol-1)	Density (g cm-3 at 60°F)
Hydrogon	*	2.016	N/A	Undecanes	***	147	0.789
Hydrogen Hyd. sulphide	**	34.080	0.8006	Dodecanes	***	161	0.800
Carbon Dioxide	**	34.060 44.010	0.8172	Tridecanes	***	175	0.800 0.811
	**	28.013	0.8086	Tetradecanes	***	175	0.822
Nitrogen Methane	**	16.043	0.2997	Pentadecanes	***	206	0.832
Ethane	**	30.070	0.2558	Hexadecanes	***	200	0.839
	**	30.070 44.097	0.5065		***	237	0.847
Propane	**			Heptadecanes	***	_	
i-Butane	**	58.123	0.5623	Octadecanes	***	251	0.852
n-Butane	**	58.123	0.5834	Nonadecanes	***	263	0.857
i-Pentane	**	72.150	0.6238	Eicosanes	***	275	0.862
n-Pentane	**	72.150	0.6305	Heneicosanes	***	291	0.867
Hexanes	*	86.177	0.6634	Docosanes	***	305	0.872
Me-cyclo-pentane	*	84.16	0.7533	Tricosanes	***	318	0.877
Benzene		78.11	0.8820	Tetracosanes		331	0.881
Cyclo-hexane	*	84.16	0.7827	Pentacosanes	***	345	0.885
Heptanes	**	100.204	0.6874	Hexacosanes	***	359	0.889
Me-cyclo-hexane	*	98.19	0.7740	Heptacosanes	***	374	0.893
Toluene	*	92.14	0.8734	Octacosanes	***	388	0.896
Octanes	**	114.231	0.7061	Nonacosanes	***	402	0.899
Ethyl-benzene	*	106.17	0.8735	Triacontanes	***	416	0.902
Meta/Para-xylene	*	106.17	0.8671	Hentriacontanes	***	430	0.906
Ortho-xylene	*	106.17	0.8840	Dotriacontanes	***	444	0.909
Nonanes	**	128.258	0.7212	Tritriacontanes	***	458	0.912
1-2-4-T-M-benzene	*	120.19	0.8797	Tetratriacontanes	***	472	0.914
Decanes	**	142.285	0.7334	Pentatriacontanes	***	486	0.917

Data Source Refs:

- * ASTM Data Series Publication DS 4B (1991) Physical Constants of Hydrocarbon and Non-Hydrocarbon Compounds.
- ** GPA Table of Physical Constants of Paraffin Hydrocarbons and Other Components of Natural Gas GPA 2145-96.
- *** Journal of Petroleum Technology, Nov 1978, Pages 1649-1655.

 Predicting Phase Behaviour of Condensate/Crude Oil Systems Using Methane Interaction Coefficients
 D.L. Katz & A. Firoozabadi.

Note:

The residue mole weight and density values (eg heptanes plus, undecanes plus, eicosanes plus) are calculated so that the calculated average mole weights and densities correspond with the measured values. This can lead to anomalous residue mole weights and densities where the Katz and Firoozabadi values may not be suitable for the isomer groups detected.

Report prepared by

Report approved by

Daryl Sequeira Project Coordinator Murray Macleod Laboratory Supervisor Well Name: WASABI-1

Operator : APACHE ENERGY

: 1:5000

: 1230m - 2305m

Palynological Data Chart : BASIC DATA

% Abundance histogram : Highest occurrence

Chart date: 19 February 2009 Mike Macphail

WASABI-1

Morgan Palaeo Associates Maitland, South Australia

Enclosure 1

Sampling
Cutting
Core
Sidewall core

Text Keys
1 % within discipline (40mm=10

