

3D OIL LIMITED

VIC/P57

WELL COMPLETION REPORT

BASIC DATA

1 December 20

Table of Contents

		raye
1.	Well summary and overview	
	- Well summary	
	- Well data summary	6
	- Casing and cementing data	/
2.	Well operations	8
	- Operations summary	8
	- Rig mobilisation	
	- Drilling 36" conductor hole/setting 30" x 20" casing	9
	- Drilling 17.5m surface hole/setting 13.375" casing	
	- Drilling 12.25" hole/logging while drilling	
	- Logging 12.25" hole	
	- Well abandonment	
	- Rig demobilisation	
	- Health, safety & environmental summary	
	- Highlights	
	- Lowlights	
3.	Time analyses	16
	- Summary	
	- Time-reconciliation by well phase	17
	- Time breakdown	
	- Programme, trouble & un-programmed by phase	20
	- Non-productive time analysis	
	- Mobilisation drilling phases	
	31	
4.	Drilling & engineering summary	
	- Drilling summary report	
	- Final drilling well schematic	
	- Drilling and engineering	
	- Casing and cementing	33
	- Cement plugs	35
	- Bit run summary	36
	- Bit run: time:depth chart	36
	- Bit hydraulics summary	37
	- Directional drilling summary	38
	- direction Dmag Geodetic Survey	

5.	Ge	eological sampling & evaluation	44
	-	Formation sampling & drill monitoring	
	-	Sample summary	
	-	Sample distribution	
	-	Geological formation evaluation	47
	-	Description of samples	
	-	ROP and gas reading	
	-	Minimum – Maximum chromatograph readings	
	-	Oil shows	
	-	Gas peaks	
	-	Normalised gas	
	-	Calcimetry	
	-	MDT sampling	
	-	Convential cores	
	-	Percussion sidewall cores	. 51
	-	Logging while drilling	
	-	Wireline logging	
	_	Drilling stem testing	
	_	Biostratigraphy	
		=	

Figures

Figure 1.	Location of VIC/P57.
riguic i.	

- Figure 2. Location of the Wardie 1 well.
- Figure 3. Aerial photo-view of the West Triton during the drilling of Wardie 1.
- Figure 4. Time Depth Curve.
- Figure 5. Programme, Trouble and Un-programmed by Phase.
- Figure 6. Lost time summary during drilling period.
- Figure 7. Summary of drilling schmatics and engineering.
- Figure 8. Summary of casing and cementing schematics by *Time vs. Depth* scale.
- Figure 9. Sketch showing 'S'-type directional drilling profile.
- Figure 10. Stratigraphic column and casing of the Wardie 1 well.

Attachments

Attachment 1:	Well N	/lontage
---------------	--------	----------

Attachment 2: Bit and BHA Record

Attachment 3: Mud Report
Attachment 4: Casing Report
Attachment 5: Cementing Report
Attachment 6: LOT/FIT Report

Attachment 7: Directional Drilling Report
Attachment 8: Activity Summary Reports
Well Cost Summary
Attachment 10: Description of cuttings

Attachment 10: Description of cuttings Attachment 11: Daily geological reports

Attachment 12: Validity checks and analyses of MDT samples

Attachment 13: PVT report

List of enclosures

Enclosure 1: Gas Log Plot Enclosure 2: Drilling Data Plot Enclosure 3: Mud Log Plot Enclosure 4: LWD log Plot Enclosure 5: Wireline log Plot

1. WELL SUMMARY AND OVERVIEW

Well summary

Wardie 1 was a deviated wildcat well located in the Gippsland Basin permit VIC/P57, approximately 1.2 km (surface location) southwest of the West Seahorse 1 (oil discovery well) and about 570m south of the West Seahorse 2 well. The Wardie Prospect was mapped as a four-way dip closure at the level of the upper Latrobe Group. The main objectives were Eocene sandstones (N2.3, N2.6 and P1), which were intersected in the nearby West Seahorse oil field. 3D Oil Ltd is the operator and 100% equity holder of offshore Victorian permit VIC/P57.

Wardie 1 was drilled from 10 May to 25 May 2008 using the Seadrill Jack-Up rig, *West Triton*. The well intersected all the target horizons approximately 15m deep to prognosis, indicating an unexpected variation in the velocity field used for depth conversion. Oil was encountered in sediments above the N1 reservoir target at 1591-1595mRT (1407.5-1411.5mss) within an interval of generally poor reservoir quality. Oil was also encountered in a shallower glauconitic sand at 1581-1584m MDRT (1397.5-1400.5mss) also within low reservoir quality sediments. The main N1 reservoir sands were water bearing as were all the deeper targets.

The well results indicate that the Wardie structure, although valid and oil-bearing, is smaller than mapped pre-drill. The potential recoverable oil volume in the Wardie structure was not considered to be sufficient to justify suspending the well and it was plugged and abandoned.

Australian Drilling Associates (ADA) managed the drilling operation and Baker Hughes INTEQ SLS provided formation evaluation and drill monitoring services. Schlumberger provided the LWD and Wireline services. Expro Group Australia Pty Ltd provided validation checks and analyses of MDT samples.

Notes: All depths are measured depth below Rotary Table (mMDRT) referenced to Australian Height Datum (AHD) unless otherwise stated.

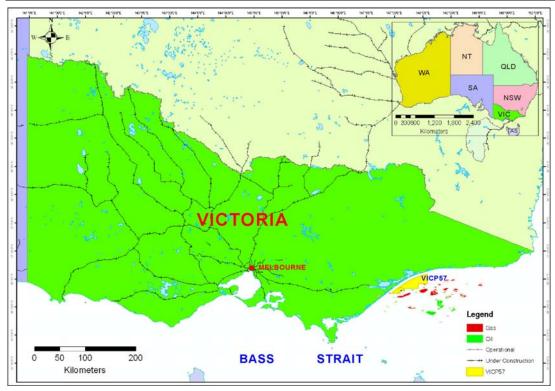


Figure 1. Location of VIC/P57.

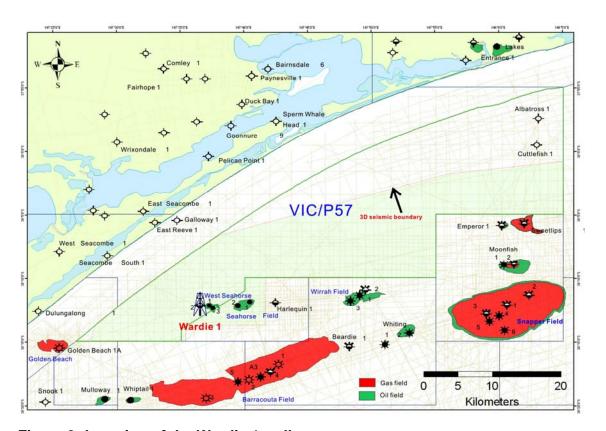


Figure 2. Location of the Wardie 1 well.

Well data summary

Well Name	Wardie-1
Country	Australia
Designation	Exploration
Field Name	Wardie Prospect
License/Permit	VIC / P57
Rig Name/Type	West Triton / Jack Up MODU
Field Operator	3D Oil Ltd
Participants	3D Oil Ltd: 100%
Rig on Location	9 th May, 2008 - 16:30 hrs
Spud Date	10 th May, 2008 - 19:30hrs
Reached TD	18 th May, 2008 - 15:30 hrs
Rig Off Contract	25 th May, 2008 - 22:30 hrs
Total Days on Operations	16.25 days
Total Days AFE (excluding Completions and Testing Phase)	14.67 days
Total Depth	1580.2m TVDSS / 1618.2m TVDRT / 1766.0mMDRT
Well Type	Directional 'S' profile
Maximum Deviation Angle	34.9°
Water Depth	39.5m MSL
RT above MSL	38m
Well Slot	2
Zone	55 GDA94
Surface Latitude	38° 12' 24.881" S
Surface Longitude	147° 37' 09.793" E
Surface Easting	554 227.625m E
Surface Northing	5 771 046.028m N
Bottom Hole Location: Latitude	38° 12' 34.440" S
Bottom Hole Location: Longitude	147° 36' 48.166" E
Bottom Hole Location: Easting	553 699.70m E
Bottom Hole Location: Northing	5 770 754.92m N
36in Hole / 30in x 20in Conductor	136mMDRT / 133mMDRT
17.5in Hole / 13.375in Surface Casing	751.0mMDRT / 747.2mMDRT
12.25in Hole	1766.0mMDRT / 1618.2mTVDRT

3D OIL

Casing and cementing data

Casing Data

Туре	Size (inches)	Weight (ppf)	Grade	Thread	Depth (mMDRT)
Conductor	30	309.7 (1" wall)	X-52	D60/MT	121.3
(30in x 20in tapered shoe joint)	20	169 (0.625" wall)	X-56	E.R.W	132.9
Surface Casing	13.375	68	N-80	BTC	747.2

Cementing Data

String Cemented	Cement Type	Dry Cmt Vol (sks)	Cement Additives	Mix Water (gal/sk)	Slurry Vol (bbls)	Slurry Density (ppg)	Cement to / from (mMDRT)	Csg Test Pressure (psi)
30in X 20in	Class G	1454	CaCl 1% BWOC NF-6: 0.25gal/10bbl	5.16	265	15.9	seafloor (77.5m) - 133.0m	NA
13.375in	Class G	726	CFR-3L: 3gal/10bbl HR-6L: 2gal/10bbl NF-6: 0.25gal/10bbl	5.10	150	15.9	432m- 747m	2,000
Plug #1A	Class G	411	CFR-3L: 3gal/10bbl SCR-100L: 2gal/10bbl NF-6: 0.25gal/10bbl	4.70	85	15.8	1616m- 1766m	NA
Plug #1B	Class G	320	CFR-3L: 3gal/10bbl SCR-100L: 2gal/10bbl NF-6: 0.25gal/10bbl	4.70	64	15.8	1513m- 1616m (tagged at 1407m)	NA
Plug #2	Class G	290	CFR-3L: 3gal/10bbl SCR-100L: 2gal/10bbl NF-6: 0.25gal/10bbl	4.70	58	15.9	700m- 805m	
Plug #3	Class G	19MT	CaCl 0.5% BWOC	5.16	93	15.9	95m-157m	

2 WELL OPERATIONS

Operations summary

Wardie-1 was drilled as an exploration well intended to target sandstones of the upper Latrobe Group in the Wardie structure using the Jack Up rig, *West Triton* (Figure 3).

Figure 3. Aerial photo-view of the West Triton.

Rig Mobilisation

The rig was already on location having previously drilled the West Seahorse-3 well from slot #1. Wardie-1 well (slot #2) commenced on 9 May 2008 at 16:30hrs with the installation of the CTU deck extension. Service lines were connected and the cement hose on the rig floor was changed out. A fault was traced in the ROV umbilical line and rectified costing 0.4 days (ROV fault affected temporary P&A operations being completed on West Seahorse-3). During this time 12 joints of heavy weight drill pipe (HWDP) were laid out for inspection and 12 new joints were picked up. Two stands of 5.5in drill pipe were also laid out while waiting on the ROV. The rig was then skidded over to slot #2, the CTU was installed onto the CTU deck extension and the CTU work platform and mouse hole placed in position.

ROV problems occurred just after abandoning West Seahorse-3 and it was thought repairs could be made offline during skidding operations to Wardie-1. However fault tracing on the ROV umbilical and repairs took more time than expected and caused 10 hours down time into Wardie-1 operations.

Drilling 36in x 26in conductor hole/setting 30in x 20in casing

The BHA, consisting of a 26in bit, 36in hole opener, Anderdrift tool, float sub and 36in stabilizer was RIH and bottom tagged at 76.8m due to a mound of cement being present. The bit position was checked relative to the West Seahorse-3 well and found to be approximately 3m from the West Seahorse-3 conductor casing. The ROV was stood back and a deviation survey was taken at the seabed (<0.5 deg) using the Anderdrift tool.

Wardie-1 was spudded on 10 May 2008 at 19:30hrs. The 36in x 26in conductor hole was drilled riser-less using seawater and hi-vis sweeps, pumping 75bbl of flocculated gel sweeps every single while drilling from 76.8m to a section TD of 136m. Anderdrift surveys were taken while drilling at 87m (2°) and 134m (1°). The hole was swept with 200bbl of flocculated gel mud and displaced with 350bbl pre-hydrated gel. The 36in BHA was POOH and laid down.

The 30in conductor was run with a 30" x 20" shoe joint to 74m (~ 1.5m above the Quik-Jay connector at seabed on West Seahorse-3).

The ROV was unable to sight the West Seahorse 3 conductor or the seabed due to turbulent currents and gel clouds in the proximity. Seawater was pumped at 400gpm in an attempt to clear the area around the seabed but there was no improvement. After waiting for visibility to improve at slack tide, the conductor was observed to be approximately 3m offset from West Seahorse-3 in the correct position. The conductor was lowered to the seabed and worked past the cuttings mound after several attempts. The conductor hung up on a connector at a depth of 85m on the aft side of the CTU. Attempts were made to pull the conductor forward using the air winch on the rig floor without success. The cantilever was then skidded 6in forward allowing the connecter to pass the hang up point and was RIH from 85m to 130m. The conductor was washed down from 130m to 133m to the programmed setting depth for the MLS joint to be 3m above the seabed. At this point landing ring inserts were installed at the CTU. Approximately two hours were taken to grind down weld protrusion on the 30in conductor for the Icon clamp. After the CTU was stroked to 100mm and the Icon clamp installed, the bolt-tensioning unit for the Icon clamp was found to be leaking hydraulic fluid and was repaired. The rig was then skidded 6in aft to centralise back over the Wardie-1 slot.

The 30in conductor was successfully cemented with 265bbls of 15.9ppg cement slurry with TOC at the mud line. The butt-weld landing collar was tagged at 85.40m. Once the space out of the low pressure riser and the diverter system was confirmed, the 30in conductor was cut at 0.3m above the Icon clamp on the CTU deck.

Drilling 17.5in surface hole/setting 13.375in casing

The 17.5in mud motor assembly was made up with a Baker Hughes MXL-T1V roller cone rock bit and MWD directional tools. The top of the shoe was tagged at 132.8m. The shoe was drilled out and drilling continued to 170m using seawater and pumping 2 sweeps of 30bbl flocculated gel mud per stand and spotting 30bbl of pre-hydrated gel on bottom at each connection. A gyro survey was taken at this depth and confirmed that there was no risk of colliding with West Seahorse-3. Continued to drill to the kick off depth at 250m. The 17.5in surface hole was directionally drilled in one

run without problems to a section TD of 751m. At section TD, 950bbl of 1.15SG inhibited mud was spotted on bottom. An over pull of 20klbs was observed at the 30in shoe when POOH. This was cleared by circulation and rotation before POOH to surface.

The 13.375in casing was RIH to 113m but it hung up on the MLS at the mud line. The rig was then skidded 6 inches forward to allow the casing to pass the MLS. A hydraulic hose burst on the skidding system and the hose was replaced costing 2 hours NPT. The 13.375in casing was then RIH hanging up at several places from 124m to 166m. The casing string was POOH and the centralisers and stop rings removed (costing 9 hours NPT). The casing was then re-run slick to 722m without problems, and the mud line hanger landed. The casing shoe was set at 747.2m.

Cement lines were pressure tested to 4000psi and a 90bbls seawater spacer pumped followed by 30bbls of tuned spacer. The 13.375in casing was cemented with 150bbls of 15.9ppg Class G slurry. Cement was displaced with 337bbls of seawater and the plug bumped. The casing could not be pressure tested on bump due to a leak in the wellhead running tool.

A failed attempt to release the running tool from wellhead was made. The top drive was then made up and 4klbs set down to fully collapse the running tool allowing the running tool to be backed out. The BOP and diverter system were then nippled up. The BOP was tested to 250/5000psi. The 13.375in casing was also pressure tested to 250/2000psi. The total NPT for this phase was 0.73 days.

Drilling 12.25in hole/logging while drilling

A 12.25in Power Drive rotary steerable BHA was made up with a Reed Hycalog RSX616M-A16 PDC bit. The assembly was RIH to 703m and after making up the TDS was washed down, reaming through a thin cement stringer at 719m and cement tagged at 732.5m (approx 2m above float collar). The plugs, float collar and shoe track were drilled out to 747m. The rat hole was cleaned out to 751m and hole displaced to 8.8ppg KCl polymer mud while drilling out float shoe.

After drilling 3m of new formation to 754m, a FIT was performed at 520psi surface pressure with 8.8ppg mud to 13.1ppg EMW without leak off. The 12.25in hole was then directionally drilled from 754m to 1397m when the driller's cyber chair system shut down due to software problems. The problem was rectified and drilling continued to 1520m. Control drilling commenced from 1520m to the well TD of 1766m at 30m/hr for recording LWD logs. At TD the hole was circulated clean and the shaker screens were initially blinded by fine sticky cuttings, so the pump rate was reduced to 815gpm for first bottoms up then gradually increased to 1080gpm for the remainder of the circulation period.

The drill string was then POOH from 1766m to 1178m working tight spots at 1540m to 1530m, 1283 to 1273m and 1253m to 1178m. The string was then pumped out of hole from 1178m to 919m. The hole packed off at 919m with 30klb over pull. The string was worked until circulation was regained and pumped out to 747m. The hole was circulated clean inside the casing shoe. The string was RIH and 8m fill tagged on bottom. A large quantity of fines and small cuttings/cavings were circulated out. The cavings were identified as originating from lower Lakes Entrance Formation. The hole was circulated clean and the drill string POOH.

Logging 12.25in Hole

Schlumberger wire line tools were then rigged up for the following logs:

Log #1 PEX-HRLA-BHC

Log #2 MDT (pressures and sampling)

The tools for Log #1 were picked up, radioactive sources loaded and RIH. The 12.25in open hole was logged down from 747m to 1700m. The logging tools were then pulled back and a repeat section acquired for the interval from 1675m - 1565m. The wire line was then RIH back down to 1760m (max depth achieved by wire line). It was then attempted unsuccessfully to work past 1760m. Logging of the main pass continued back up the interval from 1760m - 1300m with a caliper log taken up to the casing shoe. Log #1 tools were then POOH and rigged down.

The tools for Log #2: MDT - GR were then picked up and RIH. A total of 17 pre-tests were attempted between 1574m and 1681.5m resulting in 9 valid pressures, 4 super charged points, 3 tight tests and 1 seal failure. Samples were taken at 1582.4m (x2) and 1593.7 (x1). Log #2 tools were then POOH to surface where the samples were recovered and the MDT tools were then rigged down.

Well abandonment

This phase of the programme commenced with RIH of the mule shoe on 5.5in drill pipe to 1765m where the well was circulated bottoms up. Cement head and lines were rigged up, 10 bbls of drill water was pumped and the lines were pressure tested to 1000psi. Abandonment plug #1A was then set from 1776m to 1616m with 85bbls of 15.80ppg Class G cement slurry (caliper volume plus 10% excess). The cement was displaced with 2 bbls drill water followed by 98 bbls of mud. The string was POOH to 1613m.

The well was then circulated 1.5 times bottoms up and 170 bbls of contaminated mud was dumped prior to rigging up cement head and lines again. 10 bbls of drill water was pumped and the lines were pressure tested to 1000psi. Abandonment plug #1B was then set from 1616m to 1513m with 64bbls of 15.80ppg Class G cement slurry (caliper volume plus 20% excess). The cement was displaced with 2 bbls drill water followed by 90 bbls of mud. The string was POOH to 1406m.

The well was then circulated 1.5 times bottoms up and 170 bbls of contaminated mud was dumped. The link tilt clamps on the bails were adjusted to allow the elevators to reach the mouse hole and then excess pipe was laid down while waiting on cement. The string was then RIH, washing down from 1398m to 1407m. The top of plug #1B was tagged at 1407m with 5klb set down weight.

The string was then POOH to 903m and a 50 bbls high vis pill spotted before the string was pulled out to 805m. After rigging up the cement head and lines, 10 bbls of drill water was pumped and the lines were pressure tested to 1000psi. Abandonment plug #2 was then set from 805m to 700m with 58bbls of 15.80ppg Class G cement slurry. The cement was displaced with 2 bbls drill water followed by 37 bbls of mud. The string was POOH to 599m. The well was then circulated 1.5 times bottoms up

with no cement returns observed. The string was POOH laying out 45 singles of 5.5in drill pipe.

Cement plug #2 was tested to 1000 psi for 10 minutes. The diverter system and BOPs were nippled down. The flow line was removed in preparation to skid the rig and the wear bushing was retrieved. The 13.375in casing cutter was picked up and casing cut at 126m and the cutting tool laid down. The wellhead running tool was made up to the wellhead and the 13.375in landing string including the wellhead was POOH to surface and laid down. A cement stinger was RIH to 207m and 25bbls of hi vis was spotted before POOH to 157m. The cement head and lines were rigged up, 5 bbls of sea water was pumped and the lines were pressure tested to 500psi. Abandonment plug #3 was then set from 157m to 95m with 93bbls of 15.80ppg Class G cement slurry. The cement was displaced with 6 bbls of sea water before rigging down the cement lines and POOH to 95m and circulating the hole clean. The cement string was then POOH to surface and rigged down.

Three attempts were made to cut the 30" conductor at 78m MDRT. Although there were positive indications of the conductor being cut on the second and third attempts, the conductor could not be pulled free. Failure to cut the 30in conductor resulted in 0.35 days lost time. The 30" landing string was backed out at the Quik-Jay connector at 74.5m (3m above seabed). The released casing was then pulled to surface and laid out. The 30in handling equipment was rigged down and the CTU unit was moved from CTU deck to storage area.

Rig demobilisation

The CTU deck extension was removed and lowered onto the work boat. All tubulars were laid down from the derrick. The cantilever was skidded in and secured in stowed position. The main towing bridle was attached to the Pacific Battler. The rig was jacked down to 2m draft. Water tight integrity checks were carried out while attaching secondary tow lines to the Pacific Valkyrie and the Sirius Cove vessels. The rig then continued to be jacked down into the water, lifting the legs clear from the seabed and the tow commenced to Garfish location.

****** 22:30hrs, 17 May 2008: END OF WELL: WARDIE-1*****

The total time spent on the well was 16.25 days, including mob/demobilisation.

Health, safety & environmental summary

Wardie-1 was drilled with a satisfactory HSE performance having incurred no lost-time, with only one incidence of a medical treatment case and one minor first aid incident recorded. Two near-miss incidents took place, the risks of which were minimised with the use of good planning and foresight, covering the hazards with the crew during Pre Tour meetings prior to commencing the jobs and heightening awareness of the correct procedures to follow. One property damage incident occurred when skidding in the rig due to the locking pins not being retracted, resulting in damage to supporting steelwork.

The following is an overview of incidents, tests, and drills etc, which were evaluated and conducted during the time on Waride-1:

Parameter	Units		Comment(s)
Man-hours	number	16908	
STOP Cards Generated	number	362	
Total MODU Proactive Safety Efforts	number	831	Including Issued / Active Work Permits, JSA, Work Instructions, Pre Job safety Mtgs, TOFS, Area Authority Audits & STOP
Audit			
Internal EP Compliance Audit	number	0	
MODU Mini HSE Audits	number	2	TBT / TOFS & Lifting Equipment Management By the Drilling HSE Advisors
Training			
ADA ERG Exercise	number	0	Emergency Response table top exercise Southern Stars for 3D Oil held earlier on 2 nd May 08. (Conducted on West Seahorse-3)
Environmental Plan Training	number	0	
MODU Emergency Drill	number	4	1) 3 Fire / Abandon / Muster (Weekly) Drills held on 12th, 18th and 25 th May 08 2) 1 Medical Drill held on 12 th May 08
Reportable Incident (NOPSA)			
Lost Time Injury (LTI)	number	0	
Alternate Duties Injury (ADI)	number	0	
Medical Treatment Injury (MTI)	number	1	12 th May 08 - Swollen knee due to contact with casing joint
Non Reportable Incident (NOPSA)			
First Aid Case	number	1	2/5/08 - IP had laceration and bruise on rt wrist when removing a lifting nubbin.
Near Miss	number	2	1) 14/5/08 - Hydraulic fluid leak into bunded area 2) 20/5/08 - Fuel sprayed back into crew face when refuelling generator for wire line unit (full PPE in place).
Property Damage	number	1	Locking pins not retracted resulting in damage to supporting steelwork.
Recordable incidents (DPI)			
Spills – occurrence	number	0	

Basic Data			
Parameter	Units		Comment(s)
Spills – quantity	litre	0	
Wastes			
Hazardous wastes	m ³	1	All wastes are properly packed, stored and sent onshore to GML and disposed accordingly through Corio Waste
Non-hazardous wastes	m ³	57	Management, an EPA - approved permit holder to transport various wastes including waste from offshore
Marine User Interaction			
Cetacean sightings	number	2	Sighting reports on 24 th & 25 th May '08, sent to Dept of Environment & Heritage
Errant vessel interaction	number	0	
Impacts from Fishing Operations (interaction)	number	0	
Water Based Muds (WBM)			
Volume water based drilling fluid disposed into the ocean (m³)	m ³	790	Reference made to the Well Environment report
Volume of drill cuttings using WBM disposed to the seabed (m³)	m ³	251.9	Reference made to the Well Environment report
Oil / Chemical Spills discharged to the marine environment	bbl	0	Reference made to the Well Environment report
Problems with sewage plant resulted in discharge of untreated sewage to the marine environment	number	0	Reference made to the Well Environment report

Highlights

- No major HSE incident
- No spill or damage to environment
- Well completed within planned budget
- All geological drilling targets achieved
- Acquired all programmed LWD and wire line log data
- Successfully modified and installed the Conductor Tensioner Unit extension platform allowing West Seahorse-3 and Wardie-1 wells to be drilled from a common surface location, saving significant time and cost by eliminating a rig move
- Based on the trouble free logging on West Seahorse-3 it was envisaged that the 12.25in open hole interval could be increased on Wardie-1. The 13.375in casing was therefore set at a shallow depth compared to West Seahorse-3 (785m v/s 1117m MDRT), resulting in 0.25 days rig time savings as well as reduced material costs.
- Deployed high spec rotary steerable system successfully, saving about half a day of rig time and improving wellbore quality
- Timely hiring of a third workboat (Pacific Protector) allowed rig down and demobilisation operations to be accelerated by 1.5 days

Lowlights

- 13.375inch casing had to be pulled and re-run without centralisers due to the centralizers hanging up in the MLS whilst running the casing.
- The 30inch conductor could not be cut during abandonment (this was subsequently backed off above seabed at the Quik-Jay connector).
- Continuing problems with Drilquip running tool
- There were numerous issues with drilling equipment (notably the TDS and cyber chair) towards the end of well.
- After landing out the 13 3/8inch casing and wellhead, 3.5 hours NPT was recorded due to problems releasing the running tool from the wellhead.

3. TIME ANALYSIS

Summary

The total time on Wardie-1 well was 16.25 days, compared to the programmed time (normalised for the actual scope of work) of 14.67 days. The planned time did not include any contingency for down times or waiting on weather.

The original well AFE time was 24.20 days. The original time was normalised to reflect the actual work scope, as below:

- Cancellation of the 9.625in casing operations (reduction of 1.92 days)
- Cancellation of well testing (reduction of 7.60 days)

Therefore the actual time on location was 1.58 days over the AFE planned time (i.e. ignoring the casing and testing phases).

Total Non-Productive Time (NPT) amounted to 2.61 days for Wardie-1.

- 24.14% of all NPT occurred during the plug and abandonment phase (costing 0.63 days)
- 22.99% of all NPT occurred during the setting of the 13 3/8" casing (costing 0.60 days).
- 22.22% of all NPT occurred during the setting of the 30" conductor casing (costing 0.58 days).
- 16.09% of all NPT occurred during the mobilisation (costing 0.42days).
- 9.58% of all NPT was incurred during the drilling of the 12.25in hole (costing 0.25days)
- 4.98% of all NPT was incurred while rigging down and moving out (costing 0.13days)

In total 16.06% of the time on well was incurred as non-productive time.

Time reconciliation by well phase

	Planned Time (days)		Total NPT			Rig Repair						
OPERATION PHASE		Actual Time (days)	Days	% of Total Actual Time	% of Total NPT Time	days	% of Total Actual Time	% of Total Rig Repair Time	days	% of Total Actual Time	% of Total WOW Time	Delta
Mob & rig up	0.33	0.96	0.42	2.58%	16.09%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	+0.63
Drill 36" conductor hole	0.46	0.50	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	+0.04
Set 30" conductor	1.06	1.81	0.58	3.57%	22.22%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	+0.75
Drill 17.5" hole	1.64	0.98	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	-0.66
Set 13.375" casing	2.11	3.23	0.60	3.69%	22.99%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	+1.12
Drill 12.25" hole	2.69	2.85	0.25	1.54%	9.58%	0.08	0.49%	17.39%	0.00	0.00%	0.00%	+0.16
Log 12.25" hole	1.75	0.83	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	-0.92
P&A	2.13	3.44	0.63	3.88%	24.14%	0.25	1.54%	54.35%	0.00	0.00%	0.00%	+1.31
Rig down & move out	2.50	1.65	0.13	0.80%	4.98%	0.13	0.80%	28.26%	0.00	0.00%	0.00%	-0.85
TOTALS	14.67	16.25	2.61	16.06%	100.00%	0.46	2.83%	100.00%	0.00	0.00%	0.00%	+1.58

Time breakdown

	Time (days)									
Operation Phase	Planned	Actual	Programmed	Unprogrammed	NPT Programmed	NPT Unprogrammed				
Mob & rig up	0.33	0.96	0.96	0.00	0.42	0.00				
Drill 36" conductor hole	0.46	0.50	0.50	0.00	0.00	0.00				
Set 30" conductor	1.06	1.81	1.81	0.00	0.58	0.00				
Drill 17.5" hole	1.64	0.98	0.98	0.00	0.00	0.00				
Set 13.375" casing	2.11	3.23	3.23	0.00	0.60	0.00				
Drill 12.25" hole	2.69	2.85	2.85	0.00	0.25	0.00				
Log 12.25" hole	1.75	0.83	0.83	0.00	0.00	0.00				
P&A	2.13	3.44	3.44	0.00	0.63	0.00				
Rig down & move out	2.50	1.65	1.65	0.00	0.13	0.00				
TOTALS	14.67	16.25	16.25	0	2.61	0				

Time Depth Curve

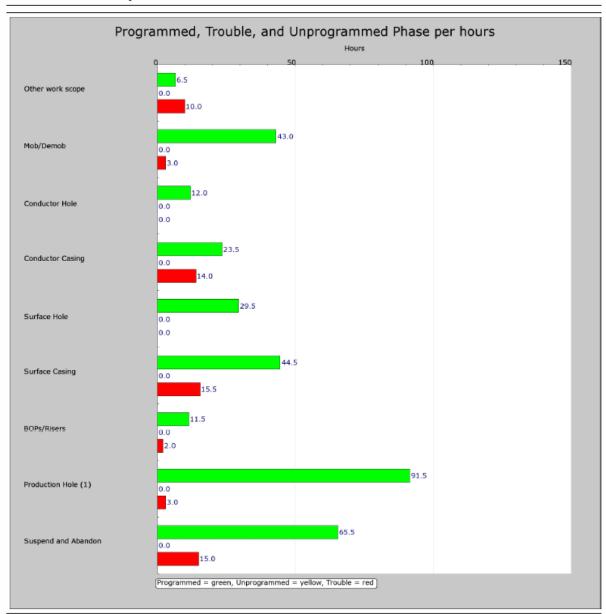


Figure 4. Time depth curve.

Programme, Trouble and Un-programmed by Phase

Time Breakdown by Phase

Total Time on Operations : 390 hrs Total Productive Time : 327.5 hrs

Total Lost Time: 62.5 hrs

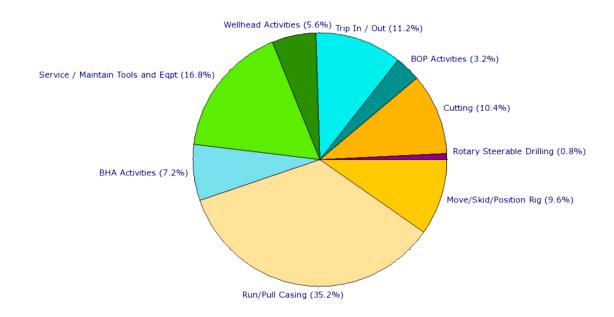
Total Unprogrammed Time: 0 hrs

Figure 5. Programme, Trouble and Un-programmed by Phase.

Non-productive time analysis

Phase (in sequence)	NPT		NPT by Cause								
Friase (iii sequence)	(days)	WOW Hole Condition		Hole Condition	Rig Equipment		Third Party		Other		
Mob & rig up	0.42						0.42	Fault in ROV umbilical. Fault repaired.			
Drill 36" conductor hole	0.00										
Set 30" conductor	0.58		0.06 0.04 0.04	Conductor casing hung up on side aft side of CTU. Skidded cantilever 6in forward. Once casing run - skidded cantilever back to re-centralise over Wardie 1 slot.			0.10	Troubleshoot bolt tensioning unit for Icon clamp. Re-install Icon clamp and tension up same. Grinding weld to fit iron clamp. The weld on the 30" conductor required grinding to allow installation of the Icon clamp.	0.04 0.04 0.04	No visibility with ROV due to current and gel clouds. Waited on improved visibility. Attempted to work conductor casing into hole. Conductor appeared to be slightly port of centre. Circulated and worked casing past hang-up point and into hole.	
Drill 17.5" hole											
Set 13.375" casing	0.60		0.08	Seal on skidding system hydraulic hose burst. Hose replaced.			0.06	Failed attempt to release running tool from wellhead.			

Phase (in sequence)	NPT	NPT by Cause								
Friase (iii sequence)	(days)	WOW Hole Condition		Rig Equipment		Third Party		Other		
			0.04	Unable to work 13.375in casing past 166m. POOH to shoe track laying out 13.375in casing. Cut centralisers and stop collars from the shoe track Cut joint # 75 above collar joint and laid out same. Backed out and loaded out float collar joint. Casing re-RIH without centralisers.			0.08	Made up top drive and applied 4klbs on running tool - tool fully collapsed. Backed out running tool with rig tongs.		
Drill 12.25" hole	0.25				0.08	Leaks of 60psi/min occurred during IBOP test. Function and greased manifold valves to rectify problem. Investigate problem with TDS. Rest PLC and reboot system.				


Phase (in sequence)	NPT	NPT by Cause							
Thase (in sequence)	(days)	WOW Hole Condition		Rig Equipment		Third Party		Other	
				0.02	Driller's cyber chair system shut down, was able to able to circulate but not rotate or reciprocate. Investigated and rectified - software related problem.				
				0.11	Failed attempt to open trip tank line for flow check - valve on trip tank return line seized.				
Log 12.25" hole	0.00								
P&A	0.63			0.04	Top drive hydraulic inoperable - lost time racking back first stand of drill pipe. Drillers display locked up - trouble shot and rebooted system.	0.38	First attempt to cut 30in conductor failed. Two more unsuccessful attempts were made after replacing cutting knives		
				0.13	locked up - trouble shot and rebooted system.				

Phase (in sequence)	NPT (days)	NPT by Cause							
rnase (in Sequence)		WOW	Hole Condition	Rig Equipment		Third Party	Other		
Rig down & move out	0.13			out rig lock pir extended Cut off assembly and sides cantileve Major d	amage to pins and				
TOTALS	2.61	0.00	0.37	0.49		0.46	0.16		
Percentage of NPT	100.0%	0.0%	14.18%	18.77%		17.62%	6.13%		
Percentage of Total Well Time	16.06%	0.0%	2.27%	3.02%		2.83%	0.98%		

Drilling: Lost Time Summary (% of 62.5 hrs)

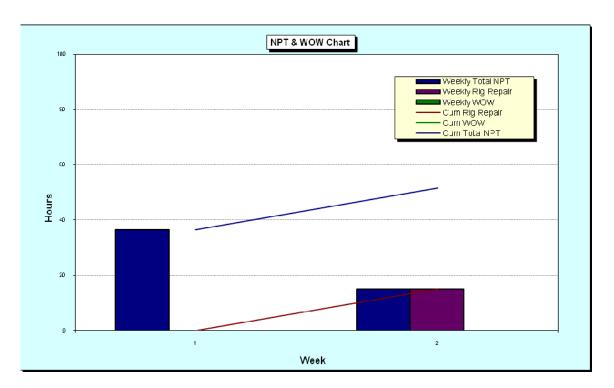


Figure 6. Lost time summary during drilling period.

Mobilisation and drilling phases

Observatio	ns by Phase	Comments / Corrective Action Taken or Proposed					
Mob & rig up							
Drill 36" conductor hole							
Set 30" conductor	Grinding the weld seam took 2 hours of rig time so that the Icon clamp could fit onto the 30" conductor.	Grinding the weld on the conductor should have been done prior to sending to the rig saving rig time.					
Drill 17.5" hole	Good bit performance	Hughes MXL-1V bit suitable for Gippsland Limestone formation.					
Set 13.375" casing	 Casing held up on centralisers No centralisers damaged or lost when pulling casing 	 Avoid sharp change in inclination when spudding; Use minimum possible centralisation; Install stop collars at recommended distance from centralisers Halliburton supplied Centek centralisers were used and are recommended in future 					
Drill 12.25" hole	Good bit performance	Reed PDC RSX-616 performed well and is recommended for use through Latrobe sands.					
Log 12.25" hole							
Abandon & demob							

4. DRILLING & ENGINEERING SUMMARY

Drilling summary report

The primary objectives of the Wardie-1 exploration well were Eocene sandstones of the upper Latrobe Group, in particular the N2.3, N2.6 and P1 sandstone reservoirs. These intervals were intersected in West Seahorse-1 (drilled by Hudbay in 1981), where they consisted of a sequence of interbedded sandstones, siltstones and coals.

An extension was installed on the CTU deck of the West Triton rig and the cantilever was then skidded approximately 2.5m from the West Seahorse-3 slot. The Wardie-1 well was spudded at 19:30 hrs on 10 May 2008, using a 660 mm (20") Reed Rock Y1 1C bit with a 914 mm (36") Hole Opener. The seabed was tagged shallower than on the adjacent West Seahorse-3 well (39.5m water depth) due to a mound of cement being present around that well. The hole was drilled from the seabed at 76.8 m to 136.0 mMDRT. The hole section was drilled using seawater and hi-vis gel sweeps, with cuttings returned to the seabed. The 762 mm x 508 mm (30" x 20") casing was run and cemented with the 508 mm conductor shoe set at 133.0 mMDRT. After setting the conductor a 445 mm (171/2") Hughes MXLT1V tricone rock bit was made up on a directional BHA with MWD and the 445 mm section directionally drilled from 136.0 to 751.0 mMDRT. The 445 mm hole was also drilled using seawater and hi-vis gel sweeps, with cuttings dumped overboard to the sea from the CTU deck level as the riser and BOP were not yet installed. The well was kicked off at a depth of 250m and angle built to approximately 32.5 by 644 mMDRT and angle maintained for the remainder of the tangent section. The 340 mm (13.375") casing was run and cemented with the shoe set at 747.2 mMDRT.

After cementing the 340 mm surface casing string, the BOP stack and marine riser were installed. The BOPs were then pressure-tested and the diverter rigged up. The 311 mm hole section was drilled with a Reed RSX 61 6M-A1 6 PDC bit made up to a directional drilling BHA with Powerdrive and LWD tools. A thin cement stringer was tagged at 719.0 mMDRT which was reamed out and the string washed down to TOC at 732.5 mMDRT. The cement plugs, float collar, shoe track and 340 mm casing shoe at 747.2 mMDRT were drilled out using seawater and three meters of new formation cut to 754.0 mMDRT. The hole was then displaced to a KCl-Polymer waterbased mud system initially weighted to 1.06 sg (8.8 ppg). The mud system was conditioned before pulling back into the shoe where a Formation Integrity Test (FIT) was performed with 1.06 sg mud yielding an Equivalent Mud Weight (EMW) of 1.57 sg/13.1 ppg (no leak-off). This bit drilled the entire section to well TD at 1766.0 mMDRT which was reached at 15:30 hrs on 18 May 2008. Hole angle and azimuth was maintained until the second kick-off point at ~1 208m where the well was steered down to the second tangent angle of under 9 through the Latrobe target interval. The bit was pulled out for wireline logging at TD, however a wiper trip was required as several intervals of tight hole with significant overpull were seen on the first trip out and it was necessary to pump and back-ream out all the way to the 340 mm casing shoe. There was also a tendency for the hole to pack-off in some places. After running the bit back to bottom (8m of fill encountered) and circulating the hole clean the drill string was pulled to surface without further incident.

After the wireline logging was successfully completed, the well was plugged and abandoned by setting four cement plugs. Cement plug #1A was set from 1766m to 1616 mMDRT and was followed by cement plug #1B from 1616m to 1513.0 mMDRT. The top of plug 1B was tagged with the cementing string at 1407 mMDRT after cement had hardened and was weight tested to 5 klbs. Cement plug #2 was then set across the 340 mm casing shoe from 805m to 700 mMDRT. This plug was allowed to harden before being pressure tested to 1000 psi. The final abandonment cement plug was set from 157m to 95 mMDRT after cutting the 340mm (13.375") casing at 126 mMDRT. Three attempts were then made to cut the 762 mm (30") conductor below the mudline at a depth of 78m, but these were all unsuccessful, despite some surface indications that the casing was at least partially cut. The 762mm (30") casing landing string was disconnected at the Quick-Jay connector 2m above the seabed and laid out. The CTU deck extension was then removed, the cantilever skid in and the rig jacked down.

The MODU West Triton was released from the Wardie-1 well location at 22:30 hrs on 25 May 2008

Final drilling well schematic

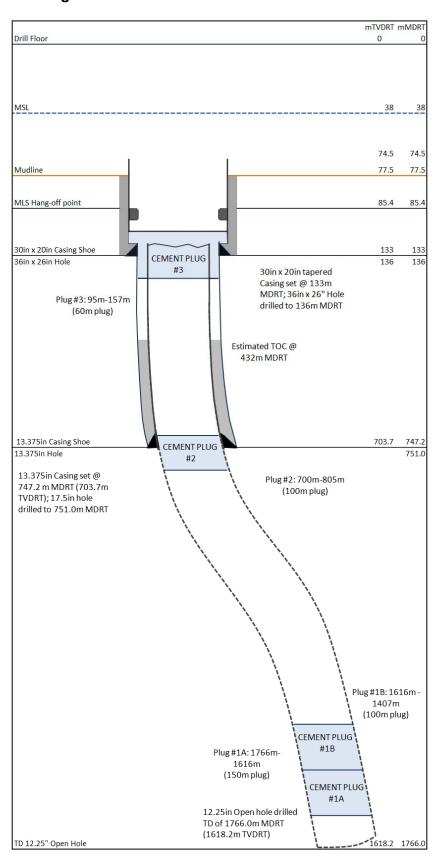


Figure 7. Summary of drilling schmatics and engineering.

Drilling & engineering

914 mm (36") Hole Section 10 - 11 May 2008

Bit Run No. 1 Summary

Bit No. RB1

Bit Size, mm 660 mm with 914 mm Hole

Opener

Bit Type Rock / Reed Y1 1 C

Serial Number 34406 Jets 3x22, 1x16 Depth In, mMDRT 76.8

Depth Out, mMDRT136.0

Bit Grading 1-1-WT-A-NB-I-RR-TD

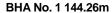
Drilling Parameters

WOB, mt 0.3 - 5.7 RPM Surf 39 - 120

Pump Pressure, kPa 1055 - 9963

Flow In, Ipm 1518 – 3789 Torque, kNm 0.04 – 5.87

Mud


Seawater 1.06 sg High viscosity gel sweeps

Lithology

Returns to seabed.

Drilling Summary

This spud assembly was made up and run in, tagging the seabed at 76.8 mMDRT. Wardie-1 was spud at 1930hrs on 10 May 2008, drilling 914 mm hole from the mudline to 136.0 mMDRT. At TD, 200 bbl of flocculated gel was pumped to clean the hole which was then displaced with PHG mud prior to running the conductor.

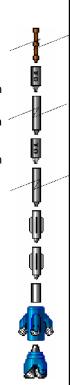
7x140mm HWDP 65.77m

Cross-over Sub 1 .23m

5x210mm DC 47.09m

Cross-over Sub 1.23m

2x241mm DC 18.86m


91 4mm String Stab 2.33m

Anderdrift Stab 3.18m

Bit Sub 1.23m

914 mm Hole Opener 2.76m

NB1 Reed Rock Y11C 660mm Jets: 3x22, 1x16 0.58m

445 mm (17.5") Hole Section 12 - 13 May 2008

Bit Run No. 2 Summary

Bit No. NB2
Bit 445 mm
Size Hughes MXL-T1V

 Serial Number
 606589

 Jets
 3x20

 Depth In.
 136.0

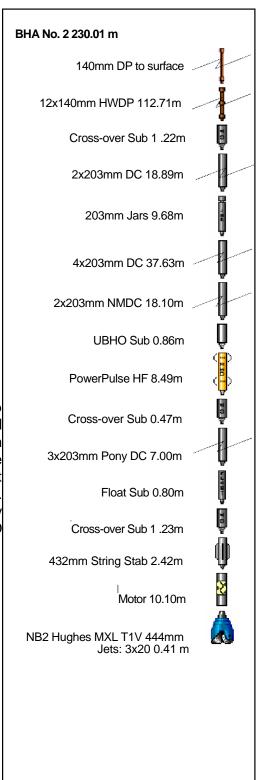
 Depth Out.
 751.0

Bit Grading 1-1 -NO-A-0-I-NO-TD

Drilling

WOB. mt 0.4 – 22.4 RPM Surf 0 – 91 Pump Pressure. 4737 – 18650 Flow In. lpm 2063 – 4353 Torque, kNm 0 – 5.48

Mud


Seawater 1.06 sg High viscosity gel sweeps

Lithology

Returns overboard from CTU deck.

Drilling Summary

A Hughes MXL-T1V tricone bit was made up to a directional drilling BHA with mud motor and MWD tools. The bit was washed down from 131 .0 mMDRT to the top of the 508 mm shoe at 132.8 mMDRT. The shoe was drilled out and rat hole cleaned out to 136.0 mMDRT. The 445 mm hole section was directionally drilled with seawater and hi-vis sweeps to the TD of the section at 751.0 mMDRT.

311 mm (12.25") Hole Section 16 - 19 May 2008

Bit Run No. 3 Summary

Bit No. NB3

Bit Size Bit Type 311 mm

Reed RSX 61 6M-A1 6

Serial Number 218629 Jets 3x15. 3x16 Depth In. MDRT 751.0 Depth Out. mMDRT1766.0

Bit Grading 1-1 -NO-A-E-I-NO-TD

Drilling

WOB mt 0.3 - 17.4 79 - 241**RPM Surf** 8405- 15072 Pump Pressure 3634 – 4262 2.05 – 21.83 Flow In Ipm Torque kNm

Mud

KCI-Polymer 1.07 - 1.13 sg

Lithology

Calcilutite, Calcisiltite, Calcarenite, Loose Sand, Calcareous Claystone, Carbonaceous Claystone, Siltstone, Sandstone, Coal

Drilling Summary

A PDC bit was made up to a directional drilling BHA with Powerdrive and LWD tools. After reaming through a thin cement stringer at 719 mMDRT, the bit was washed down to the top of the float collar at 732.5 mMDRT. The plugs, float collar and shoe track were drilled out using seawater. The hole was displaced to a KCI-Polymer water-based mud system initially weighted to 1 .06 sg (8.8 ppg) when drilling out the float shoe and then three metres of new formation was drilled to 754.0 mMDRT. After conditioning the new mud system, the bit was pulled back into the shoe and a Formation Integrity Test (FIT) was performed with 1 .06 sg mud yielding an Equivalent Mud Weight (EMW) of 1.57 sq. This PDC bit was directionally drilled to well TD at 1766.0 mMDRT.

BHA No.3 173.33m

140mm DP to surface

12x140mm HWDP 112.84m

Cross-over Sub 1 .22m

203mm DC 9.44m

Jar 9.68m

203mm DC 9.45m

203mm NMDC 8.65m

PowerPulse HF 8.49m

GVR-8 4.22m

PD900 9.04m

NB3 Reed RSX 616M-A16 311mm Jets: 3x15, 3x16 0.30m

Casing and Cementing

762 x 508 mm (30" x 20") Casing 11 - 12 May 2008

Hole Size: 914 mm (36") Depth: 136.0 mMDRT

Casing Details

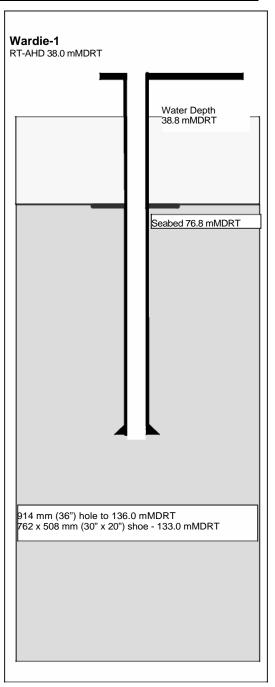
OD 762 mm (30") Grade/Wt: X 52 461 kg/m

Joints: 10 x 762 mm joint

1 x 508 mm shoe

Shoe: 133.0 mMDRT

Cement Details


SLURRY:

Type: Class G

Weight: 1.9 sg (15.9 ppg) Slurry Volume: 42.1 m³ (265 bbls)

Summary

The 762 x 508 mm conductor string was run on 11 May 2008. The conductor had to be suspended 3.5m above the mudline for two hours due to poor visibility and once visibility improved the string had to be circulated and worked into the surface hole as it was hanging up at the mudline due to a slight misalignment. Each joint of casing was filled with sea water wile being run in. The string took weight at 130 mMDRT and had to be washed down from 130m to 133 mMDRT. The 508 mm shoe was set and cemented at 133.0 mMDRT as per the casing tally and then cemented in place. Prior to the cement job, the surface line was tested to 1000 psi. Then a preflush consisting of 14.3 m³ (90 bbls) of seawater was pumped followed by 3.2 m³ (20 bbls) of seawater with fluoroscein dye. The cement job comprised pumping of 42.1 m³ (265 bbls) of 1.9 sg (15.9 ppg) class "G" slurry. This was 20% over the theoretical annular volume and there were returns observed at the mudline by the ROV. The cement was displaced with 1 .6 m³ (10 bbls) of seawater. After the cement had been pumped and the floats checked, the cement stinger and the 140 mm drill pipe were pulled to surface.

340 mm (1 3.375") Casing 14 - 15 May 2008

Hole Size: 444 mm (17.5") Depth: 751.0 mMDRT

Casing Details

OD 340mm (1 3.375") Grade / Wt: N80: 101 kg/m (68 ppf)

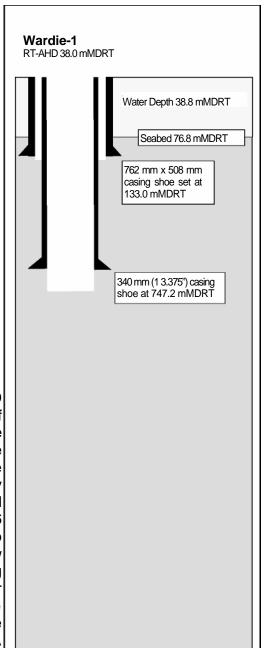
Joints: 1 Shoe joint

1 Float Collar joint 56 x Casing joints +

5 Landing Joints (CTU to MLS)

Shoe: 747.2 m

Cement Details


SLURRY:

Type: Class G

Weight: 1.90 sg (15.8 ppg) Slurry Volume: 23.8 m³ (150 bbls)

Summary

The 340 mm casing was run in hole as per 3D Oil's casing program. There was a great deal of difficulty running the casing in hole initially as the centralisers continually hung up on the mudline suspension. An attempt was made to improve the casing alignment with the wellbore by skidding the cantilever slightly but it was still not possible to work the casing down past 166 mMDRT. The casing was pulled back to surface and all centralisation removed. A new float collar joint was made up and the casing re-run to landing depth without further problems. Once the casing was landed, the casing volume was circulated and then the cement lines pressure tested to 4000 psi. A preflush of 14.3 m³ (90 bbls) of seawater and 4.7 m³ (30 bbls) of tuned spacer E+ was pumped ahead. The cement job consisted of 23.8 m³ (150 bbls) of 1.9 sg (15.8 ppg) class "G" slurry. The cement was displaced with 53.6 m³ (337 bbls) of sea water. The plug was bumped to 2000 psi. The casing shoe was set at 747.2 mMDRT.

Cement Plugs

21 - 22 May 2008

Hole Size: 311 mm (12.25") Depth: 1766.0 mMDRT

Cement Plug Details

CEMENT PLUG #1A:

Type: Class G

Weight: 1.89 sg (1 5.8 ppg) Slurry Vol:13.51 m³ (85 bbls)

CEMENT PLUG #1 B:

Type: Class G

Weight: 1.89 sg (1 5.8 ppg) Slurry Vol:10.17 m³ (64 bbls)

CEMENT PLUG #2:

Type: Class G

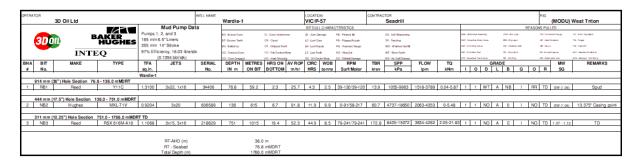
Weight: 1.90 sg (15.9 ppg) Slurry Vol:9.22 m³ (58 bbls)

CEMENT PLUG #3:

Type: Class G

Weight: 1.89 sg (15.8 ppg) Slurry Vol:14.7 m³ (93 bbls)

Summary


Four cement plugs were pumped to P&A the Wardie-1 well. The cement stinger consisted of mule shoe made up on 140 mm drill pipe. The cementing string was run in hole to 1765 mMDRT, bottoms up was circulated and then cement lines were rigged up and tested to 1000 psi. All slurry volumes in the open hole were calculated using a 10% excess to the caliper volume. Cement plug #1A was set from 1766m to 1616 mMDRT and was followed by cement plug #1B from 1616m to 1513 mMDRT. After waiting on cement to harden, the string was washed down from 1398m and tagged top cement plug #1B at 1407 mMDRT. The plug was weight tested with 5 klbs. Cement plug #2 was set across the 340 mm casing shoe from 805m to 700 mMDRT. The BOPs, riser, choke

Wardie-1 RT-AHD 38.0 mMDRT Water Depth 38.8 mMDRT Seabed 76.8 mMDRT Cement plug #3 at 157.0-95.0 mMDRT Cement plug #2 at 805.0-700.0 mMDRT 340 mm (1 3.375") casing shoe at 747.2 mMDRT а Cement plug #1 B at 161 3.0-1 51 3.0 mMDRT the Cement plug #1A at 1766.0-161 6.0 mMDRT 311 mm (12.25") hole at of 1766.0 mMDRT

lines, and surface lines were flushed and then Plug #2 was successfully pressure tested to 1000 psi for 10min. The 340 mm (13.375") casing was then cut at 126 mMDRT and the cut joints pulled to surface. The final cement plug #3 was set from 157m to 95 mMDRT. Three attempts were made to cut the 762 mm (30") conductor at 78 mMDRT without success, so the 762mm landing joints were disconnected at the Quick-Jay connector 2m above the mudline and pulled to surface.

Bit Run summary

Bits run: time : depth chart

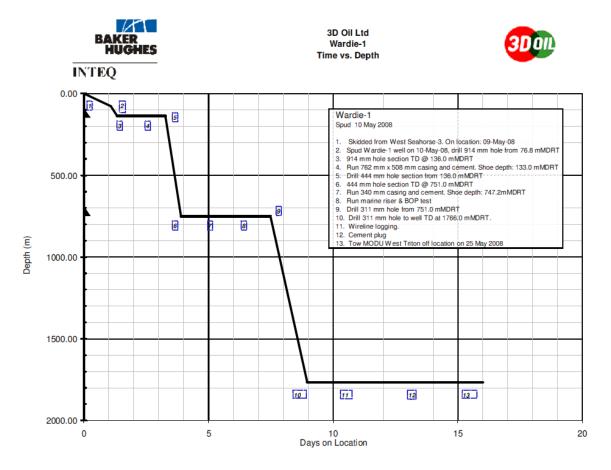


Figure 8. Summary of casing and cementing schematics by time vs. depth scale.

Bit Hydraulics summary

INT	VZ AT AKER HUGHES EQ	_				it H	yd	raı	ulic	s S	Sun	nma							<u>3D</u> 0	Þ
Operator			Well Name							Location	1	Drilling Con	tractor				Rig			
3D Oil	Ltd				Wardie-1					VIC/P	-57	Seadrill					MODI	J West	Trito	n
Drillstrin	g Abbrevi	ations			S	Powerdriv	re		Hydraul	ics Mod	els									
	Normal MWD		Positive Displacement I Adjustable Gauge Stab			TRACS T	ool					used for dril			eawater					
Bit	Depth	Hole	Jets	Drill	Mud	Mud			Flow	Jet	Impact	Hydraulic	Power/	Bit	Bit	Pipe*	ECD	Ann	ular Velo	DP
No.	AHD	Size	Jets	String	Type	Density	PV	ΥP	Rate	Vel	Force	Power	Area	Loss	Loss	Loss	ECD	OH	ОН	Max Dia
NO.	(m)	in	x 1/32"	Type	Туре	sa	mPas	Pa	Inm	m/sec	lbf/in ²	hhp	hp/sq in	KPa	%	Kpa	sa	m/sec	m/sec	m/sec
	(111)	""	X 1/02	1900	Wardie-1	og	IIII do	/ 64	quit	111/300	1017 111	mp	np/ og m	Ma	70	тұра	og	111/300	111/300	111/300
	914 mm	(36") Hol	e Section 76.8 - 136.0	mMDRT	Walue-1															
RB1	136	36"	3x22, 1x16		SW / PHG sweep	1.06			3789	42.4	0.7	622	0.08	917	12.4	6439	1.060		0.10	-
	444 mm	(17.5") F	lole Section 136.0 - 75	1.0 mMDR	г															-
NB2	751	17.5"	3x20		SW / PHG sweep	1.06	-		4353	122.1	8.8	1716	3.11	7605	43.1	10045	1.062	0.52	0.60	0.19
	311 mm	(12.25")	Hole Section 751.0 - 17	66.0 mMD	RT															-
NB3	1766	12.25"	3x15, 3x16	N, M, A	KCI-Polymer	1.13	13	13.9	4088	95.4	14.0	1395	3.89	4943	32.4	10328		1.12	1.12	0.27
												* Note: Pipe Lo	ss includes 1	OP,HWDP,	DC, MWD	, Motor, Ac	lditional to	ols, surf equ	ipment	

Directional drilling summary

Performance drilling report

BHA 38 / Bit 2

17 1/2" (445 mm) Steerable Motor Assembly 136m – 751m MD

BHA

17 1/2" Hughes MXL-T1V Tooth Bit (3 x 20 jets)
9 5/8 PowerPak Motor (5:6 lobe, 4.0 stage, 17 1/4 sleeve and 1.5° bend) 17" String Stab
Crossover Sub Float Sub
3 x 8" Pony NMDC
Crossover Sub
PowerPulse MWD (800-1200 gpm)
UBHO
2 x 8" NMDC
8 1/4" Spiral Drill Collars (4 joints)
Hydraulic Jar
8 1/4" Spiral Drill Collar (2 joints)
Crossover Sub
5 1/2" HW Drill Pipe (12 joints)
5 1/2" Drill Pipe to Surface

Drilling Summary

Drilled cement and float equipment, cleaned out rat hole. This well was approximately 2.5 m from West Seahorse-3 so magnetic interference was encountered in the MWD surveys once drilling commenced. At 172m with inclination only surveys there was a high risk of collision with West Seahorse-3 so Gyro surveys were taken to confirm the actual azimuth. The Gyro surveys indicated that the well was diverging from West Seahorse-3 so the drilling commenced. At 200m no magnetic interference was encountered from the MWD surveys so these were used from this point onwards.

Rotary drilling continued to kick off point at 250m. Kick off building at 3°/30m to 32.48°m along the azimuth of 241.15° azimuth. Continue drilling tangent section to casing point at 751m MDRT. This assembly is capable of building up to 4.8°/30m. Reactive torque was about 45° with 25 klbs WOB

No hole problems were encountered and all directional requirements were met. While tripping out of the hole the BHA got stuck at the shoe. The most likely cause was the 17" stabilizer getting stuck at the shoe. The BHA was rotated out with no resistance encountered.

Drilling Performance

Interval	Distance (m)	Time (hrs)	ROP (m/hr)			
Total Drilled	615	6.7	91.79			
Total Drilled in rotary	353	3.76	93.88			
Total Drilled in slide mode	262	2.94	89.12			
Bit Graded	1-1-NO-A-E-I-NO-TD (61 krevs)					

Section Breakdown

Section	Rotary m (%)	Slide m (%)
Start of run to KOP (136-250m)	125 (100%)	-
KOP to EOC (250-574m)	105 (32%)	219 (68%)
EOC to section TD (574-751m)	134 (76%)	43 (24%)

BHA 4 / Bit 3

12 1/4" (311 mm) Rotary Steerable Assembly 751m – 1766 m MD (1015m)

BHA

12 1/4" Reed Hycalog RSX616 MA 16 PDC Bit (3 x 15 & 3 x 16 jets) PowerDrive 900 X5 (without flow restrictor)

PowerDrive 900 Receiver (with ported float) and Flex Collar

8 1/4" GVR

PowerPulse MWD (600-1200 gpm)

1 x 8" NMDC

8 1/4" Spiral Drill Collars

Hydraulic Jar

8 1/4" Spiral Drill Collar

Crossover Sub

5 1/2" HW Drill Pipe (12 joints)

5 1/2" Drill Pipe to Surface

Drilling_Summary

After drilling out cement and float equipment, three meters of new formation was drilled and a formation integrity test was performed.

Once out of the shoe the PowerDrive assembly had a dropping tendency in neutral steering mode of around 0.8°/30m. The tangent section of the well profile was drilled in inclination hold mode and increasing the right azimuth steering percentage accordingly to follow the planned well trajectory. The drilling parameters were adjusted to maintain a rate of penetration of around 115 m/hr.

In the previous well (West Seahorse-3) it was initially difficult to achieve the required drop rate so the drop section in this well was started deliberately at 1208m, 90m ahead of plan to allow for a lower drop rate than the plan. Drop rates of 1 .16°/30m to 1 .45°/30 m for the first 243m were achieved when the tool was set at 25% steering ratio and 180° tool face. It was later altered accordingly to increase the drop and turn rates. The rate of penetration was held back to 30 m/hr from 1522m onwards for logging purposes.

Once the drop was achieved the PowerDrive was placed in Inclination Hold mode for the remainder of the tangent section to TD at 1 766m MDRT. Both geological targets were successfully penetrated within the allowable tollerances.

Moderate stick-slip was observed for most of the run but it did not affect the steering ability. A few hard drilling intervals were encountered and higher stick slip and torque variance was experienced. While tripping out sticky hole sections were encountered all the way up to the 13 3/8" shoe. The BHA was washed and back reamed through these sections and a subsequent wiper trip to TD point was performed.

The bit was graded as 3-3-WT-A-X-I-CT-TD.

Drilling Performance;

Interval	Distance (m)	Time (hrs)	ROP (m/hr)
Rotary mode	1015	19.40	52.32

Deviated well, 'S'-type profile. Details see attachment 7

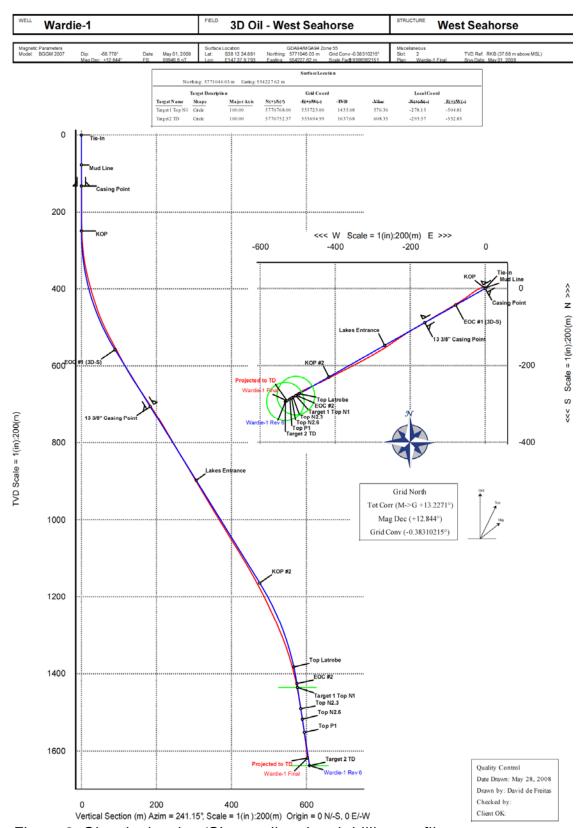


Figure 9. Sketch showing 'S'-type directional drilling profile.

Directional Dmag Geodetic Survey

	Lu.		Autor d		U41	No.	F,		Cont Art	Decel Act	FOULT	Material Co	O T :
Comments	Measured Depth	Inclination	Azimuth Grid	TVD	Vertical Section	NS Grid North	EW Grid North	DLS	Semi-Axis Major NEV	Semi-Axis Minor NEV	EOU Unc Vertical	Major Axis Azimuth NEV	Survey Tool Model
	(m) 0.00	(deg) 0.00	(deg) 0.00	(m) 0.00	(m) 0.00	(m) 0.00	(m) 0.00	(deg/30 m) 0.00	(m) 0.16	(m) 0.16	(m) 0.00	(deg)	SLB CNSG+DPIPE-Depth 0
ıd Line	77.50	1.96	317.71	77.48	0.31	0.98	-0.89	0.76	0.17	0.16	0.60	137.65	SLB CNSG+DPIPE
IG EIIIO	82.50	1.90	317.51	82.48	0.35	1.10	-1.01	0.36	0.17	0.17	0.61	137.42	SLB_CNSG+DPIPE
	87.50	1.85	317.30	87.48	0.39	1.23	-1.12	0.30	0.19	0.19	0.62	137.21	SLB CNSG+DPIPE
	92.50	1.80	317.07	92.48	0.42	1.34	-1.22	0.30	0.21	0.21	0.63	137.03	SLB_CNSG+DPIPE
	97.50	1.74	316.83	97.47	0.46	1.45	-1.33	0.36	0.23	0.23	0.63	136.87	SLB_CNSG+DPIPE
	102.50 107.50	1.69	316.58	102.47 107.47	0.50 0.54	1.56	-1.43 -1.53	0.30	0.25 0.27	0.25 0.27	0.64	136.72 136.57	SLB_CNSG+DPIPE
	112.50	1.63 1.65	316.30 315.91	112.47	0.54	1.67 1.77	-1.63	0.36 0.14	0.27	0.27	0.65 0.66	136.37	SLB_CNSG+DPIPE SLB_CNSG+DPIPE
	117.50	1.78	316.62	117.47	0.61	1.88	-1.73	0.79	0.29	0.28	0.67	136.54	SLB_CNSG+DPIPE
	122.50	1.86	319.95	122.46	0.65	2.00	-1.84	0.80	0.29	0.29	0.67	137.94	SLB_CNSG+DPIPE
	127.50	1.88	323.69	127.46	0.67	2.13	-1.94	0.74	0.30	0.30	0.68	140.03	SLB_CNSG+DPIPE
	132.50	1.94	328.33	132.46	0.69	2.26	-2.03	0.99	0.32	0.32	0.69	142.37	SLB_CNSG+DPIPE
	134.60 174.15	2.03 0.97	330.59 331.19	134.56 174.09	0.69 0.70	2.33 3.23	-2.07 -2.58	1.70 0.80	0.32 0.39	0.32 0.39	0.70 0.99	144.37 146.82	SLB_CNSG+DPIPE SLB_MWD-STD
	202.30	1.06	330.50	202.24	0.70	3.67	-2.82	0.10	0.39	0.39	0.99	98.40	SLB_MWD-STD
	260.44	2.12 5.23	269.17 252.00	260.36	1.66	4.12	-4.16 -5.99	0.96	0.41	0.41 0.47	0.99	35.23 31.23	SLB_MWD-STD
	290.09 319.76	5.23 8.62	252.00	289.94 319.39	3.47 7.02	3.69 2.31	-5.99 -9.28	3.30 3.55	0.47 0.57	0.47	1.00	7.35	SLB_MWD-STD SLB_MWD-STD
	349.23	11.69	244.27	348.40	12.21	0.03	-9.26 -13.95	3.55	0.57	0.64	1.00	170.06	SLB_MWD-STD
	378.56	14.54	243.39	376.96	18.86	-2.94	-19.91	2.92	0.86	0.74	0.99	163.04	SLB_MWD-STD
	408.20	16.62	238.69	405.51	26.81	-6.81	-26.85	2.46 2.29	1.06	0.85 0.95	1.00	158.62	SLB_MWD-STD
	437.65 466.98	18.41 21.11	234.18 233.22	433.60 461.20	35.63 45.46	-11.72 -17.60	-34.22 -42.21	2.29	1.28 1.54	1.06	1.00	155.19 152.65	SLB_MWD-STD SLB_MWD-STD
	496.44	24.52	235.86	488.35	56.81	-17.60	-42.21 -51.52	3.62	1.84	1.18	1.02	151.24	SLB_MWD-STD
	525.34	27.44	238.00	514.33	69.43	-31.10	-62.14	3.18	2.18	1.31	1.03	150.55	SLB MWD-STD
	555.68	29.78	239.10	540.96	83.94	-38.68	-74.53	2.37	2.57	1.45	1.06	150.22	SLB MWD-STD
	585.40	28.02	239.82	566.98	98.30	-45.98	-86.90	1.81	2.91	1.53	1.08	150.05	SLB MWD-STD
	614.89	29.13	240.00	592.88	112.40	-53.05	-99.11	1.13	3.24	1.61	1.12	149.98	SLB MWD-STD
	644.23	31.31	240.28	618.23	127.17	-60.40	-111.91	2.23	3.66	1.75	1.17	150.03	SLB_MWD-STD
	674.32	33.98	240.54	643.56	143.40	-68.41	-126.03	2.67	4.12	1.90	1.23	150.10	SLB MWD-STD
	703.79	34.90	240.07	667.87	160.06	-76.67	-140.50	0.97	4.59	2.05	1.29	150.10	SLB_MWD-STD
	722.54	34.35	239.86	683.29	170.71	-82.00	-149.73	0.90	4.86	2.12	1.33	150.07	SLB_MWD-STD
	802.80	32.02	241.09	750.46	214.63	-103.66	-187.94	0.91	5.88	2.32	1.47	150.06	SLB_MWD-STD
	831.50	30.76	239.33	774.96	229.58	-111.08	-200.91	1.63	6.24	2.40	1.53	149.98	SLB_MWD-STD
	861.51	31.64	238.19	800.63	245.11	-119.15	-214.20	1.06	6.65	2.52	1.60	149.86	SLB_MWD-STD
	891.22	31.39	236.51	825.96	260.60	-127.53	-227.28	0.92	7.06	2.65	1.67	149.65	SLB_MWD-STD
	920.19	31.58	236.01	850.66	275.68	-135.93	-239.86	0.33	7.47	2.77	1.74	149.44	SLB_MWD-STD
	949.76	31.70	236.73	875.84	291.14	-144.52	-252.78	0.40	7.88	2.90	1.81	149.29	SLB_MWD-STD
	979.78	31.37	237.60	901.42	306.80	-153.03	-265.97	0.56	8.28	3.02	1.88	149.19	SLB_MWD-STD
	1009.21	31.56	240.47	926.53	322.15	-160.93	-279.14	1.54	8.68	3.13	1.95	149.25	SLB_MWD-STD
	1039.05	31.64	239.79	951.94	337.78	-168.72	-292.70	0.37	9.10	3.26	2.02	149.26	SLB_MWD-STD
	1066.59	31.64	241.83	975.39	352.22	-175.77	-305.31	1.17	9.48	3.38	2.09	149.37	SLB_MWD-STD
	1096.55 1125.94	32.01 32.34	242.11 242.75	1000.85 1025.72	368.02 383.67	-183.19 -190.43	-319.25 -333.13	0.40 0.48	9.91 10.34	3.51 3.65	2.17 2.25	149.48 149.62	SLB_MWD-STD SLB_MWD-STD
								0.24			2.22	140.70	<u>-</u>
	1155.71 1184.60	32.17 32.35	242.53 243.98	1050.90 1075.33	399.55 414.96	-197.74 -204.67	-347.24 -361.01	0.21 0.83	10.77 11.17	3.78 3.90	2.33 2.40	149.72 149.88	SLB_MWD-STD SLB_MWD-STD
	1214.81	32.33	244.06	1100.88	431.07	-204.07	-375.50	0.03	11.60	4.02	2.48	150.03	SLB_MWD-STD
	1244.86	30.73	243.07	1126.51	446.73	-218.72	-389.55	1.54	12.01	4.13	2.55	150.12	SLB MWD-STD
	1274.25	29.50	243.74	1151.93	461.47	-225.32	-402.73	1.30	12.39	4.24	2.61	150.23	SLB_MWD-STD
	1303.82	28.32	243.43	1177.82	475.75	-231.68	-415.53	1.21	12.75	4.34	2.67	150.32	SLB_MWD-STD
	1333.24	26.97	243.84	1203.88	489.39	-237.74	-427.76	1.39	13.10	4.45	2.73	150.41	SLB_MWD-STD
	1363.33	25.76	244.51	1230.84	502.73	-243.56	-439.79	1.24	13.45	4.56	2.79	150.52	SLB_MWD-STD
	1392.32	24.64	245.10	1257.07	515.05	-248.82	-450.96	1.19	13.77	4.66	2.84		SLB_MWD-STD
	1421.66	23.41	245.94	1283.87	526.96	-253.77	-461.83	1.31	14.07	4.76	2.89	150.74	SLB_MWD-STD
	1451.54	21.93	245.34	1311.44	538.44	-258.52	-472.32			4.86	2.93		SLB_MWD-STD
	1481.24	19.28	245.06	1339.23	548.86	-262.90	-481.81	2.68	14.63	4.95	2.96	150.91	SLB_MWD-STD
	1511.19		243.33	1367.71	558.11	-266.92				5.03	2.99		SLB_MWD-STD
	1540.85 1570.22		240.57 236.98	1396.28 1424.84	566.09 572.91	-270.66 -274.19		2.40 2.30		5.10 5.17	3.02 3.03		SLB_MWD-STD SLB_MWD-STD
	1599.76 1630.16		236.26 236.73	1453.80 1483.75	578.72 583.93	-277.39 -280.28	-507.91 -512.27	2.09 0.88	15.36 15.49	5.23 5.28	3.05 3.07	150.79 150.76	SLB_MWD-STD SLB MWD-STD
	1659.89	8.81	235.87	1513.10	588.63	-282.90		0.67	15.60	5.33	3.08	150.72	SLB MWD-STD
	1689.37	8.19	235.45	1542.26	592.97	-285.35		0.63		5.38	3.09	150.72	SLB_MWD-STD
	1718.81	7.67	235.27	1571.41	597.01	-287.66		0.53		5.43	3.10		SLB_MWD-STD
		7.00	201.15									450.01	
	1745.67 1766.00	7.36 7.36	234.18 234.18	1598.04 1618.21	600.50 603.08	-289.69 -291.21	-526.00 -528.12	0.38 0.00	15.89 16.25	5.47 5.70	3.11 3.16	150.61 150.35	SLB_MWD-STD SLB_BLIND+TREND

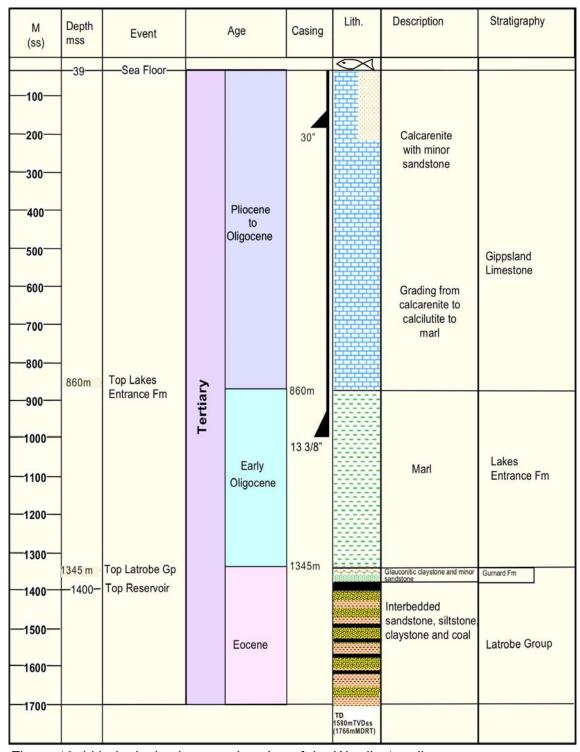


Figure 10. Lithological column and casing of the Wardie 1 well.

5. GEOLOGICAL SAMPLING & EVALUATION

Formation sampling & drill monitoring

Baker Hughes INTEQ SLS provided formation evaluation and drill monitoring services for Wardie-1 between 09 May and 25 May 2008 from the spud depth at 76.8 mMDRT to the well's total depth of 1766.0 mMDRT. Data was processed and stored using **Advantage version 2.10U2** software. All depths in this report are measured depth below Rotary Table (mMDRT) referenced to Australian Height Datum (AHD) unless otherwise stated.

All gas monitoring equipment was calibrated before drilling and checked regularly. Ditch cuttings were continuously collected through the drilling and Calcimetry analysis on cuttings samples was performed at the request of the Wellsite Geologists. Formation pressures and samples were taken with the Schlumberger MDT tool. Two oil samples were collected from a depth of 1582.4mMDRT.

Sampling summary

Cuttings samples were collected at the intervals tabulated below as advised by the Well site Geologists.

751 – 770 m	19 m interval
770 – 1320 m	20 m interval
1320 – 1520 m	10 m interval
1520 – 1760 m	5 m interval
1760 – 1766 m	6 m interval

The following washed samples were combined with the respective next available due to high ROP: 1350m, 1370m, 1440m, 1510m, 1565m, 1745m, 1750m, 1755m

The following unwashed samples were combined with the respective next available due to insufficient cuttings at the shakers:1490, 1520, 1525, 1540, 1545, 1645, 1650, 1665, 1670, 1710, 1725, 1740, 1760 & 1766m.

The following unwashed samples were combined with the respective next available due to insufficient cuttings at the shakers: 1440, 1505, 1510, 1515, 1565, 1745, 1750 & 1755m.

Sample Distribution

Set A (250g Unwashed Cuttings in Hubco bags) to be forwarded to:

3D Oil Limited Kensington Road Self Storage

180 Kensington Road West Melbourne, Vic, 3003

Set B (250g Washed & Dried Drill Cuttings in polythene bags) to be forwarded to: 3D

Oil Limited Kensington Road Self Storage

180 Kensington Road West Melbourne, Vic, 3003

Set C (Samplex Tray) to be forwarded to:

3D Oil Limited Kensington Road Self Storage

180 Kensington Road West Melbourne, Vic, 3003

Set D (250g Washed & Dried Drill Cuttings in polythene bags) to be forwarded to: *Victorian Dept of Primary Industries*

DPI Core Sample Library

18 South Road

(250 m south of Sneydes Road)

WERRIBEE 3030 (Melway Reference: 206 E8)

Set E (250g Washed & Dried Drill Cuttings in polythene bags) to be forwarded to:

Geoscience Australia Manager,

Geoscience Australia Data Repositories

Geoscience Australia

Cnr Jerrabomberra Avenue and Hindmarsh Drive,

Symonstonymonston, ACT, 2609

Set F (Mud Sample & Mud Filtrate) to be forwarded to:

3D Oil Limited Kensington Road Self Storage

180 Kensington Road

WEST MELBOURNE, ViC, 3003

SAMPLE TYPE	No. of Sets		INTERV		PACKING DETAILS				
		Large Box No.	Small Box No.	Interval (m)					
			1	751 – 850	_				
			2	850 – 950	-				
			3	950 – 1050					
		1	4	1050 – 1150	1				
			5	1150 – 1250	-				
			6	1250 – 1360					
UNWASHED			7	1360 – 1430	Packed in 3				
SAMPLES: Set A			8	1430 – 1490	boxes				
Set A	1		9	1490 – 1540	marked as Set				
			10	1540 - 1575	Α				
		2	11	1575 – 1600]				
			12	1600 - 1625					
			13	1625 - 1650					
			14	1650 - 1675					
		3	15	1675 - 1700					
			16	1700 – 1725	1				
			17	1725 - 1766]				
			1	751 – 990					
			2	990 – 1250	1				
			3	1250 - 1430	1				
DRILL CUTTINGS			4	1430 – 1550	1				
250g:	3	1	5	1550 – 1600	3 Large boxes				
Washed & Air Dried			6	1600 – 1655	marked as Set B, D &				
(polythene bags) Sets B, D & E from			7	1655 – 1715	Б, D & F				
751 – 1766 m			8	1715 – 1766	_				
SAMPLEX TRAYS: Set C	1		-	751 - 1766	Packed in 1 wooden box marked as Set C				
MUD SAMPLES & MUD FILTRATE: Set F	1			751 - 1766	Packed in one box marked as Set F				

Geological formation evaluation

Geological formation evaluation for Wardie-1 commenced from the start of the 311 mm hole section at 751.0 mMDRT to the well's Total Depth at 1766.0 mMDRT. All depths given are measured depths from the Rotary Table (mMDRT).

All gas monitoring equipment was calibrated before drilling each hole section and checked regularly. Calcimetry analysis on cuttings samples was performed at the request of the Wellsite Geologists.

The lithologies encountered at Wardie-1 are described below. For a graphical display of the lithology, see Appendix 1 & 10. The lithological descriptions on the Formation Evaluation Log were provided by the wellsite geologists, with input from the BHI mudloggers.

Sampling Intervals:

751 – 770 m	19 m interval				
770 – 1320 m	20 m interval				
1320 – 1520 m	10 m interval				
1520 – 1760 m	5 m interval				
1760 – 1766 m	6 m interval				

Description of Samples:

914 mm Section (76.8 - 136.0 mMDRT)

Returns to seabed. No samples.

444 mm Section (136.0 – 751.0 mMDRT)

Returns overboard from CTU deck. No samples.

311 mm Section (751.0 – 970.0 mMDRT) 751.0 to 982.0 mMDRT.

Interbedded CALCISI LTITE, CALCILUTITE, CALCARENITE and LOOSE SAND/SANDSTONE

CALCILUTITE (Trace to 10%): White to pale grey, hard, amorphous, slightly silty. **CALCISILTITE (5 to 65%):** Medium grey to olive grey, occasionally black. Soft to hard, firm in places. Moderately to highly calcareous. Minor to common clastic Silt fraction. Grading to fine sand in places.

CALCARENITE (5 to 65%): Light olive grey to olive grey, white to pale yellow. Moderately hard to hard, crushed in places. Very fine to coarse. Angular to sub-angular. Translucent opaque sparry calcite. Minor Silt, minor rounded fine sand in places. Minor black lithics and glauconite. Trace shell fragments. Highly calcareous, well cemented, poor visible porosity. Common calstic Silt fraction.

LOOSE SAND/SANDSTONE (Trace to 5%): Fine to medium, trace coarse to very coarse. Moderately sorted, sub-rounded to rounded. Translucent to transparent quartz, minor orange and yellow quartz. Trace cryptocrystalline pyrite. Minor coarse to very coarse rounded clear to frosted quartz.

982.0 to 1560.0 mMDRT.

Interbedded CALCI LUTITE, CALCARENITE, CALCISILTITE, CALCAREOUS CLAYSTONE.

CALCILUTITE (5 to 100%): Light greenish grey, very light olive to medium olive grey. White to pale grey. Hard, soft to firm in part. Amorphous, sub-blocky, rare sub-fissile. Argillaceous, slightly silty, common unidentified white silty specks. Trace pyrite, glauconite. Loose foraminifera and echinoid spines. Bryozoan fragments. Grading to calcareous Claystone in places.

CALCARENITE (Trace to 10%): Light olive grey to olive grey. Minor white to pale yellow. Dark grey. Moderately hard to hard. Very fine to fine. Angular to sub-angular. Translucent to opaque sparry calcite. Minor silt, minor black lithics, grading to Calcisiltite, trace shell fragments, trace bryozoan and echinoid spines. Highly calcareous, well cemented.

CALCISILTITE (Trace to 95%): Pale to medium grey to olive grey. Dominantly firm to hard. Blocky and sub-fissile. Moderately to highly calcareous. Minor to common clastic Silt fraction. Grading in places to fine sand. Abundant microcrystalline pyrite micro laminae. Possible dolomite cement, indicated by a slower HCl reaction. Trace to very fine dark mafic grains. Rare pyrite, disseminated in places. Common dark specks of carbonaceous material. Rare blocky calcite sparry crystals.

CALCAREOUS CLAYSTONE (50 to 95%): (from 1525m) Light greenish grey to olive grey, brownish grey in places. Firm to hard. Sub-blocky and sub-fissile. Argillaceous. Moderately to highly calcareous. Fine to coarse glauconite pellets and nodules. Trace broken crystalline calcite vein material. Trace foraminifera, echinoid spines, shell fragments and pyrite. Slightly silty in places.

1560.0 to 1596.0 mMDRT

Interbedded SILTSTONE, COAL, SANDSTONE, CALCILUTITE.

CALCILUTITE (5 to 15%): Light grey and light greenish grey to grey, soft to firm, predominantly firm to hard, amorphous to blocky, argillaceous, highly calcareous, common to abundant disseminated fine glauconite pellets in part, grading to calcareous Claystone, silty.

SILTSTONE (20 to 50%): Medium brownish grey to olive grey to brown. Firm to hard. Blocky. Slightly carbonaceous. Slightly calcareous.

COAL (Trace to 70%): Dark brown to black, glossy in part along fractures. Hard. Brittle. Silty in part.

SANDSTONE (Trace to 5%): Fine to very coarse. Poorly sorted. Sub-rounded to rounded. Clear to translucent quartz. Minor glauconite. Traces pyrite aggregates. Fair inferred porosity.

1596.0 to 1714.0 mMDRT

Interbedded SANDSTONE, COAL, SILTSTONE and CLAYSTONE.

SILTSTONE (5 to 80%): Medium brownish grey to olive grey, olive black, brown, pale yellowish brown. Firm to hard, blocky and sub-fissile. Slightly carbonaceous, non to slightly calcareous, Speckled dark brown to black with carbonaceous material and laminations. Grading to very fine Sand in places. Muscovite and fine to medium sand sized glauconite.

SANDSTONE (Trace to 100%): Pale grey to brownish grey, very light grey. Clear to translucent grains. Very fine to granule (grains). Moderately to very poorly sorted. Angular to sub-rounded, rarely sub-rounded, sub-spherical in part. Trace light yellow clay, trace to minor glauconite, trace muscovite, trace pyrite, minor lithics. Inferred silica cemented, but overgrowths not confirmed. Friable to hard, common loose grains. Poor visible porosity.

COAL (Trace to 80%): Dark brown to black. Glossy in places along fractures. Hard, brittle and Silty in places.

1714.0 to 1766.0 mMDRT

SANDSTONE with minor CLAYSTONE and SILTSTONE beds

SANDSTONE (80-100%): Very light grey, white. Translucent to transparent. Fine to coarse grains. Poorly to moderately sorted. Sub-angular to sub-spherical. Trace hard aggregates with siliceous cement. Poor to good inferred porosity.

SILTSTONE (0-20%): Pale yellowish brown, speckled dark brown to black. Firm to hard. Blocky to sub-fissile. Non to slightly calcareous. Rare glauconite. Grading to very find Sand in part.

CLAYSTONE (0-5%): Dark yellowish brown, brownish grey. Firm and sub-fissile.

ROP and gas readings:

311 mm Section (751.0 –1766.0 mMDRT)

Interval (m)	ROP range (m/hr)	ROP average (m/hr)	Total Gas range (%)	Total Gas average (%)
76.8 – 136	8.7 – 74.6	40		
136 – 751	16.9 – 250.2	115.9		
751 – 970	13.8 – 167.0	54.7	0.0019 - 0.0027	0.0023
970 - 1560	15.8 – 380.0	79.7	0.0022 - 0.0813	0.0254
1560 - 1766	1.5 – 66.7	25.7	0.0038 - 1.0564	0.1358

Minimum - maximum chromatograph readings:

311 mm Section (751.0 – 1766.0 mMDRT)

<u> </u>		<u> </u>					
Interval (m)	C1 (ppm)	C2 (ppm)	C3 (ppm)	iC4 (ppm)	nC4 (ppm)	iC5 (ppm)	nC5 (ppm)
751 – 970	2 – 7	0 – 3	0	0	0	0	0
970 – 1560	4 – 718	0 – 9	0 – 7	0 – 1	0 – 1	0	0
1560 – 1766	8 – 8576	0 – 147	0 – 66	0 – 50	0 – 39	0 – 39	0 - 21

Oil Shows

The following shows were noted in cuttings from the Latrobe Formation:

(1570-1585m) Trace to 1% pale greenish yellow pin-point fluorescence. Moderately fast to fast blooming, blue- white cut. Thin moderately bright blue green fluorescing residual ring cut fluorescence. Very faint pale tea to pale yellow brown visible residue colour.

(1585-1605m) Trace to 1 % dull pinkish orange flourescence. Slow blooming dull to moderately bright blue white cut. Very thin to thin pale blue green fluorescing residual ring cut fluorescence. No to pale yellow brown visible residue colour.

(1605-1650m) Trace to 2% dull orange yellow fluorescence. No to slow diffuse bluish white cut. No to very thin pale blue fluorescing residual ring cut fluorescence.

(1650-1660m & 1665-1670m) Trace dull yellowish orange fluorescence

Gas Peaks

Depth (mMDRT)	TG (%)	C1 (ppm)	C2 (ppm)	C3 (ppm)	iC4 (ppm)	nC4 (ppm)	iC5 (ppm)	nC5 (ppm)
1579.0	1	4000	60	70	40	30	20	10
1585.0	1	4000	40	20	10	0	0	0
1597.5	.7	4000	60	8	10	0	0	0
1615.0	.6	2500	80	10	0	0	0	0
1619.0	.4	3000	90	0	0	0	0	0
1630.0	.2	1500	50	10	0	0	0	0
1637.0	.15	600	30	0	0	0	0	0
1644.0	.15	1200	110	17	0	0	0	0
1650.0	.18	900	80	15	0	0	0	0

Normalised Gas

A "normalised" total gas curve has been plotted on the Gas Ratio Log (see Appendix 1) for comparison with the regular total gas measurement. The normalised total gas is corrected for flow rate, drilling speed and hole size in an attempt to provide a consistent measure of "actual" mud gas per unit volume that can be compared across the various drilling intervals. The equation for normalised total gas is given below:

Normalised Gas = Total gas x (Total Flow / (ROP x Bit Size²))

Calcimetry

			Calcime	try Data			
Sample Depth	Calcite (%)	Dolomite (%)	Total	Sample Depth	Calcite (%)	Dolomite (%)	Total
(mMDRT)			Carbonate (%)	(mMDRT)			Carbonate (%)
770	64.2	12.2	76.4	1250	54.6	7.9	62.5
790	66.2	12.8	79.0	1270	59.4	5.8	64.9
810	67.4	12.8	80.3	1290	57.8	7.7	65.5
830	61.0	10.3	71.3	1310	41.7	727	49.5
850	70.6	9.6	80.3	1390	41.1	6.4	47.5
870	57.8	8.3	66.2	1410	25.7	5.1	30.8
890	57.8	7.7	65.5	1430	50.7	6.4	57.2
910	38.5	6.4	45.0	1450	48.8	5.8	54.6
930	59.7	12.8	72.6	1470	41.7	3.2	44.9
950	70.6	10.9	81.6	1490	35.3	2.6	37.9
970	73.9	14.8	88.6	1550	31.8	1.9	33.7
990	65.5	12.8	78.4	1570	14.8	0.6	15.4
1010	61.0	13.5	74.5	1590	19.3	0.8	20.1
1030	62.9	11.6	74.5	1610	9.3	0.6	9.9
1050	57.8	10.3	68.1	1630	9.6	0.4	10.1
1070	59.7	11.6	71.3	1650	8.3	0.5	8.9
1090	73.9	11.6	85.4	1670	6.4	0.9	7.3
1110	74.5	10.3	84.8	1690	2.4	0.3	2.7
1130	68.1	12.2	80.3	1710	3.9	0.5	4.4
1150	61.7	9.0	70.6	1730	15.6	0.2	15.8
1170	57.8	6.4	64.2	1740	18.0	1.4	19.4
1190	61.7	9.6	71.3	1760	8.5	0.1	8.6
1210	64.2	12.8	77.1	1766	7.4	0.1	7.5
1230	57.8	6.4	64.2				

MDT sampling (Pressure Sampling)

Two segregated samples were successfully recovered from a depth of 1582.4mMDRT and one sample from 1593.7mMDRT using the Schlumberger MDT tool. Single-phase transfers were performed on the three samples.

A report on the Validity Checks and Analyses of the MDT Samples is included as Attachment 12 and the fluid analyses performed by Petrotech PVT laboratory will be attached to the Wardie-1 WCR Interpretive Data.

MDT sample data

MDT FLUID SAME	PLE DATA				
		mple Identifica	fien		
Run/seat number	Run 2 / Seat 1	Run 2 / Seat 1	Run 2 / Seat 16	<u> </u>	
Sample depth	1582.4 mMDRT (13		1593.7mMDRT (L 1409 9m TVDSS	3)
Pretest volume	20 cc	1 -	20.4 cc	1 100.5111 1 7 2 0 0	í –
Chamber size	450 cc	450 cc	450 cc		
Chamber serial number	#3349	#3300	#3454		
Probe type	Large	Large	Large		
Choke size	N/A	Large	20.90		
ELECTRICAL PROPERTY OF THE PRO		sampling Histo			
Date	20-May-08	20-May-08	20-May-08	<u> </u>	: -: -: -: -: -: -: -: -: -: -: -: -: -:
Initial hydrostatic	2373.26 psia	20-May-00	2389.02 psia		
Tool Set	10:46 hrs	_	17:43		
Pretest start	10:46 hrs	-	17:46		
Initial formation pressure (pre		-	1981.9		
	11:02	-	17:52		
Pretest end	6'00"	-	6'4"		
Pretest duration		11:54			
Pumpout start	11:13		17:42		
Pumpout end	11:49 <i>33'44"</i>	12:06 <i>12'07''</i>	18:07		
Pumpout duration			15'40"		
Pumpout volume	9.70 litres	5.335 litres	4.365 litres		
OFA indication	Green	Green	Green/Blue		
Interpreted fluid at OFA	Oil	Oil	Oil/Filtrate		
Maximum resisitivity at probe		10.00	10.00		
Chamber open	11:49	12:06	18:07		
Minimum sampling pressure		899.08psia	239.8 psia.		
Final formation pressure	N/A	1982.0 psia.	N/A		
Chamber sealing pressure	1929.7 psia		15.15		
Seal chamber	11:54	12:09	18:15		
Chamber till time	4'57"	3'06"	8'04"		
Tool retract	N/A	12:31	18:24		
Final hydrostatic	-	2371.56 psia	2371.5 psia		
Total time	-	1hr55'	41'		
	Sample Downho			ity	
At sample depth (AMS)	52.2 degC	53.4 degC	56.2 degC		
Rm@sample depth (AMS)	0.063ohm-m	0.062ohm-m	0.060ohm-m		
	D. Sampl	e Recovery At	Surface		
Surface opening pressure	3850 psig	1100 psig	0? psig		
Volume gas	cuft				
Volume oil/condensate	0.300 litres	0.380 litres		(Total volume of all	Fluids combined)
Volume water/filtrate	litres		0.380 litres		
	E Muc	Filtrate Prope	rties		
Rmud @ degC	0.112ohm-m@20.2d				
K+ ion calculated from KCI%		T -			
Chlorides titrated	38,000 mg/l				
рН	9		1		
Tritium	N/A DPM				
		eneral Calibrat	ion		
Reported mud weight	9.33 ppg	Sugar Similar dr			-:-:-:-:-:-:-:-:
Calculated hydrostatic	2287 psia		2304.6 psia		
varvaria ny musiani	LEUI POIG	<u> </u>	LUUT.U JIBIA	I	l

MDT Pressure point data

			Wardi	e-1 - N	IDT PRES	SSURE	POINT &	SAMPI	LING P	ROGRA	AMME			
		sampli	ng points											
					LFA FLUID CO	NEIRMATION								
		nressure	test point		El III Eole oo									
		procourc	Tool point			CQG	CQG		CQG	CQG	strain			
												PTA standard		
	Actual	Actual	Actual		Time	Initial	Final			Final	Final	cylindrical mtd		
						Hydrostati								
Pressure	Depth	Depth	Depth	Depth	Pad	С	Hydrostatic	Drawdown	Flowing	Buildup	Buildup	Mobility	Temp.	Remarks
Point #	mMDRT	mTVDRT	mTVDSS	ftTVDSS	Set	Pressure	Pressure	Volume	Pressure	Pressure	Pressure	md/cp	deg C	
						psia	psia	CC	psia	psia	psig			
														went straight to pump-out; attempted
	1582.4	1437.1	1399.1	4590.45	10:46				900.00	1981.61	1970.88		55.0	pressure determination after, but not
1														fully stabilised
1	1582.4	1437.1	1399.1	4590.45	12:15		2371.56	10.0		1982.00	1971.39	6.6	53.5	
2	1584.0	1438.3	1400.6	4595.37	12:46	2378.99	2371.63	10.0	1700.00	1984.20	1973.37	233.9	52.8	
3	1581.0	1435.4	1397.7	4585.85	13:19	2369.25	2369.30	10.1		2024.33	2013.30	1.3	53.1	supercharged - stable buildup pressure not obtainable
4	1574.5	1429.0	1391.3	4564.86	13:29	2358.75		3.6		1994.11	1982.99		53.1	supercharged
5	1574.0	1428.5	1390.8	4563.21	13:37	2358.20		10.1		1991.49	1980.54		53.0	supercharged; after pumpout, aborted buildup at 1986.6 not stabilised.
6	1573.8	1428.3	1390.6	4562.56	14:43	2357.82	2357.81	6.8		1989.97	1978.49		54.7	supercharged
7	1578.4	1432.8	1395.1	4577.32	14:59	2365.17		10.1					54.5	supercharged
8	1591.4	1445.6	1407.9	4619.32	15:26	2385.58		10.1					55.0	
9	1593.5	1447.6	1409.9	4625.88	15:34	2388.70		3.5					54.7	
10	1602.0	1456.0	1418.3	4653.44	15:50	2402.82	2402.95	10.0		1986.86	1975.90	12.3	54.8	valid test
11	1609.0	1462.9	1425.2	4676.08	16:04	2414.32	2414.40	10.0		1991.06	1980.21	34.7	55.2	valid test
12	1613.5	1467.3	1429.6	4690.52	16:20	2421.55	2421.64	10.1		1996.45	1985.47	17.1	55.2	valid test
13	1624.0	1477.7	1440.0	4724.64	16:41	2438.68	2438.78	10.1		2012.74	2001.74	3155.9	56.5	valid test
14	1656.5	1509.8	1472.1	4829.80	16:57	2491.75	2491.82	10.1		2064.45	2053.57	92.8	55.7	valid test
15	1681.5	1534.5	1496.8	4910.90	17:12	2533.00	2533.02	10.2		2101.91	2091.13	246.1	56.1	valid test
16	1593.7	1447.8	1410.1	4626.54	17:41	2389.02	2371.53	10.0		1981.85	1970.60	574.0	56.2	valid test
17	1580.9	1435.3	1397.6	4585.53	18:49	2366.70		10.0					56.4	tight, or probe blocked?
18	1580.7	1435.1	1397.4	4584.87	19:06	2367.76	2367.84	6.3					55.3	tight, or probe blocked?

Conventional Cores

No conventional cores were cut in Wardie 1.

Percussion Sidewall Cores

No percussion sidewall cores were acquired in Wardie 1.

Logging While Drilling (LWD)

MWD/LWD services were provided by Schlumberger and full details of their operation are recorded in their End of Well Report included herein as Enclosure 4. LWD operations are briefly summarised below.

LWD Run Summary 1

To be filled in at the end of each run by the LWD Engineer and verified by the Well Site Geologist

To be filled in at the end of	cuon run by the E110 Engin	cer and vermed by a	ic tren one	Occiogist			
General Data							
Well Name	Wardie-1	MWD Run#	1	Date	12-May-2008	to	13-May-2008
Service Company	Schlumberger D&M	BHA#	2	Drilled Interval	136m MDRT	to	751m MDRT
UWI				Wiped Interval	N/A	to	
Engineers	Anagh Kohli, S Aun	g					

Hole Data											
	17.5 in	Inc Start	0.97°	Inc E	nd	34.35°	Azi S	Start 33	31.19°	Azi End	239.86°
Mud Data											
Mud type		water with sweeps	Mud Weig	jht sg	1.06		PV / YI	24 / 103		CI mg/l	-
% HG Solids	1.2		K-	⊦ mg/l	-		Rm	f -		Rm	-
Drilling Da	ıta										
Metres Drilled			Avg ROP m/hr	91.79		Avg W	OB klb	19		Avg Torque kftlb	1-5
RPM	1 45-1	00 F	low Rate GPM	600-1	150	S	PP psi	650-2575		ВНСТ	21-23°C
Bit Data	1	1							•		
Make	. 3	hes stensen	Туре	Milled	Tooth	D	epth In	136m		Depth Out	751m
Number Jets	3		Sizes	20/32"	•			Condition C	Out 1	-1-NO-A-E-I-N	IO-TD

ВНА	Data													
BHA Item	Bit	Mud Motor	String Stab	Cross Over	Float Sub	NM Pony Collars	Cross Over	MWD	NM Drill Collars	Drill Collars	Jar	Drill Collars	Cross Over	HWDP
OD (in)	8.75	9.63	9.50	9.50	8.00	7.94	8.50	8.25	8.00	8.00	8.00	8.00	8.25	5.50
ID (in)	3.75	7.88	3.00	3.00	2.88	2.88	2.88	5.90	2.81	2.81	3.00	2.81	2.81	3.25
Length (m)	0.41	10.10	2.42	1.23	0.80	7.00	0.47	8.49	18.96	37.63	9.68	18.89	1.22	112.71
Total (m)	0.41	10.51	12.93	14.16	14.96	21.96	22.43	30.92	49.88	87.51	97.19	116.08	117.30	230.01

Tool Ty	pe	TeleSCOPE	
Sub Ty	pe MWD		
7 100 (10)			
Tool OD / ID (in) OD=8.25 ID=N/A		
Mem Sample Rate (so	ec) N/A		
Bit to Sensor Offset (m) 26.56		
First Reading (m) N/A		
Flo	ow Rate Range for Puls	er Configuration	600-1200 GPM
	ow Rate Range for Puls	er Configuration	600-1200 GPM
	Pressure	er Configuration Gamma	Resistivity
Data Acquisition	-	•	
Data Acquisition Interval Logged (m)	Pressure	Gamma	Resistivity
Interval Logged (m) Meters Logged, % Meters Bad Data / Interval, %	Pressure	Gamma	Resistivity
Data Acquisition Interval Logged (m) Meters Logged, % Meters Bad Data / Interval, %	Pressure	Gamma	Resistivity
Data Acquisition Interval Logged (m) Meters Logged, % Meters Bad Data / Interval, % Meters No Data / % Interval (m)	Pressure	Gamma N/A	Resistivity N/A
Data Acquisition Interval Logged (m) Meters Logged, % Meters Bad Data / Interval, % Meters No Data / % Interval (m) Density Calibration (Cal	Pressure N/A	Gamma N/A	Resistivity N/A
Data Acquisition Interval Logged (m) Meters Logged, % Meters Bad Data / Interval, % Meters No Data / % Interval (m)	Pressure N/A ibration filename format = ADN,	Gamma N/A	Resistivity N/A

MWD/LWD Time A	unalysis					
Date & Time In	12/05/08 19:30 hrs	Drilling time	13 (6.7 on bottom)	% Total	44.0 (23.9)	
Date & Time Out	13/05/08 23:30 hrs	Wiping Time	0	% Total	0	
Time In Hole (hrs)	28.0	Tripping Time	13 (16.1)	% Total	44.0 (57.5)	
Pumping time (hrs)	11.9	Down Time / Other	2 (0)	% Total	6.9 (0)	
		Circ Time	1.5 (5.2)	% Total	5.1 (18.6)	

Remarks: D&I run only. Objective was to kick the well off and stop in the tangent section. No MWD GR or LWD tools were run in the string. The run was successful. At the end of the run the actual well path was 1.5m to the right and 2.5m above the proposed line. Centre to centre was 2.21m at 751 mMDRT (706.8 mTVDRT). Note – IADC times given in centre time analysis column. Times in parentheses are from DD breakdown. "Other" time is for Gyro survey.

LWD Run Summary 2

To be filled in at the end of each run by the LWD Engineer and verified by the Well Site Geologist

General Data	each run by the LWD Lingh						
Well Name	Wardie-1	MWD Run#	2	Date	16-May-2008	to	20-May-2008
Service Company	Schlumberger D&M	ВНА#	3	Drilled Interval	751m MDRT	to	1766m MDRT
UWI				Wiped Interval	N/A	to	
Engineers	Anagh Kohli, S Aur	ng					

Hole Data	a											
Hole Size	311mn / 12¼"	n Inc S	Start	32.02°	Inc E	nd	7.36°	Azi S	tart	241.09°	Azi End	234.18°
Mud Data	3			<u>'</u>								
Mud ty	oe KC WI		lymer	Mud Wei	ight sg	1.07 – 1.13		PV / YP	13/3	0	CI mg/I	33,000 – 38,000
% HG Solid	ds 0.1	-0.5 %		K	(+ mg/l	43, 000		Rmf	0.116 15.9°	8 ohm-m C	- Rm	0.1222 ohm- m - 16.0°C
Drilling D	ata											
Metro Drillo		15	Av	g ROP m/hr	52.3		Avg	WOB klb	20		Avg Torque kftlb	8.84
RP	PM 79	·241 i6)	Flo	w Rate GPM	960-11	25 (1105)	SP	P psi	1219-21 (1811)	86	ВНСТ	50.2°C
Bit Data	1		1		1					1		
Ma	ke Hy	calog		Туре	PDC		Dep	oth In	751m		Depth Out	1766 m
Number Je	ts 6			Sizes	15,15,	15,16,16,16		-	Conditio	n Out	3-3-WT-A-X-I-C	T-TD

BHA Data											
BHA Item	Bit	RSS BU	RSS	LWM	MWD	Drill Collars	Drill Collar	JAR	Drill Collars	хо	HWD P
OD (in)	12.25	9.25	9.25	8.25	8.25	8	8	8	8	8	5.5
ID (in)	3.25	3	6	3.9	5.9	2.8	2.8	3	2.8	2.81	3.25
Length (m)	0.3	4.22	4.82	4.22	8.49	8.65	9.45	9.68	9.44	1.22	112.7 1
Total (m)	0.3	4.52	9.34	13.56	22.05	30.7	40.15	49.83	59.27	60.49	173.2

MWD / LWD Tool Data

	1	1	1	1	r	•
Tool Type	RAB 8	RAB 8	RAB 8	RAB 8	RAB 8	TeleSCOPE
Sub Type	Gamma	Resistivity	Resistivity	Resistivity	Resistivity	MWD
Tool OD / ID (in)	8.25 / 3.90					8.25 / 5.9
Mem Sample Rate (sec)	5 sec	5 sec	5 sec	5 sec	5 sec	N/A
Bit to Sensor Offset (m)	10.51	Shallow=11.28	Medium=11.15	Deep=10.98	Ring=10.77	Survey=17. 68
First Reading (m)	747	747	747	747	747	802.8
	Flow Rat	e Range for Pulse	er Configuration	600-1200 GPM		

	Pressure	Gamma	Resistivity
Interval Logged (m)	N/A	747.0 - 1756.2	747.0 - 1756.0 (Ring)
Meters Logged, %	N/A	1009.2 / 99.9	1009 / 99.9
Meters Bad Data / Interval, %	N/A	0	0
Meters No Data / % Interval (m)	N/A	10.5 / 0.1	10.7 / 0.1
Density Calibration	(Cal	ibration filename format = ADN, Siz	ze, S/N, Date mmddyy, Time hhmm)
Pre Run Calibration file		N/A	
Post Run Calibration file		N/A	
Comments		ADN tool not run.	

MWD/LWD Time Analysis												
Date & Time In	16/05/08 14:00 hrs	Drilling time ¹	35.5 (19.4)	% Total	41.3 (23.5)							
Date & Time Out	20/05/08 00:30 hrs	Wiping Time	0 (7.25)	% Total	0 (8.8)							
Time In Hole (hrs)	82.5	Tripping Time	30.0 (30.35)	% Total	34.9 (36.8)							
Pumping time (hrs)	44.9	Down Time / Other	5.0 / 7.5	% Total	5.8 / 8.7							
		Circ Time	8.0 (25.5)	% Total	9.3 (30.9)							

Remarks: The objective of this run was to continue the tangent section and drop angle through the target horizons to TD. At TD the centre-to-centre distance from the actual well path to the plan was 2.19m. The quality of both real time and memory logs was good (ROP was controlled at 30m/hr maximum through the target to ensure good RT data was available). RT log quality was sufficient for well correlation and first indications of possible pay zones. No intervals of bad or missing data were present.

Times in parentheses in the LWD Time Analysis are from the DD, including actual on bottom drilling hours. The remaining times are taken from the DDR breakdown. All "Down Time" is rig related repairs, not LWD related. "Other" time includes the FIT and washing/drilling on cement

1.

Wireline logging

Wireline services were provided by Schlumberger and full details of their operation are recorded in their End of Well Report included herein as Enclosure 5.

A single open hole logging suite (Suite 1) was recorded in Wardie 1. Suite- 1 was recorded across the 311mm (12 1/4") open hole section and consisted of two attempted logging runs.

Schlumberger wireline logging operations and summary of parameters:

Date			В														
Log Run Numb	er (Suite / Run):	1	1		1												
Surface Temp	erature	10°C															
Depth Driller:	1766	met	netres														
Depth Logger:	1760	met	res														
Bottom Log Int	1760	met	res														
Top Log Interv	1300	met	res														
Casing Driller:	747	metres					Size:	ze: 13¾"		Weight:		68 lbs/ft		ID:	12.415		
Casing Logger	746.5	met	res														
Bit Size	12.25	"															
Type of Fluid in	KCI/PHP	KCI/PHPA															
Density		9.5	ppg					x	Barite		He	matit	iite x		Oth	er (Salt)	
Viscosity		56						Titrated	l Chlorid	es	38,0	00	Ni	trates			
рН		9						Titrated Calcium		n	400)	Potassium				
Fluid Loss		11.6	HF	IPHT			Barite			0.1	%	Oil /	Water	Ratio			
Source of Sam	nple	Flowline						Use a circulated mud sample for each analysis.									
Rm		0.112	æ	20	.2	°C											
Rmf		0.099	@	19	.8	°C		0.0901 @			3.9°C (3	75°F					
Rmc		0.13	@	20	.7	°C											
Log	Track	Sca	ale Ra	ange					Со	mme	nts (un	its, li	ne c	odes, e	etc.)		
GR	1	0		_		50					,						
SP												n/a					
Caliper	1	10				20		Appropriate 10" range									
Bit Size	1	6				6				Д	ppropr	iate :	10" r	ange			
Resistivity	2	0.2				00											
Density	3	1.65				65											
Correction	3	-0.9				.1											
Pe .	3	0				20		-									
Neutron	3	60				0											
Sonic	3 Double	240				0											
Tension	nsion Depth 10,000 0																

Drill stem testing

No DST was run in Wardie 1.

Biostratigraphy

No palynology samples collected.

ATTACHMENTS

Attachment 1: Well Montage

Attachment 2: Bit and BHA Record

Attachment 3: Mud Report

Attachment 4: Casing Report

Attachment 5: Cementing Report

Attachment 6: LOT/FIT Report

Attachment 7: Directional Drilling Report

Attachment 8: Activity Summary Reports

Attachment 9: Well Cost Summary

Attachment 10: Description of Cuttings

Attachment 11: Daily geological Reports

Attachment 12: Validity checks and analyses of MDT Samples

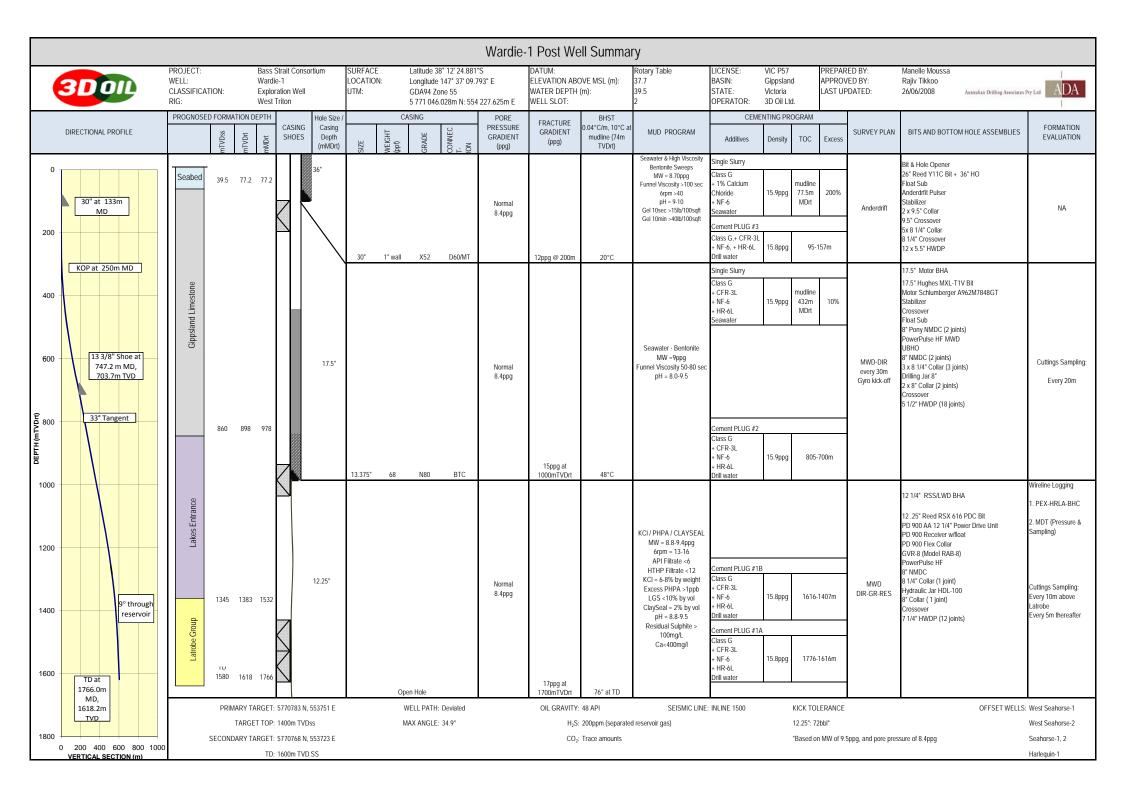
Attachment 13: PVT Report

LIST OF ENCLOSURES

Enclosure 1: Gas Log Plot

Enclosure 2: Drilling Data Plot

Enclosure 3: Mud Log Plot


Enclosure 4: LWD Log Plot

Enclosure 5: Wireline Log Plot

Attachment 1

Well Montage

Attachment 2

Bit and BHA Record

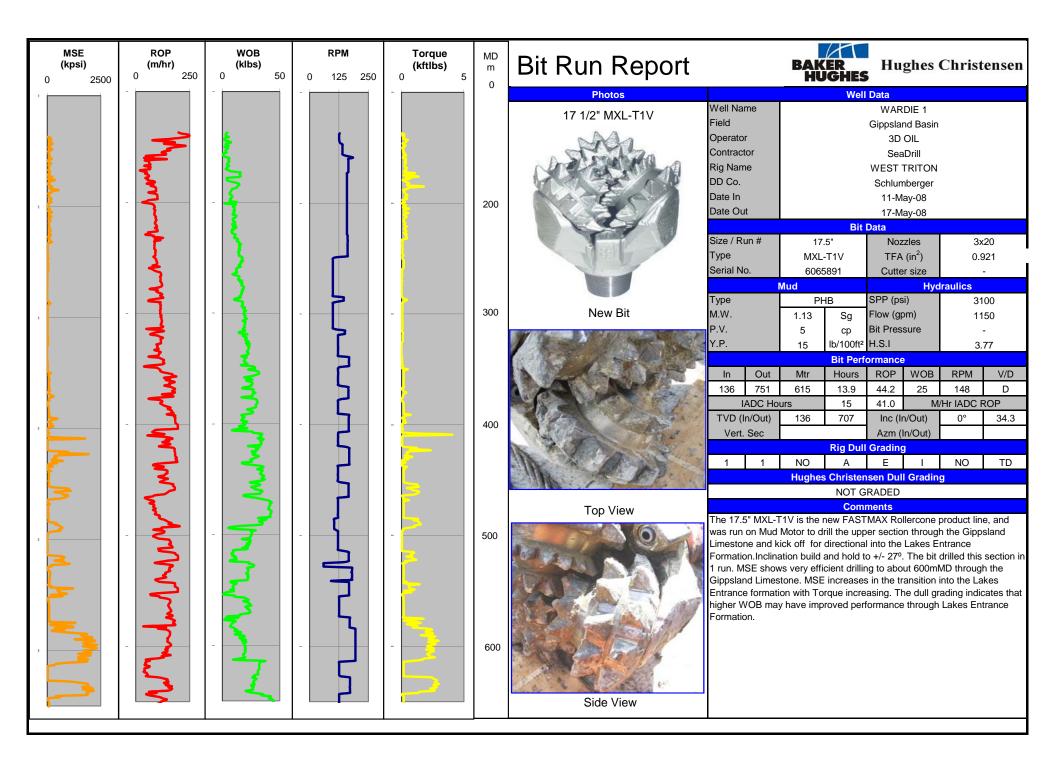
Wellname : Wardie-1 Drilling Co. : Seadrill Rig: West Triton

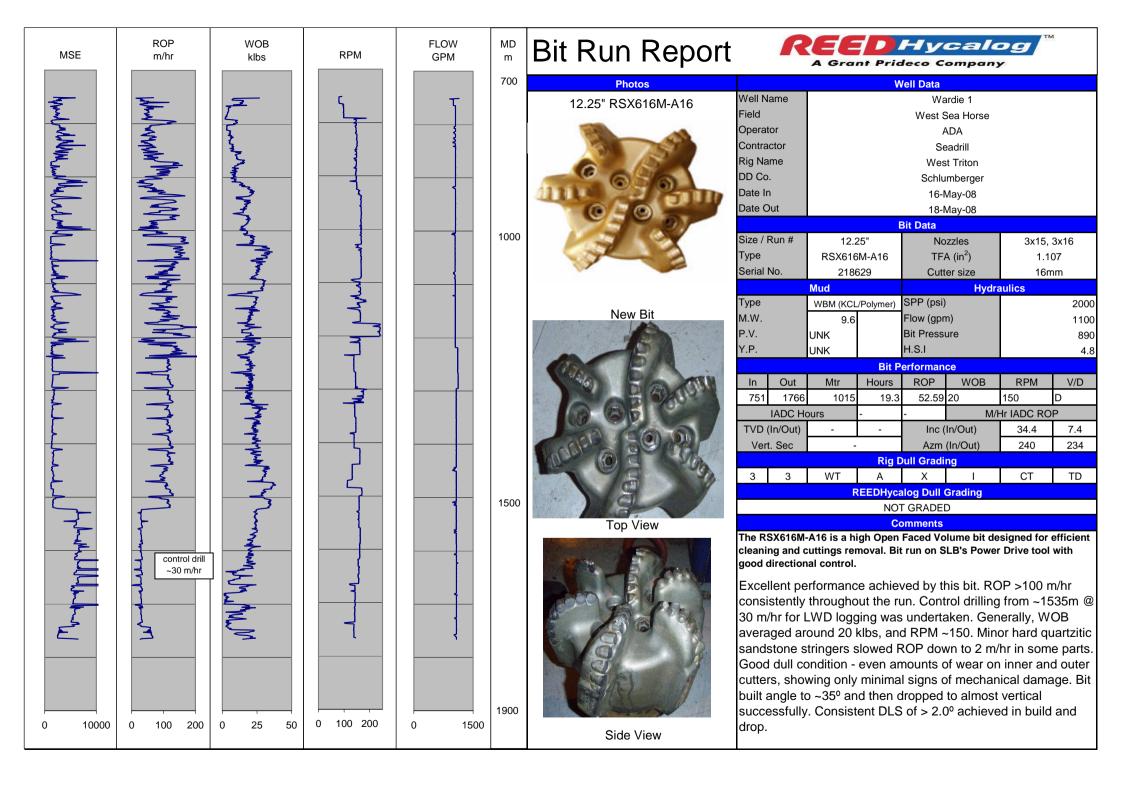
DFE above MSL: 38.0m Lat: 38 Deg 12 Min 25.077 Sec

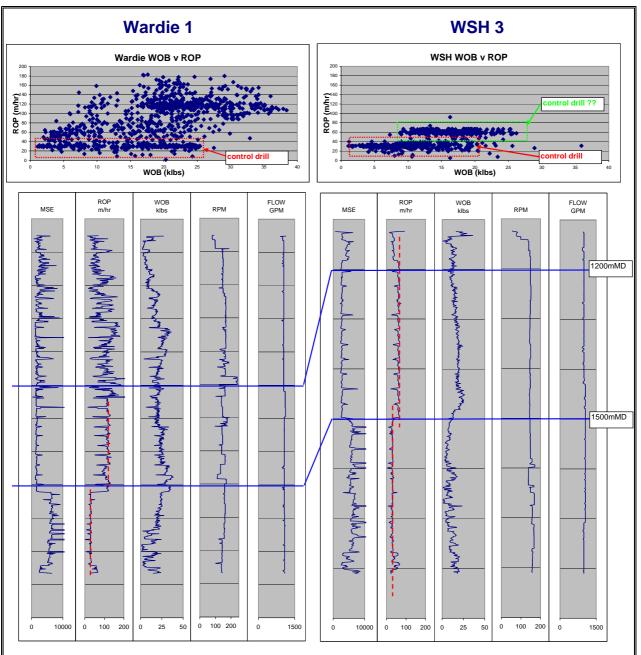
Long: 147 Deg 37 Min 9.810 Sec

Spud Date : 10 May 2008

Water Depth: 39.5m


Spud Time: 19.30


Release Time: 22.30


Release Date: 25 May 2008

Bit Record

Well: Wardie-1																											
Date In	Date Out	IADC	Bit#	Size (in)	Ser #	Mfr	Туре	Jets	TFA	D.In (m)	D.Out (m)		Hrs IADC	ROP (ft/hr)	SPP (psi)	Flow (gpm)	WOB (klb)	RPM	MW (sg)	ı	01	D	L	В	G	02	R
10 May 2008	11 May 2008	1-1-1	1RR	26.00	34406	REED	Y11C	1 x 16 3 x 22	1.31	76.8	136.0	59.2	5	11.84	950	800	4.00	120	1.06	1	1	WT	Α	NB	1 1	RR	TD
12 May 2008 16 May 2008	13 May 2008 19 May 2008	115 M422	2 3	17.50 12.25	6065891 218629	HUGHES Reed Hycalog	MXL-T1V RSX616MA16	3 x 20	0.92 1.107	136.0 751.0	751.0 1766.0	615 1015	13 35.5	47.31 28.59	2575 2250	1150 1100	5000.00 20.00	60 160	1.06 1.08	1	1	NO WT	A A	0 X		NO CT	TD TD

Comments:

Both RSX616M-A16 bits used on West Seahorse 3, and Wardie 1 showed good performance throughout the completed interval. However the average performance on the Wardie 1 well was much better than the West Seahorse well.

Plotting the data for both wells shows some interesting commonalities. Both wells control drilled the Latrobe formation at 30 m/hr, from about 1500m on each well.

In the period between 1200m - 1500m, both wells exhibit very consistent ROP's. Wardie 1 drilled @ ~ 120m/hr for this interval, whilst West Seahorse only drilled at 60 m/hr for this interval. The consistency of the achieved ROP on each respective well seems to suggest that the section was control drilled. The information received from location, does not report that any special operations were undertaken through this interval.

As can be seen from the charts (top), the WOB on Wardie 1 was generally higher than the WOB run on West Seahorse 3, which can account for the increase in ROP achieved. It is suggested that a WOB of ~25+ klbs be run for best ROP performance.

High HSI 's on each run may have contributed to better performance, as the softer lithology of the Lakes Entrance formation responds well to hydraulic energy.

Attachment 3

Mud Report

HALLIBURTON

Fluid Systems

BAROID FLUID SERVICES RECAP

3D OIL AUSTRALIA PTY LTD **WEST TRITON BASS STRAIT, VICTORIA**

Wardie 1

Prepared by: B Auckram

G Lange J Munford

Date: May, 2008

Table of Contents

- WELL SUMMARY
- 2. COST SUMMARY
- 3. PERFORMANCE SUMMARY
- 4. INTERVALS (36", 17 1/2" and 12 1/4" Hole, Plug and Abandon)
- 5. Evaluation
- 6. GRAPHS

Recap Mud Cost vs Depth Recap Mud Density, Viscosity and Solids content vs Depth Recap Mud Rheology and Gel Strengths vs Depth Recap Mud Filtrate and Chemistry vs Depth

7. POST WELL AUDIT

Well Summary
Total Cost Breakdown
Net Well Cost Breakdown
Interval Summary
Interval Cost Breakdown
Interval Chemical Concentration Report
Fluid Volume Record
Fluid Property Recap
Fluid Program Exceptions Report
Operations Log Recap
Well Deviation (Actual)
Bit & Hydraulic Record

8. DAILY MUD REPORTS

WELL SUMMARY

1.1 Well Data

1.

Well Name : Wardie 1

Operator : 3D Oil Australia Pty Ltd

Well Type : Vertical/Exploration

Bottom Hole Temperature : 58° C

Maximum Inclination : 28.5°

Location : VIC P57, Gippsland Basin, Victoria

 Contractor/Rig
 : West Triton

 Start Date (Rig)
 : 09/05/2008

 Baroid On Location
 : 09/05/2008

 Drill Out Date
 : 11/05/2008

RT to Mudline : 77.5 m

Total Depth : 1766m

Date TD Reached : 18/05/2008

Total Days Actual Drilling : 6

Date Released : 25/04/2008

Total Days on Well : 17

Drilling Cuttings Volume : 290m³

Formation Tops

Formation	MDRT (m)	TVDRT (m)	Length (m MD)
Gippsland	77.5	77.5	
Lakes Entrance	982	903.3	904.5
Gurnard Formation	1523	1379.4	541
Top N1			
Top N2.3	1653	1506.6	130
Top N2.6	1677.5	1530.8	24.5
Top P1			
Total Depth	1766	1618.2	88.5

1.3 Casing Program

30	Conductor	@	132 m MDRT
13 ³ / ₈	Intermediate Casing	@	747 m MDRT

1.4 Personnel

Drilling Supervisors	:	Shaughan Corless	Rocco Moussow
	:		Stefan Schmidt
Baroid Field Service Reps.	:	Brian Auckram James Munford	Gerald Lange

2. <u>COST SUMMARY</u>

2.1 Drilling Fluid Costs

	Drilling Fluid	Hole Size	MD From	MD To	Cost USD
	Drilling Fluid	Hole Size	IND FIOIII	IVID TO	\$
1. 3.	Seawater and Viscous Sweeps Pad Mud / Displacement Mud KCL/POLYMER	36" x 17.5" 12 ¹ / ₄ "	77.5m (36") 136m (17.5") 751 m	136m (36") 751 m (17.5") 1766 m	13,197.52 98,004.31
Mud	Materials Used For Drilling	· 		USD \$	111,201.83
Mud	Materials Used For Cementing			USD \$	414.60
Mud	Materials Used For Completion			USD \$	0
Othe	r Materials Used (Cleaning Pits &	Rig Cleaning)	USD \$	0
Prod	ucts Lost / Damaged	USD \$	0		
Solic	ds Control / Waste Management C	USD \$	0		
Tota	l Materials			Total USD \$	111,616.43

2.2 Engineering Costs

Service Representatives	From (date)	To (date)	Days
Brian Auckram	09/05/08	15/05/08	7
Gerald Lange	09/05/08	21/05/08	13
James Munford	15/05/08	25/05/08	10
Edwards Eugene	22/05/08	25/05/08	4
Total Days:			34
Service Cost	@ USD \$ 1250	USD \$	42,500
Total Cost of Materials & Engine	USD \$	154,116.43	

PERFORMANCE SUMMARY

3.1 Comments

3.

The Jack-up West Triton was moved from the West Seahorse -3 location to Wardie - 1 location on the 9th May 2008.

3.2 Performance Indicators

Interval 1. (77.5m-751 m) - 36"x 17.5" Interval	Program	Actual	Achieved (+/- 10 %)
Drilled, m	676	673	Yes
Volume Built, bbl	3967	3891	Yes
Dilution Rate, bbl/m	NA	NA	NA
Consumption Rate, bbl/m	5.87	5.78	Yes
Mud Cost / bbl, US\$	7.14	3.39	No
Mud Cost / m, US\$	41.89	19.61	No
 Interval Mud Cost, US\$ 	28,314.15	13,197.52	No
Interval 2. (751m - 1,766m) - 12.25 " Interval	Program	Actual	Achieved (+/- 10 %)
Drilled, m	743	1015	No No
Volume Built, bbl	2704	2864	Yes
Dilution Rate, bbl/m	1.75	1.95	No
Consumption Rate, bbl/m	3.64	2.86	No
Mud Cost / bbl, US\$	46.31	34.22	No
Mud Cost / m, US\$	168.54	96.56	No

3.3 Explanation of Non-Conformance

Interval 1: 36" and 17.5"

Interval Mud Cost, US\$

The volume of Pre-Hydrated Bentonite (PHB) mud built for sweeps and the cost was lower then programmed. This was due to amount of PHB built during the P & A of West Seahorse-3.

125,222.76

98,004.31

No

Drilling the 17.5" section, seawater was used with 30 bbls of flocculated PHB high viscosity sweeps pumped on every 15m drilled and 30 bbls of PHB spotted on bottom on connections. At TD 751m, two 100 bbls PHB sweep was pumped in an interval of 20 minutes and circulated out with two bottoms up. The hole was then displaced with KCL / Polymer mud from the previous well. All mud returns to sea floor.

Interval 2: 12.25"

Drilling in the 12.25" section of the hole was drilled at high ROPs. The time it took to drill 1015m was less than two days. This contributed to less dilution required for the mud and the smaller consumption rates. The overall cost per barrel and meter for this interval was well short of programmed specifications. This could also be attributed to the higher ROP and lessened contamination of the mud. Less than programmed amount of chemicals was used in this well.

4. <u>INTERVAL - 1</u>

4.1 SUMMARY

36" Hole From 77m To 136 m In 1 Day

Drilling Fluid Seawater and Viscous Sweeps, Spud Mud

Formations Gippsland.

Wardie 1 was spudded at 18:30 on 10/5/2008.

The 36" interval was drilled riser-less, using seawater and unweighted hi-vis flocculated spud mud sweeps from 76.8 m to 136 m. The spud mud used for sweeps was built from pre-hydrated bentonite at 40 ppb, cut back with seawater once hydrated and flocculated by the addition of lime prior to pumping. 75 bbl sweeps were pumped at each joint to clean the hole.

The Pre-hydrated gel used was from a previous well and had ample time to hydrate.

After drilling to 136m, a 200bbl flocculated PHB sweep was pumped to clean the hole and the open hole was displaced with 350 bbls, of unflocculated PHB.

The 30" conductor was run to bottom after a delay due to poor visibility on the sea floor making it difficult to locate the hole. It was then cemented as per program.

Properties Programmed Actual (Typical Drilling)

	Min	Max	Min	Max	Conformance
Mud Weight, sg	ALAP	ALAP	1.04	1.06	Yes
6 rpm, lb/100 ft ²	>40		42	70	Yes
YP, lbs/100ft ²	>50		56	123	Yes
Viscosity, sec/qt	>100		100+	100+	Yes
рН	9	10	9	9.5	Yes
Plastic Viscosity, cp	ALAP		13	26	Yes

Maintenance

- The bentonite used was first prehydrated in drill water at a concentration of 35-40 ppb. This was then cut back to 20-30 ppb using seawater. Lime was added prior to use to enhance viscosity. Caustic soda was used to obtain required alkalinity.
- Pit # 6 was used for seawater for drilling. The hi-vis sweeps were contained in pits 4, 5, 6 and 8. All 1.1 sg weighted displacement mud, kept from the previous well was kept in pits 3 and 7.

<u>INTERVAL – 2</u>

4.2 SUMMARY

17.5" Hole From 136 m To 751 m In 2 Days

Drilling Fluid Flocculated Seawater/Bentonite **Formations** Gippsland Limestone/Lakes Entrance

The 17.5" section was drilled using flocculated seawater / pre-hydrated bentonite fluid. Pre-hydrated Bentonite at 30-40ppb was prepared and pre-hydrated. The PHB was then cut back with seawater to approximately 15-20ppb, depending on viscosity requirements.

The sweep regime used was 2 x 30bbl sweeps while drilling each stand and a 30bbl unflocculated PHG pill spotted on bottom at connections.

Approximately 950bbl of 1.15sg inhibited mud mixed with some PHG for viscosity, retained from the previous well was spotted on bottom prior to pulling out of the hole to run casing.

The 13 3/8" casing was run and cemented with no problems.

Properties Programmed Actual Min Max Min Max Conformance <1.06 Mud Weight, sg 1.06 1.06 Yes Viscosity, sec/qt 50 80 94 100+ No 9.5 9.5 9.5 Yes pΗ 8

Explanation of Non-Conformance

• The Funnel Viscosity quoted is for the unflocculated PHG.

Maintenance

- The fluid for this interval consisted of prehydrated gel built at 35 ppb and blended with seawater once hydrated at approximately 2:1, depending on the funnel viscosity at the time of mixing dilution volume.
- The KCI / polymer mud used was from West Seahorse-3 well.

INTERVAL - 3

4.3 SUMMARY

12.25 " Hole From 751m To 1766m In 2 Days

Drilling Fluid KCL/Polymer/Clayseal

Formations Lakes Entrance/Latrobe Formations

Properties Programmed Actual (Typical Drilling)

	Min	Max	Min	Max	Conformance
Mud Weight, sg	1	1.2	1.06	1.13	Yes
PV, cp	ALAP		10	15	Yes
YP, lbs/100 ft ²	20	30	18	33	Yes
6 rpm, lbs/100 ft ²	12	16	9	15	Partial
pH	8.8	9.5	8.5	9.5	Partial
KCL, wt%	6	8	7.5	8	Yes
API WL, mL/30 min		6	5.1	7.2	Yes
LGS, % vol		10	1.27	4.42	Yes

Explanation of Non-Conformance

• The initial 6 rpm was less than programmed. Due to the low concentration of polymers added, to the initial mud built to ensure a smooth displacement. Additional PHPA and **BARAZAN D+**, was added to bring the mud into specification, once it was sheared.

Maintenance

- The initial 6rpm readings were below the programmed 10 -15. The new mud was built between 0.8 and 1ppb, to enable circulation over the shakers while un-sheared. The 6rpm was raised by gradual additions to 13-14 lbs/100 ft² with 0.5ppb **BARAZAN D+** and 0.75 ppb EZ-Mud. The shaker screens size at displacement were 89 mesh screens. After mud sheared the screens were replaced with used 255 mesh screens. A total of 5 x 255 mesh, new screens were used on this well.
- The potassium concentration depletion was only 0.5% from the initial 8% mixed and the new premixes were built with higher concentration of KCI to maintain 8%.
- The initial mud made, did not include the 10ppb calcium carbonate, which was required to be added prior to drilling the Latrobe. At 100m above the Latrobe formation the 10 ppb of calcium carbonate was added. There was an increase in mud weight of 0.1 ppg after the calcium carbonate was added.
- No large cuttings, coal or shale were observed at the shakers/ gumbo box while drilling. The
 BARABLOK at 4 ppb added prior to entering the Latrobe formation, was successful in
 controlling the coal stringers encountered while drilling. At total depth, after logging and prior to
 spotting the first cement plug, the hole was circulated and large pieces 4" x 2" x 1" of coal was
 observed over the shakers.

- The inhibition provided by 8% KCL and 2% CLAY SEAL+ was sufficient to prevent any obvious signs of bit balling and the cuttings over the shakers were soft but not sticky and able to be removed by the shakers. The last few meters of formation drilled to total depth at 1766m, and circulated out, the clay over the shakers were very sticky blinding the top 20 mesh screen causing mud losses over the shaker. The pumps strokes were reduced to 100 stks per minute from 200 strks, eliminating the mud loses. The pump strokes were increased to 200 strokes after the clay was removed from the system.
- Circulated the hole clean and a wiper trip was made to the casing shoe, having to circulate and back ream due to tight hole. Ran back to bottom slick. Circulate bottoms up, a considerable amount of small cavings were observed over the shakers. Circulated until the hole was clean and mud weight consistent at 1.13 SG (9.4 ppg). Pulled out of the hole with no problems.
- Ran wire line logs with no hole difficulties.
- P & A well.

Solids Control Equipment

- The 4 VSM 300 shakers were dressed with 89 mesh screens, for the initial displacement of unsheared KCL /Polymer mud. Circulating rates were +/- 1000 gpm and the screens were replaced with 255 mesh as soon as possible.
- The scalper screens initially installed on the shakers were 20 mesh. During the drilling of the
 interval, with the addition of premix for volume and PHPA / BARAZAN D+ additions to the
 active, the mud was covering 60% of the four shakers scalper screens.
- One centrifuge was run continuously to total depth to help maintain the mud weight below 1.13 sg (9.4 ppg). Mud returns from the centrifuge to the active system were below 8.9 ppg,
- consistently.

4.4 Plug and Abandon

The well was plugged back with 3 cement plugs, no testing was done. No 9 5/8" casing was set.

5.0 EVALUATION

Comments

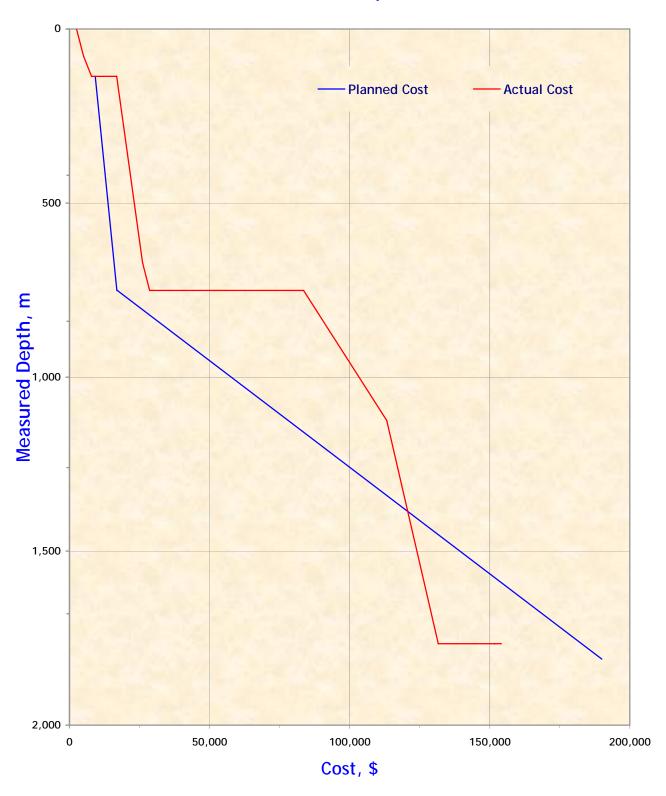
The practice of spotting KCl polymer fluid salvaged from previous wells should be continued.

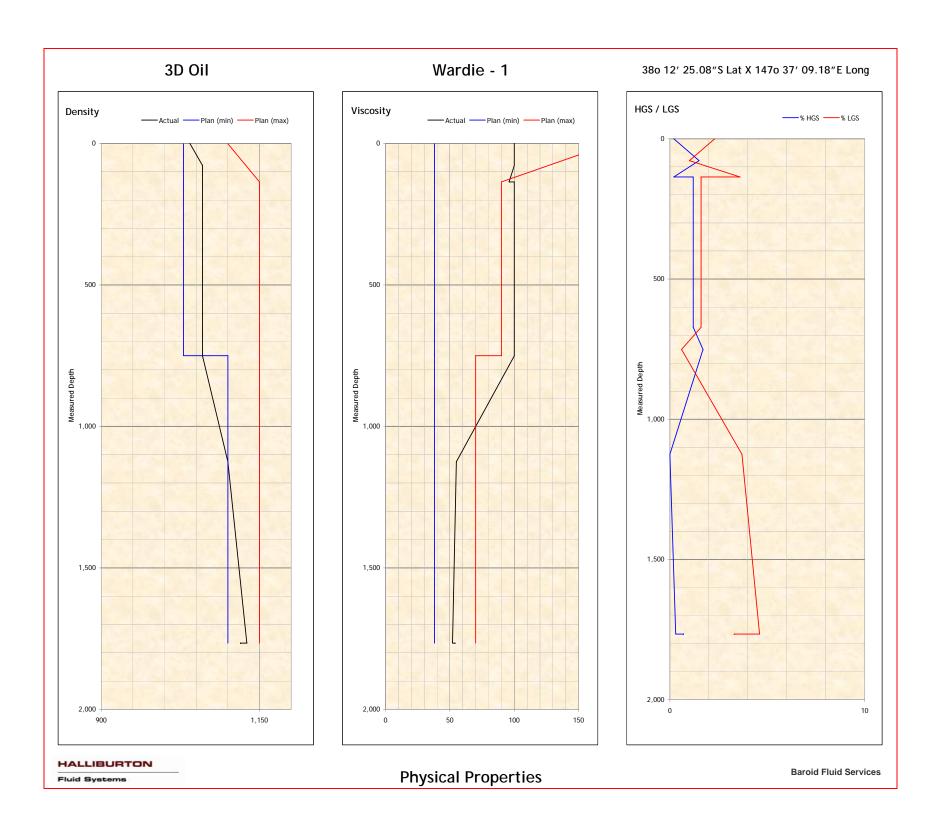
Problems, Causes, Remedial Action Taken or Recommended

5.1 RECOMMENDATIONS FOR IMPROVEMENT

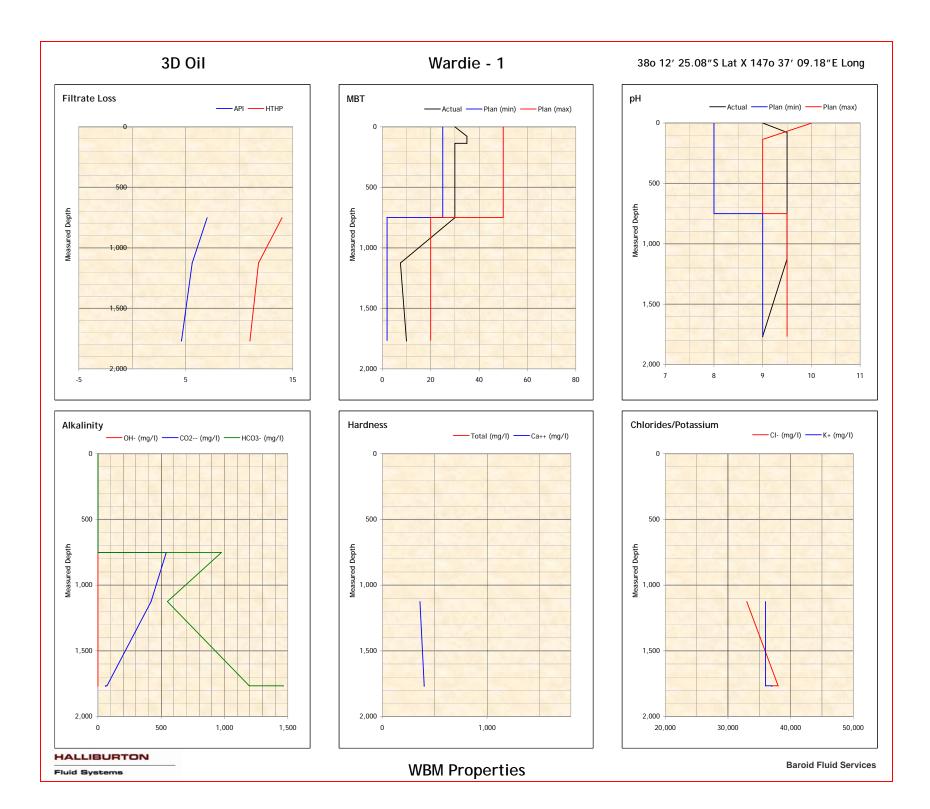
Mud system

• Consideration should be given to running an **ACCOLADE** mud system on future drills in the area. It may be possible to eliminate the wiper trip prior to logging by using the invert mud.


Drilling Fluid


The initial concentration of 1-1.5 ppb PHPA should be maintained at 1.5 ppb. At the top of the
Latrobe formation the 8% Potassium, 1.5 ppb PHPA and 2% CLAYSEAL PLUS should be
maintained and in particular the clay drilled below the last production sand. The clay was very
water absorbent dissolving, breaking the clay up, very sticky blinding the top 20 mesh screens
on the shakers and increasing the MBT of the mud.

Solids Control and Mud Mixing Equipment


GRAPHS

Cost vs Depth

POSTWELL AUDIT

Well Name Wardie-1
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Well Summary Report

Well Data

Spud Date		05/10/2008	Fluids/Products: Drilling Cost	\$	111,201.83
TD Date		05/18/2008	Fluids/Products: Completion Cost	\$	0.00
Project			Solids Control/Waste Management Cost	\$	0.00
Days on Well		17	Fluids/Products: Cementing Cost	\$	414.60
From Date		05/09/2008	Prod Lost/Damaged Cost	\$	0.00
To Date		05/25/2008	Engineer Services Cost	\$	42,500.00
Drilling Days		8	Equipment Cost	\$	0.00
Rotating / Drilling Hours		62.5/61.5	Transport/Packaging	\$	0.00
Average ROP	m/hr	27.5	Other Cost	\$	0.00
Maximum Density	SG	1.13	Total Well Cost	\$	154,116.43
Total Measured Depth	m	1,766	Planned Cost	\$	0.00
True Vertical Depth	m	1,618	Fluid Cost Per Fluid Volume	\$/bbl	12.79
Distance Drilled	m	1,689	Fluid Cost Per Length Drilled	\$/m	65.84
Maximum Deviation	deg	34.90	Fluid Cost/Vol of Hole Drilled	\$/bbl	83.77
Max. Horz. Displacement	m	0	Total Additions/Hole Drilled	bbl/bbl	6.548
Bottom Hole Temp			Total Additions/Length Drilled	bbl/m	5.147

Casing Design

Description	Set Date & Time	Top MD m	Top TVD m	End MD m	End TVD m	CSG OD in	CSG ID in	Max. Hole Size in	Hole MD m	Hole TVD m
30 X52 457.0	05/11/2008 11:00	77	77	133	133	30.000	27.000	36.000	133	133
13.375 N-80 68.0	05/15/2008 11:00	0	0	747	704	13.375	12.415	17.500	747	704

Fluid Program

Int#	Fluid Type	Interval Days	BHT Deg C	Max. Dens SG	Whole fluid + Mix products	Other material charges	Other charges	Total Interval Cos		st \$
								Plan	Actual	Variance
1	Spud Mud	3		1.06		386.96	7,500.00		7,886.96	
	Spud Mud									
2	KCI/Polymer	4		1.06	13,197.52	0.00	10,000.00		23,197.52	
	Seawater									
	KCI/Polymer									
3	Potassium Chloride brine	10		1.13	98,004.31	27.64	25,000.00		123,031.95	
	Seawater									

Australia VIC P57 Baroid Fluid Services Victoria

Page 1 of 2 Printed: 05/29/08

Well Name Wardie-1
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Well Summary Report

Total Well Cost \$		111,201.83	414.60	42,500.00	154,116.43	154,116.43

Australia VIC P57 Baroid Fluid Services Victoria

Page 2 of 2 Printed: 05/29/08

Well Name Wardie-1
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Total Cost Breakdown

	Unit Size	Quantity	Total Cost
Engineering/Services			
Drilling Fluids Engineer	day(s)	17.00	21,250.00
Drilling Fluids Engineer 2	day(s)	17.00	21,250.00
-	•	SubTotal	\$ 42,500.00
Fluids/Products: Cementing Cost			
calcium chloride flake 77%	25 kg bag	30.00	414.60
		SubTotal	\$ 414.60
Fluids/Products: Drilling Cost			
ALDACIDE G	5 gal can	7.00	489.30
BARABLOK	50 lb bag	60.00	1,823.40
Baracide	25 kg can	2.00	174.74
BARA-DEFOAM W300	5 gal can	1.00	55.92
BARAZAN D PLUS	25 kg bag	85.00	12,940.40
barite	1000 kg bulk	8.700	4,131.46
bentonite	1000 kg bulk	26.000	12,866.88
caustic soda	25 kg pail	14.00	618.66
Circal 60/16	25 kg sack	60.00	607.80
Circal Y	25 kg sack	89.00	1,139.20
citric acid	25 kg bag	3.00	138.72
CLAYSEAL PLUS	216 kg drum	35.00	33,482.40
DEXTRID LTE	25 kg sack	118.00	4,786.08
EZ-MUD	25 kg pail	14.00	1,201.62
EZ-MUD DP	25 kg bag	26.00	2,231.58
KCL Tech Grade (bulk)	1000 kg bulk	16.000	12,016.00
lime	25 kg bag	10.00	65.50
Omyacarb 5	25 kg bulk	57.000	535.23
PAC-L	25 kg bag	71.00	5,812.77
potassium chloride	1000 kg bag	26.00	15,626.00
potassium hydroxide	25 kg bag	4.00	179.92
soda ash	25 kg bag	21.00	278.25
		SubTotal	\$ 111,201.83
		Total Well Cost:	\$ 154,116.43

Australia VIC P57 Baroid Fluid Services Victoria

Page 1 of 1 Printed: 05/29/08 Well
Operator
Contractor
Rig No
Unit System

Wardie-1 3D Oil Itd Seadrill West Triton Apache

Net Well Cost Breakdown

Cost Breakdown I \$	Interval 01	Interval 02	Interval 03	Total
Fluid/Product: Drilling		13,197.52	98,004.31	111,201.83
Fluid/Product: Comp/Filtration				
Solids Control/Waste Management Cost				
Fluids/Products: Cementing Cost	386.96		27.64	414.60
Engineering Services	7,500.00	10,000.00	25,000.00	42,500.00
Fluid/Product: Lost Damage				
Other Cost				
Equipment Cost				
Transport/Packaging Cost				
Total Cost	7,886.96	23,197.52	123,031.95	154,116.43

Cost Breakdown II \$	Interval	Interval	Interval	Total
Cost Breakdowii ii ş	01	02	03	Total
Total Products Cost	386.96	13,197.52	98,031.95	111,616.43
Total Fluids Cost				
Total Charges Cost	7,500.00	10,000.00	25,000.00	42,500.00
Allocated To / From Other Interval				
Total Cost	7,886.96	23,197.52	123,031.95	154,116.43
Planned Cost				
Variance				

Volume Breakdown bbl	Interval 01	Interval 02	Interval 03	Total
Total Base Fluids Addition				
Total Chemical Addition		66.6	253.1	319.7
Total Barite Addition			13.0	13.0
Total Water Addition	1,735.5	1,219.8	3,108.6	6,063.9
Total Fluid Built	1,735.5	1,286.3	3,374.8	6,396.6
Total Fluid Received	2,040.0			2,040.0
Total Influx Addition				
Not Used In Interval	-1,016.0			
Total Fluid Volume	2,759.5	4,275.8	4,195.6	8,436.6

Australia VIC P57 Victoria

Baroid Fluid Services

Well Name Wardie-1
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Summary

Interval # 1	Max Bit	Size: 26.000 in	Hole Size Avg/Max	3	36.000 / 36.000 in	
Interval Start Date		05/09/2008	Planned Cost	\$	0.00	
Interval End Date		05/11/2008	Total Interval Cost	\$	7,886.96	
Interval TD Date		05/11/2008	Program Variance	\$	7,886.96	
Drilling Days		2.00	Other material charges	\$	386.96	
Rotating/Hours		5.00 / 5.00	Total Fluids Cost			
Interval Top MD/TVD	m	77.0 / 77.0	Total Charges Cost	\$	7,500.00	
Interval End MD/TVD	m	136.0 / 136.0	Total Cementing Cost	\$	386.96	
Footage	m	59.0	Fluid Cost Per Vol Unit	\$/bbl	0.00	
Average ROP	m/hr	11.8	Fluid Cost/Hole Drilled	\$/m	0.00	
Max Hole Angle	degrees	0.00	Fluid Cost/Vol Drilled	\$/bbl	0.00	
Casing Size	in	30.000	Fluid Built	bbl	1,735.5	
Casing Shoe MD	m	133.0	Total Additions/Vol Drilled	bbl/bbl	11.32	
Casing Length	m	56.0	Total Additions/Hole Drilled	bbl/m	46.77	
Bottom Hole Temp			Fluid Loss/Vol Drilled	bbl/bbl	2.68	
Max Fluid Density	SG	1.060	Fluid Loss/Hole Drilled	bbl/m	11.05	

Interval Product and Base Fluids Usage and Cost

Product Function / Name	Drilling Fluid	Packaging	Quantity Used	Product Cost
Weighting Material				
calcium chloride flake 77%	No Fluid	25 kg bag	28.000	386.96
			Total	\$ 386.96

Well Name Wardie-1
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Summary

Interval # 2 Max Bit Size: 17.		Size: 17.500 in	Hole Size Avg/Max		17.472 / 17.500 in	
		_				
Interval Start Date		05/12/2008	Planned Cost	\$	0.00	
Interval End Date		05/15/2008	Total Interval Cost	\$	23,197.52	
Interval TD Date		05/13/2008	Program Variance	\$	23,197.52	
Drilling Days		2.00	Other material charges	\$	0.00	
Rotating/Hours		15.50 / 15.00	Total Fluids Cost	\$	13,197.52	
Interval Top MD/TVD	m	136.0 / 136.0	Total Charges Cost	\$	10,000.00	
Interval End MD/TVD	m	751.0 / 706.8	Total Cementing Cost	\$	0.00	
Footage	m	615.0	Fluid Cost Per Vol Unit	\$/bbl	3.09	
Average ROP	m/hr	41.0	Fluid Cost/Hole Drilled	\$/m	21.46	
Max Hole Angle	degrees	34.90	Fluid Cost/Vol Drilled	\$/bbl	22.06	
Casing Size	in	0.000	Fluid Built	bbl	1,542.3	
Casing Shoe MD	m	136.0	Total Additions/Vol Drilled	bbl/bbl	7.15	
Casing Length	m	136.0	Total Additions/Hole Drilled	bbl/m	6.95	
Bottom Hole Temp			Fluid Loss/Vol Drilled	bbl/bbl	5.65	
Max Fluid Density	SG	1.060	Fluid Loss/Hole Drilled	bbl/m	5.50	

Interval Product and Base Fluids Usage and Cost

Product Function / Name	Drilling Fluid	Packaging	Quantity Used	Product Cost
Viscosifier/Suspension Agent				
bentonite	Spud Mud	1000 kg bulk	26.000	12,866.88
			Total	\$ 12,866.88
Alkalinity Control				
caustic soda	Spud Mud	25 kg pail	6.000	265.14
lime	Spud Mud	25 kg bag	10.000	65.50
			Total	\$ 330.64

Well Name Wardie-1
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Summary

Interval # 3	Max Bit Size: 12.250 in		Hole Size Avg/Max		12.250 / 12.250 in	
Interval Start Date		05/16/2008	Planned Cost	\$	0.00	
Interval End Date		05/25/2008	Total Interval Cost	\$	123,031.95	
Interval TD Date		05/19/2008	Program Variance	\$	123,031.95	
Drilling Days		4.00	Other material charges	\$	27.64	
Rotating/Hours		42.00 / 41.50	Total Fluids Cost	\$	98,004.31	
Interval Top MD/TVD	m	751.0 / 706.8	Total Charges Cost	\$	25,000.00	
Interval End MD/TVD	m	1,766.0 / 1,618.2	Total Cementing Cost	\$	27.64	
Footage	m	1,015.0	Fluid Cost Per Vol Unit	\$/bbl	23.36	
Average ROP	m/hr	24.5	Fluid Cost/Hole Drilled	\$/m	96.56	
Max Hole Angle	degrees	32.34	Fluid Cost/Vol Drilled	\$/bbl	201.89	
Casing Size	in	0.000	Fluid Built	bbl	3,374.8	
Casing Shoe MD	m	136.0	Total Additions/Vol Drilled	bbl/bbl	8.64	
Casing Length	m	136.0	Total Additions/Hole Drilled	bbl/m	4.13	
Bottom Hole Temp			Fluid Loss/Vol Drilled	bbl/bbl	3.56	
Max Fluid Density	SG	1.130	Fluid Loss/Hole Drilled	bbl/m	1.70	

Interval Product and Base Fluids Usage and Cost

Product Function / Name	Drilling Fluid	Packaging	Quantity Used	Product Cost
Bactericides				
ALDACIDE G	KCI/Polymer	5 gal can	7.000	489.30
Baracide	KCI/Polymer	25 kg can	2.000	174.74
			Total	\$ 664.04
Defoamer				
BARA-DEFOAM W300	KCI/Polymer	5 gal can	1.000	55.92
			Total	\$ 55.92
Filtration Control				
BARABLOK	KCI/Polymer	50 lb bag	60.000	1,823.40
DEXTRID LTE	KCI/Polymer	25 kg sack	118.000	4,786.08
PAC-L	KCI/Polymer	25 kg bag	71.000	5,812.77
			Total	\$ 12,422.25
Weighting Material				
barite	KCI/Polymer	1000 kg bulk	8.700	4,131.46
calcium chloride flake 77%	No Fluid	25 kg bag	2.000	27.64
			Total	\$ 4,159.10
Viscosifier/Suspension Agent				
BARAZAN D PLUS	KCI/Polymer	25 kg bag	85.000	12,940.40
			Total	\$ 12,940.40
Alkalinity Control				
caustic soda	KCI/Polymer	25 kg pail	8.000	353.52
citric acid	KCI/Polymer	25 kg bag	3.000	138.72
potassium hydroxide	KCI/Polymer	25 kg bag	4.000	179.92
soda ash	KCI/Polymer	25 kg bag	21.000	278.25
			Total	\$ 950.41
Shale Control				
EZ-MUD	KCI/Polymer	25 kg pail	14.000	1,201.62
EZ-MUD DP	KCI/Polymer	25 kg bag	26.000	2,231.58

Australia VIC P57
Victoria

Baroid Fluid Services

Page 3 of 4 Printed: 05/29/08

Well Name Operator Contractor Rig No Unit System Wardie-1 3D Oil Itd Seadrill West Triton Apache

Interval Summary

			Total	\$	2,282.23
Omyacarb 5	KCI/Polymer	25 kg bulk	57.000		535.23
Circal 60/16	KCI/Polymer	25 kg sack	60.000		607.80
Circal Y	KCI/Polymer	25 kg sack	89.000		1,139.20
Lost Circulation/Bridging Agent					
			Total	\$	64,557.60
CLAYSEAL PLUS	KCI/Polymer	216 kg drum	35.000		33,482.40
KCL Tech Grade (bulk)	Potassium Chloride brine	1000 kg bulk	5.000		3,755.00
KCL Tech Grade (bulk)	KCI/Polymer	1000 kg bulk	11.000	<u> </u>	8,261.00
potassium chloride	Potassium Chloride brine	1000 kg bag	6.000		3,606.00
ootassium chloride	KCI/Polymer	1000 kg bag	20.000		12,020.00

Well Name Wardie-1
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Cost Breakdown

Interval # 01		From Date	05/09/2008 Top of Interval	77.0 m
Max. Hole Size / Bit Size	36.000 / 26.000 in	To Date	05/11/2008 Bottom of Interval	136.0 m

Material	Unit Size	Quantity		Total Cost
Engineering/Services	•			
Drilling Fluids Engineer	day(s)		3.00	3750.00
Drilling Fluids Engineer 2	day(s)		3.00	3750.00
		SubTotal	\$	7,500.00
Fluids/Products: Cementing Cost				
calcium chloride flake 77%	25 kg bag		28.00	386.96
		SubTotal	\$	386.96
	<u></u>	Interval Total Co	st \$	7,886.96
	Charged To/From Other	r Interval	\$	
	Net Description Total Co	ost	\$	7,886.96
	Programmed Cost		\$	0.00
	Program Variance		\$	7,886.96

Page 1 of 3 Printed: 05/29/08

Well Name Wardie-1
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Cost Breakdown

Interval # 02		From Date	05/12/2008 Top of Interval	136.0 m
Max. Hole Size / Bit Size	17.500 / 17.500 in	To Date	05/15/2008 Bottom of Interval	751.0 m

Material	Unit Size	Quantity	Total Cost
Engineering/Services			
Drilling Fluids Engineer	day(s)	4.00	5000.00
Drilling Fluids Engineer 2	day(s)	4.00	5000.00
		SubTotal	\$ 10,000.00
Fluids/Products: Drilling Cost			
bentonite	1000 kg bulk	26.000	12866.88
caustic soda	25 kg pail	6.00	265.14
lime	25 kg bag	10.00	65.50
		SubTotal	\$ 13,197.52
		Interval Total Cost	\$ 23,197.52
	Charged To/From Other	r Interval	\$
	Net Description Total C	ost	\$ 23,197.52
	Programmed Cost		\$ 0.00
	Program Variance		\$ 23,197.52

Well Name Wardie-1
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Cost Breakdown

Interval # 03		From Date	05/16/2008 Top of Interval	751.0 m
Max. Hole Size / Bit Size	12.250 / 12.250 in	To Date	05/25/2008 Bottom of Interval	1,766.0 m

Material	Unit Size	Quantity		Total Cost
Engineering/Services	•			
Drilling Fluids Engineer	day(s)	10.00	0	12500.00
Drilling Fluids Engineer 2	day(s)	10.00	0	12500.00
	•	SubTotal	\$	25,000.00
Fluids/Products: Cementing Cost				
calcium chloride flake 77%	25 kg bag	2.0	0	27.64
		SubTotal	\$	27.64
Fluids/Products: Drilling Cost				
ALDACIDE G	5 gal can	7.0	0	489.30
BARABLOK	50 lb bag	60.0	0	1823.40
Baracide	25 kg can	2.0	0	174.74
BARA-DEFOAM W300	5 gal can	1.00	0	55.92
BARAZAN D PLUS	25 kg bag	85.0	0	12940.40
barite	1000 kg bulk	8.70	0	4131.46
caustic soda	25 kg pail	8.0	0	353.52
Circal 60/16	25 kg sack	60.0	0	607.80
Circal Y	25 kg sack	89.0	0	1139.20
citric acid	25 kg bag	3.0	0	138.72
CLAYSEAL PLUS	216 kg drum	35.0	0	33482.40
DEXTRID LTE	25 kg sack	118.0	0	4786.08
EZ-MUD	25 kg pail	14.0	0	1201.62
EZ-MUD DP	25 kg bag	26.0	0	2231.58
KCL Tech Grade (bulk)	1000 kg bulk	16.00	0	12016.00
Omyacarb 5	25 kg bulk	57.00	0	535.23
PAC-L	25 kg bag	71.0	0	5812.77
potassium chloride	1000 kg bag	26.0	0	15626.00
potassium hydroxide	25 kg bag	4.0	0	179.92
soda ash	25 kg bag	21.0	0	278.25
		SubTotal	\$	98,004.31
	_	Interval Total Cost	\$	123,031.95
	Charged To/From Other	Interval	\$	
	Net Description Total Co	ost	\$	123,031.95
	Programmed Cost		\$	0.00
	Program Variance		\$	123,031.95

Australia VIC P57 Baroid Fluid Services Victoria

Page 3 of 3 Printed: 05/29/08

Well Name Operator Contractor Rig No Unit System Wardie-1 3D Oil Itd Seadrill West Triton Apache

Interval Chemical Concentration

Interval # 01		From Report Date	05/09/2008	Top of Interval	77.0 m
Max. Hole Size / Bit Size	36.000 / 26.000 in	To Report Date	05/11/2008	Bottom of Interval	136.0 m

Australia VIC P57 Baroid Fluid Services Victoria

Page 1 of 4 Printed: 05/29/08

Well Name Wardie-1
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Chemical Concentration

Interval # 02		From Report Date	05/12/2008	Top of Interval	136.0 m
Max. Hole Size / Bit Size	17.500 / 17.500 in	To Report Date	05/15/2008	Bottom of Interval	751.0 m

Fluid Name: Spud Mud			
Material	Average ppb	Minimum ppb	Maximum ppb
bentonite	17.16	12.62	18.75
caustic soda	0.11	0.11	0.11
lime	0.18	0.18	0.18

Fluid Name: Seawater			
Material	Average ppb	Minimum ppb	Maximum ppb
bentonite	11.36	2.84	14.46
caustic soda	0.08	0.08	0.08
lime	0.14	0.13	0.14

Well Name Operator Contractor Rig No Unit System Wardie-1 3D Oil Itd Seadrill West Triton Apache

Interval Chemical Concentration

Interval # 03		From Report Date	05/16/2008	Top of Interval	751.0 m
Max. Hole Size / Bit Size	12.250 / 12.250 in	To Report Date	05/25/2008	Bottom of Interval	1,766.0 m

Fluid Name:	Spud Mud			
Material		Average ppb	Minimum ppb	Maximum ppb
bentonite		18.51	18.51	18.51
caustic soda		0.11	0.11	0.11
lime		0.18	0.18	0.18

Fluid Name: KCI/Polymer					
Material	Average ppb	Minimum ppb	Maximum ppb		
ALDACIDE G	0.12	0.03	0.17		
BARABLOK	1.29	1.22	1.32		
Baracide	0.04	0.04	0.07		
BARA-DEFOAM W300	0.02	0.02	0.02		
BARAZAN D PLUS	1.67	1.50	1.78		
barite	8.22	7.82	8.41		
caustic soda	0.17	0.15	0.26		
Circal 60/16	1.42	1.35	1.45		
Circal Y	2.10	2.00	2.15		
citric acid	0.06	0.06	0.06		
CLAYSEAL PLUS	6.17	5.32	6.76		
DEXTRID LTE	2.34	1.96	2.55		
EZ-MUD	0.28	0.16	0.31		
EZ-MUD DP	0.49	0.26	0.53		
KCL Tech Grade (bulk)	8.84	8.38	9.03		
Omyacarb 5	1.35	1.26	1.39		
PAC-L	1.43	1.35	1.47		
potassium chloride	20.02	17.95	26.07		
potassium hydroxide	0.08	0.08	0.08		
soda ash	0.41	0.12	0.55		

Fluid Name:	Potassium Chloride brine			
Material		Average ppb	Minimum ppb	Maximum ppb
KCL Tech Grade (bulk)		21.61	21.61	21.61
potassium chloride		15.96	9.47	32.18

Fluid Name: Seawater

Australia VIC P57 Baroid Fluid Services Victoria

Well Name Wardie-1
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Chemical Concentration

Material	Average ppb	Minimum ppb	Maximum ppb
bentonite	19.37	19.37	19.37
caustic soda	0.11	0.11	0.11
lime	0.19	0.19	0.19

Australia VIC P57 Baroid Fluid Services Victoria

Page 4 of 4 Printed: 05/29/08

Company 3D Oil Itd
Well Name Wardie-1
Contractor Seadrill
Rig No West Triton
Unit System Apache

Fluid Volume Record Report

							Additio	ns					Losses					Volu	mes	
Report No	Date	Initial Volume	Received	Mixed	Base	Water	Barite	Chemicals	Other	Daily Total	SCE	Downhole	Misc	Mixed	Returned	Daily Total	Hole Volume	Active Pit Volume	Reserve Volume	Final Volume
		bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl
Interva	al# 01																			
Fluid N	Name:	Spud I	Vlud																	
001	05/09/08		1,248.0							1,248.0									1,248.0	1,248.0
002	05/10/08	1,248.0				650.3				650.3				250.0		250.0	217.3		1,431.0	1,648.3
003	05/11/08	1,648.3				721.2				721.2			652.0			652.0	244.5		1,575.0	1,819.5
Cumulativ	e Volume		1,248.0			1,371.5				2,619.5			652.0	250.0		902.0				
												•	•							
Fluid N	Name:	KCI/Pc	olymer																	
001	05/09/08		792.0							792.0									792.0	792.0
003	05/11/08	792.0											123.0			123.0			669.0	669.0
Cumulativ	e Volume		792.0							792.0			123.0			123.0				
Fluid N	Name:	Seawa	ter																	
002	05/10/08			250.0		364.0				614.0			250.0			250.0		364.0		364.0
003	05/11/08	364.0											17.0			17.0		347.0		347.0
Cumulativ	e Volume			250.0		364.0				614.0			267.0			267.0				

Company 3D Oil Itd
Well Name Wardie-1
Contractor Seadrill
Rig No West Triton
Unit System Apache

Fluid Volume Record Report

													_							
	_				_		Additio	_					Losses		_			Volu		
Report No	Date	Initial Volume	Received	Mixed	Base	Water	Barite	Chemicals	Other	Daily Total	SCE	Downhole	Misc	Mixed	Returned	Daily Total	Hole Volume	Active Pit Volume	Reserve Volume	Final Volume
		bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl
Interva	al# 02																			
Fluid I	Name:	Spud I	Mud																	
004	05/12/08	1,819.5				419.0		32.7		451.7				101.0		101.0	143.1		2,027.1	2,170.2
005	05/13/08	2,170.2				786.0		33.8		819.8				2,760.1		2,760.1			229.9	229.9
007	05/15/08	229.9											74.0			74.0			155.9	155.9
Cumulativ	e Volume					1,205.0		66.5		1,271.5			74.0	2,861.1		2,935.1				
Fluid I	Name:	KCI/Pc	lymer																	
005	05/13/08	669.0												539.0		539.0			130.0	130.0
007	05/15/08	130.0									130.0					130.0				
Cumulativ	e Volume										130.0			539.0		669.0				
Fluid I	Name:	Seawa	ter																	
004	05/12/08	347.0		101.0						101.0			101.0			101.0		347.0		347.0
005	05/13/08	347.0		3,299.1						3,299.1			2,483.1			2,483.1	718.5	444.6		1,163.1
006	05/14/08	1,163.1				14.8				14.8							733.3	444.5		1,177.8
007	05/15/08	1,177.8									104.7		306.2			410.9	360.9	406.0		766.9
Cumulativ	re Volume			3,400.1		14.8				3,414.9	104.7		2,890.3			2,995.0				
			•					•			•			•			•	•	•	
Fluid I	Name:	Water																		
005	05/13/08					256.0				256.0									256.0	256.0
007	05/15/08	256.0									256.0					256.0				
Cumulativ	re Volume					256.0				256.0	256.0					256.0		_		

Australia VIC P57 Baroid Fluid Services Victoria

Page 2 of 3 Printed: 05/29/08

Company 3D Oil Itd
Well Name Wardie-1
Contractor Seadrill
Rig No West Triton
Unit System Apache

Fluid Volume Record Report

							Addition	าร					Losses					Volu	mes	
Report No	Date	Initial Volume	Received	Mixed	Base	Water	Barite	Chemicals	Other	Daily Total	SCE	Downhole	Misc	Mixed	Returned	Daily Total	Hole Volume	Active Pit Volume	Reserve Volume	Final Volume
		bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl	bbl
Interva	I# 03																			
Fluid N	lame:	Spud I	Mud																	
008	05/16/08	155.9									155.9					155.9				
Cumulative	e Volume										155.9					155.9				
Fluid N	lame:	KCI/Pc	lymer																	
008	05/16/08					1,577.6		113.4		1,691.0									1,691.0	1,691.0
009	05/17/08	1,691.0		127.0		800.0		66.6		993.6	386.0		22.9			408.9	628.7	522.0	1,125.0	2,275.7
010	05/18/08	2,275.7		134.0			13.0	31.0		178.0	604.4					604.4	846.4	479.0	524.0	1,849.4
011	05/19/08	1,849.4						1.7		1.7	112.0		40.0			152.0	839.4	594.0	265.7	1,699.1
012	05/20/08	1,699.1									55.5		18.0			73.5	831.5	510.0	284.0	1,625.5
013	05/21/08	1,625.5						0.4		0.4	352.8					352.8	841.1	400.0	32.0	1,273.1
016	05/24/08	1,273.1													426.7	426.7	846.4			846.4
Cumulative	e Volume			261.0		2,377.6	13.0	213.1		2,864.7	1,510.7		80.9		426.7	2,018.3				
Fluid N		Potass	ium Ch	nloride	brine	1														
009	05/17/08					392.0		19.0		411.0				127.0		127.0			284.0	284.0
010	05/18/08	284.0												134.0		134.0			150.0	150.0
011	05/19/08	150.0				339.0		21.0		360.0									510.0	510.0
016	05/24/08	510.0													510.0	510.0				
Cumulative	e Volume					731.0		40.0		771.0				261.0	510.0	771.0				
Fluid N	lamai	Seawa	tor																	
			rei								120.0					120.0	321.7	200.0		620.7
008	05/16/08 05/17/08	766.9 630.7									136.3		630.7			136.3 630.7	3∠1./	309.0		630.7
		630.7									136.3		630.7			767.0				
Cumulative	e volume										136.3		630.7			767.0				

Australia VIC P57 Baroid Fluid Services Victoria

Page 3 of 3 Printed: 05/29/08

Operator 3D Oil Itd
Well Name Wardie-1
Contractor Seadrill
Rig No West Triton
Unit System Apache

Fluid Property Recap: Water-Based Fluid

Date	Depth	FL Temp	Density	Funn Visc	RI	heolog	ЭУ	49 De	eg C		Fi	Itration					Filtrat	te Anal	ysis		MBT	Sand	F	Retort An	alysis	Rh	eome	eter Di	ial Rea	idings
		Temp		VISC	PV		lbs/10	00 ft2		API	HTHP	Cake API	Cake HTHP	Temp	рН	Pm	Pf	Mf	CI	Total Hardness		% by		% by \	/ol	600	300	200	100	6 3
	m	Deg C	SG	sec/qt	сР	YP	10S	10M	30M	ml/30 min	ml/30 min		nd in	Deg C		ml	ml	ml	mg/l	mg/l	ppb Eq.	vol	Corr Solid		NAP Base Water					
Interval # 0	1		<u> </u>							From Dat	e			05/09/2	008					Top of Ir	terval			77.0	m					_
Max. Hole Si	ze / Bit S	ize 3	6.000 / 26	.000 in						To Date				05/11/2	800					Bottom o	of Interv	al		136.0	m					
05/10/2008	78		1.060	100	26	123	51	58	65						9.50						35.0		2.46	0.983	97.3	175.0	149.0	141.0	120.0 7	70.0 64.0
05/11/2008	136		1.060	98	25	123	50	56	65						9.50						35.0		3.76	3.591	96	173.0	148.0	139.0	118.0	68.0 63.0
05/11/2008	136		1.060	96	24	121	48	55	63						9.50						35.0		3.76	3.591	96	169.0	145.0	137.0	116.0	67.0 61.0
Interval # 0	2									From Dat	e			05/12/2	800					Top of Ir	iterval			136.0	m					
Max. Hole Si	ze / Bit S	ize 1	7.500 / 17	.500 in						To Date				05/15/2	800					Bottom	of Interv	al		751.0	m					
05/12/2008	136		1.060	100	24	123	50	57	67						9.50						30.0		2.76	1.585	97	171.0	147.0	138.0	118.0	69.0 68.0
05/13/2008	250		1.060	100	23	122	51	56	68						9.50						30.0		2.76	1.585	97	168.0	145.0	136.0	117.0 7	70.0 69.0
05/13/2008	672		1.060	100	24	103	49	55	64						9.50						30.0		2.76	1.585	97	151.0	127.0	118.0	98.0 5	59.0 57.0
05/14/2008	0		1.060	100	24	103	49	55	64						9.50						30.0			0.581		151.0	127.0	118.0	98.0 5	59.0 57.0
Interval # 0										From Dat	e			05/16/2						Top of Ir				751.0	m					
Max. Hole Si		ize 1	2.250 / 12					-	1	To Date			T	05/25/2	1					Bottom o				1,766.0	m		-			
05/16/2008	751		1.060	52	12		8	11	12	7.2	14.6	1	2		9.50				31,000		5.0			1.271		_				10.0 8.0
05/16/2008	751		1.060	55	10	25	8	11	12	7.0	14.0	1	2		9.50	0.80	0.45		31,000	320	5.0		1.3						22.0 1	
05/17/2008	770		1.070	57	11	18	7	8	10	7.0	14.0	1	2		9.50				33,000	200	5.0			1.688					18.0	_
05/17/2008	968	31	1.090	58	11	27	10	15	18	5.8	12.2	1	2		10.00	1.60	0.50	1.40	34,000	320	7.5			2.99						12.0 10.0
05/17/2008	1,156	35		55	13	-	11	17	21	5.6	11.8	1	2	121					33,000	360	7.5			3.671		_				13.0 11.0
05/17/2008	1,381 1,555	35 44		58 54	13 15	30	13 13	18 18	22	5.0	12.0 11.8	1	2	121	9.50	1.30 0.50	0.30	1.00	33,000	560 400	6.3	0.50								13.0 10.0 13.0 10.0
05/18/2008	1,664	44	1.120	58	14	28	10	18	24	4.8	11.8	1	2	121 121	8.50				36,000	480	10.0			4.423						12.0 10.0
05/18/2008		43		52	13			18	22	4.6	11.0	1	2	121	9.00				38,000	400	10.0									12.0 10.0
05/18/2008	1,766 1,766	43	1.130	54	15	30	13	19	23	4.6	11.5	1	2	121	9.00	1.30	0.06	1.00	38,000	400	8.8	0.50				_				14.0 11.0
05/19/2008	1,766		1.120	54	15	30	13	19	23	5.0	11.5	1	2	121	9.00	0.70			37,000	400	10.0			3.291						14.0 11.0
05/19/2008	1,766		1.120	56	13	33	14	19	23	5.0	11.4	1	2	121	9.00	1.00	0.06	1.00	38,000	440	10.0	0.25								15.0 13.0
05/19/2008	1,766	38		56	13	27	13	20	24	5.2	11.6	1	2	121	9.00	1.20	0.05	1.30	38,000	480	10.0	0.50								14.0 12.0
05/19/2008	1,766		1.120	55	14	27	14	20	23	5.2	11.6	1	2	121	9.00	1.00	0.04	0.80	38,000	480	10.0	0.50	4.53						_	14.0 12.0

Australia VIC P57 Baroid Fluid Services Victoria

Page 1 of 2 Printed: 05/29/08

Operator 3D Oil Itd
Well Name Wardie-1
Contractor Seadrill
Rig No West Triton
Unit System Apache

Fluid Property Recap: Water-Based Fluid

Date	Depth	FL Temp	Density	Funn Visc	R	heolo	gy	49 D	eg C		Fil	tration					Filtrat	te Anal	ysis		MBT	Sand	F	Retort A	nalysi	S	RI	neom	eter D	Dial Re	adino	js –
		remp		VISC	PV		lbs/10	00 ft2		API	HTHP	Cake API	Cake HTHP	Temp	рН	Pm	Pf	Mf	CI	Total Hardness	ppb Eq.	% by		% by	/ vol		600	300	200	100	6	3
	m	Deg C	SG	sec/qt	сР	YP	108	10M	30M	ml/30 min	ml/30 min	32n	ıd in	Deg C		ml	ml	ml	mg/l	mg/l	рро Еч.	VOI	Corr Solid	LGS	NAP Base	Water						
05/20/2008	1,766		1.120	57	13	27	13	20	23	5.2	11.6	1	2	121	9.00	1.20	0.04	1.10	38,000	480	10.0	0.50	4.53	4.423		92.4	53.0	40.0	35.0	28.0	14.0	12.0
05/20/2008	1,766		1.120	58	13	27	14	19	22	5.1	11.7	1	2	121	9.00	1.00	0.07	1.30	39,000	480	10.0	0.50	4.45	4.335		92.4	53.0	40.0	34.0	26.0	14.0	12.0
05/21/2008	1,766		1.120	55	12	28	13	20	23	5.3	11.6	1	2	121	9.20	1.00	0.04	1.50	38,000	480	10.0	0.50	4.53	4.423		92.4	52.0	40.0	35.0	28.0	14.0	12.0
05/21/2008	1,766		1.120	55	13	27	13	20	22	5.3	11.8	1	2	121	9.50	1.20	0.08	1.70	38,000	480	10.0	0.50	4.53	4.423		92.4	53.0	40.0	35.0	28.0	14.0	12.0
05/22/2008	1,766		1.120	55	13	27	13	20	22	5.3	11.8	1	2	121	9.00	1.00	0.03	1.70	38,000	480	10.0	0.50	4.53	4.423		92.4	53.0	40.0	35.0	28.0	14.0	12.0
05/23/2008	1,766		1.120	55	14	26	13	20	22	5.3	11.8	1	2	121	9.00	1.00	0.03	1.70	38,000	480	10.0	0.50	4.53	4.423		92.4	54.0	40.0	35.0	28.0	14.0	12.0

Company 3D Oil Itd
Well Name Wardie-1
Contractor Seadrill
Rig Name West Triton
Unit System Apache

Fluid Program Exception Report

Report No	Date	Time	Depth m	Property Name	Unit System	Actual Value	Exception	Program Min	Program Max
800	05/16/2008	22:00	751	API Filtrate	ml/30 min	7.0	High	1.0	6.0
800	05/16/2008	16:00	751	API Filtrate	ml/30 min	7.2	High	1.0	6.0
800	05/16/2008	22:00	751	HTHP Filtrate	ml/30 min	14.0	High	1.0	12.0
800	05/16/2008	16:00	751	HTHP Filtrate	ml/30 min	14.6	High	1.0	12.0
009	05/17/2008	4:30	770	API Filtrate	ml/30 min	7.0	High	1.0	6.0
009	05/17/2008	4:30	770	HTHP Filtrate	ml/30 min	14.0	High	1.0	12.0
009	05/17/2008	9:52	968	HTHP Filtrate	ml/30 min	12.2	High	1.0	12.0
009	05/17/2008	9:52	968	рН	-	10.00	High	8.80	9.50
010	05/18/2008	9:50	1,664	рН	-	8.50	Low	8.80	9.50
013	05/21/2008	12:00	1,766	KCL %	% by vol	9.0	High	6.0	8.0

Operations Log Recap

Well Name Operator Contractor Rig No Unit System Wardie-1 3D Oil Itd Seadrill West Triton Apache

Interval		01			From Date	001	Top of Interval	77.0	m
Max. Hole Siz	e / Bit Size	36.000	26.000	in	To Date	003	Bottom of Interval	136.0	m
For Report	# 001	On	05/09/2	2008	Operation at Depth	1	.0 m		
Rig Activity					Skidded rig from Wo	est Seaho	orse-3 well at 16:30 hours.		
					Rigging up to spud.				
Activity					Rig up and rig dowr	l			
Fluid Treatme	nt						ymer/Clayseal plus mud from We spud mud) from West Seahorse 3		ell.
For Report	# 002	On	05/10/2	2008	Operation at Depth	1	132.0 m		
Rig Activity Activity					Make up BHA and of Tag seabed at 76.8 ROV check string cl	Irill string m and spo earance a	Abandonment Cap on West Seah and RIH. ud Wardie 1 well at 18:30 hours d and drill ahead to 132m at midnigh y single and backream each stand	rilling to 78m. nt with 75bbls	
Fluid Treatmen	nt				Returned to Geelon RATE mud chemica		terminal and deducted from inven	tory, 8 drums of	XLR-
For Report	# 003	On	05/11/2	2008	Operation at Depth	1	136.0 m		
Rig Activity Activity					POOH. Lay out 2 x 8 1/4 DO Attemps to stab into Stab in and run to 1	cculated I Os and 26 hole frus 32m, insta amp and	n 132 to 136m. PHB and then displace hole with 3 " bit then run conductor. trated by poor visibility on the sea all anti-rotation wire and landing ri attempt to torque up. Trouble sho	ı floor. ing. Install ICON	l 30"
Florial Taxasiss	-1				Ŭ.				
Fluid Treatme	nt				Mixed pit of spud m	ua.			

Australia Bass Strait VIC P57 Victoria Baroid Fluid Services

Page 1 of 5 Printed: 05/29/2008

Well Name Operator Contractor Rig No Unit System Wardie-1 3D Oil Itd Seadrill West Triton Apache

Interval		02			From Date	004	Top of Interval	136.0	m
Max. Hole Siz	e / Bit Size	17.500 / 1	7.500	in	To Date	007	Bottom of Interval	751.0	m
For Report	# 004	On	05/12/2	2008	Operation at Dep	th	161.0 m		
Rig Activity					cut. Rig down 30' per programme wi pick up and make Make up 17 1/2" E	handling ed th ROV obsoup well head BHA and RIF and drill out		ger and RIH. Cer down cement line	nent as es and
Activity					Drilling				
Fluid Treatmer	nt				Received Mud Ch	emicals.			
					Current sweep required endoculated PHG	•	bbls floculated PHG while drillin	ng and 30 bbls	
For Report	# 005	On	05/13/2	2008	Operation at Dep	th	751.0 m		
Rig Activity					regime 2 x 30bbls on connections. At TD sweep the h	flocculated nole with 2 x e with 950bb	rom 161m to 751m with Seawa PHG while drilling and 30bbl P 100bbl Hi Visc pills and circulabls of Viscosified KCI/polymer rut bit at midnight.	HG spotted at the ate 2 x bottoms up	BHA
Activity					Run casing and ce				
Fluid Treatmer	nt				Returned to Geelo	0	erminal and deducted from inve	entory, 8 drums of	XLR-
For Report	# 006	On	05/14/2	2008	Operation at Dep	th	751.0 m		
Rig Activity					casing.	hang up. Sk ar obstruction e centralizer	S.		
Activity					Run casing and ce		·9····		
Fluid Treatmer	nt				Mixing mud for ne of the new section	,	2 1/4" hole). Chemicals to be	charged off on fris	t report
For Report	# 007	On	05/15/2	2008	Operation at Dep	th	751.0 m		
Rig Activity					to 4000psi. Pumpe as per programme Set 13 3/8" casing	ed 90 bbl se e. ı at MD 747.	ellhead. Install cement plug, pr awater, 30 bbl, Tuned Spacer, 2m TVD 703.8m. all choke line. Rig up handling	and mix & pump o	ement
Activity					Nipple up B.O.P.				
Fluid Treatmer	nt				KCI / Polymer mud Total KCI / Polyme				
					Continue mixing K	Cl polymer	mud for displacement.		

Australia Bass Strait VIC P57 Victoria

Well Name Operator Contractor Rig No Unit System Wardie-1 3D Oil Itd Seadrill West Triton Apache

Interval		03			From Date	800	Top of Interval	751.0	m	
Max. Hole Siz	e / Bit Size	12.250 /	12.250	in	To Date	017	Bottom of Interval	1,766.0	m	
For Report	# 008	On	05/16/2	2008	Operation at Dept	h	751.0 m			
Rig Activity						5m. Fault v	bit and BHA, RIH and test MWD with TDS, service same. Drill top or.			
Activity					Drilling out cement					
Fluid Treatmen	nt				KCI / Polymer mud Total KCI / Polymer					
								arazan D+.		
For Report	# 009	On	05/17/2	2008	Operation at Dept	h	1,446.0 m			
Rig Activity					seawater with 8.9 p 8.9 in/out. Conduct 12 1/4" hole fro 75	opg with 8.9 ed FIT as p I m to 1397	ppg KCl/Polymer/Clayseal mud. per programme to EMW of 13.13 m. Driller chair system crashed,	Circ. & cond. m ppg. Continued troubleshoot. Co	nud to drilling	
Activity			Drilling							
Fluid Treatmen	nt		KCI / Polymer mud mixed: 993.6 bbls Total KCI / Polymer mud mixed: 2684.6 bbls.							
					Mixed BARAZAN E bring up EZ MUD o maintain MW. Begin adding 5ppb	0+ to the acconcentration	ctive to increase and maintain the on via premix. Began running center 5 ppb Circal 60/16 into active at 2	trifuge at 950m	to	
For Report	# 010	On	05/18/2	2008	Operation at Dept		1,766.0 m			
Rig Activity					ROP drilling from 1 1075gpm. Trip tank	520m to 17 c remote va	766m. Survey every connection. Calve not functioned, change out va	Circulate hole clealve. Flow check	ean @	
Activity					Tripping		ner mud for dilution and volume. 1,446.0 m and rat hole @ 747m, wash rat hole to 751m. Displaced h 8.9 ppg KCl/Polymer/Clayseal mud. Circ. & cond. mud t as per programme to EMW of 13.13 ppg. Continued drilli 1397m. Driller chair system crashed, troubleshoot. Cont. 46m as per Directional drillers instructions. 1: 993.6 bbls mixed: 2684.6 bbls. 1: 993.6 bbls mixed: 2684.6 bbls. 2: 178 bbls 3: 178 bbls			
Fluid Treatme	nt					I out shoe track and rat hole @ 747m, wash rat hole to 751m. Displaced with 8.9 ppg with 8.9 ppg KCl/Polymer/Clayseal mud. Circ. & cond. mut. Conducted FIT as per programme to EMW of 13.13 ppg. Continued dole fro 751 m to 1397m. Driller chair system crashed, troubleshoot. Corom 1397m to 1446m as per Directional drillers instructions. The programme mud mixed: 993.6 bbls I / Polymer mud mixed: 2684.6 bbls. The mixing KCl polymer mud for dilution and volume. ARAZAN D+ to the active to increase and maintain the 6 RPM at 13. Consequence of the concentration via premix. Began running centrifuge at 950m to MW. The programme of the programme. The programme of the programme of the programme of the programme. The programme of the				
					top of LaTrobe form Added 4 ppb BARA	nation as p ABLOK into		·		
For Report	# 011	On	05/19/2	2008	Operation at Dept	h	1,766.0 m			
Rig Activity					proper displacement bottoms up. RIH fro 1766m. Circ. hole of	nt. Pump of om 744m to clean and c Pump slug :	, ream tight spot at 1178m to 919, ut of hole from 919m to casing she of 1737m pumping last single. Was condition mud. Flow check static. I and POOH from 1412m to shoe out BHA.	oe at 744m. Cir sh down last sta POOH wet from	c. and to	
Activity					Tripping	,				
Fluid Treatmen	nt				KCI / Polymer mud Total KCI / Polyme					

Australia Bass Strait VIC P57 Victoria

Well Name Operator Contractor Rig No Unit System Wardie-1 3D Oil Itd Seadrill West Triton Apache

Interval		03			From Date	800	Top of Interval	751.0	m
Max. Hole Size	/ Bit Size	12.250 /	12.250	in	To Date	017	Bottom of Interval	1,766.0	m
					Made KCL brine for Note: Some chemi		cy purposes. d off today was due to an inventor	y reconciliation	1
For Report	# 012	On	05/20/2	2008	Operation at Dep	th	1,766.0 m		
Rig Activity					active sources. RII POOH recover RA checking pressure wireline MDT tools	H with tools sources an points as p	Schlumberger, Sonic pex tool string to commence logging as per loggind lay down tools. RIH MDT tools ser programme, monitoring well via up 5 1/2" mule shoe on DP. RIH to	ng programme tring to 1680m trip tanks. POI	
Activity					Tripping				
Fluid Treatment					KCI / Polymer muc Total KCI / Polyme				
For Report	# 013	On	05/21/2	2008	Operation at Dep	th	1,766.0 m		
Rig Activity					surface lines to 10 Set Plug #1A from cement plug #1B a up. POOH & lay do POH from 903m to	00psi. Cemo 1761m - 16 s per ceme own DP fron 805m. Mix	DP from 414m to 1761m. Circ. bot ent plug with Halliburton as per cers 16m. Pull out to 1613m. Circ. 1.5% nt programme from 1613m - 1406r n 1406m to 842m. Tag cement plu & pump plug #2 as per programm @ 180spm, 300psi. POOH from 59	menting progra (bottoms up. F m. Circ. 1.5X b g #1B @ 1407 e. POH from 8	amme. Pump ottom: m.
Activity					P&A	•			
Fluid Treatment							taminated mud on first plug taminated mud on second plug		
For Report	# 014	On	05/22/2	2008	Operation at Dep	th	1,766.0 m		
Rig Activity Activity					plug #2 to 1000psi casing cutter. Mak per programme. R	. Remove c e up casing etrieve welll	P diverter line. Line up Halliburton in hoke line, flow line, prepare for skincutter as per Weatherford. RIH to nead, 20X13 3/8" wedge, 8 joints on the lay down same. Prepare to RIH	d. Pick up 13 3 126m cut casi of 13 3/8" casin	3/8" ng as ig. Pic
Fluid Treatment									
For Report	# 015	On	05/23/2	2008	Operation at Dep		1,766.0 m		
Rig Activity					to 157m. R/up cem to 95m to circulate cutter to 78m. Atte return torque. Brea	nent line and hole clean. mpt cut. PC ik out TDS v as per weat	with 5 1/2" DP to 207m. Spot 25 bbd test to 500psi. Mix and pump cen POOH and lay down mule shoe. FoH to change knifes. RIH to 78m, a without hydraulic power. POH to sutherford. POH lay down cutter asseptatform.	nent plug #3. F RIH with 30" ca ttempt again, r urface. Change	POOH asing no e knife
Activity					Rig up and rig dow		•		
Fluid Treatment									
For Report	# 016	On	05/24/2	2008	Operation at Dep	th	1,766.0 m		
Rig Activity					Remove icon clam down same. Prepa platform from t/dec Lock in pin not rele	p from conductors for right models for r	onto conductor, attempt to free csettletor, pull CTU inserts. Pull 30" csove. Skid rig in 15ft. R/up BOP slin main deck. Prepare to skid out to kamaged, cut off lock pin assembly VDP, RIH to open slots to lay down	ig to rig floor a lg, pick up worl lower deck to b . Skid out rig. F	nd lay k oat.

Australia Bass Strait VIC P57 Victoria

Well Name Operator Contractor Rig No Unit System Wardie-1 3D Oil Itd Seadrill West Triton Apache

Interval		03		From Date	800	Top of Interval	751.0	m
Max. Hole Size	/ Bit Size	12.250 / 12.250	in	To Date	017	Bottom of Interval	1,766.0	m
Activity				Rig up and rig dov	vn			
Fluid Treatment				Backloaded 400 b	bl KCL/Polyı	mer mud and 500 bbl KCL brine	e for the next hole	onto
For Report	# 017	On 05/25/2	2008	Operation at Dep	th	1,766.0 m		
Rig Activity				DP and DC from o	cantilever to a temporary	p BOP slings and ext sling for main before skid. Skid rig, secu down rig to 2m draft. Conduct e draft, moved the rig 1km awa	re BOP. Seafaste ed water integrity	ened test.
Activity				Move to location				
Fluid Treatment								

Australia Bass Strait VIC P57 Victoria Baroid Fluid Services

Page 5 of 5 Printed: 05/29/2008

Well Name Wardie-1
Operator 3D Oil ltd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Deviation Actual

Survey Date	MD m	TVD m	Angle	Direction	Horiz Displ. m
05/13/2008	92	92	1.80	317.0	
05/13/2008	349	244	11.70	243.6	
05/14/2008	674	643	33.96	240.5	
05/14/2008	704	668	34.90	240.0	
05/14/2008	722	683	34.35	239.8	
05/14/2008	751	707	34.35	239.5	
05/18/2008	862	801	31.64	238.2	
05/18/2008	1,009	927	31.56	240.5	
05/18/2008	1,126	1,026	32.34	241.7	
05/21/2008	1,274	1,152	29.50	243.7	
05/21/2008	1,421	1,284	23.40	245.9	
05/21/2008	1,719	1,571	7.67	235.2	
05/21/2008	1,766	1,618	7.36	234.2	

Company 3D Oil Itd
Well Name Wardie-1
Contractor Seadrill
Rig No West Triton
Unit System Apache

Bit Record Report

	Bit No	Rit Size	Bit Manufacturer	Bit Type	Bit Style	IADC Code	Serial Number	Jet or TFA	Depth Out	Run Length	ROP	WOB	Bit	Pump Press	Pump OutPut	Fluid Type	Fluid Weight	Hole Angle	Bit Grading	Reason Pulled
		in						sq-in	m	m	m/hr	lb	RPM	psi	gpm		SG			
1	1RR	26.000	RTC	Y11C	MT	111	34406	3x22 1x16	136.0	59.0	25.7	5,500.0	120	950.0	1,000	Spud Mud	1.030	2.03	1-1-WT-A- NB-I-RR-TD	TD - Total/Casing Depth
2	2	17.500	HUGHES	MXL-T1V	IN		606589	3x20	751.0	615.0	91.8	22,000.0	217	1,635.0	960	Seawater	1.060	34.9		TD - Total/Casing Depth
3	3	12.250	REEDHYC	RSX616MA16	FC		218629	3x15 3x16	1,766.0	1,015.0	52.3	19,000.0	241	2,100.0	1,077	KCI/Polymer	1.120	7.36		TD - Total/Casing Depth

DAILY MUD REPORTS

	De	ily Deili	ne Fl	iid De	nort					Date Spud Date	•	05/09/2008	Depth Rig Activity	v	0.0 m	1
Operator	υa	ily Drill	ing Fil	Report For						., 2410	05/10/20 Well Name			ig up and r	ig down	
BD Oil Itd				Shaughar	Corless						Wardie-1					
Contractor				Report For							Rig Name		Unit Syster	m		
Seadrill Country		State/Provin		Micheal B	arry	Geograpi	hic Are	a/Count	v		West Trit		Apache			
Australia Bit Information		Victoria	D-:!!! Ot-::	. (: \		Bass St					VIC P57			-4-		
Bit Size	in		OD OD	g (in)/(m ID) Length		Casing Set	MD	Model		T CII	culation/Hyd	araulics Da	ata		
Make/Type									Bore							
Jets TFA	sq-in								Stroke Eff(%)							
Jets Velocity	m/sec								bbl/str							
Jet Impact Force Bit HHSI	lbf hhp/in2								SPM	bl/min		ı		I	I	
Press Drop @ Bit	psi								Total (GPM	· •	AV, Riser		Circ Press		
Bit Depth ECD @ Csg Shoe	m SG									Circ Time me , min		AV min DP AV max DC		Tot Pres L Press Dro		
ECD @ Bit	SG	1			2			I T.		Strokes		BU Strokes	Fluid 3	Press Dro		
Properties Source	Flo	ow Line	2		3	4		Ta	rgets	Pro	gram	Fluid Type	Fluid	reatments	5	
Time		23:59										None.				
Depth m FL Temp Deg C		0														
Density @ Deg C SG		40 @ 23														
FV @ Deg C sec/qt PV @ Deg C cP		0 @ 23 2 @ 23														
YP lbs/100 ft2		56														
GELS lbs/100 ft2 600/300		6/40/51 0.0/68.0						\vdash								
200/100	59	.0/55.0														
6/3 API Filt ml/30 min	42	2.0/41.0														
HTHP @ Deg C ml/30 min																
Cake API/HTHP 32nd in Corr Solid % by Vol		2.5														
NAP/Water % by Vol	-	/97.3											D:	A .: '.		
Sand % by vol MBT ppb Eq.		30.0										Skidded rig		Activity Seahorse-	3 well at	16:30
pH @ Deg C		9.00										hours.				
ALK Mud Pm ALK Filt Pf/Mf												Digging up t	o anud			
Chlorides mg/l												Rigging up t	o spuu.			
Tot. Hardness mg/l LGS/HGS % by Vol		.2/0.2														
LGS/HGS ppb ASG SG		.35/3.33 2.747														
A30 30	4	2.747														
Additional Properties								-	++							
Additional Froperties																
Decile of Name		II 14		- D		Food				1) - li -l - O				T:	_
Product Name	'	Units	Start	Rec	Used	End		Cost		Shake		ntrol Equipm Scre		Hrs D	Tim Frilling	е
												•		C	circulating	3
									-						rips lig	
]					S	Surveys	
									-						ishing tun Casin	nc
]					C	oring	
									Hvd	rocyclone	Cones	Scre	ens		leaming esting	
															ogging	
							-		-						ir Work lepair	
														C	Other	7.5
									Ce	entrifuge	Speed	Feed	Rate		otal lotating	7.5
									1					R	OP	
							-		Fluid	Volume Bı	roakdown				il Rate	0.00
										Active	bbl	Additions	bbl	Losse		bbl
									Annul			Base Drill Water		Fluid Dum Transferre		
									Active	Pits		Drill Water Dewatering		SCE	,u	
									Total I			Sea Water		Evaporation	on	
							+		Reser			Whole Mud Barite		Trips Other		
									Prev \	/ol		Chemicals		Total Surf		
							-		Net Cl	hange Vol		Other Total		Downhole Total Loss		
		**	I					000		Fluid Typ	oes	Vol bbl		viation Inf		
Daily Products Cost Cumulative Products Cost			Total Dai	ly Cost mulative C	ost			\$0.00 \$0.00					Survey Mi Survey T\			m m
Baroid Representatives	Brian A	uckram		Gerald La	nge				1				Angle			Deg
Office 90 Talinga Warehouse c/o of Esse					Telephone		3-9581 56-88		1				Direction Horiz Disp	ol.		m

Report No

001

Baroid Flu	ıid Se	rvice	s									Report No	0	002	
		Do	ily Deilli	na Elu	id Dar	ort.			Date Spud	Date	05/10/2008	Depth Rig Activity	v	132.0 m	1
0		Da	ily Drilli		-	JOIT				05/10/20			Dril	ling	
Operator 3D Oil Itd					Report For Shaughan	Corless				Well Name Wardie-1	•				
Contractor					Report For					Rig Name		Unit Syster	m		
Seadrill Country			State/Province		Micheal Ba	arry	Geographic	Area/County	1	West Trit		Apache			
Australia	rmation		Victoria	Orill String	/ in \ / (m)		Bass Strai			VIC P57	culation/Hyd	drauliaa De	oto		
Bit Size	26.000	in	L	OD	ID	Length		Set MD	Model		14-P-220	Nat-14-		Nat-14-	P-220
Make/Type	SMITH/ 3x22		Drill Pipe	5.500	3.250 3.000	54.0			Bore in Strokes in		5.500 4.000	6.50 14.0		6.50 14.0	
Jets TFA	1.310		Drill Collar Drill Collar	8.250 9.500	3.125	48.0 30.0			Eff(%)	'	97	97		97	
Jets Velocity Jet Impact Force	74.5	m/sec lbf							bbl/strk SPM	C).139 86	0.13 85		0.13 0	39
Bit HHSI		hhp/in2							gpm bbl/min		11.98		11.84		
Press Drop @ Bit Bit Depth	132.0	psi m	Open Hole	36.000		55.2	ŀ		Total GPM Total Circ Tir		AV, Riser AV min DP	5.0	Circ Pre		
ECD @ Csg Shoe	102.0	SG	Орон пою	00.000		00.2			BU Time , mi	in 9	AV max DC	6.2	Press D	rop DP	
ECD @ Bit Propertie	25	SG	1	2		3	4	l Tar	Total Strokes gets	4,158 Program	BU Strokes		Press D		
Source	~		Pit #1	_				- 1	90.0		Fluid Type		Spud M	lud	
Time Depth	m	2	20:00 78								Received 79		,	,	
FL Temp	Deg C										mud from W barrel)	rest Seano	ise 3 we	II (at \$34.4	o per
Density @ Deg C FV @ Deg C	SG sec/qt		60 @ 23 0 @ 23								Received 12	248 bbls of	PHB (sp	oud mud) fr	om
PV @ Deg C	cР	26	6 @ 23								West Seaho			•	•
YP GELS	lbs/100 ft2 lbs/100 ft2		123 /58/65								Charged 25 to spud well		HB on to	day's repo	π useo
600/300	150, 100 112	175	.0/149.0									-			
200/100 6/3			.0/120.0 .0/64.0								Returned to	_			
API Filt	ml/30 min										deducted from mud chemic		ry, 8 arur	TIS OI ALK-	KAIE
HTHP @ Deg C Cake API/HTHP	ml/30 min 32nd in										-				
Corr Solid	% by Vol		2.5												
NAP/Water Sand	% by Vol % by vol	-	/97.3									Rig	Activity		
MBT	ppb Eq.		35.0 0 @ 23								Continue to	• .	place Ab	oandonmer	nt Cap
pH @ Deg C ALK Mud	Pm	9.0	0 @ 23								on West Se Make up BH		etring ar	nd RIH	
ALK Filt Chlorides	Pf/Mf mg/l										Tag seabed		_		well at
Tot. Hardness	mg/l										18:30 hours			a aan ab a	
LGS/HGS LGS/HGS	% by Vol		.0/1.5 5/21.73								ROV check 132m at mid	•			
ASG	SG		3.561								sweeps eve	-			
Additional Propert	ties														
Product Na	ame	U	Jnits	Start	Rec	Used	End	Cost	Ole		trol Equipm			Tim	
Spud Mud Amodrill 1235			bbl 1500 l drum	2	250.0	250.0	2	\$967.50	VSM-300	aker	Scre	ens	Hrs	Drilling Circulating	g 4.
BARABLOK			50 lb bag	60			60		VSM-300					Trips	3.
Baracide BARACOR 100			25 kg can 55 gal drum	2			2		VSM-300 VSM-300					Rig Surveys	
BARAZAN D PLUS	}		25 kg bag	37			37		VSM-300					Fishing	
barite BAROFIBRE FINE		1	000 kg bulk 25 lb bag	134.000			134.000							Run Casir Coring	ηĘ
bentonite	1 770/	1	000 kg bulk				42.000		Lhudaa aaala		0			Reaming	
calcium chloride fla caustic soda	ike //%		25 kg bag 25 kg pail	49 63			49 63		Hydrocyclo D 16	ne Cones	Scre	ens	Hrs	Testing Logging	
Circal 60/16			25 kg sack 25 kg sack	60			60							Dir Work	
Circal Y citric acid			25 kg sack	42			42		1					Repair Other	16.
CLAYSEAL PLUS			216 kg drum	19			19		Centrifuge		Feed 40.		Hrs	Total	24.0
CON DET DEXTRID LTE			55 gal drum 25 kg sack	8 68			68		Centrifuge Centrifuge	3,000 3,000				Rotating ROP	4.5 29.5
EZ SPOT			55 gal drum	8			110		Fluid Values	a Duankalawa		Court Mar	ط	Dil Rate	0.0
EZ-MUD Kwikseal Fine			25 kg pail 40 lb bag	110 38			38		Active	e Breakdown bbl	Additions	Spud Mu		sses	bbl
lime			25 kg bag	84			84		Annulus Pipe Cap	211.3	Base		Fluid Du	ımped	
N-DRIL HT PLUS Omyacarb 5			50 lb bag 25 kg bulk	90.000			90.000		Active Pits		Drill Water Dewatering	050.3	Transfe SCE	iieu	
PAC-L			25 kg bag	55			55		Total Hole	215.4	Sea Water		Evapora	ation	
potassium chloride sapp			1000 kg bag 25 kg bag	9 40			9 40		Total Circ Reserve	579.4 1431.0	Whole Mud Barite		Trips Other		-250.0
soda ash	_		25 kg bag	23			23		Prev Vol	2040.0	Chemicals		Total Su		
sodium bicarbonate sodium sulfite	9		25 kg bag 25 kg bag	36 24			36 24		Net Change Total Vol	2010.4	Other Total	650.3	Downho Total Lo	osses	-250.0
				Total Dail	v Cost			¢067.F0	Fluid	Types	Vol bbl	De	viation I	nformatio	n
Daily Products Cos Cumulative Produc	ts Cost		\$967.50	Total Cun	nulative Co				Seawater KCl/Polymer			Survey MI Survey T\			m m
Baroid Representat Office	tives 90 Talinga	Brian A	uckram		Gerald Lar	nge Telephon	e 61-03 (9581-7555	l			Angle Direction			Deg
Office	90 railinga	Augtral	io I td			1 elebilott	- 01-03-8	0001-7000	ł			Direction	s.I		

	Da	ily Drilli	na Flui	d Rer	ort				Date Spud Date		05/11/2008	Depth Rig Activit		136.0 m	1
Operator		,		port For						05/10/200 Well Name			Wait on	cement	
3D Oil Itd			SI	naughan	Corless					Wardie-1					
Contractor Seadrill				port For icheal Ba	arrv					Rig Name West Trite	on	Unit System Apache	m		
Country		State/Province			,	• •	Area/County	'		Field or Bl					
Australia Bit Information		Victoria D	Orill String (in) / (m)		Bass Strai in Ca	sing m			VIC P57	culation/Hyd	Iraulics D	ata		
Bit Size	in		OD	ID	Length		Set MD	Model		Nat-1	4-P-220	Nat-14	-P-220	Nat-14-F	
Make/Type Jets								Bore in Strokes			.500 4.000	6.5 14.0		6.50 14.00	
TFA	sq-in							Eff(%)			97	9		97	
Jets Velocity Jet Impact Force	m/sec lbf							bbl/strk SPM		0	.139 0	0.1 0		0.13 0	39
Bit HHSI	hhp/in2							gpm bb					Oine Dan	Ĺ	
Press Drop @ Bit Bit Depth	psi m	Open Hole	36.000		59.2			Total Gi Total Ci	PM irc Time		AV, Riser AV min DP		Circ Pre		
ECD @ Csg Shoe	SG							BU Tim			AV max DC		Press D		
ECD @ Bit Properties	SG	1	2		3	4	Tar	Total St gets		gram	BU Strokes	Fluid	Press D		
Source		Pit #1	Pit #1								Fluid Type		Spud M	ud	
Time Depth m		4:35 136	13:45 136								Mixed pit of	spud mud	-		
FL Temp Deg C	1.0	റേ ത രാ	1.060.@	22											
Density @ Deg C SG FV @ Deg C sec/qt		60 @ 22 3 @ 22	1.060 @ 96 @ 22												
PV @ Deg C CP	25	5 @ 22	24 @ 22	2											
YP lbs/100 ft2 GELS lbs/100 ft2	50	123)/56/65	121 48/55/6	3											
600/300		.0/148.0 .0/118.0	169.0/145 137.0/116												
200/100 6/3		3.0/63.0	67.0/61.												
API Filt ml/30 min HTHP @ Deg C ml/30 min															
Cake API/HTHP 32nd in															
Corr Solid % by Vol NAP/Water % by Vol		3.8 -/96.0	3.8 -/96.0												
Sand % by vol													Activity		
MBT ppb Eq. ppb Eq.		35.0 50 @ 23	35.0 9.50 @ 2	23							Continue to				
ALK Mud Pm	0.0	0 0 20	0.00 0 1								Pump 200bl displace hol				
ALK Filt Pf/Mf Chlorides mg/l											Lay out 2 x 8				
Tot. Hardness mg/l		2/2 2									conductor.	tab inta b	ala furratua		
LGS/HGS % by Vol LGS/HGS ppb		73/2.51	3.6/0.2 32.73/2.5								Attemps to s visibility on t			ited by poc	וכ
ASG SG		2.673	2.673								Stab in and				
											and landing conductor cl	•			
Additional Properties											Trouble sho		-	torque up	
Product Name		Units	Start	Rec	Used	End	Cost		S	Solids Con	trol Equipm	ent		Tim	e
Spud Mud calcium chloride flake 77%		25 kg bag		630.0	630.0	21	\$2,438.10 \$386.96		Shakei	r	Scree	ens	Hrs	Drilling Circulating	0.5 0.5
Amodrill 1235		1500 l drum	2			2		VSM-300)					Trips	2.5
BARABLOK Baracide		50 lb bag 25 kg can	60			60		VSM-300 VSM-300						Rig Surveys	
BARACOR 100		55 gal drum	4			4		VSM-300						Fishing	
BARAZAN D PLUS barite	1	25 kg bag 000 kg bulk				37 134.000		ļ						Run Casin Coring	าง 19.5
BAROFIBRE FINE		25 lb bag	50			50								Reaming	
bentonite caustic soda	1	000 kg bulk 25 kg pail	42.000 63			42.000 63		Hydro D 16	cyclone	Cones 16 4	Scre	ens	Hrs	Testing Logging	
Circal 60/16		25 kg sack	60			60		D 10		10 4				Dir Work	
Circal Y citric acid		25 kg sack 25 kg bag	42 40			42 40								Repair Other	1.0
CLAYSEAL PLUS	2	23 kg bag 216 kg drum	19			19		Cen	trifuge	Speed	Feed	Rate	Hrs	Total	24.0
CON DET		55 gal drum	8			8		Centrifug		3,000				Rotating ROP	0.5
DEXTRID LTE EZ SPOT		25 kg sack 55 gal drum	68			68		Centrifug	е	3,000	40.0	00		Dil Rate	0.00
EZ-MUD		25 kg pail	110			110				reakdown	A -1-1141	Spud Mu		200	
Kwikseal Fine lime		40 lb bag 25 kg bag	38 84			38 84		Annulus	ctive S	bbl	Additions Base	bbl	Fluid Du	ses imped	bbl
N-DRIL HT PLUS		50 lb bag	55			55		Pipe Ca			Drill Water	721.2	Transfer	red	
Omyacarb 5 PAC-L		25 kg bulk 25 kg bag	90.000			90.000		Active F Total He			Dewatering Sea Water		SCE Evapora	ition	
potassium chloride		1000 kg bag	9			9		Total Ci	irc	347.0	Whole Mud		Trips		
sapp soda ash		25 kg bag 25 kg bag	40 23			40 23		Reserve Prev Vo		1575.0 1646.4	Barite Chemicals		Other Total Su	ırface	-550.0
sodium bicarbonate		25 kg bag	36			36		Net Cha	ange	171.2	Other		Downho	le	
sodium sulfite		25 kg bag	24			24		Total Vo	ol Fluid Typ	2166.5 Des	Total Vol bbl		Total Lo	sses nformation	-550.0
Daily Products Cost			Total Daily				\$2,825.06	KCI/Pol	ymer			Survey M			m
Daily Products Cost Cumulative Products Cost Baroid Representatives	Brian A	\$3,792.56	Total Cumu				\$2,825.06 \$3,792.56	KCI/Pol	ymer er			Survey M Survey T\ Angle			m Deg

Pi- Termo Des C	Baroid Flu	uid Sei	rvice	es										Report No	0	004	
Committee			D-	D.:		dal Dan						A	05/12/2008		v	161.0 m	1
District	-		Da	ווון טרוווו		•	ort				op and a sur	05/10/20				lling	
Separation Sep						•	Corless						1				
Supering	Contractor				i i	Report For						Rig Name			m		
Value Valu				State/Proving		Micheal Ba	ırry	Geograph	ic Area/C	ounty				Apache			
## SESSON 17-501 The Part 17-501 The P	Australia			Victoria				Bass Stra	ait			VIC P57					
Make-Pipe High-Report 17 Fill Pipe 5:00 4007 407 30500 2 22 27 507 4000 14,000			in								Model					Nat-14-	D-220
TFA		HUGHES/N	MXL-T1V			4.000		30.000	@ 1	21.2	Bore in	6	.500	6.5	00	6.50	00
Jude Velocity 101-8 m/sec Other 2,220 0,000 1,									@ 1	32.8		14					
Bit Heise Princip Pr						0.000					bbl/strk	0	.139	0.13	39		
Pross Dong © Bel is to July 150.0 in 15												490				0	
ECD & Co. Station			psi			0.000					Total GPM	960	AV, Riser		Circ Pre		
ECO 4 Bis SC From SC Page 12 Program Page 12		158.0					59.2										
Source	ECD @ Bit			·							Total Strokes	3,380		862	Press D	rop An	
Time	•	es			2		3	4		Tar	gets Pro	gram	Eluid Type	Fluid 1			
Depth													Received M	lud Chemic		iuu	
Density R. Den C. Sq. 1.666 8 22				136									Charged off	Bulk Bento	onite use		
Fig. 10 10 12 12 12 12 12 12														sferred ove	er from V	Vest Seaho	orse
Section Sect													-	ep regime	2 x 30 b	bls floculate	ed
171.0/147.0			24														
1909 1909		lbs/100 ft2											on connecti	ons.			
AFFIEL m/30 min THP @ Dea C m/30 min Cake APIHTHP @ 32nd m m/30 min Cake APIHTHP & 32nd m m/3																	
### PPODUCT Name Units Start Rec Used End Cost Solids Control Equipment Frag TOC at 13th and drill out to 132 8th the Additional Properties Solids Control Equipment Start Speed Solids Control		m1/20 min	69	.0/68.0													
Corr Solid % by vol 2.8																	
NAP/Visiter % by v/ol -97.0				2.0													
MBT																	
DH © De C				20.0									L average OTIL			Out 0	0.11
ALK Nud		рро Ец.														•	
Chlorides mq/													down 30" ha	andling equ	uipment,	make up co	ement
CISSHGS																	
LGSHGS			1	6/1.2										•		•	
Product Name														o ana pion	up unu i	nano ap we	5 11
Product Name	ASG	SG	;	3.281													_
Product Name																	
Sput Murd Sput Sp	Additional Propert	ties														manight wi	
Sput Murd Sput Sp																	
Sput Murd Sput Sp																	
Dentonite	Product Na	ame			Start			End									ie .
Amodrill 1235			1		42,000				. ,			er	Scre	ens	Hrs		
Baracide 25 kg can 2						23.000	13.000		ψ0,40	5.77							_
SARAZAN D PLUS																	0.
Darrite																	
BAROFIBRE FINE		3				60											าง 15.
Calcium chloride flake 77% 25 kg bag 21 21 Hydrocyclone Cones Screens Hrs Testing Logging Circal 60/16 25 kg back 60 48 108																	0.
Circal Y 25 kg sack 60 48 108 25 kg sack 42 96 138 24 25 kg sack 42 96 25 kg sack 40 40 26 kg drum 19 16 35 26 kg drum 25 kg sack 68 68 26 kg drum 26		ake 77%											Scre	ens	Hrs		
Citric acid 25 kg bag 40 40 40 Cltric acid 25 kg bag 40 40 Cltrifuge Speed Feed Rate Hrs Total 24. 24. CON DET 55 gal drum 8 8 Centrifuge 3,000 40.00 Rotating 1. 25 kg bag 24 24 Total Cltric Total Cltric Clt						48					D 16	16 4					
CLAYSEAL PLUS	Circal Y					96											
CON DET			2			16					Centrifuge	Speed	Feed	Rate	Hrs		24.
Dil Rate	CON DET			55 gal drum	8			8			Centrifuge	3,000					1.
Fluid Volume Breakdown Spud Mud Skikseal Fine 40 lb bag 38 38 38 Active bbl Additions bbl Losses bbl											Centrifuge	3,000	40.	00			
Ilime	EZ-MUD			25 kg pail	110			110									
N-DRIL HT PLUS														bbl			bbl
PAĆ-L 25 kg bag 55 55 Total Hole 123.9 Sea Water Whole Mud Arguer Sapp 25 kg bag 40 40 Reserve 2024.0 Barite Other Sadium bicarbonate 25 kg bag 36 36 Net Change 350.7 Other Sodium sulfite 25 kg bag 24 24 Total Vol 2494.9 Total Total Losses -101.	N-DRIL HT PLUS			50 lb bag	55			55			Pipe Cap	3.8	Drill Water		Transfe		-101.
Total Circ A70.9 Whole Mud Barite Sapp Sodium bicarbonate 25 kg bag 24 24 Total Vol Sapp Sodium sulfite 25 kg bag 24 24 Total Vol Sapp Sodium sulfite Sodiu																ation	
soda ash 25 kg bag 23 Prev Vol 1819.5 Sodium class Chemicals Sodium class 32.7 Total Surface Downhole Sodium class Chemicals Sodium class 32.7 Total Surface Downhole Sodium class Chemicals Sodium class 350.7 Other Sodium class Association class <t< td=""><td></td><td>·</td><td><u> </u></td><td>1000 kg bag</td><td></td><td></td><td></td><td>9</td><td></td><td></td><td>Total Circ</td><td>470.9</td><td>Whole Mud</td><td></td><td>Trips</td><td>2001</td><td></td></t<>		·	<u> </u>	1000 kg bag				9			Total Circ	470.9	Whole Mud		Trips	2001	
Sodium bicarbonate 25 kg bag 36 36 Net Change 350.7 Other 2494.9 Total Vol														20.7		urface	
sodium sulfite 25 kg bag 24 Total Vol 2494.9 Total 451.7 Total Losses -101. Bariol Representatives Brian Auckram Gerald Lange Strack Direction Seawater 347.0 Survey Angle Angle Direction Deg Office 90 Talinga Rd Melbourne Telephone 61-03-9581-7555 Float Vol 2494.9 Total 451.7 Total Losses -101. Fluid Types Vol bbl Deviation Information MCI/Polymer 669.0 Survey MD Survey MD m Seawater 347.0 Survey TVD m Angle Deg		e						36			Net Change				Downho	ole	
Daily Products Cost \$7,857.60 Total Daily Cost \$7,857.60 KCl/Polymer 669.0 Survey MD m Cumulative Products Cost \$11,650.16 Total Cumulative Cost \$11,650.16 Seawater 347.0 Survey TVD m Baroid Representatives Brian Auckram Gerald Lange Angle Deg Office 90 Talinga Rd Melbourne Telephone 61-03-9581-7555								24				2494.9	Total				
Cumulative Products Cost \$11,650.16 Total Cumulative Cost \$11,650.16 Seawater 347.0 Survey TVD m Baroid Representatives Brian Auckram Gerald Lange Angle Deg Office 90 Talinga Rd Melbourne Telephone 61-03-9581-7555 Direction	Daily Products Cos	st		\$7,857.60	Total Dail	y Cost			\$7,85	7.60		hea	669.0	Survey MI	D	mormation	
Office 90 Talinga Rd Melbourne Telephone 61-03-9581-7555 Direction			Brian ^	\$11,650.16	Total Cun	nulative Co			\$11,65	0.16	Seawater		347.0		/D		m
	Office	90 Talinga	Rd Mell	bourne		oeiaiu Läf		e 61-03	-9581-7 <u>5</u>	555							⊳eg

Baroid Flu	uid S e	rvice	es							Date		05/13/2008	Report N	o	005 751.0 r	<u> </u>
		Da	ily Drilli	ng Flu	id Rep	ort				Spud Date			Rig Activit		and ceme	
Operator 3D Oil Itd			-		Report For Shaughan	Corless /S	Stefan Schi	midt			Well Name Wardie-1			cac.i.g	4114 001110	
Contractor Seadrill					Report For Micheal Ba		tolan com	iiiut			Rig Name West Trito		Unit Syste Apache	m		
Country			State/Province		MICHEAI DA	шу		ic Area/County	,		Field or Bl		Араспе			
	ormation		Victoria E		(in) / (m)			asing m				culation/Hyd				
Bit Size Make/Type Jets TFA Jets Velocity Jet Impact Force Bit HHSI Press Drop @ Bit Bit Depth	3x2 0.920	MXL-T1V 20 sq-in m/sec lbf hhp/in2 psi	Drill Pipe Drill Collar Other Other Other Motor	OD 5.500 8.250 8.125 8.250 8.125 9.625	1D 4.000 2.875 0.000 0.000 0.000 0.000	43.7 67.4 19.0 8.5 11.9 10.5	30.000 20.000		Model Bore i Stroke Eff(%) bbl/strl SPM gpm bl Total C	s in < bl/min	6 14 0 <u>574</u> 1,135	4-P-220 .500 4.000 97 .139 98 13.66 AV, Riser AV min DP		500 000 7 39		00 000 7 39
ECD @ Csg Shoe ECD @ Bit		SG SG	Open Hole	17.500						ne , min Strokes		AV max DC BU Strokes		Press D		
Propertie Source	es		1 Pit #4	2 Pit #		3	4	Tar	gets		gram	Fluid Type		Treatmer Seawat	nts	
Depth FL Temp Density @ Deg C FV @ Deg C PV @ Deg C PV @ Deg C YP GELS 600/300 200/100 6/3 API Filt HTHP @ Deg C Cake API/HTHP Corr Solid NAP/Water Sand MBT pH @ Deg C ALK Mud ALK Filt Chlorides Tot. Hardness LGS/HGS LGS/HGS ASG Additional Properi	m Deg C SG sec/qt cP lbs/100 ft2 lbs/100 ft2 lbs/100 min 32nd in % by Vol % by Vol ppb Eq. Pm Pf/Mf mg/l mg/l ypb SG	10 23 2 2 5 168 138 70 9.5	250 1.060 0 @ 22 3 @ 22 122 122 1.056/68 1.0/145.0 1.0/69.0 2.8 2/97.0 30.0 1.0 @ 23 1.0 @ 23 1.0 @ 23 1.0 @ 23 1.0 @ 23	672 1.060 @ 100 @ 24 @ 103 49/555. 151.0/1 118.0/6 59.0/5 2.8 -/97. 30.0 9.50 @	© 22 22 22 22 22 364 27.0 98.0 77.0							Continue to with Seawat 30bbls floco PHG spotter At TD sweeip pills and circ Then displar KCI/polymer Working BH	Rig drill 17 1/2 ter and Sw ulated PH d the BH p the hole culate 2 x l cce hole wir r mud and	Activity "hole from the from t	om 161m t weep regir drilling and nnections. 100bbl Hi \u00e4 up. is of Viscos	o 751m ne 2 x 30bbl visc
Droduot No	omo		Linita	044	Pag	III	End	Cost			Polido Con	tral Equipm	ant		Tin	20
Product Na bentonite caustic soda lime Amodrill 1235 BARABLOK Baracide BARACOR 100 BARAZAN D PLUS barite	8	1	Units 000 kg bulk 25 kg pail 25 kg bag 1500 I drum 50 lb bag 25 kg can 55 gal drum 25 kg bag	63 84 2 60 2 4 97 134.000	Rec	13.000 6 10	57 74 2 60 2 4 97 134.000	Cost \$6,433.44 \$265.14 \$65.50	VSM-30 VSM-30 VSM-30 VSM-30 VSM-30	Shake 0 0 0 0 0 0	r	scre	ens	Hrs	Drilling Circulatin Trips Rig Surveys Fishing Run Casi Coring Reaming	14.0 g 1.5 8.5
BAROFIBRE FINE calcium chloride flat Circal 60/16 Circal Y citric acid CLAYSEAL PLUS CON DET CON DET DEXTRID LTE			25 lb bag 25 kg bag 25 kg sack 25 kg sack 25 kg bag 216 kg drum 55 gal drum 5 gal can 25 kg sack	50 21 60 90 40 35 8	32 72		50 21 60 90 40 35 8 32 140		D 16		Cones 16 4 Speed 3,000 3,000	Feed 40.0	Rate	Hrs	Testing Logging Dir Work Repair Other Total Rotating ROP Dil Rate	24.0 14.0 42.1
EZ SPOT EZ-MUD			55 gal drum 25 kg pail	110			110			Volume Buctive	reakdown bbl	Additions	Seawate bbl		sses	bbl
EZ-MUD DP Kwikseal Fine N-DRIL HT PLUS NO-SULF Omyacarb 5 PAC-L potassium chloride sapp soda ash			25 kg bag 40 lb bag 50 lb bag 17 kg pail 25 kg bulk 25 kg bag 1000 kg bag 25 kg bag 25 kg bag	38 55 90.000 55	40 48 71		40 38 55 48 90.000 126 9 40 23		Annulu Pipe C Active Total I Total C Resen Prev V Net Ch	is ap Pits Hole Circ /e ol nange	120.4 4.0 406.0 124.4 530.4 347.0 780.6 530.4	Base Drill Water Dewatering Sea Water Whole Mud Barite Chemicals Other	3299.1 3299.1	Fluid Du Transfe SCE Evapora Trips Other Total Su Downho	umped erred ation urface ble	-2518.5
Daily Products Cos			\$6,764.08			ot		\$6,764.08		Лud	-30	227.0	Survey M	D	751.	.0 m
Cumulative Production Baroid Representation Office Warehouse		a Rd Mel			nulative Co Gerald Lan			\$18,414.24 9581-7555 66-881-445	KCI/Po Water	olymer			Survey To Angle Direction Horiz Dis			.8 m 85 Deg 80 m

Baroid Representatives Brian Auckram
Office 90 Talinga Rd Melbourne
Warehouse c/o of Esso Australia Ltd

	_								Date Spud Date		05/14/2008	Depth Rig Activity		751.0 r	n
	Da	ily Drilli		•	ort				Spuu Date	05/10/200				and ceme	nt
Operator 3D Oil Itd				Report For Shaughan	Corless /S	tofan Sch	midt		<u> </u>	Well Name Wardie-1)				
Contractor				Report For	Corress /s	ileian Sch	mut			Rig Name		Unit Syster	m		
Seadrill		1		Micheal Ba	arry					West Trite		Apache			
Country Australia		State/Province Victoria	ce/Region			Geograph Bass Stra	ic Area/Count	у		Field or BI VIC P57	ock				
Bit Information				g (in) / (m)		in C	asing m			Cir	culation/Hyd				
Bit Size Make/Type	in		OD	ID	Length	OD 30.000	Set MD	Model Bore i	in		4-P-220 .500	Nat-14- 6.5		Nat-14- 6.5	
Jets						20.000		Stroke	s in		4.000	14.0		14.0	
TFA	sq-in							Eff(%)		0	97	97		97	
Jets Velocity Jet Impact Force	m/sec lbf							bbl/strl SPM	К	0	.139 0	0.1		0.13	
Bit HHSI	hhp/in2							gpm bl					0. 0		
Press Drop @ Bit Bit Depth	psi m	Open Hole	36.000		59.2	ł		Total C	GPM Circ Time		AV, Riser AV min DP		Circ Pre		
ECD @ Csg Shoe	SG	Open Hole	17.500		00.2				me , min		AV max DC		Press D	Orop DP	
ECD @ Bit Properties	SG	1	2		3	4	Та	Total S rgets	Strokes	gram	BU Strokes	Fluid 1	Press D		
Source	F	Pit #1			<u> </u>	7	Ia	gets	110	grain	Fluid Type	i iuiu i	Seawa		
Time	1	12:00									Mixing mud	for next se	ection (12	2 1/4" hole)	١.
Depth m FL Temp Deg C		0									Chemicals t	_	ed off or	n frist repor	t of the
Density @ Deg C SG		1.060									new section	•			
FV @ Deg C sec/qt PV @ Deg C cP		0 @ 22 1 @ 22						-							
YP lbs/100 ft2	2	103													
GELS lbs/100 ft2		0/55/64													
600/300 200/100		.0/127.0 3.0/98.0									1				
6/3		.0/57.0													
API Filt ml/30 min HTHP @ Deg C ml/30 min									-						
Cake API/HTHP 32nd in															
Corr Solid % by Vol		2.3 /97.5													
NAP/Water % by Vol Sand % by vol		797.5										Rig	Activity		
MBT ppb Eq.		30.0									Make up lar				
pH @ Deg C ALK Mud Pm	9.5	0 @ 23									POOH with			-	•
ALK Filt Pf/Mf											RIH to 113n obstruction			•	
Chlorides mg/l Tot. Hardness mg/l											unable to cl			. iaiig ap a	
LGS/HGS % by Vol		.6/1.7									POOH and				
LGS/HGS ppb ASG SG		0/24.69 3.788									RIH. Runni	ng Casing	at midni	ght.	
A00 00	·	5.7 00													
Additional Dranautica															
Additional Properties															
Product Name	U	Jnits (Start	Rec	Used	End	Cost				trol Equipm			Tin	ne 💮
Drilling Fluids Engineer 2 Drilling Fluids Engineer		day(s) day(s)			1		\$1,250.00 \$1,250.00		Shake	1	Scre	ens	Hrs	Drilling Circulatin	a
Amodrill 1235		1500 l drum	2			2	\$1,200.0	VSM-30	00					Trips	0.
BARABLOK		50 lb bag	60			60		VSM-30 VSM-30						Rig Surveys	
Baracide BARACOR 100		25 kg can 55 gal drum	2			4		VSIVI-30 VSM-30						Fishing	
BARAZAN D PLUS		25 kg bag	97			97		1						Run Casi	ng 23.
barite BAROFIBRE FINE	1	000 kg bulk 25 lb bag	134.000			134.000		-						Coring Reaming	
bentonite	1	000 kg bulk				41.000		Hydr	rocyclone	Cones	Scre	ens	Hrs	Testing	
calcium chloride flake 77%		25 kg bag	21			21		D 16		16 4				Logging Dir Work	
caustic soda Circal 60/16		25 kg pail 25 kg sack	57 60			57 60		1						Repair	
Circal Y		25 kg sack	90			90								Other	
citric acid CLAYSEAL PLUS		25 kg bag 216 kg drum	40 35			40 35		Centrifu	ntrifuge	Speed 3,000	Feed 40.0		Hrs	Total Rotating	24.
CON DET		55 gal drum	8			8		Centrifu	5	3,000				ROP	
CON DET		5 gal can	32			32								Dil Rate	0.0
DEXTRID LTE EZ SPOT		25 kg sack 55 gal drum	140			140			Volume Bu	bbl	Additions	Seawater bbl		sses	bbl
EZ-MUD		25 kg pail	110			110		Annulu	JS	וטט	Base	וטט	Fluid D	umped	201
EZ-MUD DP		25 kg bag	40			40		Pipe C		400.0	Drill Water		Transfe	erred	
Kwikseal Fine lime		40 lb bag 25 kg bag	38 74			38 74		Active Total F			Dewatering Sea Water	14.8	SCE Evapor	ation	
N-DRIL HT PLUS		50 lb bag	55			55		Total C	Circ		Whole Mud	0	Trips		
NO-SULF		17 kg pail 25 kg bulk	48 90.000			90.000		Reserv Prev V		E20.4	Barite		Other Total S	urface	
Omyacarb 5 PAC-L		25 kg bulk 25 kg bag	126			126		Net Ch			Chemicals Other		Downho	ole	
potassium chloride	1	1000 kg bag	9			9		Total V	/ol ਁ	543.0	Total		Total Lo		_
Daily Products Cost		\$0.00	Total Dai	ly Cost			\$2,500.00	Spud N	Fluid Typ Mud	Jes	Vol bbl 227.0	Survey M		Informatio 751.	n 0 m
Cumulative Products Cost	<u> </u>	\$13,584.48	Total Cur	nulative Co			\$28,584.48	KCI/Po			130.0	Survey T\		706.	8 m
Baroid Representatives Office 90 Talinga	Brian A			Gerald Lar	nge Telephon	e 61-03	9581-7555	Water			256.0	Angle Direction		34.3	5 Deg 0
Warehause c/o of Eco					I+	- 010	0.004.44=	7				Horiz Dior	al.	1	

Report No

006

3aroid Fluid Se	rvice	. S										Report No	0	007	
	D-	: D.::!!	Fl.	d Day					Date Spud Dat	e	05/15/2008	Depth Rig Activity	v	751.0 n	n
	υa	ily Drilli		<u> </u>	ort				opud Dat	05/10/200			, Nipple u	p B.O.P.	
Operator BD Oil Itd				Report For Shaughan	Corlege /9	Stofan Sch	midt			Well Name Wardie-1					
Contractor				Report For	Coness /C	delan Sch	mut			Rig Name		Unit Syster	m		
Seadrill		D (D	(D '	Micheal Ba	arry		- 410			West Trite		Apache			
Country Australia		State/Province Victoria	ce/Region			Bass Stra	ic Area/Cou ait	nty		Field or BI VIC P57	оск				
Bit Information				g (in) / (m)		in C	asing m				culation/Hyd				
Bit Size Make/Type	in		OD	ID	Length	OD 30.000		Mo .2 Bor			4-P-220 .500	Nat-14- 6.50		Nat-14- 6.50	
Jets						20.000	@ 132	.8 Str	okes in	14	4.000	14.0	000	14.0	000
TFA Jets Velocity	sq-in m/sec					13.375	@ 136	5.0 Eff((%) /strk		97 .139	97 0.13		97 0.13	
Jet Impact Force	lbf							SP			0	0.13		0.10	
Bit HHSI Press Drop @ Bit	hhp/in2								m bbl/min tal GPM		AV, Riser		Circ Pre	ee pei	
Bit Depth	psi m	Riser	12.415		77.0	1			al Circ Time		AV, KISEI AV min DP		Tot Pres		
ECD @ Csg Shoe	SG								Time , min		AV max DC		Press D		
ECD @ Bit Properties	SG T	1	2		3	4	Т	argets	tal Strokes Pro	gram	BU Strokes		Press D		
Source											Fluid Type		Seawat	er	
Time Depth m								-			KCI / Polym				1-
FL Temp Deg C											Total KCI / F	Polymer mu	ua mixea	: 1683 bbi	IS.
Density @ Deg C SG											Continue mi	xing KCl p	olymer m	nud for	
FV @ Deg C sec/qt PV @ Deg C cP								+			displacemer		•		
YP lbs/100 ft2															
GELS lbs/100 ft2 600/300	4							+							
200/100															
6/3 API Filt	1							-		-					
HTHP @ Deg C ml/30 min															
Cake API/HTHP 32nd in Corr Solid % by Vol								+							
NAP/Water % by Vol															
Sand % by vol MBT ppb Eq.								-			Set 13 3/8"		Activity	m T\/D 70	2 9m
oH @ Deg C											Rig down el				
ALK Mud Pm								_			cement plug				
ALK Filt Pf/Mf Chlorides mg/l											4000psi. Pu	•			I, Tune
Tot. Hardness mg/l								_			Spacer, and programme.			•	tall
_GS/HGS % by Vol _GS/HGS ppb								+			choke line. I				
ASG SG											nipple up B0				
								+							
Additional Properties															
								+							
Product Name		Jnits	Start	Rec	Used	End	Cost				trol Equipm	ent		Tim	пе
Drilling Fluids Engineer 2		day(s)			1		\$1,250.		Shake	er	Scre	ens	Hrs	Drilling Circulation	a 4.
Drilling Fluids Engineer Amodrill 1235		day(s) 1500 l drum	2		1	2	\$1,250.		л-300 Л-300					Circulating Trips	g 1.
BARABLOK		50 lb bag	60			60		VSN	Л-300					Rig	
Baracide BARACOR 100		25 kg can 55 gal drum	2			2			Л-300 Л-300					Surveys Fishing	
BARAZAN D PLUS		25 kg bag	97			97			VI 500					Run Casir	ng 18.
barite BAROFIBRE FINE	1	000 kg bulk 25 lb bag	134.000 50			134.000		_						Coring Reaming	
bentonite	1	000 kg bulk				41.000		Н	lydrocyclone	Cones	Scre	ens	Hrs	Testing	
calcium chloride flake 77%		25 kg bag	21			21		D 16	6	16 4				Logging	
caustic soda Circal 60/16		25 kg pail 25 kg sack	57 60			57 60		-						Dir Work Repair	
Circal Y		25 kg sack	90			90								Other	4.0
citric acid CLAYSEAL PLUS		25 kg bag 216 kg drum	40 35			40 35			Centrifuge trifuge	3,000	Feed 40.0		Hrs	Total Rotating	24.0
CON DET		55 gal drum	8			8			itrifuge	3,000				ROP	
CON DET		5 gal can	32			32		Eur	:- \/ - D			0		Dil Rate	0.00
DEXTRID LTE EZ SPOT		25 kg sack 55 gal drum	140			140		FIU	iid Volume B Active	bbl	Additions	Seawater bbl		sses	bbl
EZ-MUD		25 kg pail	110			110			nulus		Base		Fluid Du		
EZ-MUD DP Kwikseal Fine		25 kg bag 40 lb bag	40 38			40 38			e Cap tive Pits	406.0	Drill Water Dewatering		Transfe SCE	rred	-69.3
ime		25 kg bag	74			74		Tot	al Hole	66.8	Sea Water		Evapora	ation	00.
N-DRIL HT PLUS NO-SULF		50 lb bag 17 kg pail	55 48			55 48			al Circ serve	406.0	Whole Mud Barite		Trips Other		
Omyacarb 5		25 kg bulk				90.000			ev Vol	543.0	Chemicals		Total Su	urface	
PAC-L		25 kg bag	126			126			t Change	-69.3	Other		Downho		00.
potassium chloride		1000 kg bag	9			9		ı ot	al Vol Fluid Ty	472.8 pes	Total Vol bbl		Total Lo	nformatio	-69.3 n
Daily Products Cost			Total Dai				\$2,500.		ud Mud		153.0	Survey MI	D	751.	.0 m
Cumulative Products Cost Baroid Representatives	Gerald	\$13,584.48 Lange		nulative Co James Mu		<u> </u>	 გა1,∪84.	+o KC	I/Polymer		130.0	Survey TV Angle	יט	706. 34.3	.8 m 85 Deg
Office 90 Talinga	a Rd Mell	oourne			Telephon		9581-7555					Direction	N.	24	

Baroid Flu											Date		05/16/2008			751.0	m
		Da	ily Drilli	ing Flເ	ıid Re	oort					Spud Date	05/10/20	08	Rig Activit		ut cement	t
Operator					Report For							Well Name	9		2g		
3D Oil Itd Contractor					Report For	Corless /S	stefan Sch	nmidt				Wardie-1 Rig Name		Unit Syste	m		
Seadrill			Ctata/Duavin		Micheal Ba	arry	Caaaaaa	.i. A/				West Trit		Apache			
Country Australia			State/Provine Victoria	-			Geograph Bass Str		ounty	,		Field or BI VIC P57	IOCK				
Bit Info	ormation 12.250	Lin		Orill String	g (in) / (m) ID	Length		Casing n Set	n MD	Model			culation/Hyd 14-P-220	draulics D Nat-14		Nat-14	1-P-220
Make/Type	REEDHYC/R	RSX616MA16	Drill Pipe	5.500	4.670	570.8	13.375			Bore	in	6	6.500	6.5	500	6.5	500
Jets TFA	3x15 : 1 107	3x16 ′sq-in	Drill Pipe Drill Collar	5.500 8.250	3.250 2.875	112.7 21.8				Stroke Eff(%)		1.	4.000 97	14.0 9			.000 97
Jets Velocity		m/sec	Other	8.250	0.000	21.3				bbl/str		C).139	0.1	39	0.1	139
Jet Impact Force Bit HHSI		lbf hhp/in2	Other	9.250	0.000	9.4				SPM gpm b	bl/min	527	90 12.54	9) 527	0 1 <mark>12.54</mark>	(0
Press Drop @ Bit		psi								Total (GPM	1,053	AV, Riser		Circ Pre		
Bit Depth ECD @ Csg Shoe	736.0) m SG									Circ Time me , min		AV min DP AV max DC		Tot Pres		
ECD @ Bit		SG	<u> </u>						T	Total S	Strokes	2,909	BU Strokes	377	Press D	rop An	
Propertie Source	es		1 Pit #8	2 Pit #		3	4		ıar	gets	Pro	gram	Fluid Type		Treatmei Seawat		
Time			16:00 751	22:0 75°									KCI / Polym	er mud mi			
Depth FL Temp	m Deg C												Total KCI / I	Polymer m	ud mixed	l: 1691 bl	bls.
Density @ Deg C FV @ Deg C	SG sec/qt		60 @ 24 2 @ 24	1.060 @							1.000	1.150	Mixed 50 bb	ols of Hi-Vi	s KCI/Po	lymer/ Cla	ayseal
PV @ Deg C	cР	12	2 @ 49	10 @	49								plus mud w	ith Barazar	n D+.		
YP GELS	lbs/100 ft2 lbs/100 ft2		22 /11/12	25 8/11/					+		1	45	Continue m and volume		oolymer n	nud for dil	lution
600/300	IDO/ IUU ILZ	46	6.0/34.0	45.0/3	35.0								Jana volunie	•			
200/100 6/3			0.0/22.0 0.0/8.0	28.0/2 10.0/					+				-				
API Filt	ml/30 min		7.2	7.0)				(X		1.0						
HTHP @ Deg C Cake API/HTHP	ml/30 min 32nd in	1	14.6	14.					(X		1.0	12.0					
Corr Solid	% by Vol		1.3	1.3	В				I								
NAP/Water Sand	% by Vol % by vol		-/96.1	-/96	.1				+					Rig	a Activity		
MBT	ppb Eq.		5.0 9.50	5.0 9.50 @							0.00	0.50	Pressure te				
pH @ Deg C ALK Mud	Pm		0.80	0.8					+		8.80	9.50	and test MV collar 732.5				
ALK Filt Chlorides	Pf/Mf		45/1.70 31,000	0.45/1 31,0					\perp				Drill top of o				
Tot. Hardness	mg/l mg/l		320	320)								seawater.				
LGS/HGS LGS/HGS	% by Vol ppb		.3/0.0 .58/0.46	1.3/0 11.58/													
ASG	SG		2.639	2.63													
									+								
Additional Proper KCL %	ties % by vol		7.5	7.5							6.0	8.0					
PHPA Concentration			0.30	0.3							0.0	6.0					
Product Na Drilling Fluids Engi			Units day(s)	Start	Rec	Used 1	End	\$1,2			Shake		ntrol Equipm Scre		Hrs	Tii Drilling	me 2.
Drilling Fluids Engi			day(s)			1		\$1,2	50.00	VSM-30	00		20 20 20 89 89	9 89 89	1113	Circulatii	ng
CLAYSEAL PLUS potassium chloride	<u>, </u>		216 kg drum 1000 kg bag		18	24				VSM-30 VSM-30			20 20 20 89 89 20 20 20 20 89 89			Trips Rig	8. 1.
BARAZAN D PLUS			25 kg bag	97		46	51	\$7,00	03.04	VSM-30	00		20 20 20 89 89			Surveys	
PAC-L DEXTRID LTE			25 kg bag 25 kg sack			60				VSM-30	00					Fishing Run Cas	sinc
EZ-MUD			25 kg pail	110		8	102	\$68	36.64]						Coring	1
EZ-MUD DP caustic soda			25 kg bag 25 kg pail			8			36.64 53.52		rocyclone	Cones	Scre	ens	Hrs	Reaming Testing	g 2.
Baracide			25 kg can	2		2		\$17	74.74	D 16		16 4			10	Logging	
soda ash Amodrill 1235			25 kg bag 1500 l drum			4	19		53.00	4						Dir Work Repair	\ 1. 1.
BARABLOK			50 lb bag	60			60									Other	8.
BARACOR 100 barite			55 gal drum 1000 kg bulk				134.000			Centrifu	ntrifuge	Speed 3,000	Feed 40.		Hrs	Total Rotating	24. 1 5.
BAROFIBRE FINE			25 lb bag	50			50			Centrifu		3,000				ROP	
bentonite calcium chloride fla	ake 77%	1	1000 kg bulk 25 kg bag				41.000			Fluid	Volume Bı	reakdown		Seawater	r	Dil Rate	0.0
Circal 60/16			25 kg sack	60			60			A	Active	bbl	Additions	bbl	Los	sses	bbl
Circal Y citric acid			25 kg sack 25 kg bag				90			Annul			Base Drill Water		Fluid Du Transfe		
CON DET			55 gal drum	8			8			Active	Pits	309.0	Dewatering		SCE		-136.
CON DET EZ SPOT			5 gal can 55 gal drum				32			Total I			Sea Water Whole Mud		Evapora Trips	ation	
KCL Tech Grade (b	bulk)		1000 kg bulk		9.000		9.000			Reser	ve		Barite		Other	,	
Kwikseal Fine lime			40 lb bag 25 kg bag				38 74			Prev \ Net Cl			Chemicals Other		Total Su		
N-DRIL HT PLUS			50 lb bag				55			Total \	√ol ਁ	405.4	Total	_	Total Lo	sses	-136.
Daily Products Cos	st	 	\$49,972.82	Total Dai	ly Cost			\$52,4	72.82	KCI/Po	Fluid Typolymer	oes	Vol bbl 1691.0	Survey M		nformatio 751	on 1.0 m
Cumulative Production	cts Cost	Gerald	\$63,557.30					\$83,5			-			Survey T\ Angle		706	6.8 m .35 Deg
Office	90 Talinga	a Rd Mel	bourne		James Mu	Telephon	e <u>61-0</u> 3	3-9581-7	555	1				Direction			.35 Deg .40
Warehouse	c/o of Ess	o Austra	lia Ltd			Telephone	e 61-3-	56-881-4	45					Horiz Dis	pl.		m

3aroid Fluid Se	rvice	. S										Report No	0	007	
	D-	: D.::!!	Fl.	d Day					Date Spud Dat	e	05/15/2008	Depth Rig Activity	v	751.0 n	n
	υa	ily Drilli		<u> </u>	ort				opud Dat	05/10/200			, Nipple u	p B.O.P.	
Operator BD Oil Itd				Report For Shaughan	Corlege /9	Stofan Sch	midt			Well Name Wardie-1					
Contractor				Report For	Coness /C	delan Sch	mut			Rig Name		Unit Syster	m		
Seadrill		D (D	(D '	Micheal Ba	arry		- 410			West Trite		Apache			
Country Australia		State/Province Victoria	ce/Region			Bass Stra	ic Area/Cou ait	nty		Field or BI VIC P57	оск				
Bit Information				g (in) / (m)		in C	asing m				culation/Hyd				
Bit Size Make/Type	in		OD	ID	Length	OD 30.000		Mo .2 Bor			4-P-220 .500	Nat-14- 6.50		Nat-14- 6.50	
Jets						20.000	@ 132	.8 Str	okes in	14	4.000	14.0	000	14.0	000
TFA Jets Velocity	sq-in m/sec					13.375	@ 136	5.0 Eff((%) /strk		97 .139	97 0.13		97 0.13	
Jet Impact Force	lbf							SP			0	0.13		0.10	
Bit HHSI Press Drop @ Bit	hhp/in2								m bbl/min tal GPM		AV, Riser		Circ Pre	ee pei	
Bit Depth	psi m	Riser	12.415		77.0	1			al Circ Time		AV, KISEI AV min DP		Tot Pres		
ECD @ Csg Shoe	SG								Time , min		AV max DC		Press D		
ECD @ Bit Properties	SG T	1	2		3	4	Т	argets	tal Strokes Pro	gram	BU Strokes		Press D		
Source											Fluid Type		Seawat	er	
Time Depth m								-			KCI / Polym				1-
FL Temp Deg C											Total KCI / F	Polymer mu	ua mixea	: 1683 bbi	IS.
Density @ Deg C SG											Continue mi	xing KCl p	olymer m	nud for	
FV @ Deg C sec/qt PV @ Deg C cP								+			displacemer		•		
YP lbs/100 ft2															
GELS lbs/100 ft2 600/300	4							+							
200/100															
6/3 API Filt	1							-							
HTHP @ Deg C ml/30 min															
Cake API/HTHP 32nd in Corr Solid % by Vol								+							
NAP/Water % by Vol															
Sand % by vol MBT ppb Eq.								-			Set 13 3/8"		Activity	m T\/D 70	2 9m
oH @ Deg C											Rig down el				
ALK Mud Pm								_			cement plug				
ALK Filt Pf/Mf Chlorides mg/l											4000psi. Pu	•			I, Tune
Tot. Hardness mg/l								_			Spacer, and programme.			•	tall
_GS/HGS % by Vol _GS/HGS ppb								+			choke line. I				
ASG SG											nipple up B0				
								+							
Additional Properties															
								+							
Product Name		Jnits	Start	Rec	Used	End	Cost				trol Equipm	ent		Tim	пе
Drilling Fluids Engineer 2		day(s)			1		\$1,250.		Shake	er	Scre	ens	Hrs	Drilling Circulation	a 4.
Drilling Fluids Engineer Amodrill 1235		day(s) 1500 l drum	2		1	2	\$1,250.		л-300 Л-300					Circulating Trips	g 1.
BARABLOK		50 lb bag	60			60		VSN	Л-300					Rig	
Baracide BARACOR 100		25 kg can 55 gal drum	2			2			Л-300 Л-300					Surveys Fishing	
BARAZAN D PLUS		25 kg bag	97			97			VI 500					Run Casir	ng 18.
barite BAROFIBRE FINE	1	000 kg bulk 25 lb bag	134.000 50			134.000		_						Coring Reaming	
bentonite	1	000 kg bulk				41.000		Н	lydrocyclone	Cones	Scre	ens	Hrs	Testing	
calcium chloride flake 77%		25 kg bag	21			21		D 16	6	16 4				Logging	
caustic soda Circal 60/16		25 kg pail 25 kg sack	57 60			57 60		-						Dir Work Repair	
Circal Y		25 kg sack	90			90								Other	4.0
citric acid CLAYSEAL PLUS		25 kg bag 216 kg drum	40 35			40 35			Centrifuge trifuge	3,000	Feed 40.0		Hrs	Total Rotating	24.0
CON DET		55 gal drum	8			8			itrifuge	3,000				ROP	
CON DET		5 gal can	32			32		Eur	:- \/ - D			0		Dil Rate	0.00
DEXTRID LTE EZ SPOT		25 kg sack 55 gal drum	140			140		FIU	iid Volume B Active	bbl	Additions	Seawater bbl		sses	bbl
EZ-MUD		25 kg pail	110			110			nulus		Base		Fluid Du		
EZ-MUD DP Kwikseal Fine		25 kg bag 40 lb bag	40 38			40 38			e Cap tive Pits	406.0	Drill Water Dewatering		Transfe SCE	rred	-69.3
ime		25 kg bag	74			74		Tot	al Hole	66.8	Sea Water		Evapora	ation	00.
N-DRIL HT PLUS NO-SULF		50 lb bag 17 kg pail	55 48			55 48			al Circ serve	406.0	Whole Mud Barite		Trips Other		
Omyacarb 5		25 kg bulk				90.000			ev Vol	543.0	Chemicals		Total Su	urface	
PAC-L		25 kg bag	126			126			t Change	-69.3	Other		Downho		00.
potassium chloride		1000 kg bag	9			9		ı ot	al Vol Fluid Ty	472.8 pes	Total Vol bbl		Total Lo	nformatio	-69.3 n
Daily Products Cost			Total Dai				\$2,500.		ud Mud		153.0	Survey MI	D	751.	.0 m
Cumulative Products Cost Baroid Representatives	Gerald	\$13,584.48 Lange		nulative Co James Mu		<u> </u>	 გა1,∪84.	+o KC	I/Polymer		130.0	Survey TV Angle	יט	706. 34.3	.8 m 85 Deg
Office 90 Talinga	a Rd Mell	oourne			Telephon		9581-7555					Direction	N.	24	

Baroid Flu	id Se	rvice	es							_				Report No	0	009	
		Da	ily Drilli	ing Flu	iid R	eport					Date Spud Date	05/10/200	05/17/2008 ns	Depth Rig Activity		1,446.0 ling	m
Operator					Report F	or)					Well Name			Dill	iiig	
3D Oil ltd Contractor					Report F		teran Scr	imiat				Wardie-1 Rig Name		Unit Syster	m		
Seadrill Country			State/Provin		Micheal	Barry	Geograph		/County	/		West Trite Field or BI		Apache			
Australia Bit Infor	rmation		Victoria	Orill String	(in) / (m)	Bass Str	ait asing	m			VIC P57 Cir	culation/Hyd	draulics Da	ata		
Bit Size Make/Type	12.250 REEDHYC/R		Drill Pipe	OD 5.500	1D 4.670	Length		Set @	MD 136.0	Model Bore in			4-P-220 .500	Nat-14- 6.5			1-P-220 500
Jets TFA	3x15 3 1.107	3x16	Drill Pipe Drill Collar	5.500 8.250	3.250 2.875	112.7			100.0	Strokes Eff(%)	in	14	4.000 97	14.0	000	14.	.000 97
Jets Velocity	94.9	m/sec	Other	8.250	0.000	21.3				bbl/strk			.139	0.13	39	0.1	139
Jet Impact Force Bit HHSI	1621.7 4.31	lbf hhp/in2	Other	9.250	0.000	9.4				SPM gpm bbl/	/min	538	92 12.82	92 538	12.82		0
Press Drop @ Bit Bit Depth	809 1,446.0									Total GF Total Cir			AV, Riser AV min DP	64.9	Circ Pre		200 161
ECD @ Csg Shoe ECD @ Bit	1.126 1.123									BU Time Total Str	,		AV max DC BU Strokes		Press D		73
Properties			1 ow Line	2 Pit #	C	3 Pit #6	Hyd Pit #		Tar	gets		gram		Fluid T	reatme	nts	
Source Time			4:30	9:52	2	14:53	21:0	00					Fluid Type KCI / Polym	er mud mix	ked: 993	.6 bbls	
Depth FL Temp	m Deg C		770	968 31		1,156 35	1,38 35						Total KCI / I	•			
Density @ Deg C FV @ Deg C	SG sec/qt		70 @ 25 7 @ 25	1.090 @ 58 @		1.100 @ 33 55 @ 33	1.120 @ 58 @				1.000	1.150	Continue m	ixing KCl p	olymer n	nud for dil	lution
PV @ Deg C	cP lbs/100 ft2		1 @ 49 18	11 @ 27		13 @ 49 28	13 @	49	-		1		and volume Mixed BAR	١.			
GELS	lbs/100 ft2		7/8/10	10/15/		11/17/21	13/18	/22				40	and maintai	n the 6 RP	M at 13.	Cont. to b	bring up
600/300 200/100		24	0.0/29.0 1.0/18.0	49.0/3 33.0/2	6.0	54.0/41.0 31.0/29.0	56.0/4 38.0/2	9.0					EZ MUD co running cen				
6/3 API Filt	ml/30 min	8	3.0/6.0 7.0	12.0/1 5.8		13.0/11.0 5.6	13.0/1 5.0		X		1.0	6.0	Begin addin				
HTHP @ Deg C Cake API/HTHP	ml/30 min 32nd in		14.0 1/2	12.2 @ 1/2		11.8 @ 121 1/2	12.0 @ 1/2		ХХ		1.0	12.0	formation as			ove top of	Larion
Corr Solid NAP/Water	% by Vol % by Vol		1.8 -/95.5	3.0 -/94.		3.7 -/93.6	4.6 -/92.	i									
Sand	% by vol			0.50)	0.50	0.50	0							Activity		
MBT pH @ Deg C	ppb Eq.		5.0 50 @ 25	7.5 10.00 @	25	7.5 9.50 @ 25	9.50 @	25	Х		8.80	9.50	Cont. drill own				
ALK Mud ALK Filt	Pm Pf/Mf		0.90 30/1.80	1.60 0.50/1		1.20 0.35/1.15	0.30/1		+				8.9 ppg with Circ. & cond	n 8.9 ppg K	Cl/Polym	ner/Clayse	eal mud.
Chlorides Tot. Hardness	mg/l mg/l	3	33,000 200	34,00 320		33,000 360	33,00 560						as per prog				
LGS/HGS LGS/HGS	% by Vol		.7/0.1 .38/0.93	3.0/0 27.25/0	.0	3.7/0.0 33.45/0.51	4.2/0 38.72/5).4					Continued of 1397m. Dril				ı to
ASG	SG		2.658	2.60		2.615	2.73						troubleshoo	t. Cont. dri	lling from	n 1397m t	to 1446r
													as per Direc	ctional drille	ers instru	ctions.	
Additional Properti	% by vol		7.5	7.5		7.5	7.5				6.0	8.0					
PHPA Concentration	ppb		0.30	0.30)	0.80	0.80	0									
Product Na			Units	Start	Rec	Used	End		ost				trol Equipm				me
Drilling Fluids Engine Drilling Fluids Engine			day(s) day(s)			1			250.00 250.00	VSM-300	Shaker		20 20 20 255 2			Drilling Circulati	20. ng 1.
KCL Tech Grade (bu CLAYSEAL PLUS	ulk)		1000 kg bulk 216 kg drum		18.0	00 11.000				VSM-300 VSM-300			20 20 20 255 2 20 20 20 255 2			Trips Rig	
BARAZAN D PLUS potassium chloride			25 kg bag 1000 kg bag	51		28	23	\$4,2	262.72	VSM-300 VSM-300			20 20 20 255 2			Surveys Fishing	
PAC-L			25 kg bag	82		22	60	\$1,8	801.14	1						Run Cas	sing
EZ-MUD DP DEXTRID LTE			25 kg bag 25 kg sack	80		18 37	43	\$1,	544.94 500.72							Coring Reaming	g 1.
potassium hydroxide ALDACIDE G	e		25 kg bag 5 gal can			32 2			179.92 139.80		cyclone	Cones 16 4	Scre	ens	Hrs	Testing Logging	
citric acid soda ash			25 kg bag 25 kg bag			3 2	37		138.72 \$26.50							Dir Work Repair	0.
Amodrill 1235			1500 l drum	2			2		\$20.00		rifuge	Casad	Food	Boto	Lluo	Other	1.
BARABLOK BARACOR 100			50 lb bag 55 gal drum	4			4			Centrifuge	:	3,000		00	Hrs 16.0	Total Rotating	
BARA-DEFOAM W3 barite	300	1	5 gal can 1000 kg bulk			18	18 134.000			Centrifuge	:	3,000	40.	00		ROP Dil Rate	34. 0.0
BAROFIBRE FINE bentonite		1	25 lb bag 1000 kg bulk	50 41 000			50 41.000				olume Br tive	eakdown bbl	Additions	KCI/Polyr		sses	bbl
calcium chloride flak	ke 77%		25 kg bag	21			21			Annulus		52.5	Base		Fluid Do	umped	22.
caustic soda Circal 60/16			25 kg pail 25 kg sack	60			60			Pipe Ca Active P	its	522.0	Drill Water Dewatering		SCE		-386.
Circal Y CON DET			25 kg sack 55 gal drum				90			Total Ho	rc		Sea Water Whole Mud	127.0	Evapora Trips	ation	
CON DET EZ SPOT			5 gal can 55 gal drum	32			32 8			Reserve Prev Vo		1125.0			Other Total Su	urface	-22.
EZ-MUD			25 kg pail 40 lb bag	102			102			Net Cha Total Vo	nge	584.7	Other		Downho	ole	-408.
Kwikseal Fine					·· O- ·		36		704.00	F	-luid Typ		Vol bbl	De	viation I	nformation	on
Daily Products Cost Cumulative Products	s Cost		\$27,201.30 \$90,758.60	Total Cun	nulative				701.30 258.60	Potassiu	ım Chlori	ue prine	284.0	Survey MI Survey T\		706	1.0 m 6.8 m
	90 Talinga		bourne		James I	Munford Telephon		-9581-		<u> </u>				Angle Direction			.35 Deg .40
	c/o of Esse					Telephon		56-881		I				Horiz Disp	ol.		m

Baroid Flu	uid Se	rvices								Report No	010	
		Daily Drill	ina Fluid I	Report			Date Spud Date		05/18/2008	Rig Activity	1,766.0	m
Operator			Repor	t For				05/10/200 Well Name			Tripping	
3D Oil Itd Contractor			Shaug Report	ghan Corless /S t Fo r	Stefan Schm	idt		Wardie-1 Rig Name		Unit System		
Seadrill		State/Provin	Miche	al Barry	Geographic	Aroa/County		West Trite		Apache		
Country Australia		Victoria			Bass Strait			VIC P57				
Bit Info	ormation 12.250	in	Orill String (in)		OD S	et MD	Model		culation/Hy 4-P-220	draulics Data Nat-14-P-22	20 Nat-14	4-P-220
Make/Type	REEDHYC/R 3x15 3	SX616MA16 Drill Pipe	5.500 4.6 5.500 3.2	70 1,364.8		136.0	Bore in Strokes in		.500 4.000	6.500 14.000		.000 .000
Jets TFA	1.107	sq-in Drill Collar	8.250 2.8	75 21.8			Eff(%)		97	97	9	97
Jets Velocity Jet Impact Force	94.9 1621.7	m/sec Other lbf Other	8.250 0.0 9.250 0.0				bbl/strk SPM	0	.139 92	0.139 92		139 0
Bit HHSI Press Drop @ Bit	4.31 809	hhp/in2					gpm bbl/min Total GPM		12.82 AV, Riser	538 12.6 Circ	32 Press psi	210
Bit Depth	1,530.0	m					Total Circ Time BU Time, min	25	AV min DP AV max DC	64.9 Tot	Pres Loss ss Drop DP	171 83
ECD @ Csg Shoe ECD @ Bit	1.127	SG			Leak Off So		Total Strokes	4,524	BU Strokes	377 Pre	ss Drop An	- 03
Propertie Source	es	1 Flow Line	2 Pit #6	Flow Line	Hyd 4 Pit #6	Tar	gets Pro	gram	Fluid Type	Fluid Treat	ments /Polymer	
Time		3:00 1,555	9:50 1,664	16:50 1,766	20:00 1,766				KCI / Polym	ner mud mixed:	178 bbls	
Depth FL Temp	m Deg C	44	44	43						Polymer mud m		
Density @ Deg C FV @ Deg C	SG sec/qt	1.120 @ 30 54 @ 30	1.130 @ 41 58 @ 41	1.130 @ 39 52 @ 39	1.120		1.000	1.150	Cont. addin	g 5ppb Circal Y	& 5 ppb Circ	al 60/16
PV @ Deg C YP	cP lbs/100 ft2	15 @ 49 30	14 @ 49 28	13 @ 49 29	15 @ 49 30	9	1	15		at 1425m, 100m s per programn		f La I rob
GELS	lbs/100 ft2	13/18/22	10/18/24	11/18/22	13/19/23				Added 4 pp	b BARABLOK i	nto active @	
600/300 200/100		60.0/45.0 39.0/30.0	56.0/42.0 36.0/27.0	55.0/42.0 35.0/28.0	60.0/45.0 39.0/31.0	0				add EZ Mud to in concentratior		
6/3 API Filt	ml/30 min	13.0/10.0 5.0	12.0/10.0 4.8	12.0/10.0 4.6	14.0/11.0 4.9	0	1.0	6.0				
HTHP @ Deg C Cake API/HTHP	ml/30 min 32nd in	11.8 @ 121 1/2	11.2 @ 121 1/2	11.0 @ 121 1/2	11.5 @ 12 1/2	21	1.0					
Corr Solid	% by Vol	4.5	5.1	4.9	4.1							
NAP/Water Sand	% by Vol % by vol	-/92.4 0.50	-/92.0 0.25	-/92.0 0.50	-/92.8 0.50					Rig Acti	vity	
MBT pH @ Deg C	ppb Eq.	6.3 9.50 @ 25	10.0 8.50 @ 25	10.0 9.00 @ 25	8.8 9.00 @ 2	25 X	8.80	9.50		g from 1446 m drillers instruction		
ALK Mud	Pm Dt/Mt	0.50 0.06/1.00	1.30 0.08/0.90	1.30 0.06/1.10	1.30		0.00	0.00		1520m to 1766		
ALK Filt Chlorides	Pf/Mf mg/l	38,000	36,000	38,000	38,000					Circulate hole mote valve not		٠.
Tot. Hardness LGS/HGS	mg/l % by Vol	400 4.4/0.1	480 4.8/0.3	400 4.6/0.3	400 3.6/0.5					low check, stat		-
LGS/HGS ASG	ppb SG	40.31/1.56 2.637	43.63/4.71 2.700	42.03/4.86 2.707	32.89/7.4 2.797	16			1766m to 1 1530m.	530m, working	tight spot at 1	1540m to
7.00		2.00.	200	2	2				1000111.			
Additional Proper												
KCL % PHPA Concentration	% by vol	7.5 0.80	7.5 1.00	7.5 1.00	7.5 1.00		6.0	8.0				
Product Na Drilling Fluids Engi		Units day(s)	Start Re	Used 1	End	Cost \$1,250.00			trol Equipm Scre		rs Drilling	ime 15.
Drilling Fluids Engi		day(s)		1		\$1,250.00	VSM-300		20 20 20 255	255 255 255	24.0 Circulati	ing 3.
CLAYSEAL PLUS barite		216 kg drum 1000 kg bulk		8.700	125.300	\$4,783.20 \$4,131.46			20 20 20 255 2 20 20 20 255 2		24.0 Trips 24.0 Rig	2.
BARABLOK BARAZAN D PLUS	3	50 lb bag 25 kg bag		60		\$1,823.40 \$1,217.92			20 20 20 255	255 255 255	24.0 Surveys Fishing	5
Circal Y		25 kg sack	90	48 89	49	\$1,139.20					Run Cas	sinç
DEXTRID LTE Circal 60/16		25 kg sack 25 kg sack	60	48 60	48	\$608.40 \$607.80					Coring Reamin	g
Omyacarb 5 EZ-MUD		25 kg bulk 25 kg pail		56.000		\$525.84 \$514.98		Cones 16 4	Scre	ens F	rs Testing Logging	,
PAC-L		25 kg bag 25 kg bag	60	5	55	\$409.35 \$106.00		10 1			Dir Worl Repair	
soda ash ALDACIDE G		5 gal can	30	8	30	\$106.00					Other	
Amodrill 1235 BARACOR 100		1500 l drum 55 gal drum			2		Centrifuge Centrifuge	Speed 3,000	Feed 40.		rs Total 18.0 Rotating	24. g 15.
BARA-DEFOAM W		5 gal can 25 lb bag	18		18 50		Centrifuge	3,000			ROP Dil Rate	20.
BAROFIBRE FINE bentonite		1000 kg bulk	41.000		41.000		Fluid Volume Br			KCI/Polymer	•	1 0.0
calcium chloride fla caustic soda	ake 77%	25 kg bag 25 kg pail			21 49		Active Annulus	52.5	Additions Base	bbl Flui	Losses d Dumped	bbl
citric acid CON DET		25 kg bag 55 gal drum	37		37 8		Pipe Cap Active Pits	98.8	Drill Water Dewatering	Tra	nsferred	-672.
CON DET		5 gal can	32		32		Total Hole	151.3	Sea Water	Eva	poration	-072.
EZ SPOT EZ-MUD DP		55 gal drum 25 kg bag			8		Total Circ Reserve		Whole Mud Barite	134.0 Trip 13.0 Oth		
KCL Tech Grade (b Kwikseal Fine	bulk)	1000 kg bulk 40 lb bag			16.000 38		Prev Vol Net Change		Chemicals Other		al Surface vnhole	
lime		25 kg bag			74		Total Vol	1154.3	Total	177.9 Tot	al Losses	-672.
Daily Products Cos			Total Daily Cos				Fluid Typ Potassium Chlor		Vol bbl 150.0	Survey MD		5.9 m
Cumulative Product Baroid Representa		\$106,626.15 Gerald Lange	Total Cumulativ	ve Cost s Munford	\$	131,626.15				Survey TVD Angle		5.7 m .34 Deg
Office	90 Talinga	Rd Melbourne o Australia Ltd	Ja10	Telephon		581-7555				Direction Horiz Displ.		242
Warehouse	U/U UI ESSI	o nuondila Liu		Telephon	e 01-3-56	-881-445	l			ו וטווב טוטףו.		m

Baroid Flu	uid Se	rvices							Date		05/19/2008			011 1,766.0	m		
		Dail	ly Drilli			-				,	Spud Date	05/10/200		Rig Activit		ping	
Operator 3D Oil Itd					Report F Shaugh	or nan Corless /S	Stefan Sch	midt				Well Name Wardie-1	,				
Contractor Seadrill					Report F Michea	or						Rig Name West Trite	nn.	Unit Syste Apache	m		
Country			State/Province		viicnea	I Dally	Geographi		unty	,		Field or Bl		Араспе			
Australia Bit Info	ormation	\	/ictoria C	rill String	(in) /	(m)	Bass Stra	ait asing m				VIC P57 Cire	culation/Hy	draulics D	ata		
Bit Size	12.250	in SX616MA16		OD	0.000	Length	OD	Set N	MD	Model Bore in		Nat-1	4-P-220 .500	Nat-14 6.5	-P-220		I-P-220 500
Make/Type Jets	3x15 3	3x16	Other	8.250 9.250	0.000					Strokes		14	4.000	14.0	000	14.	.000
TFA Jets Velocity	1.107 82.5	sq-in m/sec								Eff(%) bbl/strk			97 .139	9 0.1			97 139
Jet Impact Force Bit HHSI	1226.2	lbf								SPM gpm bb	l/min	469	80 11.15	8	0 11.15	(0
Press Drop @ Bit	611									Total GI	PM	936	AV, Riser	400	Circ Pre		162
Bit Depth ECD @ Csg Shoe	30.0 1.123									BU Time	rc Time e , min		AV min DP AV max DC	;	Tot Pres Press D		66
ECD @ Bit Propertie	es	SG	1	2		3	Leak Off			Total St gets		4,203 gram	BU Strokes		Press D		
Source			v Line	Pit #		Pit #6	Pit #	6		90.0			Fluid Type		KCI/Pol	lymer	
Time Depth	m		:00 766	10:3 1,76		14:45 1,766	20:00						Made KCL I Note: Some		-		
FL Temp Density @ Deg C	Deg C SG	1	120	1.120 @	2.30	38 1.120 @ 35	1.120				1.000	1.150	due to an in		•		,
FV @ Deg C	sec/qt		54	56 @	30	56 @ 35	55				1.000	1.100					
PV @ Deg C YP	cP lbs/100 ft2		@ 49 30	13 @ 33		13 @ 49 27	14 @ - 27	49			1	45					
GELS 600/300	lbs/100 ft2		19/23 0/45.0	14/19/ 59.0/4		13/20/24 53.0/40.0	14/20/ 55.0/4										
200/100		39.0	0/31.0	40.0/3	1.0	35.0/28.0	37.0/30	0.0									
6/3 API Filt	ml/30 min	5	0/11.0 5.0	15.0/1: 5.0		14.0/12.0 5.2	14.0/12 5.2				1.0	6.0					
HTHP @ Deg C Cake API/HTHP	ml/30 min 32nd in		@ 121 I/2	11.4 @ 1/2		11.6 @ 121 1/2	11.6 @	121			1.0	12.0					
Corr Solid	% by Vol	4	4.0 93.0	4.5		4.5 -/92.4	4.5	4									
NAP/Water Sand	% by Vol % by vol	0	.50	-/92. 0.25	5	0.50	0.50)						Rig	Activity		
MBT pH @ Deg C	ppb Eq.		0.0 @ 25	9.00 @		10.0 9.00 @ 25	9.00 @				8.80	9.50	Cont. POOl 1178m to 9				t spot at
ALK Mud	Pm Dt/Mt	0	.70 3/0.90	1.00)	1.20 0.05/1.30	1.00 0.04/0.	1			0.00	0.00	displaceme				9m to
ALK Filt Chlorides	Pf/Mf mg/l	37	,000	0.06/1 38,00	00	38,000	38,00	0					casing shoe				
Tot. Hardness LGS/HGS	mg/l % by Vol		100 3/0.7	440		480 4.4/0.1	480 4.4/0.		H				744m to 173 last stand to		•	•	
LGS/HGS	ppb SG	29.99	9/10.34 881	40.31/1 2.63	.56	40.31/1.56 2.637	40.31/1 2.63	.56					condition m				
ASG	36	Ζ.	001	2.03	,	2.037	2.03						from 1766m from 1412m			•	
Additional Proper	ties												Cont. POOI	H and lay o	ut BHA.		
KCL % PHPA Concentration	% by vol		7.5 .00	8.0 1.00		8.0 1.00	8.0 1.00	,			6.0	8.0					
THI / Composition	о рро						1.00										
Product Na		Uı	nits	Start	Rec	Used	End	Cost					trol Equipm				me
Drilling Fluids Engil Drilling Fluids Engil			day(s) day(s)			1		\$1,25 \$1,25		VSM-300	Shaker		20 20 20 255 2		Hrs 16.0	Drilling Circulati	ng 4.
KCL Tech Grade (b ALDACIDE G		10	00 kg bulk 5 gal can	16.000		5.000	11.000			VSM-300 VSM-300			20 20 20 255 2 20 20 20 255 2		16.0	Trips Rig	17.
DEXTRID LTE			25 kg sack	28		6	22	\$24	3.36	VSM-300			20 20 20 255 2			Surveys	
soda ash BARA-DEFOAM W	/300		25 kg bag 5 gal can			7			2.75 5.92	VSM-300						Fishing Run Cas	sinc
Omyacarb 5			25 kg bulk	34.000		1.000	33.000		9.39							Coring	1
Amodrill 1235 BARACOR 100		5	500 l drum 5 gal drum	4			2			Hydro	cyclone	Cones	Scre	ens	Hrs	Reaming Testing	
BARAZAN D PLUS barite	3		25 kg bag 00 kg bulk			30	45 125.300			D 16		16 4				Logging Dir Work	
BAROFIBRE FINE			25 lb bag	50			50			1						Repair	`
bentonite calcium chloride fla	ake 77%		00 kg bulk 25 kg bag				41.000			Cen	trifuge	Speed	Feed	Rate	Hrs	Other Total	24.
caustic soda Circal 60/16			25 kg pail 25 kg sack				49 48			Centrifuge Centrifuge		3,000 3,000				Rotating ROP	
Circal Y		2	25 kg sack	49			49			Ľ						Dil Rate	0.0
citric acid CON DET			25 kg bag 5 gal drum				37				olume Br ctive	eakdown bbl	Additions	KCI/Poly bbl		sses	bbl
CON DET EZ SPOT		5:	5 gal can 5 gal drum				32			Annulus Pipe Ca		7.7	Base Drill Water		Fluid Du Transfe		
EZ-MUD			25 kg pail	96			96			Active F	its		Dewatering		SCE		-72.
EZ-MUD DP Kwikseal Fine			25 kg bag 40 lb bag				14 38			Total Ho			Sea Water Whole Mud		Evapora Trips	ation	
lime N-DRIL HT PLUS			25 kg bag 50 lb bag	74			74 55			Reserve Prev Vo		254.0	Barite Chemicals		Other Total Su	ırface	-40.
NO-SULF			17 kg pail	48			48			Net Cha	ange	-110.4	Other		Downho	ole	
PAC-L			25 kg bag				55			Total Vo	ol Fluid Typ	891.8 es	Total Vol bbl		Total Lo	osses nformatio	-112. on
Daily Products Cos Cumulative Produc			\$4,436.02 111,062.17			Cost		\$6,930 \$138,56			um Chlori			Survey M Survey T	D	1,125	5.9 m 5.7 m
Baroid Representa	tives	Gerald La	ange			Munford				†				Angle		32.	34 Deg
Office Warehouse	90 Talinga Rd Melbourne					Telephon Telephon		9581-75 6-881-44						Direction Horiz Dis	pl.	2	42 m

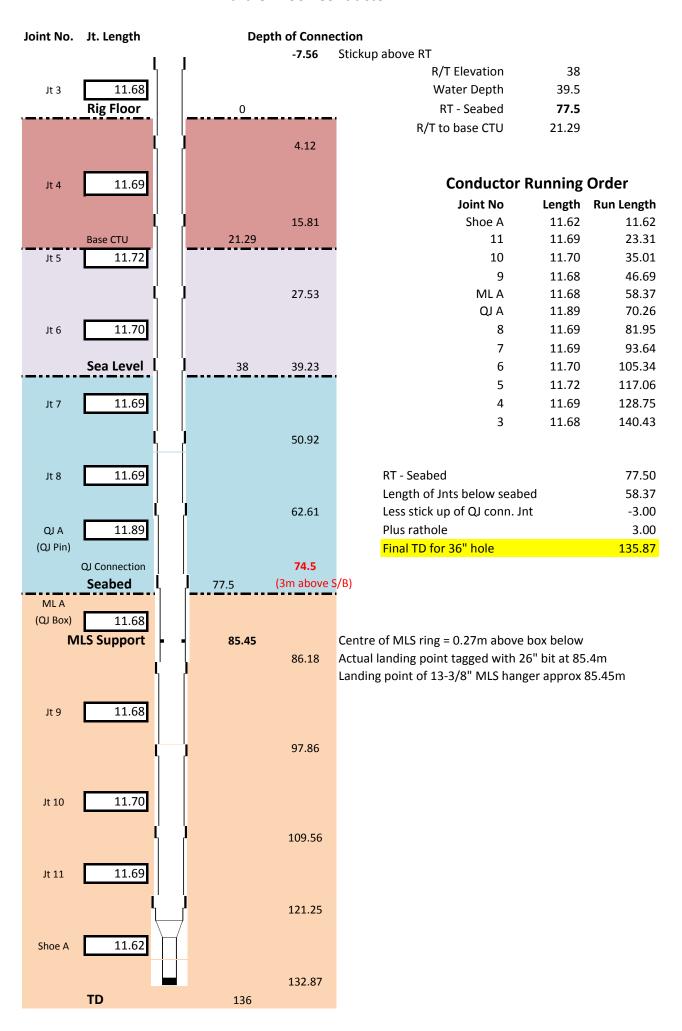
טוד ג	ila Sei	·vice	:5							Date		05/20/2008	Report N	0	012 1,766.0 r	m
		Da	ily Drilli	ng Flui	d Rep	ort				Spud Date	05/10/20		Rig Activit			11
ator			,	Re	port For						Well Name		<u> </u>	тпр	ping	
Oil Itd tractor					naughan port For	Corless /S	Stefan Schn	nıdt			Wardie-1 Rig Name		Unit Syste	m		
ntry			State/Province		icheal Ba	ırry	Geographic	: Area/Coun	v		West Trite Field or Bl		Apache			
stralia	rmation		Victoria	rill String (in) / (m)		Bass Strai		,		VIC P57	culation/Hyd	draulice D	ata		
Size	5.500			OD	ID	Length	OD S	Set MD			Nat-1	4-P-220	Nat-14	-P-220	Nat-14-	
ke/Type s	REEVES/M 1x3		Drill Pipe	5.500	4.670	416.0	30.000 (13.375 (Bore Stroke			4.000 4.000	6.5 14.0	000	6.50 14.0	
A s Velocity	0.785	sq-in m/sec							Eff(%)		0	97 .139	9 ¹ 0.1		97 0.13	
Impact Force HHSI		lbf hhp/in2							SPM	bl/min		0	C		0	
ss Drop @ Bit	440.0	psi							Total (GPM		AV, Riser		Circ Pre		
Depth D @ Csg Shoe	416.0	SG							BU Tii	Circ Time me , min		AV min DP AV max DC		Tot Pre Press D	Orop DP	
D @ Bit Propertie	es	SG	1	2		3	Leak Off S		Total S		gram	BU Strokes	Fluid	Press D		
ırce			Pit #6 10:05	Pit #6 20:00								Fluid Type KCI / Polym		KCI/Po		
oth	m		1,766	1,766								Total KCI / F				obls.
Temp nsity @ Deg C	Deg C SG		20 @ 28	1.120 @	28					1.000	1.150					
@ Deg C @ Deg C	sec/qt cP		7 @ 28 3 @ 49	58 @ 28 13 @ 49												
	lbs/100 ft2		27	27 14/19/2					+	1	45					
LS 0/300	105/100 112	53	.0/40.0	53.0/40.	0											
0/100			.0/28.0	34.0/26. 14.0/12.												
l Filt HP @ Deg C	ml/30 min ml/30 min	11 6	5.2 6 @ 121	5.1 11.7 @ 1	21					1.0 1.0						
ke API/HTHP rr Solid	32nd in % by Vol		1/2	1/2					\vdash	1.0	72.0					
P/Water	% by Vol		/92.4	-/92.4												
nd T	% by vol ppb Eq.		0.50 10.0	0.50 10.0								Cont. Lay de	own BHA.			
@ Deg C K Mud	Pm		0 @ 25 1.20	9.00 @ 2 1.00	25					8.80	9.50	Sonic pex to				
K Filt lorides	Pf/Mf mg/l		04/1.10 8,000	0.07/1.3 39,000								sources. RII per logging			•	
t. Hardness	mg/l		480 .4/0.1	480 4.3/0.1								sources and to 1680m, c	•			
SS/HGS SS/HGS	% by Vol	40.	31/1.56	39.50/1.6	64							programme	, monitorin	g well via	a trip tanks	. POH
SG	SG	2	2.637	2.640								wireline MD shoe on DP			ıр 5 1/2" m	ule
Iditional Propert	ties							$-\Pi$	+				7.			
CL % IPA Concentration	% by vol		8.0 1.00	8.0 1.00						6.0	8.0					
ii 71 Gonoonii alic	эт ррь															
Product Na		U	Units	Start	Rec	Used	End	Cost				trol Equipm			Tin	ne
illing Fluids Engi illing Fluids Engi			day(s) day(s)			1		\$1,250.0 \$1,250.0	VSM-30			Scre	ens	Hrs	Drilling Circulatin	
DACIDE G nodrill 1235			5 gal can 1500 l drum	26 2			26		VSM-30 VSM-30						Trips Rig	2.0
RACOR 100 RA-DEFOAM W	1200		55 gal drum 5 gal can	4			4 17		VSM-30 VSM-30	00					Surveys Fishing	
ARAZAN D PLUS			25 kg bag	45			45		V 3IVI-30	50					Run Casi	nς
rite AROFIBRE FINE		1	000 kg bulk 25 lb bag	125.300 50			125.300		-						Coring Reaming	
ntonite Icium chloride fla	ake 77%	1	000 kg bulk 25 kg bag	41.000 21			41.000		Hyd D 16	rocyclone	Cones 16 4	Scre	ens	Hrs	Testing Logging	22.0
ustic soda rcal 60/16			25 kg pail 25 kg sack	49 48			49 48				10 1				Dir Work Repair	
rcal Y			25 kg sack	49			49								Other	
ric acid DN DET			25 kg bag 55 gal drum	37 8			37		Centrifu	entrifuge ige	Speed 3,000	Feed 40.0		Hrs	Total Rotating	24.0
ON DET EXTRID LTE			5 gal can 25 kg sack	32 22			32 22		Centrifu	ige	3,000	40.0	00		ROP Dil Rate	0.00
SPOT			55 gal drum	8			8			Volume Br			KCI/Polyi			
-MUD -MUD DP			25 kg pail 25 kg bag	96 14			96		Annul			Additions Base	bbl	Fluid D		bbl
L Tech Grade (bild ikseal Fine	oulk)	1	000 kg bulk 40 lb bag	11.000 38			11.000		Pipe C Active			Drill Water Dewatering		Transfe SCE	erred	-55.
Э			25 kg bag 50 lb bag	74			74 55		Total I	Hole	81.3	Sea Water		Evapora Trips	ation	-10.
RIL HT PLUS -SULF			17 kg pail	55 48			48		Reser	ve	284.0	Whole Mud Barite		Other		-10. -8.
nyacarb 5 C-L			25 kg bulk 25 kg bag	33.000 55			33.000		Prev \ Net Cl			Chemicals Other		Total So		
assium chloride		1	1000 kg bag	10			10		Total \		875.3		Do	Total Lo		-73.
ly Products Cos				Total Daily						sium Chlori			Survey M	D	1,125.	.9 m
mulative Produc roid Representa	tives	Gerald			ines Mur	nford	•	\$141,062.1	<u>'</u>				Survey T\ Angle	U		34 Deg
ffice arehouse	90 Talinga c/o of Esso					Telephone Telephone		9581-7555 6-881-445	┪				Direction Horiz Disp	ol.	24	12 m

										Date		05/21/2008			013 1,766.0 m	n
		Da	ily Drilli	ng Flu	id Re	port				Spud Date	05/10/200	08	Rig Activity		§Α	
Operator					Report Fo	or					Well Name		1		271	
3D Oil Itd Contractor					Shaugha Report Fo	n Corless /S	Stefan Schr	midt			Wardie-1 Rig Name		Unit Syster	n		
Seadrill					Micheal						West Trite		Apache	•		
Country Australia			State/Province Victoria	e/Region			Geographi Bass Stra	c Area/Count	у		Field or BI VIC P57	ock				
Bit Info	ormation			rill String			in Ca	asing m			Cir	culation/Hyd				
Bit Size Make/Type	5.500 REEVES/N		Drill Pine	OD 5.500	1D 4.670	Length 148.0		Set MD	Model Bore i	n		4-P-220 .500	Nat-14- 6.50		Nat-14-F 6.50	
Jets	1x3	32	Dilli i ipc	3.500	1.070	140.0	13.375		Stroke		14	4.000	14.0	00	14.00	00
TFA Jets Velocity		sq-in m/sec							Eff(%) bbl/strl	(97 .139	97 0.13		97 0.13	
Jet Impact Force	100.0	lbf							SPM			90	90)	0	
Bit HHSI Press Drop @ Bit		hhp/in2 psi							gpm bl			12.54 AV, Riser	527	12.54 Circ Pre	ess psi	
Bit Depth .	148.0	m					1		Total C	Circ Time	18	AV min DP	63.5	Tot Pres	s Loss	
ECD @ Csg Shoe ECD @ Bit		SG SG					Leak Off	SG 1.576	Total S	ne , min Strokes		AV max DC BU Strokes	377	Press D Press D		
Properti	ies		1	2		3	4		rgets		gram			reatmer	nts	
Source Time			Pit #6 12:00	Pit # 18:0								Fluid Type Dump 170 b	hls of cem	KCI/Pol	•	mud or
Depth	m		1,766	1,76								first plug	000000000000000000000000000000000000000	CITE COITE	ammateam	iida oi
FL Temp Density @ Deg C	Deg C SG		1.120	1.12	0					1.000	1.150	Dump 170 b		ent cont	aminated m	nud or
FV @ Deg C	sec/qt		6 @ 28	55	10							second plug	1			
PV @ Deg C YP	cP lbs/100 ft2	12	2 @ 49 28	13 @ 27	49					1	45					
GELS	lbs/100 ft2		3/20/23	13/20/												
600/300 200/100			.0/40.0	53.0/4 35.0/2												
6/3	1/00	14	.0/12.0	14.0/1						4.0	0.0					
API Filt HTHP @ Deg C	ml/30 min ml/30 min	11.6	5.3 6 @ 121	5.3 11.8 @						1.0 1.0	6.0 12.0					
Cake API/HTHP	32nd in		1/2 4.5	1/2												
Corr Solid NAP/Water	% by Vol % by Vol	-	/92.4	4.5 -/92.												
Sand	% by vol		0.50 10.0	0.50 10.0								DILLeriale		Activity	DD frame 44	4 4
MBT pH @ Deg C	ppb Eq.		0 @ 25	9.50 @	25					8.80	9.50	RIH with mu 1761m. Circ				
ALK Mud ALK Filt	Pm Pf/Mf		1.00 04/1.50	1.20 0.08/1								1000psi. Ce	ment plug	with Hall	liburton as p	per
Chlorides	mg/l		8,000	38,00	00							cementing p	•		•	
Tot. Hardness LGS/HGS	mg/l % by Vol	4	.4/0.1	480 4.4/0								1761m - 16 bottoms up.				
LGS/HGS	ppb	40.	31/1.56	40.31/1	.56							cement pro	gramme fro	m 1613	m - 1406m.	. Circ.
ASG	SG	2	2.637	2.63	7							1.5X bottom		,		
												1406m to 84 1407m. PO			•	
Additional Proper	rties % by vol		9.0	8.0				X		6.0	8.0	plug #2 as p				
PHPA Concentrati			1.00	1.00)							599m. Circ. POOH from			180spm, 3	300ps
														10111.		
Product N Drilling Fluids Eng		U	Units day(s)	Start	Rec	Used 1	End	\$1,250.00)	Shaker		trol Equipm Scre		Hrs	Time Drilling	ie
Drilling Fluids Eng			day(s)			1		\$1,250.00				20 20 20 255 2		24.0	Circulating	g 3.
BARAZAN D PLU: ALDACIDE G	S		25 kg bag 5 gal can	45 26		3		\$456.72	VSM-30 VSM-30			20 20 20 255 2 20 20 20 255 2			Trips Rig	7.
Amodrill 1235			1500 l drum	20		1	2	ψ03.50	VSM-30	0		20 20 20 255 2		24.0	Surveys	
BARACOR 100 BARA-DEFOAM V	V200		55 gal drum 5 gal can	4 17			17		VSM-30	0					Fishing Run Casin	ng 2.
barite	V300	1	000 kg bulk				125.300								Coring	
BAROFIBRE FINE bentonite		1	25 lb bag 000 kg bulk	50			41.000		Hydr	ocyclone	Cones	Scre	one	Hrs	Reaming Testing	
calcium chloride fl	ake 77%	'	25 kg bag	21			21		D 16	ocyclone	16 4	3016	CIIS	1115	Logging	
caustic soda Circal 60/16			25 kg pail 25 kg sack	49 48			49 48								Dir Work Repair	9.
Circal Y			25 kg sack	49			49								Other	1.
citric acid CON DET			25 kg bag 55 gal drum	37 8			37		Centrifu	ntrifuge	Speed	Feed 40.		Hrs	Total Rotating	24.
CON DET			5 gal can	32			32		Centrifu		3,000 3,000				ROP	
DEXTRID LTE			25 kg sack 55 gal drum	22			22 8		Florial V	/aluma Dr			VCI/Debu		Dil Rate	0.0
EZ SPOT EZ-MUD			25 kg pail	8 96			96			/olume Br	bbl bbl	Additions	KCI/Polyr		sses	bbl
EZ-MUD DP	(In III a)	1	25 kg bag	14			14		Annulu			Base		Fluid Du		
KCL Tech Grade (Kwikseal Fine	bulk)	<u> </u>	000 kg bulk 40 lb bag	11.000			11.000		Pipe C Active			Drill Water Dewatering		Transfe SCE	iieu	-352.
lime			25 kg bag	74			74		Total F	łole	62.8	Sea Water		Evapora	ation	
N-DRIL HT PLUS NO-SULF			50 lb bag 17 kg pail	55 48			55 48		Total C Reserv			Whole Mud Barite		Trips Other		
Omyacarb 5			25 kg bulk	33.000			33.000		Prev V	ol	875.3	Chemicals	0.4	Total Su		
PAC-L potassium chloride	e	1	25 kg bag 1000 kg bag	55 10			55 10		Net Ch Total \		-352.4 494.8	Other Total	0.4	Downho Total Lo		-352.
,	-				. 0 :			#0.000.00		Fluid Typ	es	Vol bbl	De	viation I	nformation	n
Dalla Barriera	-4				v r oct			* 4 11776 67	Potage	ium Chlori	ge prine	510.0	Survey MI			0 m
Daily Products Co: Cumulative Produ		9	\$526.62 111,588.79			Cost		\$144,088.79		idiii Oilloii		510.0	Survey TV		1,618.2	2 m
	cts Cost	Gerald	111,588.79 Lange	Total Cun								010.0			1,618.2	6 Deg

	Da	ily Drillin	na Flui	d Ror	ort					Date Spud Date		05/22/2008	Depth Rig Activity	,	1,766.0 n	n
Operator	Da	וווווט אווווו		eport For	, J L					<u></u>	05/10/20 Well Name			Cut ca	asing	
3D Oil Itd Contractor				haughan	Corless /S	Stefan Schr	midt				Wardie-1 Rig Name		Unit Systen			
Seadrill				icheal Ba	ırry						West Trit	on	Apache	Н		
Country Australia		State/Province Victoria	/Region			Geographi Bass Stra		ounty			Field or BI VIC P57	ock				
Bit Information			ill String (in Ca	asing m				Cir	culation/Hyd				
Bit Size Make/Type	in		OD	ID	Length	OD :			Model Bore i	n		4-P-220 .500	Nat-14-l 6.50		Nat-14- 6.50	
Jets						13.375			Stroke			4.000	14.0	00	14.0	00
TFA Jets Velocity	sq-in m/sec								Eff(%) bbl/strl	k	0	97 .139	97 0.13		97 0.13	
Jet Impact Force	lbf								SPM	hl/min		0	0	İ	0	
Bit HHSI Press Drop @ Bit	hhp/in2 psi								gpm bl			AV, Riser		Circ Pres	ss psi	
Bit Depth ECD @ Csg Shoe	m SG]				Circ Time ne , min		AV min DP AV max DC		Tot Pres Press Dr		
ECD @ Bit	SG					Leak Off	SG 1.		Total S	Strokes		BU Strokes		Press Dr	op An	
Properties Source		1 Pit #6	2		3	4		Tar	gets	Prog	gram	Fluid Type		reatmen KCI/Poly		
Time		18:00													,	
Depth m FL Temp Deg C		1,766														
Density @ Deg C SG		1.120								1.000	1.150					
FV @ Deg C sec/qt PV @ Deg C cP	13	55 3 @ 49														
YP lbs/100 ft2 GELS lbs/100 ft2		27 3/20/22								1	45					
600/300	53	3.0/40.0														
200/100 6/3		.0/28.0														
API Filt ml/30 mir	n	5.3								1.0						
HTHP @ Deg C ml/30 mir Cake API/HTHP 32nd in	11.	8 @ 121 1/2								1.0	12.0					
Corr Solid % by Vol		4.5														
NAP/Water % by Vol Sand % by vol		·/92.4 0.50											Rig	Activity		
MBT ppb Eq. ppb Eq. pH @ Deg C	9.0	10.0 00 @ 25								8.80	0.50	Cont. lay do				
ALK Mud Pm		1.00								0.00	9.50	up Halliburto 1000psi. Re				
ALK Filt Pf/Mf Chlorides mg/l		03/1.70										for skid. Picl				
Tot. Hardness mg/l		480										casing cutte				
LGS/HGS % by Vol LGS/HGS ppb		.4/0.1 .31/1.56										cut casing a 20X13 3/8"				
ASG SG	:	2.637										Pick up well		-		down
												same. Prepa	are to RIH v	with mule	shoe.	
Additional Properties KCL % % by vol		8.0								6.0	8.0					
PHPA Concentratio ppb		1.00								0.0	0.0					
Product Name		Units	Start	Rec	Used	End	Cos	0.00		01 1		trol Equipm		Lluo	Tim	ne
Drilling Fluids Engineer 2 Drilling Fluids Engineer		day(s) day(s)			1			0.00	VSM-30			Scree	5115		Drilling Circulatin	g 1.
calcium chloride flake 77% ALDACIDE G		25 kg bag 5 gal can	21 25		2	19 25	\$2	7.64	VSM-30 VSM-30						Trips Rig	5.0
Amodrill 1235		1500 l drum	25			2			VSM-30	0					Surveys	
BARACOR 100 BARA-DEFOAM W300		55 gal drum 5 gal can	4 17			17			VSM-30	0					Fishing Run Casi	ng 0.:
BARAZAN D PLUS		25 kg bag	42			42									Coring	16 0.
barite BAROFIBRE FINE	1	000 kg bulk 1 25 lb bag	25.300 50			125.300			Hydr	ocyclone	Cones	Scre	ens		Reaming Testing	
bentonite	1	000 kg bulk	41.000			41.000			D 16	coyolollo	16 4	00101	0110		Logging	
caustic soda Circal 60/16		25 kg pail 25 kg sack	49 48			49 48									Dir Work Repair	
Circal Y		25 kg sack	49			49									Other	17.0
citric acid CON DET		25 kg bag 55 gal drum	37 8			37			Centrifu	ntrifuge ae	Speed 3,000	Feed 40.0			Total Rotating	24.0
CON DET		5 gal can	32			32			Centrifu		3,000				ROP	
DEXTRID LTE EZ SPOT		25 kg sack 55 gal drum	22 8			22 8			Fluid \	Volume Br	eakdown		KCI/Polyn		Dil Rate	0.00
EZ-MUD		25 kg pail	96			96			Д	Active	bbl	Additions	bbl	Los		bbl
EZ-MUD DP KCL Tech Grade (bulk)	1	25 kg bag 000 kg bulk	11.000			11.000			Annulu Pipe C			Base Drill Water		Fluid Du Transfer		
Kwikseal Fine		40 lb bag	38			38			Active		00.0	Dewatering		SCE	4:	
lime N-DRIL HT PLUS		25 kg bag 50 lb bag	74 55			74 55			Total F Total C		8.80	Sea Water Whole Mud		Evapora Trips	uOH	
NO-SULF		17 kg pail	48			48			Reserv Prev V			Barite		Other Total Su	rface	
Omyacarb 5 PAC-L		25 kg bulk 25 kg bag	33.000 55			33.000 55			Net Ch		494.8	Chemicals Other		Downho	le	
potassium chloride		1000 kg bag	10			10			Total V	/ol		Total		Total Los		n
Daily Products Cost		\$27.64 T	otal Daily	Cost					Potass	Fluid Typ sium Chlori		Vol bbl 510.0	Survey MD		1,766.	0 m
Cumulative Products Cost Baroid Representatives		\$111,616.43 T Edwards		ulative Co			\$146,61	6.43					Survey TV Angle	'D	1,618. 7.3	2 m 6 Deg
Office 90 Talinga	a Rd Mell	bourne	Jä		Telephon		9581-75						Direction		23	
Warehouse c/o of Ess	o Austra	lia I td			Tolophon	0 61 2 5	6 991 /	15	1				Horiz Disn	d l		-

		_									Date Canal Date		05/23/2008			015 1,766.0 n	n
		Da	ily Drilli	ng Flι	ıid Re	port					Spud Date	05/10/20	08	Rig Activity		d rig down	
Operator 3D Oil Itd					Report For	r n Corless /S	Ctatan Cab					Well Name Wardie-1)	•			
Contractor					Report For		steran sch	imiat				Rig Name		Unit Syster	m		
Seadrill			Ctata/Duavilla		Micheal E	Barry	Geograph	:- ^/	C			West Trit		Apache			
Country Australia			State/Provine Victoria	ce/Region			Bass Stra		County	′		Field or BI VIC P57	ock				
	rmation			Orill String				asing r		Maria			culation/Hy			NI=4 4 4	D 000
Bit Size Make/Type		in		OD	ID	Length	30.000	Set @	MD 133.0	Model Bore i			14-P-220 5.500	Nat-14- 6.5		Nat-14- 6.50	
Jets							13.375	@	136.0	Stroke		14	4.000	14.0		14.0	
TFA Jets Velocity		sq-in m/sec								Eff(%) bbl/str		0	97).139	97 0.1		97 0.13	
Jet Impact Force		lbf								SPM	h I /ma i m		0	0)	0	
Bit HHSI Press Drop @ Bit		hhp/in2 psi								gpm b Total (l	AV, Riser		Circ Pre	ess psi	
Bit Depth ECD @ Csg Shoe	1,766.0	m SG									Circ Time me , min		AV min DP AV max DC		Tot Pres		
ECD @ Csg Snoe ECD @ Bit		SG					Leak Off	SG	1.576		Strokes		BU Strokes		Press D	rop An	
Propertie	es		1 Pit #6	2		3	4		Tar	gets	Prog	gram	Elected Trans	Fluid 1	reatmei		
Source Time			23:59						_				Fluid Type		KCI/Po	iyiriei	
Depth	m Dan O	1	1,766														
FL Temp Density @ Deg C	Deg C SG	1	1.120						_		1.000	1.150					
FV @ Deg C	sec/qt	1	55 I @ 49														
PV @ Deg C YP	cP lbs/100 ft2		26						_		1	45					
GELS	lbs/100 ft2	13	3/20/22														
600/300 200/100			.0/40.0 .0/28.0						_								
6/3	1/00		.0/12.0								1.						
API Filt HTHP @ Deg C	ml/30 min ml/30 min	11.8	5.3 3 @ 121						_		1.0						
Cake API/HTHP	32nd in		1/2														
Corr Solid NAP/Water	% by Vol % by Vol		4.5 /92.4														
Sand	% by vol		0.50												Activity	= 4/01/5	
MBT pH @ Deg C	ppb Eq.		10.0 0 @ 25						+		8.80	9.50	Make up mi 207m. Spot				
ALK Mud	Pm		1.00										R/up cemer				
ALK Filt Chlorides	Pf/Mf mg/l		03/1.70 8,000										pump ceme				
Tot. Hardness	mg/l		480										hole clean. with 30" cas		•		
LGS/HGS LGS/HGS	% by Vol		.4/0.1 31/1.56										to change k	•			
ASG	SG	2	2.637										return torqu				
									_				power. POF attempt aga				
Additional Propert			8.0								0.0	0.0	cutter asser				
KCL % PHPA Concentration	% by vol		1.00								6.0	8.0	moved work	c platform.			
Product Na		U	Jnits	Start	Rec	Used	End	Co					trol Equipm			Tim	ne
Drilling Fluids Engir Drilling Fluids Engir			day(s) day(s)			1 1			250.00 250.00	VSM-30	Shaker	•	Scre	ens	Hrs	Drilling Circulatin	g 2.
ALDACIDE G	iliooi		5 gal can	25			25		200.00	VSM-30	00					Trips	7.
Amodrill 1235 BARACOR 100			1500 l drum 55 gal drum				2			VSM-30 VSM-30						Rig Surveys	
BARA-DEFOAM W	/300		5 gal can				17			VSM-30						Fishing	
BARAZAN D PLUS	3	1	25 kg bag 000 kg bulk	42			42 125.300]						Run Casii Coring	ng 6.
barite BAROFIBRE FINE			25 lb bag				50									Reaming	
bentonite		1	000 kg bulk				41.000				rocyclone	Cones	Scre	ens	Hrs	Testing	
calcium chloride fla caustic soda	ake //%		25 kg bag 25 kg pail				19 49			D 16		16 4				Logging Dir Work	
Circal 60/16			25 kg sack	48			48									Repair	5.
Circal Y citric acid			25 kg sack 25 kg bag				49 37			Ce	ntrifuge	Speed	Feed	Rate	Hrs	Other Total	3. 24.
CON DET			55 gal drum	8			8			Centrifu	ige	3,000	40.	00	1113	Rotating	24.
CON DET DEXTRID LTE			5 gal can 25 kg sack				32			Centrifu	ige	3,000	40.	00		ROP Dil Rate	0.0
EZ SPOT		:	55 gal drum				8			Fluid '	Volume Br	eakdown		KCI/Polyi	mer	Diritate	0.0
EZ-MUD			25 kg pail				96				Active	bbl	Additions	bbl		sses	bbl
EZ-MUD DP KCL Tech Grade (b	oulk)	1	25 kg bag 000 kg bulk				11.000			Annulu Pipe C			Base Drill Water		Fluid Do		
Kwikseal Fine			40 lb bag	38			38			Active			Dewatering		SCE		
lime N-DRIL HT PLUS			25 kg bag 50 lb bag				74 55			Total F		66.8	Sea Water Whole Mud		Evapora Trips	ation	
NO-SULF			17 kg pail	48			48			Reser	ve		Barite		Other		
Omyacarb 5 PAC-L			25 kg bulk 25 kg bag	33.000 55			33.000			Prev V Net Ch		493.5	Chemicals Other		Total Su		
potassium chloride		1	1000 kg bag				10			Total \	√ol ਁ		Total		Total Lo	osses	
Daily Products Cos	ıt .	-	\$0.00	Total Dail	v Cost			\$2.5	500 00	Potace	Fluid Typ sium Chlori		Vol bbl 510.0	Survey M		nformatio 1,766.	
Cumulative Produc	ts Cost		3111,616.43	Total Cur	nulative C			\$149,1			Jan Olloll	ac bille	310.0	Survey T\		1,618.	.2 m
Baroid Representat Office	tives 90 Talinga		Edwards courne		James M	unford Telephon	ne 61-03	-9581-7	7555	ł				Angle Direction		7.3 23	86 Deg 84
Warehouse	c/o of Ess					Telephon		56-881-		t				Horiz Disp	ol.	23	m m

	Dai	ily Drilli	ng Flui	d Rep	ort				Date Spud Date	05/10/200	05/24/2008 08	Rig Activity	,	1,766.0 r	n
Operator				port For	0 1 10				4	Well Name)	<u> </u>	<u> </u>		
3D Oil Itd Contractor				naughan port For	Corless /S	Stefan Sch	midt			Wardie-1 Rig Name		Unit System	n		
Seadrill			М	icheal Ba	arry					West Trite		Apache			
Country Australia		State/Province Victoria	ce/Region			Geographi Bass Stra	ic Area/County	y		Field or BI VIC P57	ock				
Bit Information			rill String (in) / (m)			asing m				culation/Hyd	Iraulics Da	ıta		
	in		OD	ID	Length		Set MD	Model	-		4-P-220	Nat-14-I		Nat-14-	
Make/Type Jets						30.000 13.375		Bore in Strokes			4.000	6.50 14.0		6.50 14.0	
TFA	sq-in							Eff(%)			97	97		97	
	m/sec lbf							bbl/strk SPM	<	0	.139 0	0.13	39	0.13	
Bit HHSI	hhp/in2							gpm bb							
Press Drop @ Bit Bit Depth 1,766.0	psi m					-		Total C	SPM Circ Time		AV, Riser AV min DP		Circ Pres		
ECD @ Csg Shoe	SG							BU Tim	ne , min		AV max DC		Press Dr	op DP	
ECD @ Bit Properties	SG	1	2		3	Leak Off	_	Total S gets		gram	BU Strokes		Press Dr reatmen		
Source		•			<u> </u>	7	Tai	gers	110	grain	Fluid Type		KCI/Poly		
Time											Backloaded				
Depth m FL Temp Deg C											bbl KCL brin	e for the ne	ext hole of	onto boat.	
Density @ Deg C SG															
FV @ Deg C sec/qt PV @ Deg C cP															
YP lbs/100 ft2															
GELS lbs/100 ft2															
600/300 200/100															
6/3															
API Filt ml/30 min HTHP @ Deg C ml/30 min															
Cake API/HTHP 32nd in															
Corr Solid % by Vol NAP/Water % by Vol															
Sand % by vol													Activity		
MBT ppb Eq. ph @ Deg C											RIH with 30"	•			
ALK Mud Pm											attempt to fr clamp from (•			
ALK Filt Pf/Mf											csg to rig flo		•		
Chlorides mg/l Tot. Hardness mg/l											rig move. Sk	•		-	
LGS/HGS % by Vol											up work plat				
LGS/HGS ppb ASG SG											deck. Prepa Lock in pin r				
											lock pin asse		-	-	
Additional Properties											from derrick	. P/up HW[OP, RIH t	o open sl	ots to
											lay down.				
D 1 (N		1. %							L		1				
Product Name Drilling Fluids Engineer 2	·	Jnits day(s)	Start	Rec	Used 1	End	\$1,250.00		Shakei		trol Equipme Scree		Hrs	Tin Drilling	ne
Drilling Fluids Engineer		day(s)			1		\$1,250.00	VSM-300	0		00.0)o		Circulatin	
ALDACIDE G Amodrill 1235		5 gal can 1500 l drum	25 2			25		VSM-300 VSM-300						Trips Rig	5.0
BARACOR 100		55 gal drum	4			4		VSM-300						Surveys	
BARA-DEFOAM W300		5 gal can	17			17		VSM-300	0					Fishing	
BARAZAN D PLUS barite	1	25 kg bag 000 kg bulk	42 125 300			42 125.300		1						Run Casi Coring	ng
BAROFIBRE FINE		25 lb bag	50			50								Reaming	
bentonite calcium chloride flake 77%	1	000 kg bulk 25 kg bag	41.000 19			41.000		Hydro D 16	ocyclone	Cones 16 4	Scree	ens	Hrs	Testing Logging	
caustic soda		25 kg bag	49			49		D 10		10 4				Dir Work	
Circal 60/16		25 kg sack	48			48								Repair	100
Circal Y citric acid		25 kg sack 25 kg bag	49 37			49 37		Cer	ntrifuge	Speed	Feed I	Rate		Other Total	19.0 24.0
CON DET		55 gal drum	8			8		Centrifuç	ge	3,000	40.0	00		Rotating	
CON DET DEXTRID LTE		5 gal can 25 kg sack	32 22			32		Centrifuç	ge	3,000	40.0	10		ROP Dil Rate	0.00
EZ SPOT		55 gal drum	8			8		Fluid \	/olume Br	eakdown		KCI/Polym		Diritate	0.00
EZ-MUD		25 kg pail	96			96			ctive	bbl	Additions	bbl	Los		bbl
EZ-MUD DP KCL Tech Grade (bulk)	1	25 kg bag 000 kg bulk	11.000			11.000		Annulu Pipe C			Base Drill Water		Fluid Du Transfer		-426.7
Kwikseal Fine		40 lb bag	38			38		Active	Pits		Dewatering		SCE		0.,
IIME		25 kg bag 50 lb bag	74 55			74 55		Total H Total C		66.8	Sea Water Whole Mud		Evapora Trips	tion	
N-DRIL HT PLUS NO-SULF		17 kg pail	48			48		Reserv			Nynoie Mud Barite		Other		
Omyacarb 5		25 kg bulk	33.000			33.000		Prev V			Chemicals		Total Su		
PAC-L potassium chloride	1	25 kg bag 000 kg bag	55 10			55 10		Net Ch Total V		-426.7 66.8	Other Total		Downhol Total Los		-426.7
									Fluid Typ		Vol bbl	Dev	viation Ir	formatio	n
Daily Products Cost Cumulative Products Cost	-	\$0.00 \$111,616.43	Total Daily		net .		\$2,500.00 \$151,616.43					Survey MD Survey TV		1,766. 1,618.	
Baroid Representatives	Eugene	Edwards		mes Mu	nford			1				Angle	-	7.3	6 Deg
Office 90 Talinga					Telephon		9581-7555	4				Direction	,	23	84


	Da	ily Drilli	na Fli	ıid Rer	ort				Date Spud Date		05/25/2008	Depth Rig Activity		1,766.0	m
Operator		ny Dinin	_	Report For						05/10/20 Well Name			Move to	location	
3D Oil Itd Contractor				Shaughan Report For	Corless /S	Stefan Sch	midt			Wardie-1 Rig Name		Unit Syster	m		
Seadrill				Micheal Ba	arry					West Trit		Apache			
Country Australia		State/Province Victoria	ce/Region			Geograph Bass Stra	ic Area/Count ait	ty		Field or BI VIC P57	lock				
Bit Information				ı (in) / (m)		in C	asing m			Cir	culation/Hyd				
Bit Size Make/Type	in		OD	ID	Length	30.000	Set MD @ 133.0	Model Bore i			14-P-220 5.500	Nat-14- 6.5			-P-220 500
Jets						13.375		0 Stroke	s in		4.000	14.0			000
TFA Jets Velocity	sq-in m/sec							Eff(%) bbl/str		C	97).139	97 0.1			17 139
Jet Impact Force Bit HHSI	lbf							SPM	hl/min		0	0	ı	(0
Press Drop @ Bit	hhp/in2 psi							gpm b Total (AV, Riser		Circ Pre		
Bit Depth 1,766.0 ECD @ Csg Shoe	m SG								Circ Time me , min		AV min DP AV max DC		Tot Pres		
ECD @ Bit	SG		_		_	Leak Off	_	Total S	Strokes		BU Strokes		Press D	rop An	
Properties Source		1	2		3	4	Та	rgets	Pro	gram	Fluid Type	Fluid	reatmei KCI/Po		
Time														.,	
Depth m FL Temp Deg C															
Density @ Deg C SG															
FV @ Deg C sec/qt PV @ Deg C cP															
YP lbs/100 ft2															
GELS lbs/100 ft2 600/300															
200/100															
6/3 API Filt ml/30 min															
HTHP @ Deg C ml/30 min Cake API/HTHP 32nd in															
Corr Solid % by Vol															
NAP/Water % by Vol Sand % by vol								++				Rio	Activity		
MBT ppb Eq.											Cont. to lay			BOP slir	ngs and
pH @ Deg C ALK Mud Pm											ext sling for				
ALK Filt Pf/Mf											from cantile secure BOP				•
Chlorides mg/l Tot. Hardness mg/l											items. Jack	•			
LGS/HGS % by Vol LGS/HGS ppb											water integr complete dr	•	•	•	
ASG SG											Wardie -1 d		-	·······································	
Additional Properties															
Product Name		Units	Start	Rec	Used	End	Cost		8	olids Con	trol Equipm			Til	me
Drilling Fluids Engineer 2 Drilling Fluids Engineer		day(s) day(s)			1 1		\$1,250.00 \$1,250.00		Shakei 00		Scre	ens	Hrs	Drilling Circulatii	na
ALDACIDE G		5 gal can	25		·	25	. ,	VSM-30	00					Trips	
Amodrill 1235 BARACOR 100		1500 I drum 55 gal drum	2			2		VSM-30 VSM-30						Rig Surveys	
BARA-DEFOAM W300		5 gal can	17			17		VSM-30						Fishing	.
BARAZAN D PLUS barite	1	25 kg bag 1000 kg bulk	42 125.300			42 125.300								Run Cas Coring	sing
BAROFIBRE FINE		25 lb bag	50			50		I I sod			0			Reaming	3
bentonite calcium chloride flake 77%	<u>'</u>	000 kg bulk 25 kg bag	41.000 19			41.000		D 16	rocyclone	Cones 16 4	Scre	ens	Hrs	Testing Logging	
caustic soda		25 kg pail	49			49 48								Dir Work	
Circal 60/16 Circal Y		25 kg sack 25 kg sack	48 49			49								Repair Other	22.
citric acid CON DET		25 kg bag				37 8			ntrifuge	Speed	Feed		Hrs	Total	22.
CON DET		55 gal drum 5 gal can	32			32		Centrifu Centrifu		3,000 3,000				Rotating ROP	
DEXTRID LTE		25 kg sack 55 gal drum	22			22		Florid	Valuma Di	a alcala uma		KCI/Dalu		Dil Rate	0.0
EZ SPOT EZ-MUD		25 kg pail	96			96			Volume Bu Active	bbl	Additions	KCI/Polyr bbl		sses	bbl
EZ-MUD DP	L ,	25 kg bag	14			14		Annulu			Base		Fluid Du		
KCL Tech Grade (bulk) Kwikseal Fine		40 lb bag	11.000			11.000		Pipe C Active			Drill Water Dewatering		Transfe SCE	neu	
lime		25 kg bag	74			74		Total I	Hole	66.8	Sea Water		Evapora	ation	
N-DRIL HT PLUS NO-SULF		50 lb bag 17 kg pail	55 48			55 48		Total (Reser			Whole Mud Barite		Trips Other		
Omyacarb 5		25 kg bulk	33.000			33.000		Prev V	/ol	66.8	Chemicals		Total Su		
PAC-L potassium chloride	<u> </u>	25 kg bag 1000 kg bag	55 10			55 10		Net Ch		66.8	Other Total		Downho		
		0 0					# 0 F 00 0		Fluid Typ		Vol bbl		viation I	nformatio	
Daily Products Cost Cumulative Products Cost	9	\$0.00 \$111,616.43	Total Dail Total Cur	y Cost nulative Co	ost		\$2,500.00 \$154,116.43					Survey MI Survey T\			3.0 m 3.2 m
Baroid Representatives	Eugene	Edwards		James Mu	nford		•	7				Angle		7.	36 Deg
Office 90 Talinga					Telephon		9581-7555	4				Direction	N.	2	34

Attachment 4

Casing Report

Wardie-1 30" Conductor

Wardie - 1 13 3/8" CASING TALLY

Casing Data Well Data						ll Data	
Size		in			Base CTU	21.3	
Grade	N80				Mudline	77.5	<u> </u>
Weight	101	kg/m	Burst	5020 psi	17.5" TD	751.0	<u> </u>
Calipered ID	12.402	in		12.415 in		·····	m
M/U Loss	0.12	m	Drift ID	12.259 in	Rathole	3.78	m
Гhread	BTC						
Internal Capacity	0.4902	bbl/m					
Joint Number	Meas. Length (ft)	Effective Length (ft)	Depth - Top of Joint (ft)	Depth - Bottom of Joint (ft)	Running Depth	Capacity bbls	Comments
Wellhead (above hang off point)	1.48	1.48	17.40	18.88	729.77		
Wellhead (below hang off point)	1.26	1.26	18.88	20.14	728.29		Land off point on 30"at 18.88mRT
X/O	4.46	4.46	20.14	24.60	727.03		
			24.60	24.60	722.57	354.21	
11	11.21	11.210	24.60	35.81	722.57	354.21	
3	11.42	11.420	35.81	47.23	711.36	348.71	
6	11.66	11.660	47.23	58.89	699.94	343.12	
7	11.46	11.460	58.89	70.35	688.28	337.40	
10	11.41	11.410	70.35	81.76	676.82	331.78	
Running Tool	3.64	3.64	81.76	85.40	665.41	326.19	
Upper MLS	0.05	0.05	85.40	85.45			
Lower MLS	3.18	3.18	85.45	88.63	661.77	324.40	MLS hang-off at 85.45m
16	11.52	11.52	88.63	100.15	658.59	322.85	
17	11.30	11.30	100.15	111.45	647.07	317.20	
18	11.15	11.15	111.45	122.60	635.77	311.66	
19	11.51	11.51	122.60	134.11	624.62	306.19	
20	11.44	11.44	134.11	145.55	613.11	300.55	~
21	11.16	11.16	145.55	156.71	601.67	294.94	Centraliser
23	11.29	11.29	156.71	168.00	590.51	289.47	Centraliser
24	11.65	11.65	168.00	179.65	579.22	283.94	
25	11.69	11.69	179.65	191.34	567.57	278.23	
26	11.37	11.37	191.34	202.71	555.88	272.50	
27 29	11.65 11.50	11.65 11.50	202.71 214.36	214.36 225.86	544.51 532.86	266.92 261.21	
30	11.25	11.25	225.86	237.11	521.36	255.57	
31	11.20	11.20	237.11	248.31	510.11	250.06	
32	11.20	11.10	248.31	259.41	498.91	244.57	
33	11.10	11.10	259.41	270.85	487.81	239.13	
34	11.51	11.44	270.85	282.36	476.37	233.52	
35	11.48	11.48	282.36	293.84	464.86	227.88	
36	11.13	11.13	293.84	304.97	453.38	222.25	
37	11.79	11.79	304.97	316.76	442.25	216.79	
38	11.75	11.75	316.76	328.08	430.46	211.01	
39	11.10	11.10	328.08	339.18	419.14	205.47	
40	11.24	11.24	339.18	350.42	408.04	200.02	
41	11.16	11.16	350.42	361.58	396.80	194.51	
42	11.56	11.56	361.58	373.14	385.64	189.04	
43	11.28	11.28	373.14	384.42	374.08	183.38	
44	11.55	11.55	384.42	395.97	362.80	177.85	
45	11.70	11.70	395.97	407.67	351.25	172.19	
46	11.59	11.59	407.67	419.26	339.55	166.45	
47	11.62	11.62	419.26	430.88	327.96	160.77	
48	11.28	11.28	430.88	442.16	316.34	155.07	
49	11.55	11.55	442.16	453.71	305.06	149.54	
50	11.59	11.59	453.71	465.30	293.51	143.88	
51	11.33	11.33	465.30	476.63	281.92	138.20	
52	11.15	11.15	476.63	487.78	270.59	132.64	
53	10.51	10.51	487.78	498.29	259.44	127.18	
54	11.08	11.08	498.29	509.37	248.93	122.03	
55	11.44	11.44	509.37	520.81	237.85	116.60	
56	11.64	11.64	520.81	532.45	226.41	110.99	

Joint Number	Meas. Length (ft)	Effective Length (ft)	Depth - Top of Joint (ft)	Depth - Bottom of Joint (ft)	Running Depth	Capacity bbls	Comments
57	11.56	11.56	532.45	544.01	214.77	105.28	
58	11.54	11.54	544.01	555.55	203.21	99.61	
59	11.55	11.55	555.55	567.10	191.67	93.96	
60	11.23	11.23	567.10	578.33	180.12	88.30	
61	11.28	11.28	578.33	589.61	168.89	82.79	
62	10.79	10.79	589.61	600.40	157.61	77.26	
63	10.72	10.72	600.40	611.12	146.82	71.97	
64	11.09	11.09	611.12	622.21	136.10	66.72	
65	11.08	11.08	622.21	633.29	125.01	61.28	
66	11.25	11.25	633.29	644.54	113.93	55.85	
67	11.67	11.67	644.54	656.21	102.68	50.33	
68	11.22	11.22	656.21	667.43	91.01	44.61	
69	11.25	11.25	667.43	678.68	79.79	39.11	
70	11.79	11.79	678.68	690.47	68.54	33.60	
71	10.98	10.98	690.47	701.45	56.75	27.82	
72	11.17	11.17	701.45	712.62	45.77	22.44	
73	11.26	11.26	712.62	723.88	34.60	16.96	
74	11.26	11.26	723.88	735.14	23.34	11.44	
Float Collar	0.37	0.37	735.14	735.51	12.08	5.92	
Shoe Jt 'A'	11.71	11.71	735.51	747.22	11.71	5.74	No centralisers run

Attachment 5

Cementing Report

Australian Drilling Associates

Level 5, Rialto North Tower 525 Collins St Melbourne, Victoria, 3000

Wardie 1
Cementing
Post Job Report

Prepared for Rajiv Tikkoo Friday, 16 April 2010

Submitted by Prem kumar

Halliburton Australia Pty Ltd 90 Talinga Rd, Cheltenham, VIC, 3192 Ph: 03 9581 7536 Fax: 03 9581 7599

HALLIBURTON

ADA on behalf of 3D Oil Wardie 1 Cementing Post Job Report

90 Talinga Road Cheltenham, Vic 3192 Tel: +61 3 9583 7500 Fax: +61 3 9583 7599

Friday, 16 April 2010

Rajiv Tikkoo Australian Drilling Associates Level 5, Rialto North Tower 525 Collins St Melbourne, Victoria, 3000

Rajiv,

Re: Wardie#1

Included for your review is a copy of the Post Job Report of the Wardie#1 cementing operations. The PJR includes the programs, job logs, and lab reports.

I trust this PJR meets the requirements of ADA and with insight and reflection provides sufficient detail for future reference.

Yours sincerely,

Prem kumar Salibendla Technical Professional

Cementing Page 2 of 40 April 16, 2010

Table of Contents

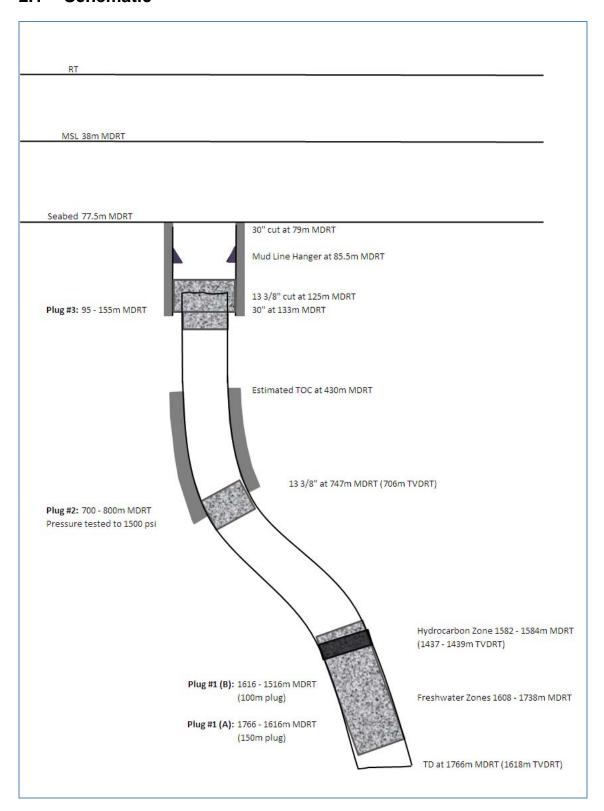
1.0	SUN	MMARY OF OPERATIONS	4				
	1.1	LESSONS LEARNT	4				
2.0	CEN	MENT PROGRAMS	5				
	2.1	SCHEMATIC	5				
	2.2	30IN X 20IN CASING DETAILS	6				
		2.2.1 30Inch Casing Job Procedure	8				
	2.3	13 3/8 INCH CASING DETAILS	9				
		2.3.1 13 3/8in Casing Job Procedure					
	2.4	PLUG#1a DETAILS - 12.25IN HOLE	. 12				
		2.4.1 Plug #1a`Job Procedure – Plug 1					
	2.5	PLUG#1B DETAILS - 12.25IN HOLE	. 14				
		2.5.1 Plug #1b`Job Procedure – Plug 1					
	2.6	PLUG#2 DETAILS - 13 3/8IN CASING X 12.25IN HOLE	. 17				
		2.6.1 Plug 2 Job Procedure	. 18				
	2.7	PLUG#3 DETAILS - 13 3/8IN CASING	. 19				
		2.7.1 Plug # 3 Job Procedure	. 20				
	2.8	GUIDELINES FOR PREPARATION OF CEMENT MIXWATER	. 21				
	2.9	PLUG SETTING RECOMMENDATIONS	. 22				
3.0		REPORTS					
4.0	JOB	JOB SUMMARY, EJCS, JOB LOGS					
	4.1	30 INCH CONDUCTOR CASING	. 26				
		4.1.1 Job Summary	. 26				
		4.1.2 Job Logs	. 27				
		4.1.3 KPI & EJCS	. 28				
		4.1.4 Technical Graph	. 29				
	4.2	13 3/8" SSR CASING	. 30				
		4.2.1 Job Summary	. 30				
		4.2.2 JOB LOGS	. 32				
		4.2.3 Pumping Chart	. 33				
	4.3	P&A PLUGS	. 34				
		4.3.1 Summary	. 34				
		4.3.2 JOB LOGS	. 36				
		4.3.3 PUMPING CHARTS	. 37				

1.0 Summary of operations

Cementation on Wardie#1 well was completed as follows

- 30" Conductor casing was cemented on the 12th of May 2008
- 13 3/8" Surface Casing was cemented on the 15th of May 2008
- Plug and abandonment of the well was completed on the 21st of May 2008.

1.1 Lessons Learnt


The cementing operations on Wardie#1 were executed as planned in a safe and careful manner.

The centralisers on the 13 3/8" casing held up as they were run in hole. The hang up point occurred at a restriction in the conductor casing where the ID went from ~20inch to 17.5inch and then back out to 20inch. Under normal circumstances this restriction would be fine however there was an alignment issue with the rig which contributed to the magnitude of the drag encountered. As a result the casing was POOH and the centralisers removed. On the second run the casing went to bottom. As of the 29th of May discussions with Centek (Manufacturer of the centralisers) is still ongoing.

Cementing Page 4 of 40 April 16, 2010

2.0 Cement Programs

2.1 Schematic

2.2 30in x 20in Casing Details

JOB PARAMETERS

Casing measured depth: 133m BHST temperature: 20°C

True vertical depth: 133m BHCT temperature: 17°C

Depth to top cement: 78m Drilling mud type: SW&HVBS

Drilling mud density: 8.60ppg

WELLBORE

Casing/Tubing (Inner string job)

0-133m 5 1/2in 24.7ppf Tubing

0-120m 30in 309.7ppf Casing (X-52 D60/MT)

120-133m 20in 169ppf Casing

Annulus

0-78m RKB-ML

78-133m 36in open hole (200% excess)

SPACERS

Spacer #1 - 100.0bbl Seawater at 8.55ppg

Seawater 42.00 gal/bbl (12m OH annular fill / 13min contact time)

Spacer #2 - 20.0bbl Seawater + Dye at 8.57ppg

Seawater 41.98 gal/bbl (2m OH annular fill / 3min contact time)

Fluorescein Dye 0.20 lb/bbl

Contact times are based on the displacement rate.

CEMENT

Composition		Properties		
Adelaide Brighton Class G		Surface density:	15.90 ppg	
Calcium Chloride 1%	1.00 %BWOC	Surface yield:	1.17 ft ³ /sk	
Seawater	5.16 gal/sk	Total mixing fluid:	5.20 gal/sk	

HALLIBURTON

NF-6	0.25 gal/10bblMF	Thickening time (70 Bc):	3:30
		Free water vert at 17°C:	<1 %
		Comp strength at 19°C	50 psi in 4 hrs
		Comp strength at 19°C	500 psi in 6 hrs
		Comp strength at 19°C	2,000 psi in 24 hrs

Note that %BWOC are based on a 94 lb sack

VOLUME CALCULATIONS		
Cement		
30in Casing / 36in hole volume	43 m x 1.2620 bbl/m	53.6 bbl
30in Casing / 36in hole excess	2.00 x 53.6 bbl	107.3 bbl
20in Casing / 36in hole volume	13 m x 2.8555 bbl/m	37.1 bbl
20in Casing / 36in hole excess	2.00 x 37.1 bbl	74.2 bbl
	Total slurry volume	=272.3 bbl
	Total slurry volume	=272.3 bbl
Quantity of cement	<i>Total slurry volume</i> 272.3 bbl x 5.6146 / 1.17 ft ³ /sk	2 = 272.3 bbl 1307 sks
Quantity of cement Quantity of mix fluid		
	272.3 bbl x 5.6146 / 1.17 ft ³ /sk	1307 sks
	272.3 bbl x 5.6146 / 1.17 ft ³ /sk	1307 sks

Total displacement volume =9.2 bbl

PUMPING SCHEDULE & TIMES			
	Volume	Rate	Time
	(bbl)	(bbl/min)	(min)
Make up lines & pressure test:	N/A	N/A	30
Circulate 1.5 x Casing volume:	13.8	10.0	1
Pump spacers:	120.0	10.0	12
Mix & pump cement:	272.3	6.0	45
Release dart/top plug:	N/A	N/A	5
Pump displacement:	9.2	8.0	1

Total job time (including circulation): 94 min 1hr 34min

Minimum cement thickening time (with 2hr safety factor): 171 min 2hr 51min

MINIMUM MATERIAL REQUIREMENTS (Double for loadout)

Spacer #1 - Seawater

Seawater 100 bbl

Spacer #2 - Seawater + Dye

Seawater 20 bbl

Fluorescein Dye 4 lb

Cement

Adelaide Brighton Class G 56 MT(1,313 ft³)

Calcium Chloride 1% 1,229 lbs

Seawater 160.6 bbl

NF-6 5 gals

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance.

2.2.1 30Inch Casing Job Procedure

- 1) Run 30" casing to TD with innerstring pipe.
- 2) Rig up surface equipment including a releasing tool for the latch in dart if one is required
- 3) Establish circulation
- 4) Test lines to 3000psi
- 5) Pump 100bbls Seawater
- 6) Pump 20bbls Seawater with Fluorescein Dye
- 7) Mix and pump 265bbls of 15.9ppg cement or until returns are evident on the seafloor
- 8) Drop top plug/latch in plug if one is being used
- 9) Displace with 10bbls of WBM
- 10) Slow pump rate down for final 10bbls. Bump plug 500psi over and hold for 10mins. Bleed back and check floats

2.3 13 3/8 inch Casing Details

JOB PARAMETERS

Casing measured depth: 747m BHST temperature: 48°C

True vertical depth: 704m BHCT temperature: 34°C

Depth to top cement: 432m Drilling mud type: SW +Sweeps

Drilling mud density: 9.50ppg

WELLBORE

Casing/Tubing

0-747m 13 3/8in 68ppf Casing (N-80 BTC)

Annulus

0-78m RKB-ML

78-120m 30in 309.7ppf casing (28in ID)

120-133m 20in 169ppf casing (18.376in ID)

133-747m 17.5in open hole (10% excess)

SPACERS

Spacer #1 - 70.0bbl Seawater at 8.55ppg

Seawater 42.00 gal/bbl (157m OH annular fill / 9min contact time)

Spacer #2 - 30.0bbl Tuned Spacer E+ at 11.00ppg

Freshwater 37.31 gal/bbl (67m OH annular fill / 4min contact time)

Tuned Spacer 16.80 lb/bbl

Barite 133.78 lb/bbl

 $Contact\ times\ are\ based\ on\ the\ displacement\ rate.$

CEMENT

Composition Properties

Adelaide Brighton Class G Surface density: 15.90 ppg

CFR-3L 3.00 gal/10bblMF Surface yield: 1.16 ft³/sk

HALLIBURTON

HR-6L	2.00 gal/10bblMF	Total mixing fluid:	5.13 gal/sk
Seawater	5.07 gal/sk	Thickening time (70 Bc):	4:00
NF-6	0.25 gal/10bblMF	Free water vert at 34°C:	Trace %
		Fluid loss at 34°C:	<100 cc/30min
		Comp strength at 43°C	50 psi in 4.5 hrs
		Comp strength at 43°C	500 psi in 7 hrs
		Comp strength at 43°C	2,000 psi in 24 hrs

VOLUME CALCULATIONS		
Cement		
13 3/8in Casing / 17.5in hole volume	315 m x 0.4059 bbl/m	127.9 bbl
13 3/8in Casing / 17.5in hole excess	0.10 x 127.9 bbl	12.8 bbl
Shoe track volume	12 m x 0.4912 bbl/m	5.9 bbl
	Total slurry volume	e =146.6 bbl
	Total slurry volume	e =146.6 bbl
Quantity of cement	<i>Total slurry volume</i> 146.6 bbl x 5.6146 / 1.16 ft³/sk	? = 146.6 bbl 710 sks
Quantity of cement Quantity of mix fluid	·	
•	146.6 bbl x 5.6146 / 1.16 ft³/sk	710 sks

Volume

735 m x 0.4912 bbl/m

Rate

Total displacement volume =361.1 bbl

Time

361.1 bbl

PUMPING SCHEDULE & TIMES

13 3/8in Casing volume

	(bbl)	(bbl/min)	(min)
Make up lines & pressure test:	N/A	N/A	30
Circulate 1.5 x Casing volume:	550.5	10.0	55
Pump spacers:	100.0	10.0	10
Mix & pump cement:	146.6	5.0	29
Release dart/top plug:	N/A	N/A	5
Pump displacement:	361.1	8.0	45

Total job time (including circulation): 174 min 2hr 54min

Minimum cement thickening time (with 2hr safety factor): 199 min 3hr 19min

MINIMUM MATERIAL REQUIREMENTS (Double for loadout)

Spacer #1 - Seawater

Seawater 70 bbl

Spacer #2 - Tuned Spacer E+

Freshwater 26.6 bbl

Tuned Spacer 504 lb

Barite 4,013 lb

Cement

Adelaide Brighton Class G 30 MT(704 ft³)

CFR-3L 26 gals

HR-6L 17 gals

Seawater 85.7 bbl

NF-6 3 gals

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance.

2.3.1 13 3/8in Casing Job Procedure

- 1) Run 13 3/8" casing to TD
- 2) Establish circulation by pumping 10bbl sea water
- 3) Test lines to 3000psi
- 4) Pump 60bbls Seawater
- 5) Pump 30bbls Tuned spacer
- 6) Mix and pump 150bbls of single 15.9ppg slurry
- 7) Drop releasing dart on the releasing sleeve and pumped 1.57bbls FW and apply about 2500 ± 500 psi to release the top plug.
- 8) Displace with 350bbls of mud. Use calliper volumes if possible
- Slow pump rate down to 1bbl/min for final 10bbls. Bump plug 500psi over and hold for 10mins.
 Bleed back and check floats
- 10) End job

2.4 Plug#1a Details - 12.25in hole

JOB PARAMETERS

Plug bottom MD: 1,766m BHST temperature: 76°C Plug bottom TVD: 1,616m BHCT temperature: 62°C

Plug top MD: 1,616m Drilling mud type: 6-8% KCl/PHKA

Plug length: 150m Drilling mud density: 9.50ppg

Plug length with DP in: 157m

WELLBORE

Workstring

0-1,766m 5 1/2in 21.9ppf tubing (XT 57)

Annulus

0-1,766m 12.25in open hole (10% excess)

SPACERS

Spacer - Freshwater at 8.33ppg

Freshwater 42.00 gal/bbl 20.0bbl ahead and 3.4bbl behind to balance

(42m annular fill / 3min contact time)

Contact times are based on the displacement rate.

CEMENT SLURRY

Composition Properties

Adelaide Brighton Class GSurface density:15.80 ppgSCR-100L2.00 gal/10bblMFSurface yield:1.16 ft³/skCFR-3L3.00 gal/10bblMFTotal mixing fluid:5.12 gal/skFreshwater5.06 gal/skThickening time (70 Bc):3:30

NF-6 0.25 gal/10bblMF Comp strength at 72°C 50 psi in 4 hrs

Comp strength at 72°C 500 psi in 6 hrs Comp strength at 72°C 2,500 psi in 24 hrs

VOLUME CALCULATIONS

Cement

12.25in hole volume 150 m x 0.4782 bbl/m 71.7 bbl 12.25in hole excess 0.10 x 71.7 bbl 7.2 bbl

Slurry volume =78.9 bbl

Quantity of cement 78.9 bbl x 5.6146 / 1.16 ft³/sk 382 sacks Quantity of mix fluid 382 sacks x 5.12 gal/sk 46.6 bbl

Displacement

5 1/2in tubing volume 1,562 m x 0.0728 bbl/m 113.7 bbl

Total displacement volume =113.7 bbl

PUMPING SCHEDULE & TIMES

	Volume	Rate	Time
	(bbl)	(bbl/min)	(min)
Make up lines & pressure test:	N/A	N/A	30
Circulate 1 x bottoms up:	758.8	6.0	126
Pump spacers ahead:	20.0	6.0	3
Mix & pump cement:	78.9	5.0	16
Drop wiper ball:	N/A	N/A	5
Pump spacers behind:	3.4	6.0	1
Pump displacement:	113.7	6.0	19
Pull workstring 27 m above TOC:	177m	9.0m/min	20
Circulate workstring clean:	116.0	6.0	19

Total job time (including circulation): 239 min 3hr 59min Minimum cement thickening time (with 2hr safety factor): 200 min 3hr 20min

MINIMUM MATERIAL REQUIREMENTS (Double for loadout)

Spacer - Freshwater

Freshwater 23.4 bbl

Cement

Adelaide Brighton Class G

SCR-100L

10 gals

CFR-3L

14 gals

Freshwater

46 bbl

NF-6

2 gals

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance.

2.4.1 Plug #1a`Job Procedure - Plug 1

- 1) RIH to 1766m with work string
- 2) Rig up surface lines.
- 3) Establish circulation, Pump 10bbls Fresh water.
- 4) Test lines 2000psi.
- 5) Pump 10bbls Fresh water.
- 6) Mix and pump 85bbls of 15.8ppg cement slurry.
- 7) Displace with 3.5bbls of fresh water to balance
- 8) Continue to displace with 113bbls of well fluid to create a balanced plug
- 9) Note 1bbl under displace to aid in dryPOOH
- 10) Pick up worksting to top of cement
- 11) Reverse circulate 1 1/2 times tubing volumes clean before POOH
- 12) Pick up and prepare for 1b plug

2.5 Plug#1b Details - 12.25in hole

JOB PARAMETERS	
----------------	--

Plug bottom MD: 1,616m BHST temperature: 72°C

Plug bottom TVD: 1,467m BHCT temperature: 58°C

Plug top MD: 1,516m Drilling mud type: 6-8% KCl/PHKA

Plug length: 100m Drilling mud density: 9.50ppg

Plug length with DP in: 103m

WELLBORE

Workstring

0-1,616m 4in 14ppf tubing

Annulus

0-747m 13 3/8in 68ppf casing (12.415in ID)

747-1,616m 12.25in open hole (10% excess)

SPACERS

Spacer - Freshwater at 8.33ppg

Freshwater 42.00 gal/bbl 20.0bbl ahead and 1.5bbl behind to balance

(38m annular fill / 3min contact time)

Contact times are based on the displacement rate.

CEMENT SLURRY

Composition		Properties	
Adelaide Brighton Class G		Surface density:	15.80 ppg
SCR-100L	2.00 gal/10bblMF	Surface yield:	1.16 ft ³ /sk
CFR-3L	3.00 gal/10bblMF	Total mixing fluid:	5.12 gal/sk
Freshwater	5.05 gal/sk	Thickening time (70 Bc):	3:30
NF-6	0.25 gal/10bblMF	Comp strength at 67°C	50 psi in 4 hrs
		Comp strength at 67°C	500 psi in 6 hrs
		Comp strength at 67°C	2,500 psi in 24 hrs

Cementing Page 14 of 40 April 16, 2010

VOLUME CALCULATIONS		
Cement		
12.25in hole volume	100 m x 0.4782 bbl/m	47.8 bbl
12.25in hole excess	0.10 x 47.8 bbl	4.8 bbl
	Slurry volume	e =52.6 bbl
Quantity of cement	52.6 bbl x 5.6146 / 1.16 ft ³ /sk	255 sacks
Quantity of mix fluid	255 sacks x 5.12 gal/sk	31.1 bbl
Dignlessment		
Displacement		
4in tubing volume	1,471 m x 0.0356 bbl/m	52.3 bbl
	Total displacement volume	e =52.3 bbl

PUMPING SCHEDULE & TIMES Volume Rate Time (bbl) (bbl/min) (min) Make up lines & pressure test: N/A N/A 30 Circulate 1 x bottoms up: 741.7 6.0 124 20.0 3 Pump spacers ahead: 6.0 Mix & pump cement: 52.6 5.0 11 5 Drop wiper ball: N/A N/A Pump spacers behind: 1.5 6.0 0 Pump displacement: 52.3 6.0 Pull workstring 27 m above TOC: 127m 9.0m/min 14 9 Circulate workstring clean: 53.0 6.0

Total job time (including circulation): 205 min 3hr 25min

Minimum cement thickening time (with 2hr safety factor): 168 min 2hr 48min

MINIMUM MATERIAL REQUIREMENTS (Double for loadout)

Spacer - Freshwater

Freshwater 21.5 bbl

Cement

Adelaide Brighton Class G 11 MT(258 ft³)

SCR-100L 6 gals

CFR-3L 9 gals

Freshwater 30.7 bbl

NF-6 1 gals

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance.

2.5.1 Plug #1b`Job Procedure - Plug 1

- 1) RIH to 1616m with work string
- 2) Rig up surface lines.
- 3) Establish circulation, Pump 10bbls Fresh water.
- 4) Test lines 2000psi.
- 5) Pump 10bbls Fresh water.
- 6) Mix and pump 66bbls of 15.8ppg cement slurry.
- 7) Displace with 3.5bbls of fresh water to balance
- 8) Continue to displace with 103bbls of well fluid to create a balanced plug
- 9) Note 1bbl under displace to aid in dry POOH
- 10) Pick up worksting to top of cement
- 11) Reverse circulate 1 1/2 times tubing volumes clean before POOH
- 12) Pick up and prepare for second plug

2.6 Plug#2 Details - 13 3/8in casing x 12.25in hole

JOB PARAMETERS

Plug bottom MD: 800m BHST temperature: 49°C Plug bottom TVD: 752m BHCT temperature: 39°C

Plug top MD: 700m Drilling mud type: 6-8% KCL/PHKA

Plug length: 100m Drilling mud density: 9.50ppg

Plug length with DP in: 105m

WELLBORE

Workstring

0-800m 5 1/2in 21.9ppf tubing (XT-57)

Annulus

0-750m 13 3/8in 68ppf casing (12.415in ID) 750-800m 12.25in open hole (20% excess)

SPACERS

Spacer - Freshwater at 8.33ppg

Freshwater 42.00 gal/bbl 20.0bbl ahead and 3.7bbl behind to balance

(35m annular fill / 3min contact time)

Contact times are based on the displacement rate.

CEMENT SLURRY

Composition Properties

Adelaide Brighton Class GSurface density:15.90 ppgCFR-3L3.00 gal/10bblMFSurface yield:1.16 ft³/skHR-6L2.00 gal/10bblMFTotal mixing fluid:5.13 gal/skSeawater5.07 gal/skThickening time (70 Bc):3:00

NF-6 0.25 gal/10bblMF Comp strength at 46°C 50 psi in 4 hrs

Comp strength at 46°C 500 psi in 6 hrs Comp strength at 46°C 2,500 psi in 24 hrs

VOLUME CALCULATIONS

Cement

Slurry volume =53.3 bbl

Quantity of cement53.3 bbl x 5.6146 / 1.16 ft³/sk258 sacksQuantity of mix fluid258 sacks x 5.13 gal/sk31.5 bbl

Displacement

5 1/2in tubing volume 644 m x 0.0728 bbl/m 46.9 bbl

Total displacement volume =46.9 bbl

PUMPING SCHEDULE & TIMES				
	Volume	Rate	Time	
	(bbl)	(bbl/min)	(min)	
Make up lines & pressure test:	N/A	N/A	30	
Circulate 1 x bottoms up:	320.0	6.0	53	
Pump spacers ahead:	20.0	6.0	3	
Mix & pump cement:	53.3	5.0	11	
Drop wiper ball:	N/A	N/A	5	
Pump spacers behind:	3.7	6.0	1	
Pump displacement:	46.9	6.0	8	
Pull workstring 27 m above TOC:	127m	9.0m/min	14	
Circulate workstring clean:	49.0	6.0	8	
T	Total job time (includi	ng circulation):	133 min	2hr 13min
Minimum cement thic	ckening time (with 2h	r safety factor):	167 min	2hr 47min

MINIMUM MATERIAL REQUIREMENTS (Double for loadout)

Spacer - Freshwater

Freshwater 23.7 bbl

Cement

Adelaide Brighton Class G 11 MT(258 ft³)

 CFR-3L
 9 gals

 HR-6L
 6 gals

 Seawater
 31.1 bbl

 NF-6
 1 gals

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance.

2.6.1 Plug 2 Job Procedure

- 1) RIH with workstring to 800m MD
- 2) Rig up surface lines, prime and test to 200/2000psi
- 3) Pump 10bbls Fresh water
- 4) Mix and pump 58bbls of 15.8ppg cement slurry.
- 5) Displace with 1.5bbls of fresh water to balance
- 6) Continue to displace with 46bbls of well fluid to create a balanced plug
- 7) Note 1bbl under displace to aid in dry POOH
- 8) Pick up work string at least one stand above top of cement
- 9) Reverse circulate 1 1/2 times tubing volumes clean before POOH
- 10) End Job

2.7 Plug#3 Details - 13 3/8in casing

JOB PARAMETERS

28°C Plug bottom MD: 155m BHST temperature: Plug bottom TVD: 155m BHCT temperature: 23°C Plug top MD: 95m Drilling mud type: seawater Plug length: 60m Drilling mud density: 8.55ppg

Plug length with DP in: 61m

WELLBORE

Workstring

0-155m 5 1/2in 21.9ppf tubing (XT-57)

Annulus

0-125m 30in 309.7ppf casing (28in ID) 125-155m 13 3/8in 68ppf casing (12.415in ID)

SPACERS

Spacer - Seawater at 8.33ppg

Seawater 42.00 gal/bbl 20.0bbl ahead and 0.6bbl behind to balance

(8m annular fill / 3min contact time)

Contact times are based on the displacement rate.

CEMENT SLURRY

Composition **Properties** Adelaide Brighton Class G Surface density: 15.90 ppg 1.00 %BWOC Calcium Chloride 1% 1.17 ft³/sk Surface yield: Total mixing fluid: Seawater 5.20 gal/sk 5.16 gal/sk NF-6 0.125 gal/10bblMF Thickening time (70 Bc): 3:00

> Comp strength at 26°C 50 psi in 4 hrs Comp strength at 26°C 500 psi in 6 hrs Comp strength at 26°C 2,400 psi in 24 hrs

Note that %BWOC are based on a 94 lb sack

VOLUME CALCULATIONS

Cement

 30 in casing volume
 30 m x 2.4986 bbl/m
 75.0 bbl

 13 3/8in casing volume
 30 m x 0.4912 bbl/m
 14.7 bbl

Slurry volume =89.7 bbl

Quantity of cement89.7 bbl x 5.6146 / 1.17 ft³/sk430 sacksQuantity of mix fluid430 sacks x 5.20 gal/sk53.2 bbl

Displacement

5 1/2in tubing volume 86 m x 0.0728 bbl/m 6.3 bbl

Total displacement volume =6.3 bbl

PUMPING SCHEDULE & TIMES				
	Volume	Rate	Time	
	(bbl)	(bbl/min)	(min)	
Make up lines & pressure test:	N/A	N/A	30	
Circulate 1 x bottoms up:	312.1	6.0	52	
Pump spacers ahead:	20.0	6.0	3	
Mix & pump cement:	89.7	5.0	18	
Drop wiper ball:	N/A	N/A	5	
Pump spacers behind:	0.6	6.0	0	
Pump displacement:	6.3	6.0	1	
Pull workstring 27 m above TOC:	87m	9.0m/min	10	
Circulate workstring clean:	5.0	6.0	1	
	Total job time (includi	ng circulation):	120 min	2hr 00min
Minimum cement t	hickening time (with 2h	r safety factor):	155 min	2hr 35min

MINIMUM MATERIAL REQUIREMENTS (Double for loadout)

Spacer - Seawater

Seawater 20.6 bbl

Cement

Adelaide Brighton Class G 18 MT(422 ft³)

Calcium Chloride 1% 404 lbs Seawater 52.8 bbl NF-6 1 gals

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance.

2.7.1 Plug # 3 Job Procedure

- 11) RIH to 155m with workstring
- 12) Rig up surface lines.
- 13) Establish circulation, Pump 10bbls Fresh water.
- 14) Test lines 2000psi.
- 15) Pump 10bbls Fresh water.
- 16) Mix and pumped 93bbls of 15.9ppg cement slurry.
- 17) Displace with 0.5bbls of fresh water to balance
- 18) Continue to displace with 5bbls of well fluid to create a balanced plug
- 19) Note 1bbl under displace to aid in dry POOH
- 20) Pick up work string at least one stand above top of cement
- 21) Reverse circulate 1 1/2 times tubing volumes clean before POOH
- 22) End Job

23)

2.8 Guidelines for Preparation of Cement Mixwater

From time to time it is necessary to pre-mix the additives and mixwater for a cement job instead of adding them "on the fly" via the cement unit LAP system.

NOTE: If mixing in displacement tanks, Econolite and HR-6L are not compatible in their neat form. Ensure there is a sufficient level of water for dilution before mixing chemical additives or add them separately to the mixwater

Lab testing has indicated that there is a maximum age, or retention time, **for batch mixed mixwaters**, after which they should not be used. This is because slurry properties such as thickening time may be affected, and it applies particularly to the "high fineness" additives: Silicalite Liquid, Micromax, Gascon 469 and Microbond in conjunction with cement retarders. Therefore when pre-mixing additives the following guidelines need to be followed:

Prepare drillwater/seawater in a **clean pit/blender** and check fluid has the appropriate chloride content.

Freshwater <1000 Ppm Seawater <20000 Ppm

Add 2 gal of defoamer (NF-6) per 10 bbl of water.

During the casing/liner run add the additives below in the following order.

- a) Extenders Silicalite Liquid / Gascon 469 / Econolite Liquid, WG-17LXP
- b) Friction Reducers **CFR-3L**.
- c) Fluid Loss/Gas Migration Additives **Halad additives / GasStop-L**.

Once the casing is on bottom or the liner hanger has been set and just prior to/during mud conditioning add the additives below in the following order.

- a) Viscosifying Additives **SA-533**. This must be added very slowly to prevent lumps forming and should be added directly to a tub and not though a mixing hopper, since a build up of partially hydrated polymer can form inside the gooseneck. Note that SA-533 requires at least 30 mins to yield.
- b) Weighting Materials **Micromax**.

Immediately prior to the jobs commencement add the retarder and then any expansive additives. Circulate the pit with maximum agitation.

- a) Retarders **HR-6L / HR-25L / SCR-100L**.
- b) Expansive Additives **MicroBond**.

If any foaming is observed add additional anti-foaming agents as required.

NOTE: Once the retarder has been added Halliburton recommends that the maximum surface time of the mixwater should be no more than **8** hours. This is due to the retarder being attracted to the high surface area of the siliceous material in the extender. This has the effect of reducing the retardation effect of the retarder on the cement. It is recommended that if the mixwater with retarder is left for more than 8 hours on surface that it be dumped and a new batch mixed. Mixwater that has been prepared without the addition of an extender or retarder can be kept for 24 hours. After 24 hours the mixwater should not be used for cementing operations unless authorised by a Halliburton engineer.

24)

2.9 Plug Setting Recommendations

- 1. Cement Volume: Pumping sufficient volume is one of the biggest causes of plug failures.
 - Open hole: HOC + 50% excess over gauge to account for washouts, (if not calipered).
 - *Cased Hole*: 10 bbls to compensate for mud contamination.
- 2. **If plug is not being set on a firm base, set a CST or spot a Viscous Reactive Pill (VRP),** the same length as the proposed plug, to act as a base.
- 3. **Drill pipe and stinger should be drifted for accurate displacement.** Include using a latch-down indicator sub (ball catcher) to achieve accurate displacement.
- 4. **Wash over the plug interval.** Rotate and reciprocate down over the entire interval at maximum rate, dependent on well conditions.
- 5. **Minimise any shutdowns to keep the mud in a fluidised condition.** This will help to maximise mud removal efficiency when placing cement.
- 6. **Use a side-port diverter tool** to direct the flow outwards, minimising intermixing and providing jetting action. DO NOT USE A MULE SHOE WITH NARROW SLOTS.
- 7. **Plug height should be limited to 500 ft.** The extra time taken to pull slowly out of the plug increases the risk of cementing-in the cementing assembly.
- 8. Use 2-7/8" or 3 ½" stinger on the end of the drill pipe to minimise stripping the plug when POOH. The recommended length is 1.5 x plug length. When in highly deviated or horizontal holes, centralising the stinger will prevent dead areas of mud on the low side of the hole.
- 9. **Pump minimum of 40 bbls of spacer ahead of the plug** and required volume behind to balance & separate the mud from the cement. It is best to keep the spacer weight almost equal to the cement weight in horizontal holes.
- 10. **Pump spacer, cement and displacement at maximum possible rates** with the cement unit, however **do not over displace** slow rate down prior to end of calculated displacement.
- 11. **Use side entry sub/swivel** or top-drive cement head to enable rotation of the drill pipe whilst pumping cement and displacement **DO NOT reciprocate.**
- 12. **POOH slowly (30 60 ft/min)** and break connections carefully to avoid stripping plug until 500ft above the cement plug. Avoid any delay's
- 13. **Do not circulate on top of plug.** Break circulation slowly so as to minimise disturbance of plug. Never reverse circulate when setting an open-hole plug.
- 14. **Waiting on cement** should be at least the time for the plug to reach 500 psi. or 3000 psi. for a Kick-off plug. Best results have been obtained by a mandatory 24 hr WOC before disturbing the plug.

Cementing Page 22 of 40 April 16, 2010

3.0 LAB REPORTS

HALLIBURTON

BHST : 20.00 Deg.C. BHCT (per API Spec 10) : 17.00 Deg.C. Mud Weight : 8.60 Deg.C. BHCT (per API Spec 10) : 17.00 Deg.C. SLURRY PROPERTIES ABC Class G : 94.00 Lbs/sk From Yard NF-6 : 0.25 gal/10bbl of Mix Fluid 0.003 gal/sk Calcium Chloride 1% : 1.00 %BWOC 0.012 gal/sk Slurry Weight : 15.90 PPG Slurry Yield : 1.17 CuFt/Sac		(CEMENT SLU	IRRY REP	ORT			
Well Name : Wardie-1 Reference : WAR-08-01A Casing Size : 30inch			JOB INFO	RMATION				
Depth(MD from RKB)	Well Name Casing Size Job Type Slurry Type	: Wardie-1 : 30inch : Casing : Single				; ;		1A
Surface Temperature			WELL PR	OPERTIES				
ABC Class G : 94.00 Lbs/sk From Yard NF-6 : 0.25 gal/10bbl of Mix Fluid 0.003 gal/sk Calcium Chloride 1% : 1.00 %BWOC 0.012 gal/sk Slurry Weight : 15.90 PPG Slurry Yield : 1.17 CuFt/Sar Mixing Water THICKENING TIME Reading (BC) : Initial BC 30 BC 50 BC 70 BC 443 psi 2:57 Time(hrs:mins) : 33 2:07 2:30 2:41 25 Deg.C. COMPRESSIVE STRENGTH UCA Summary : 50psi 2:57 UCA Max Temp : 25 Deg C 500psi 6:43 UCA Pressure : 3000 psi	Surface Temperature BHST	: 25.00 : 20.00	Deg.C. Deg.C.	Temperatu BHCT (per	re Gradient API Spec 1	:	-3.79 17.00	Deg.C./100M
NF-6 : 0.25 gal/10bbl of Mix Fluid 0.003 gal/sk Calcium Chloride 1% : 1.00 %BWOC 0.012 gal/sk Slurry Weight : 15.90 PPG Slurry Yield : 1.17 CuFt/Sat Mixing Water : 5.23 Gals/Sack Total Mixing Fluid : 5.24 Gals/Sack THICKENING TIME Reading (BC) : Initial BC 30 BC 50 BC 70 BC 443 psi Time(hrs:mins) : 33 2:07 2:30 2:41 25 Deg.C. COMPRESSIVE STRENGTH UCA Summary : 50psi 2:57 UCA Max Temp : 25 Deg C 500psi 6:43 UCA Pressure : 3000 psi			SLURRY P	ROPERTIES				
Mixing Water : 5.23 Gals/Sack Total Mixing Fluid : 5.24 Gals/Sack	NF-6	: 0.25	gal/10bbl of Mi				_	
Reading (BC) : Initial BC 30 BC 50 BC 70 BC 443 psi Time(hrs:mins) : 33 2:07 2:30 2:41 25 Deg.C. COMPRESSIVE STRENGTH UCA Summary : 50psi 2:57 UCA Max Temp : 25 Deg C : 500psi 6:43 UCA Pressure : 3000 psi	, ,					:		CuFt/Sack Gals/Sack
Time(hrs:mins) : 33 2:07 2:30 2:41 25 Deg.C. COMPRESSIVE STRENGTH UCA Summary : 50psi 2:57 UCA Max Temp : 25 Deg C : 500psi 6:43 UCA Pressure : 3000 psi			THICKEN	IING TIME				
UCA Summary : 50psi 2:57 UCA Max Temp : 25 Deg C : 500psi 6:43 UCA Pressure : 3000 psi								
: 500psi 6:43 UCA Pressure : 3000 psi			COMPRESSIN	/E STRENG	TH			
•	UCA Summary	: 500ps	i 6:43					

Notes : The test was conducted to the specifications provided.

Lab Test Conducted By : Daniel Gibbons

Approved By : Prem kumar Salibendla/Andrew Stobie

The above report is based on sound engineering practices, but because of variable well conditions and other information which must be relied upon, Halliburton makes no warranty, express or implied, as to the accuracy of the data or any of the calculations or opinions expressed herein. You agree that Halliburton shall not be liable for any loss or damage whether due to negligence or otherwise arising out of or in connection with such data, calculations or opinions.

Cementing Page 23 of 40 April 16, 2010

Deg.C.

34.00

BHST

HALLIBURTON

CEMENT SLURRY REPORT

JOB INFORMATION Customer 3D Oil Date 13/05/2008 Well Name Wardie-1 Reference WAR-08-02A **Casing Size** 13 3/8inch Job Type Casing Slurry Type Single Time to Temp 19min WELL PROPERTIES 750 Depth(MD from RKB) Meters Depth(TVD from RKB) 706 Meters Surface Temperature 25.00 3.26 Deg.C./100M Deg.C. Temperature Gradient

Deg.C.

Mud Weight	: 9.50	PPG	Water Source	:	Seawater
		SLURF	RY PROPERTIES		
ABC Class G	: 94.00	Lbs/sk	From Yard		
NF-6	: 0.25	gal/10bbl o	of Mix Fluid	0.003	gal/sk
CFR-3L	: 3.00	gal/10bbl (of Mix Fluid	0.037	gal/sk
HR-6L	: 2.00	gal/10bbl d	of Mix Fluid	0.025	gal/sk

BHCT (per API Spec 10)

 Slurry Weight
 : 15.90
 PPG
 Slurry Yield
 : 1.16
 CuFt/Sack

 Mixing Water
 : 5.10
 Gals/Sack
 Total Mixing Fluid
 : 5.16
 Gals/Sack

			THICKEN	NING TIME		
Reading (BC)	:	Initial BC	30 BC	50 BC	70 BC	1,455 psi
Time(hrs:mins)	:	30	2:28	2:51	2:57	34 Deg.C.

Notes : The test was conducted to the specifications provided.

Lab Test Conducted By : Daniel Gibbons

Approved By : Prem kumar Salibendla/Andrew Stobie

48.00

The above report is based on sound engineering practices, but because of variable well conditions and other information which must be relied upon, Halliburton makes no warranty, express or implied, as to the accuracy of the data or any of the calculations or opinions expressed herein. You agree that Halliburton shall not be liable for any loss or damage whether due to negligence or otherwise arising out of or in connection with such data, calculations or opinions.

Cementing Page 24 of 40 April 16, 2010

HALLIBURTON

CEMENT SLURRY REPORT

JOB INFORMATION

 Customer
 : 3D Oil
 Date
 : 19/05/2008

 Well Name
 : Wardie-1
 Reference
 : WAR-08-03A

Casing Size : 9 5/8inch

Job Type : Casing and Plug 1a&1b

Slurry Type : Single Time to Temp : 19min

	WELL PROPERTIES								
Depth(MD from RKB)	: 1790	Meters	Depth(TVD from RKB)	:	1638	Meters			
Surface Temperature	: 25.00	Deg.C.	Temperature Gradient	:	3.17	Deg.C./100M			
BHST	: 77.00	Deg.C.	BHCT (per API Spec 10)	- :	48.00	Deg.C.			
Mud Weight	: 9.50	PPG	Water Source	- 1	West Trit	on Drill Water			

SLURRY PROPERTIES									
ABC Class G	: 94.00	Lbs/sk	From Yard			_			
NF-6	: 0.25	gal/10bbl of N	/lix Fluid	0.003	gal/sk				
CFR-3L	: 3.00	gal/10bbl of N	⁄lix Fluid	0.037	gal/sk				
SCR-100L	: 2.00	gal/10bbl of N	/lix Fluid	0.025	gal/sk				
Slurry Weight	: 15.80	PPG	Slurry Yield	:	1.16	CuFt/Sack			
Mixing Water	: 4.75	Gals/Sack	Total Mixing Fluid	:	5.17	Gals/Sack			

			THICKEN	VING TIME		
Reading (BC)	:	Initial BC	30 BC	50 BC	70 BC	1,455 psi
Time(hrs:mins)	:	0	3:19	3:23	3:26	34 Deg.C.

Notes : The test was conducted to the specifications provided.

Lab Test Conducted By : Prem Kumar Salibendla

Approved By : Prem kumar Salibendla/Andrew Stobie

The above report is based on sound engineering practices, but because of variable well conditions and other information which must be relied upon, Halliburton makes no warranty, express or implied, as to the accuracy of the data or any of the calculations or opinions expressed herein. You agree that Halliburton shall not be liable for any loss or damage whether due to negligence or otherwise arising out of or in connection with such data, calculations or opinions.

Cementing Page 25 of 40 April 16, 2010

4.0 Job Summary, EJCS, Job Logs

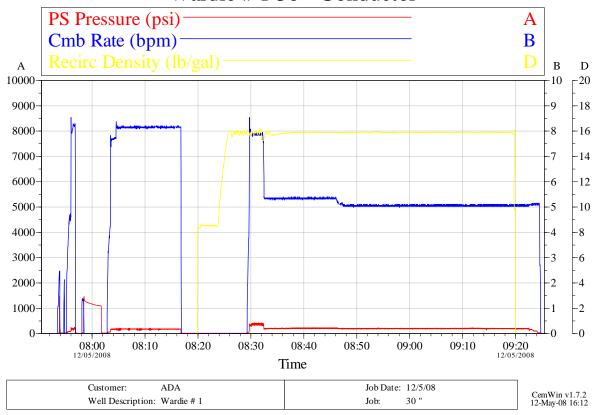
4.1 30 inch Conductor Casing

4.1.1 Job Summary

				_					CUSTOMER	!		SALES ORD	ER No			DATE		
	Н	AL		3(UF	3Т	ON		3D Oil			0			·	12 May 2008		
							CEMENT	C/PUMPIN	IG JOB	SUMMA	.RY							
/ELL		L	LOCATION/	/FIELD	NAME		COUNTRY		HES REP			CUSTOMER	REP		,	VELL TYPE		
Vardie # 1	1	E	Bass Str	rait			Australia		R.Bridgn	nan		Rocco Ro	osso	uw		Explorati	ion	
ОВ ТҮРЕ							JOB PURPOSE COD	E				BDA			F	RIG		
onal Isola	ation						CEMENT CON	DUCTOR (CASING 1	1161		Perth			١	Nest Tri	ton	
ERSONNEL/	/ EXPOSU	RE		HRS	PERSO	NNEL / EX	POSURE	HRS	PERSONNE	L / EXPOSUR	E		HRS	PERSON	INEL / EXP	OSURE		н
886793	Robe	rt Bridgman		12														
27046	Rod S	Stares		12														
	_						•	EQUI	PMENT									
AP#	DIIME	ING / MIXING						HOURS	SAP#	VEHIC	LES / TRAII	EDS						OURS
AF#		PUMP CMT		7/00 A	DVANT	AGE 108	51013	24	JAF#	VERIC	LES/ IKAI	LENO						OUNS
		ric Hydraulic				AGL 100	31913	24										
<u>'</u>					913													
-	4 181	nk Electric CN	109050					24	1									
									t									
SAP#		SUPPLY / TA						HOURS	SAP#	OTHE	REQUIPME	NŤ					н	OURS
N/A	Rig s	upplied Bulk	system															
													_					
							FLOAT EQU	IPMENT A	ND CASIN	IG EQUIP	MENT							
AP#	FLOA	T EQUIPMENT	т					QTY	SAP#	PLUG	3							QTY
SAP#	CARI																	
	CASII	NG ATTACHM	ENTS					QTY	SAP#	OTHE	2							QTY
	CASII	NG ATTACHM	ENTS					QTY	SAP#	OTHE	2							QTY
	CASII	NG ATTACHMI	ENTS					QTY	SAP#	OTHE	?							QTY
	CASII	NG ATTACHMI	ENTS					QTY	SAP#	OTHE	₹							QTY
	CASII	NG ATTACHMI	ENTS						SAP#	OTHE	3							QTY
		NG ATTACHMI	ENTS		OPEN I	HOLE + EX	CESS OR CALIPER D	WELL	PROFILE		2			PREVIO	US CASING	TWO		QTY
NEW CASING		NG ATTACHMI	ENTS				CESS OR CALIPER D	WELL I	PROFILE	OTHEI	R			PREVIO	US CASING	TWO		QTY
NEW CASING 30x20in 309.	.7ppf		ENTS					WELL I	PROFILE		R			PREVIO	US CASING	TWO		QTY
NEW CASING 30x20in 309. Om to 132.87	.7ppf 7m MD, m	TVD		DICATE	36in +	200% exc	ess 77.5m to 136m	WELL	PROFILE PREVIOUS		3			PREVIO	US CASING	TWO		QTY
NEW CASING 30x20in 309. Om to 132.87	.7ppf 7m MD, m			DICATE	36in +	200% exc	ess 77.5m to 136m	WELL ATA	PROFILE PREVIOUS	CASING ONE	3			PREVIO	US CASING	TWO		QTY
NEW CASING 30x20in 309. Om to 132.87	.7ppf 7m MD, m	TVD R JOBS PLI	EASE IND	DICATE	36in +	200% exc	ess 77.5m to 136m	WELL ATA	PROFILE PREVIOUS	CASING ONE	2			PREVIO	US CASING	TWO		QTY
NEW CASING 30x20in 309. Om to 132.87 FOR PLUG A	.7ppf 7m MD, m	TVD ER JOBS PLI SLURRY 1	EASE IND	DICATE	36in +	200% exc	5.5in 24.7p	WELL ATA Opf S135 X1 CEMEN	PROFILE PREVIOUS 57 T DESIGN	CASING ONE	2	DEMOTY		PREVIO				QTY
NEW CASING 30x20in 309. Om to 132.87 FOR PLUG A	.7ppf 7m MD, m AND LINE	TVD ER JOBS PLI SLURRY 1 WATE	EASE IND		36in + E WORI	200% exc	5.5in 24.7p	WELL ATA OPF S135 XT CEMEN WA	PROFILE PREVIOUS 57 T DESIGN	CASING ONE	2	DENSITY		PREVIO	WATE	R REQ		QTY
IEW CASING 30x20in 309: 30x 20in 309: 30m to 132.87 FOR PLUG A DENSITY 11	.7ppf 7m MD, m AND LINE 5.9ppg	TVD ER JOBS PLI SLURRY 1 WATE	EASE IND		36in +	200% exc	5.5in 24.7p	WELL ATA DPF S135 XT CEMEN WA' MIX	PROFILE PREVIOUS 57 T DESIGN	CASING ONE	2	YIELD			WATE			QTY
NEW CASING 30x20in 309.30 Im to 132.87 FOR PLUG A DENSITY 1: VIELD 1.	.7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk	TVD R JOBS PLI SLURRY 1 WATE MIX FI Sea,	EASE IND I - Single ER REQ LUID REG	Q	36in + E WORI 5.16ga 5.2gal/	200% exc	5.5in 24.7p DENSITY YIELD WATER SOURCE	WELL ATA DIPT S135 XT CEMEN WAY MIX :	PROFILE PREVIOUS 57 T DESIGN TER REQ FLUID REC	CASING ONE		YIELD WATER SO	DURC		WATE	R REQ		QTY
NEW CASING 30x20in 309.1 Om to 132.87 FOR PLUG A DENSITY 1: YIELD 1. WATER SOL CEMENT TY	7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE:	TVD ER JOBS PLI SLURRY 1 WATE MIX FI Sea, ABC C	EASE IND I - Single ER REQ LUID REQ Class 'G' @	Q	36in + E WORI 5.16ga 5.2gal/	200% exc	5.5in 24.7p 5.5in 24.7p DENSITY YIELD WATER SOURCE CEMENT TYPE:	WELL ATA OPF \$135 XT CEMEN WA' MIX : ABG	PROFILE PREVIOUS 57 T DESIGN	CASING ONE		YIELD WATER SO CEMENT T	DURC TYPE:	E:	WATE	R REQ		QTY
NEW CASING 30x20in 309.30 Im to 132.87 FOR PLUG A DENSITY 19 VIELD 1.	7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE:	TVD R JOBS PLI SLURRY 1 WATE MIX FI Sea,	EASE IND I - Single ER REQ LUID REQ Class 'G' @	Q	36in + E WORI 5.16ga 5.2gal/	200% exc	5.5in 24.7p DENSITY YIELD WATER SOURCE	WELL ATA OPF \$135 XT CEMEN WA' MIX : ABG	PROFILE PREVIOUS 57 T DESIGN TER REQ FLUID REC	CASING ONE	2	YIELD WATER SO	DURC TYPE:	E:	WATE	R REQ		QTY
NEW CASING 30x20in 309.9 In to 132.87 FOR PLUG A DENSITY 11 YIELD 1. WATER SOL CEMENT TY Total Cemen Estimated Ti	7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE: 'PE: nt Used	TVD SLURRY 1 WATE MIX FI Sea, ABC C 1454 s 77.5 m	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks	Q ② 94 lb	36in + E WORI 5.16ga 5.2gal/	200% exc	5.5in 24.7g 5.5in 24.7g DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC	WELL ATA DOPT S135 XT CEMEN WA' MIX : ABC d	PROFILE PREVIOUS 5 57 T DESIGN TER REQ FLUID REC C Class 'G' @	CASING ONE		YIELD WATER SO CEMENT T Total Ceme	OURC YPE:	E:	WATE MIX F	R REQ LUID REG		QTY
NEW CASING 30x20in 309.0 Om to 132.87 FOR PLUG A DENSITY 1: YIELD 1.	7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE: 'PE: nt Used	TVD ER JOBS PLI ER JOBS PLI SLURRY 1 WATE MIX FI Sea, ABC 0 1454 8 77.5 m Concentrati	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks	94 lb	36in + E WORI 5.16ga 5.2gal/	200% exc	5.5in 24.7p 5.5in 24.7p DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use	WELL ATA OPF \$135 XT CEMEN WA' MIX : ABG	PROFILE PREVIOUS 5 57 T DESIGN TER REQ FLUID REC C Class 'G' @	CASING ONE		YIELD WATER SO CEMENT T Total Ceme	OURC YPE:	E:	WATE	R REQ LUID REG		QTY
NEW CASING 30x20in 309. Om to 132.87 FOR PLUG A DENSITY 1: YIELD 1. WATER SOL CEMENT TY Total Cemen Estimated Ti	.7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE: (PE: nt Used	TVD SLURRY 1 WATE MIX FI Sea, ABC C 1454 s 77.5 m	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks	Q ② 94 lb	36in + E WORI 5.16ga 5.2gal/	200% exc	5.5in 24.7g 5.5in 24.7g DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC	WELL ATA DOPT S135 XT CEMEN WA' MIX : ABC d	PROFILE PREVIOUS 5 57 T DESIGN TER REQ FLUID REC C Class 'G' @	CASING ONE		YIELD WATER SO CEMENT T Total Ceme	OURC YPE:	E:	WATE MIX F	R REQ LUID REG		QTY
NEW CASING 30x20in 309: The to 132.87 FOR PLUG A DENSITY 11 YIELD 1. WATER SOL CEMENT TY Fotal Cemen Estimated Tr Additive	.7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE: (PE: nt Used	TVD ER JOBS PLI ER JOBS PLI SLURRY 1 WATE MIX FI Sea, ABC 0 1454 8 77.5 m Concentrati	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks	94 lb	36in + E WORI 5.16ga 5.2gal/	200% exc	5.5in 24.7g 5.5in 24.7g DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC	WELL ATA DOPT S135 XT CEMEN WA' MIX : ABC d	PROFILE PREVIOUS 5 57 T DESIGN TER REQ FLUID REC C Class 'G' @	CASING ONE		YIELD WATER SO CEMENT T Total Ceme	OURC YPE:	E:	WATE MIX F	R REQ LUID REG		QTY
DENSITY 1: DENSITY 1: NATER SOLEMENT TY Total Cement Stimated Tr Additive Calcium Chlo	.7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE: (PE: nt Used	TVD ER JOBS PLI ER JOBS PLI SLURRY 1 WATE MIX FI Sea, ABC 0 1454 8 77.5 m Concentrati	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks	94 lb	36in + 5.16ga 5.2gal/ 0/sk	200% exc	5.5in 24.7g 5.5in 24.7g DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC	WELL ATA DOPT S135 XT CEMEN WA' MIX : ABC d	PROFILE PREVIOUS 5 57 T DESIGN TER REQ FLUID REC C Class 'G' @	CASING ONE		YIELD WATER SO CEMENT T Total Ceme	OURC YPE:	E:	WATE MIX F	R REQ LUID REG		QTY
JEW CASING JOX20in 309.7 FOR PLUG A DENSITY 11 VIELD 1. WATER SOL EMENT TY Fotal Cemen Estimated To Additive	.7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE: (PE: nt Used	TVD ER JOBS PLI ER JOBS PLI SLURRY 1 WATE MIX FI Sea, ABC 0 1454 8 77.5 m Concentrati	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks	94 lb	36in + 5.16ga 5.2gal/ 0/sk	200% exc	5.5in 24.7g 5.5in 24.7g DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC	WELL ATA DOPT S135 XT CEMEN WA' MIX : ABC d	PROFILE PREVIOUS 5 57 T DESIGN TER REQ FLUID REC C Class 'G' @	CASING ONE		YIELD WATER SO CEMENT T Total Ceme	OURC YPE:	E:	WATE MIX F	R REQ LUID REG		QTY
DENSITY 1: DENSITY 1: VATER SOLUTION TO THE CONTROL OF T	.7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE: (PE: nt Used	TVD ER JOBS PLI ER JOBS PLI SLURRY 1 WATE MIX FI Sea, ABC 0 1454 8 77.5 m Concentrati	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks	94 lb	36in + 5.16ga 5.2gal/ 0/sk	200% exc	5.5in 24.7g 5.5in 24.7g DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC	WELL ATA DOPT S135 XT CEMEN WA' MIX : ABC d	PROFILE PREVIOUS 5 57 T DESIGN TER REQ FLUID REC C Class 'G' @	CASING ONE		YIELD WATER SO CEMENT T Total Ceme	OURC YPE:	E:	WATE MIX F	R REQ LUID REG		QTY
DENSITY 1: DENSITY 1: VATER SOLUTION TO THE CONTROL OF T	.7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE: (PE: nt Used	TVD ER JOBS PLI ER JOBS PLI SLURRY 1 WATE MIX FI Sea, ABC 0 1454 8 77.5 m Concentrati	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks	94 lb	36in + 5.16ga 5.2gal/ 0/sk	200% exc	5.5in 24.7g DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC	WELL ATA DOPT S135 XT CEMEN WA' MIX : ABC d	PROFILE PREVIOUS 5 57 T DESIGN TER REQ FLUID REC C Class 'G' @	CASING ONE		YIELD WATER SO CEMENT T Total Ceme	OURC YPE:	E:	WATE MIX F	R REQ LUID REG		QTY
EW CASING 0x20in 309: m to 132.87 OR PLUG A DENSITY 1: TIELD 1. WATER SOL SEMENT TY COTAL Cemen stimated To ddditive	.7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE: (PE: nt Used	TVD ER JOBS PLI ER JOBS PLI SLURRY 1 WATE MIX FI Sea, ABC 0 1454 8 77.5 m Concentrati	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks	94 lb	36in + 5.16ga 5.2gal/ 0/sk	200% exc	5.5in 24.7g DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC	WELL ATA DOPT S135 XT CEMEN WA' MIX : ABC d	PROFILE PREVIOUS 5 57 T DESIGN TER REQ FLUID REC C Class 'G' @	CASING ONE		YIELD WATER SO CEMENT T Total Ceme	OURC YPE:	E:	WATE MIX F	R REQ LUID REG		QTY
EW CASING 0x20in 309.3 m to 132.87 OR PLUG A DENSITY 1: IELD 1. VATER SOL SEMENT TY otal Cemen stimated To dditive	.7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE: (PE: nt Used	TVD ER JOBS PLI ER JOBS PLI SLURRY 1 WATE MIX FI Sea, ABC 0 1454 8 77.5 m Concentrati	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks	94 lb	36in + 5.16ga 5.2gal/ 0/sk	200% exc	5.5in 24.7g DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC	WELL ATA DOPT S135 XT CEMEN WA' MIX : ABC d	PROFILE PREVIOUS 5 57 T DESIGN TER REQ FLUID REC C Class 'G' @	CASING ONE		YIELD WATER SO CEMENT T Total Ceme	OURC YPE:	E:	WATE MIX F	R REQ LUID REG		QTY
EW CASING 0x20in 309: m to 132.87 OR PLUG A DENSITY 1: TIELD 1. WATER SOL SEMENT TY COTAL Cemen stimated To ddditive	.7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE: (PE: nt Used	TVD ER JOBS PLI ER JOBS PLI SLURRY 1 WATE MIX FI Sea, ABC 0 1454 8 77.5 m Concentrati	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks	94 lb	36in + 5.16ga 5.2gal/ 0/sk	200% exc	5.5in 24.7g DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC	WELL ATA OPP S135 XT CEMEN WAY MIX : ABC Concentr	PROFILE PREVIOUS 57 T DESIGN TER REQ FLUID REC C Class 'G' ation	CASING ONE		YIELD WATER SO CEMENT T Total Ceme	OURC YPE:	E:	WATE MIX F	R REQ LUID REG		QTY
EW CASING 0x20in 309: m to 132.87 OR PLUG A DENSITY 1: TIELD 1. WATER SOL SEMENT TY COTAL Cemen stimated To ddditive	.7ppf 7m MD, m AND LINE 5.9ppg .17cuft/sk URCE: (PE: nt Used	TVD ER JOBS PLI ER JOBS PLI SLURRY 1 WATE MIX FI Sea, ABC 0 1454 8 77.5 m Concentrati	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks n	70tal 28 sx 2 gal:	36in + 5.16ga 5.2gal/v/sk	2200% exc XSTRING	5.5in 24.7g DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC	WELL ATA DOPT S135 XT CEMEN WA' MIX : ABC d	PROFILE PREVIOUS 57 T DESIGN TER REQ FLUID REC C Class 'G' @ ation	CASING ONE		YIELD WATER SO CEMENT T Total Ceme	OURC YPE:	E:	WATE MIX F	R REQ LUID REG	Total Used	
DEW CASING 10x20in 309: Im to 132.87 FOR PLUG A DENSITY 19 INVATER SOL EMENT TY Total Cemen Estimated Tr Iddditive Calcium Chlo	77ppf 7m MD, m MD,	SLURRY 1 WATE MIX FI Sea, ABC C 1454 s 77.5 m Concentrati	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks	70tal 28 sx 2 gal:	36in + E WORI 5.16ga 5.2gal/ //sk	200% exc	5.5in 24.7g DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC	WELL ATA DOPT S135 XT CEMEN WA' MIX : ABC COncentr	PROFILE PREVIOUS 57 T DESIGN TER REQ FLUID REC C Class 'G' @ ation	CASING ONE		YIELD WATER SO CEMENT T Total Ceme	DURC YPE: TOC	C. C.	WATE MIX FI	R REQ LUID REG		RAT
DENSITY 1: DENSITY 1: NATER SOLEMENT TY Total Cement Stimated Tr Additive Calcium Chlo	77ppf 7m MD, m MD,	SLURRY 1 WATE MIX FI Sea, ABC C 1454 s 77.5 m Concentrati	EASE IND I - Single ER REQ LUID REQ Class 'G' @ sks n ion	7 Total 28 sx 2 gal:	36in + E WORI 5.16ga 5.2gal/ //sk	200% exc XSTRING	5.5in 24.7p 5.5in 24.7p DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC Additive	WELL ATA DOPT S135 XT CEMEN WA' MIX : ABC COncentr	PROFILE PREVIOUS 57 T DESIGN TER REQ FLUID REC C Class 'G' @ ation	CASING ONE 94 lb/sk Total Used LE DENSITY	RATE	YIELD WATER SC CEMENT T Total Ceme Estimated Additive	DURC YPE: TOC	C. C.	WATE MIX FI	R REQ	Total Used	RAT
JEW CASING JOX20in 309: John to 132.87 FOR PLUG A DENSITY 19 JULEA JU	77ppf 7m MD, m MD,	SLURRY 1 WATE MIX FI Sea, ABC C 1454 s 77.5 m Concentrati	EASE IND I - Single IR REQ LUID REQ Class 'G' @ sks n ion	Total 28 sx 2 gal	36in + 5.16ga 5.2gal/ 1 Used (Ibs	200% exc XXSTRING 1//sk sk	5.5in 24.7p 5.5in 24.7p DENSITY YIELD WATER SOURCE CEMENT TYPE: Total Cement Use Estimated TOC Additive	WELL ATA DOPT S135 XT CEMEN WA' MIX : ABC COncentr	PROFILE PREVIOUS 57 T DESIGN TER REQ FLUID REC C Class 'G' @ ation	CASING ONE OF 94 lb/sk Total Used DENSITY PPG	RATE	YIELD WATER SC CEMENT T Total Ceme Estimated Additive	DURC YPE: TOC	C. C.	WATE MIX FI	R REQ	Total Used	RAT

4.1.2 Job Logs

					cus	TOMER	SALES ORDER No.	DATE
НД	LLLIE	3UR	TON	l	3D	Oil	0	12-May-2008
	`							
			CE	MENT/PUI	MPING JOE	B LOGS & DET	TAILS	
WELL	LOC	CATION/FIELD NAME	COUN	TRY	HES	REP	CUSTOMER REP	WELL TYPE
Wardie # 1	Ba	iss Strait	Aus	tralia	R.I	Bridgman	Rocco Rossouw	Exploration
JOB TYPE			JOB F	URPOSE CODE			BDA	RIG
Zonal Isolation			CE	MENT COND	UCTOR CAS	NG 14161	Perth	West Triton
					JOB LO	G		
DATE	TIME	VOLUME	PRESSURE	(psi)	RATE	JOB DESCRIP	TION	
DAY-MTH-YR	HRS:MIN	BBLS	HIGH	LOW	ВРМ	REMARKS/DETAILS		
12/05/2008	7:45						Hold JSA	
	7:54	10		206	8		Pump 10 BBL se	eawater
	7:58		1000				Pressure test lines	to 1000psi
	8:03	90		200	8		Pump 90 BBL se	eawater
		20		200			Pump 20 BBL seawa	ter with Dye
	8:28	265		215	5		Mix & Pump 265 BBL ci	mt @ 15.9 ppg
	9:22	10		180			Pump 10 BBL se	eawater
	9:24						Bleed off check	Float
							Chemicals u	sed
							1454sk= 62MT of Clas	ss G cement
							Cacl2=28sks=1	540lbs
							NF-6=2gal	s
						1		
						1		


4.1.3 KPI & EJCS

			CUSTOMER		S ORDER No.	DATE		
HAI	LLIBURT		3D Oil	0		12-1	May-2008	
			IPING KPI & EJO					
WELL Wardie # 1	Bass Strait	COUNTRY Australia	R.Bridgman		CO ROSSOUW		oloration	
JOB TYPE	Dado Olian	JOB PURPOSE CODE	•	BDA		RIG		
Zonal Isolation		CEMENT CONDUCTOR	CASING 14161 IANCE INDICATOR:	Per	th	We	st Triton	
		KET PERFURI	IANCE INDICATOR	3				
·	ting or Non-Cementing):	Cementing	WAS THIS A PRIMA				YES	i
Select the job type (Cerr TOTAL OPERATING TII	nenting or Non-Cementing)	4 Hrs	Primary cement job = DID WE RUN WIPER		Job, tie back		None	_
Rig up/ Pumping/ Rig Do		4 1115	DID WE KUN WIFEN	rLugar			None	
HSE INCIDENT, ACCID	·	NO	WAS THIS A PLUG	OR SQUEEZE JO	B?		Neither	
This should be recordab. WAS THE JOB DELIVE	le incidents only RED CORRECTLY AS PERJOB DES	BIGN?: YES	WAS THIS A PRIMA	RY OR REMEDIA	L JOB?		Prima	rv
This will be dictated by to		120	Remedial = Repeated			ement job	1 11110	.,
TOTAL TIME PUMPING	6 (hrs)	2 Hrs	MIXING DENSITY OF	F JOB STAYED II	N DESIGNED RA	NGE	100%	6
Total number of hours po			Density defined as +/				signed	
NON -PRODUCTIVE RIC		nil	density divided by tot				VEC	
As a result of Halliburton NUMBER OF JSA'S PE	-	1	WAS AUTOMATED I	DENSIIT CONTR	OL OSED		YES	
			JOB WAS PUMPED	AT DESIGNED P	UMP RATE		100%	6
NUMBER OF UNPLAN	NED SHUTDOWNS (After starting to	pump)	Pump rate ranged de				iped at	
TYPE OF DIGIC! ASSI	FICATION) JOB WAS PERFORMED	ON: JACKUP	the designed rate div				nil	_
TITE OF KIG(CLASSII	ICATION, JOB WAS FERT ORMED	JACKOF	Number of remedial s					
REASON FOR UNPLAN	NED SHUTDOWNS (After starting t	o pump)	NUMBER OF REMEI	DIAL AQUEEZE J	OBS REQUIRE	O - COMPETITION	N nil	
Add details in job logs			Number of remedial s					
REASON FOR NON-PR Add details in job logs	ODUCTIVE RIG TIME (Cementing P	SL responsibility):	Number of remedial p				nil	
riad details in job logs			rvamber of remediar p	nag jobs required	anter primary play	, pamped by TIEO		
		EJCS / CUSTO	OMER COMMENTS					
			Plaasa india	ate your respo	nco hy placin	a a tick in		
Dear Customer	r,			erneath the rati				
			your opinior					
	vere happy with the service qua		7. 40	- T III	Me	Below do v recove	Poo	
	Halliburton. It is the aim of our		Es (Es	orov xce	e e	do v	00 (c	
	nel to deliver equipment and so he service sector of the energy		erio tabli orma	ided was	was	what exp	urec	
unmatched in t	the service sector of the energy	industry	Superior Performance (Establish new quality performance standards)	Exceeded Expectati (Provided more than was expected)	pectations (D was expected)	elow expectations (do what was expec recovery made) Crea	brob	
Please take the	e time to let us know if our perf	ormance met your	ew sta	re th	ons Decte	s exp	re at	
expectations. I	Please be as critical as possibl	e to ensure we	mar qual ndar	nan v ed)	ed (Did	ns (E	6 / fs	
	rove our service. Your comme	•	ds)	Exceeded Expectations (Provided more than what was expected)	Met expectations (Did what was expected)	s expected,) Create CPI	Poor (Job problems / failures occured) Create CPI	
us and are inte	nded for the exclusive use of h	falliburton.	5	4	3	2	1 1	4
Did our nerson	nel perform the job to your sati	isfaction?		1 7	<u> </u>	+	† 	1
	nent perform the job to your sai					1	1	1
	n the job to the agreed upon de]
	ts and materials perform as yo							
	n in a safe & careful manner? F						1	-
	n in an environmentally sound i erformed as scheduled? On tim	manner? Spills, disharges, clea	пир	1	1	+	+	1
	nent condition & appearance m				1	+	 	1
	ur personnel communicate dur						1	1
rig-up and job	execution?			1				
Overell Lyrae	antinfinal with Hallihoutenin inh e	- a wfa www.a w a a	YES	NO	1			
Overall, I was s	satisfied with Halliburton's job p	Deriormanice		1	J			
Customer Cor	mments? (What can we do to	improve/maintain our services	?)					

Cementing Page 28 of 40 April 16, 2010

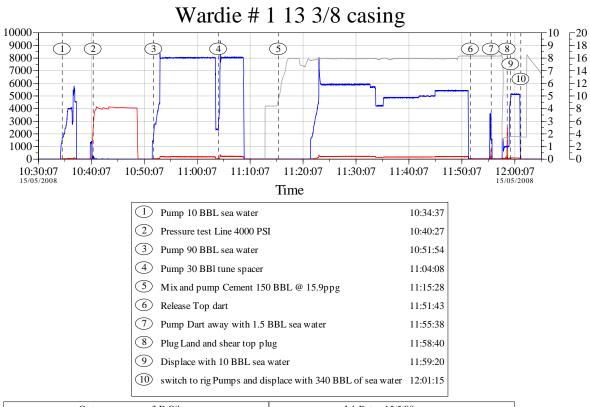
4.1.4 Technical Graph

Wardie # 1 30 " Conductor

4.2 13 3/8" SSR CASING

4.2.1 Job Summary

	LLIBURT		CUSTOMER	SALES ORDER No	. DA	TE	
ПА			3D Oil		15 1	May 2008	
	CE	MENT/PUMP	ING JOB SUMMA	\RY			
WELL		COUNTRY	HES REP	CUSTOMER REP	WE	LL TYPE	
Wardie -1	<u> </u>	Australia	Robert Bridgman	Shaughan Corless		loration	
JOB TYPE		JOB PURPOSE CODE		BDA	RIG		
Zonal Isolation		SURFACE CASING 7521				st Triton	
	NCE INDICATORS						
TYPE OF JOB (Cementing o	r Non-Cementing):	Cementing	WAS THIS A PRIMARY CEM	ENT JOB (YES / NO)		YES	7
Select the job type (Cementing	g or Non-Cementing)		Primary cement job = Casing j	ob, Liner Job, tie back			_
TOTAL OPERATING TIME (I	nrs)	12.0 hrs	DID WE RUN WIPER PLUGS	?		None	╗
Rig up/ Pumping/ Rig Down							_
HSE INCIDENT, ACCIDENT,	INJURY:	NO	WAS THIS A PLUG OR SQUE	EEZE JOB?		Neither	
This should be recordable inci	dents only						
WAS THE JOB DELIVERED	CORRECTLY AS PERJOB DESIGN	YES	WAS THIS A PRIMARY OR R	EMEDIAL JOB?		Primary	
This will be dictated by the cur	stomer		Remedial = Repeated attempts	s or corrections of initial	cement job		
TOTAL TIME PUMPING (hrs	;)	3.0 hrs	MIXING DENSITY OF JOB ST	TAYED IN DESIGNED F	RANGE	95%	
Total number of hours pumpin	g fluid on this job		Density defined as +/- 0.2ppg.	Calculation: Total bbls	cement mixed at	designed	
NON -PRODUCTIVE RIG TIN	IE:		density divided by total bbls of	cement multiplied by 10	10		_
As a result of Halliburton cem	enting PSL		WAS AUTOMATED DENSITY	CONTROL USED		YES	
NUMBER OF JSA'S PERFOR	RMED:	1					
			JOB WAS PUMPED AT DESI	GNED PUMP RATE		100%	┙
NUMBER OF UNPLANNED S	SHUTDOWNS (After starting to pump	p)	Pump rate ranged defined as	+/- bpm. Calculation : to	tal bbis of fluid pu	imped at	
			the designed rate divided by to	otal bbls of fluid pumped	multiplied by 100	,	_
TYPE OF RIG(CLASSIFICAT	ION) JOB WAS PERFORMED ON:	JACKUP	NUMBER OF REMEDIAL SQ	UEEZE JOBS REQUIR	ED - HES		
			Number of remedial squeeze j	obs required after prima	ry job performed	by HES	_
	SHUTDOWNS (After starting to pun	<u>np)</u>	NUMBER OF REMEDIAL AQ				
Add details in job logs			Number of remedial squeeze j			by competition	_
REASON FOR NON-PRODU	CTIVE RIG TIME (Cementing PSL re	sponsibility):	NUMBER OF REMEDIAL PLU	JG JOBS REQUIRED -	HES		_
Add details in job logs			Number of remedial plug jobs	required after primary pi	ug pumped by Hi	ES	
EJCS / CUSTOM	ED COMMENTS						
EUCS / CUSTOWI	EK COMMENTS		Please indicate your res	oneo hy placina a tick i	1		
Dear Ottstomer,			Please indicate your resp the box underneath the r		,		
We hope you were hann			uie box underneaur uie i	ating that best matches			
	with the service quality of this job ne	rformed by	vour opinion				
Halliburton. It is the aim	y with the service quality of this job pe of our management and service perso	onnel to deliver	your opinion.	2	3 ° _ °	9.0	
Halliburton. It is the aim equipment and services		onnel to deliver		Met e (Did e) Exp	expec not d expect made;	proble occur	
Halliburton. It is the aim	of our management and service person	onnel to deliver		Met expect	expectation not do whe expected, made) Cre	Poor (problems / occured)	
Halliburton. It is the aim equipment and services energy industry Please take the time to I	of our management and service person of a standard unmatched in the service et us know if our performance met you	onnel to deliver e sector of the or expectations.		Met expectation (Did what was expected) Exceeded Expectation	expectations (not do what w expected, recommade) Create	Poor (Job problems / failt occured) Cre CPI	
Halliburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as I	of our management and service perso of a standard unmatched in the service	onnel to deliver e sector of the ir expectations. ove our service. Your	ב שנה פ	Met expectations (Did what was expected) Exceeded Expectations	Below expectations (Did not do what was expected, recovery made) Create CPI	Poor (Job problems / failures occured) Create	
Halliburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as I	of our management and service perso of a standard unmatched in the servic et us know if our performance met you possible to ensure we constantly impro	onnel to deliver e sector of the ir expectations. ove our service. Your	than what was expected) Superior Performance (Establish new quality performance standards)	Met expectations (Did what was expected) Exceeded Expectations	Below expectations (Did not do what was expected, recovery made) Create CPI	Poor (Job problems / failures occured) Create CPI	
Halliburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as comments are of great v	of our management and service perso of a standard unmatched in the servic et us know if our performance met you possible to ensure we constantly impro	onnel to deliver e sector of the ir expectations. ove our service. Your	than what was expected) Superior Performance (Establish new quality performance standards)	-		_	
Halliburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as comments are of great v Did our personnel perfor	of our management and service perso of a standard unmatched in the service et us know if our performance met you possible to ensure we constantly impro- alue to us and are intended for the exce	onnel to deliver e sector of the ir expectations. ove our service. Your	than what was expected) Superior Performance (Establish new quality performance standards)	-		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great vi Did our personnel perfor Did our equipment perfor	of our management and service perso of a standard unmatched in the servic et us know if our performance met you possible to ensure we constantly impro- alue to us and are intended for the ext or the job to your satisfaction?	onnel to deliver e sector of the ir expectations. ove our service. Your	than what was expected) Superior Performance (Establish new quality performance standards)	-		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great v Did our personnel performation of the property	of our management and service perso of a standard unmatched in the servic et us know if our performance met you possible to ensure we constantly impre- alue to us and are intended for the exc or the job to your satisfaction? I'm the job to your satisfaction?	onnel to deliver e sector of the ir expectations. ove our service. Your	than what was expected) Superior Performance (Establish new quality performance standards)	-		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great v Did our personnel perform the job to the products and me	of our management and service perso of a standard unmatched in the servic et us know if our performance met you possible to ensure we constantly impre- alue to us and are intended for the exe or the job to your satisfaction? or the job to your satisfaction? or the agreed upon design?	onnel to deliver e sector of the r expectations. we our service. Your clusive use of	than what was expected) Superior Performance (Establish new quality performance standards)	-		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great with the comme	of our management and service perso of a standard unmatched in the servic et us know if our performance met you possible to ensure we constantly impre- alue to us and are intended for the ex- m the job to your satisfaction? or the job to your satisfaction? to the agreed upon design? aterials perform as you expected?	onnel to deliver e sector of the ir expectations. we our service. Your clusive use of	than what was expected) Superior Performance (Establish new quality performance standards)	-		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great when the comments are comments.	of our management and service perso of a standard unmatched in the service tus know if our performance met you possible to ensure we constantly improalue to us and are intended for the example of the e	onnel to deliver e sector of the ir expectations. we our service. Your clusive use of	than what was expected) Superior Performance (Establish new quality performance standards)	-		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great v Did our personnel perform Did our equipment perform Did our perform in a ner Did we perform in a safe Did we perform in a safe Did we perform in a ner Was the job performed a Did the equipment condit the equipment conditions.	of our management and service person of a standard unmatched in the service of a standard unmatched in the service tries know if our performance met you possible to ensure we constantly improalule to us and are intended for the exempt the job to your satisfaction? In the job t	onnel to deliver e sector of the ir expectations, we our service. Your clusive use of gs, JSA isharges, clean up iscussed ons?	than what was expected) Superior Performance (Establish new quality performance standards)	-		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great v Did our personnel perform Did our equipment perform Did our perform in a ner Did we perform in a safe Did we perform in a safe Did we perform in a ner Was the job performed a Did the equipment condit the equipment conditions.	of our management and service person of a standard unmatched in the service of a standard unmatched in the service tus know if our performance met you possible to ensure we constantly imprealule to us and are intended for the except the possible of the your satisfaction? In the job to your satisfaction? In th	onnel to deliver e sector of the ir expectations, we our service. Your clusive use of gs, JSA isharges, clean up iscussed ons?	that what was superior superio	4 3		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great v Did our personnel perform Did our equipment perform Did our perform in a ner Did we perform in a safe Did we perform in a safe Did we perform in a ner Was the job performed a Did the equipment condit the equipment conditions.	of our management and service person of a standard unmatched in the service of a standard unmatched in the service tries know if our performance met you possible to ensure we constantly improalule to us and are intended for the exempt the job to your satisfaction? In the job t	onnel to deliver e sector of the ir expectations, we our service. Your clusive use of gs, JSA isharges, clean up iscussed ons?	that what was superior superio	-		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great ventor of the comments are of the comments are of great ventor of great vento	of our management and service person of a standard unmatched in the service of a standard unmatched in the service tries know if our performance met you possible to ensure we constantly improalule to us and are intended for the exempt the job to your satisfaction? In the job t	onnel to deliver e sector of the ir expectations, we our service. Your clusive use of gs, JSA isharges, clean up iscussed ons?	that what was superior superio	4 3		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great where the services of the service	of our management and service person of a standard unmatched in the service of a standard unmatched in the service of a standard unmatched in the service tus know if our performance met you possible to ensure we constantly impressive to us and are intended for the except the service of the	onnel to deliver e sector of the ir expectations. we our service. Your clusive use of gs, JSA isharges, clean up iscussed ions? irg up and job execution	that what was superior superio	4 3		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great where the services of the service	of our management and service perso of a standard unmatched in the service et us know if our performance met you possible to ensure we constantly impro- alue to us and are intended for the exe methe job to your satisfaction? methe job to your satisfaction? the job to your satisfaction? the tagreed upon design? attentals perform as you expected? as scheduled? On time, as designed/di- tion & appearance meet you expectal inel communicate during mobilisation, in the state of the state of	onnel to deliver e sector of the ir expectations. we our service. Your clusive use of gs, JSA isharges, clean up iscussed ions? irg up and job execution	that what was superior superio	4 3		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great where the services of the service	of our management and service person of a standard unmatched in the service of a standard unmatched in the service of a standard unmatched in the service tus know if our performance met you possible to ensure we constantly impressive to us and are intended for the except the service of the	onnel to deliver e sector of the ir expectations. we our service. Your clusive use of gs, JSA isharges, clean up iscussed ions? irg up and job execution	that what was superior superio	4 3		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great where the services of the service	of our management and service person of a standard unmatched in the service of a standard unmatched in the service of a standard unmatched in the service tus know if our performance met you possible to ensure we constantly impressive to us and are intended for the except the service of the	onnel to deliver e sector of the ir expectations. we our service. Your clusive use of gs, JSA isharges, clean up iscussed ions? irg up and job execution	that what was superior superio	4 3		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great where the services of the service	of our management and service person of a standard unmatched in the service of a standard unmatched in the service of a standard unmatched in the service tus know if our performance met you possible to ensure we constantly impressive to us and are intended for the except the service of the	onnel to deliver e sector of the ir expectations. we our service. Your clusive use of gs, JSA isharges, clean up iscussed ions? irg up and job execution	that what was superior superio	4 3		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great where the services of the service	of our management and service person of a standard unmatched in the service of a standard unmatched in the service of a standard unmatched in the service tus know if our performance met you possible to ensure we constantly impressive to us and are intended for the except the service of the	onnel to deliver e sector of the ir expectations. we our service. Your clusive use of gs, JSA isharges, clean up iscussed ions? irg up and job execution	that what was superior superio	4 3		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great where the services of the service	of our management and service person of a standard unmatched in the service of a standard unmatched in the service of a standard unmatched in the service tus know if our performance met you possible to ensure we constantly impressive to us and are intended for the except the service of the	onnel to deliver e sector of the ir expectations. we our service. Your clusive use of gs, JSA isharges, clean up iscussed ions? irg up and job execution	that what was superior superio	4 3		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great where the services of the service	of our management and service person of a standard unmatched in the service of a standard unmatched in the service of a standard unmatched in the service tus know if our performance met you possible to ensure we constantly impressive to us and are intended for the except the service of the	onnel to deliver e sector of the ir expectations. we our service. Your clusive use of gs, JSA isharges, clean up iscussed ions? irg up and job execution	that what was superior superio	4 3		_	
Hallburton. It is the aim equipment and services energy industry Please take the time to I Please be as critical as a comments are of great where the services of the service	of our management and service person of a standard unmatched in the service of a standard unmatched in the service of a standard unmatched in the service tus know if our performance met you possible to ensure we constantly impressive to us and are intended for the except the service of the	onnel to deliver e sector of the ir expectations. we our service. Your clusive use of gs, JSA isharges, clean up iscussed ions? irg up and job execution	that what was superior superio	4 3		_	


						CUSTOMER		CALES OPPER	. N	DATE	
	HAI	_LIBI	JRT	ON			ζ	SALES ORDER	NO.		
						3D Oil				15 May 2008	
			С	EMENT	/PUMPI	NG JOE	3 SUMMA	IRY			
WELL		LOCATION/FIE	LD NAME	COUNTRY		HES REP		CUSTOMER RE	P	WELL TYPE	
Wardie -1		Bass Strait		Australia		Robert Brid	gman	Shaughan Corle	ess	Exploration	
JOB TYPE				JOB PURPO	SE CODE			BDA		RIG	
Zonal Isolation	١			SURFACE CA	ASING 7521					West Triton	
PERSO	VELL										
PERSONNEL	/ EXPOSURE	hrs	PERSONNEL /	EXPOSURE	h	rs PERSONNE	L / EXPOSURE	hrs	PERSONNEL	/ EXPOSURE	hrs
386793	Robert Bridgm	an 12	126997	Nigel Lucas		12					
EQUIPM	IENT										
SAP#	PUMPING / M	XING			HOURS	SAP#	BULK SUPPL	Y / TANKS			HOURS
10951913	SKD ADVANT	AGE 25DZ2 - WES	ST TRITON		12						
FLOAT	EQUIPME	NT AND C	ASING EC	UIPMEN	T						
SAP#	FLOAT EQUIP	MENT			QTY	SAP#	PLUGS				QTY
	13 3/8 NR But	ress Float Collar			1						
	13 3/8 Butress	Float shoe			1						
WELL P	ROFILE										
NEW CASING	i			OPEN HOLE	+ EXCESS OR	CALIPER DATA	١	PREVIOUS CA	SINGS		
Tapered Cas	ing , SSR, m sho	e track									
		to 747.06m MD,	m TVD					30"x20"in, 309.7	ppf, 18.88m to	132.87m	
CEMEN.	T DESIGN										
	Tuned	Spacer E+				Single				0	
DENSITY	11.0ppg	WATER	0.00gal/sk	DENSITY	15.9ppg	WATER	5.10gal/sk	DENSITY	0:0ppg	WATER	0:00gal/sk
YIELD	0.00cuft/ft	MIX FLUID	0.00gal/sk	YIELD	1.16cuft/ft	MIX FLUID	5.16gal/sk	YIELD	0:00cumm	MIX FLUID	D.00gal/sk
WATER SOUI	RCE			WATER SOU	RCE S	eawater		WATER SOUR	Œ		
CEMENT TYP	E at	b/sk		CEMENT TYPE	PE A	BC Class 'G' at 9	94lb/sk	CEMENT TYPE	90	lb/sk	
Total Cement	Used sks			Total Cemen	t Used 72	26sks		Total Cement (Ised MT		
Estimated TO	C m			Estimated TO	OC 43	32m		Estimated TOC	m		
Additive	Concent	ration Tota	l Used	Additive			Total Used	Additive	Concent	ration To	tal Used
					END OF	JOB DETA	ILS				

Cementing Page 31 of 40 April 16, 2010

4.2.2 JOB LOGS

	$+\Delta L$	LIBU	BT		_	USTOMER	SALES ORDER No.	DATE
						D Oil		15 May 2008
			CE	MENT/P	UMPIN	JOB SUM	MARY	
WELL	L	OCATION/FIELD N		COUNTRY		IES REP	CUSTOMER REP	WELL TYPE
Exploration		ass Strait		Australia		Robert Bridgman	Shaughan Corless	Exploration
JOB TYPE	10			JOB PURPOSE CO			BDA	RIG
Zonal Isolation				SURFACE CASING			Perth	West Triton
JOB LOGS								111000 1110011
DATE	TIME	VOLUME	PRESSURE	- (nei)	RATE	JOB DESCRIPTION	<u> </u>	
DAY-MTH-YR	HRS:MIN	BBLS	HIGH	Low	ВРМ	REMARKS/DETAIL		
	HK3:WIN	BBLS	поп	LOW	DPW	REMARKS/DETAIL	3	
15/05/2008								
	10:04					JSA with drill crew		
	10:34	10		76	4	Pump 10 BBL Seaw		
	10:40		4000		5	Pressure Test Lines		
	10:51	90		214	8	Pump 90 BBL Seaw	ater	
	11:04	30		220	8	Pump 30 BBL Tuned	d Spacer E+ @ 11 ppg	
	11:15	150		221	5	Mix & Pump 150 BB	L Slurry @ 15.9 ppg	
	11:51					Release Dart		
	11:55	1.57				Pump 1.57 BBL To L	Land Dart	
	11:58		2500			Land Dart and Shea	r Top Plug	
	11:59	10		220	5	Pump 10 BBL Seaw		
	12:01	340					s & Displace With 340 BBL of Se	awater
	13:15				1		Check Floats , 3 BBL Returns	
	10.10				1		, a obe recalled	
	+							
	+		1	+				
						+		
	-					Chemicals Used		
						Tuned Spacer E +		
						CFR - 3 L = 30 Gals	(Retarder)	
						HR6L = 20 Gals	(Retarder)	
						NF-6 = 5 Gals	s (Defoamer)	
						Cement " G " Class	= 32 ton	
						Tag Plug @ 732.5 M	Mtr	
						1.5 Hrs to drill out		
						25k on Bit to drill out	t	
						1		
	1			1	+			
	+			_	+	+		
	+			+	+	+		
	+			-	+	1		
					+	+		
	+			-	+	+		
	+				+	1		
	-				1			
	1							
	1							
	1							
	1							
	1				1	1		
				1				
	+				+			
	+		1	-	+	+		
	1				+	-		
	+				+	1		
	1			\bot				

4.2.3 Pumping Chart

 Customer:
 3 D Oil
 Job Date:
 15/5/08
 TG Version G3.4.1

 Well Description:
 Wardie # 1
 Job:
 13 3/8 Casing
 TG Version G3.4.1

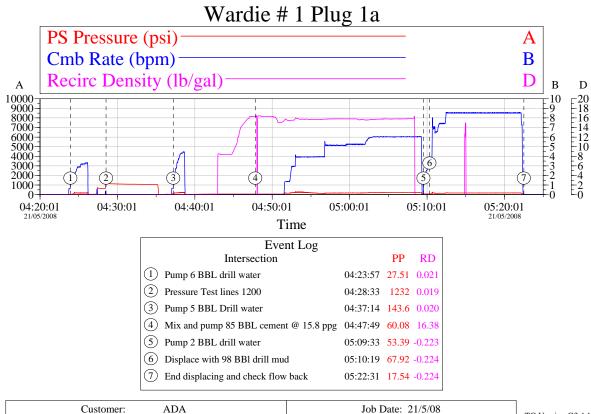
 15-May-08 15:53
 15-May-08 15:53

Cementing Page 33 of 40 April 16, 2010

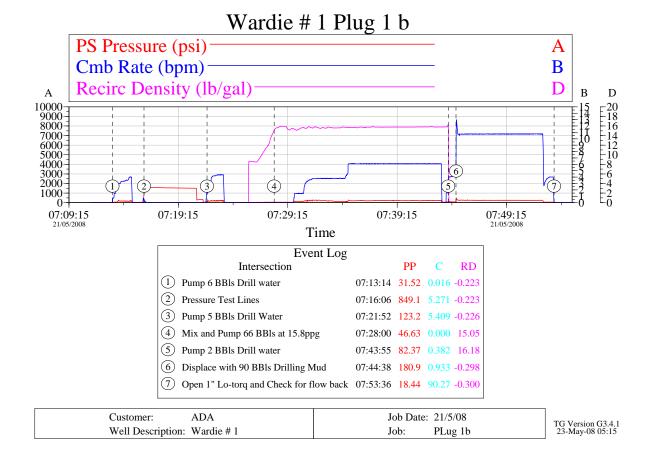
4.3 P&A Plugs

4.3.1 Summary

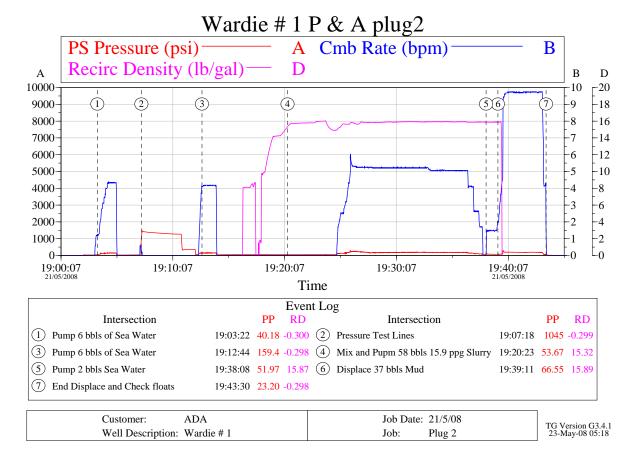
S A PRIMARY sment job = C LIN WIPER P S A PLUG OR S A PRIMARY = Repeated a ENSITY OF J sided by total OMATED DE	S. Sch BDA Perth (CEMENT JOB (Casing job, Liner , PLUGS? R SQUEEZE JOB (OR REMEDIAL attempts or corre- JOB STAYED IN	YES / NO) lob, Sie back 7 JOB? tions of initial DESIGNED R. on: Total bbls sublipsied by 10	WELL Explo ReG West Comment job ANGE Comment mixed at at	YES None Plug Job Primary
S A PRIMARY sment job = C LIN WIPER P S A PLUG OR S A PRIMARY = Repeated a ENSITY OF J sided by total OMATED DE	CUSTO S. Sch BDA Perth CEMENT JOB (Casing job. Liner- LUGS? R SQUEEZE JOB OR REMEDIAL attempts or come JOB STAYED IN JOB STAYED IN JOB STAYED IN LOBB of comment in ENSITY CONTRO	midt YES I NO) lob, Sie back JOB? JOB? Stions of initial DESIGNED R. on: Total bbls multiplied by 10	Explored RHG West West West West RHG	Triton YES None Plug Job Primary 99%
S A PRIMARY sment job = C LIN WIPER P S A PLUG OR S A PRIMARY = Repeated a ENSITY OF J sided by total OMATED DE	CUSTO S. Sch BDA Perth CEMENT JOB (Casing job. Liner- LUGS? R SQUEEZE JOB OR REMEDIAL attempts or come JOB STAYED IN JOB STAYED IN JOB STAYED IN LOBB of comment in ENSITY CONTRO	midt YES I NO) lob, Sie back JOB? JOB? Stions of initial DESIGNED R. on: Total bbls multiplied by 10	Explored RHG West West West West RHG	Triton YES None Plug Job Primary 99%
S A PRIMARY sment job = C sum wiper P s A PLUG OF s A PLUG OF s A PRIMARY = Repeated t ENSITY OF J sifted by total OMATED DE s PUMPED A' s ranged defir	S. Sch BDA Perth Casing job. Liner PLUGS? R SQUEEZE JOB OR REMEDIAL attempts or corre JOB STAYED IN Debts of coment in Ensity Control	midt YES I NO) lob, Sie back JOB? JOB? Stions of initial DESIGNED R. on: Total bbls multiplied by 10	Explored RHG West West West West RHG	Triton YES None Plug Job Primary 99%
G A PRIMARY THE PRIMARY G A PLUG OF G A PRIMARY Repeated to ENSITY OF the first of the primary G A PRIMARY Repeated by total OMATED DE PUMPED A' ranged defin	BDA Perth Cessing job, Liner PLUGS? R SQUEEZE JOB Of OR REMEDIAL attempts or correct JOB STAYEO IN 2 2ppg. Calculat bibls of cement in INSITY CONTRO	YES / NO) lob, Sie back 7 JOB? tions of initial DESIGNED R. on: Total bbls sublipsied by 10	RIG West [[[[]	YES None Plug Job Primary
ement job = C LUN WIPER P S A PRIMARY R Repeated a ENSITY OF J Since day total COMATED DE PUMPED A ranged defir	Perth Casing job, Liner. PLUGS? R SQUEEZE JOB OR REMEDIAL attempts or corres JOB STAYED IN 0.2ppg. Calculat bible of cement in ENSITY CONTRO	JOB? ctions of initial DESIGNED R. on: Total bibls nultiplied by 10	West [coment job ANGE coment mixed at d	YES None Plug Job Primary 99%
ement job = C LUN WIPER P S A PRIMARY R Repeated a ENSITY OF J Since day total COMATED DE PUMPED A ranged defir	CEMENT JOB (Casing job. Liner - PLUGS? R SQUEEZE JOB OR REMEDIAL attempts or corre- JOB STAYED IN 2 Dappg. Calculat bible of cement in ENSITY CONTRO	JOB? ctions of initial DESIGNED R. on: Total bibls nultiplied by 10	coment job ANGE coment mixed at d	YES None Plug Job Primary 99%
ement job = C LUN WIPER P S A PRIMARY R Repeated a ENSITY OF J Since day total COMATED DE PUMPED A ranged defir	Casing job, Liner. PLUGS? R SQUEEZE JOB Y OR REMEDIAL attempts or correct JOB STAYED IN 9 2ppg. Calculat bible of cement in ENSITY CONTRO	JOB? ctions of initial DESIGNED R. on: Total bibls nultiplied by 10	ANGE cement mixed at d	None Plug Job Primary 99%
ement job = C LUN WIPER P S A PRIMARY R Repeated a ENSITY OF J Since day total COMATED DE PUMPED A ranged defir	Casing job, Liner. PLUGS? R SQUEEZE JOB Y OR REMEDIAL attempts or correct JOB STAYED IN 9 2ppg. Calculat bible of cement in ENSITY CONTRO	JOB? ctions of initial DESIGNED R. on: Total bibls nultiplied by 10	ANGE cement mixed at d	None Plug Job Primary 99%
ement job = C LUN WIPER P S A PRIMARY R Repeated a ENSITY OF J Since day total COMATED DE PUMPED A ranged defir	Casing job, Liner. PLUGS? R SQUEEZE JOB Y OR REMEDIAL attempts or correct JOB STAYED IN 9 2ppg. Calculat bible of cement in ENSITY CONTRO	JOB? ctions of initial DESIGNED R. on: Total bibls nultiplied by 10	ANGE cement mixed at d	None Plug Job Primary 99%
S A PRIMARY REPEATED TO SA PR	PLUGS? R SQUEEZE JOB Y OR REMEDIAL, attempts or corre- JOB STAYED IN 9.2ppg. Calculad bbls of cement in ENSITY CONTRO	JOB? tions of initial DESIGNED Roon; Total bbls nultiplied by 10	ANGE cement mixed at d	Plug Job Primary 99%
S A PLUG OR S A PRIMARY REPEATED F. S REPEATED F. S PUMPED A: Franged defir	R SQUEEZE JOB Y OR REMEDIAL, attempts or corre- JOB STAYED IN 9.2ppg. Calculat bibls of coment in ENSITY CONTRO	JOB? tions of initial DESIGNED Ru on: Total bbls nultiplied by 10	ANGE cement mixed at d	Plug Job Primary 99%
S A PRIMARY = Repeated a ENSITY OF J filined as +/- (vided by total OMATED DE 5 PUMPED A ranged defir	Y OR REMEDIAL attempts or correct JOB STAYED IN 0 2ppg. Calculat bibls of cement in ENSITY CONTRO	JOB? tions of initial DESIGNED Ru on: Total bbls nultiplied by 10	ANGE cement mixed at d	Primary 99%
S A PRIMARY = Repeated a ENSITY OF J filined as +/- (vided by total OMATED DE 5 PUMPED A ranged defir	Y OR REMEDIAL attempts or correct JOB STAYED IN 0 2ppg. Calculat bibls of cement in ENSITY CONTRO	JOB? tions of initial DESIGNED Ru on: Total bbls nultiplied by 10	ANGE cement mixed at d	Primary 99%
S A PRIMARY = Repeated a ENSITY OF J filined as +/- (vided by total OMATED DE 5 PUMPED A ranged defir	Y OR REMEDIAL attempts or correct JOB STAYED IN 0 2ppg. Calculat bibls of cement in ENSITY CONTRO	JOB? tions of initial DESIGNED Ru on: Total bbls nultiplied by 10	ANGE cement mixed at d	Primary 99%
= Repeated a ENSITY OF J efined as +/- (wided by total OMATED DE B PUMPED A' e ranged defin	attempts or corrections of corrections of comment of contractions of contracti	ctions of initial DESIGNED Ru on: Total bills multiplied by 10	ANGE cement mixed at d	99%
= Repeated a ENSITY OF J efined as +/- (wided by total OMATED DE B PUMPED A' e ranged defin	attempts or corrections of corrections of comment of contractions of contracti	ctions of initial DESIGNED Ru on: Total bills multiplied by 10	ANGE cement mixed at d	99%
ENSITY OF J efined as +/- (vided by total OMATED DE S PUMPED A' e ranged defin	JOB STAYED IN 0 2ppg. Calculate bibls of cement in ENSITY CONTRO	DESIGNED Ru on: Total bbls nultiplied by 10	ANGE cement mixed at d	
efined as +/- (wided by total OMATED DE S PUMPED A' ranged defir	0.2ppg. Calculat bibls of cement n	on: Total bbls nultiplied by 10	cement mixed at d	
OMATED DE PUMPED A ranged defin	bbls of cement n	nultiplied by 10		
OMATED DE PUMPED At ranged defin	ENSITY CONTRO		0	usigned
PUMPED A		L USED		
ranged defin	T DESIGNED PU			YES
ranged defin	T DESIGNED PU			
		MP RATE		yes
ned rate divide	ned as +/- bpm.	Calculation : to	tal bbls of fluid pur	nped at
	led by total bbls o	f fluid pumped	multiplied by 100	
OF REMEDI	AL SQUEEZE JO	BS REQUIRE	D-HES	nii
f remedial squ	ueeze jobs requir	ed after prima:	ry job performed by	y HES
			D - COMPETITION	
				nil
				_
remouse pro	of lone reduied a	iver printingly pr	by pumped by rince	
r opinion.			expec not d expec	proble
				Poor (Job problems / failures occured) Create CPI
5	4	3	2	1
	V			
	V			
	1			
	/			
	1			
	/			
VEC	-			
	NO			
	OF REMEDI remedial plu se indicate y lox undernes	OF REMEDIAL PLUG JOBS I remedial plug jobs required a repectations. Exceeded in ore appearance of this was a special plug for remaining that required the residence of the remedial plug for remaining that required the remedial plug for remaining that required the remedial plug for remaining that required the remaining that required the remaining that required the remaining that required the remaining that remaining the remaining the remaining that remaining the remaining	OF REMEDIAL PLUG JOBS REQUIRED - Not remedial plug jobs required after primary plus remedial plug jobs required after primary plug jobs required after	Below appeciations (Did not do what was re appeciations (Did not do what was re appeciations (Did what was re appeciations (Did what was re appeciations (Povolded more than what was that what was th

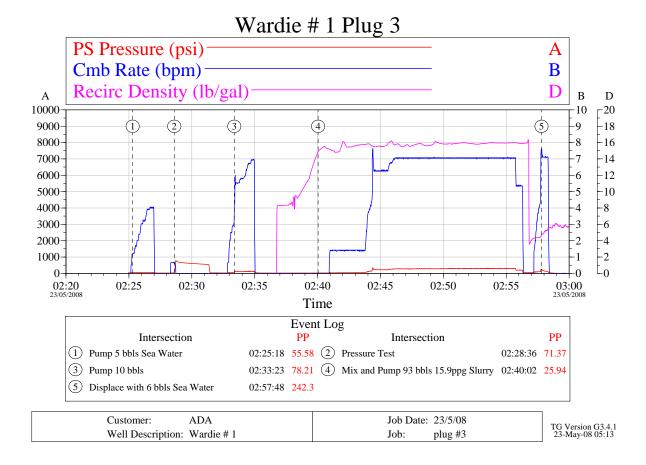

Cementing Page 34 of 40 April 16, 2010

			IDT			CUSTOME	R	SALES ORDER	R No.	DATE	
_	IALL		UKI			3D Oil				21 May 200	98
			С	EMENT/	PUMPIN	G JO	B SUMMAI	RY			
WELL	LOCA	ION/FIE	LD NAME	COUNTRY		HES REP		CUSTOMER RI	EP	WELL TYP	E
Wardie # 1 Bass Strait			Australia Anthony Kelly 5		S. Schmidt		Exploration				
JOB TYPE	•			JOB PURPOS	E CODE			BDA		RIG	
P&A Plugs				PLUG TO ABANDON 7528 F			Perth		West Trito	1	
PERSONEL	.L			•							
PERSONNEL / EXP	OSURE	hrs	PERSONNEL /	EXPOSURE	hrs	PERSONN	EL / EXPOSURE	hrs	PERSONNEL	. / EXPOSURE	h
331198 Ant	hony Kelly	48	126997	Nigel Lucas	48						
EQUIPMEN	T										
SAP# PU	MPING / MIXING				HOURS	SAP#	BULK SUPPLY	/ TANKS			HOURS
10951913 SK	D ADVANTAGE 25D	Z2 - WE	ST TRITAN								
WELL PRO	FILE										
NEW CASING				OPEN HOLE +	EXCESS OR CA	LIPER DAT	A	PREVIOUS CA	SINGS		
								13.375in, 68ppf	, 0m to 749m		
CEMENT D	ESIGN										
	Single				Si	ngle				Single	
DENSITY 15.	8ppg WATE	3	4.70gal/sk	DENSITY	15.8ppg	WATER	4.70gal/sk	DENSITY	15.9ppg	WATER	4.70gal/sk
YIELD 1.1	6cuft/ft MIX FL	UID	5.16gal/sk	YIELD	1.16cuft/ft	MIX FLUID	5.12gal/sk	YIELD	1.16cuft/ft	MIX FLUID	5.12gal/sk
WATER SOURCE	Drillwater			WATER SOUR	CE Drill	water		WATER SOUR	CE Dr	illwater	
CEMENT TYPE	ABC Class '6	3' at 94lb	/sk	CEMENT TYPE ABC Class 'G' at 94lb/sk			CEMENT TYPE ABC Class 'G' at 94lb/sk				
Total Cement Used	411sks			Total Cement	Used 320s	sks		Total Cement l	Jsed 29	0sks	
Estimated TOC	1616m			Estimated TO	1516	3m		Estimated TOO	70	0m	
Additive	Concentration	Tota	l Used	Additive	Concentr	ation	Total Used	Additive	Concen	tration	Total Used
CFR-3L	3gal gal/10bbl	15		CFR-3L	3 gal/10bb	ol	12gals	CFR-3L	3 gal/10	bbl	12gals
SCR-100L	2 gal/10bbl	10		SCR-100L	2 gal/10bb	ol	8gals	HR-6L	2 gal/10	bbl	8gals
NF-6L	0.02 gal/10bbl	1		NF-6L	0.02 gal/1	0bbl	1gals	NF-6I	0.02 gal	/10bbl	1gals
	Single					0				ė.	
DENSITY 15.	9ppg WATE	2	5.16gal/sk	DENSITY	0.Bppg	WATER	0.00galisk	DENSITY	0 Oping	WATER	0.00gal/sk
YIELD 1.1	6cuft/ft MIX FL	UID	5.16gal/sk	YHELD	0.00cutt/ft	MIX FLUIE	0.00gal/sk	VIELD	0.00cutvít	MIX FLUID	0:00gal/sk
WATER SOURCE	Seawater			WATER SOUR	CE			WATER SOUR	CE		
CEMENT TYPE	ABC Class '0	3' at 94lb	/sk	CEMENT TYPE at large			CEMENT TYPE	a	lb/sk		
Total Cement Used	19MT			Total Cement	Used MT			Total Cement I	Jsed M	r	
Estimated TOC	95m			Estimated TO	2 m			Estimated TOC	m		
Additive	Concentration	Tota	l Used	Additive	Concentr	ation	Total Used	Additive	Concer	tration	Total Used
	0.5 %BWOC	150	lhe								
Calcium Chloride	U.5 %BWUC	130									


4.3.2 JOB LOGS

		LIBU	DT		С	USTOMER	SALES ORDER No.	DATE
			יוח		31	D Oil		21 May 2008
			CE	MENT/PI	JMPING	JOB SUM	MARY	
WELL	10	CATION/FIELD N		OUNTRY		ES REP	CUSTOMER REP	WELL TYPE
Exploration		ss Strait		ustralia		nthony Kelly	S. Schmidt	Exploration
JOB TYPE				OB PURPOSE CO		BDA RIG		
				LUG TO ABANDO			Perth	
P&A Plugs JOB LOGS			F	LUG TO ABANDO	N /528		Perin	West Triton
DATE	TIME	VOLUME	PRESSURE	(i)	RATE	JOB DESCRIPTION	AI .	
			HIGH	Low	BPM			
DAY-MTH-YR	HRS:MIN	BBLS	пібп	LOW	BPIVI	REMARKS/DETAI		
21/05/2008	4:00			27	+ ,	JSA Safety Meetin	-	
Plug 1a	4:23	6	4000	27	4	Pump 6 BBI Drill W		
	4:28	0.02	1232	110	0.25	Pressure Test Line		
	4:37	5		143	4	Pump 5 BBIs Drill \		
	4:47	85		60	6		obls 15.8 ppg slurry	
	5:09	2		53	4	Pump 2 BBIs Drill \		
	5:10	98		67	8.5	Displace with 98 B	Bls Mud	
	5:22					End Job		
	1							
Plug 1b	7:00					JSA Safety Meetin	g	
	7:13	6		31	4	Pump 6 BBIs Drill \	Water	
	7:16		849		0.25	Pressure Test Line	s	
	7:21	5		123	4	Pump 5 BBIs Drill \	Water	
	7:28	66		46	6	Mix and pump 66 b	obls 15.8 ppg slurry	
	7:43	2		82		Pump 2 BBIs Drill \	Water	
	7:44	90		180	10	Displace with 90 B	Bls Mud	
	7:53					End Job		
						Tag Top of plug 1b	, 1407mts , (high) 5k tag	
Plug # 2	19:03	6		40	4	Pump 6 bbls Sea V	Vater	
	19:07		1045			Pressure Test Line		
	19:12	6		159	4	Pump 6 bbls Sea V		
	19:20	58		53	5	Pump 58 bbls 15.9		
	19:38	2		51		Pump 2 bbls Sea V		
	19:39	37		66	9.5	Displace 37 bbls M		
	19:43	31		- 00	9.5	End Displace and		
22-May-08	2:15		1000					
22-1Vldy-U0	2.10		1000		+	Pressure test Plug	2 1000 pai,	
	+			-	+			
22 M 00	0.05	 	1		+ .	Dump 5 bbls 0 : 1	Matar	
23-May-08	2:25	5	500	55	4	Pump 5 bbls Sea V		
	2:28	0.02	500	70	 _	Pressure Test Line		
	2:33	10		78	7	Pump 10 bbls Sea		
	2:40	93		120	7		obls 15.9 ppg Slurry	
	2:57	6		150	6	Displace with 6 bbl	s Sea Water	
	1							
	1		1					
	1						P & A of Wardie #1	
	1				-	Cement Class "G"		
						CFR -3L 40 Gallon	s, (Friction reducer)	
						SCR-100L, 20 Gall	ons, (Retarder)	
						HR -6L- 10 Gallons	s, (Retarder)	
						NF-6L- 5 Gallons	s, (DE foamer)	
i								

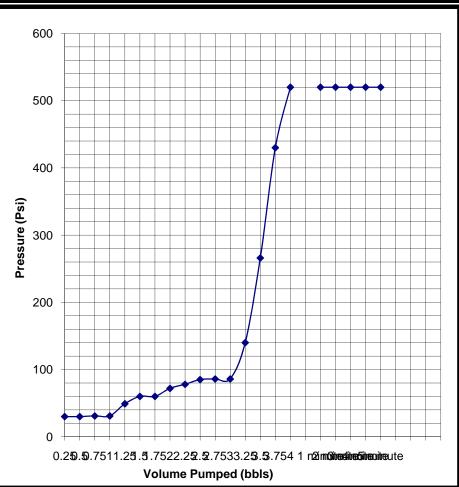

4.3.3 PUMPING CHARTS


Well Description: Wardie # 1 Job: Plug 1a TG Version G3.4.1 21-May-08 10:11

Cementing Page 38 of 40 April 16, 2010

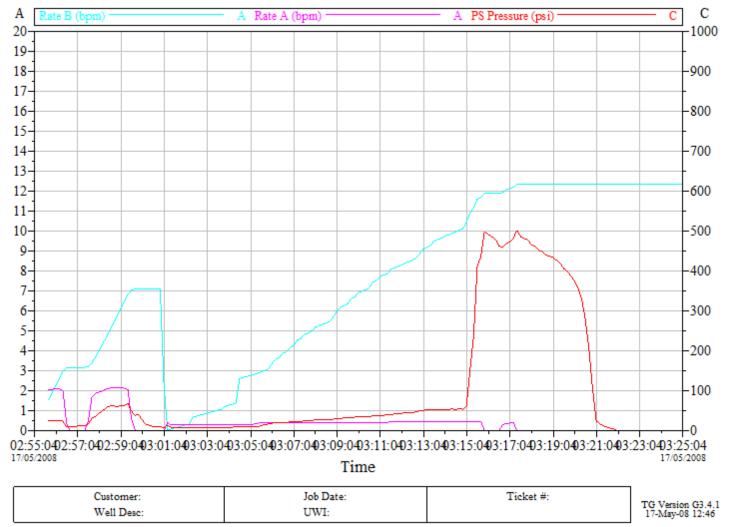
Cementing Page 39 of 40 April 16, 2010

Attachment 6


LOT/FIT Report

FIT / LOT TEST RESULTS. Australian Drilling Associates Pty Ltd

FIT / LOT DATA						
TEST DATE:	15/05/2008	WELL #: Wardie-1		CLIENT:	3D Oil	
	CASIN	TEST N	MUD DATA			
CASING SIZE	CASING GRADE	SHOE TVD (M) SHOE MD (M)		WEIGHT (PPG)	VISCOSITY (SEC)	
13 3/8	13 3/8 L80		747.3	8.8	57	
INDICATE TY	PE OF TEST:	FIT:		LOT:		
LEAK OFF (PRESSURE (PSI):	OR FIT TEST	IMIID WEIGHT	MAX. MUD WEIGHT (PPG):	VOLUME PUMPED (BBLS):	VOLUME RETURNED (BBLS):	
52	20	4.33	13.13	4	4	


	•
SURFACE	VOLUME
PRESSURE	PUMPED
(PSI):	(BBLS):
30	0.25
30	0.5
31	0.75
31	1
49	1.25
60	1.5
60	1.75
72	2
78	2.25
85	2.5
86	2.75
86	3
140	3.25
266	3.5
430	3.75
520	4
520	1 minute
520	2 minute
520	3 minute
520	4 minute
520	5 minute

PRESENT DAY INFO.								
	DEPT	H (M):	MUD:					
DATE:	MD:	TVD:	WEIGHT (PPG):	VISCOSITY (SEC):				
16/05/2008	747.3	704	8.8	56				

MAASP = 520

COMMENTS:		
	•	

Attachment 7 Directional Drilling Report

3D Oil

Wardie-1

End of Well Report

	Name	Signature	Date
Schlumberger QC	David de Freitas		
Client approval			

Contents

- 1. General Information
- 2. Geomagnetic and Survey Reference Criteria
- 3. Definitive Survey
- 4. Performance Drilling Report
- 5. BHA Reports
- 6. Drilling Parameter Sheets
- 7. Drilling Tool Run Reports
- 8. Drill Bit Grading

General Information

Client: 3D Oil

Well Name: Wardie-1

Rig: West Triton

Field: Exploration

Location: Bass Strait

Country: Australia

Cell Members: Patrick Dassens (DD)

Punniamoorthy Sellathurai (DD)

Anagh Kohli (MWD) San Thida Aung (MWD)

Town Contacts: David de Freitas Directional Drilling Coordinator

Mee Yean Tan Field Services Manager

Company Representatives: S. Corless Company Representative

R. Rossouw Company Representative

S. Ward Geologist B. Leask Geologist

Geomagnetic and Survey Reference Criteria

Geomagnetic Data

Magnetic Model: BGGM version 2007

Magnetic Date: May 1st 2008
Magnetic Field Strength: 59946.609nT
Magnetic Declination: 12.844°
Magnetic Dip: -68.778°

Survey Reference Criteria

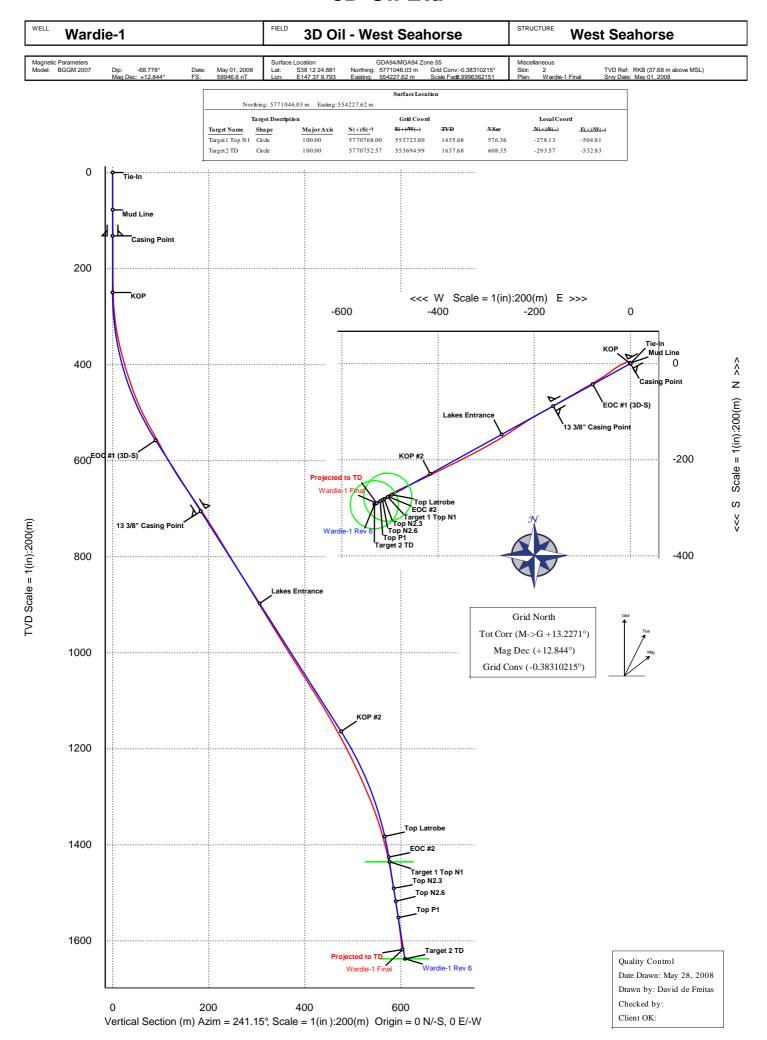
Reference G: 100.02 mG
Reference H: 1198.93 HCNT
Reference Dip: -68.778°
G value Tolerance: 2.50 mG
H value Tolerance: 6.00 HCNT
Dip Tolerance: 0.45°

Survey Corrections Applied

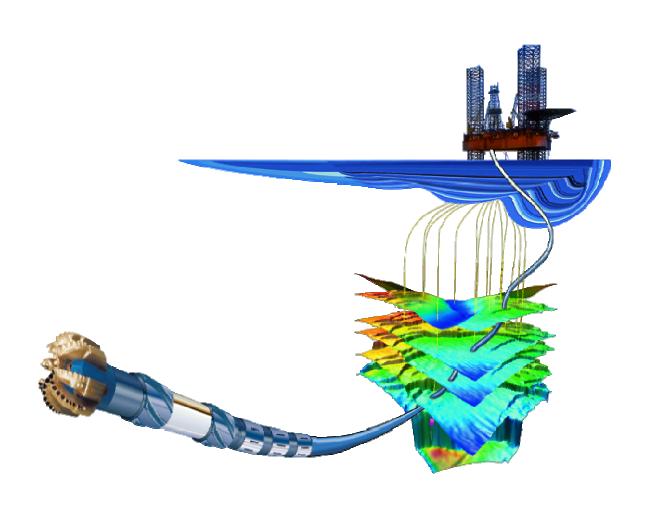
Reference North: Grid North

Magnetic Declination: 12.844°
Grid Convergence: -0.38310215°
Total Azimuth Correction: +13.227°
Vertical Section Azimuth: 241.15°

Survey Reference Location


Location Coordinates

Latitude: 38° 12′ 24.881″ South Longitude: 147° 37′ 9.793″ East


Easting: 554227.625 m Northing: 5771046.028 m

Reference System:

3D Oil Ltd

Definitive Survey

Wardie-1 Final Survey Report

Report Date: 19-May-08

Client: 3D Oil Ltd Field: Exploration

Structure / Slot: West Seahorse / 2

Well: Wardie-1 Borehole: Wardie-1

UWI/API#:

Survey Name / Date: Wardie-1 Final / May 1, 2008

Tort / AHD / DDI / ERD ratio: 82.133° / 608.54 m / 5.253 / 0.376

Grid Coordinate System: GDA94/MGA94 Zone 55

Location Lat/Long: S 38 12 24.881, E 147 37 9.793

Location Grid N/E Y/X: N 5771046.028 m, E 554227.625 m

Grid Convergence Angle: -0.38310215°

Grid Scale Factor: 0.00063622

112.50

117.50

1.65

1.78

315.91

316.62

5.00

5.00

Survey / DLS Computation Method: Minimum Curvature / Lubinski

Vertical Section Azimuth: 241.150°

Vertical Section Origin: N 0.000 m, E 0.000 m

TVD Reference Datum: RKB

TVD Reference Elevation: 37.7 m relative to MSL
Sea Bed / Ground Level Elevation: -39.500 m relative to MSL

Magnetic Declination: 12.844°
Total Field Strength: 59946.609 nT

Magnetic Dip: -68.778°
Declination Date: May 01, 2008
Magnetic Declination Model: BGGM 2007

2.41

2.56

317.37

317.30

0.14

0.79

316.62M

319.95M

North Reference: Grid North
Total Corr Mag North -> Grid North: +13.227°

Comments	Measured Depth	Inclination	Azimuth Grid	Course Length	TVD	Vertical Section	NS Grid North	EW Grid North	Closure	Closure Azimuth	DLS	Mag / Grav Tool Face
	(m)	(deg)	(deg)	(m)	(m)	(m)	(m)	(m)	(m)	(deg)	(deg/30 m)	(deg)
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	317.71M
Mud Line	77.50	1.96	317.71	77.50	77.48	0.31	0.98	-0.89	1.33	317.71	0.76	317.51M
	82.50	1.90	317.51	5.00	82.48	0.35	1.10	-1.01	1.49	317.70	0.36	317.30M
	87.50	1.85	317.30	5.00	87.48	0.39	1.23	-1.12	1.66	317.67	0.30	317.07M
	92.50	1.80	317.07	5.00	92.48	0.42	1.34	-1.22	1.82	317.63	0.30	316.83M
	97.50	1.74	316.83	5.00	97.47	0.46	1.45	-1.33	1.97	317.57	0.36	316.58M
	102.50	1.69	316.58	5.00	102.47	0.50	1.56	-1.43	2.12	317.51	0.30	316.30M
	107.50	1.63	316.30	5.00	107.47	0.54	1.67	-1.53	2.27	317.45	0.36	315.91M

112.47

117.47

0.57

0.61

1.77

1.88

-1.63

-1.73

	891.22	31.39	236.51	29.71	825.96	260.60	-127.53	-227.28	260.61	240.70	0.92	54.17L
	920.19	31.58	236.01	28.97	850.66	275.68	-135.93	-239.86	275.70	240.46	0.33	72.68R
	949.76	31.70	236.73	29.57	875.84	291.14	-144.52	-252.78	291.17	240.24	0.40	126.32R
	979.78	31.37	237.60	30.02	901.42	306.80	-153.03	-265.97	306.85	240.08	0.56	84.00R
	1009.21	31.56	240.47	29.43	926.53	322.15	-160.93	-279.14	322.21	240.03	1.54	77.64L
	1039.05	31.64	239.79	29.84	951.94	337.78	-168.72	-292.70	337.84	240.04	0.37	90.00R
	1066.59	31.64	241.83	27.54	975.39	352.22	-175.77	-305.31	352.29	240.07	1.17	21.87R
	1096.55	32.01	242.11	29.96	1000.85	368.02	-183.19	-319.25	368.08	240.15	0.40	46.19R
	1125.94	32.34	242.75	29.39	1025.72	383.67	-190.43	-333.13	383.72	240.25	0.48	145.46L
	1155.71	32.17	242.53	29.77	1050.90	399.55	-197.74	-347.24	399.59	240.34	0.21	77.52R
	1184.60	32.35	243.98	28.89	1075.33	414.96	-204.67	-361.01	414.99	240.45	0.83	165.93R
	1214.81	32.18	244.06	30.21	1100.88	431.07	-211.74	-375.50	431.09	240.58	0.17	160.81L
	1244.86	30.73	243.07	30.05	1126.51	446.73	-218.72	-389.55	446.75	240.69	1.54	165.00R
	1274.25	29.50	243.74	29.39	1151.93	461.47	-225.32	-402.73	461.48	240.77	1.30	172.90L
	1303.82	28.32	243.43	29.57	1177.82	475.75	-231.68	-415.53	475.75	240.86	1.21	172.16R
	1333.24	26.97	243.84	29.42	1203.88	489.39	-237.74	-427.76	489.39	240.94	1.39	166.48R
	1363.33	25.76	244.51	30.09	1230.84	502.73	-243.56	-439.79	502.73	241.02	1.24	167.62R
	1392.32	24.64	245.10	28.99	1257.07	515.05	-248.82	-450.96	515.05	241.11	1.19	164.84R
	1421.66	23.41	245.94	29.34	1283.87	526.96	-253.77	-461.83	526.96	241.21	1.31	171.40L
	1451.54	21.93	245.34	29.88	1311.44	538.44	-258.52	-472.32	538.44	241.31	1.50	178.00L
	1481.24	19.28	245.06	29.70	1339.23	548.86	-262.90	-481.81	548.87	241.38	2.68	168.93L
	1511.19	16.74	243.33	29.95	1367.71	558.11	-266.92	-490.15	558.11	241.43	2.60	163.05L
	1540.85	14.49	240.57	29.66	1396.28	566.09	-270.66	-497.20	566.09	241.44	2.40	159.97L
	1570.22	12.40	236.98	29.37	1424.84	572.91	-274.19	-503.04	572.91	241.41	2.30	176.39L
	1599.76	10.35	236.26	29.54	1453.80	578.72	-277.39	-507.91	578.72	241.36	2.09	175.04R
	1630.16	9.46	236.73	30.40	1483.75	583.93	-280.28	-512.27	583.93	241.32	0.88	168.56L
	1659.89	8.81	235.87	29.73	1513.10	588.63	-282.90	-516.20	588.63	241.28	0.67	174.49L
	1689.37	8.19	235.45	29.48	1542.26	592.97	-285.35	-519.79	592.97	241.23	0.63	177.36L
	1718.81	7.67	235.27	29.44	1571.41	597.01	-287.66	-523.14	597.01	241.19	0.53	155.84L
	1745.67	7.36	234.18	26.86	1598.04	600.50	-289.69	-526.00	600.50	241.16	0.38	
Projected to TD	1766.00	7.36	234.18	20.33	1618.21	603.08	-291.21	-528.12	603.08	241.13	0.00	

Survey Type: Definitive Survey

Survey Error Model: SLB ISCWSA version 24 *** 3-D 95.00% Confidence 2.7955 sigma

<u>Surveying Prog:</u>			
MD From (m)	<u>MD To (m)</u>	EOU Freq Survey Tool Type	Borehole -> Survey
0.00	77.18	Act-Stns SLB_CNSG+DPIPE-Depth Only	Wardie-1 -> Wardie-1 Final
77.18	134.60	Act-Stns SLB_CNSG+DPIPE	Wardie-1 -> Wardie-1 Final
134.60	1745.67	Act-Stns SLB_MWD-STD	Wardie-1 -> Wardie-1 Final
1745.67	1766.00	Act-Stns SLB_BLIND+TREND	Wardie-1 -> Wardie-1 Final

Wardie-1 Final Geodetic Survey

Report Date: May 19, 2008
Client: 3D Oil Ltd

Field: Exploration
Structure / Slot: West Seahorse / 2
Well: Wardie-1
Borehole: Wardie-1

UWI/API#:

 Survey Name / Date:
 Wardie-1 Final / May 1, 2008

 Tort / AHD / DDI / ERD ratio:
 82.133° / 608.54 m / 5.253 / 0.376

 Grid Coordinate System:
 GDA94/MGA94 Zone 55

 Location Lat/Long:
 S 38 12 24.881, E 147 37 9.793

 Location Grid N/E Y/X:
 N 5771046.028 m, E 554227.625 m

 $\textbf{Grid Convergence Angle:} \quad \text{-}0.38310215^{\circ}$

Grid Scale Factor: 0.99963622

Survey / DLS Computation Method: Minimum Curvature / Lubinski

Vertical Section Azimuth: 241.150°

Vertical Section Origin: N 0.000 m, E 0.000 m

TVD Reference Datum: RKB

TVD Reference Elevation: 37.7 m relative to MSL
Sea Bed / Ground Level Elevation: -39.500 m relative to MSL

 Magnetic Declination:
 12.844°

 Total Field Strength:
 59946.609 nT

 Magnetic Dip:
 -68.778°

 Declination Date:
 May 01, 2008

 Magnetic Declination Model:
 BGGM 2007

North Reference: Grid North
Total Corr Mag North -> Grid North: +13.227°

Local Coordinates Peterenced Io: Well Hoad

Comments	Measured Depth	Inclination	Azimuth Grid	TVD	Vertical Section	NS Grid North	EW Grid North	DLS	Northing	Easting	Latitude	Longitude
	0.00	0.00	0.00	0.00	0.00	(m) 0.00	(m) 0.00	(deg/30 m) 0.00	5771046.03	(m) 554227.62	S 38 12 24.881	E 147 37 9.793
Mud Line	77.50	1.96	317.71	77.48	0.31	0.98	-0.89	0.76	5771047.01	554226.73	S 38 12 24.850	E 147 37 9.756
Widd Ellio	82.50	1.90	317.51	82.48	0.35	1.10	-1.01	0.36	5771047.13	554226.62	S 38 12 24.846	E 147 37 9.751
	87.50	1.85	317.30	87.48	0.39	1.23	-1.12	0.30	5771047.25	554226.51	S 38 12 24.842	E 147 37 9.747
	92.50	1.80	317.07	92.48	0.42	1.34	-1.22	0.30	5771047.37	554226.40	S 38 12 24.838	E 147 37 9.742
	97.50	1.74	316.83	97.47	0.46	1.45	-1.33	0.36	5771047.48	554226.30	S 38 12 24.834	E 147 37 9.738
	102.50	1.69	316.58	102.47	0.50	1.56	-1.43	0.30	5771047.59	554226.19	S 38 12 24.831	E 147 37 9.734
	107.50	1.63	316.30	107.47	0.54	1.67	-1.53	0.36	5771047.70	554226.09	S 38 12 24.827	E 147 37 9.730
	112.50	1.65	315.91	112.47	0.57	1.77	-1.63	0.14	5771047.80	554225.99	S 38 12 24.824	E 147 37 9.726
	117.50	1.78	316.62	117.47	0.61	1.88	-1.73	0.79	5771047.91	554225.89	S 38 12 24.821	E 147 37 9.721
	122.50	1.86	319.95	122.46	0.65	2.00	-1.84	0.80	5771048.03	554225.78	S 38 12 24.817	E 147 37 9.717
	127.50	1.88	323.69	127.46	0.67	2.13	-1.94	0.74	5771048.15	554225.68	S 38 12 24.813	E 147 37 9.713
	132.50	1.94	328.33	132.46	0.69	2.26	-2.03	0.99	5771048.29	554225.59	S 38 12 24.808	E 147 37 9.709
	134.60	2.03	330.59	134.56	0.69	2.33	-2.07	1.70	5771048.36	554225.55	S 38 12 24.806	E 147 37 9.707
	174.15	0.97	331.19	174.09	0.70	3.23	-2.58	0.80	5771049.26	554225.05	S 38 12 24.777	E 147 37 9.686
	202.30	1.06	330.50	202.24	0.70	3.67	-2.82	0.10	5771049.69	554224.81	S 38 12 24.763	E 147 37 9.676
	260.44	2.12	269.17	260.36	1.66	4.12	-4.16	0.96	5771050.15	554223.47	S 38 12 24.748	E 147 37 9.621
	290.09	5.23	252.00	289.94	3.47	3.69	-5.99	3.30	5771049.72	554221.63	S 38 12 24.763	E 147 37 9.546
	319.76	8.62	244.27	319.39	7.02	2.31	-9.28	3.55	5771048.34	554218.34	S 38 12 24.808	E 147 37 9.411
	349.23	11.69	243.65	348.40	12.21	0.03	-13.95	3.13	5771046.05	554213.68	S 38 12 24.883	E 147 37 9.220
	378.56	14.54	243.39	376.96	18.86	-2.94	-19.91	2.92	5771043.09	554207.73	S 38 12 24.981	E 147 37 8.976
	408.20	16.62	238.69	405.51	26.81	-6.81	-26.85	2.46	5771039.22	554200.78	S 38 12 25.108	E 147 37 8.691
	437.65	18.41	234.18	433.60	35.63	-11.72	-34.22	2.29	5771034.31	554193.41	S 38 12 25.269	E 147 37 8.390
	466.98	21.11	233.22	461.20	45.46	-17.60	-42.21	2.78	5771028.44	554185.43	S 38 12 25.461	E 147 37 8.063
	496.44	24.52	235.86	488.35	56.81	-24.21	-51.52	3.62	5771021.83	554176.12	S 38 12 25.677	E 147 37 7.682
	525.34	27.44	238.00	514.33	69.43	-31.10	-62.14	3.18	5771014.94	554165.51	S 38 12 25.903	E 147 37 7.248
	555.68	29.78	239.10	540.96	83.94	-38.68	-74.53	2.37	5771007.36	554153.12	S 38 12 26.152	E 147 37 6.740
	585.40	28.02	239.82	566.98	98.30	-45.98	-86.90	1.81	5771000.07	554140.76	S 38 12 26.391	E 147 37 6.234
	614.89	29.13	240.00	592.88	112.40	-53.05	-99.11	1.13	5770993.00	554128.56	S 38 12 26.623	E 147 37 5.734
	644.23	31.31	240.28	618.23	127.17	-60.40	-111.91	2.23	5770985.65	554115.75	S 38 12 26.864	E 147 37 5.210
	674.32	33.98	240.54	643.56	143.40	-68.41	-126.03	2.67	5770977.64	554101.64	S 38 12 27.127	E 147 37 4.632
	703.79	34.90	240.07	667.87	160.06	-76.67	-140.50	0.97	5770969.39	554087.17	S 38 12 27.398	E 147 37 4.039
	722.54	34.35	239.86	683.29	170.71	-82.00	-149.73	0.90	5770964.06	554077.95	S 38 12 27.573	E 147 37 3.662
	802.80	32.02	241.09	750.46	214.63	-103.66	-187.94	0.91	5770942.40	554039.75	S 38 12 28.284	E 147 37 2.097
	831.50	30.76	239.33	774.96	229.58	-111.08	-200.91	1.63	5770934.98	554026.78	S 38 12 28.527	E 147 37 1.566
	861.51	31.64	238.19	800.63	245.11	-119.15	-214.20	1.06	5770926.92	554013.50	S 38 12 28.792	E 147 37 1.022
	891.22	31.39	236.51	825.96	260.60	-127.53	-227.28	0.92	5770918.55	554000.43	S 38 12 29.066	E 147 37 0.486
	920.19	31.58	236.01	850.66	275.68	-135.93	-239.86	0.33	5770910.15	553987.85	S 38 12 29.341	
	949.76	31.70	236.73	875.84	291.14	-144.52	-252.78	0.40	5770901.56	553974.94		E 147 36 59.443
	979.78	31.37	237.60	901.42	306.80	-153.03	-265.97	0.56	5770893.05	553961.75	S 38 12 29.902	E 147 36 58.903
	1009.21	31.56	240.47	926.53	322.15	-160.93	-279.14	1.54	5770885.15	553948.59	S 38 12 30.161	E 147 36 58.364

	1039.05	31.64	239.79	951.94	337.78	-168.72	-292.70	0.37	5770877.37	553935.03	S 38 12 30.416	E 147 36 57.809
	1066.59	31.64	241.83	975.39	352.22	-175.77	-305.31	1.17	5770870.33	553922.43	S 38 12 30.648	E 147 36 57.292
	1096.55	32.01	242.11	1000.85	368.02	-183.19	-319.25	0.40	5770862.90	553908.49	S 38 12 30.891	E 147 36 56.721
	1125.94	32.34	242.75	1025.72	383.67	-190.43	-333.13	0.48	5770855.66	553894.62	S 38 12 31.129	E 147 36 56.153
	1155.71	32.17	242.53	1050.90	399.55	-197.74	-347.24	0.21	5770848.36	553880.51	S 38 12 31.369	E 147 36 55.575
	1184.60	32.35	243.98	1075.33	414.96	-204.67	-361.01	0.83	5770841.43	553866.75	S 38 12 31.597	E 147 36 55.011
	1214.81	32.18	244.06	1100.88	431.07	-211.74	-375.50	0.17	5770834.37	553852.26	S 38 12 31.829	E 147 36 54.417
	1244.86	30.73	243.07	1126.51	446.73	-218.72	-389.55	1.54	5770827.39	553838.22	S 38 12 32.059	E 147 36 53.842
	1274.25	29.50	243.74	1151.93	461.47	-225.32	-402.73	1.30	5770820.79	553825.04	S 38 12 32.276	E 147 36 53.302
	1303.82	28.32	243.43	1177.82	475.75	-231.68	-415.53	1.21	5770814.43	553812.24	S 38 12 32.485	E 147 36 52.777
	1333.24	26.97	243.84	1203.88	489.39	-237.74	-427.76	1.39	5770808.37	553800.02	S 38 12 32.684	E 147 36 52.276
	1363.33	25.76	244.51	1230.84	502.73	-243.56	-439.79	1.24	5770802.55	553787.99	S 38 12 32.875	E 147 36 51.783
	1392.32	24.64	245.10	1257.07	515.05	-248.82	-450.96	1.19	5770797.30	553776.83	S 38 12 33.048	E 147 36 51.326
	1421.66	23.41	245.94	1283.87	526.96	-253.77	-461.83	1.31	5770792.35	553765.96	S 38 12 33.211	E 147 36 50.880
	1451.54	21.93	245.34	1311.44	538.44	-258.52	-472.32	1.50	5770787.60	553755.48	S 38 12 33.367	E 147 36 50.450
	1481.24	19.28	245.06	1339.23	548.86	-262.90	-481.81	2.68	5770783.22	553745.99	S 38 12 33.511	E 147 36 50.061
	1511.19	16.74	243.33	1367.71	558.11	-266.92	-490.15	2.60	5770779.20	553737.66	S 38 12 33.644	E 147 36 49.720
	1540.85	14.49	240.57	1396.28	566.09	-270.66	-497.20	2.40	5770775.46	553730.61	S 38 12 33.767	E 147 36 49.431
	1570.22	12.40	236.98	1424.84	572.91	-274.19	-503.04	2.30	5770771.94	553724.77	S 38 12 33.882	E 147 36 49.192
	1599.76	10.35	236.26	1453.80	578.72	-277.39	-507.91	2.09	5770768.74	553719.90	S 38 12 33.987	E 147 36 48.993
	1630.16	9.46	236.73	1483.75	583.93	-280.28	-512.27	0.88	5770765.85	553715.54	S 38 12 34.082	E 147 36 48.814
	1659.89	8.81	235.87	1513.10	588.63	-282.90	-516.20	0.67	5770763.24	553711.62	S 38 12 34.167	E 147 36 48.653
	1689.37	8.19	235.45	1542.26	592.97	-285.35	-519.79	0.63	5770760.78	553708.02	S 38 12 34.248	E 147 36 48.506
	1718.81	7.67	235.27	1571.41	597.01	-287.66	-523.14	0.53	5770758.47	553704.68	S 38 12 34.323	E 147 36 48.370
	1745.67	7.36	234.18	1598.04	600.50	-289.69	-526.00	0.38	5770756.44	553701.81	S 38 12 34.390	
Projected to TD	1766.00	7.36	234.18	1618.21	603.08	-291.21	-528.12	0.00	5770754.92	553699.70	S 38 12 34.440	E 147 36 48.166

Survey Type: Definitive Survey

Survey Error Model: SLB ISCWSA version 24 *** 3-D 95.00% Confidence 2.7955 sigma Surveying Prog:

Surveying Prog	<u>1:</u>		
MD From (m	<u>MD To (m)</u>	EOU Freq Survey Tool Type	Borehole -> Survey
0.0	0 77.18	Act-Stns SLB_CNSG+DPIPE-Depth Only	Wardie-1 -> Wardie-1 Final
77.1	8 134.60	Act-Stns SLB_CNSG+DPIPE	Wardie-1 -> Wardie-1 Final
134.6	0 1745.67	Act-Stns SLB_MWD-STD	Wardie-1 -> Wardie-1 Final
1745.6	7 1766.00	Act-Stns SLB_BLIND+TREND	Wardie-1 -> Wardie-1 Final

Wardie-1 Final EOU Report

Report Date: May 19, 2008 Client: 3D Oil Ltd Field: Exploration Structure / Slot: West Seahorse / 2 Well: Wardie-1

Borehole: Wardie-1 UWI/API#:

Survey Name / Date: Wardie-1 Final / May 1, 2008 Tort / AHD / DDI / ERD ratio: 82.133° / 608.54 m / 5.253 / 0.376 Grid Coordinate System: GDA94/MGA94 Zone 55 Location Lat/Long: S 38 12 24.881, E 147 37 9.793
Location Grid N/E Y/X: N 5771046.028 m, E 554227.625 m

Grid Convergence Angle: -0.38310215° Grid Scale Factor: 0.99963622

Survey / DLS Computation Method: Minimum Curvature / Lubinski

Vertical Section Azimuth: 241.150° Vertical Section Origin: N 0.000 m, E 0.000 m

TVD Reference Datum: RKB

TVD Reference Elevation: 37.7 m relative to MSL Sea Bed / Ground Level Elevation: -39.500 m relative to MSL

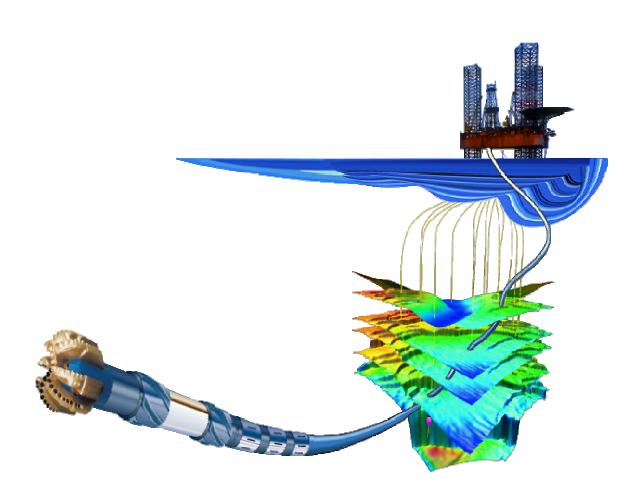
Magnetic Declination: 12.844° Total Field Strength: 59946.609 nT Magnetic Dip: -68.778° Declination Date: May 01, 2008 Magnetic Declination Model: BGGM 2007 North Reference: Grid North

Total Corr Mag North -> Grid North: +13.227° Local Coordinates Referenced To: Well Head

Comments	Measured Depth	Inclination	Azimuth Grid	TVD	Vertical Section	NS Grid North	EW Grid North	DLS	Semi-Axis Major NEV	Semi-Axis Minor NEV	EOU Unc Vertical	Major Axis Azimuth NEV	Survey Tool Model
	(m)	(deg)	(deg)	(m)	(m)	(m)	(m)	(deg/30 m)	(m)	(m)	(m)	(deg)	
•	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.16	0.00	90.00	SLB_CNSG+DPIPE-Depth Only
Mud Line	77.50	1.96	317.71	77.48	0.31	0.98		0.76	0.17	0.16	0.61		SLB_CNSG+DPIPE
	82.50	1.90	317.51	82.48	0.35	1.10	-1.01	0.36	0.17	0.17	0.61	137.42	SLB_CNSG+DPIPE
	87.50	1.85	317.30	87.48	0.39	1.23	-1.12	0.30	0.19	0.19	0.62		SLB_CNSG+DPIPE
	92.50	1.80	317.07	92.48	0.42	1.34	-1.22	0.30	0.21	0.21	0.63	137.03	SLB_CNSG+DPIPE
	97.50	1.74	316.83	97.47	0.46	1.45	-1.33	0.36	0.23	0.23	0.63	136 87	SLB CNSG+DPIPE
	102.50	1.69	316.58	102.47	0.50	1.56	-1.43	0.30	0.25	0.25	0.64		SLB CNSG+DPIPE
	107.50	1.63	316.30	107.47	0.54	1.67	-1.53	0.36	0.27	0.27	0.65		SLB CNSG+DPIPE
	112.50	1.65	315.91	112.47	0.57	1.77	-1.63	0.14	0.28	0.28	0.66		SLB_CNSG+DPIPE
	117.50	1.78	316.62	117.47	0.61	1.88	-1.73	0.79	0.29	0.28	0.67		SLB_CNSG+DPIPE
	122.50	1.86	319.95	122.46	0.65	2.00	-1.84	0.80	0.29	0.29	0.67	137 94	SLB CNSG+DPIPE
	127.50	1.88	323.69	127.46	0.67	2.13	-1.94	0.74	0.30	0.30	0.68		SLB CNSG+DPIPE
	132.50	1.94	328.33	132.46	0.69	2.26	-2.03	0.99	0.32	0.32	0.69		SLB CNSG+DPIPE
	134.60	2.03	330.59	134.56	0.69	2.33	-2.07	1.70	0.32	0.32	0.70		SLB CNSG+DPIPE
	174.15	0.97	331.19	174.09	0.70	3.23	-2.58	0.80	0.39	0.39	0.99		SLB_MWD-STD
	202.30	1.06	330.50	202.24	0.70	3.67	-2.82	0.10	0.39	0.39	0.99	98.40	SLB MWD-STD
	260.44	2.12	269.17	260.36	1.66	4.12	-4.16	0.96	0.41	0.41	0.99		SLB MWD-STD
	290.09	5.23	252.00	289.94	3.47	3.69	-5.99	3.30	0.47	0.47	1.00		SLB MWD-STD
	319.76	8.62	244.27	319.39	7.02	2.31	-9.28	3.55	0.57	0.55	1.00		SLB MWD-STD
	349.23	11.69	243.65	348.40	12.21	0.03	-13.95	3.13	0.70	0.64	1.00		SLB_MWD-STD
	010.20	11.00	210.00	0 10.10	12.21	0.00	10.00	0.10	0.70	0.01	1.00	170.00	OLD_IIIIID O1D
	378.56	14.54	243.39	376.96	18.86	-2.94	-19.91	2.92	0.86	0.74	0.99	163.04	SLB_MWD-STD
	408.20	16.62	238.69	405.51	26.81	-6.81	-26.85	2.46	1.06	0.85	1.00	158.62	SLB_MWD-STD
	437.65	18.41	234.18	433.60	35.63	-11.72	-34.22	2.29	1.28	0.95	1.00		SLB_MWD-STD
	466.98	21.11	233.22	461.20	45.46	-17.60	-42.21	2.78	1.54	1.06	1.01		SLB_MWD-STD
	496.44	24.52	235.86	488.35	56.81	-24.21	-51.52	3.62	1.84	1.18	1.02	151.24	SLB_MWD-STD
	525.34	27.44	238.00	514.33	69.43	-31.10	-62.14	3.18	2.18	1.31	1.03	150.55	SLB_MWD-STD
	555.68	29.78	239.10	540.96	83.94	-38.68	-74.53	2.37	2.57	1.45	1.06	150.22	SLB_MWD-STD
	585.40	28.02	239.82	566.98	98.30	-45.98	-86.90	1.81	2.91	1.53	1.08	150.05	SLB_MWD-STD
	614.89	29.13	240.00	592.88	112.40	-53.05	-99.11	1.13	3.24	1.61	1.12	149.98	SLB_MWD-STD
	644.23	31.31	240.28	618.23	127.17	-60.40	-111.91	2.23	3.66	1.75	1.17	150.03	SLB_MWD-STD
	674.32	33.98	240.54	643.56	143.40	-68.41	-126.03	2.67	4.12	1.90	1.23	150.10	SLB_MWD-STD
	703.79	34.90	240.07	667.87	160.06	-76.67	-140.50	0.97	4.59	2.05	1.29		SLB_MWD-STD
	722.54	34.35	239.86	683.29	170.71	-82.00	-149.73	0.90	4.86	2.12	1.33	150.07	SLB_MWD-STD
	802.80	32.02	241.09	750.46	214.63	-103.66	-187.94	0.91	5.88	2.32	1.47	150.06	SLB_MWD-STD
	831.50	30.76	239.33	774.96	229.58	-111.08	-200.91	1.63	6.24	2.40	1.53	149.98	SLB_MWD-STD
	861.51	31.64	238.19	800.63	245.11	-119.15	-214.20	1.06	6.65	2.52	1.60	149 86	SLB_MWD-STD
	891.22	31.39	236.51	825.96	260.60	-127.53	-227.28	0.92	7.06	2.65	1.67		SLB_MWD-STD
	920.19	31.58	236.01	850.66	275.68	-135.93	-239.86	0.33	7.47	2.77	1.74		SLB MWD-STD
	949.76	31.70	236.73	875.84	291.14	-144.52	-252.78	0.40	7.88	2.90	1.81		SLB_MWD-STD
	979.78	31.37	237.60	901.42	306.80	-153.03	-265.97	0.56	8.28	3.02	1.88		SLB_MWD-STD
	1009.21	31.56	240.47	926.53	322.15	-160.93	-279.14	1.54	8.68	3.13	1.95	149 25	SLB MWD-STD
	1039.05	31.64	239.79	951.94	337.78	-168.72	-273.14	0.37	9.10	3.13	2.02		SLB_MWD-STD
	1066.59	31.64	241.83	975.39	352.22	-175.77	-305.31	1.17	9.48	3.38	2.02		SLB_MWD-STD
	1096.55	32.01	242.11	1000.85	368.02	-183.19	-319.25	0.40	9.91	3.51	2.03		SLB MWD-STD
	1125.94	32.34	242.75	1025.72	383.67	-190.43	-333.13	0.48	10.34	3.65	2.25		SLB_MWD-STD
	4	20.4=	0.00 ==	40=0.0-	000 5-	40==:	0.75			a =-			OLD MAND OTC
	1155.71 1184.60	32.17 32.35	242.53 243.98	1050.90 1075.33	399.55 414.96	-197.74 -204.67	-347.24 -361.01	0.21 0.83	10.77 11.17	3.78 3.90	2.33 2.40		SLB_MWD-STD SLB_MWD-STD
	1104.00	32.33	243.30	1010.00	+14.30	-204.07	-301.01	0.03	11.17	3.90	2.40	145.00	OFP_INIAN D-O I D

	1214.81	32.18	244.06	1100.88	431.07	-211.74	-375.50	0.17	11.60	4.02	2.48	150.03 SLB_MWD-STD
	1244.86	30.73	243.07	1126.51	446.73	-218.72	-389.55	1.54	12.01	4.13	2.55	150.12 SLB_MWD-STD
	1274.25	29.50	243.74	1151.93	461.47	-225.32	-402.73	1.30	12.39	4.24	2.61	150.23 SLB_MWD-STD
	1303.82	28.32	243.43	1177.82	475.75	-231.68	-415.53	1.21	12.75	4.34	2.67	150.32 SLB_MWD-STD
	1333.24	26.97	243.84	1203.88	489.39	-237.74	-427.76	1.39	13.10	4.45	2.73	150.41 SLB_MWD-STD
	1363.33	25.76	244.51	1230.84	502.73	-243.56	-439.79	1.24	13.45	4.56	2.79	150.52 SLB_MWD-STD
	1392.32	24.64	245.10	1257.07	515.05	-248.82	-450.96	1.19	13.77	4.66	2.84	150.62 SLB_MWD-STD
	1421.66	23.41	245.94	1283.87	526.96	-253.77	-461.83	1.31	14.07	4.76	2.89	150.74 SLB_MWD-STD
	1451.54	21.93	245.34	1311.44	538.44	-258.52	-472.32	1.50	14.37	4.86	2.93	150.83 SLB_MWD-STD
	1481.24	19.28	245.06	1339.23	548.86	-262.90	-481.81	2.68	14.63	4.95	2.96	150.91 SLB_MWD-STD
	1511.19	16.74	243.33	1367.71	558.11	-266.92	-490.15	2.60	14.86	5.03	2.99	150.93 SLB_MWD-STD
	1540.85	14.49	240.57	1396.28	566.09	-270.66	-497.20	2.40	15.06	5.10	3.02	150.91 SLB_MWD-STD
	1570.22	12.40	236.98	1424.84	572.91	-274.19	-503.04	2.30	15.22	5.17	3.03	150.83 SLB_MWD-STD
	1599.76	10.35	236.26	1453.80	578.72	-277.39	-507.91	2.09	15.36	5.23	3.05	150.79 SLB_MWD-STD
	1630.16	9.46	236.73	1483.75	583.93	-280.28	-512.27	0.88	15.49	5.28	3.07	150.76 SLB_MWD-STD
	1659.89	8.81	235.87	1513.10	588.63	-282.90	-516.20	0.67	15.60	5.33	3.08	150.72 SLB_MWD-STD
	1689.37	8.19	235.45	1542.26	592.97	-285.35	-519.79	0.63	15.71	5.38	3.09	150.68 SLB_MWD-STD
	1718.81	7.67	235.27	1571.41	597.01	-287.66	-523.14	0.53	15.80	5.43	3.10	150.65 SLB_MWD-STD
	1745.67	7.36	234.18	1598.04	600.50	-289.69	-526.00	0.38	15.89	5.47	3.11	150.61 SLB_MWD-STD
Projected to TD	1766.00	7.36	234.18	1618.21	603.08	-291.21	-528.12	0.00	16.25	5.70	3.16	150.35 SLB_BLIND+TREND

Survey Type: Definitive Survey
NOTES: Only depth error sources are used from surface to mud-line.
Structure Uncertainty: 0.00 m Included


Slot Uncertainty: 0.00 m Included Hole Diameter: 12.25 in Included
Global Error Sources Used: YES

Along-Hole Depth Uncertainty: At survey stations

Survey Error Model: SLB ISCWSA version 24 *** 3-D 95.00% Confidence 2.7955 sigma

Surveying Prog:			
MD From (m)	MD To (m)	EOU Freq Survey Tool Type	Borehole -> Survey
0.00	77.18	Act-Stns SLB_CNSG+DPIPE-Depth Only	Wardie-1 -> Wardie-1 Final
77.18	134.60	Act-Stns SLB_CNSG+DPIPE	Wardie-1 -> Wardie-1 Final
134.60	1745.67	Act-Stns SLB_MWD-STD	Wardie-1 -> Wardie-1 Final
1745.67	1766.00	Act-Stns SLB BLIND+TREND	Wardie-1 -> Wardie-1 Final

Performance Drilling Report

BHA 3 / Bit 2

17 ½" (445 mm) Steerable Motor Assembly 136m – 751m MD

BHA

17 1/2" Hughes MXL-T1V Tooth Bit (3 x 20 jets) 9 5/8 PowerPak Motor (5:6 lobe, 4.0 stage, 17 1/4 sleeve and 1.5° bend) 17" String Stab Crossover Sub Float Sub 3 x 8" Pony NMDC Crossover Sub PowerPulse MWD (800-1200 gpm) **UBHO** 2 x 8" NMDC 8 1/4" Spiral Drill Collars (4 joints) Hydraulic Jar 8 1/4" Spiral Drill Collar (2 joints) Crossover Sub 5 ½" HW Drill Pipe (12 joints) 5 1/2" Drill Pipe to Surface

Drilling Summary

Drilled cement and float equipment, cleaned out rat hole. This well was approximately 2.5 m from West Seahorse-3 so magnetic interference was encountered in the MWD surveys once drilling commenced. At 172m with inclination only surveys there was a high risk of collision with West Seahorse-3 so Gyro surveys were taken to confirm the actual azimuth. The Gyro surveys indicated that the well was diverging from West Seahorse-3 so the drilling commenced. At 200m no magnetic interference was encountered from the MWD surveys so these were used from this point onwards.

Rotary drilling continued to kick off point at 250m. Kick off building at 3°/30m to 32.48°m along the azimuth of 241.15° azimuth. Continue drilling tangent section to casing point @ 751m MDRT. This assembly is capable of building up to 4.8°/30m. Reactive torque was about 45° with 25 klbs WOB

No hole problems were encountered and all directional requirements were met. While tripping out of the hole the BHA got stuck at the shoe. The most likely cause was the 17" stabilizer getting stuck at the shoe. The BHA was rotated out with no resistance encountered.

BHA 3 / Bit 2

17 ½" (445 mm) Steerable Motor Assembly 136m – 751m MD

BHA

17 1/2" Hughes MXL-T1V Tooth Bit (3 x 20 jets) 9 5/8 PowerPak Motor (5:6 lobe, 4.0 stage, 17 1/4 sleeve and 1.5° bend) 17" String Stab Crossover Sub Float Sub 3 x 8" Pony NMDC Crossover Sub PowerPulse MWD (800-1200 gpm) **UBHO** 2 x 8" NMDC 8 1/4" Spiral Drill Collars (4 joints) Hydraulic Jar 8 1/4" Spiral Drill Collar (2 joints) Crossover Sub 5 ½" HW Drill Pipe (12 joints) 5 ½" Drill Pipe to Surface

Drilling Summary

Drilled cement and float equipment, cleaned out rat hole. This well was approximately 2.5 m from West Seahorse-3 so magnetic interference was encountered in the MWD surveys once drilling commenced. At 172m with inclination only surveys there was a high risk of collision with West Seahorse-3 so Gyro surveys were taken to confirm the actual well azimuth. The Gyro surveys indicated that the well was diverging from West Seahorse-3 so drilling resumed. At 200m no further magnetic interference was encountered in the MWD surveys so these were used from this point onwards.

Rotary drilling continued to kick off point at 250m. Kicked off building at 3°/30m to 32.48°m along an azimuth of 241.15°. Continue drilling tangent section to casing point at 751m MDRT. This assembly is capable of building inclination up to 4.8°/30m. Reactive torque was about 45° with 25 klbs WOB

No hole problems were encountered and all directional requirements were met. While tripping out of the hole the BHA got stuck at the shoe. The most likely cause was the 17" stabilizer getting hung up at the shoe. The BHA was pumped and rotated past the shoe with no further resistance encountered once inside the casing and the BHA was pulled to surface.

Drilling Performance

Interval	Distance (m)	Time (hrs)	ROP (m/hr)
Total Drilled	615	6.7	91.79
Total Drilled in rotary	353	3.76	93.88
Total Drilled in slide mode	262	2.94	89.12
Bit Graded	1-1-NO-A	-E-I-NO-TD (61	krevs)

Section Breakdown

Section	Rotary m (%)	Slide m (%)
Start of run to KOP (136-250m)	125 (100%)	-
KOP to EOC (250-574m)	105 (32%)	219 (68%)
EOC to section TD (574-751m)	134 (76%)	43 (24%)

BHA 4 / Bit 3

12 ¼" (311 mm) Rotary Steerable Assembly 751m – 1766 m MD (1015m)

BHA

12 ¼" Reed Hycalog RSX616 MA 16 PDC Bit (3 x 15 & 3 x 16 jets)
PowerDrive 900 X5 (without flow restrictor)
PowerDrive 900 Receiver (with ported float) and Flex Collar
8 ¼" GVR
PowerPulse MWD (600-1200 gpm)
1 x 8" NMDC
8 ¼" Spiral Drill Collars
Hydraulic Jar
8 ¼" Spiral Drill Collar
Crossover Sub
5 ½" HW Drill Pipe (12 joints)
5 ½" Drill Pipe to Surface

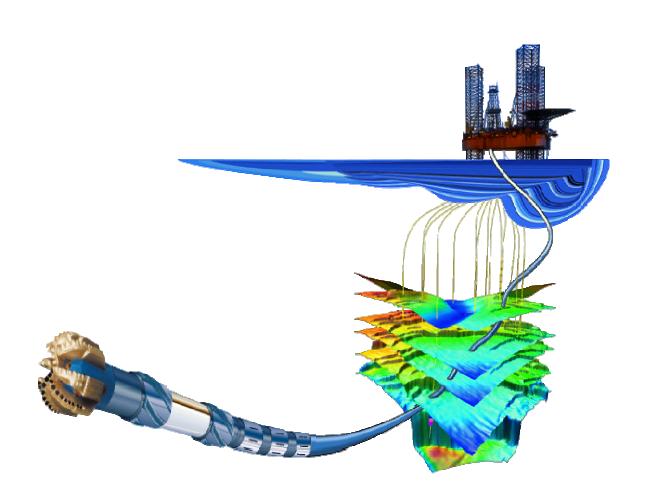
Drilling Summary

After drilling out cement and float equipment, three meters of new formation was drilled and a formation integrity test was performed.

Once out of the shoe the PowerDrive assembly had a dropping tendency in neutral steering mode of around 0.8°/30m. The tangent section of the well profile was drilled in inclination hold mode and increasing the right azimuth steering percentage accordingly to follow the planned well trajectory. The drilling parameters were adjusted to maintain a rate of penetration of around 115 m/hr.

In the previous well (West Seahorse-3) it was initially difficult to achieve the required drop rate so the drop section in this well was started deliberately at 1208m, 90m ahead of plan to allow for a lower drop rate than the plan. Drop rates of 1.16°/30m to 1.45°/30 m for the first 243m were achieved when the tool was set at 25% steering ratio and 180° tool face. It was later altered accordingly to increase the drop and turn rates. The rate of penetration was held back to 30 m/hr from 1522m onwards for logging purposes.

Once the drop was achieved the PowerDrive was placed in Inclination Hold mode for the remainder of the tangent section to TD at 1766m MDRT. Both geological targets were successfully penetrated within the allowable tollerances.


Moderate stick-slip was observed for most of the run but it did not affect the steering ability. A few hard drilling intervals were encountered and higher stick slip and torque variance was experienced. While tripping out sticky hole sections were encountered all the way up to the 13 3/8" shoe. The BHA was washed and back reamed through these sections and a subsequent wiper trip to TD point was performed.

The bit was graded as 3-3-WT-A-X-I-CT-TD.

Drilling Performance;

Interval	Distance (m)	Time (hrs)	ROP (m/hr)
Rotary mode	1015	19.40	52.32

BHA Reports

BHA Data Sheet

3D Oil Ltd - Wardie-1

BHA#	17 1/2" Motor BHA
Field	3D Oil - West Seahorse
Structure	West Seahorse

Date	May 13, 2008	
Well	Wardie-1	
Borehole	Wardie-1	

				Fish. Neck					Cum.
		Vendor/		OD (in)/	OD (in)/	Max OD	Bottom/	Length	Length
	Name	Model	Serial #	Length (m)	` '	(in)	Top Connection	(m)	(m)
1	17 1/2 " Bit	Hughes Christensei	6065891		8.75	17.50		0.41	0.41
_	Davis Dala Matar (4 F. das)	MXL T1V	5050		3.75		7.63 Reg Pin	40.40	40.54
2	PowerPak Motor (1.5 deg)	Schlumberger A962M5640XP	5659		9.63	17.25	7.63 Reg Box	10.10	10.51
3	17" String Stab	Schlumberger	OSS061172	2.4	7.88		7.63 Reg Box	2.42	12.93
3	17 String Stab	Schlumberger	033061172	2A	9.50	17.00	7.63 Reg Pin 7.63 Reg Box	2.42	12.93
4	Crossover	Seadrill	SSD7124	0.00				1.23	14.16
4	Crossover	Seauriii	33D/ 124	8.00	9.50	9.50	7.63 Reg Pin	1.23	14.16
5	Float Sub	Schlumberger	ASQ 8037	0.62	3.00		6.63 Reg Box	0.80	14.96
5	Float Sub	Schlumberger	A3Q 6031		8.00	8.00	6.63 Reg Pin	0.60	14.90
6	8" Pony NMDC	Cablumbargar	7505		2.88		6.63 Reg Box	2.45	17.41
О	8 PONY NIVIDO	Schlumberger	7505		7.94	7.94	6.63 Reg Pin	2.45	17.41
7	8" Pony NMDC	Cablumbargar	ASQ 8020		2.88		6.63 Reg Box	3.00	20.41
7	8 PONY NIVIDO	Schlumberger	ASQ 8020		8.00	8.00	6.63 Reg Pin	3.00	20.41
0	Oll Dami NIMDO	Cablumahamman	0504046		2.88		6.63 Reg Box	4.55	04.00
8	8" Pony NMDC	Schlumberger	9504216		7.88	7.88	6.63 Reg Pin	1.55	21.96
0	Crass such	Cablumahamman	42755		2.81	0.50	6.63 Reg Box	0.47	22.43
9	Cross over sub	Schlumberger	42755		8.50	8.50	6.63 Reg Pin	0.47	22.43
40	Davier Divisa LIE MAAD	Cablumahamman	\/^77		2.88		6.63 FH Box	0.40	20.00
10	PowerPulse HF MWD	Schlumberger	VA77		8.25	8.25	6.63 FH Pin	8.49	30.92
4.4	LIDLIC Col	PowerPulse HF	050004.0		5.90		6.63 Reg Box	0.00	04.70
11	UBHO Sub	Schlumberger	S50991-3		8.00	8.00	6.63 Reg Pin	0.86	31.78
10	8" NMDC	Cablumbargar	N688		2.25		6.63 Reg Box	8.65	40.43
12	8 INIVIDO	Schlumberger	10000		8.00	8.00	6.63 Reg Pin	6.00	40.43
40	OII NIMPO	Calaborada a uma u	CDD FFFF		2.81	0.05	6.63 Reg Box	0.45	40.00
13	8" NMDC	Schlumberger	SBD 5555		8.25	8.25	6.63 Reg Pin	9.45	49.88
1.1	O" Collor (4 ininto)	Coodeill			3.25		6.63 Reg Box	37.63	87.51
14	8" Collar (4 joints)	Seadrill			8.00	8.00	6.63 Reg Pin	37.63	87.51
4.5	The shore the law	Dailey Petroleum S	4700 4000		2.81	0.00	6.63 Reg Box	0.00	97.19
15	Hydraulic Jar		1762-1339		8.00	8.00	6.63 Reg Pin	9.68	97.19
4.0	Oll Callag (O ininta)	HDL-100			3.00		6.63 Reg Box	40.00	440.00
16	8" Collar (2 joints)	Seadrill			8.00	8.00	6.63 Reg Pin	18.89	116.08
47	C	C a a duill	CCD 7404		2.81	0.05	6.63 Reg Box	4.00	447.00
17	Crossover	Seadrill	SSD 7131		8.25	8.25	6.63 Reg Pin	1.22	117.30
40	F 4/0" LIMPD (40 ininto)	Coodwill			2.81		5.50 XT57 Box	440.74	230.01
18	5 1/2" HWDP (12 joints)	Seadrill			5.50	7.00	5.50 XT57 Pin	112.71	230.01
40	5 4/0 04 70 DDC 400/ M/22				3.25		5.50 XT57 Box	t = = : : : : : = = = =	
19	5-1/2 " 24.70 DPS, 10% Wear				5.42	7.00	5.50 XT57 Pin	to surface	
				1	4.67		5.50 XT57 Box		
					Tetal M	aight (II-C)	70005	Tetal	000.04
						eight (lbf)	79895	Total Len.	230.01
ĺ	BUA Comments:				Relo	w Jar (lbf)	44528.9		

BHA Comments:

Stabilizer		
Blade Length (m)		Mid-Pt. To Bit (m)
	0.46	1.13
	0.60	11.54
•		Bend To Bottom
Bent Housing Angle (deg)		Connection (m)
	1.50	2.78

Sensor	
Type D&I	Distance To Bit (m)
D&I	26.56

Bit Nozzles				
Count	Size(1/32 in)			
3	20.00			
TFA (in2)	0.92			

Quality Control			
Created By:	PSellathurai		
Checked By:			

		Cum. Len. (m
<u>I</u> I	5-1/2 " 24.70 DPS, 10% Wear	to surface
	5 1/2" HWDP (12 joints)	230.01
Ī	Crossover	117.30
	8" Collar (2 joints)	116.08
	Hydraulic Jar	97.19
	8" Collar (4 joints)	87.51
	8" NMDC	49.88
	8" NMDC	40.43
	UBHO Sub	31.78
	PowerPulse HF MWD	30.92
Ĭ	Cross over sub 8" Pony NMDC	22.43 21.96
	8" Pony NMDC	20.41
	8" Pony NMDC	17.41
74	Float Sub	14.96
	Crossover	14.16
	17" String Stab	12.93
74	PowerPak Motor (1.5 deg)	10.51
5	17 1/2 " Bit	0.41

3D Oil Ltd Wardie-1 West Seahorse 3D Oil - West Seahorse Wardie-1 17 1/2" Motor BHA

BHA DESCRIPTION				
ELEMENT	LENGTH (m)	OD (in)	ID (in)	MAX OD (in)
17 1/2 " Bit	0.41	17.50	3.75	17.50
PowerPak Motor (1.5 deg)	10.10	9.63	7.88	17.25
17" String Stab	2.42	9.50	3.00	17.00
Crossover	1.23	9.50	3.00	9.50
Float Sub	0.80	8.00	2.88	8.00
8" Pony NMDC	2.45	7.94	2.88	7.94
8" Pony NMDC	3.00	8.00	2.88	8.00
8" Pony NMDC	1.55	7.88	2.81	7.88
Cross over sub	0.47	8.50	2.88	8.50
PowerPulse HF MWD	8.49	8.25	5.90	8.25
UBHO Sub	0.86	8.00	2.25	8.00
8" NMDC	8.65	8.00	2.81	8.00
8" NMDC	9.45	8.25	3.25	8.25
8" Collar (4 joints)	37.63	8.00	2.81	8.00
Hydraulic Jar	9.68	8.00	3.00	8.00
8" Collar (2 joints)	18.89	8.00	2.81	8.00
Crossover	1.22	8.25	2.81	8.25
5 1/2" HWDP (12 joints)	112.71	5.50	3.25	7.00
5-1/2 " 24.70 DPS, 10% W€	to surface	5.42	4.67	7.00

DRILLING OVERVIEW

Drilled cement and float equipment, cleaned out rat hole. Rotary drilled to kick off point at 250m. Kick off building at 3°/30m to 32.48°m along the azimuth of 241.15° azimuth. Continue drilling tangent section to casing point @ 751m MDDF. This assembly is capable of building up to 4.8°/30m.

Depth in:	136.00 m	Depth out:	751.00 m
Inclination in:	0.97°	To:	34.35°
Direction in:	331.19°	To:	239.86°
Total Drilled	615.00 m	Dogleg:	3.0

Schlumberger

Quality Control

Created by: PSellathurai Date: 14/05/2008 Checked by: Date:

BHA Data Sheet

3D Oil Ltd - Wardie-1

BHA#	12 1/4" RSS/LWD BHA
Field	3D Oil - West Seahorse
Structure	West Seahorse

Date	May 16, 2008
Well	Wardie-1
Borehole	Wardie-1

				Fish. Neck					Cum.
ltem	Name	Vendor/ Model	Serial #	OD (in)/ Length (m)	OD (in)/ ID (in)	Max OD (in)	Bottom/ Top Connection	Length (m)	Length (m)
	12 1/4 " PDC Bit	Reed Hycalog	218629	Longth (III)	8.00	12.25	Top Connection	0.30	0.30
		RSX616 MA 16	1		3.25		6.63 Reg Pin		
2	PD 900 AA 12 1/4"	Schlumberger	51550		9.25	11.80	6.63 Reg Box	4.22	4.52
		PD 900 AA 12 1/4"			3.00		6.63 Reg Box		
3	PD900 Receiver w/float	Schlumberger	49245	8.38	9.50	9.50	6.63 Reg Pin	1.87	6.39
	DD000 FI 0 #		E 1 7 0 7	0.48	6.00		6.63 FH Box	0.05	2.24
4	PD900 Flex Collar	Schlumberger	51767		8.25	8.25	6.63 FH Pin	2.95	9.34
5	GVR-8	Schlumberger	034		5.00		6.63 FH Box 6.63 FH Pin	4.22	13.56
5	GVK-0	RAB-8	034		8.25 3.90	12.13	6.63 FH Pin 6.63 FH Box	4.22	13.30
6	PowerPulse HF	Schlumberger	VA77		8.25	8.49	6.63 FH Pin	8.49	22.05
U	1 OWEIT GISC III	PowerPulse HF	1771		5.90		6.63 Reg Box	0.43	22.00
7	8" NMDC	Schlumberger	N688		8.00	8.00	6.63 Reg Pin	8.65	30.70
'	- Timbe	Comamborgor	1,000		2.81	0.00	6.63 Reg Box	0.00	00.70
8	1 x 8" Collar				8.00	8.00	6.63 Reg Pin	9.45	40.15
			1		2.81	0.00	6.63 Reg Box		
9	Hydraulic Jar	Dailey Petroleum S	1762-1339		8.00	8.00	6.63 Reg Pin	9.68	49.83
	,	HDL-100			3.00		6.63 Reg Box		
10	1x 8" Collar				8.00	8.00	6.63 Reg Pin	9.44	59.27
			1		2.81		6.63 Reg Box		
11	Crossover		SSD7131		8.00	8.00	6.63 Reg Pin	1.22	60.49
					2.81		5.50 XT57 Box		
12	5 1/2" HWDP (12 joints)				5.50	7.00	5.50 XT57 Pin	112.84	173.33
					3.25		5.50 XT57 Box		
13	5-1/2 " 24.70 DPS, 10% Wear				5.42	7.00	5.50 XT57 Pin	to surface	
					4.67		5.50 XT57 Box		
			ļ.						
			•						
			1						
				 					
			1						
				<u> </u>		eight (lbf)		Total Len.	173.33
	RHA Comments:				Belo	w Jar (Ibf)	19203.7		

BHA Comments:	

Stabilizer		
Blade Length (m)		Mid-Pt. To Bit (m)
	0.20	5.27
		Bend To Bottom
Bent Housing Angle (deg)		Connection (m)

Distance To Bit (m)
2.67
10.51
11.15
17.68

Bit Nozzles	
Count	Size(1/32 in)
3	15.00
3	16.00
TFA (in2)	1.11

Quality Control	
Created By:	PSellathurai
Checked By:	

		Cum. Len. (m)			
I	5-1/2 " 24.70 DPS, 10% Wear	173.33			
	5 1/2" HWDP (12 joints)	173.33			
	Crossover	60.49			
	Ciossovei	00.43			
	1x 8" Collar	59.27			
Ш					
	Hydraulic Jar	49.83			
	1 x 8" Collar	40.15			
	8" NMDC	30.70			
	PowerPulse HF	22.05			
	GVR-8	13.56			
	PD900 Flex Collar	9.34			
	PD900 Receiver w/float	6.39			
	PD 900 AA 12 1/4"	4.52			
Oobli	12 1/4 " PDC Bit	0.30			

3D Oil Ltd Wardie-1 West Seahorse 3D Oil - West Seahorse Wardie-1 12 1/4" RSS/LWD BHA

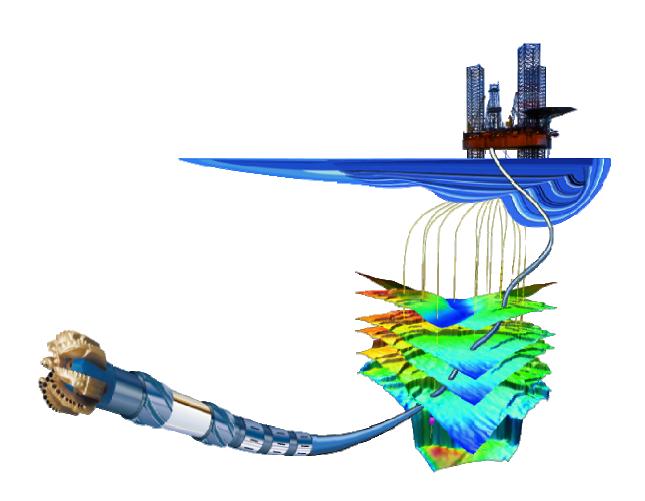
BHA DESCRIPTION													
ELEMENT	LENGTH (m)	OD (in)	ID (in)	MAX OD (in)									
12 1/4 " PDC Bit	0.30	12.25	3.25	12.25									
PD 900 AA 12 1/4"	4.22	9.25	3.00	11.80									
PD900 Receiver w/float	1.87	9.50	6.00	9.50									
PD900 Flex Collar	2.95	8.25	5.00	8.25									
GVR-8	4.22	8.25	3.90	12.13									
PowerPulse HF	8.49	8.25	5.90	8.49									
8" NMDC	8.65	8.00	2.81	8.00									
1 x 8" Collar	9.45	8.00	2.81	8.00									
Hydraulic Jar	9.68	8.00	3.00	8.00									
1x 8" Collar	9.44	8.00	2.81	8.00									
Crossover	1.22	8.00	2.81	8.00									
5 1/2" HWDP (12 joints)	112.84	5.50	3.25	7.00									
5-1/2 " 24.70 DPS, 10% We	to surface	5.42	4.67	7.00									

DRILLING OVERVIEW

Bit to RAB Gamma Ray Sensor = 10.51 m Bit to RAB Resistivity Sensor = 11.15 m Bit to Direction & Inclination Sensor = 2.67 m

This assembly had a dropping tendency in neutral steering mode of around $0.8^{\circ}/30m$. Drop rates of $1.16^{\circ}/30m$ to $1.45^{\circ}/30$ m for the first 243m were achieved when the tool was set at $180^{\circ}/25\%$ setting, and around $2.7^{\circ}/30m$ with $162^{\circ}L/75\%$ setting.

Depth in:	751.00 m	Depth out:	1766.00 M
Inclination in:	32.02°	То:	7.36°
Direction in:	241.09°	То:	234.18°
Total Drilled	1015.00 m	Dogleg:	0.2 to 2.7


Schlumberger

Quality Control

Created by: PSellathurai Date: 17/05/2008

Checked by: Date:

Drilling Parameter Sheets

Wardie-1 DATE: 12-May-08 Depth In: 136.0 m MD Pump Output: 5.850 Gal/stk Planned Angle: 32.5° Page 1 of 2 Motor Speed: 0.11 Rev / Gal Planned Direction: 241.2° BHA: 17 1/2" Bit, PowerPak Motor (1.5 deg), 17" String Stab, XO, Float Sub, 3x8" Pony NMDC, XO, PowerPulse, UBHO, 2x8" NMDC, 4x8" DC's, Hydraulic Jar, 2x8" DC, XO, 12x5 1/2" HWDP, DP to surface BHA # 2

SURVEY SPACING = 25.56 m MD Last Casing: 20" @132.8mRT DLS 1=°/100Ft, 2=°/30Mts, 3=°/10Mts: 2

	DR	RILLING	TIME	ME Motor Work Sheet			Tool	SURVEY	RVEY TENDENCY °/30mts STK /			STK/	FLOW	V Surf Motor ROP					PRES	SURE	REMARKS			
R/S	START	STOP	SUM	FROM	то	Meters Rotated	Meters Slide	Face	DEPTH	INCL	AZM	B/D	TR	Dogleg	MIN	RATE	RPM	RPM	WOB	TORQ	(m/hr)	Off Bottom	On Bottom	
R	22:40	23:00	0:20	132	133	1			115.00	1.69	-				103	603	30	66	2-6	2-3	3	625	650	Tag cement at 131.8m
R	23:00	23:04	0:04	133	144	11			142.70	1.03	-				103	603	60	66	0-2	2-3	165	625	650	
R	23:33	23:38	0:05	144	155	11									103	603	60	66	1-3	1-3	132	625	650	
R	23:38	0:02	0:24	155	172	17									160	936	63	103	0-2	2-3	43	1,475	1,500	Mid night depth
R	2:24	2:54	0:30	172	201	29			174.15	0.97	331.19	-0.80	0.46	0.80	154	901	60	99	1-3	2-3	58	1,400	1,525	Took Gyro survey to confirm azimuth
R	3:04	3:26	0:22	201	230	29			202.30	1.06	330.50	0.10	-0.74	0.10	154	901	60	99	1-10	1-3	79	1,425	1,450	125 klbs rot. Wt.
R	3:38	3:53	0:15	230	250	20									154	901	60	99	6-7	1-3	80	1,450	1,475	
S	3:56	4:04	0:08	250	259		9	220M							154	901	-	99	3-4	-	68	1,450	1,500	PUwt 123, SOwt 122
S	4:15	4:30	0:15	259	284		25	240M	260.44	2.12	269.17	0.55	-31.65	0.96	154	901	1	99	3-6	-	100	1,425	1,500	
R	4:30	4:34	0:04	284	288	4									154	901	45	99	9	1-3	60	1,425	1,475	PUwt 126, SOwt 125
S	4:54	5:08	0:14	288	313		25	230M	290.09	5.23	252.00	3.15	-17.37	3.30	154	901	-	99	6-8	-	107	1,450	1,500	PUwt 131, SOwt 126
R	5:08	5:11	0:03	313	318	5									154	901	45	99	6-8	1-3	100	1,450	1,500	
S	5:23	5:34	0:11	318	338		20	10L	319.76	8.62	244.27	3.43	-7.82	3.55	188	1100	1	121	6-11	-	109	2,125	2,200	
R	5:34	5:42	0:08	338	347	9									188	1100	45	121	8-11	1-2	68	2,150	2,250	PUwt 134, SOwt 127, Rot wt 130
S	5:55	6:00	0:05	347	365		18	10R	349.23	11.69	243.65	3.13	-0.63	3.13	188	1100		121	12-15		216	2,150	2,300	
R	6:00	6:07	0:07	365	377	12									188	1100	45	121	20	1-3	103	2,150	2,300	PUwt 138, SOwt 132, Rot wt 131
S	6:20	6:25	0:05	377	391		14	30L	378.56	14.54	243.39	2.92	-0.27	2.92	188	1100		121	18-20		168	2,150	2,350	
R	6:25	6:35	0:10	391	406	15									188	1100	45	121	18-20	1-3	90	2,150	2,350	PUwt 137, SOwt 128, Rot wt 131
S	6:50	6:55	0:05	406	420		14	55L	408.20	16.62	238.69	2.11	-4.76	2.46	188	1100		121	18-20		168	2,150	2,350	
R	6:55	7:05	0:10	420	436	16									188	1100	45	121	20	1-3	96	2,150	2,350	
S	7:15	7:25	0:10	436	452		16	30L	437.65	18.41	234.18	1.82	-4.59	2.29	188	1100		121	18		96	2,150	2,350	
R	7:25	7:35	0:10	452	465	13									188	1100	45	121	20	1-3	78	2,200	2,350	PUwt 142, SOwt 130, Rot wt 135
S	7:45	8:00	0:15	465	485		20	HS	466.98	21.11	233.22	2.76	-0.98	2.78	188	1100		121	23		80	2,200	2,375	
R	8:00	8:10	0:10	485	494	9									188	1100	45	121	23	1-5	54	2,200	2,375	PUwt 145, SOwt 131, Rot wt 137
S	8:20	8:32	0:12	494	514		20	10R	496.44	24.52	235.86	3.47	2.69	3.62	188	1100		121	20		100	2,200	2,375	
R	8:32	8:37	0:05	514	524	10									188	1100	45	121	20	1-5	120	2,200	2,375	PUwt 146, SOwt 130, Rot wt 137
S	8:45	9:00	0:15	524	542		18	10R	525.34	27.44	238.00	3.03	2.22	3.18	188	1100		121	18		72	2,200	2,375	
R	9:00	9:05	0:05	542	554	12									188	1100	45	121	20	1-5	144	2,275	2,375	PUwt 148, SOwt 130, Rot wt 138

Rotated Time : 2.87 Meters Rotated : 223 Rotating ROP: 77.8 m/hr

Slide Time : 1.92 199 Sliding ROP: 103.8 m/hr Meters Slide : Total Time: 4.78 Meters Drilled: 422 Average ROP: 88.2 m/hr

WELL#	Wai	rdie-1	DATE:	13-May-08	_	Dept	h In :	136.0	m MD						_	_		Gal / stk				ed Angle :		Page 2 of 2
D17.4 #	_		DIT!	_		DITA	17 1 (0"	D'. D	D.1-34	. (1.5.1	17" (wata a Ga	1 VC	F1 C 1				Rev / Gal				Direction :		V. L., 2-9! DC VO 12-5 1/9! HWDD DD :
BHA #	2	-	BIT#	2	-	вна :	1 / 1/2"	ыt, Pov	verPak Moto	r (1.5 d	eg), 1/" S	string St	ab, XO,	rioat Sul	o, 3x8" I	ony NM	IDC, XC	J, Powerl	ruise, UB	HO, 2x8"	NMDC,	4x8" DC's	s, Hydrau	lic Jar, 2x8" DC, XO, 12x5 1/2" HWDP, DP to surface
SURV	EY SPA	CING =	25.56	m MD	Last	Casing:	20" @1	32.8mRT					DLS 1:	=°/100Ft	, 2=°/30	Mts, 3=°	/10Mts:	2	1					
						3.									,	,			4					
	DR	RILLING	TIME	M	lotor Work	tor Work Sheet Tool SURVEY TENDENCY 930mts STK / FLOW Surf Motor ROP PRESSURE											REMARKS							
R/S	START	STOP	SUM	FROM	то	Meters Rotated	Meters Slide	Face	DEPTH	INCL		B/D	TR	Dogleg	MIN	RATE	RPM	RPM	WOB	TORQ	(m/hr)	Off Bottom	On Bottom	
S	9:18	9:26	0:08	554	574		20	HS	555.68	29.78	239.10	2.31	1.09	2.37	196	1147		126	18		150	2,400	2,500	Increase flow to 1150 gpm
R	9:26	9:40	0:14	574	584	10									196	1147	45	126	18	1-5	43	2,400	2,500	
R	10:05	10:25	0:20	584	613	29			585.40	28.02	239.82	-1.78	0.73	1.81	196	1147	70	126	20	1-5	87	2,400	2,500	Inc dropping in rotary. PUwt 154, SOwt 131, Rot wt 144
S	10:35	10:55	0:20	613	628		15	HS	614.89	29.13	240.00	1.13	0.18	1.13	196	1147		126	16		45	2,400	2,500	
R	10:55	11:02	0:07	628	643	15									196	1147	45	126	25	1-3	1-4	2,400	2,500	PUwt 156, SOwt 133, Rot wt 144
S	11:20	11:35	0:15	643	658		15	HS	644.23	31.31	240.28	2.23	0.29	2.23	196	1147		126	25		60	2,400	2,575	
R	11:35	11:45	0:10	658	672	14									196	1147	45	126	25	1-3	84	2,400	2,575	PUwt 158, SOwt 133, Rot wt 144
S	12:00	12:18	0:18	672	685		13	10L							196	1147		126	12-15		43	2,400	2,500	
R	12:18	12:35	0:17	685	702	17									196	1147	45	126	20	1-4	60	2,400	2,575	
R	12:45	13:15	0:30	702	731	29			703.79	34.90	240.07	0.94	-0.48	0.97	196	1147	70	126	15-25	1-4	58	2,400	2,575	Back ream 1 full stand; PUwt 158, SOwt 133, Rot wt 144
R	13:40	13:50	0:10	731	751	20									196	1147	90	126	15-25	1-4	120	2,400	2,575	Section TD.
	 			1	1	1				1									1					
						1																		
	-			1	<u> </u>	1																		
						1																		
	1			1	 	1			-	1									1					
	 	-			 	1				1														
				1	-	-																		
<u> </u>	II TIN	I IE BRE	AKDOWN	: (for new for	mation on	lv)	<u> </u>		L	1	<u> </u>		<u> </u>			<u> </u>			I	l		l	<u> </u>	
	111	11112		Rotated Time :		11	Meters	Rotated	: 134						Rotatir	ng ROP:	74.4	m/hr						
																o•								
				Slide Time :	1.02		Mete	ers Slide	: <u>63</u>						Slidir	ıg ROP:	62.0	m/hr						
				Total Time :	2.82		Meter	s Drilled							Averaş	ge ROP:	69.9	m/hr						

Depth In: 751.0 m MD Wardie-1 DATE: 16-May-08 Pump Output: 5.850 Gal/stk Planned Angle: 32.5° Page 1 of 3 Planned Direction: 241.2° BHA # 4 BIT# 3

12.25 BHA: 12 1/4" PDC Bit, PD 900, Receiver, 6 5/8" In Line Flex, XO, GVR8, PowerPulse MWD, 8 1/4" NMDC, 8" Collar, Hydraulic Jar, 8" collar, 12 x 5 1/2" HWDP, DP to surface

DLS 1=°/100Ft, 2=°/30Mts, 3=°/10Mts: 2 WD SURVEY SPACING = 17.68 m Last Casing: 13 3/8" @ 747 m

PD SURV	PD SURVEY SPACING = 2.67 m DRILLING TIME RSS Work Sheet Des Steer SURVEY TENDENCY /Joints STK / FLOW Surf ROP PRESSURE																							
	DR	ILLING	TIME	RSS V	Work Sheet	t	Des	Steer	SURVEY			TE	NDENCY °/30	Omts	STK/	FLOW	Surf				ROP	PRES	SURE	REMARKS
R/S	START	STOP	SUM	FROM	то	Dist	T/F	%	DEPTH	INCL	AZM	B/D	TR	Dogleg	MIN	RATE	RPM		WOB	TORQ	(m/hr)	Off Bottom	On Bottom	
R	18:45				719		0	0							174	1018	0		0			1,450		SOwt 119, PUwt 148, wash down and tag cement at 719m
R	19:13	19:18	0:05	719	733	14									174	1018	80		3		168	1,450	1,450	Float at 732.5m
R	21:30	22:30	1:00	733	734	1									173	1012	90		5-10	1-3	1	1,425	1,425	Spinning on plug, start to vary drilling parameters
R	22:30	1:22	2:52	734	747	13									156	913	60-80		15-25	1-6	5	1,325	1,325	Shoe at 747m, start displace mud at 744m
R	1:22	1:25	0:03	747	751	4									156	913	80		0	1-6	80	1,100	1,100	Clean out rat hole (17th May)
R	1:40	1:48	0:08	751	754	3									172	1006	80		5	1-6	23	1,225	1,225	Drill out 3m new formation for FIT
R	4:03	4:19	0:16	754	762	8									172	1006	80		10	1-9	30	1,300	1,300	P/U 143; S/O 116; ROT 133
R	4:36	5:12	0:36	762	792	30									180	1053	100		10	1-9	50	1,425	1,425	P/U 150; S/O 118; ROT 131
R	5:28	5:57	0:29	792	821	29			802.80	32.02	241.09	-0.87	0.46	0.91	180	1053	150		10	6-11	60	1,450	1,450	D/L to GTF mode. P/U 154; S/O 120; ROT 131
R	6:15	6:31	0:16	821	836	15			831.50	30.76	239.33	-1.32	-1.84	1.63	180	1053	150		7-10	6-11	56	1,475	1,475	D/L to Inc. Hold
R	6:31	6:40	0:09	836	841	5	0	IH							180	1053	150		7-10	6-11	33	1,475	1,475	Inc. Hold
R	6:40	6:50	0:10	841	849	8									180	1053	150		7-10	6-11	48	1,475	1,475	D/L to Nudge 0.5 deg in inc
R	7:10	7:25	0:15	849	867	18			861.51	31.64	238.19	0.88	-1.14	1.06	180	1053	150		7-10	6-11	72	1,500	1,500	
R	7:25	7:35	0:10	867	879	12									180	1053	150		18	6-11	72	1,500	1,500	
R	7:47	8:13	0:26	879	909	30			891.22	31.39	236.51	-0.25	-1.70	0.92	180	1053	150		20	10-16	69	1,500	1,500	P/U 161; S/O 122; ROT 136
R	8:29	8:49	0:20	909	920	11	50R	IH							180	1053	150		20	10-16	33	1,500	1,500	Stick slip with 25k . Reduce Wt to 20
R	8:49	9:09	0:20	920	937	17			920.19	31.58	236.01	0.20	-0.52	0.33	180	1053	160		20-25	10-16	51	1,500	1,500	P/U 164; S/O 124; ROT 140
R	9:24	9:41	0:17	937	967	30			949.76	31.70	236.73	0.12	0.73	0.40	180	1053	160		20-25	10-16	106	1,500	1,500	P/U 170; S/O 124; ROT 140
R	9:59	10:22	0:23	967	997	30			979.78	31.37	237.60	-0.33	0.87	0.56	180	1053	160		20-25	10-16	78	1,500	1,500	P/U 170; S/O 124; ROT 140
R	10:45	10:57	0:12	997	1009	12									180	1053	170		20-25	10-16	60	1,500	1,500	D/L to Nudge 0.5 deg in inc
R	10:57	11:09	0:12	1009	1027	18			1009.21	31.56	240.47	0.19	2.93	1.54	180	1053	170		20-25	10-16	90	1,600	1,600	Nudge 0.5 deg in Inc
R	11:23	11:36	0:13	1027	1057	30			1039.05	31.64	239.79	0.08	-0.68	0.37	180	1053	170		20-25	10-16	138	1,600	1,600	B/R 6 m b'4 CONN Check P/U. P/U 181, S/O 127;ROT 143
R	11:57	12:18	0:21	1057	1086	29			1066.59	31.64	241.83		2.22	1.17	180	1053	170		20-25	10-16	83	1,600	1,600	SCR P/U 181, S/O 128;ROT 148
R	13:07	13:25	0:18	1086	1115	29			1096.55	32.01	242.11	0.37	0.28	0.40	180	1053	170		20-25	10-16	97	1,600	1,600	P/U 184, S/O 128;ROT 152
R	13:52	14:05	0:13	1115	1125	10									180	1053	170		20-25	10-16	46	1,650	1,650	
R	14:05	14:22	0:17	1125	1144	19	25R	IH	1125.94	32.34	242.75	0.34	0.65	0.48	180	1053	170		20-25	10-16	67	1,650	1,650	
												P/U 187, S/O 127;ROT 152												
R 15:20 15:35 0:15 1173 1203 30 1184.60 32.35 243.98 0.19 1.51 0.83 180 1053 170 20-25 10-16 120 1,650 1,650																								
	TIN	IE BRE	AKDOWN	: (for new forr	nation only	<u>y)</u>																		
			1	Rotated Time :	6.65		Meters I	Rotated :	452						Rotati	ng ROP:	68.0	m/hr						

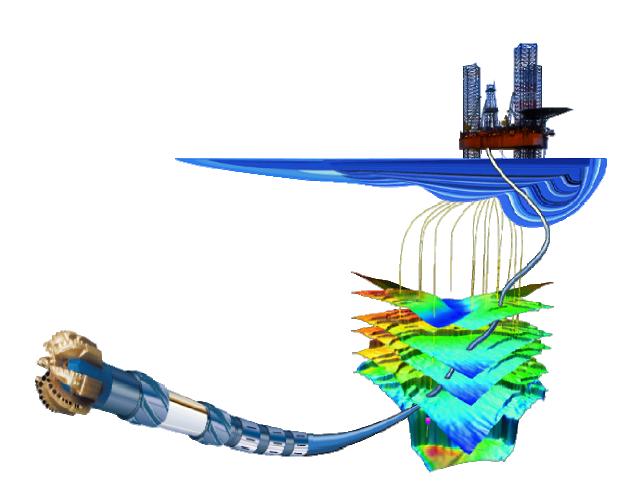
Rotating ROP: 68.0 m/hr Meters Rotated :

452 Average ROP: 68.0 m/hr Total Time: 6.65 Meters Drilled:

WELL#	Wardie-1	DATE:	17-May-08	Depth In: 751.0 m MD	Pump Output: 5.850 Gal/stk	Planned Angle :	32.5°	Page 2 of 3
						Planned Direction:	241.2°	
DITA #		DITT# 2	10.05	DHA . 12 1/4" DDC Bit DD 000 Passiver 6 5/	9" In Line Flow VO CVD9 Devembels MWD 9 1/4" NMDC 9" Celler Hedron	lin Ing O' nallog 12 m	F 1/2" HW/DD DI	1 to 0

BIT#3 12.25 BHA: 12 1/4" PDC Bit, PD 900, Receiver, 6 5/8" In Line Flex, XO, GVR8, PowerPulse MWD, 8 1/4" NMDC, 8" Collar, Hydraulic Jar, 8" collar, 12 x 5 1/2" HWDP, DP to surface

WD SURVEY SPACING = 17.68 m Last Casing: 13 3/8" @ 747m DLS 1=°/100Ft, 2=°/30Mts, 3=°/10Mts: 2


PD SURVEY SPACING = 2.67 m																							
	DR	ILLING	TIME	RSS V	Vork Sheet		Des	Steer	SURVEY			TE	NDENCY °/30	Omts	STK /	FLOW	Surf			ROP	PRES	SURE	REMARKS
R/S	START	STOP	SUM	FROM	то	Dist	T/F	%	DEPTH	INCL	AZM	B/D	TR	Dogleg	MIN	RATE	RPM	WOB	TORQ	(m/hr)	Off Bottom	On Bottom	
R	16:13	16:23	0:10	1204	1208	4	25R	IH							180	1053	170	20-25	10-16	24	1,650	1,650	
R	16:23	16:36	0:13	1208	1234	26	180	25	1214.81	32.18	244.06	-0.17	0.08	0.17	190	1112	170	20-25	10-16	120	1,800	1,800	Start drop section
R	17:25	17:47	0:22	1234	1263	29			1244.86	30.73	243.07	-1.45	-0.99	1.54	190	1112	170	20-25	10-16	79	1,800	1,800	
R	18:23	18:44	0:21	1263	1293	30			1274.25	29.50	243.74	-1.26	0.68	1.30	192	1123	150	15	6-15	86	1,875	1,875	P/U 200; S/O 133
R	19:08	19:25	0:17	1293	1322	29			1303.82	28.32	243.43	-1.20	-0.31	1.21	184	1076	150	12-15	8-11	102	1,825	1,825	Reduced flow to limit PD bias unit pad pressure
R	19:58	20:14	0:16	1322	1352	30			1333.24	26.97	243.84	-1.38	0.42	1.39	184	1076	150	12-18	6-12	113	1,875	1,875	P/U 208; S/O 132: ROTwt 163, SCR's at end of stand
R	20:59	21:19	0:20	1352	1381	29			1363.33	25.76	244.51	-1.27	0.30	1.27	184	1076	150	16-18	5-13	87	1,950	1,950	P/U 220; S/O 135: ROTwt 164
R	21:47	22:03	0:16	1381	1411	30			1392.32	24.64	245.10	-1.16	0.61	1.19	184	1076	140	15-16	7-12	113	1,925	1,925	Ream full stand, SO, PU weights & SPP increasing
R	23:01	23:17	0:16	1411	1440	29			1421.66	23.41	245.94	-1.26	0.86	1.31	184	1076	165	12-16	4-12	109	1,950	1,950	
R	23:43	23:49	0:06	1440	1451	11									184	1076	130	20	8-15	110	2,025	2,025	P/U 224; S/O 145: ROTwt 175
R	23:49	0:01	0:12	1451	1470	19	162L	75	1451.54	21.93	245.34	-1.49	-0.60	1.50	184	1076	130	20	8-15	95	2,025	2,025	(18th May)
R	0:34	0:52	0:18	1470	1499	29			1481.24	19.28	245.06	-2.68	-0.28	2.68	184	1076	115-170	20	9-18	97	1,875	1,875	New mud in active, P/U 222; S/O 144: ROTwt 172
R	1:22	1:31	0:09	1499	1516	17			1511.19	16.74	243.33	-2.54	-1.73	2.60	184	1076	160	20	8-16	113	1,925	1,925	
R	1:31	1:35	0:04	1516	1522	6	144L	50							184	1076	160	20	9-17	90	2,000	2,000	
R	1:35	1:50	0:15	1522	1529	7									184	1076	160	12-13	7-13	28	2,000	2,000	Control drill at 30 m/hr, P/U 235; S/O 140: ROTwt 174
R	2:15	3:14	0:59	1529	1559	30			1540.85	14.49	240.57	-2.28	-2.79	2.40	184	1076	160	9-10	5-14	31	2,050	2,050	P/U 228; S/O 146: ROTwt 176
R	3:38	3:48	0:10	1559	1564	5									184	1076	165	8-9	6-17	30	2,050	2,050	
R	3:48	3:56	0:08	1564	1568	4	180	25							184	1076	165	10-11	6-16	30	2,075	2,075	
R	3:56	4:37	0:41	1568	1588	20	180	35	1570.22	12.40	236.98	-2.13	-3.67	2.30	184	1076	165	9-10	7-15	29	2,100	2,100	SCR's at end of stand
R	5:08	5:48	0:40	1588	1608	20			1599.76	10.35	236.26	-2.08	-0.73	2.09	184	1076	165	6-20	7-15	30	2,025	2,025	Hard formation at 1592m MD
R	5:48	6:10	0:22	1608	1618	10	0	0							184	1076	165	9-10	7-15	27	2,025	2,025	P/U 228; S/O 154: ROTwt 180
R	6:25	7:02	0:37	1618	1632	14			1630.16	9.46	236.73	-0.88	0.46	0.88	184	1076	165	9-10	7-15	23	2,100	2,100	Take check survey for inclination
R	7:02	7:55	0:53	1632	1645	13	0	IH							184	1076	165	9-10	7-15	15	2,100	2,100	
R	8:15	9:05	0:50	1645	1665	20			1659.89	8.81	235.87	-0.66	-0.87	0.67	184	1076	165	9-10	7-15	24	2,050	2,050	Hard formation at 1665m -1667m MD
R	9:05	10:25	1:20	1665	1667	2									184	1076	120	17	2-22	2	2,050	2,050	High stick slip
R	10:25	10:45	0:20	1667	1677	10									184	1076	165	9-10	7-15	30	2,050	2,050	Smooth Drilling P/U 231; S/O 158: ROTwt 185
R	11:00	11:15	0:15	1677	1683	6									184	1076	150	9-10	7-15	24	2,050	2,050	
R	11:15	12:10	0:55	1683	1707	24			1689.37	8.19	235.45	-0.63	-0.43	0.63	184	1076	150	9-10	7-15	26	2,050	2,050	D/L to Nudge 0.5 deg in incP/U 232; S/O 156: ROTwt 186
	TIN	ME BRE	AKDOWN	: (for new forn	nation only	7)																	

Rotated Time: 11.75 Meters Rotated : 503 Rotating ROP: 42.8 m/hr

Total Time: 11.75 503 Average ROP: 42.8 m/hr Meters Drilled:

WELL#	War	ırdie-1	DATE:	18-May-08		Dep	oth In :	751.0	0 m MD	—		—	—		Pump	Output:	5.850	Gal / stk			Plann	ned Angle :	: 32.5°	Page 3 of 3
ВНА#	4		BIT# 3	12.25	_	_				teceiver,	6 5/8" In	Line Fle	x, XO, C	έVR8, Pc	werPuls	e MWD	, 8 1/4" N	NMDC, 8	3" Collar,			Direction: collar, 12 x		
			= 17.68	m	_	ι Casing :	: 13 3/8"	" @ 747m	<u>n</u>				DLS 1	1=°/100Ft,	., 2=°/30'	Mts, 3=°	/10Mts:	2	j					
D SUKVI		ACING = RILLING		m RSS W	Work Sheet	et	Des	Steer	SURVEY	$\overline{}$	TENDENCY 9/30mts STK / FLOW Surf										ROP	PRE'	SSURE	REMARKS
	START			FROM	то	Dist	T/F	%	DEPTH	INCL			-	Dogleg	MIN	RATE	RPM	ل	WOB	TORQ	(m/hr)	Off Bottom	On Bottom	
R	-	13:55		1707	1734	27		'	1718.81	7.67	235.27	-0.53	-0.18	0.53	184	1076		للت	7-10	7-15	32	2,100		
R				1734	1737	3		'	<u> </u>		'	Ĺ'	<u> </u>	اللله	184	1076	 	لللم	7-10	7-15	18	2,100	2,100	P/U 234; S/O 156: ROTwt 188
R	14:28	15:05	0:37	1737	1766	29		Ι'	1745.67	7.36	234.18	-0.35	-1.22	0.38	184	1076	150		7-10	7-15	47	2,100	2,100	Section TD. D/L Neutral Mode
	<u></u>	Д'	=		┌─_'	↓ □	0	0		二	<u> </u>	<u> </u>	二'		<u>, </u>	\sqsubseteq			'	厂'	<u> </u>			Bit grade 3-3-WT-A-X-I-CT-TD
	لــــا	+'			 '		+	 '		+	<u></u> '	 '	 '	+	\vdash	\vdash	\longrightarrow	$\overline{}$		 '		+		4
	\square	\vdash		-	+'	 	+	+'	 	+	+'	+	 '	\vdash	\vdash	\vdash	$\overline{}$	\longrightarrow	\vdash	+'	 	+	+	1
	$\overline{}$	\square	\vdash	₩		 	+	+'	 	+	+'	+	+	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\hspace{1cm} \longmapsto \hspace{1cm}$	\vdash		 	+	+	1
	ightharpoonup			+	\vdash	#	+	+	 	+-	+	\vdash	\Box	$\overline{}$	$\overline{}$	\Box	$\overline{}$	$\overline{}$	$\overline{}$		 	+	 	1
	√	$\overline{}$		+		#	+	+	 	+	+			$\overline{}$	$\overline{}$	\Box	$\overline{}$	1		\vdash		†	+	1
$\neg \neg$	/ ──			+		#	\dagger	+-		+-	+			$\overline{}$	\Box	\Box	-	$\overline{}$				1		1
7	4	$\overline{}$		+ +		#	†	+	1	 	†					\Box	$\overline{}$	1 1		†	†	1	1	1
	4			<u> </u>		#	<u> </u>	<u> </u>	†	<u> </u>	 												<u> </u>	
	4			1				†	<u> </u>		 ,									<u> </u>			<u> </u>	
	<u> </u>										<u> </u>													
	<u> </u>										T'									<u> </u>				
	الت	'			'							\Box '	匚'	<u></u> '	<u>二</u> '	\Box '			'					
	الليا	'		_ <u> </u> '	<u> </u>	<u>.</u>		'			匚_'	Ĺ_'	<u> </u>	الــــــــــــــــــــــــــــــــــــ	<u>. </u>	اللل	للتا	للت	<u>. </u>	Ĺ'	┌──'		'	
	اللله	<u>. </u>	<u> </u>	_ <u></u> '	<u> </u>	՝		⊥'	<u> </u>		'	Ĺ'	Ĺ'	'ـــــــــــــــــــــــــــــــــــــ	'ـــــــــــــــــــــــــــــــــــــ	اللل	للللة	لــــــــــــــــــــــــــــــــــــــ	<u>. </u>	Ĺ'	Ĺ'		'	
	اللله	<u> </u>	<u></u>	'	<u> </u>	<u> </u>		'		\bot	'	<u> </u>	<u> </u>	اللله	<u> </u>	السل	لـــــا	لـــــــا	<u> </u>	Ĺ'	Ĺ'		Ĺ'	
	اا	 '	1	'	⊥'	Щ'		<u> </u>	<u> </u>		⊥'	⊥'	⊥′	 '	ш'	<u></u> '			<u> </u>	ДШ'	⊥′		Д'	_
	اــــــــا	<u> </u>	1	_ '	Д′	Щ′	<u> </u>	<u> </u>	 '		Д'	<u> </u> '	Д—'		<u> </u>	<u></u> '	ш		 '	Д'	↓′		<u> </u>	_
	 '	 '	4	<u> </u> '	ДШ'	Щ'	<u> </u>	Д'	 	 	Д—'	 '	₩_'	 '	 '	└	ш.		↓ —_'	ДШ'	Д′	4	<u> </u>	1
	↓ '	Д′	4	_ _ '	Д′	Щ′	<u> </u>	⊥′	<u> </u>		Д′	Д'	Д—'	<u> </u>	↓ '	↓			<u> </u>	Д′	Д′	4	<u> </u>	_
	↓ '	↓ —_'	↓	<u> </u> '	↓'	Щ′	<u> </u>	↓′	↓′		Д—'	Д'	Д—'	 '	↓ —_'	ш'			↓ '	↓'	 '	1	 	
	<u></u> '	↓ —_'	4	<u> </u> '	↓′	Д'	<u> </u>	↓′	 '	↓	 '	↓'	↓′	 '	<u>'</u>	└	<u> </u>	igcup	↓ '	↓'	 '	1	 	
		l			<u> </u>	Щ'	<u></u>	⊥'	<u> </u>	Щ.	⊥'	⊥'	'	لــــــــــــــــــــــــــــــــــــــ	'	لا				'	<u> </u>		<u> </u>	
	<u>'T1N</u>	<u>IE BRE</u>		N: (for new form Rotated Time:		-	Meters	Rotated :	: 59						Rotatir	ag ROP:	36.1 n	m/hr						<u> </u>
																							•	
				Total Time :	1.63		Meters	s Drilled :	: 59						Averag	e ROP:	36.1 n	m/hr						_1

Drilling Tool Run Reports

Equipment Run Summary Report

Schlumberger

14-May-2008 10:03AM

Job Number:08ASQ0006Company:3D OILRig Name:West TritonCompany Rep:Shaughan CorlessLocation:MEA-APG-ASQWell Name:Wardie-1

Run Number: 1

Run Information

Date	In	_	Date Out	Drilling Distance:	615.00 m	Drilling Hours:	7.60 hrs
12-May-2008	7:30PM		13-May-2008 10:30PM	Rotary Drilling Distance:	353.00 m	Rotary Drilling Hrs:	3.76 hrs
Depth (MD):	133.0 m	to	751.0 m	Sliding Distance:	262.00 m	Sliding Hours:	2.94 hrs
Depth (TVD):	133.0 m	to	706.8 m	Reaming Distance:	0.00 m	Reaming Hours:	0.00 hrs
Inclination:	0.00 deg	to	34.35 deg			Hrs Below Rotary:	27.00 hrs
Azimuth:	0.00 deg	to	239.86 deg			Total Pumping Hrs:	11.90 hrs
Hole Size:	17.50 in					Min DLS:	0.10 deg/30 m
Last Casing Size:	20.000 in			North Ref Used:	Grid North	Max DLS:	3.68 deg/30 m
Last Casing Depth:	132.8 m	(MD)		Magnetic Dec:	12.844 deg	Max DLS Depth:	496.4 m
Last Casing Depth.	132.0 111	(ויוט)		Grid Correction:	-0.383 deg	Surface Screen:	No
Tool Face Arc:	40.0 cm			Total Correction:	13.227 deg	DFS Used:	No
Total Face Angle:	213.33 deg]		Est. Mag. Int:	0.63 deg	Inline Filter:	No

Rig Information

Rig Type: Jack Up Pump Type: Triplex

 Water Depth:
 39.50 m
 Pulse Damp Press:
 800 psi

 Air Gap:
 15.10 m
 Number of Pumps:
 3

 RKB Height:
 38.00 m
 Pump Line ID:
 6.50 in

Ground Elevation: -39.50 m

Pump Output: 5.85 galUS/stroke

Pump Stroke Len: 14.00 in

Run Objective

Drill the well directionally and get the right build rate.

D&M Crew List:

Cell Manager: Anagh Kohli

Crew: San thida Aung, MWD
Patrick Dassens, DD

Patrick Dassens, DD Anagh Kohli, Cell Manager Punniamoorthy Sellathurai, DD

DH Motor Information RSS Information

Manufacturer: D&M Bit to Bend Dist: RSS Manufacturer: m Motor Type: PowerPak Bearing Play In: 0.11 in RSS Type: Motor Size: Bearing Play Out: in Serial No.: 5659 Bent Sub Angle: deg Lobe Config: 5:6 Bent HSG Angle: 1.5003 deg

Stage Length: m

Rubber: Sleeve Position:

Sleeve Size: 17.25 in

Sleeve Size: 17.25 in

Bearing Type: Mud Lubricated

RSS Type:

RSS SN:

RSS Size:

Pulse Ht Threshold:

Min Pulse Width:

Max Pulse Width:

Conn Phase Angle:

Digit Time:

onn Phase Angle: deg
Rise Time Const:
Fall Time Const:

MWD Configuration

Mod Type: QPSK Int Tool Face Offset: deg Bit Rate: 6 bps Slimpulse Pulser Config:

Mod Gap: 0.12500 in Turbine Config: 600-1200 galUS/min Frequency: 12 Hz Pred Sig Strength @ TD: psi

SPT Type: HA

Equipment Run Summary Report

Schlumberger

14-May-2008 10:03AM

Job Number:08ASQ0006Company:3D OILRig Name:West TritonCompany Rep:Shaughan CorlessLocation:MEA-APG-ASQWell Name:Wardie-1

Run Number: 1

Total DH Shocks (k): 0 k <u>Min</u> <u>Max</u> <u>Avq</u> BH Temperature: 19.60 degC 21.20 degC Max Shock Level: 0 23.00 degC Surface RPM: 0.00 rpm 59.00 rpm 34.67 rpm Max Shock Duration: 0 sec

 ROP:
 18.88 m/hr
 104.00 m/hr
 80.92 m/hr

 Surface Torque:
 1.00 kft.lbf
 1.00 kft.lbf

 1.00 kft.lbf
 1.00 kft.lbf

| The Received Control of the

Average Pump Pressure: H2S In Well: No

Turbine RPM @ Min Flow Rate: 3,085 rpm Min Flow Rate: 894.00galUS/min SPP Off Bottom: 1,573.00 psi
Turbine RPM @ Max Flow Rate: 3,984 rpm Max Flow Rate: 1,128.00galUS/min SPP On Bottom: 1,592.00 psi

Mud Information

Mud Type: Water Base Mud Clean: Yes pH: 9.50 Mud Company: Baroid Fluid Services LCM Type: Chlorides: ppm Mud Brand: Sea water with PHG sweeps LCM Size: Sand Content: % 100.00 s/qt Solids: 2.80 % Funnel Viscosity: LCM Concentration: lbs/bbl Plastic Viscosity: 24.00 cp Weighting Material: Bentonite Percent Oil: %

Yield Point: 103.00 lbm/100ft2 Mud Weight: 8.84 lbm/galUS

Mud Resistivity: ohm-m

IADC Bit Grading

Manufacturer: Hughes Christensen Total Revs: 61,000.00 IADC Code: 115

Model: MXL T1V Stick/Slip: 0 Jets (/ 32 in): 3X20

Type: Milltooth Reason Pulled: Total Depth/Casing Depth Bit TFA: 0.92 in2

Inner Row Outer Row Dull Char Location Bearings/Seals Gauge Other Chars

1.00 1.00 NO A E I NO

End of Run - Summary

Sync Hours:8.26hrsDownhole Noise:NoRun Failed:NoJamming:No0.00 hrsSurface System Failure:NoD&M Trip:No

Surface Vibration: No Surface Noise: No Low Oil Flag: No 0.00 hrs

If not, why?:

Trans Fail: No H2S in Well: No Filter Screen/Plug Shear: No

Client Inconvenience: No Lost Time: hrs

Reason for POOH: Total Depth/Casing Depth D&M Run Obj Met? [DD and MWD/LWD]: No

Brief Run Summary:

Run started with hookload problems. After adjusting the slips threshold and recalibrating the hookload things worked fine. Surveys were taken every stand. Just after coming out from casing we encountered magnetic interference and gyro surveys were run. Signal was good throughout the run and well was satisfactorily drilled to sectional TD. Minimal stick and slip was encountered with no major shocks.

Equipment Run Summary Report

West Triton

Rig Name:

Schlumberger

14-May-2008 10:03AM

Job Number: 08ASQ0006 Company: 3D OIL Company Rep: Shaughan Corless

Run Number:

Location: MEA-APG-ASQ Well Name: Wardie-1

Equipment on the Run

Pump Hours Software Version Equipment Cumulative Tool Size Start A962M-5659 36.90 hrs 48.80 hrs 9.63 in FS800-ASQ8037 36.90 hrs 48.80 hrs 8.00 in MDC-DE-VA77 78.38 hrs 90.28 hrs 8.25 in MSSB-JB-42755 36.90 hrs 8.50 in 48.80 hrs NMDC800L-N688 48.80 hrs 36.90 hrs 8.00 in NMDC800S-7505 36.90 hrs 48.80 hrs 8.00 in NMDC800S-9504216 36.90 hrs 48.80 hrs 8.00 in NMDC800S-ASQ8020 36.90 hrs 48.80 hrs 8.00 in NMDC825L-SBD5555 48.80 hrs 36.90 hrs 8.00 in SZSS-IBSP-17A-OSS 061172A 36.90 hrs 48.80 hrs 9.50 in

Services on the Run

			Rea	al Time	Recorded M	ode	
Equipment	Service	Tool Name	Hours Faile	ed Depth	Hours Failed	Depth	CAF
MWD	Shock and Vibration	TeleScope	11.90 hrs	615.0 m	27.00 hrs	615.0 m	
MWD	Cont D&I	TeleScope	11.90 hrs	615.0 m	hrs		
MWD	D&I	TeleScope	11.90 hrs	615.0 m	27.00 hrs	615.0 m	
MOTORS	PowerPak	PowerPak	11.90 hrs	615.0 m	hrs		

BHA Report

14-May-2008

10:03AM

Schlumberger

1

Job Number: Shaughan Corless Company Rep:

Run Number:

08ASQ0006

Company: 3D OIL

Location: MEA-APG-ASQ **BHA Type:** Steerable Motor Rig Name: West Triton Well Name: Wardie-1

MOTORS-PowerPak

									_	Fish	ing Neck	Stab	Bottom	Connection	Top C	onnection	
Item	Description	Vendor	Tool Name	Serial	Number	Length		OD	ID	OD	Len, m	OD	Size	Туре	Size	Туре	Cumul Len
1	BIT	Hughes Christensen	Milltooth	60658	39	0.41	m	17.50	3.75						7 5/8"	REG PIN	0.41 m
2	MOTORS	D&M	PowerPak	5659		10.10	m	9.63	7.88				7 5/8"	REG BOX	7 5/8"	REG BOX	10.51 m
3	STABILIZER	D&M		OSS 0	61172A	2.42	m	9.50	3.00				6 5/8"	REG PIN	6 5/8"	REG BOX	12.93 m
4	MONEL	D&M		7505		7.94	m	8.00					6 5/8"	REG PIN	6 5/8"	REG BOX	20.87 m
5	MONEL	D&M		ASQ80	020	3.00	m	8.00	2.88				6 5/8"	REG PIN	6 5/8"	REG BOX	23.87 m
6	MONEL	D&M		95042	116	1.55	m	8.00	2.81				6 5/8"	REG PIN	6 5/8"	FH BOX	25.42 m
7	CROSSOVER	D&M		42755	i	0.47	m	8.50	2.88				6 5/8"	FH PIN	6 5/8"	REG BOX	25.89 m
8	MWD	D&M	TeleScope	VA77		8.49	m	8.25	5.90				6 5/8"	FH PIN	6 5/8"	REG BOX	34.38 m
9	SUB	D&M		S5099	1-3	0.86	m	8.00	2.25				6 5/8"	REG PIN	6 5/8"	REG BOX	35.24 m
10	MONEL	D&M		N688		8.65	m	8.00	2.81				6 5/8"	REG PIN	6 5/8"	REG BOX	43.89 m
11	MONEL	D&M		SBD5	555	9.45	m	8.00	3.25				6 5/8"	REG PIN	6 5/8"	REG BOX	53.34 m
Predict	ted BHA Tendency:										Hookload Out: Pickup Out: Slack Weight:	65,0	000		Wt Below . Wt Above Total Air W	Jars:	49,110
		Mid Pt		Blade				Gauge									
Stab D	Description	to Bit	Туре	Len	Width	Len		In	Out	E	Bit to Read Out Port			Bit	to Measurem	ent Port	
										i	MWD-TeleScope		24.20	m Te	leScope-D&I	26	5.56 m

Time Description Report

Schlumberger

14-May-2008 10:03AM

Job Number: Company Rep:

08ASQ0006 Shaughan Corless Company: 3D OIL

Location: MEA-APG-ASQ

Rig Name: West Triton Well Name: Wardie-1

Run Number: 1

Date/Time	Depth	Description
12-May-2008 12:13AM	170.0 m	prepare to run Gyro because the new well is very close to with the previous one
12-May-2008 10:01PM	0.0 m	Picking up BHA @ 5pm
12-May-2008 11:00PM	133.0 m	Start drilling with bad signal , low flow rate
12-May-2008 11:59PM	145.7 m	Drilling with pump 1 -57 spm and pump2 -46 spm with good signal, manual input @76 mMD (mud line)
13-May-2008 2:39AM	179.0 m	Drilling ahead, after running the Gyro, the difference between the azimuth of Gyro and D&I is 6 Deg
13-May-2008 3:14AM	213.0 m	Drilling ahead with good signal
13-May-2008 4:03AM	258.0 m	Sliding @ 3:53am, total flow rate 894,
13-May-2008 4:28AM		
13-May-2008 7:38AM	465.0 m	Sliding first 10-15m of each stand.
13-May-2008 9:28AM	573.0 m	Drill Ahead with corrective slides
13-May-2008 9:49AM	583.0 m	Circualting for hole cleaning
13-May-2008 10:18AM	605.0 m	End of corrective slides, rotating full stands now, BHA has a dropping tendency, will slide on the next stand.
13-May-2008 11:43AM	671.0 m	Drilling ahead with corrective slides. ROp ~ 100m/hr, WOB 15-25, 1100 gpm
13-May-2008 2:12PM	751.0 m	TD called
13-May-2008 3:12PM	749.0 m	Circulating at the bottom

Company Rep: Shaughan Corless **Location:** MEA-APG-ASQ

Run Number: 1

Field Engineer		13-May-2008	13-May-2008	13-May-2008
Depth 676.00 m 452.00 m 214.00 m Avg ROP 26.22 m/hr 26.22 m/hr 26.22 m/hr On Bottom ROP 83.69 m/hr 83.69 m/hr 83.69 m/hr Flow Rate 1,128.00 galUS/min 1,100.00 galUS/min 894.00 galUS/min Turbine RPM 3,984 rpm 3,828 rpm 3,085 rpm Surface RPM 45 rpm 59 rpm WOB Rotating 15.00 klbm 59 rpm WOB Sliding 25.00 klbm 50 rpm DH WOB 50 rpm 50 rpm WOB Sliding 25.00 klbm 50 rpm PickUp Weight 131 klbm 50 rpm PickUp Weight 139,00 klbm 50 rpm Slack Weight 135,00 klbm 50 rpm Friction 50 point of the properties of the pro	Field Engineer	12:03 PM	7:27 AM	2:55 AM
Avg ROP 26.22 m/hr 26.22 m/hr 26.22 m/hr On Bottom ROP 83.69 m/hr 83.69 m/hr 83.69 m/hr Flow Rate 1,128.00 galUS/min 1,100.00 galUS/min 894.00 galUS/min Turbine RPM 3,984 rpm 3,828 rpm 3,085 rpm Surface RPM 45 rpm 59 rpm WOB Rotating 25.00 klbm 45 rpm 59 rpm WOB Sliding 25.00 klbm 25 rpm 65 rpm WOB Sliding 131 klbm 15 rpm 15 rpm PickUp Weight 133.00 klbm 15 rpm 1	-		-	-
On Bottom ROP 83.69 m/hr 894.00 galUS/min 3,828 rpm 3,985 rpm 59 rpm 60 reduction 60 r	•			
Flow Rate 1,128.00 galUS/min 1,100.00 galUS/min 894.00 galUS/min Turbine RPM 3,984 rpm 3,828 rpm 3,085 rpm Surface RPM 45 rpm 59 rpm WOB Rotating 15.00 klbm			· · ·	
Turbine RPM 3,984 rpm 3,828 rpm 3,085 rpm Surface RPM 45 rpm 59 rpm WOB Rotating 15.00 klbm 59 rpm WOB Sliding 25.00 klbm		,		
Surface RPM 45 rpm 59 rpm WOB Rotating 15.00 klbm 59 rpm WOB Sliding 25.00 klbm 59 rpm DH WOB 1.00 kft.lbf 50 rpm Surface Torque 1.00 kft.lbf 50 rpm DH Torque 1.00 kft.lbf 50 rpm Hookload 142 klbm 131 klbm PickUp Weight 139.00 klbm 50 rpm Slack Weight 135.00 klbm 50 rpm Friction 59 PO Rottom 2,550.00 psi 1,592.00 psi SPP Off Bottom 2,550.00 psi 2,350.00 psi 1,592.00 psi SPP Off Bottom 2,400.00 psi 2,200.00 psi 1,573.00 psi BH Temperature 23.00 degC 21.00 degC 19.60 degC Total Shocks (k) 10 degC 19.60 degC Max Shock Level 10 degC 19.60 degC Max Shock Duration 1 1 Torsional Vib 1 1 1 Lateral Vib 1 1 1 CRPM 45 rpm 45 rpm </th <th></th> <th></th> <th></th> <th></th>				
WOB Rotating 25.00 klbm WOB Sliding 25.00 klbm DH WOB		3,964 Ipili		
WOB Sliding 25.00 klbm DH WOB 1.00 kft.lbf Surface Torque 1.00 kft.lbf DH Torque 131 klbm PickUp Weight 139.00 klbm Slack Weight 135.00 klbm Friction 5PP On Bottom SPP On Bottom 2,550.00 psi 2,350.00 psi SPP Off Bottom 2,400.00 psi 2,200.00 psi BH Temperature 150 psi 150 psi BH Temperature 23.00 degC 21.00 degC 19.60 degC Total Shocks (k) 45 rpm 45 rpm Max Shock Duration 1 1 Torsional Vib 1 1 Lateral Vib 1 1 CRPM 45 rpm 45 rpm Stick/Slip 23 Formation Limestone Limestone Signal Strength 12.30 psi 11.00 psi 29.00 psi			· +	59 rpm
DH WOB		25.00 111	15.00 KIDM	
Surface Torque 1.00 kft.lbf DH Torque 142 klbm 131 klbm PickUp Weight 139,00 klbm Slack Weight 135,00 klbm Friction 5PP On Bottom 2,550,00 psi 2,350,00 psi 1,592,00 psi SPP Off Bottom 2,400,00 psi 2,200,00 psi 1,573,00 psi 19 psi BH Temperature 23.00 degC 21.00 degC 19.60 degC Total Shocks (k) 48 shock Level 48 shock Duration Torsional Vib 1 1 Lateral Vib 1 1 CRPM 45 rpm 45 rpm Stick/Slip 23 Formation Limestone Limestone Limestone Signal Strength 12.30 psi 11.00 psi 29.00 psi		25.00 KIDM		
DH Torque	-			
Hookload 142 klbm 131 klbm PickUp Weight 139.00 klbm Slack Weight 135.00 klbm Friction	•		1.00 kft.lbf	
PickUp Weight 139.00 klbm Slack Weight 135.00 klbm Friction	•			
Slack Weight 135.00 klbm Friction		142 klbm		
Friction 2,550.00 psi 2,350.00 psi 1,592.00 psi SPP On Bottom 2,400.00 psi 2,200.00 psi 1,573.00 psi Diff Pressure 150 psi 150 psi 19 psi BH Temperature 23.00 degC 21.00 degC 19.60 degC Total Shocks (k) Max Shock Level Max Shock Duration Torsional Vib Lateral Vib 1 1 Axial Vib CRPM 45 rpm 45 rpm Stick/Slip 23 Formation Limestone Limestone Limestone Signal Strength 12.30 psi 11.00 psi 29.00 psi				
SPP On Bottom 2,550.00 psi 2,350.00 psi 1,592.00 psi SPP Off Bottom 2,400.00 psi 2,200.00 psi 1,573.00 psi Diff Pressure 150 psi 150 psi 19 psi BH Temperature 23.00 degC 21.00 degC 19.60 degC Total Shocks (k) Max Shock Level Max Shock Duration Torsional Vib Lateral Vib 1 1 Axial Vib CRPM 45 rpm 45 rpm Stick/Slip 23 Formation Limestone Limestone Signal Strength 12.30 psi 11.00 psi 29.00 psi			135.00 klbm	
SPP Off Bottom 2,400.00 psi 2,200.00 psi 1,573.00 psi Diff Pressure 150 psi 150 psi 19 psi BH Temperature 23.00 degC 21.00 degC 19.60 degC Total Shocks (k) Max Shock Level Max Shock Duration Torsional Vib Lateral Vib 1 1 Axial Vib CRPM 45 rpm 45 rpm Stick/Slip 23 Formation Limestone Limestone Limestone Signal Strength 12.30 psi 11.00 psi 29.00 psi	Friction			
Diff Pressure 150 psi 150 psi 19 psi BH Temperature 23.00 degC 21.00 degC 19.60 degC Total Shocks (k) Max Shock Level Max Shock Duration Torsional Vib Lateral Vib 1 1 Axial Vib CRPM 45 rpm 45 rpm Stick/Slip 23 Formation Limestone Limestone Signal Strength 12.30 psi 11.00 psi 29.00 psi	SPP On Bottom	2,550.00 psi	2,350.00 psi	1,592.00 psi
BH Temperature 23.00 degC 21.00 degC 19.60 degC Total Shocks (k) ————————————————————————————————————	SPP Off Bottom	2,400.00 psi	2,200.00 psi	1,573.00 psi
Total Shocks (k) State of the	Diff Pressure	150 psi	150 psi	19 psi
Max Shock Level Image: Comparison of the com	BH Temperature	23.00 degC	21.00 degC	19.60 degC
Max Shock Duration Image: Control of the	Total Shocks (k)			
Torsional Vib 1 1 1 Lateral Vib 1 1 1 CRPM 45 rpm 45 rpm 45 rpm Stick/Slip 23 23 Formation Limestone Limestone Limestone Signal Strength 12.30 psi 11.00 psi 29.00 psi	Max Shock Level			
Lateral Vib 1 1 Axial Vib CRPM 45 rpm Stick/Slip 23 Formation Limestone Limestone Signal Strength 12.30 psi 11.00 psi 29.00 psi	Max Shock Duration			
Axial Vib 45 rpm CRPM 45 rpm 45 rpm Stick/Slip 23 Formation Limestone Limestone Signal Strength 12.30 psi 11.00 psi 29.00 psi	Torsional Vib			
CRPM 45 rpm 45 rpm Stick/Slip 23 Formation Limestone Limestone Signal Strength 12.30 psi 11.00 psi 29.00 psi	Lateral Vib	1	1	
Stick/Slip23FormationLimestoneLimestoneLimestoneSignal Strength12.30 psi11.00 psi29.00 psi	Axial Vib			
FormationLimestoneLimestoneLimestoneSignal Strength12.30 psi11.00 psi29.00 psi	CRPM		45 rpm	45 rpm
Signal Strength 12.30 psi 11.00 psi 29.00 psi	Stick/Slip		23	
	Formation	Limestone	Limestone	Limestone
Percent Signal Conf 79 % 84 % 84 %	Signal Strength	12.30 psi	11.00 psi	29.00 psi
	Percent Signal Conf	79 %	84 %	84 %

Drilling Parameters Report

14-May-2008 10:03:43AM

Rig Name: West Triton
Well Name: Wardie-1

Daily Drilling Activity Report

Schlumberger

14-May-2008 10:03AM

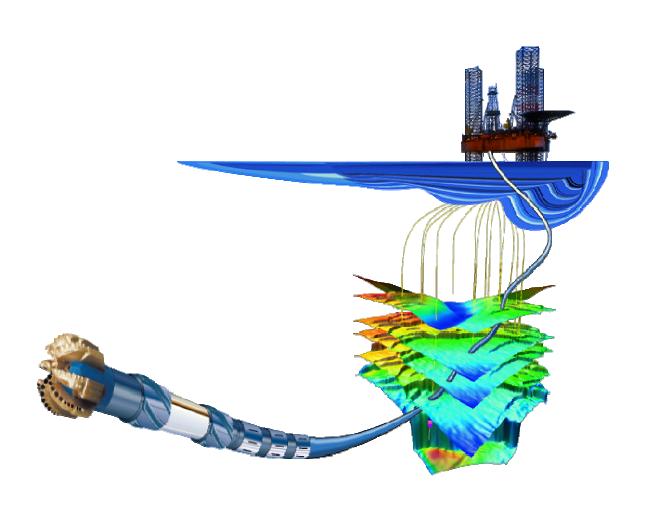
Job Number:

08ASQ0006

Company: 3D OIL

Company Rep: Run No: Shaughan Corless

Location: MEA-APG-ASQ


Rig Name: West Triton
Well Name: Wardie-1

			Depth in	ı m		
From	То	Elapsed	From	То	IADC Activity	Description
12-May-20	008					
00:00	02:00	2.00	0.0	0.0	Run casing / cement	Level up CTU and install ico conductor Clamp
02:00	05:00	3.00	0.0	0.0	Run casing / cement	rig down 30" handline equipment, dress 30"conductor
05:00	12:30	7.50	0.0	0.0	PU / LD BHA / Tripping	RIH on cementing stiner, washdown last 10m
12:30	16:30	4.00	0.0	0.0	Run casing / cement	Level up ctu and install icon conductor clamp
16:30	22:30	6.00	0.0	0.0	PU / LD BHA / Tripping	service top drive and clear rig floor, pick up 17.5" BHA. Bit below the rotary table @ 19:30
22:30	23:59	1.48	133.0	161.0	Drilling	Drill 17.5" hole from 132.87m to 161 m,
13-May-20	008					
00:00	02:30	2.50	161.0	161.0	Survey	Running Gyro surveys
02:30	03:00	0.50	161.0	213.0	Drilling	Drill Ahead
03:00	07:00	4.00	213.0	450.0	Drilling	Drilling Ahead with corrective slides
07:00	08:30	1.50	450.0	500.0	Drilling	Drill Ahead with corrective slides
08:30	09:40	1.17	500.0	584.0	Drilling	Drilling Ahead with corrective slides
09:40	10:00	0.33	584.0	584.0	Circulate / Condition mud	Circulate hole clean
10:00	10:30	0.50	584.0	613.0	Drilling	End of corrective slides
10:30	12:00	1.50	613.0	678.0	Drilling	Drill Ahead with corrective slides
12:00	14:00	2.00	678.0	751.0	Drilling	Drill to TD
14:00	15:30	1.50	751.0	751.0	Circulate / Condition mud	Circulate at bottom
15:30	23:30	8.00	751.0	751.0	Reaming / Hole opener / Unc	Pooh from 751m to 117m , and @ 18:30 Rack back drill pipe and break BHA

Schlumberge	er en							
RUN N ⁰	Motor Size Serial No Serial No Measurements are in Measurements are in							
Company 3D Oil Ltd. Operator Australian Orti	Well Wardie-1 Slot n/a Field Wildcat / exploration Location Bass Strait, Gippsiand Basin Country Australia Rig Seadrill - West Triton Engineer Moorthy/Patrick Date 13-May-08							
Bit Size Make 17.1/2 Hughes Christer Inner Row 1	IADC CUTTING STRUCTURE							
Schlumberger 9.5/	Schlumberger 9 5/8* A962M5640XP 5/6 4.0 5659 17 1/4* 1.5 nil Type 1 = Straight; 2 = Steerable; 3 = Double Bend 2 Rotor S/No 5224 Stator S/No 6230							
	d cement and float equipment, cleaned out rat hole. Rotary drilled to kick off point at 250m. Kick off building at 3°/30m to 32.48°m along the 10 th of 241.15° azimuth. Continue drilling tangent section to casing point @ 750m MDDF.							
BHA# 17 1/2" Bit PowerPak Motor (1.5 deg) 17" String Stab Crossover Float Sub	Depth In 136.00 Depth Out 751.00 Inter'l Drid 615.00 Date In 12-May-08 Date Out 13-May-08 Inter'l ROP 91.79 Time In 19:30 Time Out 23:30 Time BRT 28:00 Hrs							
3x8" Pony NMDC Cross over sub PowerPulse HF MWD UBHO 2x8" NMDC 8" Collar (4 joints) Hydraulic Jar	Surveys MD IN 174.15 Inclin 0.97 Azim 331.19 MD OUT 722.54 Inclin 34.35 Azim 239.86							
8" Collar (2 joints) Crossover 5 1/2" HWDP (12 joints) 5-1/2" DP	Flow Rate Off Bttm Press On Bttm Press RPM WOB GPM PSI PSI Surface KLbs 1150 2400 2575 45-100 1-25							
	Mud Type Seawater - Bentonite Mud Wt Mud Grad* n/a Vis PV Filtrate n/a % Solids pH YP % Oil/Water n/a % Sand Circ Temp 23 deg C							
FAILURE? No	Slide (m) 262 Previous Hrs 36.9 Cumulative Hrs 48.80							
Remarks / Failure Report.	Did Motor Stall? In 3.0 mm Out 5.0 mm							

Schlum	Schlumberger PowerDrive X5 Summary Rev 3: Please do not make any changes to this form!!																
JOB NUMBER	COMPA	ANY REF					DATE IN		DATE OU			verDrive I	Run#	MWD Run #	Rig Bit Run	ı #	PD Engineer
08ASQ00x CLIENT		Sha	ugha	n Corl	ess		16-May-		19-N	lay-08		1		2	4		Moorthy / Pat Control Unit #
CLIENT	3D (Oil Ltd					Hole Depth - F	. <mark>0 m М</mark> [•	ТО	1766 0) m MC	,	Flex/ILF SN (ft/m) 51767	Xtra Receiv		303
RIG NAME	30 (OII LIG					Inclination - FF		,	TO	1700.0	III WIL	,	Control Collar #	Ext Sub #	43	Bias Unit #
	Seadrill -	West	Triton				32.	02 deg			7.36	deg		50245	513	68	51550
WELL NAME							Azimuth - FRC	M		ТО				Bit Mfg	Bit Type		Bit SN
	Wa	rdie-1						.09 deg	}			8 deg		Reed	RSX61		218629
LOCATION	_	· ·					Hole Size	0.4/411			0 D&I		PD D&I	Dull Grade - IADC Cut			
Map file name		s Strai		Cor / Tota	l Corr.		Connector Pha	2 1/4" ase Angle			7.68 m vnlink respo		67 m	On Bottom Hours	3-WT-A-		g size/wt / depth
n/a (fast down		+ 12.84	1	0.383	13.2	27		20				ood		19.40			3/8' 747 m
Bit to Bottom of BU Pag		Bit to Mic			Flex Lg		WOB MIN / MA			Ave.	. RPM	Ave. V	VOB	Off Bottom Circulating	Hours	ft / M Drilled	
0.60 m			3.67 m		2.95		3		25		150		12	25.50			1015.0
PD MIN/MAX					tery Voltage		RPM MIN / MA				D Min/Max			Below Rotary Table Ho	urs	PD ft/M Dri	lled (Operating)
Pulse Width MIN/MAX			3.8	-	Digit Time		100 Actual Flow M		170		600 np Output / *		200	82.50 PowerDrive Operating	Houre	On Btm RC	1015.0 P Ave ROP
n/a	n/a		n/a		18 se		900		075		5.85		plex	44.90	ilouis	52.3	52.3
11/4		Respo		и	10 30	_	Stab gauge				0.00	,	PICX		ojective	32.3	32.3
Max DLS	Max BUR			Max Tu		n/a	12	1/8"		12 1/8	s" Ma	aintain t	tangent	of 32.5 degrees th			ees
					ARE VERS									Reason		1	
TSIM AC					moc SMV5	07RN			IDEAL	13_0				TD v			-
Bit	Hydraulics	s Calc	ulatio	ns			PowerD	rive Se	rial No.		PU	MP HO	URS	Moto	or Run	Inform	ation
Enter data in blu	ue areas	Bit	t Nozzle	e Size a	and TFA		PART	PFIX		SN	STAR	Т	CUM	Motor type		Seiral numl	per
Pump Flow	1075	Noz	zzle	/ 32	TFA	Cont	rol Unit	CU		303	0.00		44.90	N/A			N/A
Mud Weight	9.3	1		15	0.173	Cont	rol Collar	CC	5	0245	0.00		44.90	Bend type		Bend Angle	
Bit Diameter	12.25	2	_	15	0.173	Ext S	Sub	ES	5	1368	0.00		44.90	N/A			N/A
Bit Flow	1058	3	3	15	0.173	Bias	Unit	BU	5	1550	0.00		44.90	Stab type		Stab Gauge	е
Bit Pressure Drop	782	4	1	16	0.196	Flex/	ILF	PD9RX-	·AA 5	1767	39.20)	84.10	N/A			N/A
Hydraulic HP	483	- 5	5	16	0.196	Xtra	Receiver		4	9245	39.20)	84.10	Off Bottom pressure		On Bottom	pressure
HSI	4.1	6	3	16	0.196	Uppe	er Torquer		4	9846	39.20)	84.10	N/A			N/A
Impact Press.	1414	7	7			Lowe	er Torquer		3	4624	39.20)	84.10	Backreaming Hours		Total Ream	ning Hours
Note: Rock compre	ooiyo	8				Com	ms Module			730	39.20)	84.10	N/A			N/A
strength should be		9	9											Bearing Play after run ([mm)		N/A
than the Impact Pre	-	1				Moto										operties	
			it TFA		1.107		Dov				alculatio	ons			Company	Baroid	
Flow	Restrictor		sure D	rop				Enter of	data in t	he blu	e areas				lud Type	KCL Polym	er
Nozzle size (32n	d)	TFA	- -	Press	s. Drop	1		Digit T	ime		18	sec	cs	MW at sta		8.9 ppg	
		i-	┸	_			Falling Time Co	,			n/a	_		MW at e		9.3 ppg	
Total Pres	ssure Drop		w Pov	werDri	ve		Rising Time Co	onstant (R	TC)	_	n/a		_		Viscosity	58 sec	
	782	psi					Driller's Puls	e - High /	Low	10	75	983	3		Viscosity	13	
Note: If the box abov						<u> </u>		Pulse He	_		n/a	%			eild Point	30	
PowerDrive is not in t restrictor and bit nozz		•					Pu	lse Amplit	ude		n/a			Maximum DH Tem		50°C	
pressure drop below						_	Minimum Reco	verable P	ulse		n/a	_			Sand %	0.50 %	
				Minimu	ım Thresh	old		n/a	%			Soild %	4.60 %				
Run Summary																	
																	m for the first
243m were ac																	
flow reduction	were re	adily	acce	pted.	Found	d fra	gment (5	cm lon	ig)of a	plas	tic conf	tainer	cap tra	apped in the fl	oat whe	en tools	were above
rotary table.																	

Drill Bit Gradings

ROCK BIT GRADING CHART

BIT RUN DATA # 2

Bit Size:	17 1/2"
Manufacturer:	Hughes Christensen
Bit Type:	MXL-T1V
Serial Number:	6065891
New Bit:	Yes
IADC Code:	1-1-5
Number of Nozzles:	3
Size of Nozzles:	3 x 20
T.F.A. (sq. in):	0.91
W.O.B. :	1-25
Depth Out:	751m
Depth In:	136m
Meters Drilled:	615m
Drilling Hours:	6.70

WELL DATA

Date:	13-May-08			
Drilling Supervisor:	Shaughan Corless			
Platform:	West Triton			
Well Number:	Wardie-1			
Rig Contractor:	Seadrill			
Final Hole Angle:	34.35°			
Date in:	12-May-08			
Date Out:	13/5/2008			
BHA #	2			

MUD AND LITHOLOGY DATA

Majority Formation:	Limestone
Other Formation:	
% Formation:	
Mud Type:	Seawater - Bentonite
Mud Weight:	
PV:	
YP:	
% Solids:	
% Oil / Water:	
Circulating Temperature (deg c):	

COMMENTS:

IADC ROCK BIT GRADING

(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)
1	1	NO	A	E	ī	NO	TD

GRADING CHART AS PER IADC NOMENCLATURE

	CUTTING	STRUCTURE		Cone		RI	EMARKS
INNER	OUTER	DULL	LOCATION	BEARING	GAUGE	OTHER	REASON
ROWS	ROWS	CHAR.		/ SEALS		CHAR.	PULLED
(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)

(A) Inner cutting structure = all inner rows. (A) Outer cutting structure = gauge row only.
In columns 1 and 2 (A), a linear scale from 0 to 8 is used to describe the condition of the cutting structure according to the following -

Steel Tooth Bits - A measure of lost tooth height due to abrasion and or damage. 0 = No loss of tooth height, 8 = total loss of tooth height.

lisert Bits - A measure of total cutting structure reduction due to lost, worn and broken inserts. O = As new, 8 = all inserts lost, worn and / or broken.

(A)

0 No Wear

8 No Cutting structure

(B)		
	BC *	Broken Cone
	BF	Bond Failure
	BT	Broken Teeth/Cutters
	BU	Balled Up
	CC *	Cracked Cone
	CD *	Cone Dragged
	CI	Cone Interference
	CR	Cored
	CT	Chipped Cutters
	ER	Erosion
	FC	Flat Crested Wear
	HC	Heat Checking
	JD	Junk Damage
	LC *	Lost Cone
	LN	Lost Nozzle
	LT	Lost Teeth / Cutters
	OC	Off-Center Wear
	PB	Pinched Bit
	PN	Plugged Nozzle /
		Flow Passage
	RG	Rounded Gauge
	RO	Ring Out
	SD	Shirttail Damage
	SS	Self-Sharpening Wear
	TR	Tracking
	WO	Washed Out Bit
1	WT	Worn Teeth / Cutters
	NO	No Dull Characteristics

M - Middle Row G - Gauge Row A - All Rows CONE # 1 2 3

NON - SEALED BEARINGS
A linear scale estimating bearing life.
0 - No life used,
8 - No bearing life remaining.

SEALED BEARINGS
E - Effective bearings
F - Failed Bearings

(E) In - In gauge, 1 - 1/16", 2 - 2/16", 3 - 3/16" UG etc

Change BHA CM Condition mud Core Point
Downhole Motor Fail CP DMF DP Drill Plug DSF Drill String Failure DST Drill Stem Test Downhole Tool Fail DTF FM Formation Change Hole Problems/ LIH HP HR Hours on Bit LIH Lost in Hole LOG Run Logs Pump Pressure PP PR Penetration Rate PR Penetration Rate RIG Rig Repair TD Total Depth TQ Torque Twist-Off TW WC Weather Conditions Washout/Drill String

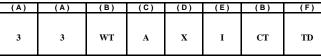
* Show cone number or numbers under location (C) .

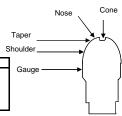
PDC GRADING CHART

BIT RUN DATA #4

Bit Size:	311mm (12 1/4")			
Manufacturer:	Re	ed		
Bit Model:	RSX61	6-A16		
Serial Number:	2186	529		
New Bit:	Ye	s		
IADC Code:	M4:	22		
Number of Nozzles:	6			
Size of Nozzles:	3 x 15	3 x 16		
Number of Blades:	6			
Number of Cutters:	59			
Size of Cutters:	16,13			
T.F.A. (sq ins):	1.110			
W.O.B. :	3-25	Klfbs		
Depth In:	751.0	m		
Depth Out:	1766.0	m		
Meters Drilled:	1015.0	m		
Rotating Hours:		hrs		
Metres Rotary:	1015.00	m		
On bottom hours	19.40	hrs		
Average R.O.P:	52.32	m/hr		
Circulation Rate:		GPM		
R.P.M. at Bit:	120-170	rpm		
Motor Used:	No			
Motor Size:	N/	a		
Bit Good for Rerun:	NO			

WELL DATA


Date:	19-May-08
Drilling Supervisor:	Shaughan Corless
Rig:	West Triton
Well Number:	Wardie-1
Rig Contractor:	Seadrill
Hole Angle:	33.00°
Date in:	16-May-08
Date Out:	19-May-08
SLB BHA #	2


MUD AND LITHOLOGY DATA

Majority Formation:	Sand stone
Other Formation:	Silt stone
% Formation:	N/A
Mud Type:	KCL Polymer
Mud Weight:	9.32 ppg
PV:	13
YP:	30
Corrected solid:	4.60
% Oil / Water:	N/A
Circulating Temperature:	50°C

COMMENTS:

PDC GRADING CHART AS PER IADC NOMENCLATURE

	CUTTING ST	RUCTURE		В	G	REM	ARKS
INNER	OUTER	DULL	LOC	BRING	GAUGE	OTHER	REASON
ROWS	ROWS	CHAR.	ATION.	SEALS	1/16"	CHAR.	PULLED
(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)

(A)	0	No Wear
	8	No Cutting structure
(B)	BT	Broken Cutters
	BU	Balled Up
	CR	Cored
	CT	Chipped Cutters
	ER	Erosion
	HC	Heat Checking
	JD	Junk Damage
	LN	Lost Nozzle
	LT	Lost Cutters
	OC	Off-Center Wear
	PN	Plugged Nozzle/
		Waterway Passage
	RG	Rounded Gauge
	RO	Ring Out
	WO	Washed Out - Bit
	WT	Worn Cutters
	NO	Bit is Green
	IM	Impact
	DEL	Delamination
	SPL	Spalling
	BF	Bond Failure
(C)	С	Cone
	N	Nose
	T	Taper
	S	Shoulder
		Cours

Gauge All Angles

(D)	Χ	Fixed Cutter Bits
(E)	1	In Gauge
	1/16	1/16" Undergauge
	2/16	1/8" Undergauge etc.

(F)	BHA	Change BHA
	DMF	Downhole Motor Fail
	DSF	Drill String Fail
	DST	Drill Stem Test
	DTF	Downhole Tool Fail
	LOG	Run Logs
	RIG	Rig Repair
	CM	Condition mud
	CP	Core Point
	DP	Drill Plug
	FM	Formation Change
	HP	Hole Problems
	HR	Hours
	PP	Pump Pressure
	PR	Penetration Rate
	TD	Total Depth
	TQ	Torque
	TW	Twist-Off
	WC	Weather Conditions
	WO	Washout/Drill String
		Ğ

Attachment 8 Activity Summary Reports

Release Date: 25 May 2008

Water Depth: 39.5m Long: 147 Deg 37 Min 9.810 Sec Spud Time: 19.30 Release Time: 22.30

Well History

Well: Wardie-1

#	Date	Depth	24 Hour Summary
1	09 May 2008		Offload CTU deck extension and secure same on CTU deck whilst working on failed ROV. Connect service lines and change out cement hose on rig floor.
2	10 May 2008	132.0m	While waiting on ROV repair: install new cement hose on rig floor, lay out 12 jnts HWDP (for inspection) and pick up 12 newly inspected HWDP. Install 30" TA cap on West Seahorse-3. Skid rig back to Wardie-1 and rig up CTU, work platform and service lines. RIH 36" BHA. Check position with ROV and drill from 76.8m to 132m.
3	11 May 2008	132.0m	Complete drilling 36" hole from 132m to 136m. Circulate and displace hole to prehydrated gel mud. Run 30" conductor to 74m and wait on improved visibility to stab shoe into well. Stab into well and run casing. Land out 30" casing and rig up Icon clamp at CTU. Troubleshoot Icon bolt tensioner, repair same and tension up clamp.
4	12 May 2008	161.0m	Level up CTU and tighten Icon clamp. Take load of casing on CTU and cut conductor 0.3m above Icon clamp. Lay out jnts of conductor. RIH with cement stinger, sting in and cement 30" conductor with 265bbl 15.9 ppg cement. RIH with 26" bit and take measurement to MLS landing ring. Pick up 18 3/4" w/head, make up SS plug equalising sub on r/tool and 20" x 13 3/8" CSG x/o onto w/head. Lay out same. Pick up 17 1/2" BHA, RIH and drill shoe at 133m and new hole to 161m
5	13 May 2008	751.0m	Drill 17 1/2" hole to section TD at 751mMD. POOH. Laid out 17 1/2" BHA.
6	14 May 2008	751.0m	Rigged up and ran casing to 113m. Skidded rig to align casing in well bore. Continued to run casing to 166m. Unable to pass 166m. POOH with casing. Removed centrilisers and stop collars from casing. Make up joint # 74 to float collar, checked float equipment and RIH with casing.
7	15 May 2008	751.0m	Ran and cemented 13 3/8" casing with shoe at 747m. Released running tool and laid out same. Laid out cement stand. Nippled up Bop's.
8	16 May 2008	751.0m	Nippled up Bop's and diveter system. Pressure tested IBOP'S and stabing valve. Made up 12 1/4" rotary steerable assembly. RIH, tagged TOC at 732.5m. Drilled out float collar and shoe track.
9	17 May 2008	1446.0m	Drilled out shoe track and cleaned out rathole to 751m. Displaced to new mud. Drilled 12 1/4" hole to 754m. Performed FIT to 13.1ppg EMW. Drilled 12 1/4" hole from 754m - 1446m.
10	18 May 2008	1766.0m	Driiled 12 1/4" hole to TD at 1766m MD. Circulated hole clean. Repaired trip tank return line valve. Flow checked and POOH for logging.
11	19 May 2008	1766.0m	Pumped and backreamed to shoe. Circulated hole clean at shoe. Ran back to bottom. Circulated hole clean. Flow checked. POOH. Laid out 12 1/4" BHA.
12	20 May 2008	1766.0m	Laid out 12 1/4" BHA. Rigged up for wireline logs. Ran logs #1 (PEX) & #2 (MDT). Rigged down wire line. RIH for abandonment plugs.
13	21 May 2008	1766.0m	RIH with 5 1/2" drill pipe and set P&A cement plugs at 1766m - 1513m. POOH to1406m. Circulated clean. POOH laying out drill pipe. RIH and tag top of plug 1B at 1407m with 5k down. POOH. Set cement plug #2 from 805m - 700m. POOH too 599m. Circulate clean.POOH laying out drill pipe.
14	22 May 2008	1766.0m	POOH laying out 5 1/2" drill pipe. Flushed BOPs, rise rand surface equipment. Tested cement plug #2 to 1000 psi. Nippled down BOPs and diverter system. Cut 13 3/8" casing at 126m and recovered same. Laid out well head and casing.
15	23 May 2008	1766.0m	Spot cement plug # 3 at 157 - 95m. Make up casing cutter and cut 30" casing at 78m. POOH, changed knifes. RIH and cut 30" casing at 78m. POOH and laid out casing cutter. Made up 30" casing spear. Moved CTU work platform from CTU on Texas deck.
			Lost total 5 hours for drillers panel locking up. Lost 2 hours for pipe handling due to burst hyraulic return hose on Top Drive.
16	24 May 2008	1766.0m	Pull, recover and laid out 30" casing. Prepare rig package for rig move. Skid rig out and lower Texas deck extension onto work boat. Laid out tubulars from derrick.
17	25 May 2008	1766.0m	Laid out tubulars from derrick. Prepare rig for rig move. Jacked rig down, performed water integrity checks and commenced move to Nexus Location.

DFE above MSL: 38.0m

Lat: 38 Deg 12 Min 25.077 Sec

Spud Date: 10 May 2008

Release Date : 25 May 2008

Water Depth : 39.5m

Long: 147 Deg 37 Min 9.810 Sec

Spud Time: 19.30

Release Time: 22.30

Activity Report For Wardie-1

Date : 09 N	Date : 09 May 2008					Daily Cost : US\$ 203000	Report Number : 1
Depth (m)	Phase	Cls	Ор	R.C.	Hrs	Activity	
0.0	P28	Р	G10		0.5	Pick up CTU deck extension from boat. Offline: Fault traced in ROV umbilical. Commence re-terminating same.	
0.0	P28	Р	G10		1	Skid rig to West Seahorse -3 well centre position and install CTU deck extension on top of CTU deck. Pin and secure same. Offline: Continue work on ROV	
0.0	P28	Р	G1		2.5	Rig down slings. Install CTU deck. Offline: Continue work on ROV	
0.0	P28	TP	G11	TP	3.5	Connect service lines. Change out cement hose on Continue work on ROV.	rig floor.

Date : 10 May 2008					Daily Cost : US\$ 650000	Report Number : 2	
Depth (m)	Phase	Cls	Ор	R.C.	Hrs	Activity	
0.0	P28	TP	G11	TP	2	Continue installing new cement line on rig floor. Continue work on ROV. Complete repair at 01.30 hrs. Personnel due for rest/sleep after working for 18hrs. Will commence work again at 06.30.	
0.0	P28	TP	G6	TP	4	Lay out 12 jnts HWDP due for inspection	and pick up 12 jnts newly inspected HWDP.
0.0	P28	TP	G6	TP	0.5	Lay out two stands 5 1/2" DP from derrick	while continuing to wait on ROV.
0.0	P28	Р	G10		2.5	Make up and RIH 30" TA cap. Jump RO\ connector 2m above seabed.	/ and install TA on West Seahorse-3 Quick-Jay box
0.0	P1	Р	M2		1.5	Prepare to skid rig. Hold PJSM and skid rig over Wardie-1 slot.	
0.0	P1	Р	G1		5	Install CTU on CTU deck extension. Tighten service lines and install wedges. Make up stand with sic entry sub and TIW and rack back in derrick. Remove CTU 30" insert adapter. Install CTU work platform and mousehole.	
0.0	P2	Р	G6		3.5	Make up 26" bit and 36" hole opener. RII-	BHA and tag seabed at 76.8m.
0.0	P2	Р	G8		0.5	Check drillstring position relative to West ROV back and took Anderdrift survey at	Seahorse-3 - OK, approx 3m from WS-3 conductor. Stood seabed (< 0.5°).
78.0	P2	Р	D2		1	Spud well. Jet / drill with negligable weight from 76.8m to 78.5m. Stop drilling and recheck drillstring position with ROV. Position OK. Observe that bit has passed through layer of cement above seabed. Retrieve ROV.	
132.0	P2	Р	D2		3.5	Drill 36" hole from 78.5m to 132m. Take Anderdrift surveys at 87m - 2°, at 92m - 2° and at 134m - 1°. Pump 75bbl floc gel sweeps every single and backream both stands during drilling.	

Date : 11 M	Date : 11 May 2008					Daily Cost : US\$ 650000	Report Number : 3
Depth (m)	Phase	Cls	Ор	R.C.	Hrs	Activity	
136.0	P2	Р	D2		0.5	Continue drilling 36" hole from 132m to 1	36m.
136.0	P2	Р	F3		0.5	Pump and sweep hole with 200bbl flocculated gel mud and then pump 350bbl to displace hole to prehydrated gel.	
136.0	P2	Р	G8		2.5	POOH 36" BHA and lay down 2 x 8 1/4" DC's.	
136.0	P3	Р	G1		1	Rig up to run 30" conductor. Change out	bails.
136.0	P3	Р	G9		4	Hold PJSM. Pick up 30"x 20" shoe joint and check floats - ok. Continue RIH with 30", 310ppf, R3 casing to 74mRT: 3 x intermediate D60/MT joints, MLS joint with Quik-Jay box up and mudline release joint with 13-3/8" landing ring and Quik-Jay pin down. Conductor shoe positioned approx 1.5m above West Seahorse-3 conductor and 3.5m above seabed	
136.0	P3	TP	G9	WO	1	No visibility with ROV due to current and gel clouds - unable to see West Seahorse-3 conductor or seabed. Pump seawater down conductor at 400gpm to attempt to clear area around seabed - still n visibility.	
136.0	P3	TP	G9	WO	1	Waiting on improved visibility (slack tide p	predicted at 11:14hrs).
136.0	P3	TP	G9	WO	1	shoe to seabed level. Conductor observe	bserved to be approx 3m offset from WS-3 conductor. Lower and to run inside cuttings mound at seabed. Attempt to eight at seabed depth. Attempt to work conductor into hole

 DFE above MSL: 38.0m
 Lat: 38 Deg 12 Min 25.077 Sec
 Spud Date: 10 May 2008
 Release Date: 25 May 2008

 Water Depth: 39.5m
 Long: 147 Deg 37 Min 9.810 Sec
 Spud Time: 19.30
 Release Time: 22.30

Date : 1	1 May 20	800				Daily Cost : US\$ 650000	Report Number : 3
						without success. Operation complicated b as shoe at seabed.	by Quik-jay connector being at CTU level at the same time
136.0	P3	TP	G9	WO	1		uctor appears to be slightly to port of hole centre. Pick up pm. Circulate and work casing past hangup point and into
136.0	P3	Р	G9		0.5	Continue RIH conductor to 85mRT.	
136.0	P3	TP	G9	WB	1.5	Conductor connector hanging up on aft signing floor and main deck. Unable to run pas	de of CTU. Attempt to pull conductor forward using tugger at st CTU.
136.0	P3	TP	G9	WB	1	Prepare and skid cantilever 6" forward.	
136.0	P3	Р	G9		2.5	130m - 133m (programmed setting depth	130m. Took 40klb weight at 130m. Washed down from - MLS joint 3m above seabed). Jump ROV to check height but joint appears to be in correct position.
136.0	P3	Р	G9		1.5	Install landing ring inserts at CTU.	
136.0	P3	Р	G9		2		on clamp. Stroke CTU to 100mm and install Icon clamp. Bolt lraulic fluid - unable to tension clamp to specification.
136.0	P3	TP	G9	TP	2.5	Troubleshoot bolt tensioning unit for Icon tension up Icon clamp to target tension of	clamp. Adapt leaking over-stroke pressure relief valve and 21,000psi.

Date : 12 May 2008				Daily Cost : US\$ 650000	Report Number : 4		
Depth (m)	Phase	Cls	Ор	R.C.	Hrs	Activity	
136.0	P3	TP	G9	TP	2	Level up CTU, re-install Icon clamp and	tension up same.
136.0	P3	Р	G9		1	Take load of 30" conductor casing on C	ΓU and cut conductor 0.3m above Icon clamp.
136.0	P3	Р	G9		1	Lay out 2 jnts 30" conductor casing inclu	ding cut section.
136.0	P3	Р	G1		1	Rig down 30" handling equipment and c	hange out bails.
136.0	P3	Р	F3		0.5	Make up Dril-Quip stab-in sub & 5m DP and make up first stand DP.	pup. Place 20" centraliser over top tooljoint of 5m DP pup jnt
136.0	P3	TP	M2	WB	1	Skid rig 6" aft to centralise back over Wa	ardie-1 slot.
136.0	P3	Р	G8		1	RIH with stab-in sub. Wash down last 10 confirm stab-in seals not leaking.	m and stab into 20" shoe. Fill casing. Break circulation and
136.0	P3	P	F3		2	Rig up cement line and test to 1000psi. Pump 100bbls seawater spacer followed by 20bbls seawater with flouroscine dye. Cement conductor with 265bbls of 15.9ppg slurry (200% excess over open hole). Displace slurry with 10bbls seawater. Observed traces of dye in returns above the seabed with the ROV. Visibility too poor to determine whether there were cement returns at the seabed. ROV later observed hard cement around the conductor inside the base of the cuttings crater.	
136.0	P3	Р	G8		1	POOH. Lay out stab-in sub, DP pup, side	e entry sub and TIW valve.
136.0	P3	Р	G8		1.5	Make up 26" bit. RIH on HWDP and tag	MLS landing ring at 85.40mRT. POOH. Lay out 26" bit.
136.0	P3	Р	G12		4.5	Pick up 18-3/4" wellhead. Break out runi sub below running tool and make up bac joint below wellhead and lay out assemb	ning tool. Make up x/o, 1.5m DP pup, x/o and plug equalising k into wellhead. Pick up and make up 20"x 13-3/8" crossover bly on main deck.
136.0	P3	Р	G11		0.5	Service TDS.	
136.0	P4	Р	G8		5.5	Make up 17 1/2" DD BHA including mud shoe at 132.8m	motor and MWD tools and RIH to 131m. Wash down and tag
136.0	P4	Р	D1		0.5	Drill out to botom of shoe at 133m and clean out rathole to 136m. Take inclination at shoe - tool at 115m: 1.69°.	
161.0	P4	Р	D8		1	Drill 17 1/2" hole from 136m to 161m. Po 30bbl pre-hydrated gel on bottom at each	ump 2 x 30bbl flocculated gel sweeps per stand and spot h connection.

Date : 13	May 20	800			Daily Cost : US\$ 1347000	Report Number : 5
Depth (m) Phas	e Cls	Op	R.C. Hrs	Activity	
170.0	170.0 P4 P D8 0.5		Drilled ahead 17 1/2" hole from 161m to	o 170m. Relatively high MWD checkshot inclination of >1° at		

 DFE above MSL : 38.0m
 Lat : 38 Deg 12 Min 25.077 Sec
 Spud Date : 10 May 2008
 Release Date : 25 May 2008

 Water Depth : 39.5m
 Long : 147 Deg 37 Min 9.810 Sec
 Spud Time : 19.30
 Release Time : 22.30

Date : 13	3 May 20	800			Daily Cost : US\$ 1347000	Report Number : 5
170.0	P4	Р	E6	2	Rigged up Schlumberger and ran gyro survey on wireline. Survey at 135m is 2.33° inc, 331° azi (away from WS-3) and 7.6m offset from West Seahorse-3. Rigged down Schlumberger.	
170.0	P4	Р	D8	1.5	Continued drilling 17 1/2" hole from 170m to to KOP at 250m.	
751.0	P4	Р	D8	10	Directionally drilled 17-1/2" hole from 250m - 751m (section TD). Pumped 2 x 30bbl flocculated gel sweeps per stand and spotted 30bbl pre-hydrated gel on bottom at each connection.	
751.0	P4	Р	F4	1.5	Pumped 2 x 100 bbls h/vis and circulate saved from West Seahorse-3.	ed hole clean. Displaced hole to 950bbls viscosified mud
751.0	P4	Р	G8	3	POOH to 20" shoe. Hole good. 20k ove through shoe. No resistance. Continue to	erpull top 17 $1/2$ " stab at shoe. Install TDS, pump and rotate to POOH to BHA at 117m.
751.0	P4	Р	G6	4	Laid out 17 1/2" BHA.	
751.0	P5	Р	G15	1.5	Picked up and made up cementing head	d and racked back in derrick.

Date : 14 M	May 200	8				Daily Cost : US\$ 650000	Report Number : 6	
Depth (m)	Phase	Cls	Ор	R.C.	Hrs	Activity		
751.0	P5	Р	F3		0.5	RIH with jetting tool, jet MLS, POOH.		
751.0	P5	Р	G1		1.5	Rigged up to run 13 3/8" casing.	Rigged up to run 13 3/8" casing.	
751.0	P5	Р	G9		3.5	Held JSA and ran 13.3/8" casing as per program to 113m. Casing hanging up at MLS.		
751.0	P5	TP	M2	WB	2	Attempted to skid rig to align casing with hole centre. Seal on skidding system hydraulic hose burst. Replaced same. Skidded rig. Ran one joint casing to 124m without hanging up.		
751.0	P5	Р	G9		2.5	Run 13 3/8" casing to 166m. Casing hanging up at 166m.	several points each joint. Unable to work past	
751.0	P5	TP	G9	WB	7.5	Held JSA. POOH to shoe track, laying out13 3/8" ca	asing.	
751.0	P5	TP	G9	WB	1	Cut centralisers and stop collars from shoe track.		
751.0	P5	TP	G9	WB	0.5	Cut joint # 75 above float collar joint and laid out sa	me. Backed out and laid out float collar joint.	
751.0	P5	Р	G9		5	Made up joint #74 to float collar. Checked floats - of centralisers) to 500m. No hang-ups observed.	k. Continued to RIH with 13 3/8" casing (without	

Date : 15 I	May 200	8				Daily Cost : US\$ 650000	Report Number : 7
Depth (m)	Phase	Cls	Ор	R.C.	Hrs	Activity	
751.0	P5	Р	G9		4.5	Continued running 13 3/8" casing to 657m. Made up MLS hanger/running tool assembly. Continued RIH casing with MLS landing string to 722m - strap welded each casing connection above the MLS running tool.	
751.0	P5	Р	G1		1	Laid out casing fill up tool. Changed to DP elevators and bails.	
751.0	P5	Р	G12		3	Picked up and made up well head assembly. Broke out running tool. Drifted pup joints and crossovers to 2.5". Installed top cement plug onto plug launcher and made up running tool to wellhead. RIH and landed out casing on MLS hanger at 85.45m. Confirmed landout on MLS with gap of 40mm between 30" conductor and wellhead landing ring. Installed 2 1/16" wing valve on wellhead and rigged up cement lines.	
751.0	P5	Р	F4		1.5	Circulated casing prior to cement job. Held PJSM.	
751.0	P5	P	G9		3	tuned spacer. Mixed and pumped 150 bbls shear out of plug with 2500 psi after 2bbls. Switched to rig pumps and displaced ceme	2000 psi. Pumped 90 bbls seawater followed by 30 bbls is class G slurry at 15.9ppg. Released dart and observed in Pumped further 10 bbls seawater with cement unit. For each wirth 337 bbls seawater. Bumped plug with 2000 psi. eaking wellhead running tool. Bled of pressure. 3bbls bled
751.0	P5	Р	G9		1	Rigged down cement hose. Bleed off press load ring on top of 30" conductor, slacked	sure from wellhead valve. Picked up 18klb on string, set of string.
751.0	P5	TP	G12	TP	1.5	Attempted to release running tool from well head. Running tool clutch not collapsing. Rotated running tool 1/4 turn to left and then back agian, running tool collapsed 1/2 way. Rotated running tool 1/4 turn to left again. Unable to collapse running tool fully.	
751.0	P5	TP	G12	TP	2	Made up top drive to string, set down 4k on running tool and observed running tool fully collapsed. Backed out running tool with rig tongs.	

Water Depth: 39.5m Long: 147 Deg 37 Min 9.810 Sec Spud Time: 19.30 Release Time: 22.30

Date : 1	5 May 20	800			Daily Cost : US\$ 650000	Report Number : 7	
751.0	P5	Р	G12	2.5	POOH. Laid out running tool, cross ov	er subs, plug launcher and cement head.	
751.0	P6	Р	G13	4	Prepare to and nipple up Bop's.		

Date : 16 l	May 200	8				Daily Cost : US\$ 650000	Report Number : 8
Depth (m)	Phase	Cls	Ор	R.C.	Hrs	Activity	
751.0	P6	Р	G13		3.5	Continued to nipple up Bop's and diverter.	
751.0	P6	Р	G13		1	Made up test assembly for testing upper and lower IBOP'S and TDS hose.	
751.0	P6	TP	G13	RE	2	Leaks of approx 60psi/min occuring on IBOP tests. Traced leaks. Functioned and greased manifold valves to rectify leaks.	
751.0	P6	Р	G13		2	Pressure tested IBOP's, stabbing valve and TDS hose to 250 / 5000psi for 5 / 10 minutes.	
751.0	P6	Р	G13		1	Lined up down choke line. Flushed lines. Pressure tested 13-3/8" casing and wellhead connection against shear rams to 250 / 2000psi for 5 / 10 minutes.	
751.0	P5	Р	G12		1	Made up and RIH with nominal bore protector.	POOH and laid out running tool.
751.0	P5	Р	G6		6.5	Made up and RIH bit and rotary steerable BHA tested tools ok. Continued RIH with BHA to 17	A to top of LWD tools. Made up crossover and surface 3m.
751.0	P5	Р	G8		2.5	Continued RIH to 703m. Made up TDS and wa 719m. Washed down to 732m. Unable to rotat	ashed down from 703m. Reamed cement stringer at e TDS after making connection at 732m.
751.0	P5	TP	G8	RE	1	Investigate problem with top drive. Reset PLC	and reboot system.
751.0	P5	Р	G11		1	Service Top Drive system.	
751.0	P5	Р	D1		2.5	Wash down from 732m. Tagged TOC at 732.5m (approx 2m above float collar). Drilled out float collar and shoe track to 737m.	

Date : 17 N	May 200	8				Daily Cost : US\$ 1140250	Report Number : 9
Depth (m)	Phase	Cls	Op	R.C.	Hrs	Activity	
751.0	P11	Р	D1		1.5	Drilled out shoe track to 747m. Cleaned out rathole from 747m - 751m. Displaced hole to 8.8 ppg mud while drilling out float shoe.	
754.0	P11	Р	D2		0.5	Drilled new 12 1/4" hole from 751m - 754m.	
754.0	P11	Р	F4		1	Circulated mud weight even in and out. Pulled back inside shoe.	
754.0	P11	Р	E1		1	Preformed FIT : 520psi surface pressu EMW without leak-off.	are with 8.8ppg mud and casing shoe at 704mTVD => 13.1ppg
1397.0	P11	Р	D4		18	Directionally drilled 12 1/4" hole from 7	′54m - 1397mMD.
1397.0	P11	TP	D4	RE	0.5	Drillers cyber chair system shut down. Able to circulate but not rotate or reciprocate. Investigated and rectified problem (software related).	
1446.0	P11	Р	D4		1.5	Drilled 12 1/4" hole from 1397m - 1446mMD.	

Date : 18 l	May 20	08				Daily Cost : US\$ 1140250	Report Number : 10
Depth (m)	Phase	e Cls	Ор	R.C.	. Hrs	Activity	
1520.0	P11	Р	D4		1.5	Directionally drilled 12 1/4" hole from 1446m - 152	0mMD. Instantaneous ROP > 100m/hr.
1664.0	P11	Р	D4		7.5	Control drilled 12 1/4" hole from 1520m - 1664mMD at 30m/hr instantaneous ROP for LWD	
1666.0	P11	Р	D4		1.5	Drilled hard quartz stringer from 1664m - 1666mMD (<2m/hr).	
1766.0	P11	Р	D4		5	Directionally drilled 12 1/4" hole from 1666m - 176 instantaneous ROP for LWD logs.	6mMD (TD). Control drilled at 30m/hr
1766.0	P11	Р	F4		3.5	Ciculated hole clean. Shaker screens initially blinded by fine, sticky cuttings. Reduced pump rate to 815gpm for first bottoms up then gradually increased pump rate to 1080gpm for remainder of circulation. Rotated string at 165rpm and reciprocated stand.	
1766.0	P11	TP	G8	RE	2.5	Attempted to open trip tank line for flow check. Va valve on return line whilst circulating and working	

Water Depth: 39.5m Long: 147 Deg 37 Min 9.810 Sec Spud Time: 19.30 Release Time: 22.30

Date : 18	May 20	800			Daily Cost : US\$ 1140250	Report Number : 10
1766.0	P11	Р	G8	2.5	Flow checked, POOH from 1766m - 15 spot at 1540 - 1530m, continued POO	540m, 30k o/pull at 1540m, wash and reamed throught tight H.

Date : 19 l	May 200	08			Daily Cost : US\$ 650000	Report Number : 11
Depth (m)	Phase	e Cls	Op	R.C. Hrs	Activity	
1766.0	P11	Р	G8	2.5	Continued POOH working tight spots with 1283 - 1273m and 1253 - 1178m. 40k o/p	n 30k o/pull at oull at 1178m and hole swabbing approx 2bbls.
1766.0	P11	Р	D7	5	overpull. Worked string and regained circ	gpm / 1000 psi. Hole packed off at 919m with 30klb ulation. Continued to pump and back ream from 919m - n. Hole swabbing when attempting to POOH without pumps.
1766.0	P11	Р	F4	1	Circulated hole clean inside casing shoe.	
1766.0	P11	Р	G8	3.5	RIH to 1737m. No obstructions observed at 1758m.	Made up TDS at 1737m and washed down. Tagged 8m fill
1766.0	P11	Р	F4	2.5	Observed large quantities of fines over lo	nole clean at 1080gpm / 160rpm whilst reciprocating stand. wer shaker screens and small cuttings/cavings over upper avings indentified as originating from lower Lakes Entrance.
1766.0	P11	Р	G8	6	Flow checked. POOH wet to 1410m. Purr - maximum of 10-15klb overpull with no b	nped slug. Continued POOH to BHA. Hole in good condition ackreaming required.
1766.0	P11	Р	G6	3.5	POOH with BHA. Laid out LWD tools and	BHA.

Date : 20 M	May 200	80			Daily Cost : US\$ 650000	Report Number : 12
Depth (m)	Phase	e Cls	Ор	R.C. Hrs	Activity	
1766.0	P11	Р	G6	0.5	Completed laying out 12 1/4" DD / LWD tools.	
1766.0	P11	Р	G1	1	Held JSA and rigged up Schlumberger wireline.	
1766.0	P11	Р	G1	1	Picked up and made up PEX tool string.	
1766.0	P11	Р	E3	5	RIH with log #1 PEX-HRLA-BHC at 02.30 hours. Logged down from 747m to 1700m. Pulled back and logged repeat section from 1675m - 1565m. Ran back down to 1760m max wireline depth. Unable to work past 1760m. Logged up with main pass from 1760m - 1300m with caliper to casing shoe. POOH. Laid out tool string.	
1766.0	P11	Р	G1	2	Picked up and made up MDT tools. Ch	anged out MDT probe. Performed tool checks.
1766.0	P11	Р	E3	10	RIH with log #2 : MDT - GR : Took pretest pressures at the following depths - 1582.4m,1584.0m, 1581.0m, 1575.50m, 1574.0m,1573.8m, 1578.40m, 1591.4m, 1593.5m, 1602.0m, 1609.0m, 1613.5r 1624.0m, 1656.5m, 1681.5m, 1650.0m, 1593.7m, 1580.7m. Took samples at 1582.4m (x2) and 1593.7 (x1).	
1766.0	P11	Р	E3	3	POOH with MDT. Recovered samples.	Laid out MDT tools. Rigged down Schlumberger.
1766.0	P21	Р	G8	1.5	Made up 5 1/2" mule shoe and RIH on	5 1/2" drillpipe.

Date : 21 I	May 20	08			Daily Cost : US\$ 1039500	Report Number : 13
Depth (m)	Phase	e Cls	Ор	R.C. Hrs	Activity	
1766.0	P21	Р	G8	3.5	RIH with mule shoe on 5 1/2" drillpipe to 1765m.	
1766.0	P21	Р	F4	0.5	Circulated bottoms up.	
1766.0	P21	Р	F3	1.5	Rigged up cement head and lines, pumped 10 bbls drill water. Test lines to 1000psi. Set abandonment plug #1A from 1776m-1616m : 85 bbls off 15.80 ppg Class G slurry (Caliper volum plus 10% excess). Displaced with 2 bbls drill water followed by 98 bbls mud.	
1766.0	P21	Р	G8	0.5	Rigged down cement line and cement h	nead. POOH to 1613m.
1766.0	P21	Р	F4	1	Circulated 1.5 times bottoms up. Dump	ed 170 bbls contaminated mud.
1766.0	P21	Р	F3	1		sped 10 bbls drill water. Test lines to 1000 psi. Set 513m: 64 bbls of 15.80 ppg Class G slurry (Caliper volume s drill water followed by 90 bbls mud.

 DFE above MSL : 38.0m
 Lat : 38 Deg 12 Min 25.077 Sec
 Spud Date : 10 May 2008
 Release Date : 25 May 2008

 Water Depth : 39.5m
 Long : 147 Deg 37 Min 9.810 Sec
 Spud Time : 19.30
 Release Time : 22.30

Date : 21	May 20	80			Daily Cost : US\$ 1039500	Report Number : 13
1766.0	P21	Р	G8	0.5	Rigged down cement line and cement he	ead. POOH to 1406m.
1766.0	P21	Р	F4	1	Circulated 1.5 times bottoms up. Dumpe	ed 170 bbls contaminated mud.
1766.0	P21	Р	G1	0.5	Adjusted link tilt clamps on bails to allow	elevators to reach mousehole.
1766.0	P21	Р	G2	4.5	POOH laying out 5 1/2" drill pipe: laid ou	at 60 singles.
1766.0	P21	Р	G8	1.5	RIH. Washed down from 1398m to 1407	m and tagged top of plug #1B at 1407m with 5k down.
1766.0	P21	Р	F3	2	POOH to 903m. Spotted 50 bbls high vis	5.
1766.0	P21	Р	G8	0.5	POOH to 805m.	
1766.0	P21	Р	F3	1.5	00 1	ped 10 bbls drill water. Tested lines to 1000 psi. Set n : 58 bbls of 15.80 ppg Class G slurry. Displaced with 2 bbls
1766.0	P21	Р	G8	0.5	Rigged down cement line and cement he	ead. POOH to 599m.
1766.0	P21	Р	F4	0.5	Circulated 1.5 times bottoms up. No cem	nent returns observed.
1766.0	P21	Р	G2	3	POOH laying out 5 1/2" drill pipe: laid ou	at 45 singles

Date : 22 I	May 200	80			Daily Cost : US\$ 730000	Report Number : 14	
Depth (m)	Phase	Cls	Op	R.C. Hrs	Activity		
1766.0	P21	Р	G2	1	POOH laying out 5 1/2" drill pipe.		
1766.0	P21	Р	G24	1.5	Flushed Bops, riser, kill and choke line	es and surface lines with sea water.	
1766.0	P21	Р	P1	0.5	Tested cement plug #2 to 1000 psi for	10 minutes: positive test.	
1766.0	P21	Р	G13	7	Nipple down diverter system and Bop	s.	
1766.0	P21	Р	G12	0.5	Removed 2 1/16" wing valve from wel	I head.	
1766.0	P21	Р	G24	0.5	Removed flow line for preparing to ski	d rig.	
1766.0	P21	Р	G12	0.5	Retrieved wear bushing.		
1766.0	P21	Р	G6	4	Picked up and made up 13 3/8" casing	g cutter. RIH to 126m.	
1766.0	P21	Р	G17	0.5	Cut 13 3/8" casing at 126m.		
1766.0	P21	Р	G8	0.5	POOH with casing cutter and laid out	same.	
1766.0	P21	Р	G9	6	Made up well head running tool to well Laid out well head and x/o. Laid out 8	l head. POOH with 13 3/8" casing and well head. jnts 13 3/8" casing and MLS hanger.	
1766.0	P21	Р	G12	1.5	Picked up well head. Break out and la	id out running tool from well head and laid out same.	

Date : 23 N	/lay 200	8				Daily Cost : US\$ 650000	Report Number : 15
Depth (m)	Phase	Cls	Op	R.C.	Hrs	Activity	
1766.0	P21	Р	G8		1.5	RIH with mule shoe on 5 1/2" drill pipe to	o 207m.
1766.0	P21	Р	F3		0.5	Spotted 25 bbls h/vis at 207m. POOH to	157m.
1766.0	P21	Р	F3		1		ped 5 bbls sea water. Tested lines to 500 psi, and pumped 5 ent plug #3 with 93 bbls "G" class at 15.80 ppg slurry. 8 from 157m - 95m.
1766.0	P21	Р	G8		1	Rigged down cement line and head. PO	OH to 95m. Circulated hole clean. POOH.
1766.0	P21	Р	G7		1.5	Made up 30" casing cutting assembly. R	RIH to 78m.
1766.0	P21	Р	G17		3	Cut 30" casing at 78m. No indication of	casing being cut.
1766.0	P21	TP	G8	RE	1	One hour lost for racking back first stand	d of drill pipe as top Drive hydrualics inoperable.
1766.0	P21	Р	G8		0.5	POOH with casing cutter. Change out ki	nifes on casing cutter.
1766.0	P21	Р	G17		3.5	RIH with casing cutter to 78m. Cut casin increased and pump pressure decrease	ng at 78 m. Indication of casing being cut, lost returns, torque d.
1766.0	P21	TP	G11	RE	2	Drillers display locked up. Trouble shoot Norway, no success.	and reboot system. Attempted to log onto Hawk system in
1766.0	P21	Р	G8		1	POOH with casing cutter.	

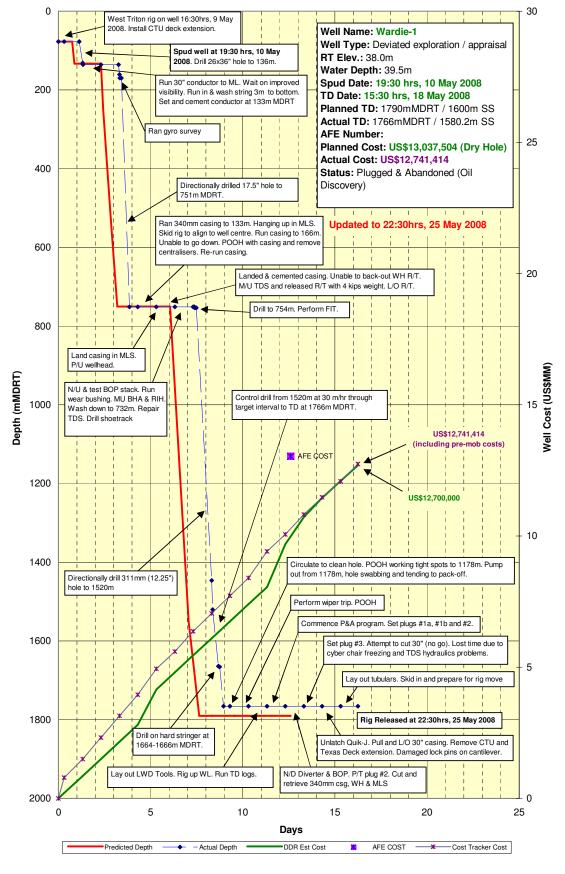
 Spud Date: 10 May 2008

Release Date: 25 May 2008

Water Depth: 39.5m Long: 147 Deg 37 Min 9.810 Sec Spud Time: 19.30 Release Time: 22.30

Date : 23	May 20	80				Daily Cost : US\$ 650000	Report Number : 15
1766.0	P21	Р	G8		1	Changed out knifes on casing cutter. F	RIH to 78m.
1766.0	P21	Р	G17	3			
1766.0	P21	TP	G11	RE	3	Drillers display locked up. Trouble sho retified problem. Reboot system.	ot and reboot system. Log onto HAWK system in Norway,
1766.0	P21	Р	G8		1	POOH with casing cutter and laid out s	same.
1766.0	P21	Р	G6		0.5	Make up casing spear.	
1766.0	P21	Р	G24		0.5	Move CTU work platform away from C	TU.

Date : 24 I	May 200	8				Daily Cost : US\$ 600000	Report Number : 16
Depth (m)	Phase	Cls	Ор	R.C.	Hrs	Activity	
1766.0	P21	Р	G18		1		spear. Attempted to pull 30" casing with 100k, 120k, 140k, 160k release on 30" conductor at 77.5m and pulled casing. Picked
1766.0	P21	Р	G12		1	Removed ICON clamp from 30" cond	uctor. Recoved J lock cable to surface.
1766.0	P21	Р	G2		2	POOH with casing. Casing spear jam into casing.	med in casing. Lay out 30" casing with casing spear engaged
1766.0	P21	Р	G2		3	Changed out bails, elevators and PO equipment.	OH laying out 30" conductor. Rigged down casing handling
1766.0	P1	Р	M2		6		storage area. Removed all service hose from cantilever. Held sion and rigged up slings to remove CTU work platform from main deck
						These operations where carried out in System time taken was 2 hours to rep	n conjunction with repairing burst hydraulic hose on Top Drive pair hose.
1766.0	P1	Р	M2		1	Rigged up handling equipment, picke	d up Texas deck extension from Texas deck.
1766.0	P1	TP	M2	RE	3		ck pin left in extended postion. Cut of lock pin assembly on both r. Major damage to locking pins and associated steel work.
1766.0	P1	Р	M2		1.5	Held JSA, skidded rig aft 4m, lower Tequipment.	exas deck extension onto work boat. Rigged down handling
1766.0	P1	Р	G2		5.5	Laid out tubulars from derrick.	


Date : 25 M	May 200	8			Daily Cost : US\$ 750000	Report Number : 17
Depth (m)	Phase	Cls	Ор	R.C. Hr	Activity	
1766.0	P1	Р	G2	10	5 Laid out tubulars from derrick.	
1766.0	P1	Р	M2	0.9	Rigged up handling slings for raising	ng Texas deck.
1766.0	P1	Р	M2	0.9	Held JSA and reveiwed JSA for sk	idding rig package.
1766.0	P1	Р	M2	0.9	Move drill collars and drill pipe from	n cantilever deck to main deck for rig move.
1766.0	P1	Р	M2	1	Hold JSA & skid the cantilever in to	o 15ft extension.
1766.0	P1	Р	M2	2.9	Connect rig up slings from drawwo pick up Kill & Choke hoses. Discor	rks onto Texas deck and prepare for lifting. Remove stairway and nect gumbo hose.
1766.0	P1	Р	M2	2.9	Continue skid the cantilever inboar position.	d. Lift & secure the texas deck. Secure the cantliver in stowed
					Meanwhile attach main towing brid	le to the Pacific Battler.
1766.0	P1	Р	M2	1.5	Sea-fasten the BOP & TDS.	
1766.0	P1	Р	M2	1.9	Hold JSA. Jack rig down to 2m dra	ft.
1766.0	P1	Р	M2	1.9	, , ,	ks while attaching secondary tow lines to the Pacific Valkyrie & the to the water, lift the legs clear from the seabed and commence the

Attachment 9 Well Cost Summary

Time vs Depth Curve

	DRILLING COSTS		Plan (L	JS\$)	Actual	(US\$)
RIG OPE	<u>ERATIONS</u>					
131111	Rig rate		\$4,125,000		\$4,468,750	
131113			\$31,500		\$8,125	
131114	Rig catering Additional crew at 50%		\$9,000		\$9,750	
131111	Additional crew at 50%	Sub Total	\$29,552	\$4,195,052	\$32,014	\$4,518,639
DRILLIN	IG & COMPLETION MATERIALS & SUPPLIES	oub rotui		\$1,100,002		\$1,010,000
131121	Rig fuel lubes & water		\$265,200		\$287,300	
131122	Supply boat fuel, lubes & water		\$644,640		\$645,838	
131123			\$3,000		\$3,250	
	Drilling fluids		\$181,800		\$116,447	
	Wellheads & MLS		\$346,220		\$328,970	
	Bits/hole openers Casing and liner		\$116,978 \$177,119		\$120,900 \$113,498	
	Casing accessories		\$53,858		\$11,289	
	Conductor & surface casing		\$249,387		\$233,523	
	Brines and completion/testing fluids		\$60,000		\$0	
131137	Cement, additives, spacers & ads		\$87,940		\$57,096	
		Sub Total		\$2,186,143		\$1,918,110
	IG & COMPLETION SERVICES		000 450		454.400	
	Downhole Drilling Tools		\$60,158		\$54,493 \$37,456	
	Wellhead Services - Rentals & Engineers Drilling /Completion Supervision		\$48,900 \$421,000		\$37,156 \$438,750	
	Shallow Gas Survey		\$0		\$0	
	Abandonment Equipment and Services		\$7,000		\$48,854	
	Real Time Data Transfer		\$9,900		\$4,950	
131151	Rig inspection, SMS audits etc		\$2,722		\$2,722	
131153			\$47,900		\$21,931	
	Solid control, filtration equipment		\$15,000		\$0	
	Solids control/filtration/environmental engineers		\$0		\$0	
131156	3,		\$3,240		\$3,623	
	Communications ROV/diving		\$15,302 \$76,610		\$16,221 \$55.941	
	Mud engineering & Centrifuge services		\$76,610 \$63.749		\$68,731	
131161			\$58,241		\$53,740	
	Casing/tubing running - crew and equipment		\$123,636		\$91,967	
131163			\$36,322		\$26,000	
131164	Well Surveying - crew, equipment and support		\$84,480		\$60,422	
	H2S services		\$20,000		\$0	
131166	Fishing services		\$42,000		\$65,259	
131167	Directional services - d.driller & support		\$74,900		\$45,630	
131169	Directional drilling equipment - excl MWD/LWD - eval	Cub Tatal	\$411,176	£4 COO OOF	\$313,605	£4 400 00E
FVAI UA	ATION & TESTING	Sub Total		\$1,622,235		\$1,409,995
131170			\$63,080		\$46,120	
131171	·		\$62,487		\$49,706	
	MWD/LWD logging		\$48,423		\$59,360	
131173	Electric logging, equipment and services		\$1,103,278		\$724,530	
	Performance management		\$16,200		\$0	
	Daily reporting system		\$3,900		\$7,296	
131183	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -		\$44,000		\$9,500	
131194	Operator sundries	Sub Total	\$8,000	\$1,349,367	\$0	\$896,513
LOGIST	ICS	Jub Total		φ1,349,30 <i>1</i>		\$030,313
131201			\$1,350,158		\$1,651,933	
131204	Helicopters		\$410,373		\$444,571	
131212	Shore Base Services		\$249,072		\$260,000	
131213	Mob/demob		\$12,960		\$0	
		Sub Total		\$2,022,563		\$2,356,504
OTHER	Miscellaneous		\$0		\$0	
131220	Miscenarieous	Sub Total	φU	\$0	\$ 0	\$0
WELL D	DESIGN & MANAGEMENT	oub rotui		•		
131253	Engineering planning & operations support		\$297,000		\$297,000	
		Sub Total		\$297,000		\$297,000
OPERAT						
131261	Operator own costs (Insurance)		\$126,000		\$126,000	
		Sub Total		\$126,000		\$126,000
	TOTAL	DRILLING		\$11,798,360		\$11,522,761
	TESTING COSTS		Plan (IS¢)	Antuck	(IIS¢)
	TESTING COSTS		Plan (L	J3\$)	Actual	(034)
131174	E-log processing			\$244,030		\$19,990
				\$233,765		\$66,083
131175	Downhole testing tools			\$82,954		\$27,100
131175 131176	Perforating					
131175 131176 131177	Perforating Nitrogen services			\$0		
131175 131176 131177 131179	Perforating Nitrogen services Acidising equipment,consumables & services	6		\$0 \$0		\$0
131175 131176 131177 131179 131181	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT	5		\$0 \$0 \$96,788		\$0 \$57,000
131175 131176 131177 131179 131181 131182	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT Drillstem Testing	5		\$0 \$0 \$96,788 \$203,226		\$0 \$57,000 \$33,337
131175 131176 131177 131179 131181 131182 131184	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT Drillstem Testing Fluid analysis	S		\$0 \$0 \$96,788 \$203,226 \$0		\$0 \$57,000 \$33,337 \$0
131175 131176 131177 131179 131181 131182 131184 131185	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT Drillstem Testing	5		\$0 \$0 \$96,788 \$203,226		\$0 \$57,000 \$33,337
131175 131176 131177 131179 131181 131182 131184 131185 131187	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT Drillstem Testing Fluid analysis Slickline services, plugs, tools & personnel	5		\$0 \$0 \$96,788 \$203,226 \$0 \$115,965		\$0 \$57,000 \$33,337 \$0 \$24,000
131175 131176 131177 131179 131181 131182 131184 131185 131187 131188	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT Drillstem Testing Fluid analysis Slickline services, plugs, tools & personnel Completion Assembly make up	5		\$0 \$0 \$96,788 \$203,226 \$0 \$115,965 \$0		\$0 \$57,000 \$33,337 \$0 \$24,000
131175 131176 131177 131179 131181 131182 131184 131185 131187 131188 131189 131190	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT Drillstem Testing Fluid analysis Slickline services, plugs, tools & personnel Completion Assembly make up Rig Modifications (Testing) Completion/Testing Supervision Sedimentology	5		\$0 \$0 \$96,788 \$203,226 \$0 \$115,965 \$0 \$30,000		\$0 \$57,000 \$33,337 \$0 \$24,000 \$0 \$30,000
131175 131176 131177 131177 131181 131182 131184 131185 131187 131188 131189 131190 131191	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT Drillstem Testing Fluid analysis Slickline services, plugs, tools & personnel Completion Assembly make up Rig Modifications (Testing) Completion/Testing Supervision Sedimentology Surface testing equipment	S		\$0 \$96,788 \$203,226 \$0 \$115,965 \$0 \$30,000 \$372,000 \$0 \$1,148,772		\$0 \$57,000 \$33,337 \$0 \$24,000 \$30,000 \$192,000 \$0 \$615,105
131175 131176 131177 131179 131181 131182 131184 131185 131187 131188 131189 131190 131191 131192	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT Drillstem Testing Fluid analysis Slickline services, plugs, tools & personnel Completion Assembly make up Rig Modifications (Testing) Completion/Testing Supervision Sedimentology Surface testing equipment Surface Sampling & Bottles	3		\$0 \$96,788 \$203,226 \$0 \$115,965 \$0 \$30,000 \$372,000 \$0 \$1,148,772 \$208,116		\$0 \$57,000 \$33,337 \$0 \$24,000 \$30,000 \$192,000 \$0 \$615,105 \$52,747
131175 131176 131177 131179 131181 131182 131184 131185 131187 131188 131189 131190 131191 131192	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT Drillstem Testing Fluid analysis Slickline services, plugs, tools & personnel Completion Assembly make up Rig Modifications (Testing) Completion/Testing Supervision Sedimentology Surface testing equipment Surface Sampling & Bottles Deluge System			\$0 \$96,780 \$96,788 \$203,226 \$0 \$115,965 \$0 \$30,000 \$372,000 \$1,148,772 \$208,116 \$90,960		\$0 \$57,000 \$33,337 \$24,000 \$0 \$30,000 \$192,000 \$615,105 \$52,747 \$38,505
131175 131176 131177 131179 131181 131182 131184 131185 131187 131188 131189 131190 131191 131192	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT Drillstem Testing Fluid analysis Slickline services, plugs, tools & personnel Completion Assembly make up Rig Modifications (Testing) Completion/Testing Supervision Sedimentology Surface testing equipment Surface Sampling & Bottles Deluge System	L TESTING		\$0 \$96,788 \$203,226 \$0 \$115,965 \$0 \$30,000 \$372,000 \$0 \$1,148,772 \$208,116		\$0 \$57,000 \$33,337 \$24,000 \$0 \$30,000 \$192,000 \$615,105 \$52,747 \$38,505
131175 131176 131177 131179 131181 131182 131184 131185 131187 131188 131189 131190 131191 131192	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT Drillstem Testing Fluid analysis Slickline services, plugs, tools & personnel Completion Assembly make up Rig Modifications (Testing) Completion/Testing Supervision Sedimentology Surface testing equipment Surface Sampling & Bottles Deluge System		Plan (U	\$0 \$96,78 \$96,788 \$203,226 \$0 \$115,965 \$0 \$37,000 \$372,000 \$0 \$1,148,772 \$208,116 \$90,960	Actual	\$57,000 \$33,337 \$0 \$24,000 \$30,000 \$192,000 \$615,105 \$52,747 \$38,505
131175 131176 131177 131179 131181 131182 131184 131185 131187 131188 131189 131190 131191 131192	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT Drillstem Testing Fluid analysis Slickline services, plugs, tools & personnel Completion Assembly make up Rig Modifications (Testing) Completion/Testing Supervision Sedimentology Surface testing equipment Surface Sampling & Bottles Deluge System		·	\$0 \$0 \$96,788 \$203,226 \$0 \$115,965 \$0 \$30,000 \$372,000 \$1,148,772 \$208,116 \$90,960 \$2,826,576		\$0 \$57,000 \$33,337 \$0 \$24,000 \$192,000 \$192,000 \$615,105 \$52,747 \$38,505 \$1,155,866 (US\$)
131175 131176 131177 131179 131181 131182 131184 131185 131187 131188 131188 131189 131190 131191	Perforating Nitrogen services Acidising equipment,consumables & services Downhole monitoring - Gauges & PVT Drillstem Testing Fluid analysis Slickline services, plugs, tools & personnel Completion Assembly make up Rig Modifications (Testing) Completion/Testing Supervision Sedimentology Surface testing equipment Surface Sampling & Bottles Deluge System		Plan (U \$14,624	\$0 \$0 \$96,788 \$203,226 \$0 \$115,965 \$0 \$30,000 \$372,000 \$1,148,772 \$208,116 \$90,960 \$2,826,576	Actual \$12,67	\$0 \$57,000 \$33,337 \$0 \$24,000 \$0 \$192,000 \$0 \$615,105 \$52,747 \$38,505 \$1,155,86i

Wardie-1 EOW Cost Reconciliation Page 1 of 1

Attachment 10

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
		311mm / 12.25" hole section drilled from 751m MDRT commencing 04:00 hrs, 17 May 2008.							
		All sample returns to seabed above 751m.							
		20m sample interval							
751-770	80	white to pale yellow, moderately hard to hard, very fine to coarse, angular to sub-angular, translucent to opaque sparry calcite, minor silt, minor rounded fine sand in part, minor black lithics, minor glauconite, highly calcareous, well cemented, poor visible porosity.	PVP	-	-	-	-	-	-
	10	LOOSE SAND: Fine to medium, moderately sorted, sub- rounded to rounded, translucent to transparent quartz, minor orange to yellow quartz, trace cryptocrystalline pyrite. Minor coarse to very coarse rounded clear to frosted quartz.	PIP	-	-	-	-	-	-
	5	SKELETAL FRAGMENTS: Pale yellow to orange to grey, dominantly bivalve fragments, minor bryozoans.		-	-	-	-	-	-
	5	CALCISILTITE: Medium grey to olive grey to occasionally black, soft to hard, highly calcareous, minor to common clastic silt fraction grading in part to fine sand.	PVP	-	-	-	-	-	-
	Tr	SANDSTONE: Moderate olive brown, hard, very fine, welll sorted sub-rounded quartz and minor lithics, calcite cemented, silty matrix.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 64.2%; Dolomite: 12.2%							
790	70	CALCARENITE: as above, increase in clastic silt fraction.	PVP	-	-	-	-	-	-
	25	CALCISILTITE: Medium grey to olive grey to occasionaly black, dominantly soft, minor hard, highly calcareous, minor to common clastic silt fraction grading in part to fine sand.	PVP	-	-	-	-	-	-
	5	LOOSE SAND: as above.	PIP	-	-	-	-	-	-
	Tr	SKELETAL FRAGMENTS: dominantly bivalve fragments, minor bryozoans, trace echinoid spines.		-	-	-	-	-	-
	Tr	SANDSTONE: as above.	PVP	-	-	-	-	-	-
	İ	Calcimetry: Calcite: 66.2%; Dolomite: 12.8%							
810	75	CALCARENITE: as above, common clastic silt fraction.	PVP	-	-	-	-	-	-
	20	CALCISILTITE: Medium grey to olive grey to occ black, dominantly soft to minor hard, highly calcareous, minor to common clastic silt fraction grading in parts to fine sand.	PVP	-	-	-	-	-	-
	5	LOOSE SAND: as above, dominantly fine to medium grained, trace coarse grains.		-	-	-	-	-	-

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	Tr	SKELETAL FRAGMENTS: Pale yellow to orange to grey, dominantly bivalve fragments, minor bryozoans, trace echinoid spines.		-	-	-	-	-	-
	Tr	SANDSTONE: Moderate olive brown, hard, very fine grained, welll sorted, sub-rounded quartz and minor lithics, calcite cemented, silty matrix.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 67.4%; Dolomite: 12.8%							
830	60	CALCARENITE: as above, common clastic silt fraction.	PVP	-	-	-	-	-	-
	40	CALCISILTITE: Medium grey to olive grey to occasionally black, dominantly soft, minor hard, highly calcareous, minor to common clastic silt fraction, grading in part to fine sand.	PVP	-	-	-	-	-	-
	Tr	LOOSE SAND: as above, dominantly fine to medium grained, trace coarse grains.		-	-	-	-	-	-
	Tr	SKELETAL FRAGMENTS: Pale yellow to orange to grey, dominantly bivalve fragments, minor bryozoans, trace echinoid spines.		-	-	-	-	-	-
		Calcimetry: Calcite: 61.0%; Dolomite: 10.3%							
850	50	CALCARENITE: as above, common clastic silt fraction.	PVP	-	-	-	-	-	-
	50	CALCISILTITE: Medium grey to olive grey to occasionally black, dominantly soft to firm, minor hard, highly calcareous, minor to common clastic silt fraction, grading in part to fine sand.	PVP	-	-	-	-	-	-
	Tr	LOOSE SAND: as above.		-	-	-	-	-	-
	Tr	SKELETAL FRAGMENTS: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 70.6%; Dolomite: 9.6%							
870	60	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
	40	CALCARENITE: as above, dominantly hard but crushed in parts.	PVP	-	-	-	-	-	-
	Tr	LOOSE SAND: as above, dominantly fine grains.		-	-	-	-	-	-
	Tr	SKELETAL FRAGMENTS: as above, bivalve fragments, bryozoans, trace echinoid spines.		-	-	-	-	-	-
		Calcimetry: Calcite: 57.8%; Dolomite: 8.3%							
890	50	CALCARENITE: as above, increase in clastic silt fraction.	PVP	-	-	-	-	-	-
	50	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
	Tr	trace coarse to very coarse frosted & rounded quartz grains.		-	-	-	-	-	-
	Tr	SKELETAL FRAGMENTS: Pale yellow to orange to grey, dominantly bivalve fragments, minor bryozoans, trace echinoid spines.		-	-	-	<u> </u>	-	-

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	Tr	CALOU UTITE Wilete Is and ansame			_		_		
	11	CALCILUTITE: White, hard, amorphous.		-	<u> </u>	-	<u> </u>	-	-
910		Calcimetry: Calcite: 57.8%; Dolomite: 7.7%	PVP	_		_			_
910	50	CALCARENITE: as above, common clastic silt fraction.	PVP	-	-	-	-	-	-
	45	CALCISILTITE: Medium grey to olive grey to occassionally black, dominantly soft to firm, minor hard, highly calcareous, minor to common clastic silt fraction, grading in part to fine sand.	PVP	-	-	-	-	-	-
	5	CALCILUTITE: as above.		-	-	-	-	-	-
	Tr	LOOSE SAND: as above, dominantly fine to medium grained, trace coarse to very coarse, frosted & rounded quartz grains.		-	-	-	-	-	-
	Tr	SKELETAL FRAGMENTS: Dominantly bivalve fragments, minor bryozoans, trace echinoid spines.		-	-	-	-	-	-
		Calcimetry: Calcite: 38.5%; Dolomite: 6.4%							
930	45	CALCARENITE: as above, common clastic silt fraction.	PVP	-	-	-	-	-	-
	45	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
	10	CALCILUTITE: White to pale grey, hard, amorphous, slightly silty.		-	-	-	-	-	-
	Tr	LOOSE SAND: as above.		-	-	-	-	-	-
	Tr	SKELETAL FRAGMENTS: as above.		-	-	-	-	-	-
		Calcimetry: Calcite 59.7%; Dolomite: 12.8%							
950	60	CALCISILTITE: Predominantly olive grey, medium grey, dominantly soft to firm, minor hard, highly calcareous, minor to common clastic silt fraction, grading in part to fine sand.	PVP	-	-	-	-	-	-
	35	CALCARENITE: as above, common clastic silt fraction.	PVP	-	-	-	-	-	-
	5	CALCILUTITE: as above.		-	-	-	-	-	-
	Tr	LOOSE SAND: as above.		-	-	-	-	-	-
	Tr	SKELETAL FRAGMENTS: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 70.6%; Dolomite: 10.9%							
970	65	CALCISILTITE: Dominantly olive grey, medium grey, soft to firm, minor hard, moderately to highly calcareous, minor to common clastic silt fraction, grading in part to fine sand.	PVP	-	-	-	-	-	-
	30	CALCARENITE: as above, common clastic silt fraction.	PVP	-	-	-	-	-	-
	5	CALCILUTITE: as above.		-	-	-	-	-	-
	Tr	LOOSE SAND: as above.		-	-	-	-	-	-
	Tr	SKELETAL FRAGMENTS: Pale yellow to orange to grey, dominantly bivalve fragments, minor bryozoans, trace echinoid spines.		-	-	-	-	-	-

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	Ι	Calcimetry: Calcite: 73.9%; Dolomite: 14.8%							
990	80	•	PVP	-	-	-	-	-	-
	10	CALCILUTITE: as above.		-	-	-	-	-	-
	10	CALCARENITE: Light olive grey to olive grey in part, minor white to pale yellow, moderately hard to hard, very fine to fine grained, angular to sub-angular, translucent to opaque sparry calcite, minor silt, minor black lithics, highly calcareous, well cemented, poor visible porosity.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 65.5%; Dolomite: 12.8%							
1010	80	CALCISILTITE: Pale to medium grey to olive grey, as above.	PVP	-	-	-	-	-	-
	10	CALCILUTITE: White to pale grey, hard, amorphous, slightly silty.		-	-	-	-	-	-
	10	CALCARENITE: as above. Trace shell fragments.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 61.0%; Dolomite: 13.5%							
1030	85	CALCISILTITE: Pale to medium grey to olive grey, as above.	PVP	-	-	-	-	-	-
	10	CALCILUTITE: as above.		-	-	-	-	-	-
	5	CALCARENITE: as above. Trace shell fragments.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 62.9%; Dolomite: 11.6%							
1050	85	CALCISILTITE: Pale to medium grey to olive grey, as above.	PVP	-	-	-	-	-	-
	10	CALCILUTITE: as above.		-	-	-	-	-	-
	5	CALCARENITE: as above. Trace bryozoan fragments.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 57.8%; Dolomite: 10.3%							
1070	95	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
	5	CALCILUTITE: as above.		-	-	-	-	-	-
	Tr	CALCARENITE: as above. Trace shell fragments.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 59.7%; Dolomite: 11.6%							
1090	95	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
	5	CALCILUTITE: as above.		-	-	-	-	-	-
	Tr	CALCARENITE: as above. Trace foraminifera, trace bryozoan.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 73.9%; Dolomite: 11.6%							
1110	90	CALCISILTITE: Pale grey to medium grey, olive grey, as above.	PVP	-	-	-	-	-	

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	10	CALCILUTITE: White to pale grey, hard, amorphous, slightly silty.		-	-	-	-	-	-
	Tr	CALCARENITE: as above. Trace foraminifera, trace bryozoans, trace echinoid fragments.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 74.5%; Dolomite: 10.3%							
1130	90	CALCISILTITE: Pale grey to medium grey, olive grey, as above.	PVP	-	-	-	-	-	-
	5	CALCILUTITE: as above.		-	-	-	-	-	-
	5	CALCARENITE: as above. Trace foraminifera, trace bryozoans, trace echinoid fragments.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 68.1%; Dolomite: 12.2%							
1150	85	CALCISILTITE: as above. Rare disseminated pyrite.	PVP	-	-	-	-	-	-
	10	CALCILUTITE: White to predominantly light to medium olive grey, soft to firm, occasionally hard, amorphous, slightly silty.		-	-	-	-	-	-
	5	CALCARENITE: as above, trace bryozoans, trace echinoid fragments.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 61.7%; Dolomite: 9.0%							
1170	85	CALCISILTITE: Pale to medium grey, olive grey, as above. Rare disseminated pyrite.	PVP	-	-	-	-	-	-
	10	CALCILUTITE: as above.		-	-	-	-	-	-
	5	CALCARENITE: as above, trace bryozoans, trace bryozoan fragments, trace foraminifera, trace microcrystalline pyrite clusters.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 57.8%; Dolomite: 6.4%							
1190	75	moderately hard, blocky, with common dark specks of ?carbonaceous material, rare disseminated pyrite, rare blocky calcite sparry crystals; Trace medium grey, hard, sub-fissile, with abundant microcrystalline pyrite microlaminae; also trace pyrite masses with pyrite in acicular form replacing probable echinoid spines.	PVP	-	-	-	-	-	-
	20	CALCILUTITE: Off-white to light olive grey, firm to moderately hard, sub-blocky, rarely sub-fissile, slightly silty, with common unidentified white silt specks.		-	-	-	-	-	-
	5	CALCARENITE: Grading to Calcisiltite, with trace blocky sparry calcite aggregates up to very coarse sand-size.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 61.7%; Dolomite: 9.6%							

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
1210	60	CALCILUTITE: Very light to medium olive grey, firm, softening in water (slightly dispersive), sub-blocky to sub-fissile, with rare darker streaks, trace pyrite and glauconite, trace loose forams (common ovoid type) and echinoid spines.		-	-	-	-	-	-
	40	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
	Tr	CALCARENITE: as above.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 64.2%; Dolomite: 12.8%							
1230	60	CALCILUTITE: as above.		-	-	-	-	-	-
	40	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 57.8%; Dolomite: 6.4%							
1250	50	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
	50	CALCILUTITE: as above; with rare very fine glauconite; also trace loose glauconite nodules, rarely mammillated, medium lower to very coarse lower sand sized; trace loose bryozoa & benthic forams.		-	-	-	-	-	-
	Tr	CALCARENITE: Dark grey, slightly translucent, speckled with ?pyrite aggregates.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 54.6%; Dolomite: 7.9%							
1270	70	CALCILUTITE: as above.		-	-	-	-	-	-
	30	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 59.1%; Dolomite: 5.8%							
1290	70	CALCILUTITE: as above.		-	-	-	-	-	-
	30	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 57.8%; Dolomite: 7.7%							
1310	75	CALCILUTITE: as above, more greenish grey than olive grey, firm to moderately hard, blocky, slightly more argillaceous (less calcareous); rare loose foraminifera (both benthic and planktic), trace loose bryozoan fragments.	PVP	-	-	-	-	-	-
	25	CALCISILTITE: Olive grey, firm to moderately hard, blocky, argillaceous, with common sand-sized recrystallised shell material, rare pyrite, grading to Calcilutite.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 41.7%; Dolomite: 7.7%							
1000		Start 10m sample interval from 1310m onwards							
1320	80	CALCILUTITE: as above.	D) /E	-	-	-	-	-	
	20	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
1330	80	CALCILUTITE: as above; trace loose glauconite nodules as above. Finer cuttings are rich in loose forams (mainly benthic forms, diverse range of taxa; rare planktics).		-	-	-	-	-	-

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	20	CALCISILTITE: as above.	PVP	-	-	- 1	-	-	-
		Calcimetry: Not performed							
1340	90	CALCILUTITE: as above.		-	-	-	-	-	-
	10	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
1350	90	CALCILUTITE: as above.		-	-	-	-	-	-
	10	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
		Note: 1350m sample was taken while pumps were off – only very fine cuttings in tray.		-	-	-	-	-	-
		Calcimetry: Not performed							
1360	90	CALCILUTITE: as above.		-	-	-	-	-	-
	10	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
1370	90	CALCILUTITE: Greenish grey, firm to moderately hard, sub- blocky to sub-fissile, argillaceous, rarely grading to calcareous Claystone, with common loose forams as above.		-	-	-	-	-	-
	10	CALCISILTITE: Olive grey, firm to hard, blocky, with abundant microcrystalline calcite (best seen in dry samples).	PVP	-	-	-	-	-	-
		Calcimetry: Not performed							
1380	95	CALCILUTITE: as above.		-	-	-	-	-	-
	5	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
1390	95	CALCILUTITE: as above.		-	-	-	-	-	-
	5	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 41.1%; Dolomite: 6.4%							
1400	95	dark grey, more fissile, hard Calcilutite.		-	-	-	-	-	-
	5	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
1410	100	CALCILUTITE: as above, grading to calcareous Claystone.		-	-	-	-	-	-
	Tr	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 25.7%; Dolomite: 5.1%							
1420	100	CALCILUTITE: as above, grading to calcareous Claystone.		-	-	-	-	-	-
	Tr	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
1430	100	CALCILUTITE: as above, grading to calcareous Claystone.		-	-	-	-	-	-
	Tr	CALCISILTITE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 50.7%; Dolomite: 6.4%							
1440		No sample collected.							
1450	100	CALCILUTITE: as above, grading to calcareous Claystone, trace very fine glauconite, trace foraminifera.		-	-	-	-	-	-

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	Tr	CALCISILTITE: as above.		_ [_		_		_
	 ''	Calcimetry: Calcite: 48.8%; Dolomite: 5.8%							
1460	100	<u> </u>		_		_		_	_
1400	Tr	CALCISILTITE: as above.		_		_		_	_
1470	100			_		_			_
1470	100	trace very fine glauconite (slight increase over previous samples), trace foraminifera.					-		
	Tr	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 41.7%; Dolomite: 3.2%							
1480	100	CALCILUTITE: as above, grading to calcareous Claystone, minor very fine to fine glauconite (slight increase over previous samples), trace foraminifera.		-	-	-	-	-	-
	Tr	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
1490	100	minor very fine to medium glauconite pellets and nodules, trace foraminifera, slightly silty in parts.		-	-	-	-	-	-
	Tr	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 35.3%; Dolomite: 2.6%							
1500	100	CALCILUTITE: as above, grading to calcareous Claystone, trace very fine to medium glauconite pellets and nodules, trace foraminifera, slightly silty in part.		-	-	-	-	-	-
	Tr	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
1510		No sample collected.							
		Calcimetry: No sample							
1520	100	hard, sub-blocky to sub-fissile, argillaceous, grading to moderately calcareous Claystone, rare (1%) very fine to medium glauconite pellets and nodules, trace foraminifera, slightly silty in part.		-	-	-	-	-	-
	Tr	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
		5m sample interval commenced at 1520m MDRT.							
1525	95	CALCAREOUS CLAYSTONE: Light greenish grey to olive grey, firm to moderately hard, sub-blocky to sub-fissile, argillaceous, moderately to highly calcareous, minor very fine to medium glauconite pellets and nodules, trace foraminifera, slightly silty in part.		-	-	-	-	-	-
	5	CALCILUTITE: Light greenish grey to grey, soft to firm, amorphous to blocky, argillaceous, highly calcareous, common to abundant disseminated fine glauconite pellets.		-	-	-	-	-	-

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
									1
1530	90	CALCAREOUS CLAYSTONE: Light greenish grey to olive grey,		-	-	-	-	-	-
		firm to moderately hard, sub-blocky to sub-fissile, argillaceous,							
		moderately to highly calcareous, rare (1%) very fine to medium							
	10	glauconite pellets and nodules, trace foraminifera, slightly silty.							
	10			-	-	-	-	-	-
1505		Calcimetry: Not performed							
1535	85	CALCAREOUS CLAYSTONE: as above, with 5% loose and disseminated fine to coarse glauconite pellets and clusters.		-	<u>-</u>	-	-	-	-
	15	CALCILUTITE: as above.		-	-	-	-	-	-
1540	85	CALCAREOUS CLAYSTONE: as above, with common to		-	-	-	-	-	-
		abundant (20%) loose and disseminated fine to coarse							
		glauconite pellets and clusters. Trace echinoid spines.							
	15	CALCILUTITE: as above.		-	-	-	-	-	-
1545	85	CALCAREOUS CLAYSTONE: as above, with abundant (25%)		-	-	-	-	-	-
		loose and disseminated fine to coarse sand-sized glauconite							
	ļ.,_	pellets and clusters. Trace shell fragments, trace pyrite clusters.							
	15	or in order of the state of the		-	-	-	-	-	-
1550	80	CALCAREOUS CLAYSTONE: as above, with abundant (30%)		-	-	-	-	-	-
		loose and disseminated fine to coarse glauconite pellets and							
		clusters. Trace shell fragments, trace pyrite clusters.							
	20			-	<u>-</u>	-	-	-	-
		Calcimetry: Calcite: 31.8%; Dolomite: 1.9%							
1555	80	CALCAREOUS CLAYSTONE: as above, becoming brownish		-	-	-	-	-	-
		grey in part, grading to Siltstone. With abundant (30%) loose							
		and disseminated fine to coarse glauconite pellets and clusters.							
		Trace shell fragments, trace pyrite clusters. Trace broken crystalline calcite vein material.							
	20	CALCILUTITE: as above, hard in part.		_	-	-	-	-	_
1560	50	CALCAREOUS CLAYSTONE: as above, grading to Siltstone.		-	<u>-</u>	-		-	_
1300	30	Common to abundant (20%) glauconite pellets and clusters (as		-	-		_	_	_
		above). Trace shell fragments, foraminifera and bryozoan							
		fragments, trace pyrite clusters. Trace broken crystalline calcite							
		vein material.							
	50	CALCILUTITE: as above, hard in part, grading to calcareous		-	-	-	-	-	-
		Claystone							
1565		Sample not collected.							
1570	75	SILTSTONE: Medium brown grey to olive grey to brown, firm to	PVP	-	-	-	-	-	-
		hard, blocky, slightly carbonaceous, non to slightly calcareous.							
	20	CALCILUTITE: ILght grey to greenish grey, firm to hard,		-	-	-	-	-	-
		grading to calcareous Claystone, silty.							
	5	LOOSE SAND: Very fine to coarse, poorly sorted, sub-rounded	FIP	-	-	-	-	-	-
		to rounded, clear translucent quartz grains.							

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
						<u> </u>	· · · · · · · · · · · · · · · · · · ·		
		Calcimetry: Calcite: 14.8%; Dolomite: 0.6%							
1575	55	SILTSTONE: Medium brown grey to olive grey to brown, firm to hard, blocky, slightly carbonaceous, non to slightly calcareous.	PVP	Nil	Trace pinpoint pale greenish yellow	Moderately fast blooming mod bri blue-white	Thin moderately bright blue green fluorescing residual ring	Nil	Poor
	20	CALCILUTITE: Light grey to greenish grey, firm to hard, grading to calcareous Claystone, silty.		-	-	-	-	-	-
	20	COAL: Dark brown to black, glossy in parts along fractures, hard, brittle, silty in part.		-	-	-	-	-	-
	5	LOOSE SAND: as above. Minor glauconite.	FIP	-	-	-	-	-	-
1580	60	COAL: as above.		-	-	-	-	-	-
	30	SILTSTONE: Medium brown grey to olive grey to brown, firm to hard, blocky, slightly carbonaceous, non to slightly calcareous.	PVP	Nil	Trace pinpoint pale greenish yellow	Moderately fast blooming mod bri blue-white	Thin moderately bright blue green fluorescing residual ring	Very faint pale tea	Poor
	10	CALCILUTITE: Light grey to greenish grey, firm to hard, grading to calcareous Claystone, silty.		-	-	-	-	-	-
	Tr	rounded to rounded, clear translucent quartz grains. Minor glauconite.		-	-	-	-	-	-
1585	60	COAL: Dark brown to black, glossy in parts along fractures, hard, brittle, silty in part.		-	-	-	-	-	-
	25	SILTSTONE: as above.	PVP	Nil	1% pinpoint pale greenish yellow	Fast streaming to blooming, bright green blue	Mod wide bright green blue fluorescing residual ring	Pale yellow brown	Fair
	10			-	-	-	-	-	-
	5	LOOSE SAND: Fine to very coarse grained, poorly sorted, sub- rounded to rounded, clear translucent quartz grains. Minor glauconite, minor lithic fragments, trace pyrite clusters, trace pyritised quartz.	FIP	-	-	-	-	-	-
1590	60	COAL: as above.		-	-	-	-	-	-
	25	SILTSTONE: as above, slightly carbonaceous to coaly in part, non to slightly calcareous.	PVP	Nil	1% dull pinkish orange	Slow blooming dull blue white	Very thin very pale green blue fluorescing residual ring	C'less	Poor
	10	CALCILUTITE: as above, grading to calcareous Claystone.		-	-	-	-	-	-
	5	LOOSE SAND: Fine to very coarse grained, poorly sorted, subrounded to rounded clear translucent quartz. Minor glauconite, trace pyrite clusters. Trace pyritised quartz. Minor lithic fragments.	FIP	-	-	-	-	-	-
		Calcimetry: Calcite: 19.3%; Dolomite: 0.8%							
1595	50	COAL: Dark brown to black, glossy in parts along fractures, hard, brittle, silty in parts.		-	-	-	-	-	-
	35	SILTSTONE: Medium brown grey to olive grey to dark brown, firm to hard, blocky, slightly carbonaceous to coaly in parts, non to slightly calcareous.	PVP	Nil	Trace dull pinkish orange	Slow blooming dull blue white	Thin very pale green blue fluorescing residual ring	C'less	Poor

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	_								
	10] 3 - 3 - 7 - 3 3 - 7,		-	-	-	-	-	-
	 _	grading to calcareous Claystone, silty.	F15						
	5	LOOSE SAND: as above.	FIP	-	-	-	-	-	
1600	60	COAL: as above.		-	-	-	-	-	-
	25	SILTSTONE: as above.	PVP	Nil	1% dull pinkish orange	Slow blooming moderately bright blue white	Thin very pale green blue fluorescing residual ring	C'less	Poor
	10	CALCILUTITE: as above.		-	-	-	-	-	-
	5	LOOSE SAND: as above.	FIP	-	-	-	-	-	-
1605	40	SILTSTONE: Medium brown grey to olive grey to dark brown, firm to hard, blocky, slightly carbonaceous to coaly in part, non to slightly calcareous.	PVP	Nil	1% dull pinkish orange	Slow blooming moderately bright blue white	Thin very pale green blue fluorescing residual ring	C'less	Poor
	30	coarse upper, dominantly fine grained, poorly sorted, sub- rounded to rounded, clear quartz, minor lithics, minor glauconite.	FIP	-	-	-	-	-	-
	20	CALCAREOUS CLAYSTONE: Light grey to greenish grey, firm to hard, moderately to highly calcareous, silty.		-	-	-	-	-	-
	10	hard, brittle, silty in part.		-	-	-	-	-	-
1610	50	SILTSTONE: Medium brown grey to olive grey to dark brown, firm to hard, blocky, slightly carbonaceous to coaly in parts, non to slightly calcareous.	PVP	Nil	10% moderately bright to dull, yellow to orange	Very slow blooming bluish white (also from SLTST with no direct fluor).	Thin pale blue fluorescing residual ring	C'less	Poor
	30	very coarse upper, minor clear quartz granules, dominantly medium grained, poorly sorted, sub-rounded to rounded, clear quartz, minor lithics, minor glauconite.	FIP	-	-	-	-	-	-
	15	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
	5	COAL: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 9.3%; Dolomite: 0.6%							
1615	70	SILTSTONE: Medium brown grey, olive grey to olive black, firm to hard, blocky, slightly carbonaceous to coaly in parts, non to slightly calcareous.	PVP	Nil	2% dull orange-yellow	Slow, diffuse bluish white	nil	nil	Poor
	20	very coarse upper, dominantly medium grained, poorly sorted, sub-rounded to rounded, clear quartz, minor lithics, minor calcite grains, minor glauconite, common sub-angular clear quartz granules, fair inferred porosity.	FIP	Nil	Trace bright light greenish yellow from sand grain fragment with siltstone cemented to it	nil	nil	nil	Poor
	_	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
1620	70		PVP	Nil	Trace dull orange-yellow	nil	nil	nil	Poor
	15	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	10	LOOSE SAND: as above.	FIP	_	_	-		_	l -
	5	COAL: as above		_	_	-		-	
1625	80	SILTSTONE: as above.	PVP		1% very dull yellow	Slow diffuse bluish white	Very thin pale blue fluorescing residual ring	C'less	Poor
	15	common subangular clear quartz granules.	FIP	Nil	Trace pinpoint bri pale yellow (from sand grain)	nil	nil	nil	Poor
	5	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
1630	70	SILTSTONE: as above.	PVP	Nil	Trace dull yellow	nil	nil	nil	Poor
	25	LOOSE SAND: as above, dominantly medium grained, common sub-angular clear quartz granules, trace muscovite flakes, trace pyrite.	FIP	-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: Light grey to greenish grey, firm to hard, moderately to highly calcareous, silty.		-	-	-	-	-	-
		Calcimetry: Calcite: 9.6%; Dolomite: 0.4%							
1635	50	SILTSTONE: as above.	PVP	Nil	5% pinpoint moderately bright, pinkish orange (from vein calcite rockflour)	Slow, weak diffuse bluish white	Very thin pale blue fluorescing residual ring	C'less	Poor
	30	COAL: as above.		-	-	-	-	-	-
	15	LOOSE SAND: as above, dominantly medium grained, common sub-angular clear quartz granules, trace muscovite flakes, trace pyrite.	FIP	-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
1640	75	COAL: as above.		-	-	-	-	-	-
	15	SILTSTONE: as above, commonly coaly, in part grading to carbonaceous very fine grained Sandstone.	PVP	Nil	Trace bright greenish yellow from calcite veinlets in dark brown Siltstone	nil	Very thin pale blue fluorescing residual ring	C'less	Poor
	5	LOOSE SAND: as above.	FIP	-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
1645	40	SILTSTONE: Medium brown grey, olive grey to dark brown, firm to hard, blocky, slightly carbonaceous to coaly in part, non to slightly calcareous.	PVP	Nil	1% dull pinkish orange mineral fluorescence	Slow, diffuse blu wh cut from SLTST with no direct fluor.	nil	nil	Poor
	30	coarse upper, dominantly medium grained, poorly sorted, sub- rounded to rounded clear quartz, common sub-angular to sub- rounded clear quartz granules, minor lithics, minor glauconite.	FIP	-	-	-	-	-	-
	20			-	-	-	-	-	-
	10	COAL: Dark brown to black, glossy in parts along fractures, hard, brittle, silty in parts.		-	-	-	-	-	-
1650	65	COAL: as above.		-	-	-	-	-	-
	25	SILTSTONE: as above, commonly coaly, in part, grading to carbonaceous very fine grained Sandstone, poor visible porosity.	PVP	Nil	Trace pinpoint pinkish orange and light yellow	nil	nil	nil	Nil

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
		**							
	5	LOOSE SAND: as above, dominantly medium grained, trace	FIP	-	-	-	-	-	-
		muscovite flakes, trace pyrite, common sub-angular clear quartz granules.							
	5	CALCAREOUS CLAYSTONE: Light grey to greenish grey, firm				_			
	5	to hard, moderately to highly calcareous, silty.		-	-	-	-	-	1
		Calcimetry: Calcite: 8.3%; Dolomite: 0.5%							
1655	50	LOOSE SAND: White to pale grey, fine lower to very coarse	GIP	_	_	_		-	_
1000		upper, minor granules, bimodal, dominantly fine to medium and							
		very coarse grained, very poorly sorted, sub-rounded to sub-							
		angular, clear to frosted quartz, trace muscovite, trace lithics,							
		trace glauconite, good inferred porosity.							
	30		PVP	Nil	Trace dull yellowish orange	nil	nil	nil	Nil
		to hard, blocky, slightly carbonaceous to coaly in part, non to							
		slightly calcareous, in part grading to carbonaceous very fine grained Sandstone.							
	10	v		_		_			<u> </u>
	10	hard, brittle, silty in parts.		_	-	-	-	_	-
	10			_		_		-	_
		to hard, moderately to highly calcareous, silty.							
1660	85		GIP	-	-	-	-	-	-
		bimodal, dominantly fine to medium and very coarse grained,							
		very poorly sorted, sub-rounded to sub-angular, clear to frosted							
		quartz, trace muscovite, trace lithics, trace glauconite.							
	5	SILTSTONE: as above.	PVP	Nil	Trace dull yellowish orange	nil	nil	nil	Nil
	5	COAL: as above.		-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
1665		SILTSTONE: as above.	PVP	-	-	-	-	-	-
	30			-	-	-	-	-	-
	10	CARBONACEOUS CLAYSTONE: Dark yellowish brown to		-	-	-	-	-	-
		brownish grey, firm, elongate, sub-fissile, commonly with dark							
		polished faces (previously as traces, not differentiated from coal).							
	10	LOOSE SAND: as above.	GIP	_		_		_	_
	5	CALCAREOUS CLAYSTONE: as above.	- GII	_		_		_	
1670	80	COAL: as above.		_		-		_	_
1070	5	CARBONACEOUS CLAYSTONE: as above.		_		_		_	_
	5	CALCAREOUS CLAYSTONE: as above.		_		_		-	_
	5	LOOSE SAND: as above.	FIP	_		_		-	
	5	SILTSTONE: as above.	PVP	Nil	Trace dull yellowish orange	nil	nil	nil	Nil
	<u> </u>	Calcimetry: Calcite: 6.4%; Dolomite: 0.9%	· • ·	1411	dan yonomon orange	1.111	1111		
1675	50	COAL: as above.		-	-	-	-	-	-
	20	CALCAREOUS CLAYSTONE: as above.		_	-	-	-	-	-

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	_								
	10			-	-	-	-	-	-
	15	SILTSTONE: as above.	PVP	-	-	-	-	-	-
	5	LOOSE SAND: as above.	FIP	-	-	-	-	-	-
1680	50	LOOSE SAND: Pale grey, very fine upper to granule, dominantly medium lower to medium upper grained, very poorly sorted, sub-angular, sub-spherical, transparent to translucent quartz; trace aggregates, hard, tightly silica cemented with apparent dark brown oil stain (but not confirmed by fluorescence).	GIP	Dark brown patchy oil? stain	Trace dull yellowish orange	No cut	nil	nil	Nil
	40			-	-	-	-	-	-
	5	SILTSTONE: Pale yellowish brown, speckled dark brown to black with carbonaceous material; also dusky yellowish brown with abundant carbonaceous material and laminae, blocky to sub-fissile, non calcareous, locally with common muscovite.	PVP	-	-	-	-	-	-
	5	CLAYSTONE: Pale yellowish brown, firm, sub-blocky, non calcareous; trace of dark brown Claystone.		-	-	-	-	-	-
1685	95	LOOSE SAND: Very light grey, as above.	GIP	-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: as above; trace pale yellowish brown Claystone.		-	-	-	-	-	-
1690	80	LOOSE SAND: White to very pale yellow, very fine to granule, dominantly very coarse upper to coarse upper grained, poorly sorted, angular fragments to sub-rounded, sub-spherical, transparent to translucent quartz.	GIP	-	-	-	-	-	-
	20	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite:2.4%; Dolomite: 0.3%							
1695	90	LOOSE SAND: Very pale yellow, coarse upper to granule, dominantly very coarse lower to upper grained, moderately sorted, angular fragments to sub-rounded, sub-spherical, transparent to translucent quartz.	GIP	-	-	-	-	-	-
	10	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
1700	95	LOOSE SAND: as above.	GIP	-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
1705	60	LOOSE SAND: as above.	GIP	-	-	-	-	-	-
	30	SILTSTONE: Pale yellowish brown, speckled with black coal and carbonaceous material, firm to moderately hard, sub-blocky to fissile, commonly microlaminated, with irregular coal fragments, rarely very fine sandy; rarely with scattered fine glauconite nodules; also loose mammilated grayish green glauconite (ovoid nodules, medium to coarse sand-sized).	PVP	-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
	5	COAL: as above.		-	-	-	-	-	-

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m	, -	(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
1710	35	LOOSE SAND: as above, fine upper to granule, dominantly very coarse to granule grained, very poorly sorted, angular fragments to sub-angular grains, rarely rounded, subs-pherical, transparent to translucent quartz, good inferred porosity.	GIP	-	-	-	-	-	-
	60	SILTSTONE: as above.	PVP	-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 3.9%; Dolomite: 0.5%							
1715	50	LOOSE SAND: as above.	GIP	-	-	-	-	-	-
	45	SILTSTONE: as above.	PVP	-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
1720	75	LOOSE SAND: as above.	GIP	-	-	-	-	-	-
	15	SILTSTONE: as above.	PVP	-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
	5	COAL: as above.		-	-	-	-	-	-
1725	75	LOOSE SAND: Light yellowish grey, bimodal, very fine upper to medium upper, and very coarse to granule grained, angular fragments to sub-rounded, transparent to translucent quartz.	GIP	-	-	-	-	-	-
	20	SILTSTONE: as above; rarely with abundant very dark green, fine to medium sand-sized glauconite; trace coal and carbonaceous Claystone.	PVP	-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
1730	75	LOOSE SAND: as above.	GIP	-	-	-	-	-	-
	20	SILTSTONE: as above.	PVP	-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 15.6%; Dolomite: 0.2%							
1735	85	moderately to poorly sorted, common angular fragments, dominantly sub-rounded, rarely well rounded, sub-spherical, transparent to translucent quartz, trace pinkish quartz. Trace coarse Sandstone aggregate, hard, poor visible porosity, trace light yellow clay, inferred silica cemented, but overgrowths not confirmed, non calcareous.	GIP - PVP	-	-	-	-	-	-
	10	SILTSTONE: as above.	PVP	-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
1740	95	granule, moderately well sorted.	GIP	-	-	-	-	-	-
	Tr		PVP	-	-	-	-	-	-
	5	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 18.0%; Dolomite: 1.4%							

3D OIL LIMITED WELL: WARDIE-1

WELLSITE CUTTINGS SAMPLES DESCRIPTIONS

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
1745	100	LOOSE SAND: Very light grey, fine lower to granule grained, dominantly medium to coarse, very poorly sorted, angular to sub-rounded, transparent to translucent quartz. Markedly finer grained than above.	GIP	-	-	-	-	-	-
1750	100	LOOSE SAND: Very light grey, very fine to very coarse, dominantly medium to coarse grained, very poorly sorted, angular to sub-rounded, transparent to translucent quartz.	GIP	-	-	-	-	-	-
1755	100	LOOSE SAND: as above. Traces of Barablok mud additive appears as very fine black angular coal-like flakes.	GIP	-	-	-	-	-	-
1760	100	LOOSE SAND: White to very light yellowish grey, fine upper to coarse upper, dominantly coarse grained, poorly sorted, angular to sub-angular, rarely sub-rounded, transparent to translucent, sub-spherical quartz.	GIP	-	-	-	-	-	-
		Calcimetry: Calcite: 8.5%; Dolomite: 0.1%							
1765	100	LOOSE SAND: as above.	GIP	-	-	-	-	-	-
1766	100	LOOSE SAND: as above, trace aggregates of pyrite crystals.	GIP	-	-	-	-	-	-
		Calcimetry: Calcite: 7.4%; Dolomite: 0.1%							
		311 mm (12.25") hole section reached TD of 1766 mMDRT at 15:30 hrs on 18 May 2008.							

Attachment 11 Daily Geological Reports

Report No. 01

REPORT PERIOD: 00:00 - 24:00 hrs, 13/05/2008

WELLSITE GEOLOGISTS: Simon Ward

Rig: West Triton RT-ML (m): 77.5

DEPTH @ 24:00 HRS:

751 mMDRT 706.8 mTVDRT

RIG TYPE: Jack-up

RT ELEV. (m, 38.0

DEPTH LAST REPORT:

161 mMDRT

10 May 2008

LAST CSG/LINER:

(@ 24:00 HRS) 762 mm (30") 161 mTVDRT

590 m

SPUD DATE: (a) 19:30hrs

(mMDRT) @ 133

24HR. PROGRESS:

34.4° @ 722.5 m

Days from Spud: 3.19

9 **MW (SG)**:

1.06 LAST SURVEY:

MDRT, 239.9° Azi 683.3 mTVDRT

BIT SIZE:

444mm / 17.5"

LAST LOT/FIT (SG):

N/A

EST. PORE PRESSURE:

Operations Summary

Drilled 444mm (17.5") hole to 170m. Ran gyro survey on wireline to check hole orientation (survey confirmed well is oriented away from WSH-3 wellbore). Continued to drill to KOP at 250m and then directionally drilled the tangent hole section to TD at 751m using seawater and gel sweeps (all returns overboard as riser not installed). Circulated hole clean with two high-vis sweeps and then displaced the well with viscosified KCl/polymer mud. POOH — hole good.

displaced the well with viscosified KCl/polymer mud. POOH – hole good. Encountered 20 kips overpull with the stabiliser at the conductor shoe. Made up the TDS and pumped and rotated through the shoe. Continued to POOH to surface

and laid out 444mm (17.5") BHA. Commenced preparations for casing run.

CURRENT STATUS @

24HRS. DRILLING SUMMARY:

06:00HRS: (14-05-2008)

Skidding rig to align casing with well centre.

EXPECTED NEXT ACTIVITY:

Run 340mm (13-3/8") casing and cement it in place.

Cuttings Descriptions											
DEPTH (MMDRT)		ROP (WHR.) MinMax.	DESCRIPTIONS (LITHOLOGY / SHOWS)	BG G	AS (%)						
Тор	Btm	(Ave.)	2233.11 110.10 (2.1110.23017 0.110.110)	Ave.	Max.						
161	751		No cuttings collected during this 24 hour period – all returns overboard from CTU deck.								

Gas Data										
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm	
N/A			• •	••	••	• •	• •	• •	• •	

			Oil S	Show				
Depth (mMDRT) N/A	OILSTAIN	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE	RES RING	GAS PEA	k BG
			Calcime	etry Data				
SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOM	IITE (%)	TOTAL CARBONATE (%)
N/A			. ,					. ,
			Mud	Data	@ 672 mME	ORT		
Mun Ty	PF	MW (SG)		Data Y(SEC/OT)	@ 672 mME	ORT	Cl	(ma/l)
M ub T Yi Seawater/gel		MW (SG) 1.06	Viscosit	Data Y(SEC/QT)	@ 672 mME PV / YP 24/103	DRT	Cl	(mg/l) -
_			Viscosit 1	Y (SEC/QT)	PV/YP	DRT	Cl	(mg/l) -
_	sweeps		Viscositi 1	Y (SEC/QT) 00	PV/YP	RTED	Cl	(mg/l) -

MWD / LWD Tool Data

Tool Type Telescope (D&I only)

Sub Type MWD RT Memory Sample N/A

Rate (sec)

Bit to Sensor Offset 26.56

(m)

Flow Rate Range for Pulser Configuration 600 – 1200 GPM

Provisional Formation Tops										
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on				
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string**				
Gippsland Limestone	80.0	45.0								
Lakes Entrance Formation	977.85	860.0								
Top Latrobe Group										
 Gurnard Formation 	1531.6	1345.0								
- Top N1	1585.5	1398.0								
- Top N2.3	1641.2	1453.0								
- Top N2.6	1668.5	1480.0								
- Top P1	1702.9	1514.0								
Total Depth	1790.0	1600.0								

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan Wardie-1 Rev 06**.

^{**}Seabed actually tagged at 76.8m with drill string due to a mound of cement being present from the adjacent WSH-3 well (Mudline encountered at 77.5mMDRT).

^{***}Surveyed final RT elevation is actually 37.68m (38m is carried in Report headers).

Comments								
Simon Ward on rig 13/5/08.								
Schlumberger D&M crew already on board rig prior to WSG arrival.								
All returns from the well during the 444mm (17.5") section were diverted overboard to the sea from the CTU deck and did not pass over the shale shakers. Consequently no cuttings samples were collected and there was no monitoring of mud gas.								
END OF REPORT								

Report No. 02

REPORT PERIOD: 00:00 - 24:00 hrs, 14/05/2008

WELLSITE GEOLOGISTS: Simon Ward

RIG: West Triton RT-ML (m): 77.5

DEPTH @ 24:00 HRS:

(@ 24:00 HRS)

751 mMDRT 706.8 mTVDRT

RIG TYPE: Jack-up

RT ELEV. (m, 38.0

DEPTH LAST REPORT:

751 mMDRT 706.8 mTVDRT

SPUD DATE: 10 May 2008

N/A

10 May 2008 LAST CSG/LINER: @ 19:30hrs (mMDRT)

762 mm (30") @ 133

24HR. PROGRESS: 0 m

34.4° @ 722.5m

DAYS FROM SPUD: 4.19

BIT SIZE:

MW (SG):

1.06

N/A

LAST SURVEY:

MDRT, 239.9° Azi 683.3 mTVDRT

LAST LOT/FIT

(SG):

EST. PORE PRESSURE:

Operations Summary

Rigged up and ran 340mm (13 3/8") casing to 113m MDRT – casing hanging up inside MLS. Skidded rig forward to improve casing alignment with wellbore. Ran in

with casing to 166m, still hanging up and unable to progress deeper. POOH with casing, removed all centralisers and stop collars and made up new joint of casing to float joint. Checked floats – OK. Re-ran 340mm (13 3/8") casing without

centralisation to 500m.

CURRENT STATUS @

24HRS. DRILLING SUMMARY:

06:00HRS: (15-05-2008) Making up 476mm (1834") wellhead assembly to casing.

EXPECTED NEXT ACTIVITY: Land out casing. Cement casing. Nipple up BOP stack.

Cuttings Descriptions

DEPTH (MMDRT) ROP (M/HR.)

Btm

Top

Min.-Max. (Ave.)

DESCRIPTIONS (LITHOLOGY / SHOWS)

BG GAS (%)

Ave. Max.

No cuttings collected during this 24 hour period.

Gas Data % Total Gas C1 C2 **C3** iC4 nC4 iC5 nC5 DEPTH (MMDRT) TYPE Min - Max (Avg) ppm ppm ppm ppm ppm ppm ppm N/A

			Oil S	Show					
DEPTH (mMDRT) N/A	OILSTAIN	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	CUTTYPE R	ES RING	GAS PEA	k BG	
			Calcime	etry Data					
SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	SAMPLE DEPTH (mMDRT)	CALCITE (%)	Dolor	MITE (%)	TOTAL CARBONATI (%)	
N/A									
			Mud	Data	@ 751 mMDI	RT			
MUD TYPE		MW (SG)	Viscosit	Y (SEC/QT)	PV / YP		Cl ⁻ (mg/l)	
Seawater	PHG	1.06	10	00	24/103			-	
			Trace	r Data					
DEPTH	İ	TYPE	CONCE	NTRATION	ADDITIONS STAR				
N/A					(D EPTH / D ATE No tracer in u	-			
		M	WD / LW	D Tool Da	ta				
	Sub Type	N/A – tools out of	hole.						

RT Memory Sample

Rate (sec)

Bit to Sensor Offset

(m)

Flow Rate Range for Pulser Configuration

Provisional Formation Tops										
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on				
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string**				
Gippsland Limestone	80.0	45.0								
Lakes Entrance Formation	977.85	860.0								
Top Latrobe Group										
 Gurnard Formation 	1531.6	1345.0								
- Top N1	1585.5	1398.0								
- Top N2.3	1641.2	1453.0								
- Top N2.6	1668.5	1480.0								
- Top P1	1702.9	1514.0								
Total Depth	1790.0	1600.0								

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan Wardie-1 Rev 06**.

^{**}Seabed actually tagged at 76.8m with drill string due to a mound of cement being present from the adjacent WSH-3 well (Mudline encountered at 77.5mMDRT).

^{***}Surveyed final RT elevation is actually 37.68m (38m is carried in Report headers).

Comments

Comments
BHI computer system rebooted at 18:38 hrs until 18:46 hrs, no time or depth data collected during this period.
BHI gas chromatograph was calibrated at 19:15 hrs with C1-C5 cocktail gas.
Schlumberger wireline tools for logging at TD are on board the <i>Pacific Valkyrie</i> which is now on location. The tools will be loaded onto the rig on 15 May.
END OF REPORT

Report No. 03

REPORT PERIOD: 00:00 - 24:00 hrs, 15/05/2008

WELLSITE GEOLOGISTS: Simon Ward

RIG: West Triton RT-ML (m): 77.5 DEPTH

DEPTH @ 24:00 HRS:

751 mMDRT 706.8 mTVDRT

RIG TYPE: Jack-up

RT ELEV. (m, AMSL):

DEPTH LAST REPORT:

(@ 24:00 HRS)

751 mMDRT 706.8 mTVDRT

10 May 2008

N/A

LAST CSG/LINER:

340mm (13.375") @ 747.2 **24**HR. **P**ROGRESS: 0 m

SPUD DATE: @ 19:30hrs

(mMDRT) @

LAST SURVEY:

34.4° @ 722.5 m MDRT, 239.9° Azi 683.3 mTVDRT

Days from Spud: 5.19

BIT SIZE:

MW (SG):

1.06

N/A

EST. PORE

LAST LOT/FIT

(SG):

PRESSURE:

Operations Summary

Ran 340mm (13 3/8") casing to 657mMDRT. Made up MLS hanger assembly. Continued to run casing to 722m. Picked up 476mm (18¾") wellhead assembly and attached to casing. Landed out casing in MLS hanger at 85.45m MDRT. Cemented casing in place. Bumped plug to 2000 psi – floats held. Attempted to release wellhead running tool - no go. Made up TDS and applied 4 kips weight to fully

collapse running tool clutch. Backed out running tool using rig tongs. Laid out wellhead running tool and cementing equipment. Nippled up BOP stack.

CURRENT STATUS @

24HRS. DRILLING SUMMARY:

06:00HRS: (16-05-2008)

Pressure testing BOP.

EXPECTED NEXT ACTIVITY: Pick up 311mm (121/4") directional BHA. RIH. Drill out cement. Conduct FIT.

Cuttings Descriptions

DEPTH (MMDRT) ROP (M/HR.)

Min.-Max. DESCRIPTIONS (LITHOLOGY / SHOWS)

BG GAS (%)

Top Btm (Ave.) Ave. Max.

No cuttings collected during this 24 hour period.

Gas Data										
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm	
N/A			FP	P.P	Lla	Lh	Lla	Lh	L. 17	

			Oil S	Show				
Depth (mMDRT) N/A	OILSTAIN	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE F	RES RING	GAS PEA	k BG
			Calcime	etry Data				
SAMPLE DEPTH (mMDRT) N/A	CALCITE (%)) DOLOMITE (%)	Total Carbonate (%)	SAMPLE DEPTH (mMDRT)	CALCITE (%)	Dolon	AITE (%)	TOTAL CARBONATI (%)
M ud Tyl	DE-	MW (SG)	Mud	Data	@ 751 mMD	RT	CI /	mg/l)
Seawater		1.06)(0)(0	24/103		CI (- -
			Trace	r Data				
DEPTH N/A	1	ТүрЕ	CONCEN	ITRATION	Additions Star (DEPTH / DAT No tracer in u	E)		
		M	WD / I WI	D Tool Da	ta			

Sub Type

RT Memory Sample

Rate (sec)

Bit to Sensor Offset

(m)

Flow Rate Range for Pulser Configuration

Provisional Formation Tops										
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on				
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string**				
Gippsland Limestone	80.0	45.0								
Lakes Entrance Formation	977.85	860.0								
Top Latrobe Group										
 Gurnard Formation 	1531.6	1345.0								
- Top N1	1585.5	1398.0								
- Top N2.3	1641.2	1453.0								
- Top N2.6	1668.5	1480.0								
- Top P1	1702.9	1514.0								
Total Depth	1790.0	1600.0								

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan Wardie-1 Rev 06**.

^{**}Seabed actually tagged at 76.8m with drill string due to a mound of cement being present from the adjacent WSH-3 well (Mudline encountered at 77.5mMDRT).

^{***}Surveyed final RT elevation is actually 37.68m (38m is carried in Report headers).

Comments
Second WSG and Schlumberger WL crew due on board on 17 May 2008.
BHI Autocalcimeter has been calibrated.
END OF REPORT

Report No. 04

REPORT PERIOD: 00:00 - 24:00 hrs, 16/05/2008

WELLSITE GEOLOGISTS: Simon Ward

Rig: West Triton RT-ML (m): 77.5 **DEPTH @ 24:00 HRS:**

DEPTH LAST

REPORT:

751 mMDRT 706.8 mTVDRT

RT ELEV. (m, **RIG TYPE:** Jack-up

38.0

751 mMDRT 706.8 mTVDRT

AMSL): LAST CSG/LINER:

340mm (13.375")

(@ 24:00 HRS)

10 May 2008 SPUD DATE: @ 19:30hrs

@ 747.2 (mMDRT)

24HR. PROGRESS:

34.4° @ 722.5 m

DAYS FROM SPUD: 6.19

MW (SG):

1.06 LAST SURVEY: MDRT. 239.9° Azi

LAST LOT/FIT

N/A

EST. PORE

683.3 mTVDRT

BIT SIZE:

311mm (121/4")

(SG):

PRESSURE:

 $0 \, m$

Operations Summary

24HRS. DRILLING SUMMARY:

Completed nipple up of Diverter and BOP stack. Pressure tested BOP's and associated valves and hoses. Pressure tested casing and wellhead connector to 2000 psi. Ran wear bushing. Made up 311mm (121/4") bit and directional BHA. Shallow tested LWD tools - OK. RIH to 703m MDRT. Made up TDS and washed down to 732m, reaming through cement stringer at 719m. Rectified problem with TDS. Tagged TOC at 732.5m. Drilled out cement, plugs, float collar and shoe track with seawater to 737m.

CURRENT STATUS @

06:00HRS:

Drilling 311mm (121/4") directional hole with rotary steerable assembly since 04:00hrs. Currently at 820m MDRT.

(17-05-2008)

EXPECTED NEXT ACTIVITY: Drill 311mm (121/4") directional hole as per well plan.

Cuttings Descriptions

DEPTH (MMDRT) ROP (M/HR.)

DESCRIPTIONS (LITHOLOGY / SHOWS)

BG GAS (%)

Btm Top

Min.-Max. (Ave.)

Ave. Max.

No new formation drilled.

Gas Data % Total Gas C1 C2 **C3** iC4 nC4 iC5 nC5 DEPTH (MMDRT) TYPE Min - Max (Avg) ppm ppm ppm ppm ppm ppm ppm N/A

			Oil S	Show				
DEPTH O (mMDRT) N/A	DIL STAIN	FLUOR% / COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE F	RES RING	GAS PEA	k BG
			Calcime	etry Data				
SAMPLE DEPTH (mMDRT) N/A	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	SAMPLE DEPTH (mMDRT)	CALCITE (%)	Dolon	NITE (%)	TOTAL CARBONATE (%)
			Mud	Data	@ 751 mMD	RT		
MUD TYPE		MW (SG)	VISCOSIT		PV/YP		CI.	/m m /l\
		IVIVV (SG)	VISCUSII	Y (SEC/QT)	F V / 1F		Ci	(mg/l)
Seawater PH	∃G*	1.06 a KCI-Polymer mud sy:	10))	24/103		CI ((mg/i) -
Seawater PH	∃G*	1.06	10 stem while drillir	00 ng the casing shoe	24/103		Ci	- -
Seawater PH	∃G*	1.06	10 stem while drillin))	24/103	RTED	Ci	- -
Seawater PH *Note: Hole will be DEPTH	∃G*	1.06 a KCI-Polymer mud sy:	10 stem while drillin	ng the casing shoe	24 / 103 Additions Star (Depth / Dati	E)	Ci	- -
Seawater PH *Note: Hole will be	∃G*	1.06 a KCI-Polymer mud sy:	10 stem while drillin	ng the casing shoe	24 / 103	E)	CI	- -
Seawater PH *Note: Hole will be DEPTH	∃G*	1.06 a KCI-Polymer mud sys	stem while drillin	ng the casing shoe	ADDITIONS STAR (DEPTH/DAT No tracer in u	E)	CI	- -
Seawater PH *Note: Hole will be DEPTH N/A	HG*	1.06 a KCI-Polymer mud sys	Stem while drilling Trace Concer	ng the casing shoe r Data NTRATION	ADDITIONS STAR (DEPTH/DAT No tracer in u	E)	Ci	- -
Seawater PH *Note: Hole will be DEPTH N/A	displaced to	1.06 a KCI-Polymer mud sys	Stem while drilling Trace CONCEN	ng the casing shoe r Data NTRATION	ADDITIONS STAR (DEPTH/DAT No tracer in u	E) USE		- -
Seawater PH *Note: Hole will be DEPTH N/A Too Su RT Memory S	displaced to ol Type ub Type	1.06 a KCI-Polymer mud sys TYPE MV Powerdrive / GVR8	Stem while drilling Trace CONCEN	ong the casing shoe r Data ITRATION D Tool Da	ADDITIONS STAR (DEPTH/DAT No tracer in u	E) USE		- -
Seawater PH *Note: Hole will be DEPTH N/A Too Su RT Memory S	ol Type sample te (sec) r Offset	1.06 a KCI-Polymer mud sys TYPE MY Powerdrive / GVR8 Gamma	Trace CONCEN WD / LW	r Data TRATION D Tool Date sistivity 5 77 Ring	Additions Star (Depth/Dat No tracer in u	E) use		- -
Seawater PH *Note: Hole will be DEPTH N/A Too Su RT Memory S Rat	ol Type Sample te (sec)	1.06 a KCI-Polymer mud sys TYPE MY Powerdrive / GVR8 Gamma 5	Trace Concer WD / LW	T Data TRATION D Tool Data Sistivity 5 77 Ring 98 Deep	ADDITIONS STAF (DEPTH/DAT No tracer in u	E) use		- -
Seawater PH Note: Hole will be DEPTH N/A Too Su RT Memory S Rat	ol Type sample te (sec) r Offset	1.06 a KCI-Polymer mud sys TYPE MY Powerdrive / GVR8 Gamma 5	Trace Concer WD / LW Res 10.5 11.	r Data TRATION D Tool Date sistivity 5 77 Ring	ADDITIONS STAF (DEPTH/DAT No tracer in u	E) use		- -

Flow Rate Range for Pulser Configuration 600-1200 gpm

		Provision	al Format	ion Tops	5	
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string**
Gippsland Limestone	80.0	45.0				
Lakes Entrance Formation	977.85	860.0				
Top Latrobe Group						
 Gurnard Formation 	1531.6	1345.0				
- Top N1	1585.5	1398.0				
- Top N2.3	1641.2	1453.0				
- Top N2.6	1668.5	1480.0				
- Top P1	1702.9	1514.0				
Total Depth	1790.0	1600.0				

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan Wardie-1 Rev 06**.

^{**}Seabed actually tagged at 76.8m with drill string due to a mound of cement being present from the adjacent WSH-3 well (Mudline encountered at 77.5mMDRT).

^{***}Surveyed final RT elevation is actually 37.68m (38m is carried in Report headers).

Comments

Second WSG and Schlumberger WL crew due on board on 17 May 2008.

Schlumberger basket of wireline tools on rig 16 May 2008.

BHI Autocalcimeter recalibrated with 10% HCl as insufficient 20% HCl available on rig to complete well. BHI CO₂ sensor calibrated with 10% cal gas.

BHI checked MTO with thermometer, MTI and MTO sensor recalibrated (upper temperature point on MTO sensor set 30% too high). MTI presently measured in Pit 6 whereas Pit 1 is now being used as the active pit. All other BHI systems fully functional.

END OF REPORT	

Report No. 05

REPORT PERIOD: 00:00 - 24:00 hrs, 17/05/2008

WELLSITE GEOLOGISTS: Simon Ward / Bill Leask

 Rig:
 West Triton
 RT-ML (m):
 77.5
 DEPTH @ 24:00 HRS:
 1446 mMDRT 1306.6 mTVDRT

 RT ELEV.
 DEPTH LAST REPORT:
 751 mMDRT

 RIG TYPE:
 Jack-up
 RT ELEV. (m, AMSL):
 38.0
 DEPTH LAST REPORT: (@ 24:00 HRS)
 751 mMDRT

 706.8 mTVDRT

 SPUD DATE:
 10 May 2008 @ 19:30hrs
 Last CSG/LINER: 340mm (13.375") @ 747.2
 24Hr. Progress: 695m

23.4° @ 1421.7m **Days from Spud:** 7.19 **MW (SG):** 1.12 **Last Survey:** MDRT, 245.9° Azi

1283.9 mTVDRT

BIT Size: 311mm (121/4") LAST LOT/FIT (SG): MD, 705mTVDRT (no leak-off) EST. PORE PRESSURE:

Operations Summary

Drilled out shoe track and casing shoe to 747.2m and cleaned out rathole to 751m MDRT. Displaced hole to 8.9 ppg KCl/Polymer/Clayseal mud while drilling out the shoe. Drilled 3m of new hole to 754m. Circulated and conditioned the mud system.

shoe. Drilled 3m of new hole to 754m. Circulated and conditioned the mud system. **24HRS. DRILLING SUMMARY:**Performed FIT to 1.57 SG (13.1 ppg) EMW (no leak-off). Drilled ahead 311mm (12½") directional hole with rotary steerable assembly and LWD/MWD string to

1397m MDRT. Troubleshot and rectified problem with drilling control system.

Continued drilling to 1446m MDRT.

CURRENT STATUS @

06:00HRS: (18-05-2008)

Drilling 311mm (121/2") directional hole with rotary steerable assembly at 1610m

MDRT.

EXPECTED NEXT ACTIVITY: Drill 311mm (121/4") directional hole to TD.

			Cuttings Descriptions		
DEPTH (мMDRT)	ROP (M/HR.)		BG G	ias (%)
Тор	Btm	MinMax. (Ave.)	DESCRIPTIONS (LITHOLOGY / SHOWS)	Ave.	Max.
751	830	3.7–140.2	CALCARENITE (60–80%): Light olive grey to olive grey in part,	_	0.002
		(59.5)	minor white to pale yellow, moderately hard to hard, very fine to coarse, angular to sub-angular, translucent to opaque sparry calcite, minor to common silt, minor rounded fine sand in parts, minor black lithics, trace glauconite in parts, highly calcareous, well cemented, poor visible porosity.		
			LOOSE SAND (Trace - 10%): Fine to medium, moderately sorted, sub-rounded to rounded, translucent to transparent quartz, minor orange to yellow quartz, trace cryptocrystalline pyrite. Minor coarse to very coarse rounded clear to frosted quartz.		
			SKELETAL FRAGMENTS (Trace – 5%): Pale yellow to orange to grey, dominantly bivalve fragments, minor bryozoans, echinoid.		
			CALCISILTITE (5–40%, increasing downhole): Medium grey to olive grey to occasionally black, soft to hard, highly calcareous, minor to common clastic silt fraction grading in parts to fine sand.		
			SANDSTONE (Trace): Moderate olive brown, hard, very fine, well sorted sub-rounded quartz and minor lithics, calcite cemented, silty matrix.		
830	982	17.7–171.8 (83.6)	CALCARENITE (30–50%): as above, common clastic silt fraction, generally fine grained from 950m.	0.002	0.003
			CALCISILTITE (45–65%): Medium grey to olive grey to occasionally black (dominantly olive grey from 930m), dominantly soft to firm, minor hard, highly calcareous, minor to common clastic silt fraction grading in parts to fine sand.		
			CALCILUTITE (Trace to 10% from 870m): White, hard, silty, amorphous.		
			LOOSE SAND (Trace): Dominantly fine to medium grained, moderately sorted, rounded quartz, trace coarse to very coarse frosted rounded quartz.		
			SKELETAL FRAGMENTS (Trace): Pale yellow to orange to grey, dominantly bivalve fragments, minor bryozoans, trace echinoid spine.		
982	1235	13.7–222.2 (109.7)	Preliminary pick top LAKES ENTRANCE FORMATION @ 982m MDRT.	0.008	0.018
			CALCISILTITE (80–90%): Pale to medium grey to olive grey, dominantly firm to hard, blocky, moderately to highly calcareous, minor to common clastic silt fraction grading in parts to fine sand. Possible dolomitic cement indicated by slower HCl reaction. Trace very fine dark mafic grains. Rare pyrite. CALCILUTITE (10%): White to pale grey, hard, amorphous, slightly silty.		
			CALCARENITE (10%): Light olive grey to olive grey in part, minor white to pale yellow, moderately hard to hard, very fine to fine, angular to sub-angular, translucent to opaque sparry calcite, minor silt, minor black lithics, highly calcareous, well cemented, poor visible porosity. Trace bryozoans, foraminifera, echinoid and shell fragments.		

			Cuttings Descriptions (Cont.)		
D ЕРТН (I	мMDRT)	ROP (M/HR.) MinMax.	DESCRIPTIONS (LITHOLOGY / SHOWS)	BG G	AS (%)
Тор	Btm	(Ave.)	DESCRIPTIONS (EITHOLOGY)	Ave.	Max.
1235	1440	15.8–380.0 (112.2)	Calcilutite with minor Calcisiltite (Top corresponds to increased LWD gamma and lower, more consistent resistivity).	0.033	0.081
			CALCILUTITE (60–95%): Very light to medium olive grey; by 1310m graded to greenish grey, firm to moderately hard, subblocky to sub-fissile, increasingly argillaceous, trace pyrite, rare loose forams in multiple taxa, both benthic and planktic, and echinoid spines; with rare very fine glauconite; at 1250–1330m trace loose glauconite nodules, rarely mammillated, medium lower to very coarse lower sized. Below 1420m, grading to calcareous Claystone. CALCISILTITE (40% decreasing to 5%): Olive grey, firm to moderately hard, blocky, argillaceous, with common sand-sized recrystallised shell material, rare pyrite, grading to Calcilutite.		

			Ga	s Data					
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm
751–982	BG	0.0019-0.0027 (0.0023)	2–7	0–3	0	0	0	0	0
982–1446	BG	0.0022–0.0813 (0.0198)	125	0–5	0–4	0–1	0–1	0	0

			Oil S	how				
DEPTH (mMDRT) N/A	OIL STAIN	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE	RES RING	GAS PEAK	BG

			Calcimo	etry Data			
SAMPLE DEPTH	CALCITE (%)	DOLOMITE (%)	TOTAL	SAMPLE DEPTH	CALCITE (%)	DOLOMITE (%)	TOTAL
(mMDRT)			CARBONATE	(mMDRT)			CARBONATE
Ν/Δ**			(%)				(%)

^{**}See note in "Comments" below.

		Mud Data	@ 1381 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
KCI / Polymer	1.12	58	13/30	33,000

		Tracer Data		
DEPTH	TYPE	CONCENTRATION	ADDITIONS STARTED	
			(DEPTH / DATE)	
N/A			No tracer in use	

MWD / LWD Tool Data

Tool Type	Powerdrive / GVR8		
Sub Type	Gamma	Resistivity	Survey
RT Memory Sample Rate (sec)	5	5	N/A
Bit to Sensor Offset	10.51	10.98 D	17.68
(m)		11.15 M	
		11.28 S	

Flow Rate Range for Pulser Configuration 600–1200 gpm

	Provisional Formation Tops							
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on		
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string**		
Gippsland Limestone	80.0	45.0						
Lakes Entrance Formation	977.85	860.0	982	865.3	5.3 L	Change in resistivity character, slightly lower ROP, change to siltier cuttings		
Top Latrobe Group								
 Gurnard Formation 	1531.6	1345.0						
- Top N1	1585.5	1398.0						
- Top N2.3	1641.2	1453.0						
- Top N2.6	1668.5	1480.0						
- Top P1	1702.9	1514.0						
Total Depth	1790.0	1600.0						

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on Directional Plan Wardie-1 Rev 06.

^{**}Seabed actually tagged at 76.8m with drill string due to a mound of cement being present from the adjacent WSH-3 well (Mudline encountered at 77.5mMDRT).

^{***}Surveyed final RT elevation is actually 37.68m (38m is carried in Report headers).

Comments

Bill Leask, second WSG, arrived on board 17 May 2008.

Schlumberger WL arrived on board on 17 May 2008, surface check of equipment underway.

MPSR sample from West Seahorse-3 arrived on board for processing. Schlumberger thermometers arrived as DG on helicopter.

20m sample interval to 1320m, 10m sample interval 1320–1520m, 5m sample interval 1520m–TD.

BHI Autocalcimeter unserviceable at present, unit disassembled and solenoid valve for gas exit port cleaned

END OF REPORT	
CaCO ₃ added to mud system from 1425m.	
however unit still not holding pressure.	

RIG TYPE:

DAILY GEOLOGICAL REPORT

1766 mMDRT

1446 mMDRT

1618.2 mTVDRT

1306.6 mTVDRT

Report No. 06

REPORT PERIOD: 00:00 - 24:00 hrs, 18/05/2008

Simon Ward / Bill Leask WELLSITE GEOLOGISTS:

Jack-up

Rig: West Triton RT-ML (m): 77.5 **DEPTH @ 24:00 HRS:**

> **DEPTH LAST** RT ELEV. (m, 38.0 REPORT: AMSL):

(@ 24:00 HRS) 10 May 2008 LAST CSG/LINER: 340mm (13.375")

SPUD DATE: 24HR. PROGRESS: 320m @ 19:30hrs @ 747.2 (mMDRT)

7.36° @ 1745.7m DAYS FROM SPUD: 8.19 MW (SG): 1.12 LAST SURVEY: MDRT. 234.2° Azi

1598.0m TVDRT

1.57 @ 754mMD, LAST LOT/FIT **EST. PORE** BIT SIZE: 311mm (121/4") 705m TVDRT (no PRESSURE: (SG): leak-off)

Operations Summary

Directionally drilled 311mm (121/4") hole with rotary steerable assembly from 1466m to well TD at 1766m MDRT, control drilling at 30 m/hr for improved LWD acquisition from 1520m onwards. Circulated the hole clean for 3.5 hours, rotating and reciprocating the drill string (substantial amount of fine, sticky cuttings returned over the first two circulations). Commenced POOH but unable to open trip tank for flow check. Replaced faulty trip tank remote valve. POOH from 1766m to 1500m. Encountered 30 kips overpull at 1540m MDRT. Worked through tight spot from 1540m to 1530m MDRT before continuing to trip out.

CURRENT STATUS @

06:00HRS: (19-05-2008) Pumping and back-reaming out of the hole to the casing shoe. Bit currently at

850m MDRT.

EXPECTED NEXT ACTIVITY:

24HRS. DRILLING SUMMARY:

Run back in hole from the casing shoe for a wiper/conditioning trip. Circulate.

POOH and rig up for wireline logging.

Cuttings Descriptions								
DEPTH (MMDRT) ROP (M/H MinMax			DESCRIPTIONS (LITHOLOGY / SHOWS)	BG G	ias (%)			
Тор	Btm	(Ave.)	,,,,	Ave.	Max.			
1440	1523	37.6–131.0 (103.7)	Calcilutite (with minor accessory mineral glauconite appearing below 1450m).	0.05	0.066			
			CALCILUTE (100%): Greenish grey to olive grey, firm to moderately hard, sub-blocky to sub-fissile, variably argillaceous and grading to moderately calcareous Claystone, trace to rare (1%) very fine to medium glauconite pellets and nodules below 1450m, trace foraminifera, slightly silty in parts.					

			Cuttings Descriptions (Cont.)		
DEPTH (MMDRT) ROP (M/HR.) MinMax. Top Rtm (Ave.)		• •	DESCRIPTIONS (LITHOLOGY / SHOWS)	BG G	ias (%)
Тор	Btm	(Ave.)		Ave.	Max.
1523	1565	18.9–50.6 (29.9)	Latrobe Group (Gurnard Formation): Glauconitic calcareous Claystone and Calcilutite.	0.05	0.094
			CALCAREOUS CLAYSTONE (50-95%): Light greenish grey to olive grey, becoming brownish grey below 1550m, firm to moderately hard, sub-blocky to sub-fissile, moderately to highly calcareous, 1% very fine to medium glauconite pellets and nodules increasing to 30% fine to coarse nodules by 1550m, trace foraminifera, trace shell and bryozoan fragments. Slightly silty in parts. Trace broken crystalline calcite vein material in parts.		
			CALCILUTITE (5–50%): Greenish grey to olive grey, firm to moderately hard, sub-blocky to sub-fissile, argillaceous, grading to Claystone, rare (1%) very fine to medium glauconite pellets and nodules, trace foraminifera, slightly silty in parts.		
1565	1575	28.9–31.0 (29.9)	Latrobe Group: Siltstone with minor Sand and Coal.	0.10	0.23
			SILTSTONE (55-75%): Medium brown grey to olive grey to brown, firm to hard, blocky, slightly carbonaceous, non to slightly calcareous. CALCILUTITE (20%): Light grey to greenish grey, firm to hard, grading to calcareous Claystone, silty.		
			LOOSE SAND (5%): Very fine to coarse grained, poorly sorted, sub-rounded to rounded, clear translucent quartz.		
			COAL (0–20%): Dark brown to black, glossy in parts along fractures, hard, brittle, silty in parts.		
1575	1600	22.5–34.5 (29.8)	Interbedded Coal, Siltstone and minor Sandstone (including inferred thick coal seam at 1582.5–1587.5mMDRT).	0.50	0.69
			COAL (60%): Dark brown to black, glossy in parts along fractures, hard, brittle, silty in parts. SILTSTONE (25–35%): Medium brown grey to olive grey to brown, firm to hard, blocky, slightly carbonaceous to coaly in parts, non to slightly calcareous. <i>Moderate to poor oil show</i> (see below).		
			CALCILUTITE (10%): Light grey to greenish grey, firm to hard, grading to calcareous Claystone, silty; inferred uphole contamination.		
			LOOSE SAND (Trace – 5%): Fine to very coarse grained, poorly sorted, sub-rounded to rounded, clear translucent quartz. Minor glauconite, trace pyrite clusters. Trace pyritised quartz. Minor lithic fragments. No shows.		

			Cuttings Descriptions (Cont.)		
DEPTH (MMDRT) ROP (M/HR.) MinMax.		• •	DESCRIPTIONS (LITHOLOGY / SHOWS)	BG G	AS (%)
Тор	Btm	(Ave.)	,	Ave.	Max.
1600	1634	11.7–34.7 (29.8)	Interbedded Siltstone and Sandstone. (Thick low-gamma beds at 1600–1606m and 1614–1619m have same LWD character as coal seams above and below, but coal is only 5–10% of cuttings).	0.20	0.40
			SILTSTONE (40% increasing downhole to 80%): Medium brown grey to olive grey to dark brown, firm to hard, blocky, slightly carbonaceous to coaly in parts, non to slightly calcareous. LOOSE SAND (15–30%): Pale grey to brownish grey, very fine upper to very coarse upper, dominantly medium grained, poorly sorted, sub-rounded to rounded, clear quartz, minor lithics, minor calcite grains, minor glauconite, common sub-angular clear		
			quartz granules. COAL (0–10%): Dark brown to black, glossy in parts along fractures, hard, brittle, silty in parts.		
			CALCAREOUS CLAYSTONE (5–20%): Light grey to greenish grey, firm to hard, moderately to highly calcareous, silty.		
			(This lithology persists as 5–10% of samples to TD and probably represents uphole contamination.)		
1634	1657	6.5–33.6 (27.3)	Interbedded Coal, Siltstone and Sandstone.	0.10	0.25
			COAL (10–75%): Dark brown to black, glossy in parts along fractures, hard, brittle, silty in parts.		
			SILTSTONE (15–40%): Medium brown grey to olive grey to dark brown, firm to hard, blocky, slightly carbonaceous to coaly in parts, non to slightly calcareous; in parts grading to carbonaceous very fine Sandstone.		
			LOOSE SAND (5–30%): Pale grey to brownish grey, very fine upper to coarse upper, dominantly medium grained, poorly sorted, sub-rounded to rounded clear quartz, minor lithics, minor glauconite, common sub-angular to sub-rounded clear quartz granules.		
			CALCAREOUS CLAYSTONE (5–20%): as above.		
1657	1664	26.7–31.0 (29.7)	Sandstone.	0.03	0.04
			LOOSE SAND (85%): White to pale grey, fine lower to granular, bimodal, dominantly fine to medium and very coarse grained, very poorly sorted, sub-rounded to sub-angular clear to frosted quartz, trace muscovite, trace lithics, trace glauconite. SILTSTONE (5%): as above. COAL (5%): as above. CALCAREOUS CLAYSTONE (5%): as above.		

			Cuttings Descriptions (Cont.)		
DEPTH (MMDRT) ROP (M/HR.) MinMax.		• •	DESCRIPTIONS (LITHOLOGY / SHOWS)	BG G	ias (%)
Тор	Btm	(Ave.)		Ave.	Max.
1664	1676	1.5–33.5 (27.8)	Interbedded Siltstone, Coal and carbonaceous Claystone; thick coal seam inferred from LWD logs at 1670–1676.5m.	0.05	0.14
			SILTSTONE (5–45%): Pale yellowish brown speckled dark brown to black with carbonaceous material; also dusky yellowish brown with abundant carbonaceous material and laminae, blocky to sub-fissile, non calcareous, locally with common muscovite.		
			COAL (30–80%): Dark brown to black, glossy in parts along fractures, hard, brittle, silty in parts. CARBONACEOUS CLAYSTONE (5–10%): Dark yellowish		
			brown to brownish grey, firm, elongate sub-fissile, commonly with dark polished faces.		
			LOOSE SAND (5-10%): as above.		
			CALCAREOUS CLAYSTONE (5–20%): as above.		
1676	1702	4.2–32.8 (28.9)	Sandstone.	0.01	0.02
			LOOSE SAND (50–95%): White to very pale yellow, very fine to granule, dominantly very coarse upper to coarse upper grained, very poorly sorted, angular fragments to sub-rounded, subspherical, transparent to translucent quartz. CALCAREOUS CLAYSTONE (5–40%): as above. COAL (0–5%): as above. SILTSTONE (0–5%): as above.		
1702	1729	20.5–35.1 (29.5)	Interbedded Siltstone and Sandstone; Coal seams inferred from LWD logs, but only up to 5% of cuttings in some samples.	0.005	0.007
			LOOSE SAND (35–75%): Light grey, fine upper to granule, dominantly very coarse to granule grained (clear bimodal sorting in some samples), very poorly sorted, angular fragments to subangular, rarely rounded grains, sub-spherical, transparent to translucent quartz. SILTSTONE (15–60%): Pale yellowish brown speckled with		
			black coal and carbonaceous material, firm to moderately hard, sub-blocky to fissile, commonly microlaminated, with irregular coal fragments, rarely very fine sandy; rarely with scattered fine glauconite nodules; also loose mammilated grayish green glauconite ovoid nodules (medium to coarse sand-size). CALCAREOUS CLAYSTONE (5%): as above. COAL (5%): as above.		

			Cuttings Descriptions (Cont.)		
DEPTH (MMDRT) ROP (M/HR.) MinMax.		• •	DESCRIPTIONS (LITHOLOGY / SHOWS)	BG G	AS (%)
Тор	Btm	(Ave.)	DESCRI HORS (ETHIOLOGY OR ONS)	Ave.	Max.
1729	1740	18.4–33.6 (28.9)	Coarse – granular Sandstone, in upper part of a 20m thick bed.		0.005
			LOOSE SAND (85–95%): Light yellowish grey, coarse upper to granule grained, moderately to poorly sorted, common angular fragments, dominantly sub-rounded, rarely well rounded, subspherical, transparent to translucent quartz, trace pinkish quartz. Trace coarse sandstone aggregate, hard, trace light yellow clay, inferred silica cemented, but overgrowths not confirmed, non calcareous, poor visible porosity. No shows. SILTSTONE (Trace–5%): as above. CALCAREOUS CLAYSTONE (5%): as above.		
1740	1766	29.5–67.1 (55.3)	Medium-coarse Sandstone, in beds up to 20m thick; Siltstone bed indicated on logs at 1749.5-1753m not confirmed by cuttings.	0.004	0.004
			LOOSE SAND (100%): Very light grey, very fine to very coarse grained, dominantly medium to coarse, very poorly sorted, angular to sub-rounded, sub-spherical, transparent to translucent quartz. No shows.		

Gas Data									
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm
1446-1523	BG	0.032-0.066 (0.05)	387	1–3	0–2	0	0	0	0
1523-1575	BG	0.03-0.23 (0.07)	541	1–18	1–21	0–7	0–6	0–2	0–1
1575–1621	BG**	0.2-0.65 (0.5)	3026	46	17	7	6	7	4
1585.5	Р	1.20	8893	94	55	12	11	5	3
1590	Р	0.693	5331	74	28	13	11	16	10
1598	Р	0.685	5654	72	18	7	5	6	4
1604	Р	0.614	4927	73	13	3	2	3	2
1615	Р	0.579	4342	93	12	3	2	4	3
1621–1678	BG	0.01-0.25 (0.10)	668	49	9	1	1	1	0
1644	Р	0.253	1779	147	24	2	2	1	1
1673	Р	0.132	962	120	21	1	1	0	0
1678–1766	BG	0.004-0.02 (0.006)	19	2	1	0	0	0	0

^{**}Note: Background gas through interval 1575–1621m estimated from trend through closely spaced peaks. Gas breakdown is average values for the interval, including peaks.

Oil Show									
DEPTH (mMDRT)	OIL STAIN	FLUOR% / COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE	RES RING	GAS PEAK	BG	
1570–1585	-	1% pale greenish yellow pinpoint	In Siltstone	Bright green blue	Fast streaming to blooming	Moderately wide bright green blue fluorescing residual ring	1.20%	0.5	
1585–1605	-	1% dull pinkish orange		Moderately bright blue white	Slow blooming	Thin very pale green blue fluor residual ring	0.69	0.5	
1605–1610	-	10% moderately bright to dull, yellow to orange		Bluish white (also from SLTST with no direct fluor)	Very slow blooming	Thin pale blue fluor residual ring	0.61	0.5	
1610–1645	-	Trace–2% dull orange-yellow; also bright light greenish yellow, or dull pinkish orange	Most if not all mineral fluor.	bluish white, mainly from siltstone with no direct fluor	Slow diffuse	Very thin pale blue fluor residual ring	0.25	0.1	
1645–1766	-	Very minor trace dull yellowish orange		nil	nil	nil			

	Calcimetry Data						
SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)
N/A***			(1-7				(1-7)

^{***}See note in "Comments" below.

		Mud Data	@ 1766 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
KCL/Polymer	1.12	54	15/30	38,000

		Tracer Data		
DEPTH	Түре	CONCENTRATION	ADDITIONS STARTED	
			(DEPTH / DATE)	
N/A			No tracer in use	

MWD	/ I	WD	Tool	Data
	<i>1</i> L	_ 7 7 1	I OUI	vala

Tool Type	Powerdrive / GVR8		
Sub Type	Gamma	Resistivity	Survey
RT Memory Sample Rate (sec)	5	5	N/A
Bit to Sensor Offset (m)	10.51	10.98 D 11.15 M 11.28 S	17.68

Flow Rate Range for Pulser Configuration 600–1200 gpm

Provisional Formation Tops							
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on	
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string**	
Gippsland Limestone	80.0	45.0					
Lakes Entrance Formation	977.85	860.0	982	865.3	5.3 L	Change in resistivity character, slightly lower ROP, change to siltier cuttings	
Top Latrobe Group							
- Gurnard Formation	1531.6	1345.0	1523	1341.4	3.6 H	Slight increase in gamma, change in cuttings	
- Top N1	1585.5	1398.0					
- Top N2.3	1641.2	1453.0	1653	1468.6	15.6 L	Shale below coaly couplet indicated on gamma log	
- Top N2.6	1668.5	1480.0	1677.5	1492.8	12.8 L	High gamma peak above thick sand bed	
- Top P1	1702.9	1514.0					
Total Depth	1790.0	1600.0	1766	1580.2			

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan Wardie-1 Rev 06**.

^{**}Seabed actually tagged at 76.8m with drill string due to a mound of cement being present from the adjacent WSH-3 well (Mudline encountered at 77.5mMDRT).

^{***}Surveyed final RT elevation is actually 37.68m (38m is carried in Report headers).

Comments

Control drilled at 30m/hr from 1520-1743m.

BHI Autocalcimeter remained unserviceable, so no calcimetry analyses undertaken. 10m sample interval 1440–1520m, 5m sample interval 1520–1766m (TD).

Schlumberger wireline tools have all been surface tested and are on the catwalk ready for rigging up.

MPSR sample from West Seahorse-3 processed by Petrotech at 16:00 hrs. Circulation stopped 20:34 hrs.

Mud samples 2x 1 litre collected at TD by BHI.

Packaging of all samples for shipment off rig is underway.

30ml filtrate sample from Latrobe interval collected by Mud Engineers.

-----END OF REPORT-----

Report No. 07

REPORT PERIOD: 00:00 - 24:00 hrs, 19/05/2008

Simon Ward / Bill Leask **WELLSITE GEOLOGISTS:**

Rig: West Triton RT-ML (m):

77.5

DEPTH LAST REPORT:

(@ 24:00 HRS)

1766 mMDRT 1618.2 mTVDRT

1766 mMDRT

1618.2 mTVDRT

RIG TYPE: Jack-up

> 10 May 2008 LAST CSG/LINER:

340mm (13.375")

38.0

@ 747.2

24HR. PROGRESS:

DEPTH @ 24:00 HRS:

0m

SPUD DATE: @ 19:30hrs

(mMDRT)

7.36° @ 1745.7m MDRT. 234.2° Azi

LAST SURVEY: 1598.0m TVDRT

DAYS FROM SPUD:

BIT SIZE:

9.19

MW (SG): 1.12

EST. PORE

311mm (121/4")

LAST LOT/FIT (SG):

RT ELEV. (m,

AMSL):

1.57 @ 754mMD, 705m TVDRT (no leak-off)

PRESSURE:

Operations Summary

24HRS. DRILLING SUMMARY:

Continued to POOH working tight spots from 1283m to 1273m and 1253m to 1178m MDRT. Pumped out of hole from 1178m to 919m MDRT. Hole packed-off. Worked string and regained circulation. Continued to pump out of hole from 919m to the casing shoe. Circulated the hole clean at the shoe. RIH for a wiper trip. Made up the TDS at 1737m and washed to bottom, encountering 8m of fill from 1758m MDRT. Circulated the hole clean at TD. POOH to surface. Laid down the BHA.

CURRENT STATUS @

06:00HRS: (20-05-2008)

Wireline logging. Pulling out of hole with Suite #1, Run #1 (PEX-HRLA-BHC).

EXPECTED NEXT ACTIVITY:

Continue wireline logging as per programme (next log MDT-GR).

Cuttings Descriptions

DEPTH (MMDRT) ROP (M/HR.) Min.-Max.

BG GAS (%)

Btm Top

(Ave.)

DESCRIPTIONS (LITHOLOGY / SHOWS)

Ave. Max.

No new lithology drilled.

	Gas Data											
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm			
1178 - 747	BG*	0.0020-0.0033 (0.0025)	-	-	-	-	-	-	-			
1178	Max**	0.0046	46	-	-	-	-	-	-			
1178	BG***	0.0028-0.0043 (0.0039)	-	-	-	-	-	-	-			

	Oil Show										
DEPTH (mMDRT) N/A	OIL STAIN	FLUOR% / COLOUR	FLUOR TYPE	CUT FLUOR	CUT TYPE	RES RING	GAS PEAK	BG			

	Calcimetry Data										
SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)				
N/A			(70)				(70)				

		Mud Data	@ 1766 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
KCI- Polymer	1.12	56	13/27	38,000

		Tracer Data		
DEPTH	TYPE	CONCENTRATION	ADDITIONS STARTED	
			(DEPTH / DATE)	
N/A			No tracer in use	

MWD / LWD Tool Data								
Tool Type	Powerdrive / GVR8							
Sub Type	Gamma	Resistivity	Survey					
RT Memory Sample Rate (sec)	5	5	N/A					
Bit to Sensor Offset (m)	10.51	10.98 D 11.15 M 11.28 S	17.68					
Flow Rate Range for F	Pulser Configuration	600–1200 apm						

^{*}Circulating back-ground gas level while pumping out of the hole to the casing shoe. ***Circulating back-ground gas level at TD during wiper trip.

		Provision	al Format	ion Tops	3	
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string**
Gippsland Limestone	80.0	45.0				
Lakes Entrance Formation	977.85	860.0	982	865.3	5.3 L	Change in resistivity character, slightly lower ROP, change to siltier cuttings
Top Latrobe Group						
- Gurnard Formation	1531.6	1345.0	1523	1341.4	3.6 H	Slight increase in GR, change in cuttings
- Top N1	1585.5	1398.0				
- Top N2.3	1641.2	1453.0	1653	1468.6	15.6 L	Shale below coaly couplet indicated on GR log
- Top N2.6	1668.5	1480.0	1677.5	1492.8	12.8 L	High GR peak above thick sand bed
- Top P1	1702.9	1514.0				
Total Depth	1790.0	1600.0	1766	1580.2		

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan Wardie-1 Rev 06**.

^{**}Seabed actually tagged at 76.8m with drill string due to a mound of cement being present from the adjacent WSH-3 well (Mudline encountered at 77.5mMDRT).

^{***}Surveyed final RT elevation is actually 37.68m (38m is carried in Report headers).

Comments

All samples for both Wardie-1 and West Seahorse-3 have been packed for shipment off the West Triton rig and a manifest has been completed. Samples are to be dried and split at the BHI shore base in Perth.

2 x BHI Mudloggers departed rig on 19 May, 2 x Data Engineers remain on rig.

Fine cavings consisting of Lakes Entrance Formation lithologies were seen on the shale shakes when the well was circulated clean after the wiper trip. No sign of pressure cavings.
**Maximum gas recorded from the wiper trip was 0.005%.
END OF REPORT

Report No. 08

REPORT PERIOD: 00:00 - 24:00 hrs. 20/05/2008

Simon Ward / Bill Leask WELLSITE GEOLOGISTS:

Rig:

West Triton RT-ML (m): 77.5

DEPTH LAST

1766 mMDRT 1618.2 mTVDRT

RIG TYPE: Jack-up RT ELEV. (m,

38.0 REPORT: 1766 mMDRT

0m

AMSL):

340mm (13.375")

DEPTH @ 24:00 HRS:

1618.2 mTVDRT

SPUD DATE:

10 May 2008 @ 19:30hrs

LAST CSG/LINER: @ 747.2 (mMDRT)

24HR. PROGRESS:

7.36° @ 1745.7m

DAYS FROM SPUD:

10.19

MW (SG): 1.12 LAST SURVEY:

(@ 24:00 HRS)

MDRT. 234.2° Azi 1598.0m TVDRT

LAST LOT/FIT

(SG):

leak-off)

1.57 @ 754mMD, 705m TVDRT (no

EST. PORE PRESSURE:

BIT SIZE:

311mm (121/4")

Operations Summary

Completed laying out BHA and directional and LWD tools (recovered LWD memory data offline). Rigged up Schlumberger. Ran Wireline logs as per program. Suite #1, Run #1: PEX-HRLA-BHC (logged from HUD at 1760m to 1300m); Run #2: MDT-

24HRS. DRILLING SUMMARY:

GR (attempted 17 stations between 1574m and 1681.5m, obtained 9 valid pressures, 4 supercharged points, 3 tight, 1 seal failure and took 3 formation fluid samples). POOH and recovered MDT samples at surface. Rigged down Schlumberger Wireline. Made up and RIH with mule shoe on 51/2" drill pipe.

CURRENT STATUS @

06:00HRS:

Circulating above plug #1A at 1613m MDRT.

(21-05-2008)

EXPECTED NEXT ACTIVITY: Continue with P&A program

Cuttings Descriptions

DEPTH (MMDRT) ROP (M/HR.) Min.-Max.

DESCRIPTIONS (LITHOLOGY / SHOWS)

BG GAS (%)

Top **Btm** (Ave.)

Ave. Max.

No drilling during the reporting period.

			Ga	s Data					
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm
N/A**		. (3)							

^{**}Note: No circulation during reporting period.

DAILY GEOLOGICAL REPORT

	Oil Show										
D EPTH (m MDRT) N/A	OIL STAIN	FLUOR% / COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE	RES RING	Gas Peak	BG			

	Calcimetry Data								
SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)		
N/A			(,				(-7		

		Mud Data	@ 1766 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
KCI- Polymer	1.12	58	13/27	39,000

Tracer Data							
D EPTH	TYPE	CONCENTRATION	ADDITIONS STARTED				
			(DEPTH / DATE)				
N/A			No tracer in use				

MWD / LWD Tool Data

Tool Type N/A - No tools in hole

Sub Type

RT Memory Sample

Rate (sec)

Bit to Sensor Offset

(m)

Flow Rate Range for Pulser Configuration

DAILY GEOLOGICAL REPORT

Provisional Final Formation Tops****									
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on			
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string**			
Gippsland Limestone	80.0	45.0	-	-	-				
Lakes Entrance Formation	977.85	860.0	982.0	865.3	5.3 L	Change in character of LWD resistivity, lower ROP, siltier cuttings			
Top Latrobe Group - Gurnard Formation	1531.6	1345.0	1568.5	1385.1	40.1 L	Wireline Logs			
- Top N1	1585.5	1398.0	1598.5	1414.5	16.5 L	Wireline Logs			
- Top N2.2	NP	-	1622.5	1438.2	-	Wireline Logs			
- Top N2.3	1641.2	1453.0	1656.0	1471.3	18.3 L	Wireline Logs			
- Top N2.6	1668.5	1480.0	1681.0	1496.0	16.0 L	Wireline Logs			
- Top P1	1702.9	1514.0	1715.5	1530.1	16.1 L	Wireline Logs			
Total Depth	1790.0	1600.0	1766.0	1580.2	-	Pipe tally			

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on Directional Plan Wardie-1 Rev 06.

^{**}Seabed actually tagged at 76.8m with drill string due to a mound of cement being present from the adjacent WSH-3 well (Mudline encountered at 77.5mMDRT).

^{***}Surveyed final RT elevation is actually 37.68m (38m is carried in Report headers).

^{****}The "final" tops are based on Wireline Log depths and Final Demag MWD Survey results and may change.

DAILY GEOLOGICAL REPORT

Comments

All Wireline Logging activities and MDT results are recorded in separate reports.

LWD memory data was successfully retrieved, processed and e-mailed to 3D Oil office.

MPSR sample bottles from the MDT were recovered and processed as follows:

The first of the two chambers taken at 1582.4m was partially drained on-site by Petrotech to obtain preliminary oil properties. The remainder of this cylinder plus the second cylinder from this depth were then transferred to Petrotech bottles for sending in to a lab for further analytical work. The single sample from 1593.7mMDRT was transferred by Petrotech and no field analytical work undertaken.

Since midnight, Petrotech completed sample transfers and the requested analyses, though there was insufficient gas from the partially drained 1582.4m sample to allow CO₂ and H₂S readings to be taken.

During circulation of bottoms up from 1766m at about 0400hrs, the BHI gas trap had to be shut down due to the shaker header box overflowing. This situation arose because of a high pump rate with only 3 shakers available to process returns. Prior to the shut down of the gas trap the maximum gas while circulating was 0.27% and the circulating back-ground gas level was ca. 0.003%.

During this ciculation, large chunks of coal were present on the shakers, the largest being about 100x90x12 mm with many pieces in the 50x40x30 mm size range. Samples have been taken of the coal chunks.

Wellsite Geologists due to leave rig @ 1500 hrs 21 May 2008.

Wireline Logging crew due to leave the rig on 21 May 2008

This is the FINAL Daily Geological Report for Wardie-1.

Petrotech crew due to leave the rig on 21 May 2008.

Attachment 12

Validity Checks and Analyses of MDT Samples

Final Report Prepared For 3D Oil Limited

Well: Wardie-1

Validity Checks and Analyses
Of MDT Samples

21st May 2008

Ref: 57025

WELL FLOW MANAGEMENT™

Expro Group Australia Pty Ltd

Petrotech

42-44 Wittenberg Dve

Canning Vale

Western Australia 6970

Australia

Telephone **+61 8 9456 7600**

Fax +61 8 9456 7690

www.exprogroup.com

SUMMARY

To validate the quality of samples taken by the Schlumberger MDT Wireline Formation Sampling tool, Petrotech performed a programme of validity checks and analysis on the retrieved samples.

The contents of the successfully retrieved chambers were transferred to Petrotech PVT sampling bottles and sent onshore to Core Laboratories for further analysis.

TABLE OF CONTENTS

	Page
1. INTRODUCTION	4
2. OFFSHORE ANALYSIS PROGRAMME	4
3. RESULTS	5
Table 1: WFS Sample Data	5
Table 2: PVT Transfer Data	6
Table 3: Non-Pressurised Sample List	7
Table 4: Pressurised Sample List	8
Table 5: WFS Flash Data	9
4. DISCUSSION	10
5. APPENDICES: PVT SHEETS	11

1. INTRODUCTION

In this report, Petrotech presents the validity checks and basic on-site analysis for samples retrieved from the MDT tool during logging for the Wardie-1 well. The analyses were carried out on the 21st May 2008.

In order to obtain the highest quality of well-site data from the MDT tool, Petrotech confirmed the quality of MDT samples retrieved by carrying out opening pressure measurements. Pressurised single-phase transfers of samples to Petrotech shipping bottles were performed to provide PVT samples for onshore analysis.

A total of three samples were collected using the Schlumberger MDT tool. Two samples were collected from 1582.4mMDRT (1398.8m TVDSS) and one from 1593.7mMDRT (1409.9m TVDSS). Single-phase transfers were performed on all three samples.

2. OFFSHORE ANALYSIS PROGRAMME

Wire line Fluid Sampling

Following collection of the Wireline Fluid Samples, the tools were brought back to the surface. The chambers were prepared for transfer by pressurising them to 1450psi above the reservoir pressure supplied from the Schlumberger logging data. The buffer fluid volume added to the chamber was recorded at all significant points with sample validity verified by non-invasive opening pressure measurement of the sample from the buffer side of the chamber (see Table 1).

Once the required pressure was reached, the sample was maintained in this condition for one hour with regular agitation to promote sample homogeneity, whilst constant pressure monitoring ensured sample stability and confirmed the absence of leaks. At the end of this period, sample transfer commenced at a minimum of 1450psi above reservoir pressure with the sample introduced into the Petrotech shipping bottle at a slow, constant rate (around 20cc per minute) so as to minimise disruption to the pressure equilibrium.

3. RESULTS

Table 1: WFS Sample Data

Client	3D Oil Limited
Well	Wardie-1
Project No.	57025

Sample	WFS Chambe	WFS Chamber	Downhole	Downhole	Opening	Opening
Depth	r	Vol	Sampling	Sampling	Pressure	Temp
(mMDRT)	No.	(cc)	Date	Time	(psig)	(° C)
1582.4	3349	450	20/5/08	11:49 hrs	3850	14.0
1593.7	3454	450	20/5/08	18:07 hrs	Undetectable	13.0
1582.4	3300	450	20/5/08	12:06 hrs	1100	13.0

Table 2: PVT Transfer Data

Client	3D Oil Limited
Well	Wardie-1
Project No.	57025

Petrotech	Sample	WFS	Transfer	Transfer	Petrotech	Transfer	Transfer	Transfer	Comments
Sample	Depth	Chamber	Date	Time	Cylinder	Volume	Pressure	Temp.	
No.	(mMDRT)	No.			No.	(mL)	(psig)	(°C)	
T.01	1582	3349	21.05.08	2:00	PT-2162	300	5000	65.0	-
T.02	1594	3454	21.05.08	3:30	PT-1147	380	5000	65.0	-
T.03	1582	3300	21.05.08	5:10	PT-2173	380	5000	65.0	-

Table 3: Non-Pressurised Sample List

Client	3D Oil Limited
Well	Wardie-1
Project No.	57025

Petrotech Sample No.	Sample Depth (mMDRT)	WFS Chamber No.	Sample Nature	Sample Volume (mL)	Comments
A.01	1582	3349	Oil	90	Sent to Petrotech, Perth
A.02	1582	3349	Toluene	15	Sent to Petrotech, Perth
A.03	1582	3300	Toluene	30	Sent to Petrotech, Perth

Table 4: Pressurised Sample List

Client	3D Oil Limited
Well	Wardie-1
Project No.	57025

Transferred Samples

Petrotech Sample No.	Sample Depth (mMDRT)	WFS Chamber No	Sample Nature	Petrotech Cylinder No.	Shipping Volume (cc)	Shipping Pressure (psig)
T.01	1582	3349	Oil	PT-2162	300	800
T.02	1594	3454	Water	PT-1147	380	1100
T.03	1582	3300	Oil	PT-2173	380	800

Table 5: WFS Flash Data

Client	3D Oil Limited
Well	Wardie-1
Project No.	57025

Petrotech Sample No.	Sample Depth (mMDRT)	MDT Chamber No.	Stabilised Oil Volume (mL)	Measured Gas Volume	Measured Water Vol.	Barometric Pressure(mBar)	Ambient Temperature (°C)	Gas-Oil Ratio (scf/bbl)
PT-2162	1582	3349	90	22.5L	-	1093	13.0	1437.71

4. **DISCUSSION**

The logging run was performed on the 20^{th} May 2008. The Schlumberger MDT tool successfully recovered a total of three samples, two from a depth of 1582.4mMDRT and one from a depth of 1593.7mMDRT.

The opening pressure measurements suggested that all three samples were of acceptable quality. The opening pressures showed generally good consistency and the chambers remained intact until transfer.

During all transfers, the MPSR chambers were oriented such that sample was removed from the highest point. On completion of the transfers and analysis, the pressurised and dead samples were dispatched to Petrotech for onward shipment to Core Laboratories (Perth) as instructed by 3D Oil personnel.

5. APPENDICES: PVT SHEETS

WIRELINE FLUID SAMPLE TRANSFER SHEET

Client	3D Oil Limited
Well	Wardie-1
Rig	West Triton
Sampling Tool	MDT

SAMPLING DATA				
Sample number	T.01			
Chamber number	3349			
Sampled by	Schlumberger			
Sample depth	1582.4	mMDRT		
Sample nature	Oil			
Date	20.05.08			
Transferred by	Andrew/Hadi			
Transfer commenced	2:00			
Transfer completed	02:35			
Cylinder number	PT-2162			
Cylinder coupled with	-			

TRANSFER CONDITIONS				
Transfer fluid	Glycol			
Cylinder volume	700	cc		
Sample volume	300	cc		
Transfer fluid remaining	0	cc		
Transfer pressure	5000.0	psi g		
Shipping pressure	800.0	psi g		
Ambient temperature	14.0	°C		
BOTTOM HOLE CONDITIONS				
Reservoir pressure	1983.3	psi g		
Reservoir temperature	54.7	°C		

COMMENTS		

WIRELINE FLUID SAMPLE TRANSFER SHEET

Client	3D Oil Limited
Well	Wardie-1
Rig	West Triton
Sampling Tool	MDT

SAMPLING DATA				
Sample number	T.02			
Chamber number	3454			
Sampled by	Schlumberger			
Sample depth	1593.7	mMDRT		
Sample nature	Water			
Date	20.05.08			
Transferred by	Andrew/Hadi			
Transfer commenced	3:30			
Transfer completed	04:00			
Cylinder number	PT-1147			
Cylinder coupled with	-			

TRANSFER CONDITIONS				
Transfer fluid	Glycol			
Cylinder volume	700	cc		
Sample volume	380	cc		
Transfer fluid remaining	0	cc		
Transfer pressure	5000.0	psi g		
Shipping pressure	1100.0	psi g		
Ambient temperature	13.0	°C		
BOTTOM HOLE CONDITIONS				
Reservoir pressure	1981.9	psi g		
Reservoir temperature	56	°C		

COMMENTS		

WIRELINE FLUID SAMPLE TRANSFER SHEET

Client	3D Oil Limited
Well	Wardie-1
Rig	West Triton
Sampling Tool	MDT

SAMPL	ING DATA	
Sample number	T.03	
Chamber number	3300	
Sampled by	Schlumberger	
Sample depth	1582.4	mMDRT
Sample nature	Oil	
Date	20.05.08	
Transferred by	Andrew/Hadi	
Transfer commenced	5:10	
Transfer completed	05:35	
Cylinder number	PT-2173	
Cylinder coupled with	-	_

TRANSFER CONDITIONS				
Transfer fluid	Glycol			
Cylinder volume	700	cc		
Sample volume	380	cc		
Transfer fluid remaining	0	cc		
Transfer pressure	5000.0	psi g		
Shipping pressure	800.0	psi g		
Ambient temperature	13.0	°C		
BOTTOM HOLE CONDITIONS				
Reservoir pressure	1983.3	psi g		
Reservoir temperature	54.7	°C		

COMMENTS		

Attachment 13

Validity Checks and Analyses of MDT Samples

Reservoir Fluid Study

for

3D Oil

Wardie-1

AFL 20080029

The analyses, opinions or interpretations in this report are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of CORE LABORATORIES AUSTRALIA PTY LTD, (all errors and omissions excepted); but CORE LABORATORIES AUSTRALIA PTY LTD and its officers and employees assume no responsibility and make no warranty or representations as to the productivity, proper operation or profitability of any oil, gas or any other mineral well formation in connection with which such report is used or relied upon.

CORE LABORATORIES AUSTRALIA PTY LTD

Reservoir Fluids Group

447-449 Belmont Avenue, Kewdale WA 6105

Tel: +61 8 9353 3944 Fax: +61 8 9353 1369 Web: http://www.corelab.com

CORE LABORATORIES AUSTRALIA PTY LTD

447-449 Belmont Avenue Kewdale, WA 6105 P.O. Box 785 Cloverdale, WA 6985 Tel: (61-8) 9353 3944

Tel: (61-8) 9353 1369

e-mail: corelab.australia@corelab.com Web: http://www.corelab.com

30th September 2008

3D Oil Limited Level 5, 164 Flinders Lane, Melbourne VIC 3000

Attention: Jon Keall

Dear Jon,

Subject: Reservoir Fluid Study: Well: Wardie-1; Our file: AFL 20080029

Two sub-surface oil and one sub-surface water sample were forwarded to our Perth laboratory on 19th June 2008 for initial validation and compositional analysis. Presented in the following report are the results of the requested analyses.

Core Laboratories Australia Pty Ltd are very pleased to have been of service to 3D Oil Limited in this work. Should any questions arise concerning the data presented in this report, or if we may be of assistance in any other matter, please do not hesitate to contact us.

Yours Faithfully, For CORE LABORATORIES AUSTRALIA PTY LTD

Murray Macleod Laboratory Supervisor

Table of Contents

Section A - Summary of Analysis Methods	Page
Summary of analysis methods	A.1
Section B - Summary of Samples Received and Validation Data	
Reported Well and Sampling Information	B.1
Summary of Samples Received and Validation Data	B.2
Section C - Compositional Analysis Data - Bottom Hole Oil Samples	
Compositional Analysis of Cylinder PT-2162 (T.01) to C36+	C.1-C.3
Compositional Analysis of Cylinder PT-2173 (T.03) to C36+	C.4-C.6
Section D - Compositional Analysis Data - Bottom Hole Water Sample	
Compositional Analysis of Flashed Gas from Cylinder PT-1147 (T.02) to C36+	D.1
Analysis of Flashed Water from PT-1147 (T.02)	D.2
Section E - Appendix	
Data used in gas compositional calculations	E.1
Data used in liquid compositional calculations	E.2

Section A - Summary of Analysis Methods

Wardie-1 AFL 20080029

Summary of Analysis Methods

Sample Validation

The opening pressures of the three sub-surface oil samples were recorded at ambient temperature. They were then stabilised at 5000 psig and heated to 100°C for 24 hours. The samples were agitated thoroughly to ensure they were completely single phase and homogenous. A check for free water was made and the sample volume determined.

Compositional Analysis (BHS Oil)

The fluid composition of each oil sample was determined using a combination of flash separation and gas chromatography techniques. Each fluid was flashed at a controlled temperature (50°C) and separated into oil and gas phases.

The gas was analysed using extended gas chromatography with compositions determined by a GPA 2286 method using a multi-column gas chromatograph system. A temperature programme was utilised to obtain optimum detection and separation of dodecanes plus components.

The flashed oil was analysed by temperature programmed high resolution capillary gas chromatography. The two analyses were then mathematically recombined to the flash gas-oil ratio.

Compositional Analysis (BHS water)

After separation of the emulsion which involved heat treatment to 94°C for 5 weeks, the pressurised water sample was subjected to an atmospheric (zero) flash analysis whereby the fluids were flashed from working pressure of 5000 psig and 94°C to atmospheric pressure and ambient temperature, and separated into gas and water phases. The gaswater ratio and the evolved gas composition are the data obtained from this test. A 12-ion analysis was not performed on the flashed water due to insufficient sample. The gas-water ratio was calculated from the volume of gas and weight of water obtained during the flash and density of flashed water.

Compositional Analysis Databases

For all compositions reported in this study, the properties used, eg Molecular Weight and Density of the individual components are tabulated in Section E of the Appendix.

A.1

Reported Well and Sampling Information - MDTs

Reservoir	and Well Information	
	Field	Wardie-1
	WellReservoir Fluid.	Oil
	Reservoir Fluid	Oli
	Formation	
	Reservoir Pressure	1983.3 psig
	Reservoir Temperature	54.7 °C
	Installation	West Triton
	Test	
	Perforations	
Sampling	Information	
	Date sampled	20-May-08
	Time sampled	02:00-02:35, 05:10-05:35 hrs
	Type of samples	MDT
	Sampling company	Schlumberger
	Sampling point	
	Sampling Depth	1582.4 mMDRT
	Choke	
	Status of well	
	Bottomhole pressure	1983.3 psig
	Bottomhole temperature	54.7 °C
	Mallhand flowing process	
	Wellhead flowing pressure	
	Wellhead flowing temperature	
	Separator pressure	
	Separator temperature	
	Pressure base	14.696 psia
	Temperature base	15.6°C
	Water flowrate	
	Gas gravity (Air = 1)	
	H2S	
	CO2	
	BS&W	
	Oil gravity at 60°F	

Comments: Sampling information for samples T.01 and T.03

Summary of MDT Samples Received and Validation Data

MDT Samp	ples									
			Sampl	le	Sampli	ng :-	Laboratory	opening :-	Water	Sample
Sample Number	Cylinder Number	ex-Chamber Number	Depth (m MDRT)	Туре	Pressure (psig)	Temp.	Pressure (psig)	Temp. (°C)	Volume (cm ³)	Volume (cm ³)
			,		(1 0)	,	(1 0)	,	(0)	(0)
T.01	PT-2162	3349	1582.4	Oil	1983	54.7	876	17.5	4*	300
T.02	PT-1147	3454	1593.7	Water	1983	54.7	439	15.2	**	325
T.03	PT-2173	3300	1582.4	Oil	1983	54.7	938	15.4	50*	325

Notes:

Sampling pressure and temperature information obtained from Expro sampling sheets.

Sample Volumes at 5000 psig and 94°C

^{*} Samples appear to form emulsions readily. T.01 and T.03 were heat-treated until water-in oil fell below 0.1% for analysis.

^{**} Water sample T.02 contained oil in emulsified form. After 1 week on heat, a small separated oil sample collected from the top of PT-1147 still contained >10% water (Karl Fischer titration timed out). This fluid does not pour at room temperature. After 5 weeks with periodic checks, 260cc of oil was collected leaving 60cc of water for flash analysis.

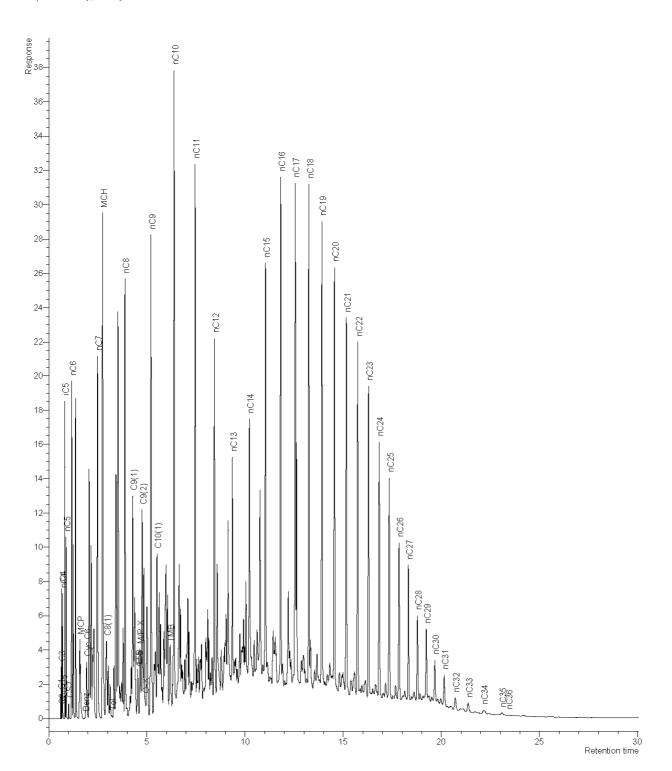
Compositional Analysis of Sample T.01, cylinder PT-2162 to C36 plus

	Component	Mole %	Weight %
H ₂	Hydrogen	0.00	0.00
H_2S	Hydrogen Sulphide	0.00	0.00
CO_2	Carbon Dioxide	0.87	0.28
N_2	Nitrogen	0.23	0.05
C_1	Methane	26.23	3.12
C_2	Ethane	0.63	0.14
C_3	Propane	0.77	0.25
iC_4	i-Butane	0.85	0.36
nC_4	n-Butane	0.68	0.29
C_5	Neo-Pentane	0.04	0.02
iC_5	i-Pentane	1.26	0.67
nC ₅	n-Pentane	0.71	0.38
C ₆	Hexanes	3.18	2.03
	M-C-Pentane	0.70	0.44
	Benzene	0.01	0.00
	Cyclohexane	0.47	0.29
C ₇	Heptanes	4.35	3.23
	M-C-Hexane	2.48	1.81
	Toluene	0.03	0.02
C ₈	Octanes	6.41	5.43
	E-Benzene	0.15	0.12
	M/P-Xylene	0.37	0.29
	O-Xylene	0.07	0.06
C ₉	Nonanes	5.39	5.13
	1,2,4-TMB	0.21	0.19
C ₁₀	Decanes	5.83	6.15
C ₁₁	Undecanes	4.65	5.07
C ₁₂	Dodecanes	3.51	4.19
C ₁₃	Tridecanes	3.57	4.63
C ₁₄	Tetradecanes	3.13	4.41
C ₁₅	Pentadecanes	3.33	5.08
C ₁₆	Hexadecanes	2.64	4.34
C ₁₇	Heptdecanes	2.38	4.18
C ₁₈	Octadecanes	2.41	4.49
C ₁₉	Nonadecanes	1.82	3.55
C ₂₀	Eicosanes	1.56	3.18
C ₂₁	Heneicosanes	1.28	2.77
C ₂₂	Docosanes	1.09	2.48
C ₂₃	Tricosanes	0.94	2.21
C ₂₄	Tetracosanes	0.78	1.92
C ₂₅	Pentacosanes	0.66	1.70
C ₂₆	Hexacosanes	0.52	1.38
C ₂₇	Heptacosanes	0.45	1.24
C ₂₈	Octacosanes	0.35	1.01
C ₂₉	Nonacosanes	0.32	0.96
C ₃₀	Triacontanes	0.25	0.79
C ₃₁	Hentriacontanes	0.23	0.75
C ₃₂	Dotriacontanes	0.17	0.55
C ₃₃	Tritriacontanes	0.14	0.48
C ₃₄	Tetratriacontanes	0.11	0.40
C ₃₅	Pentatriacontanes	0.09	0.31
C ₃₆ +	Hexatriacontanes Plus	1.70	7.18
			400.00
	Totals:	100.00	100.00

C.1

Compositional Analysis of Sample T.01, cylinder PT-2162 to C36 plus

Calculated Residue	Properties	
C ₇ plus	Mole%	64.55
	Molecular Weight (g mol-1)	193
	Density at 15.6°C (g cm-3)	0.8168
C ₁₁ plus	Mole%	38.08
	Molecular Weight (g mol-1)	245
	Density at 15.6°C (g cm-3)	0.8530
C ₂₀ plus	Mole%	10.64
	Molecular Weight (g mol-1)	371
	Density at 15.6°C (g cm-3)	0.8931
C ₃₆ plus	Mole %	1.70
	Molecular Weight (g mol-1)	568
	Density at 15.6°C (g cm-3)	0.9298
Calculated Whole S	ample Properties	
	Average mole weight (g mol-1)	135
	GOR from Flash* (scf/bbl)	280


^{*} Reservoir fluid flashed from 5000 psig at 94°C to atmospheric pressure at 50°C

Fingerprint Analysis of flashed oil, Sample T.01, cylinder PT-2162

Chromatogram

Wardie-1 S/F (1,1) Acquired Monday, 14 July 2008 4:27:14 PM

wb13072008,as_1.2207,1,1,1

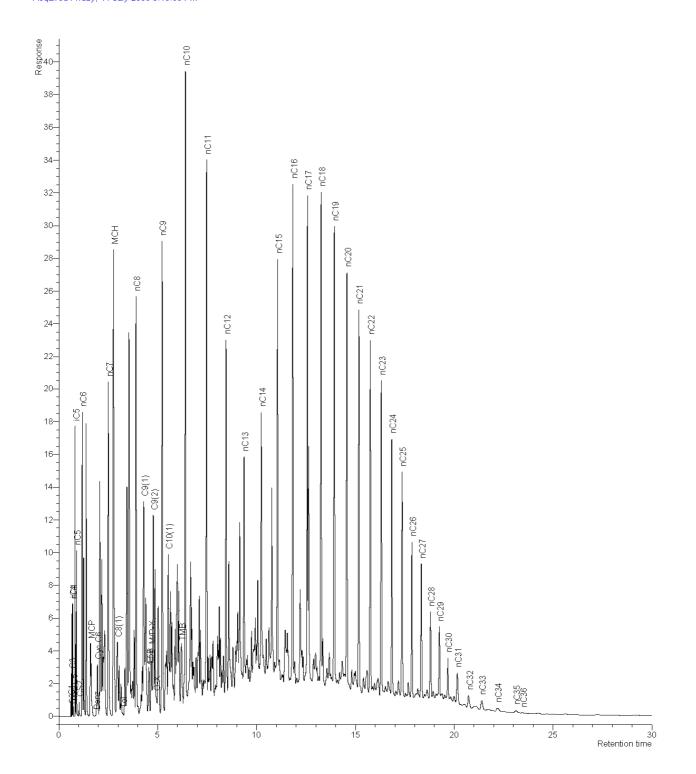
Compositional Analysis of Sample T.03, cylinder PT-2173 to C36 plus

	Component	Mole %	Weight %
H ₂	Hydrogen	0.00	0.00
H ₂ S	Hydrogen Sulphide	0.00	0.00
CO ₂	Carbon Dioxide	0.84	0.28
N_2	Nitrogen	0.26	0.05
C ₁	Methane	26.83	3.20
C_2	Ethane	0.62	0.14
C_3	Propane	0.74	0.14
iC ₄	i-Butane	0.74	0.37
nC ₄	n-Butane	0.65	0.28
C ₅	Neo-Pentane		
		0.04	0.02
iC ₅	i-Pentane	1.20	0.64
nC ₅	n-Pentane	0.67	0.36
C ₆	Hexanes	3.05	1.95
	M-C-Pentane	0.68	0.42
	Benzene	0.00	0.00
_	Cyclohexane	0.46	0.29
C ₇	Heptanes	4.26	3.17
	M-C-Hexane	2.44	1.79
	Toluene	0.02	0.02
C ₈	Octanes	6.33	5.38
	E-Benzene	0.16	0.12
	M/P-Xylene	0.36	0.28
	O-Xylene	0.08	0.06
C ₉	Nonanes	5.32	5.08
	1,2,4-TMB	0.20	0.18
C ₁₀	Decanes	5.83	6.17
C ₁₁	Undecanes	4.64	5.08
C_{12}	Dodecanes	3.52	4.22
C ₁₃	Tridecanes	3.55	4.62
C_{14}	Tetradecanes	3.13	4.42
C ₁₅	Pentadecanes	3.32	5.09
C ₁₆	Hexadecanes	2.62	4.33
C ₁₇	Heptdecanes	2.38	4.20
C ₁₈	Octadecanes	2.42	4.53
C ₁₉	Nonadecanes	1.82	3.57
C ₂₀	Eicosanes	1.57	3.22
C ₂₁	Heneicosanes	1.29	2.80
C ₂₂	Docosanes	1.10	2.51
C ₂₃	Tricosanes	0.95	2.24
C ₂₄	Tetracosanes	0.80	1.96
C ₂₅	Pentacosanes	0.67	1.72
C ₂₆	Hexacosanes	0.52	1.39
C ₂₇	Heptacosanes	0.45	1.26
C ₂₈	Octacosanes	0.36	1.04
C ₂₉	Nonacosanes	0.33	0.97
C ₃₀	Triacontanes	0.26	0.81
C ₃₁	Hentriacontanes	0.24	0.77
C_{32}	Dotriacontanes	0.17	0.56
C_{33}	Tritriacontanes	0.17	0.49
C ₃₄	Tetratriacontanes	0.14	0.49
C ₃₅	Pentatriacontanes	0.12	0.35
C ₃₅ +	Hexatriacontanes Plus	1.64	6.95
∪ ₃₆ ∓	i icadilaccitatics i ids	1.04	ს. ჟე
	Totals:	100.00	100.00
	Note: 0.00 means less than 0.005.	100.00	100.00
	Note. 0.00 Illeans less than 0.003.		

C.4

Compositional Analysis of Sample T.03, cylinder PT-2173 to C36 plus

Calculated Residue	Properties	
C ₇ plus	Mole%	64.25
	Molecular Weight (g mol-1)	193
	Density at 15.6°C (g cm-3)	0.8170
C ₁₁ plus	Mole%	38.11
	Molecular Weight (g mol-1)	245
	Density at 15.6°C (g cm-3)	0.8529
C ₂₀ plus	Mole%	10.71
	Molecular Weight (g mol-1)	369
	Density at 15.6°C (g cm-3)	0.8928
C ₃₆ plus	Mole %	1.64
	Molecular Weight (g mol-1)	568
	Density at 15.6°C (g cm-3)	0.9299
Calculated Whole Sa	ample Properties	
	Average mole weight (g mol-1)	134
	GOR from Flash* (scf/bbl)	286


^{*} Reservoir fluid flashed from 5000 psig at 94°C to atmospheric pressure at 50°C

Fingerprint Analysis of flashed oil sample T.03, cylinder PT-2173

Chromatogram

Wardie-1 S/F (1,1) Acquired Friday, 11 July 2008 3:46:05 PM

wb06072008,as_1.2201,1,1,1

Compositional Analysis of Flashed Gas from Sample T.02, Cylinder PT-1147 to C12+

	Company	Mala 0/	Maight 9/	
	Component	Mole %	Weight %	
H ₂	Hydrogen	0.00	0.00	
H ₂ S	Hydrogen Sulphide	0.00	0.00	
CO ₂	Carbon Dioxide	6.13	10.32	
N_2	Nitrogen	1.22	1.31	
C ₁	Methane	77.31	47.48	
C_2	Ethane	3.33	3.83	
C_3	Propane	1.15	1.94	
iC_4	i-Butane	0.74	1.64	
nC_4	n-Butane	0.56	1.23	
C_5	Neo-Pentane	0.06	0.17	
iC_5	i-Pentane	1.31	3.63	
nC ₅	n-Pentane	0.94	2.58	
C ₆	Hexanes	3.20	10.45	
	M-C-Pentane	0.33	1.06	
	Benzene	0.00	0.00	
	Cyclohexane	0.59	1.89	
C ₇	Heptanes	1.59	6.06	
	M-C-Hexane	0.61	2.29	
	Toluene	0.03	0.09	
C ₈	Octanes	0.70	3.07	
	E-Benzene	0.01	0.04	
	M/P-Xylene	0.00	0.00	
	O-Xylene	0.00	0.00	
C ₉	Nonanes	0.17	0.81	
	1,2,4-TMB	0.02	0.11	
C ₁₀	Decanes	0.00	0.00	
C ₁₁	Undecanes	0.00	0.00	
C ₁₂ +	Dodecanes Plus	0.00	0.00	
	T 4 4	400.00	400.00	
	Totals:	100.00	100.00	
	Note: 0.00 means less than 0.005.			
	Calculated Properties			
	C ₇ +			
	Mole%	4.05		
	Molecular Weight (g mol-1)	99.6		
	Density at 15.6°C (g cm-3)	0.7317		
	Calculated Whole Gas Properties			
	Molecular Weight (g mol-1)	26.14		
	D 1016 D 1			
	Real Relative Density	2 22		
		0.9075		
	(Air=1 at 14.696 psia and 15.6°C)	0.3010		
	Gas-Water Ratio	0.3070		

Note:

Reservoir fluid was flashed from 5000 psig and 94°C to atmospheric pressure and 19.6°C

Reservoir Fluids Group D.1

Detailed Flashed Water Analysis from Sample T.02, Cylinder PT-1147

Dissolved Constituent	Units	Results
Ions Calcium, Ca Magnesium, Mg Iron, Fe (soluble) Sodium, Na Potassium, K Strontium, Sr Barium, Ba Manganese, Mn Chloride, Cl Sulphate, SO4 Bicarbonate, HCO3 Carbonate, CO3 Hydroxide, OH	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	
Basic Properties pH Resistivity, @ 25°C Total Dissolved Solids (calculated) Total Dissolved Solids (by evaporation at 110°C) Total Dissolved Solids (by evaporation at 180°C) Density, @ 20°C	pH units ohm-m mg/L mg/L mg/L gm/cc	7.7 1.0425

Notes:

- 1. During validation checks, sample T.02 (PT-1147) was found to be a tight margarine-like emulsion.
- 2. The sample was left upright and standing on heat at 5000 psig and 94°C.
- 3. Sample status was checked periodically over 5 weeks.
- 4. 260cc of free oil was removed (and stored) leaving 60cc of water available for flash analysis.
- 5. The volume of water collected was insufficient and quality inadequate for detailed water analysis and resistivity.

Section E - Appendix

Data Used in Gas Compositional Calculations

Component		Mole Weight	~	Component		Mole Weight	Density
		(g mol-1)	(g cm-3 at 60°F)		(g mol-1)	(g cm-3 at 60°F)
	*	0.040		0001105	*	400.00	0.0054
Hydrogen		2.016	N/A	33DMC5		100.20	0.6954
Oxygen/(Argon)	**	31.999	1.1410	Cyclohexane	*	84.16	0.7827
Nitrogen (Corrected)	**	28.013	0.8086	2MC6/23DMC5	*	100.20	0.6917
Methane	**	16.043	0.2997	11DMCYC5/3MC6	*	99.20	0.7253
Carbon Dioxide	**	44.010	0.8172	t13DMCYC5	*	98.19	0.7528
Ethane	**	30.070	0.3558	c13DMCYC5/3EC5	*	99.20	0.7262
Hydrogen Sulphide	**	34.080	0.8006	t12DMCYC5	*	98.19	0.7554
Propane	**	44.097	0.5065	Heptanes (nC7)	*	100.20	0.6875
i-Butane	**	58.123	0.5623	22DMC6	*	114.23	0.6994
n-Butane	**	58.123	0.5834	MCYC6	*	98.19	0.7740
Neo-Pentane	*	72.15	0.5968	ECYC5	*	98.19	0.7704
i-Pentane	**	72.150	0.6238	223TMC5/24&25DMC6	*	114.23	0.7060
n-Pentane	**	72.150	0.6305	ctc124TMCYC5	*	112.21	0.7511
22DMC4	*	86.18	0.6529	ctc123TMCYC5	*	112.21	0.7574
23DMC4/CYC5	*	78.16	0.7129	Toluene	*	92.14	0.8734
2MC5	*	86.18	0.6572	Octanes (nC8)	*	114.23	0.7063
3MC5	*	86.18	0.6682	E-Benzene	*	106.17	0.8735
Hexanes (nC6)	*	86.18	0.6631	M/P-Xylene	*	106.17	0.8671
22DMC5	*	100.20	0.6814	O-Xylene	*	106.17	0.8840
M-C-Pentane	*	84.16	0.7533	Nonanes (nC9)	*	128.26	0.7212
24DMC5	*	100.20	0.6757	Decanes	***	134	0.778
223TMC4	*	100.20	0.6947	Undecanes	***	147	0.789
Benzene	*	78.11	0.8820	Dodecanes	***	161	0.800

Data Source Refs:

- * ASTM Data Series Publication DS 4B (1991) Physical Constants of Hydrocarbon and Non-Hydrocarbon Compounds.
- ** GPA Table of Physical Constants of Paraffin Hydrocarbons and Other Components of Natural Gas, GPA 2145-96.
- *** Journal of Petroleum Technology, Nov 1978, Pages 1649-1655.

 Predicting Phase Behaviour of Condensate/Crude Oil Systems Using Methane Interaction Coefficients
 D.L. Katz & A. Firoozabadi.

Note:

The gas mole % compositions were calculated from the measured weight % compositions using the most detailed analysis results, involving as many of the above components as were identified. The reported component mole % compositions were then sub-grouped into the generic carbon number components.

Data Used in Liquid Compositional Calculations

Component			Component		Mole Weight	•			
		(g mol-1)	(g cm-3 at 60°F)			(g mol-1)	(g cm-3 at 60°F)		
					4.4.4				
Hydrogen	*	2.016	N/A	Undecanes	***	147	0.789		
Hyd. sulphide	**	34.080	0.8006	Dodecanes	***	161	0.800		
Carbon Dioxide	**	44.010	0.8172	Tridecanes	***	175	0.811		
Nitrogen	**	28.013	0.8086	Tetradecanes	***	190	0.822		
Methane	**	16.043	0.2997	Pentadecanes	***	206	0.832		
Ethane	**	30.070	0.3558	Hexadecanes	***	222	0.839		
Propane	**	44.097	0.5065	Heptadecanes	***	237	0.847		
i-Butane	**	58.123	0.5623	Octadecanes	***	251	0.852		
n-Butane	**	58.123	0.5834	Nonadecanes	***	263	0.857		
i-Pentane	**	72.150	0.6238	Eicosanes	***	275	0.862		
n-Pentane	**	72.150	0.6305	Heneicosanes	***	291	0.867		
Hexanes	**	86.177	0.6634	Docosanes	***	305	0.872		
Me-cyclo-pentane	*	84.16	0.7533	Tricosanes	***	318	0.877		
Benzene	*	78.11	0.8820	Tetracosanes	***	331	0.881		
Cyclo-hexane	*	84.16	0.7827	Pentacosanes	***	345	0.885		
Heptanes	**	100.204	0.6874	Hexacosanes	***	359	0.889		
Me-cyclo-hexane	*	98.19	0.7740	Heptacosanes	***	374	0.893		
Toluene	*	92.14	0.8734	Octacosanes	***	388	0.896		
Octanes	**	114.231	0.7061	Nonacosanes	***	402	0.899		
Ethyl-benzene	*	106.17	0.8735	Triacontanes	***	416	0.902		
Meta/Para-xylene	*	106.17	0.8671	Hentriacontanes	***	430	0.906		
Ortho-xylene	*	106.17	0.8840	Dotriacontanes	***	444	0.909		
Nonanes	**	128.258	0.7212	Tritriacontanes	***	458	0.912		
1-2-4-T-M-benzene	*	120.19	0.8797	Tetratriacontanes	***	472	0.914		
Decanes	**	142.285	0.7334	Pentatriacontanes	***	486	0.917		

Data Source Refs:

- * ASTM Data Series Publication DS 4B (1991) Physical Constants of Hydrocarbon and Non-Hydrocarbon Compounds.
- ** GPA Table of Physical Constants of Paraffin Hydrocarbons and Other Components of Natural Gas GPA 2145-96.
- *** Journal of Petroleum Technology, Nov 1978, Pages 1649-1655.

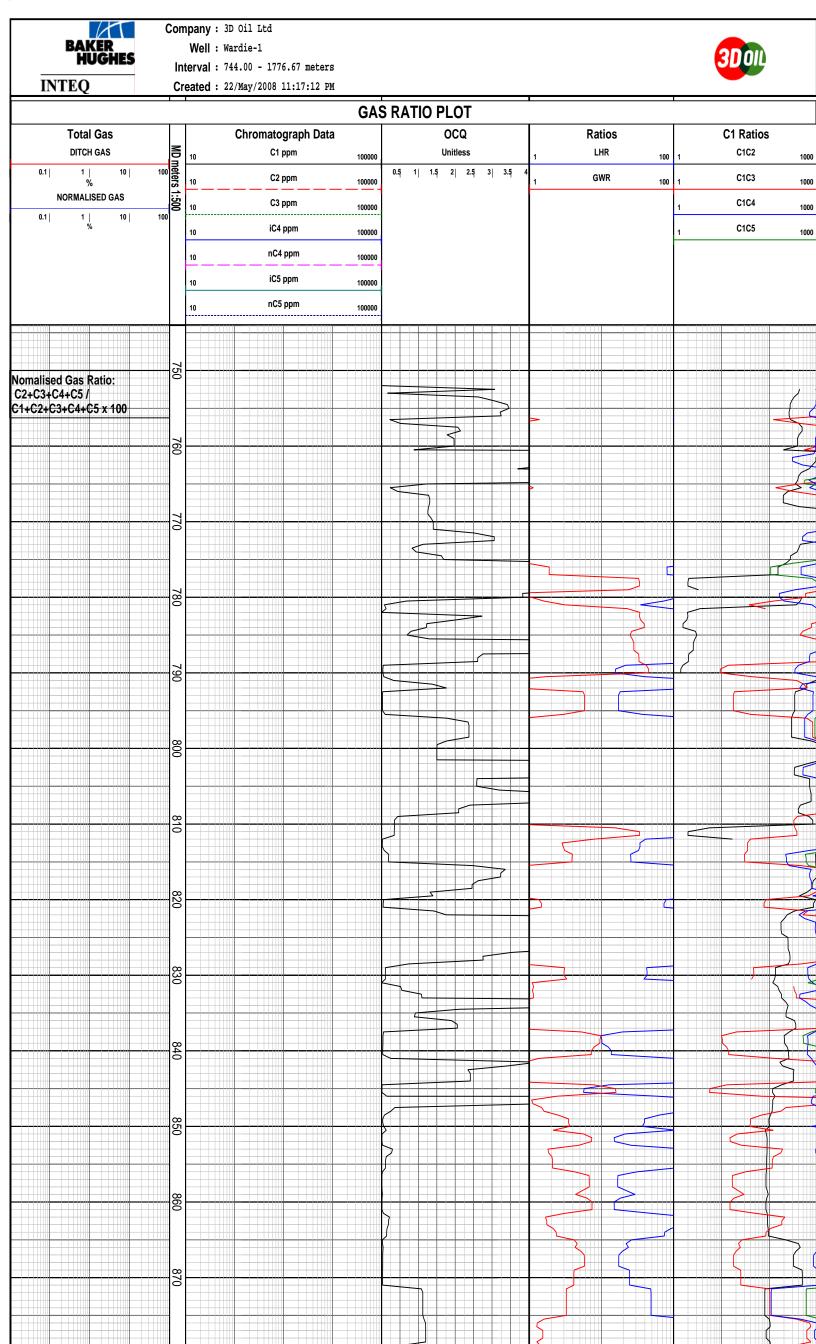
 Predicting Phase Behaviour of Condensate/Crude Oil Systems Using Methane Interaction Coefficients
 D.L. Katz & A. Firoozabadi.

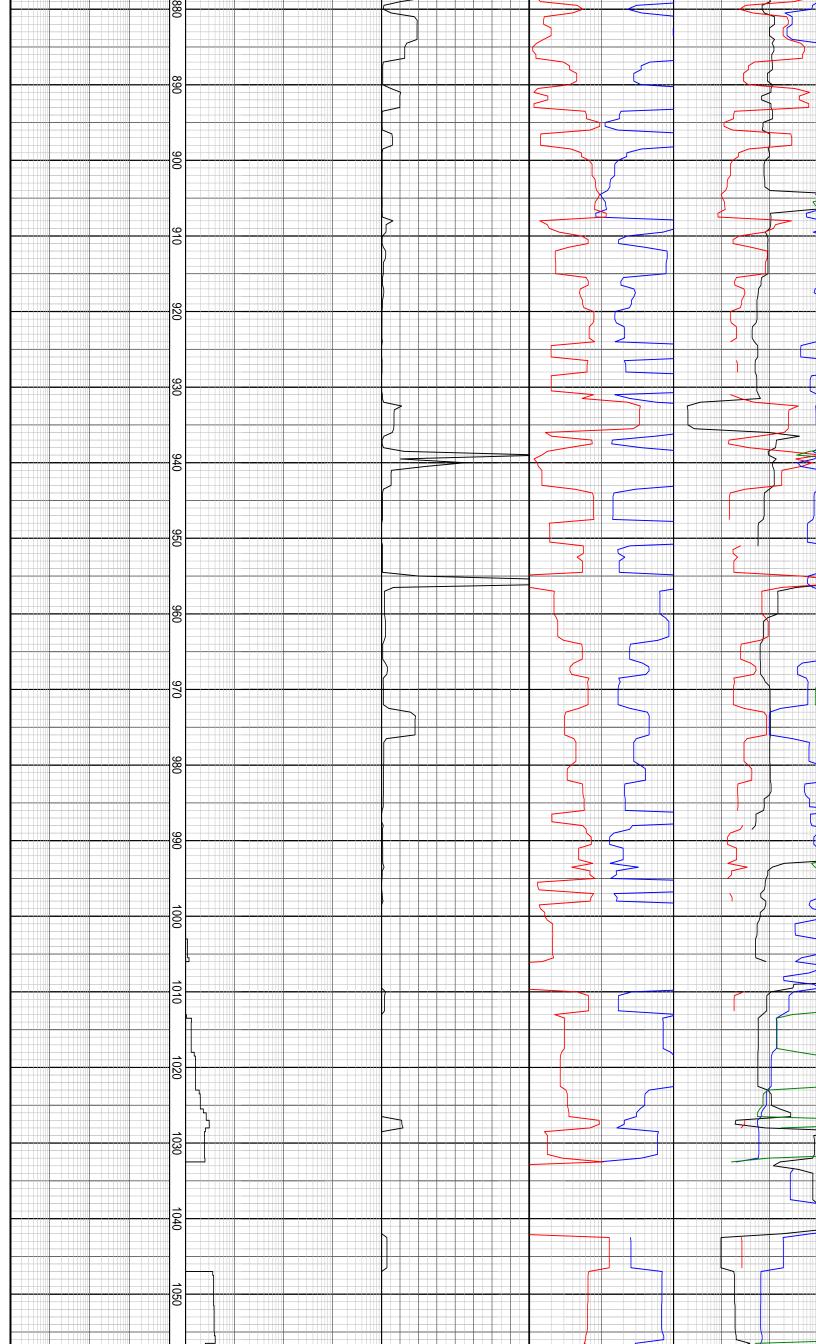
Note:

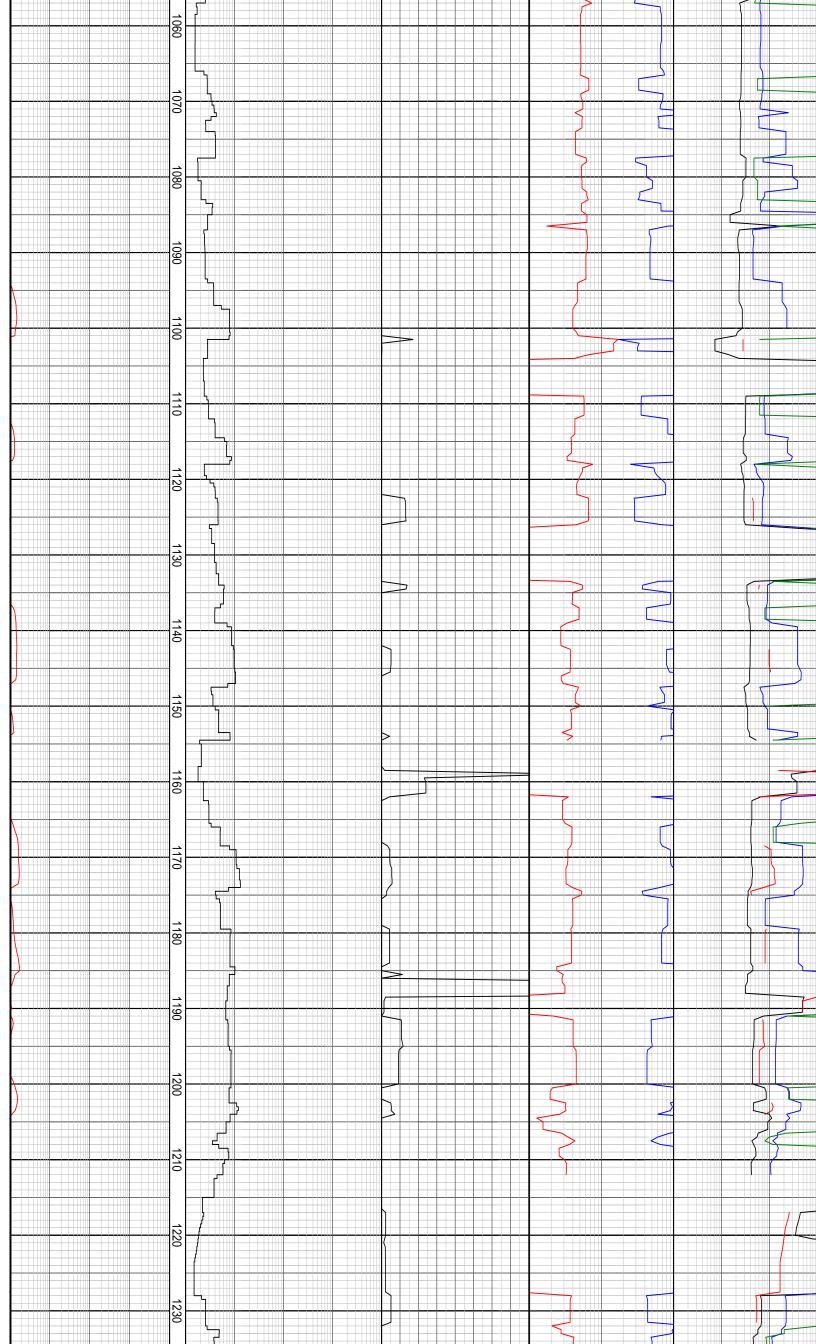
The residue mole weight and density values (eg heptanes plus, undecanes plus, eicosanes plus) are calculated so that the calculated average mole weights and densities correspond with the measured values. This can lead to anomalous residue mole weights and densities where the Katz and Firoozabadi values may not be suitable for the isomer groups detected.

E.2

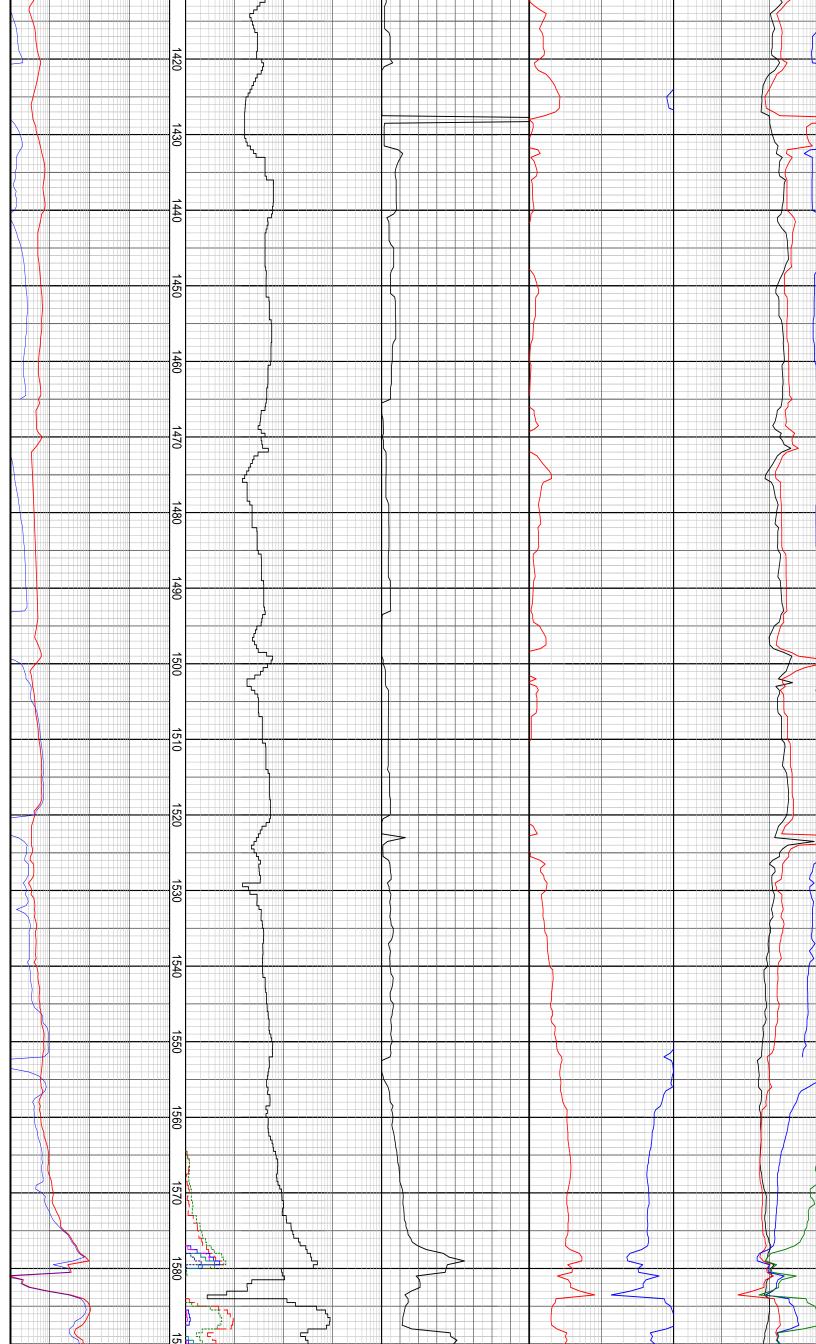
Report prepared by

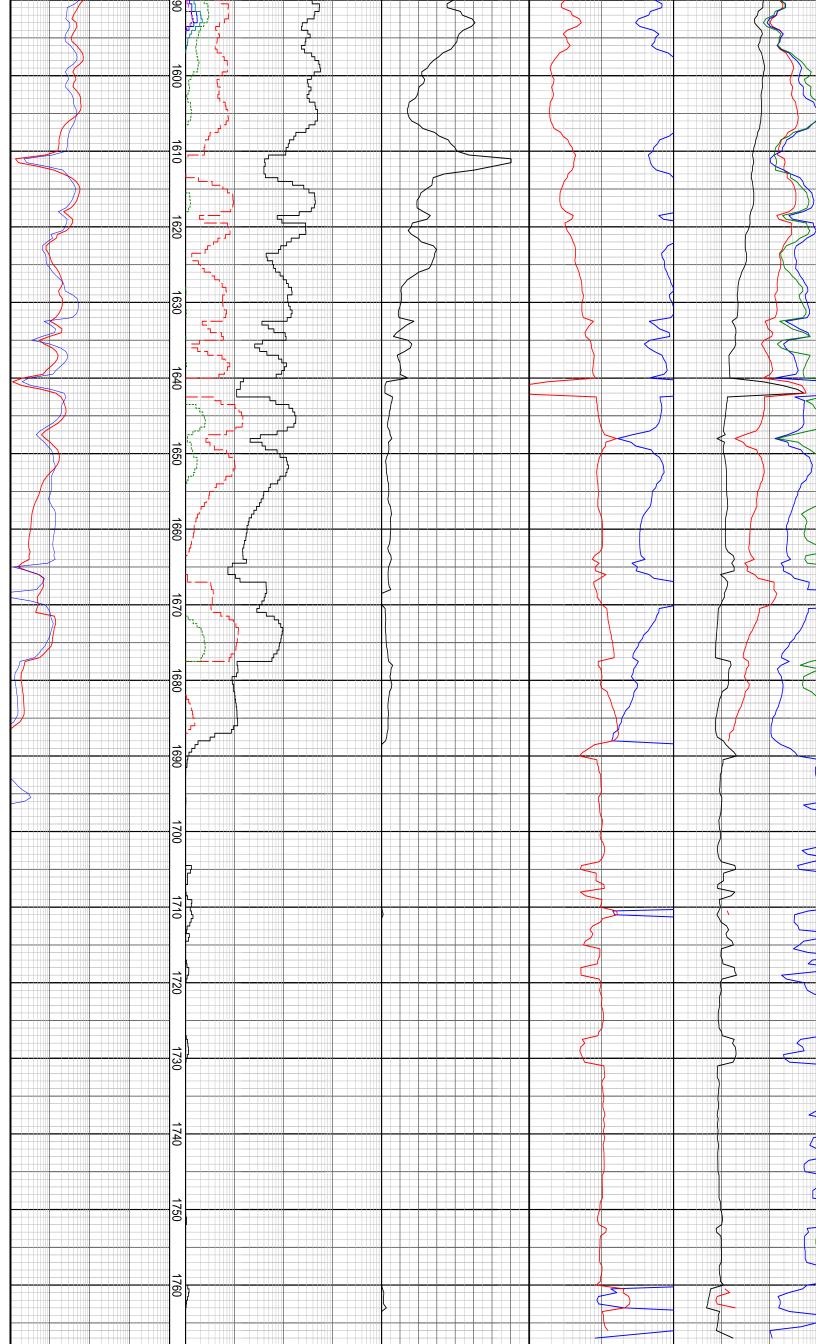

Report approved by


Damien Gerard Senior Reservoir Fluids Analyst Murray Macleod Laboratory Supervisor



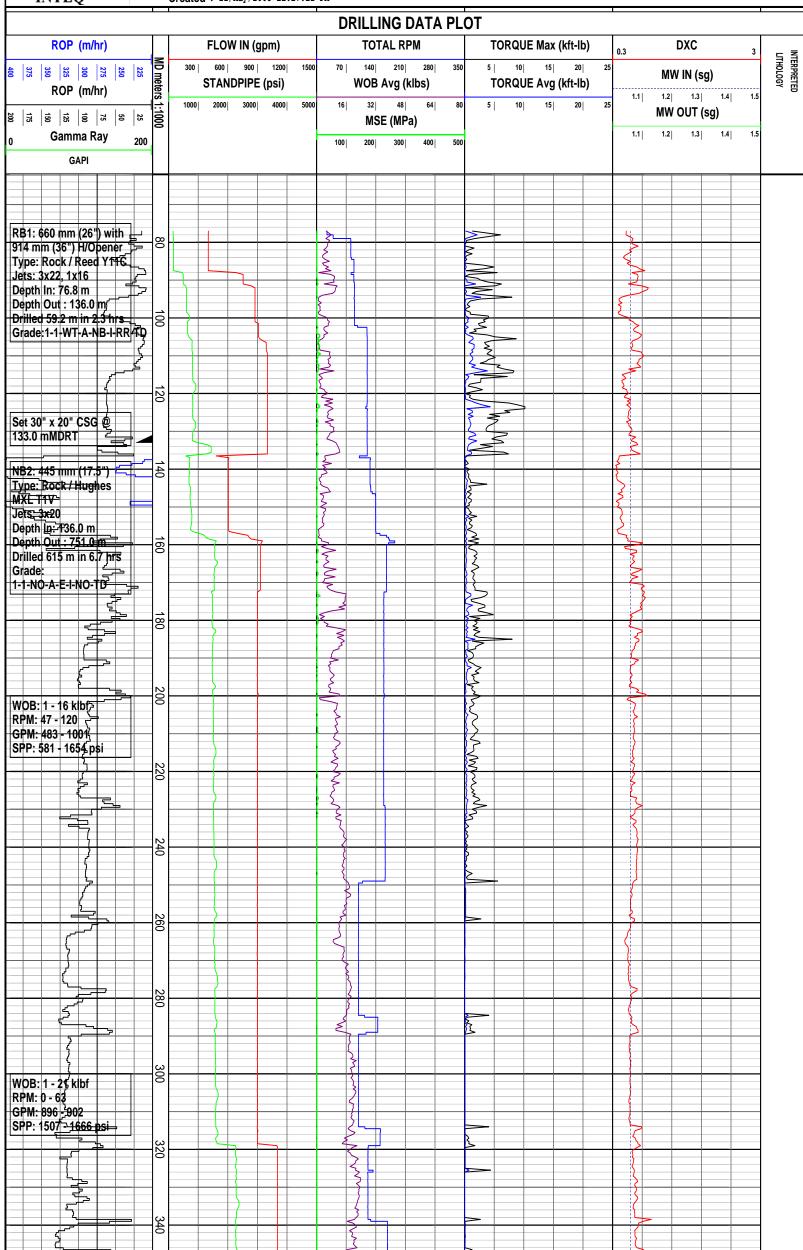
Gas Log Plot

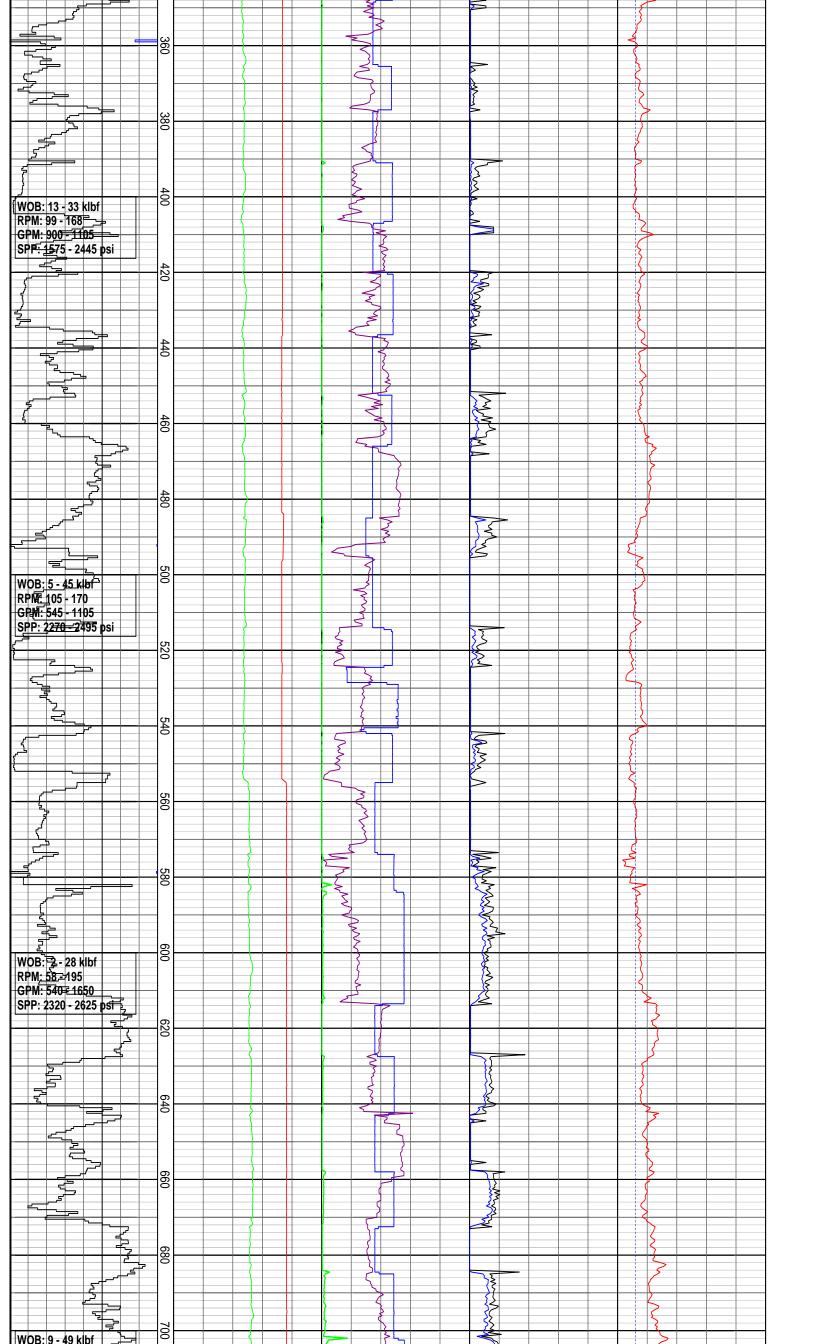

1:500

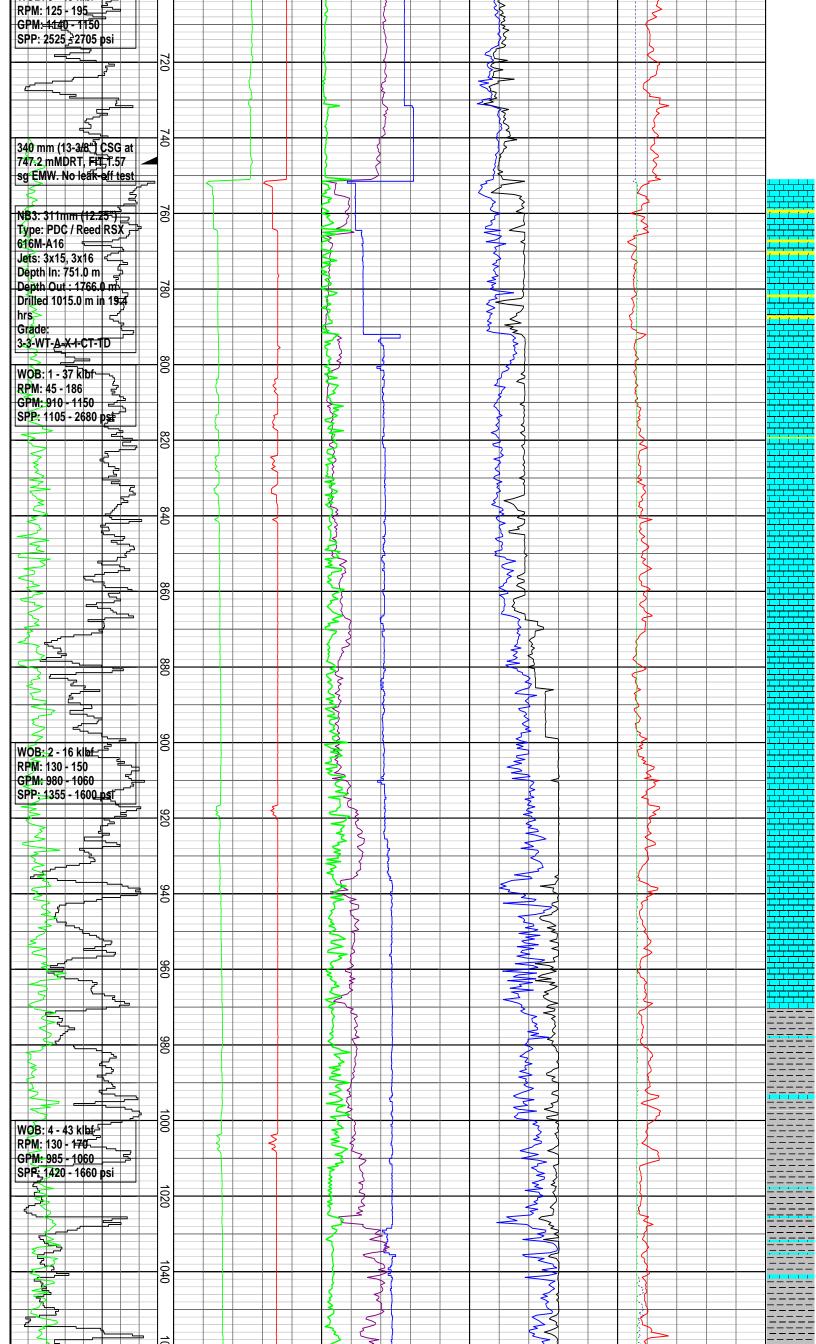


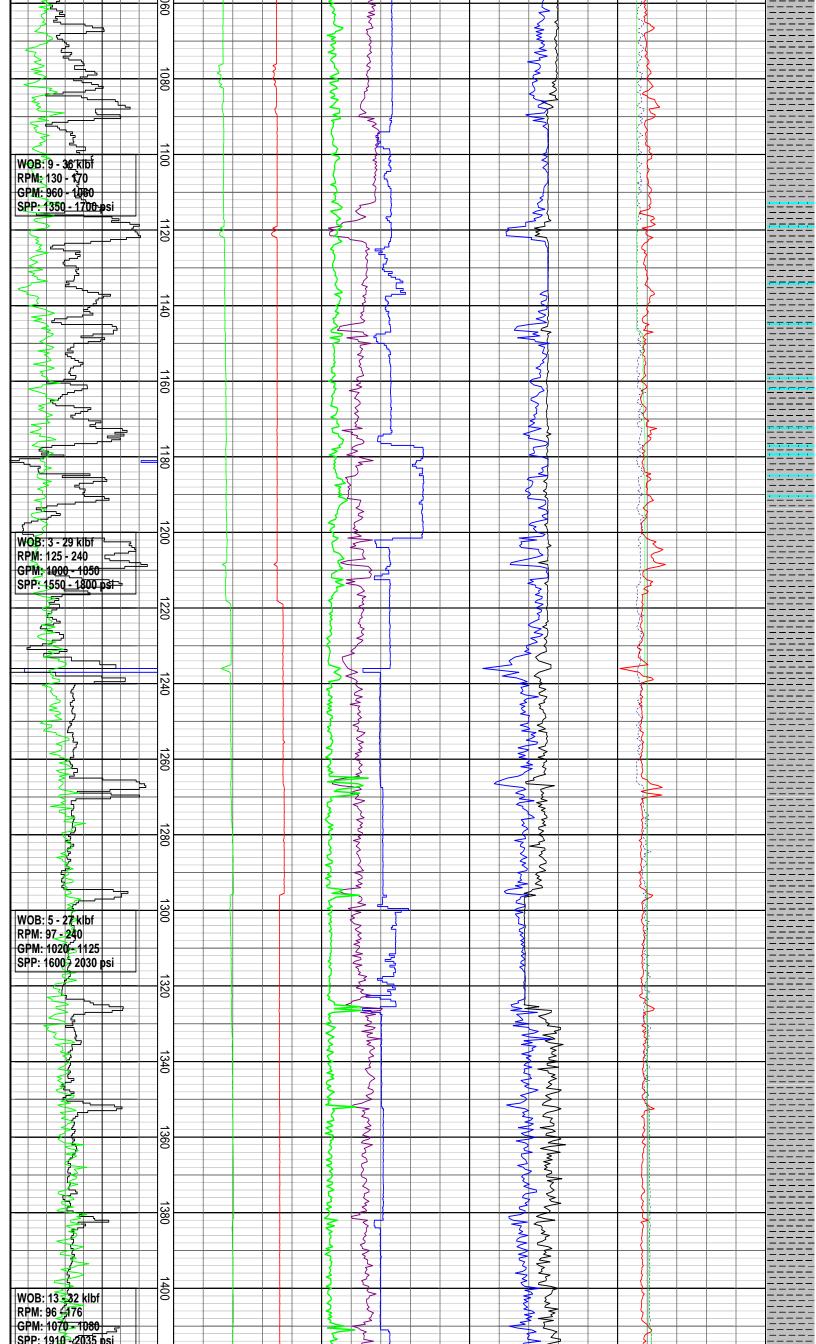
1770				
	GA	S RATIO PLOT		
Total Gas	Chromatograph Data	OCQ	Ratios	C1 Ratios
DITCH GAS	10 C1 ppm 100000	Unitless	1 LHR 100	1 C1C2 ₁₀₀₀
0.1 1 10 100	10 C2 ppm 100000	0.\$ 1 1.\$ 2 2.\$ 3 3.\$ 4	1 GWR 100	1 C1C3 ₁₀₀₀
NORMALISED GAS ::500	10 C3 ppm 100000			1 C1C4 ₁₀₀₀
% %	10 iC4 ppm 100000			1 C1C5 1000
	10 nC4 ppm 100000			
	10 iC5 ppm 100000			
	10 nC5 ppm 100000			

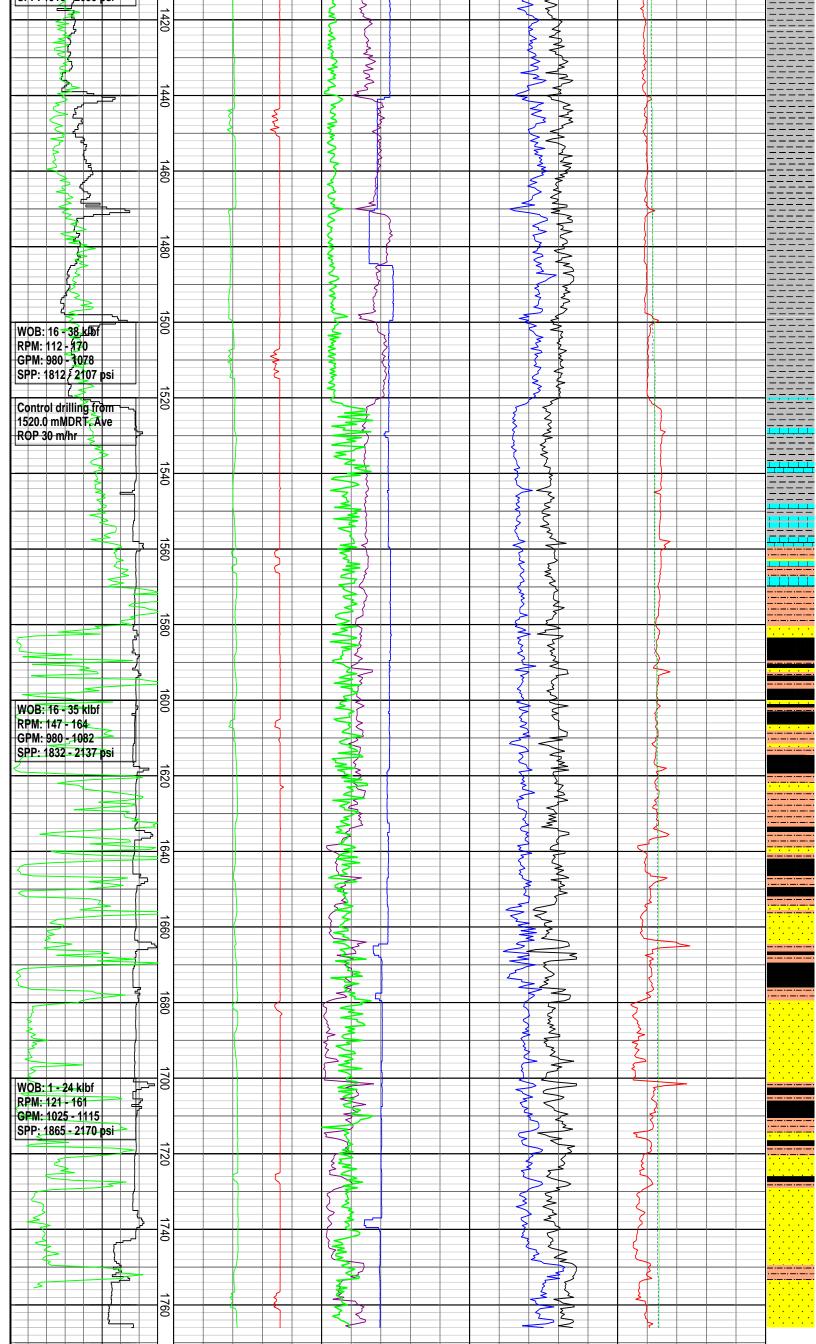
Drilling Data Plot 1:1000




Company: 3D Oil Ltd Well: Wardie-1


Interval: 62.00 - 1782.46 meters

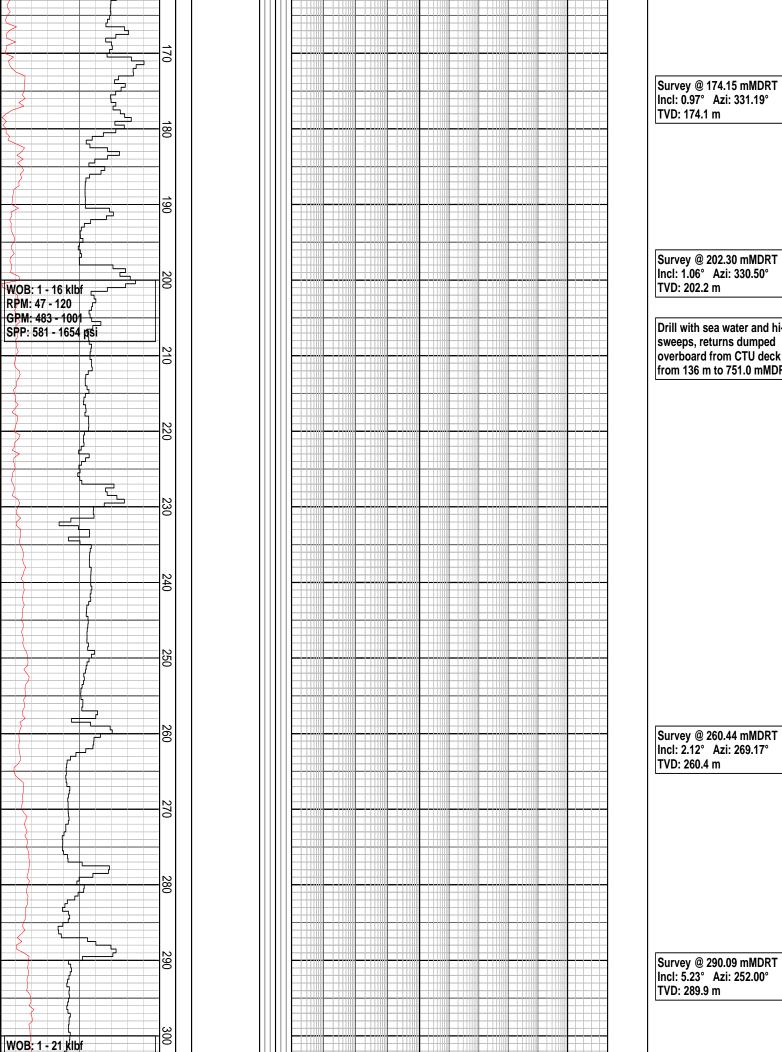



INTEQ Created: 22/May/2008 11:17:12 PM

	1780																
				D	RILLING	DAT	A PL	TC									
ROP (m/hr)		FLOW IN (gpm)		TOTAL	RPM		TOR	QUE Max	x (kft-lb)		0.3		XC		3	
400 335 325 330 275 225 225 226 226 227 227 228 227 228	MD meters	300 600 900 STANDPIPE		70	WOB Avg	^{10∣ 280} j (klbs)	350		^{10∣} 15 QUE Avç	20 g (kft-lb)	25	1.1	MW	IN (sg)	1.4	1.5	INTERPRETED
25 50 75 125 125 175 200	s 1:1000	1000 2000 3000	4000 5000	16	32 MSE (N	^{48∣ 64} ⁄IPa)	80	5	10 15	20	25	1.1		OUT (s		1.3	
O Gamma Ray 200				100	200 3	00 400	500					1.1	1.2	1.3	1.4	1.5	

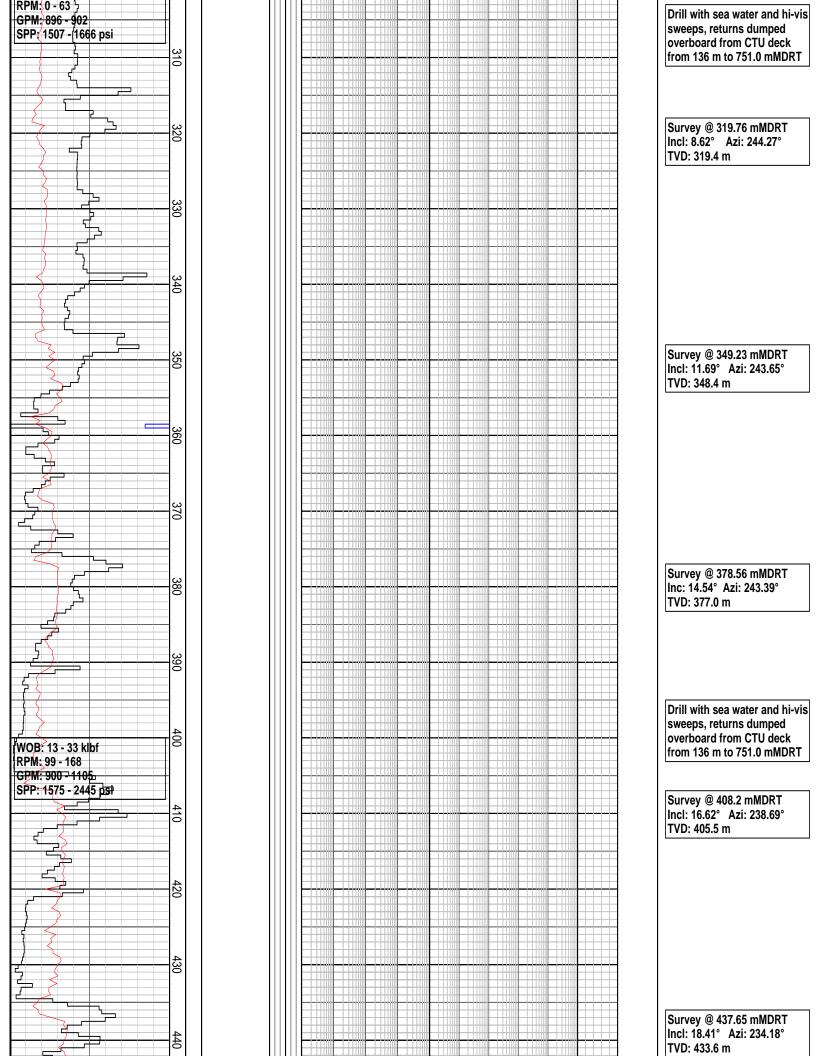
Mud Log Plot 1:500

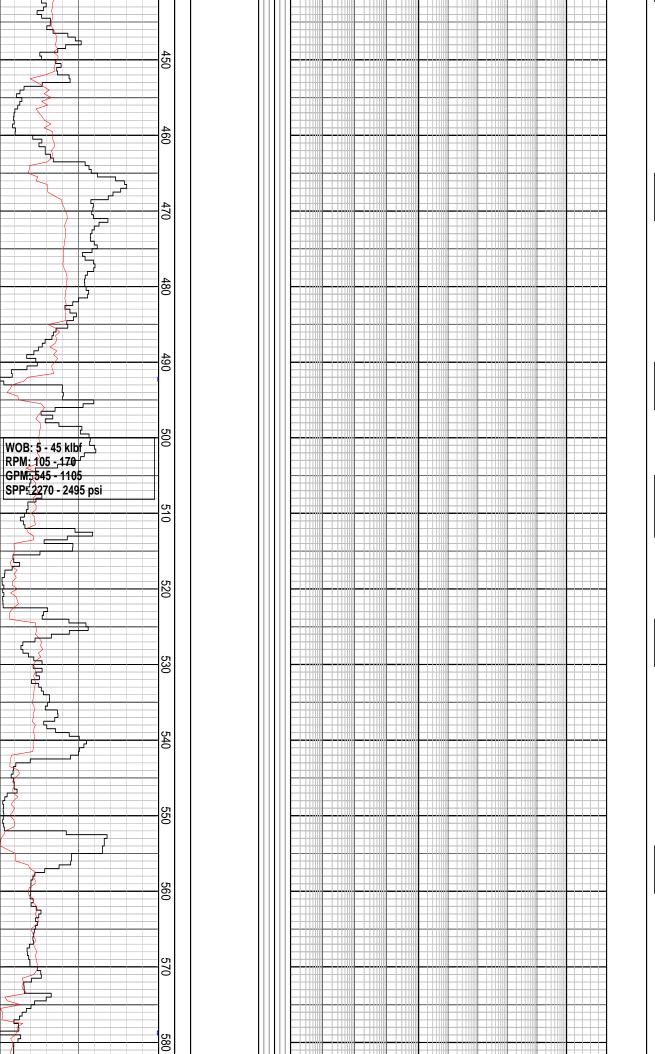
Grade: 1-1-NO-A-E-I-NO-TD


13/05/08 🛚

Company: 3D Oil Ltd

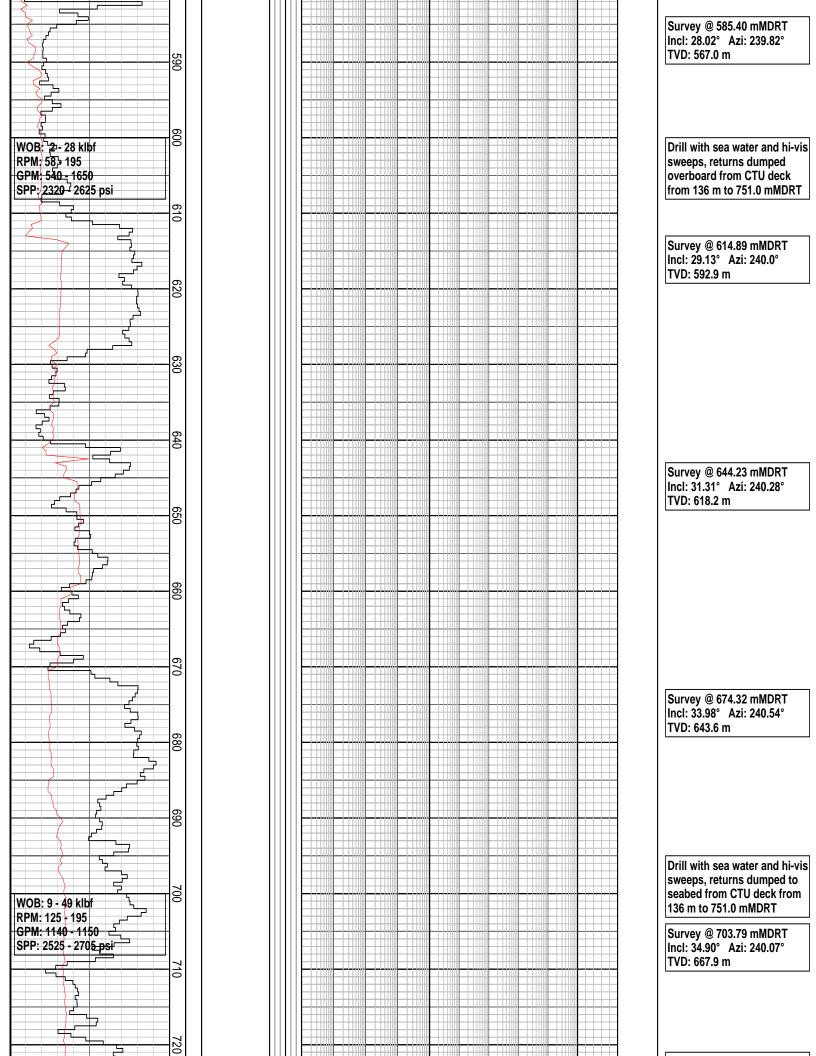
Well: Wardie-1

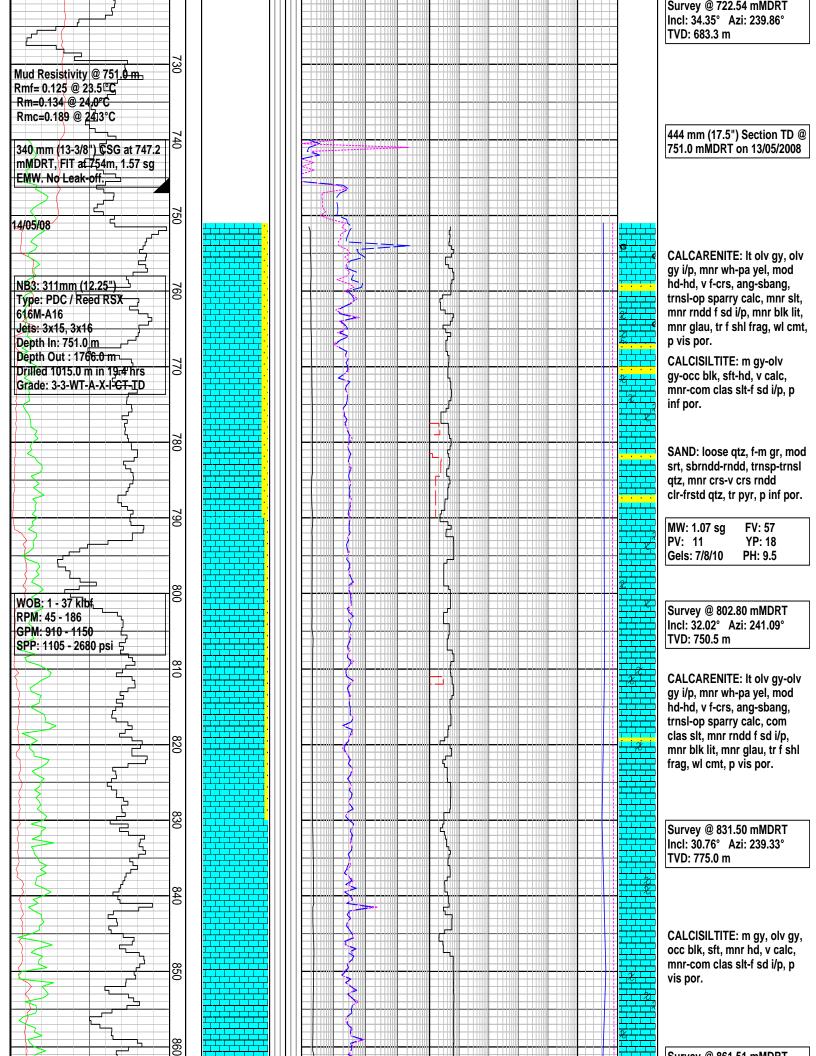


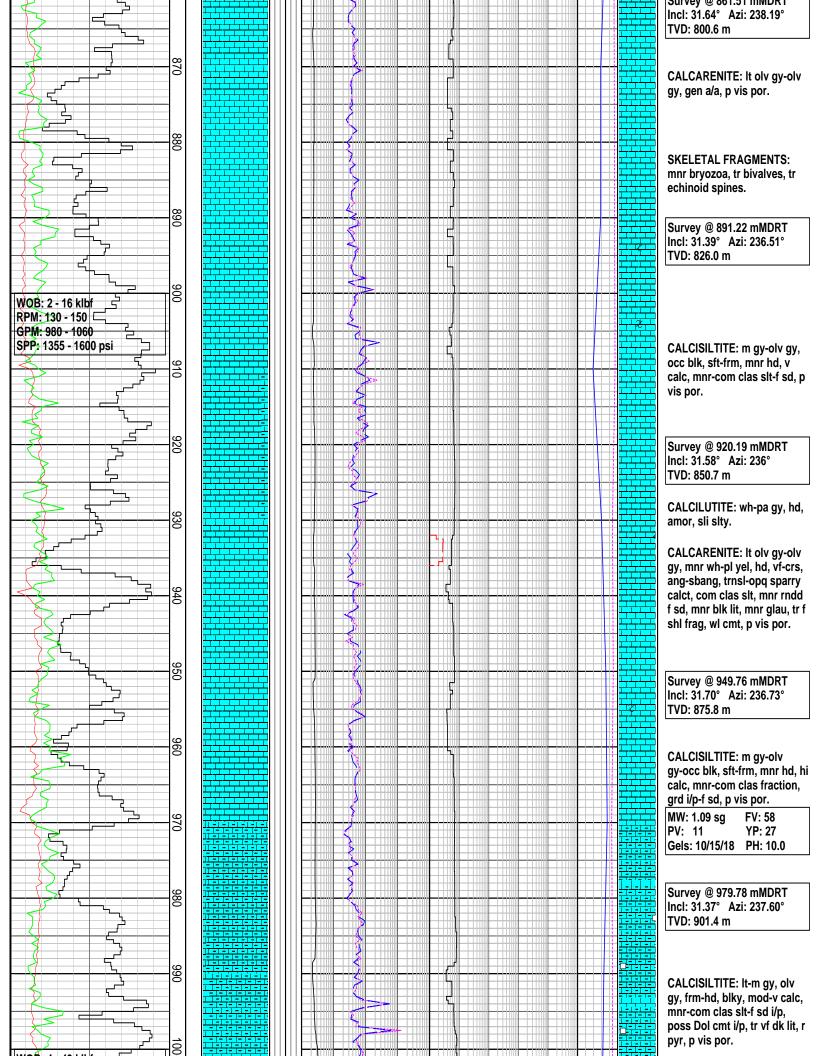

Interval: 66.00 - 1788.90 meters **INTEQ** Created: 22/May/2008 11:17:12 PM FORMATION EVALUATION LOG **Drilling Rate** Gas Data **Chromatograph Data Lithology Description** Calcimetry Oil Show ROP (m/hr) Gas Hydrocarbon Avg % Methane ppm Interpreted Lithology TVDRT meters Cuttings Lithology 100000 Visual Inferred Porosity 0.1 Ethane ppm 100000 PFG Resistivity Shall 1000 WEIGHT ON BIT CaCO3 % Propane ppm OHMM 100000 20 | 60 | |40 |60 |80 | Resistivity Deep ROP (m/hr) 1000 iso-Butane ppm 0.1 100000 OHMM n-Butane ppm Gamma Ray iso-Pentane ppm 100000 GAPI n-Pentane ppm 100000 RT - AHD: 38.0 mMDRT Water depth: 38.8 mMDRT RT - Seabed: 76.8 mMDRT RB1: 660 mm (26") with 914 mm (36") H/Opener Type: Rock / Reed Y11C 80 Spud Wardie-1 at 1930hrs on Jets: 3x22, 1x16 10/05/2008 Depth In: 76.8 m Depth Out : 136.0 m Survey @ 82.5 mMDRT Drilled 59.2 m in 2.3 hrs Incl: 1.90° Azi: 317.51° Grade:1-1-WT-A-NB-I-RR-TD TVD: 82.5 m 8 Drill with sea water and hi-vis sweeps, returns to seabed from 76.8 m to 136 mMDRT 5 Survey @ 102.5 mMDRT Incl: 1.69° Azi: 316.58° TVD: 102.5 m 2 Set 30" x 20" CSG @ 133.0 MMDRT 914 mm (36") Section TD @ 136.0 mMDRT on 11/05/2008 11/05/08 Survey @ 134.6 mMDRT Incl: 2.03° Azi: 330.59° TVD: 134.6 m NB2: 444 mm (17.5") 🔀 Type: Rock / Hughes MXL T1V Jets: 3x20 Depth In: 136.0 m Depth Out : 751.0 m Drilled 615 m in 6.7 hrs

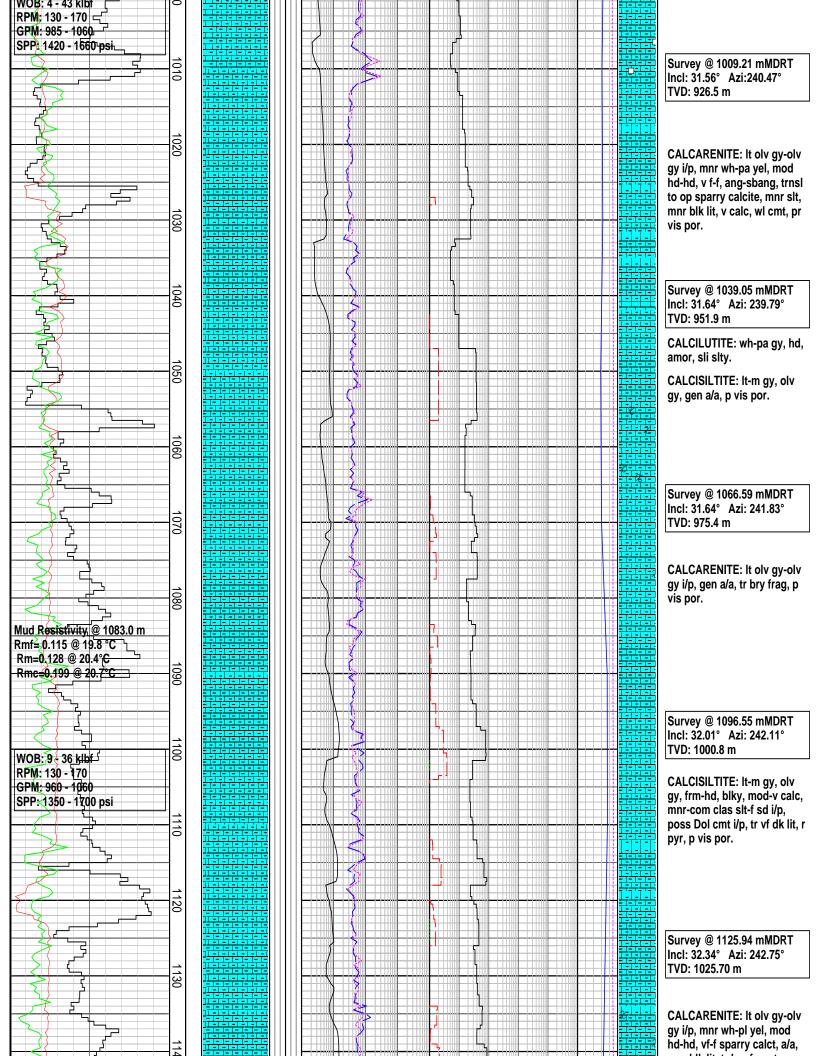
Drill with sea water and hi-vis sweeps, returns dumped overboard from CTU deck from 136 m to 751.0 mMDRT

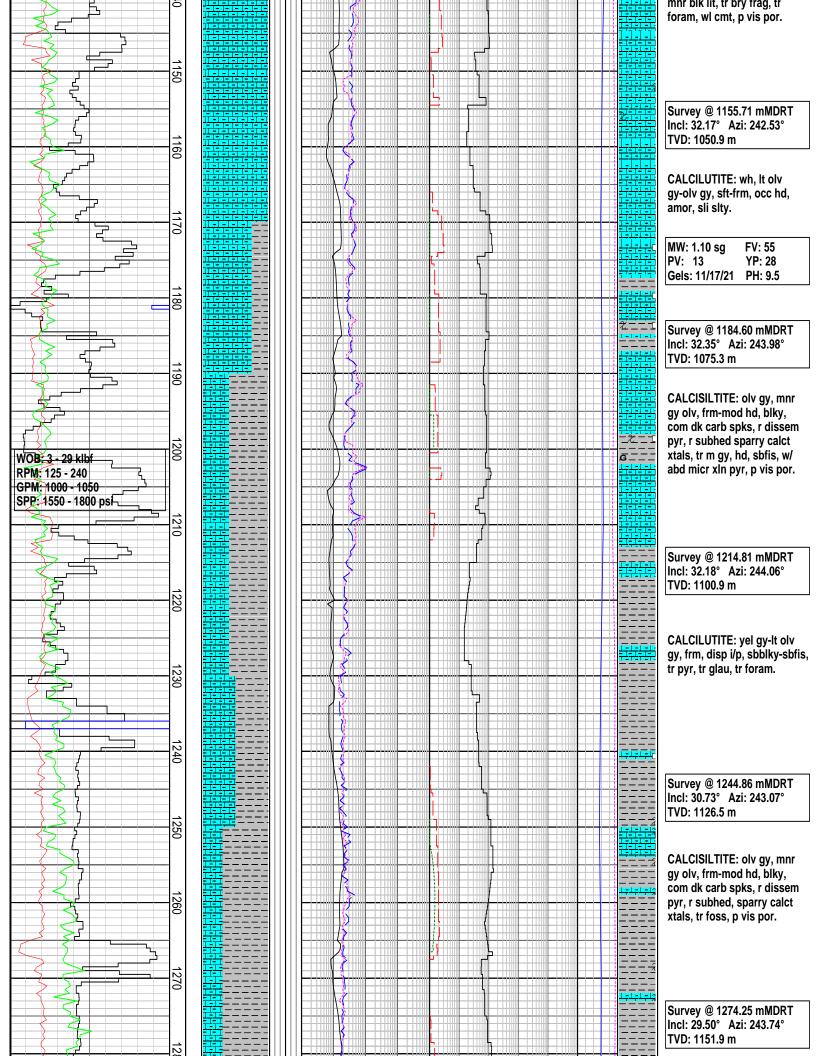
Survey @ 260.44 mMDRT Incl: 2.12° Azi: 269.17°

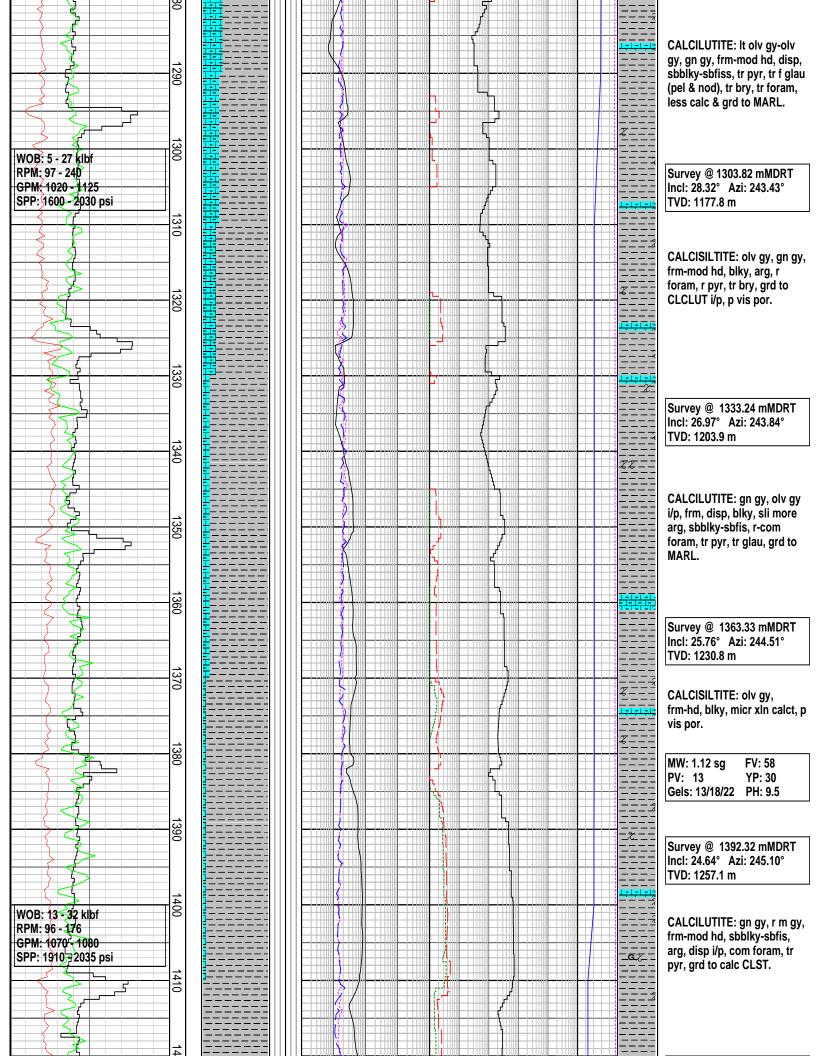

Survey @ 466.98 mMDRT Incl: 21.11° Azi: 233.22° TVD: 461.2 m

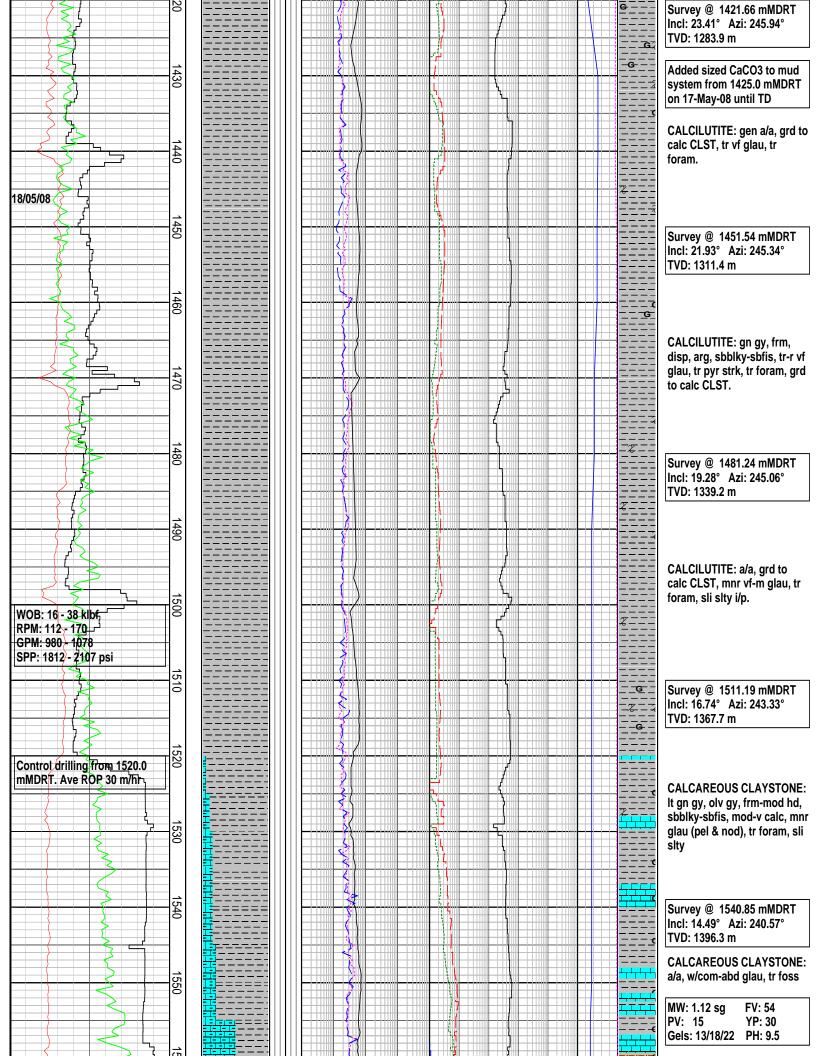

Survey @ 496.44 mMDRT Incl: 24.52° Azi: 235.86° TVD: 488.3 m

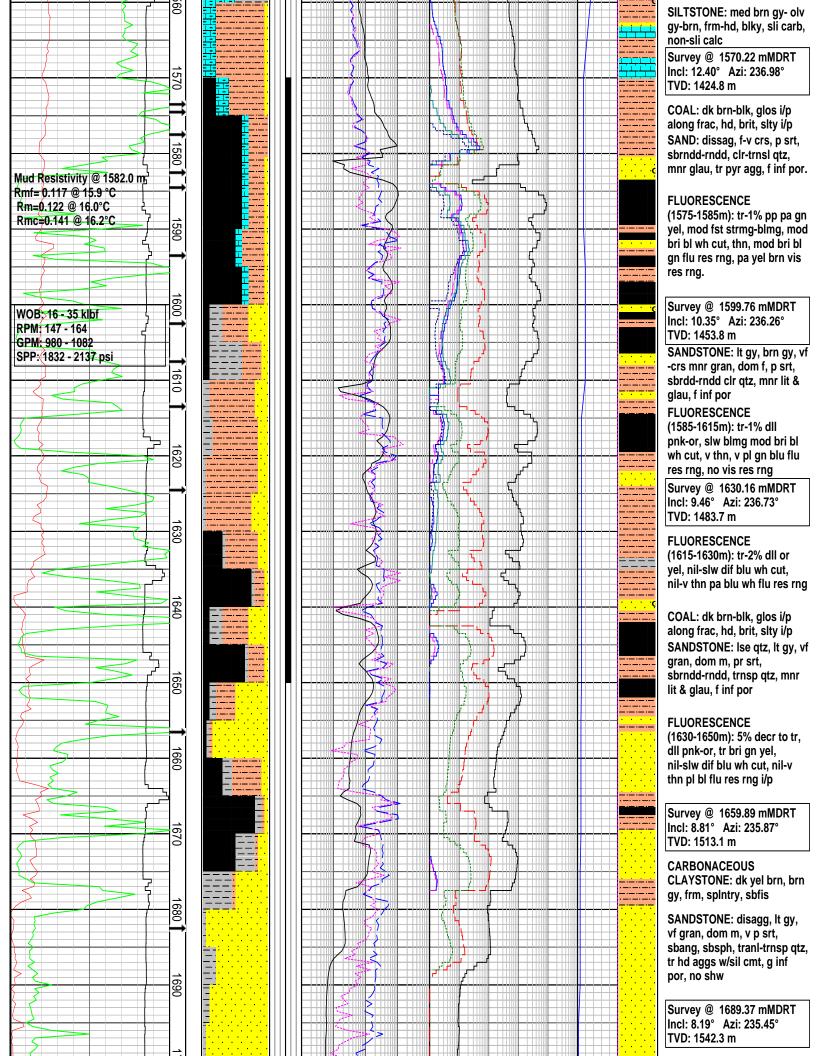

Drill with sea water and hi-vis sweeps, returns dumped overboard from CTU deck from 136 m to 751.0 mMDRT

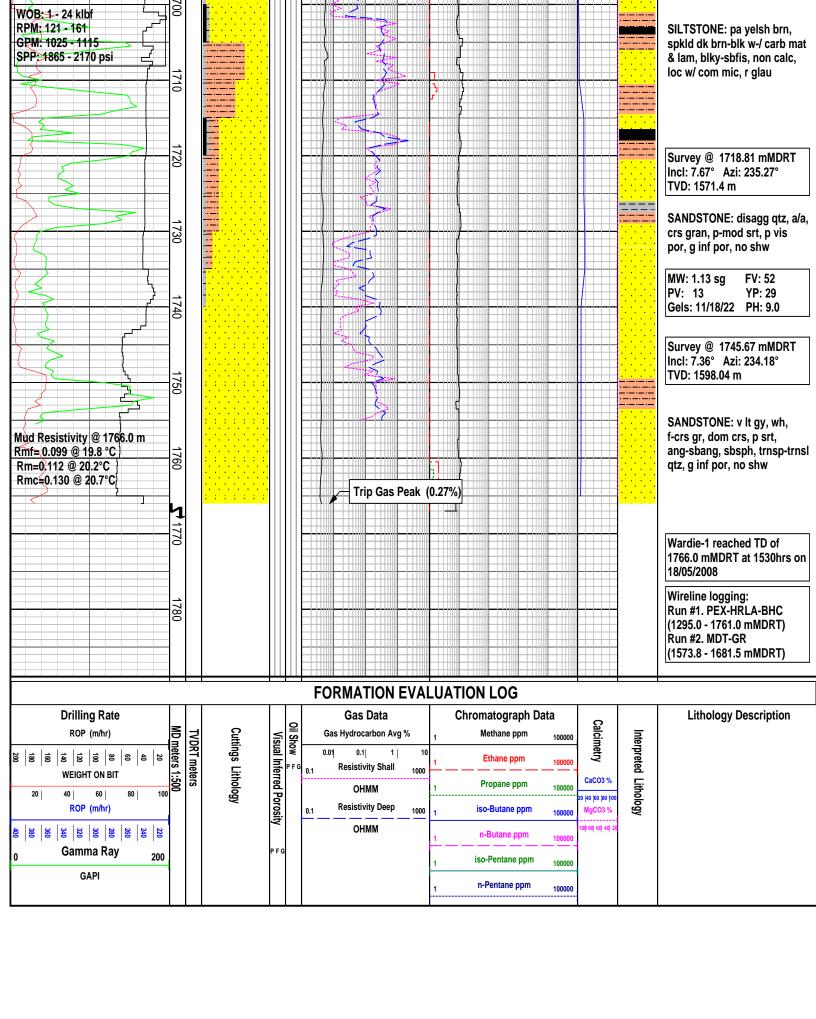

Survey @ 525.34 mMDRT Incl: 27.44° Azi: 238.00° TVD: 514.3 m


Survey @ 555.68 mMDRT Incl: 29.78° Azi: 239.10° TVD: 541.0 m









LWD Log Plot 1:500

Щ,	
7-	
96	
ger	
ger	
ger	

12.25 in. Section

Rig: Field: Well: Company: 3D Oil Ltd Wardie-1

Exploration West Triton

State:

Victoria

geoVISION*825 Resistivity 1:500 Measured Depth

Recorded Mode Log

09-May-08 1766.0 m

Elevation

G.L

-39.5 m Top Drive

D F 0.0 m 38.0 m

Elev.: 38.0 m above Perm. datum

E 147°37' 09.793" S 38°12' 24.881" Latitude

Longitude

Casing record 0.0 m 121.2 m from 121.2 m 132.8 m 747.0 m ರ

Date logged:

16-May-08 To 20-May-08 Mag dip:

-68.78 deg.

See Remarks Other services:

747.0 m To 1754.7 m

Mag decl:

12.84 deg.

17.5 in. 12.25 in.

751.0 m 33.0 m

1766.0 m

30.0 in. 20.0 in. 13.375 in.

334.8 lbm/m 502.2 lbm/m

226.0 lbm/m

0.0 m

751.0 m

♂

Size

Density

Hole size

from

Bore hole record

Depth logged:

Rig:

Field:

Well:

08ASQ0006 Job no.

Y= N 5771046.0 m

X= E 554227.6 m

Location:

Company:

Depth reference: Log measured from: Permanent datum:

Driller's Depth Rig Floor Mean Sea Level

West Triton

Exploration

Wardie-1

3D Oil Ltd

Run:

Spud date: Total depth:

Vic P/57, Bass Strait

Depth system

DWE & CLT OLU-KC-0702

SPM W D

hspm13_0C_03 See Remarks

ID 13_0C_08

Software record

IDEAL Wis

MWD

See Remarks

Surface equipment

KCI Polymer Sea Water

Туре

Mud record from

133.0 m

751.0 m 1766.0 m

0.97 deg.

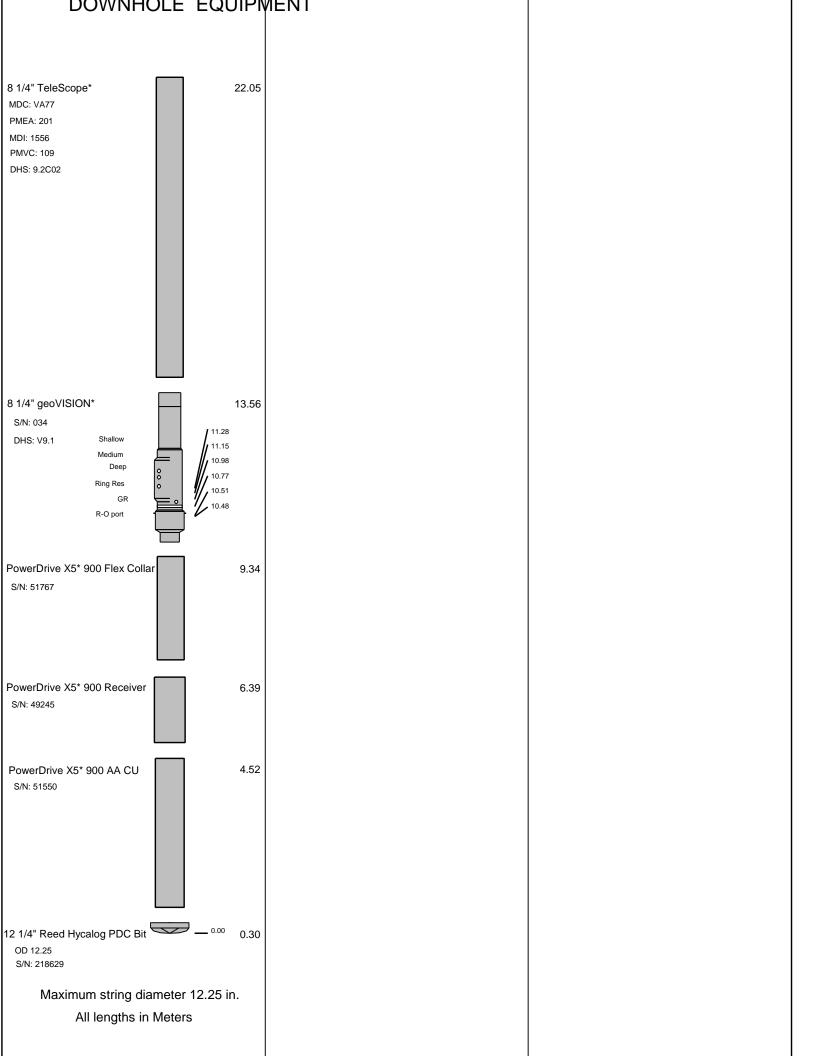
133.0 m 751.0 m

751.0 m 1766.0 m

Borehole deviation record

Max from

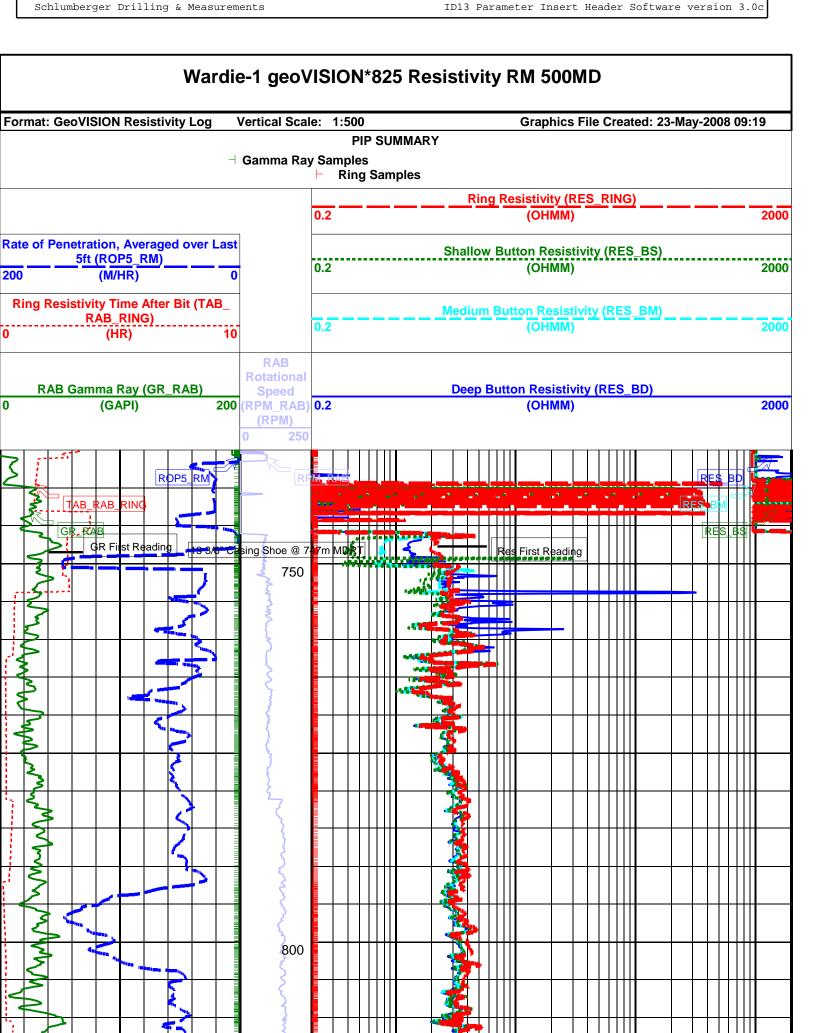
7.36 deg.

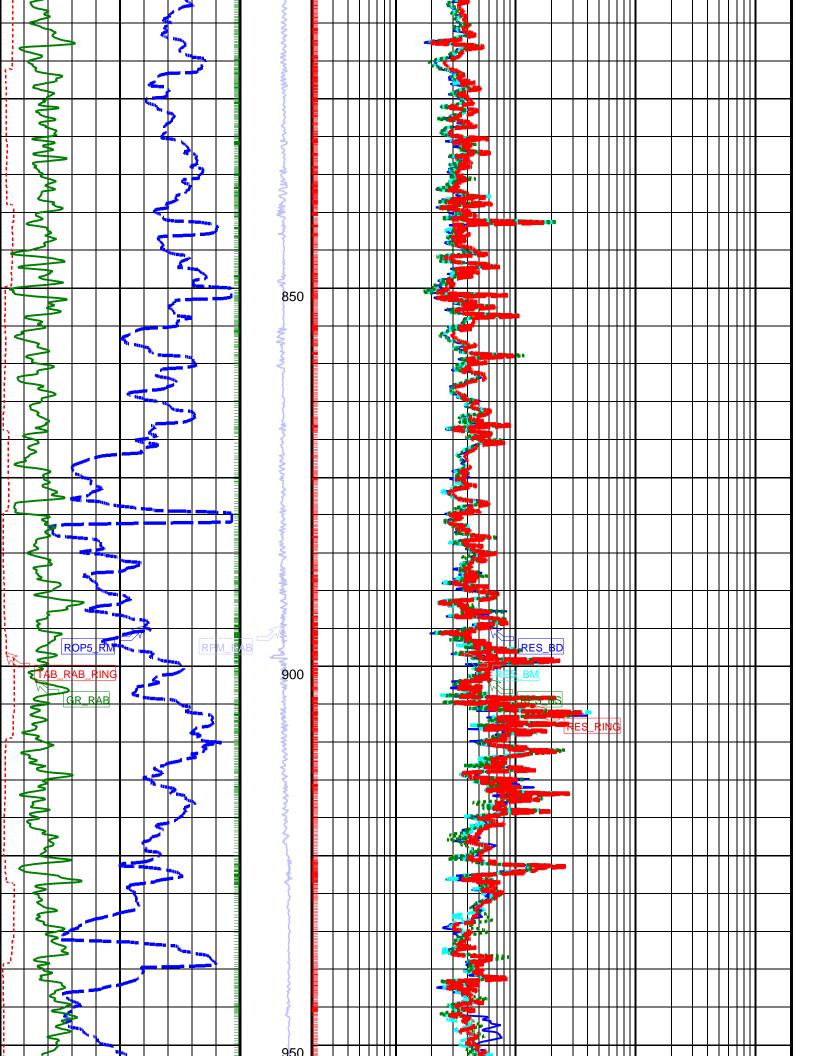

32.35 deg. 34.9 deg.

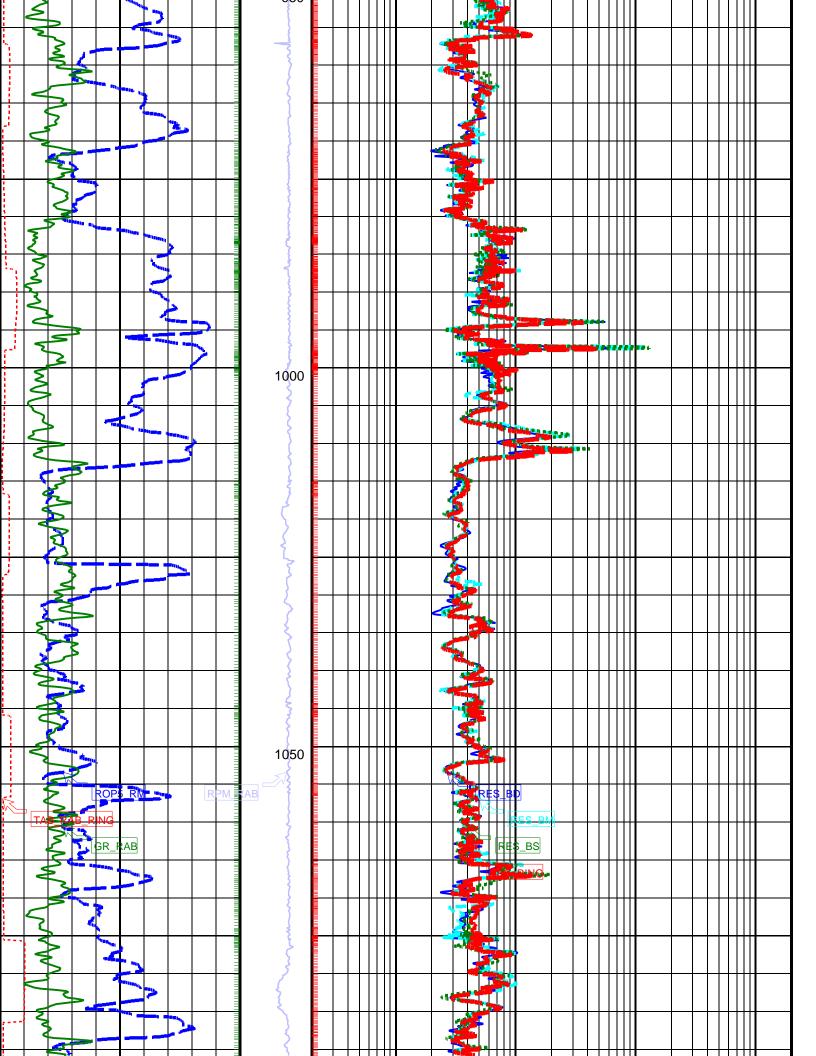
751.0 m

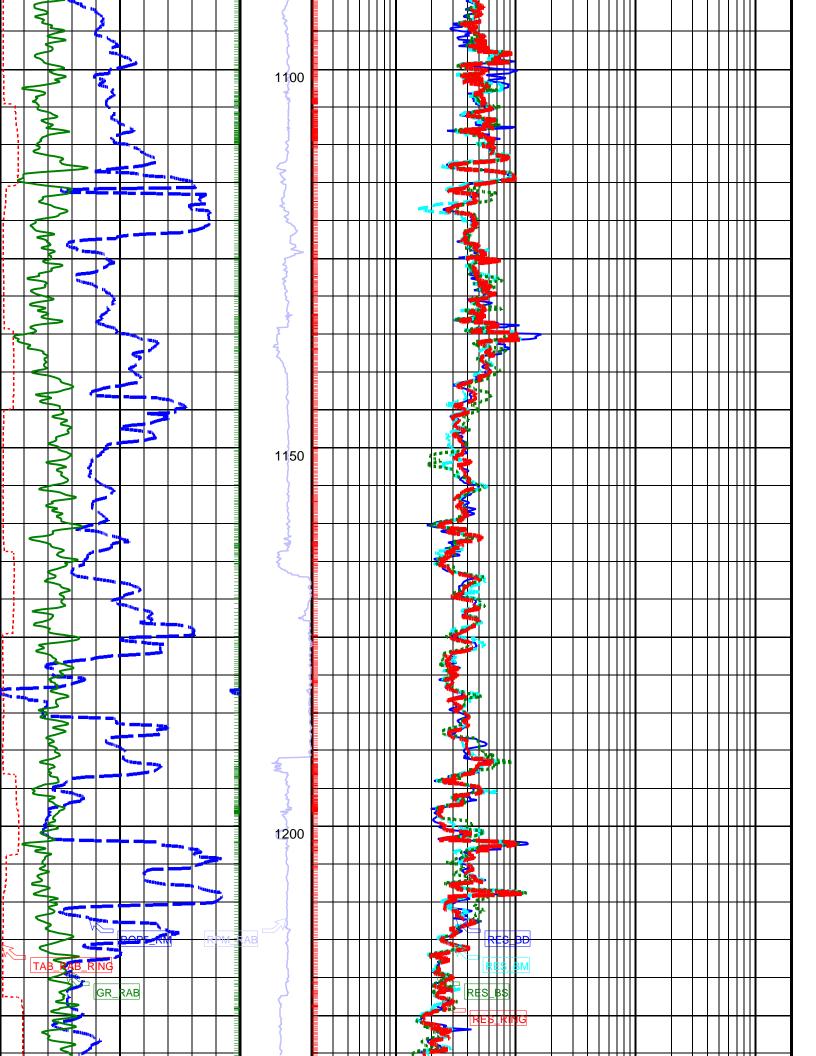
Bit Run Summary

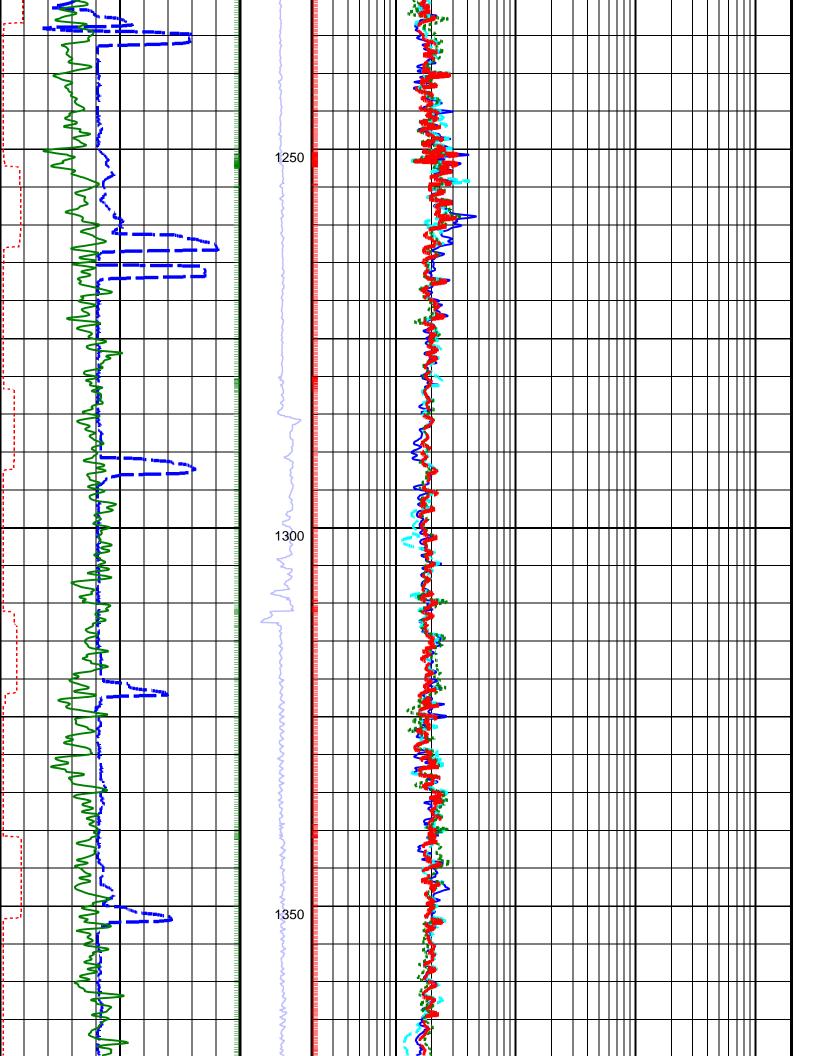
Run number	2		g.			
						_
Bit size in	12.25					
Bit start depth m	751.0					
Bit end depth m	1766.0					
Top interval logged m	747.0					
Bottom interval logged m	1754.7					
Begin log: time	14:00					
Begin log: date	16-May-08					
End log: time	00:30					
End log: date	20-May-08					
Mud data						
Depth m	1766.0					
Туре	KCI Polymer					
Mud weight ppg	9.3					
Solids %	0.1					
Chlorides ppm	38000					
Rm ohm.m@℃			·			
Rmf ohm.m@℃						
Rmc ohm.m@℃	0.14@20.7					

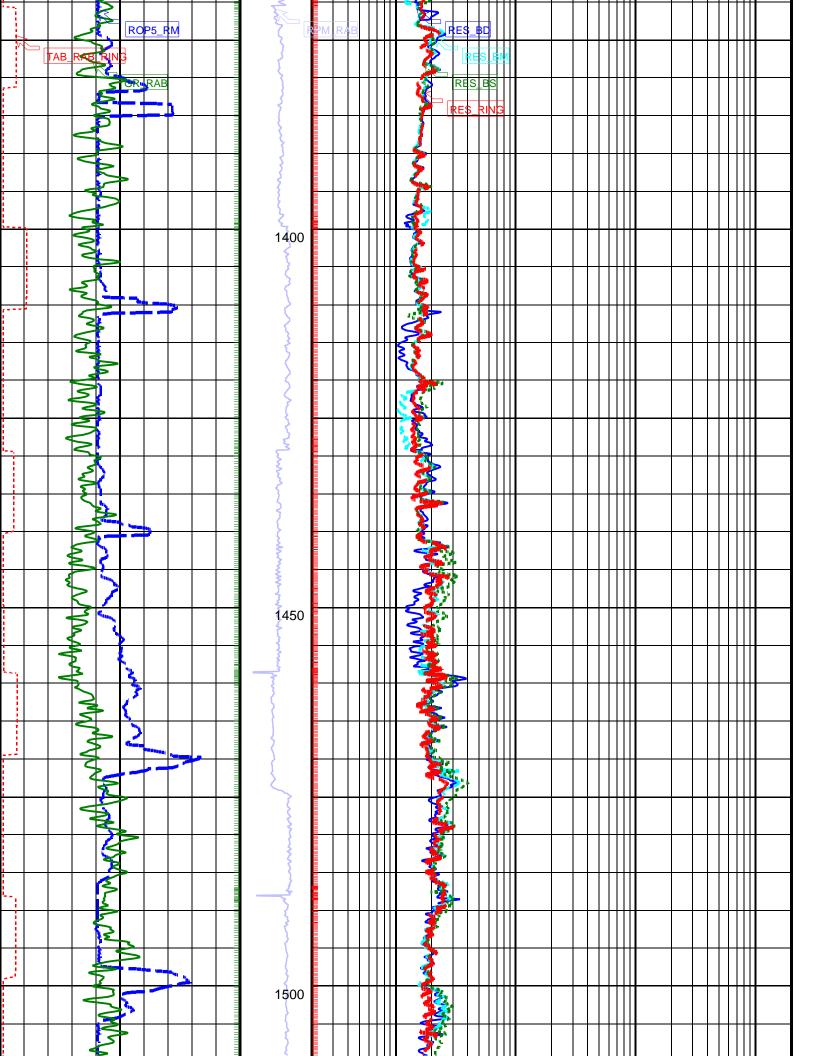

Potassium	% 3										
Environmental data											
GR											
Mud weight pp Bit size	9.3 in 12.25										
Resistivity	11 12.23										
,											
N											
Neutron porosity Hole Size	in 12.25										
Mud weight pp											
	50.2										
Mud salinity pp											
Formation salinity	N/A										
Recording rate 1 SE Recording rate 2 SE	, ,										
Filtering GR	3 pts										
Filtering density	3 pts										
Filtering Neutron	3 pts										
Company representative	S.Ward	B.Lea			P.Sellathurai						
Anadrill personnel	A.Kohli	S.A	ung	P.Dassens	P.Seliathurai						
					DISCLAIM	ER					
THE USE OF AND F AFFILIATES, PARTI AND CONDITIONS USE OF THE RECC COMPANY'S USE O FOR ANY INFEREN	NERS, REPRE AGREED UPC)RDED-DATA;)F AND RELIA	SENT ON BET (b) DIS NCE U	ATIVE WEE SCLAI JPON	ES, AGENTS IN SCHLUM IMERS AND THE RECO	S, CONSULT BERGER AN WAIVERS (RDED-DATA	TANTS AND ND THE COI OF WARRA A; AND (c) C	EMPLOY MPANY, I NTIES AN CUSTOME	'EES) IS SÙB. NCLUDING: (ND REPRESEI ER'S FULL AN	JECT TO TH a) RESTRIC NTATIONS F D SOLE RES	E TERMS TIONS ON REGARDING SPONSIBILIT	; ry
OTHER SERVICES FOR RUI)			ES FOR RU		112 002 0	OTHER SER			
Directional Drilling											
Directional Drilling Directional Surveys											
Directional Surveys											
REMARKS: RUN NUMBER 2	2		REM	IARKS: RUN	NUMBER			REMARKS: F	RUN NUMBE	R	
Depth is referenced to Drille	r's Depth.										
Run 1 was MWD D&I run or	nly.										
Gamma Ray is corrected for	r mud weight, t	ool									
size, bit size and potassium mud.	percentage in	the									
Resistivity is borehole comp enironmentally corrected.	ensated and										
KCl content of the mud was	8% by weight.										
POOH due to TD of Wardie	-1.										
			<u> </u>	UD1 (=:	\IT 5:	-005	DT: 0	\ N 1			
		E	QU	IPME	NT DI	=SCRI	PIIC	N			
RUN2					RUN				RUN	1	
			. — -								
				·T							

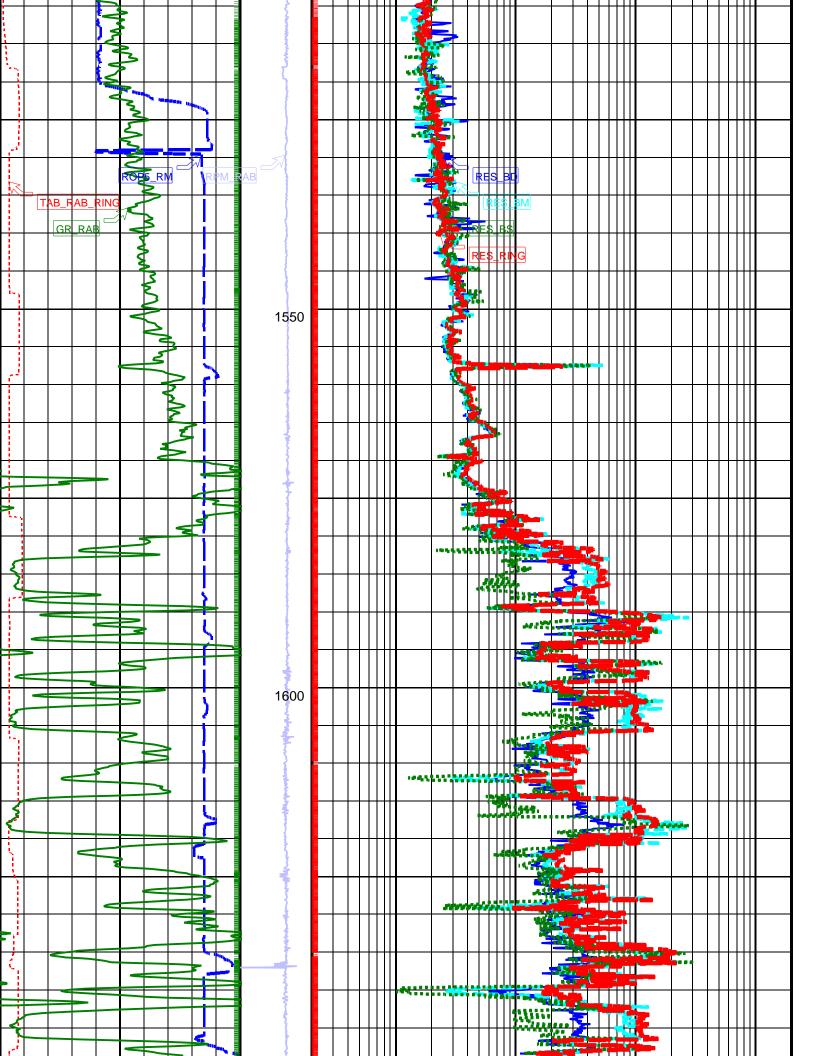


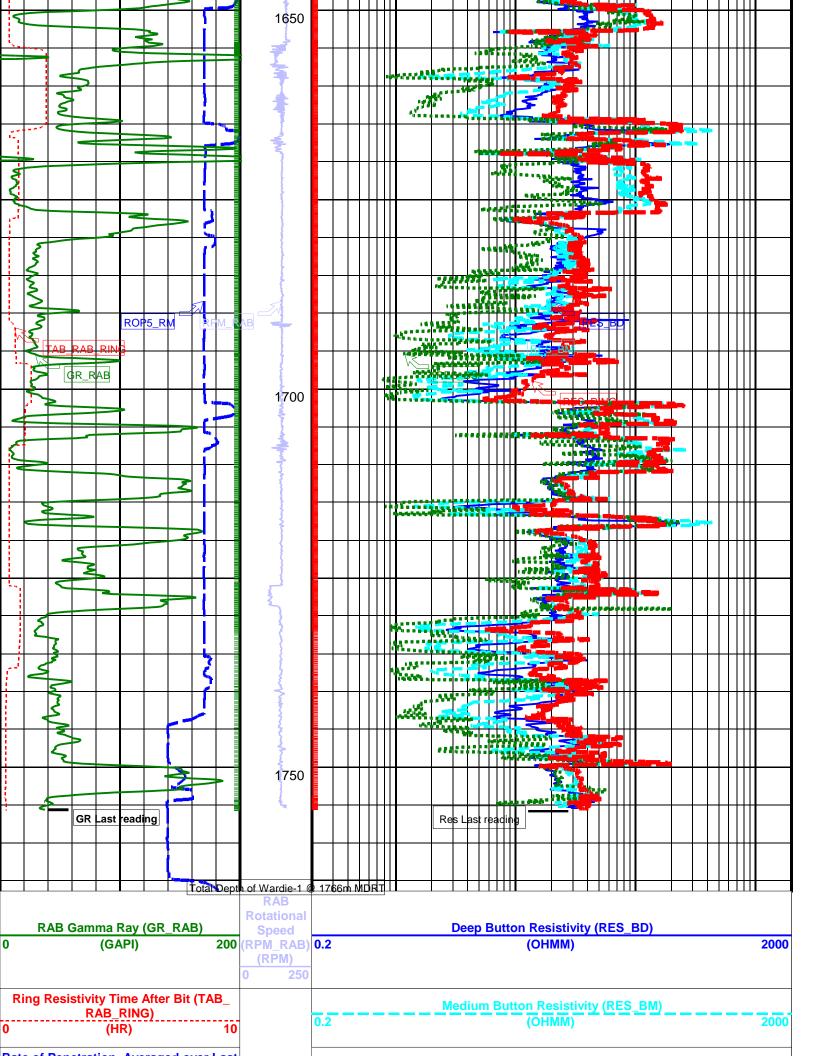

Variable	Variable	Run Name
Name	Description	& Value


	Run Number		2
	General Information		50.000
BHT_RM BSAL_RM	Bottom Hole Temperature (RM) Mud Salinity (RM)	DEGC PPK	50.200 0.000
BS_RM	Bit Size (RM)	IN	12.250
COEF_M C_WS	User Defined FEXP in Clean Sand Overpressure correction to Sw and M		1.650 1.000
FEXP	Formation Factor Exponent(RM)		2.000
FNUM FPHI_RM	Formation Factor Enumerator(RM) Formation Factor Porosity Source (RM)		1.000 XPLOT
MST_RM	Mud Sample temperature (RM)	DEGC	20.400
MW_RM	Mud Weight (RM) Oil Based Mud (RM)	LB/G	9.300 NO
OBMF_RM RHOF_RM	Mud Filtrate Density (RM)	G/C3	1.000
RHOM_RM	Matrix density (RM)	G/C3	2.710
RMS_RM RWA_COMP_M	Resistivity of Mud Sample (RM) Rwa computation model	OHMM	0.122
RWA_DEN_AD	Rwa Density Input ADN		
RWA_DEN_CD RWA_DEN_IN	Rwa Density Input CDN Rwa Density Input		
RWA_FORM_M	Rwa computation formation model		
RWA_RES_IN RWS_RM	Rwa computation resistivity input Resistivity of Connate Water (RM)	OHMM	1.000
SHT_RM	Ground Level Temperature (Mud-Line When Offshore) (RM)	DEGC	10.000
TD_RM	Total Measured Depth (RM)	M	1766.000
TWS_RM VF_ILLI	Temperature of Connate Water (RM) Fraction of illite in shales	DEGC	23.889 0.500
VF_KAOL	Fraction of kaolinite in shales		0.500
VF_MONT XPDM_RM	Fraction of montmorillonite in shales Cross plot density porosity multiplier		0.000 0.675
XPNM_RM	Cross plot neutron porosity multiplier		0.325
	RAB		
	E IN RAB: Button Sleeve Diameter		11 7/8
RAB/STAB_SIZE/PARAMETER BDBHCA	RAB: Stabilizer Diameter RAB: Button Deep Borehole A Factor	IN	12-12.25 -0.035
BDBHCB	RAB: Button Deep Borehole B Factor		-0.019
BHA_COEF_VER BITBHCA	RAB: BHA Coef Generator Version RAB: Bit A Borehole Factor		2.000 0.101
BITBHCB	RAB: Bit B Borehole Factor		-0.074
BIT_K_FACTOR	RAB: Bit K Factor		14.045
BMBHCA BMBHCB	RAB: Button Medium Borehole A Factor RAB: Button Medium Borehole B Factor		0.006 -0.020
BSBHCA	RAB: Button Shallow Borehole A Factor		-0.009
BSBHCB BUT_KIMP_A	RAB: Button Shallow Borehole B Factor RAB: Button Impedance Coeff A		-0.036 0.002
BUT_KIMP_B	RAB: Button Impedance Coeff B		0.000
DBUTTON_K_FACTO DHS_VERSION	RAB: Button Deep K factor RAB: DownHole Software Version		0.003 -999.250
GR_BHC_TOOLSIZE	RAB: Gamma-Ray Borehole Coeff 1		8.250
HI_CSDEPTH_OUT	RAB: Allow Hi-Resolution CS_DEPTH Image Data Output		NO
HI_DLIS_OUT HI_RIVER_OUT	RAB: Allow Hi-Resolution DLIS Image Data Output RAB: Allow Hi-Resolution River for Image Data Output		NO NO
IMAGE_MAX_GR	RAB: GR Image Maximum Scale Value	GAPI	120.000
IMAGE_MAX_RES IMAGE_MIN_GR	RAB: Image Maximum Resistivity Value RAB: GR Image Minimum Scale Value	OHMM GAPI	100.000 20.000
IMAGE_MIN_RES	RAB: Image Minimum Resistivity Value	OHMM	1.000
JSD_RAB KPER	RAB Acquisition start date Potassium Concentration (RM)	OHMM	1.000 3.000
MAG_DECL_RAB	RAB: Magnetic Declination	DEG	12.840
MAG_INCL_RAB	RAB: Magnetic Dip RAB: Button Medium K Factor	DEG 	-68.780 0.004
MBUTTON_K_FACTO OBM	RAB: Oil base Mud		0.004 NO
ORIENTATION_RM RABBDA0	Rab Image Orientation RAB: Button Deep AO Coeff		MN -0.122
RABBDAU RABBDA1	RAB: Button Deep Al Coeff		0.122
RABBDA2	RAB: Button Deep A2 Coeff		-0.050
RABBDA3 RABBDA4	RAB: Button Deep A3 Coeff RAB: Button Deep A4 Coeff		0.010 -0.001
RABBDA5	RAB: Button Deep A5 Coeff		0.000
RABBDMIN RABBITAO	RAB: Button Deep Minimum Value RAB: Bit AO Coeff		0.038 3.861
RABBITA1	RAB: Bit Al Coeff		-10.947
RABBITA2 RABBITA3	RAB: Bit A2 Coeff RAB: Bit A3 Coeff		27.583 -30.508
	COURMENT!		16.261
RABBITASUKFACE E RABBITMIN	RAB: Bit Minimum Value		-3.368 22.439
RABBMA0	RAB: Button Medium AO Coeff		-0.121
RABBMA1 RABBMA2	RAB: Button Medium A1 Coeff RAB: Button Medium A2 Coeff		0.107 -0.045
RABBMA3	RAB: Button Medium A3 Coeff		0.009
RABBMA4	RAB: Button Medium A4 Coeff		-0.001
RABBMA5 RABBMMIN	RAB: Button Medium A5 Coeff RAB: Button Medium Minimum Value		0.000 0.041
RABBSA0	RAB: Button Shallow AO Coeff		-0.127
RABBSA1 RABBSA2	RAB: Button Shallow A1 Coeff RAB: Button Shallow A2 Coeff		0.105 -0.043


RABBSA3	RAB: Button Shallow A3 Coeff		0.008
RABBSA4	RAB: Button Shallow A4 Coeff		-0.001
RABBSA5	RAB: Button Shallow A5 Coeff		0.000
RABBSMIN	RAB: Button Shallow Minimum Value		0.055
RABDHS	RAB Down Hole Software		4.000
RABEC	RAB: Resistivity Env-Cor		YES -0.119
RABRNGA0 RABRNGA1	RAB: RING AO Coeff RAB: RING Al Coeff		0.116
RABRNGA2	RAB: RING A2 Coeff		-0.051
RABRNGA3	RAB: RING A3 Coeff		0.010
RABRNGA4	RAB: RING A4 Coeff		-0.001
RABRNGA5	RAB: RING A5 Coeff		0.000
RABRNGMIN	RAB: Ring Minimum Value		1.150
RAB_BIT_ECAL	Bit Resistivity for ECAL_RAB?		YES
RAB_BIT_INVERSI	Input Bit Resistivity for Inversion? (Recommended at the bit)		NO
RAB_CALIPER_CAL	Compute ECAL_RAB?		NO
RAB_DATA_FIX	RAB: Create A Corrected RAB Time Data File		NO
RAB_DATA_LTB RAB_DEEPBTN_ECA	RAB: Create An RAB LTB Data File Deep Button Resistivity for ECAL_RAB?		NO YES
RAB_DEEPBIN_ECA RAB_DEEPBIN_INV	Input Deep Button Resistivity for Inversion?		YES
RAB_INVERSION	Perform Rt Inversion?		NO
RAB_INVERSION_B	RAB Bit Sensor Weight for Inversion[0,1]		0.000
RAB_INVERSION_B	Ending Depth for GR Cutoff in Zonel (default through the whole well)	M	30480.000
RAB_INVERSION_B	Ending Depth of Zone10	M	-304.571
RAB_INVERSION_B	Ending Depth of Zone2	M	-304.571
RAB_INVERSION_B	Ending Depth of Zone3	M	-304.571
RAB_INVERSION_B	Ending Depth of Zone4	M	-304.571
RAB_INVERSION_B	Ending Depth of Zone5	M	-304.571
RAB_INVERSION_B	Ending Depth of Zone6	M	-304.571
RAB_INVERSION_B RAB_INVERSION_B	Ending Depth of Zone7 Ending Depth of Zone8	M M	-304.571 -304.571
RAB_INVERSION_B	Ending Depth of Zone9	M M	-304.571
RAB_INVERSION_C	Continuity Multiplier[0,1]		0.500
RAB_INVERSION_D	RAB Deep Button Sensor Weight for Inversion[0,1]		1.000
RAB_INVERSION_D	RAB inversion for Dh?		YES
RAB_INVERSION_D	RAB inversion for Di?		YES
RAB_INVERSION_G	GR Cutoff for Shale Formation		75.000
RAB_INVERSION_G	GR Cutoff for Shale Formation in Zonel(default through the whole well)	GAPI	75.000
RAB_INVERSION_G	GR Cutoff in Zone10	GAPI	75.000
RAB_INVERSION_G	GR Cutoff in Zone2	GAPI	75.000
RAB_INVERSION_G RAB_INVERSION_G	GR Cutoff in Zone3 GR Cutoff in Zone4	GAPI GAPI	75.000 75.000
RAB_INVERSION_G	GR Cutoff in Zone5	GAPI	75.000
RAB_INVERSION_G	GR Cutoff in Zone6	GAPI	75.000
RAB_INVERSION_G	GR Cutoff in Zone7	GAPI	75.000
RAB_INVERSION_G	GR Cutoff in Zone8	GAPI	75.000
RAB_INVERSION_G	GR Cutoff in Zone9	GAPI	75.000
RAB_INVERSION_M	RAB Medium Button Sensor Weight for Inversion[0,1]		1.000
RAB_INVERSION_R	Resistivity Cutoff for Shale Formation	OHMM	2.000
RAB_INVERSION_R	Resistive Invasion Allowed		NO
RAB_INVERSION_R	RAB Ring Sensor Weight for Inversion[0,1]		1.000
RAB_INVERSION_R RAB_INVERSION_R	RAB inversion for Rmud? RAB inversion for Rt?		NO YES
RAB_INVERSION_R	Rt to R-deepest separation penalty multiplier[0,1]		0.500
RAB_INVERSION_R	RAB inversion for Rxo?		YES
RAB_INVERSION_S	GR of Clean Sand Formation		-999.250
RAB_INVERSION_S	GR of Shale Formation		-999.250
RAB_INVERSION_S	RAB Shallow Button Sensor Weight for Inversion[0,1]		1.000
RAB_INVERSION_T	Inversion Threshold[0, 0.3]		0.010
RAB_INVERSION_W	Formation Water Resistivity	OHMM	0.100
RAB_INVERSION_W	Formation Water Temperature		150.000
RAB_MEDIUMBTN_E	Medium Button Resistivity for ECAL_RAB?		YES
RAB_MEDIUMBTN_I RAB_QUAD	Input Medium Button Resistivity for Inversion? RAB: Process Quadrant data ?		YES YES
RAB_RIGMODE_ECA	Bit on Bottom?		YES
RAB_RING_ECAL	Ring Resistivity for ECAL_RAB?		YES
RAB_RING_INVERS	Imput RING Resistivity for Inversion?		YES
RAB_SHALLOWBTN_	Shallow Button Resistivity for ECAL_RAB?		YES
RAB_SHALLOWBTN_	Input Shallow Button Resistivity for Inversion?		YES
RAB_TAB	RAB: Compute TAB ?		YES
RAB_TECHLOG	RAB: Generate Techlog ?		YES
RAB_TEMP_SELECT	RAB Temperature Selection		MEASURED
RAB_TICKS READOUT_PORT_MP	RAB: Generate Ticks ? RAB: ROP to Bit Face Distance	 M	YES 10.480
READOUT_FORT_MP RINGBHCA	RAB: Ring Borehole A Factor		0.298
RINGBHCB	RAB: Ring Borehole B Factor		-0.112
RING_KIMP_A	RAB: Ring Impedance Coeff A		0.000
RING_KIMP_B	RAB: Ring Impedance Coeff B		0.000
RING_K_FACTOR	RAB: Ring K Factor		0.102
RSD	LWD run start date dd-mmm-yy	OHMM	0.122
RWA_COMP_MOD	Rwa computation model		BASIC
RWA_DEN_ADN	Rwa Density Input		RHOB
RWA_DEN_CDN	Rwa Density Input		RHOB
RWA_DEN_INPUT	Rwa Density Input Rwa computation formation model		RHOB CLASTIC
RWA_FORM_MOD RWA_RES_INPUT	Rwa computation resistivity input		RT
SBUTTON_K_FACTO	RAB: Button Shallow K Factor		0.005
SCALE_IMAGES	RAB: Process Image Data		YES
STAB	RAB: Run with Stabilizer		YES
TFF_OFFSET_RAB	RAB Time-Frame File Time Offset	S	0.000
TIMEFRAME_FILE_	RAB: Time Frame File Name	S	0.000
TOOLTYPE	RAB: Azimuthal Tool		YES
TS_VERSION	RAB: ToolScope Software Version		-999.250
VRAB6	Rab Tool type (ENP/PILOT) PAR: Window Size for Scaling Dynamic Image	 M	RAB8_ENP 0.914
WIN_SIZE_DYN_IM WRK	RAB: Window Size for Scaling Dynamic Image to Report Potassium Concentration (RM)	M	0.914 K bv Wat %
*****	The state of the s		







Rate of Penetration, Averaged over Last Shallow Button Resistivity (RES_BS) 5ft (ROP5_RM) 0.2 (OHMM) 2000 (M/HR) 200 Ring Resistivity (RES_RING) 0.2 (OHMM) 2000

PIP SUMMARY

→ Gamma Ray Samples **Ring Samples**

IDEAL Version: ID13_0C_08

8.25-in. Resistivity At-the-Bit / Equipment Identification

Primary Equipment: Tool Name and Serial Number Calibration Status

034 RAB8 - AA Valid -

Master: 2-Apr-2008 10:14 8.25-in. Resistivity At-the-Bit Calibration Resistivity: Fixture Phase Ring/T1 factor ----Value Phase Ring/T2 factor ----Value Phase M0/T1 factor ----Value 0.01090 0.01093 1.055 Master Master Master 0.01100 0.009500 0.01100 1.200 0.009500 0.01250 0.01250 0.9000 1.050 (Minimum) (Maximum) (Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum) Phase M0/T2 factor ----Value M2/T1 factor ----Value Phase M2/T2 factor ----0.9832 0.9552 Master 1.042 Master Master 0.9000 1.050 1.200 0.8500 1.000 1.150 0.8500 1.000 $1.1\bar{50}$ (Minimum) (Maximum) (Minimum) (Maximum) (Minimum) (Maximum (Nominal (Nominal) Phase BTN shallow/T1 factor ----Phase Phase BTN medium/T1 factor ----Value BTN shallow/T2 factor ----Value Value 0.0006639 0.0006665 0.0006641 Master Master Master 0.0005700 0.0006700 0.0007700 0.0005700 0.0006700 0.0007700 0.0005700 0.0006700 0.0007700 (Nominal) (Nominal) (Nominal) BTN deep/T1 factor ----Phase BTN medium/T2 factor ----BTN deep/T2 factor ----Value Phase Value Phase Value 0.0006662 0.0006589 0.0006598 Master Master Master 0.0005700 0.0006700 0.0007700 0.0005700 0.0006700 0.0007700 0.0005700 0.0006700 0.0007700 (Minimum) (Nominal) (Maximum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum)

Master: 2-Apr-2008 11:0	6		
	8.25-in. Res	istivity At-the-Bit Calibration	
	Ga	mma Ray: Blanket	
Phase	Gamma ray	factor	Value
Master			9.065
6.5	00 8.00	9.50	00
(Min	mum) (Nom	ninal) (Maxir	num)

SCHLUMBERGER

Survey report 23-May-2008 09:58:23

3D Oil Ltd Field....: Exploration

Well....: Wardie-1 API number....: 08ASQ0006 Engineer....: AK/STDA

COUNTY:: N/A STATE:...: Victoria

---- Survey calculation methods-----

Spud date....: 09-May-08 Last survey date....: 18-May-08 Total accepted surveys...: 67 MD of first survey....: 0.00 m MD of last survey....: 1745.67 m

---- Geomagnetic data -----

Method for positions....: Minimum curvature Magnetic model..... BGGM version 2007 Method for DLS..... Mason & Taylor Magnetic date....: 10-May-2008 Magnetic field strength.: 1198.92 HCNT
Magnetic dec (+E/W-)....: 12.84 degrees
Magnetic dip......: -68.78 degrees ---- Depth reference -----Permanent datum.....: Mean Sea Level Depth reference.....: Driller's Depth GL above permanent....: -39.5 m ---- MWD survey Reference Criteria -----KB above permanent....: Top Drive DF above permanent....: 38.0 m Reference Dip....: -68.78 degrees Tolerance of G. . . . : (+/-) 2.50 mGal
Tolerance of H. . . . : (+/-) 6.00 HCNT
Tolerance of Dip. . . : (+/-) 0.45 degrees ---- Vertical section origin-----Latitude (+N/S-)....: 0.00 m

Departure (+E/W-)....: 0.00 m ---- Corrections ------ 12.84 degrees Grid convergence (+E/W-)... -0.38 degrees Total az corr (+E/W-)... 13.22 degrees ---- Platform reference point-----Latitude (+N/S-)....: Departure (+E/W-)....: (Total az corr = magnetic dec - grid conv) Azimuth from Vsect Origin to target: 241.15 degrees Survey Correction Type ...: I=Sag Corrected Inclination M=Schlumberger Magnetic Correction S=Shell Magnetic Correction

F=Failed Axis Correction

D=Dmag Magnetic Correction

R=Magnetic Resonance Tool Correction

[(c)2008 IDEAL ID13_0C_08] SCHLUMBERGER Survey Report

=== Seq # - ===	Measured depth (m)	Incl angle (deg)	====== Azimuth angle (deg) =======	course length (m)	TVD depth (m)	Vertical section (m)	Displ +N/S- (m)	Displ +E/W- (m)	Total displ (m)	At Azim (deg)	==== DLS (deg/ 100f) =====	Srvy tool type	Tool Corr (deg)
1 2 3 4 5	0.00 77.50 82.50 87.50 92.50	0.00 1.96 1.90 1.85 1.80	0.00 317.71 317.51 317.30 317.07	0.00 77.50 5.00 5.00	0.00 77.48 82.48 87.48 92.48	0.00 0.31 0.35 0.39 0.42	0.00 0.98 1.10 1.23 1.34	0.00 -0.89 -1.01 -1.12 -1.22	0.00 1.33 1.49 1.66 1.82	0.00 317.71 317.70 317.67 317.63	0.00 0.77 0.37 0.31 0.31	TIP GYR GYR GYR GYR	None None None None None
6 7 8 9 10	97.50 102.50 107.50 112.50 117.50	1.74 1.69 1.63 1.65	316.83 316.58 316.30 315.91 316.62	5.00 5.00 5.00 5.00 5.00	97.47 102.47 107.47 112.47 117.47	0.46 0.50 0.54 0.57	1.45 1.56 1.67 1.77	-1.33 -1.43 -1.53 -1.63 -1.73	1.97 2.12 2.27 2.41 2.56	317.57 317.51 317.45 317.37 317.30	0.37 0.31 0.37 0.14 0.80	GYR GYR GYR GYR GYR	None None None None
11 12 13 14 15	122.50 127.50 132.50 134.60 174.15	1.86 1.88 1.94 2.03 0.97	319.95 323.69 328.33 330.59 331.19	5.00 5.00 5.00 2.10 39.55	122.46 127.46 132.46 134.56 174.09	0.65 0.67 0.69 0.69 0.70	2.00 2.13 2.26 2.33 3.23	-1.84 -1.94 -2.03 -2.07 -2.58	2.72 2.88 3.04 3.12 4.13	317.36 317.61 318.07 318.34 321.43	0.81 0.75 1.01 1.73 0.82	GYR GYR GYR GYR PUP	None None None None
16 17 18 19 20	202.30 260.44 290.09 319.76 349.23	1.06 2.12 5.23 8.62 11.69	330.50 269.17 252.00 244.27 243.65	28.15 58.14 29.65 29.67 29.47	202.24 260.36 289.94 319.39 348.40	0.70 1.66 3.47 7.02 12.21	3.67 4.12 3.69 2.31 0.03	-2.82 -4.16 -5.99 -9.28 -13.95	4.63 5.85 7.04 9.57 13.95	322.44 314.72 301.64 283.97 270.10	0.10 0.98 3.36 3.60 3.18	PUP PUP PUP PUP	None None None None
21 22 23 24 25	378.56 408.20 437.65 466.98 496.44	14.54 16.62 18.41 21.11 24.52	243.39 238.69 234.18 233.22 235.86	29.33 29.64 29.45 29.33 29.46	376.96 405.51 433.60 461.20 488.35	18.85 26.81 35.63 45.46 56.81	-2.94 -6.81 -11.72 -17.60 -24.21	-19.91 -26.85 -34.22 -42.21 -51.52	20.12 27.71 36.18 45.73 56.93	261.59 255.76 251.09 247.37 244.83	2.96 2.50 2.32 2.83 3.68	PUP PUP PUP PUP	None None None None
26 27 28 29 30	525.34 555.68 585.40 614.89 644.23	27.44 29.78 28.02 29.13 31.31	238.00 239.10 239.82 240.00 240.28	28.90 30.34 29.72 29.49 29.34	514.33 540.96 566.98 592.88 618.23	69.43 83.94 98.30 112.40 127.17	-31.10 -38.68 -45.98 -53.05 -60.40	-62.14 -74.53 -86.90 -99.11 -111.91	69.49 83.97 98.31 112.41 127.17	243.41 242.57 242.12 241.84 241.64	3.23 2.41 1.84 1.15 2.27	PUP PUP PUP PUP	None None None None
31 32 33 34 35	674.32 703.79 722.54 802.80 831.50	33.98 34.90 34.35 32.02 30.76	240.54 240.07 239.86 241.09 239.33	30.09 29.47 18.75 80.26 28.70	643.56 667.87 683.29 750.46 774.96	143.40 160.06 170.71 214.63 229.58	-68.41 -76.67 -82.00 -103.66 -111.08	-126.03 -140.50 -149.73 -187.94 -200.91	143.40 160.06 170.71 214.63 229.58	241.50 241.38 241.29 241.12 241.06	2.71 0.99 0.91 0.92 1.65	PUP PUP PUP PUP	None None None None
36 37 38 39 40	861.51 891.22 920.19 949.76 979.78	31.64 31.39 31.58 31.70 31.37	238.19 236.51 236.01 236.73 237.60	30.01 29.71 28.97 29.57 30.02	800.63 825.96 850.66 875.84 901.42	275.68	-119.15 -127.53 -135.93 -144.52 -153.03	-214.20 -227.28 -239.86 -252.78 -265.97	245.11 260.61 275.70 291.17 306.85	240.92 240.70 240.46 240.24 240.08	1.08 0.94 0.34 0.41 0.57	PUP PUP PUP PUP	None None None None
41 42 43 44 45	1009.21 1039.05 1066.59 1096.55 1125.94	31.56 31.64 31.64 32.01 32.34	240.47 239.79 241.83 242.11 242.75	29.43 29.84 27.54 29.96 29.39	926.53 951.94 975.39 1000.85 1025.72	337.78 352.22 368.02	-160.93 -168.72 -175.77 -183.19 -190.43	-279.14 -292.70 -305.31 -319.25 -333.13	322.21 337.84 352.29 368.08 383.72	240.03 240.04 240.07 240.15 240.25	1.56 0.37 1.18 0.41 0.49	PUP PUP PUP PUP	None None None None
46 47 48 49 50	1155.71 1184.60 1214.81 1244.86 1274.25	32.17 32.35 32.18 30.73 29.50	242.53 243.98 244.06 243.07 243.74	29.77 28.89 30.21 30.05 29.39	1050.90 1075.33 1100.88 1126.51 1151.93	414.96 431.07 446.73	-197.74 -204.67 -211.74 -218.72 -225.32	-347.24 -361.01 -375.50 -389.55 -402.73	399.59 414.99 431.09 446.75 461.48	240.34 240.45 240.58 240.69 240.77	0.21 0.84 0.18 1.56 1.32	PUP PUP PUP PUP	None None None None None

51 52 53 54 55	1303.82 1333.24 1363.33 1392.32 1421.66	28.32 26.97 25.76 24.64 23.41	243.43 243.84 244.51 245.10 245.94	29.57 29.42 30.09 28.99 29.34	1177.82 1203.88 1230.84 1257.07 1283.86	475.75 489.39 502.73 515.05 526.96	-231.68 -237.74 -243.56 -248.82 -253.77	-415.53 -427.76 -439.79 -450.96 -461.83	475.75 489.39 502.73 515.05 526.96	240.86 240.94 241.02 241.11 241.21	1.23 1.41 1.26 1.21 1.33	PUP PUP PUP PUP PUP	None None None None
56 57 58 59 60	1451.54 1481.24 1511.19 1540.85 1570.22	21.93 19.28 16.74 14.49 12.40	245.34 245.06 243.33 240.57 236.98	29.88 29.70 29.95 29.66 29.37	1311.44 1339.23 1367.71 1396.28 1424.84	538.44 548.86 558.11 566.09 572.91	-258.52 -262.90 -266.92 -270.66 -274.19	-472.32 -481.81 -490.15 -497.20 -503.04	538.44 548.87 558.11 566.09 572.91	241.31 241.38 241.43 241.44 241.41	1.53 2.72 2.64 2.43 2.33	PUP PUP PUP PUP PUP	None None None None
61 62 63 64 65	1599.76 1630.16 1659.89 1689.37 1718.81	10.35 9.46 8.81 8.19 7.67	236.26 236.73 235.87 235.45 235.27	29.54 30.40 29.73 29.48 29.44	1453.80 1483.75 1513.10 1542.25 1571.41	578.72 583.93 588.63 592.97 597.01	-277.39 -280.28 -282.90 -285.35 -287.66	-507.91 -512.27 -516.20 -519.79 -523.14	578.72 583.93 588.63 592.97 597.01	241.36 241.32 241.28 241.23 241.19	2.12 0.90 0.68 0.64 0.54	PUP PUP PUP PUP	None None None None
66 67	1745.67 1766.00	7.36 7.36	234.18 234.18	26.86 20.33	1598.04 1618.21	600.50 603.08	-289.69 -291.21	-526.00 -528.12	600.50 603.08	241.16 241.13	0.39	PUP Project	None ed to TD

[(c)2008 IDEAL ID13_0C_08]

Company: 3D Oil Ltd

Schlumberger

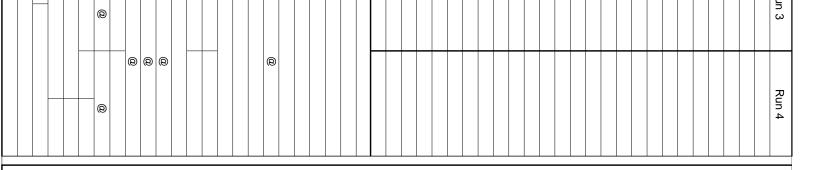
Well: Wardie-1

Field: **Exploration**

Rig: West Triton 12.25 in. Section

State: Victoria

geoVISION*825 Resistivity 1:500 Measured Depth Recorded Mode Log


Geomarket APG	location	Bass Strait	_'					
Job Date 09-May-08	Customer	3D Oil Ltd	ı				Data Onality Report	
Rig West Triton	Field/Well	Vic-P57	Туре	ot Me	Type of Measurement	ent	Andlity IV	
Engineer AK/STDA	Job Number	08ASQ0006	Res	GR			When data does not meet standards, put a number in the colum corresponding to the measurement	
-							with a corresponding number and remark below. Use additional pages for remarks Positive remarks are welcome; do not append them with a number.	
			Ţ	L				
	Presentation]]]]]]]	Remarks	
Description of Well - Names, Geometry, Services, Location and References; General Content Header, user of trademarks, directional data, well plot, order of components, spelling and style, units sensor to toolface angle recorded	Services, Locar a, well plot, orde	tion and References; General Content er of components, spelling and style, units						
Equiment and Software Description								
Tool sketch, equipment numbers, software versions, data rates, filtering weights	versions, data r	ates, filtering weights						
Processing Traceability and Environment Description Acquisition environment, parameters and key constants for each run or zone, complete and relavant remarks	າ t Description ey constants for	each run or zone, complete and relavant						С
Annotations, Presented Formats, QC Curves, Print Quality Documented splice points; data gap explanations, mud changes, movement indicator, color selection	rves, Print Qua ations, mud cha	ality anges, movement indicator, color	-		-			ity ver 1.
Calibrati	Calibration and Verifications	cations				 		er Util
Calibration / Before survey verification / After survey verification	After survey v	erification						eade
Validity, completeness (includes equipment number), timeliness, unedited, descrepency explained	t number), timeli	iness, unedited, descrepency explained	-			F		QR H
Operati	Operating Procedures	35		1] 		DC
Depth Control Comparison with driller's depth, other logs, other bit runs, between RT and RM. Depth summary listing	other bit runs, b	etween RT and RM. Depth summary		<u> </u>				
Logging speed and sampling rates As recommended in reference manual or iob planner. No loss of data or spatial resolution.	b planner. No l	loss of data or spatial resolution						5
Data Comparison Between runs and passes, with data from nearby wells, other conveyance, mud log and markers	nearby wells, oth	ner conveyance, mud log and markers						urement
Operating Anomalies/Failure/Missing Data/Sensor Orientation/Transmission Losses Absence of noise and spurious variations, anomaly repeated, corrected, reported or explained	ta/Sensor Orie	ntation/Transmission Losses ed, corrected, reported or explained.						& Meas
Digita	Digital Delivery							Drilling
Digital Products Labeled, verification listing with complete digital record, backup for archival; record matches hard copy.	igital record, bad	ckup for archival; record matches						berger
Job Quality Rating (JQR) Number of boxes without number	QR) out number X	X 10						Schlum
Irregular Operation Excessive ROP or speed, high deviation, shocks, vibrations, sticking conditions	hocks, vibration:	s, sticking conditions						
Borehole Geometry								
Shape (caves, etc), rugosity, spiralled hole, mud induced fractures.	, mud induced fi	ractures. Casing, tubing conditions		<u> </u>	<u> </u> 			
Barite, KCl, salinity, additives, gas cut, unstable	able							
Interferences External noise, nearby casing or drillpipe, debris, unusual formation composition	ebris, unusual fo	ormation composition						ry 2002
Operation Outside Tool Specifications GeomarketTemperature, pressure, hole size value of parameter	e, hole deviation	size, hole deviation, dog-leg severity, flow rate, rpm, solids						ed Janua
Environmental Quality Rating (EQR) Number of boxes without number X 2	ty Rating (E	:QR) r × 20					Cell Manager: Anagh Kohli FSM: M.McDermott	Revis

Enclosure 5

Wireline Log Plot 1:500

Company: 3D Oil Limited Company: 3D Oil Limited Company: 3D Oil Limited Company: 4D Oil Limited Company: 4D Oil Limited Company: 4D Oil Limited Company: 4D Oil											
Company: 3D Oil Limited					Sohlun.	nhonnon			Run 1	Run 2	7.0
Company: 3D Oil Limited Wardie_1 Field: Wardie_1 Field: Exploration Country: Australia Field: Exploration Country: Australia Field: Exploration Country: Australia Field:						1161 AC					
West Trition	Company:	3D Oil Li	mited								
Vicility Winderstand Personance Forum Delit Proof Forum Delit Proof Pr											
Right	Well:	Wardie-									
Right West Trition	Field:	Explorat	ion								
BHC-HRLA-PEX-G Sonic-Resistivity-Density-Neutron-G Sonic-Resisti	Rig:	West Trit	ton	Countr	y: Australia	9					
Sonic-Resistivity_Density_Neutron-G Solite 1 Run 1 - Scale 1:500 (MD) Solite 1 Run 1 - Scale Run Number R	(BHC-HRI	A-PFX-G								
Suite 1 Run 1 - Scale 1:500 (MD) Elev.: K.B. 38 m Wic P87 Bass Strait Vic P87 Ba		Soniclan	eietivitv_Der	ocity_Nout	ron-G						
Suite 1 Run 1 - Scale 1:500 (MD)			טוטנועונץ דיטו	וטונץ ויינטיי	(
Signate Fig. Signate rait	Suite 1 Ru	un 1 − Scale	1:500 (MI	9							
NS71046.028 m, E 564227.625 m D.F. 38		Vic P/57, Bass	Strait			38 m					
Source RMF RMS Masured From: MSL Elev: On.	on Bas I mited	N 5771046.028	3 m, E 554227.625 n	ם	G.L.	–39.5 m					
Electron	rat /57 ie– il Li				D.T.	38 M					
Depth Driller Driller	xplo ic P /ard D O	Permanent Dat	ı		1						
Size Size	V W	Log Measured	ı	loor		Perm. Datum					
2		Drilling Measur		loor							
Logging Date Co-May-2008	Field: Locat Well:	State: Victoria	Max. Well [34.9 c	Deviation leg		Latitude S 38 12 24.881					
Run Number 1766 m	Logging Date		20-May-2008				Logging Date				
Depth Trob m Depth Depth Trob m Depth D	Run Number		1				Run Number				
Bottom Log Interval	Cepui Dillei		1760 m				Cepui Dillei	ostb			
Top Log Inierval	Bottom Log Interval		1757.2 m				Bottom Log Inte	rval			
Casing Driller Size @ Depth 13.375 in @ 747.2 m Casing Driller Size @ Depth @ Casing Driller Size @ Depth @ Casing Schlumberger Bit Size 5 m 746.5 m Casing Schlumberger Bit Size Density Viscosity Uit Sor Siy Bit Size Bit Size Bit Size Density Viscosity In Source Of Somple Density Viscosity Bit Size Density Viscosity Density Density Density<	Top Log Interval		1300 m				Top Log Interva				
Casing Schlumberger 746.5 m Casing Schlumberger Bit Size KCI Polymer Casing Schlumberger Type Fluid In Hole Type Fluid In Hole Type Fluid In Hole Type Fluid In Hole Type Fluid In Hole Type Fluid In Hole In Bit Size Type Fluid In Hole Type Fluid In Hole Type Fluid In Hole In Bit Size Type Fluid In Hole Type Fluid In Hole Type Fluid In Hole In Bit Size Type Fluid In Hole In Bit Size Type Fluid In Hole In Bit Size Type Fluid In Hole Type Fluid In Hole Type Fluid In Hole In Bit Size Type Fluid In Hole Press Fluid Loss PH Span="4">Span=	Casing Driller Size (Depth			1		Casing Driller S	ize @ Depth		@	
Bit Size	Casing Schlumberge		746.5 m				Casing Schlumb	erger			
Density Viscosity 1.12 g/cm3 56 s Fluid In Hole Flow Fluid In Hole Flow Fluid In Hole Flow	Bit Size		12.250 in				Bit Size				
Density Viscosity Visco		:					Type Fluid In Ho				
Fluid Loss PH 5.2 cm 9 Fluid Loss PH Source Of Sample Sou	Density	/iscosity		၂ တ			_	Viscosity			
Control Cont	Fluid Loss	Ĭ		9			_	PH			
Temperature 0.099 ohm.m 0 19.8 degC	PM @ Mossired Tor	B C C C C C C C C C C C C C C C C C C C					DM @ Mossuro	d Tomporaturo		9	
Temperature	RMF @ Measured Te	emperature					RMF @ Measure	ed Temperature			
RMC Press Press Press Source RMF RMC RMT ® MRT ® MRT ® MRT MRT <th< td=""><td>RMC @ Measured T</td><td>emperature</td><td></td><td></td><td></td><td></td><td>RMC @ Measu</td><td>ed Temperature</td><td></td><td>@</td><td></td></th<>	RMC @ Measured T	emperature					RMC @ Measu	ed Temperature		@	
RMF @ MRT 0.060	Source RMF F	RMC		ress			Source RMF	RMC			
xd Temperatures 56 degC 56 56 Maximum Recorded Temperature Maximum Recorded Temperature Maximum Recorded Temperature Maximum Recorded Temperature Maximum Recorded Temperature Maximum Recorded Sequence Maximum Recorded Temperature Maximum Record		RMF @ MRT	@ 56	(9)			RM @ MRT	RMF @ MRT	@	@	
Time 20–May–2008 04:40 Logger On Bottom Location 41 AUSL Unit Number Locatic Recorded By Simon Ward, Bill Leask Witnessed By	Maximum Recorded Circulation Stopped	Temperatures Time	2008				Maximum Reco	rded Temperatures Ded Time			
Location41AUSLUnit NumberA. Dandi , Malik JahangirRecorded BySimon Ward, Bill LeaskWitnessed By	Logger On Bottom	Time	20-May-2008	04:40			Logger On Botto				
A. Dandi , Malik Jahangir Simon Ward, Bill Leask	Unit Number	Location	41 AUSL				Unit Number	Location			
Simon Ward, Bill Leask	Recorded By		A. Dandi , Malik Ja	lhangir			Recorded By				
	Witnessed By		Simon Ward, Bill L	eask			Witnessed By				

DEPTH SUMMARY LISTING

Date Created: 21-JUL-2008 21:05:52

Depth System Equipment

Depth Measuring	Device	Tension De	vice	Loggin	g Cable
Type: Serial Number: Calibration Date:	IDW-H 796 29-Jan-2008	Type: Serial Number: Calibration Date:	CMTD-B/A 1721 27-Feb-2008	Type: Serial Number: Length:	7–46ZV–XS 77178 7315.20 M
Calibrator Serial Number: Calibration Cable Type: Wheel Correction 1: Wheel Correction 2:	1009 7–46ZV–XS –5 –5	Calibrator Serial Number: Calibration Gain: Calibration Offset:	1051 0.81 –610.00	Conveyance Method: Rig Type:	Wireline Offshore_Fixed

Depth Control Parameters

Log Sequence: First Log In the Well

Rig Up Length At Surface: 78.22 M
Rig Up Length At Bottom: 78.12 M
Rig Up Length Correction: 0.10 M
Stretch Correction: 1.90 M
Tool Zero Check At Surface: 0.90 M

Depth Control Remarks

- 1. First Run in hole, all schlumberger depth control procedures followed
- 2. IDW used as a primary depth reference, Z Chart as a secondary
- 3.
- 4.
- 5.
- 6.

DISCLAIMER

THE USE OF AND RELIANCE UPON THIS RECORDED-DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS AFFILIATES, PARTNERS, REPRESENTATIVES, AGENTS, CONSULTANTS AND EMPLOYEES) IS SUBJECT TO THE TERMS AND CONDITIONS AGREED UPON BETWEEN SCHLUMBERGER AND THE COMPANY, INCLUDING: (a) RESTRICTIONS ON USE OF THE RECORDED-DATA; (b) DISCLAIMERS AND WAIVERS OF WARRANTIES AND REPRESENTATIONS REGARDING COMPANY'S USE OF AND RELIANCE UPON THE RECORDED-DATA; AND (c) CUSTOMER'S FULL AND SOLE RESPONSIBILITY FOR ANY INFERENCE DRAWN OR DECISION MADE IN CONNECTION WITH THE USE OF THIS RECORDED-DATA.

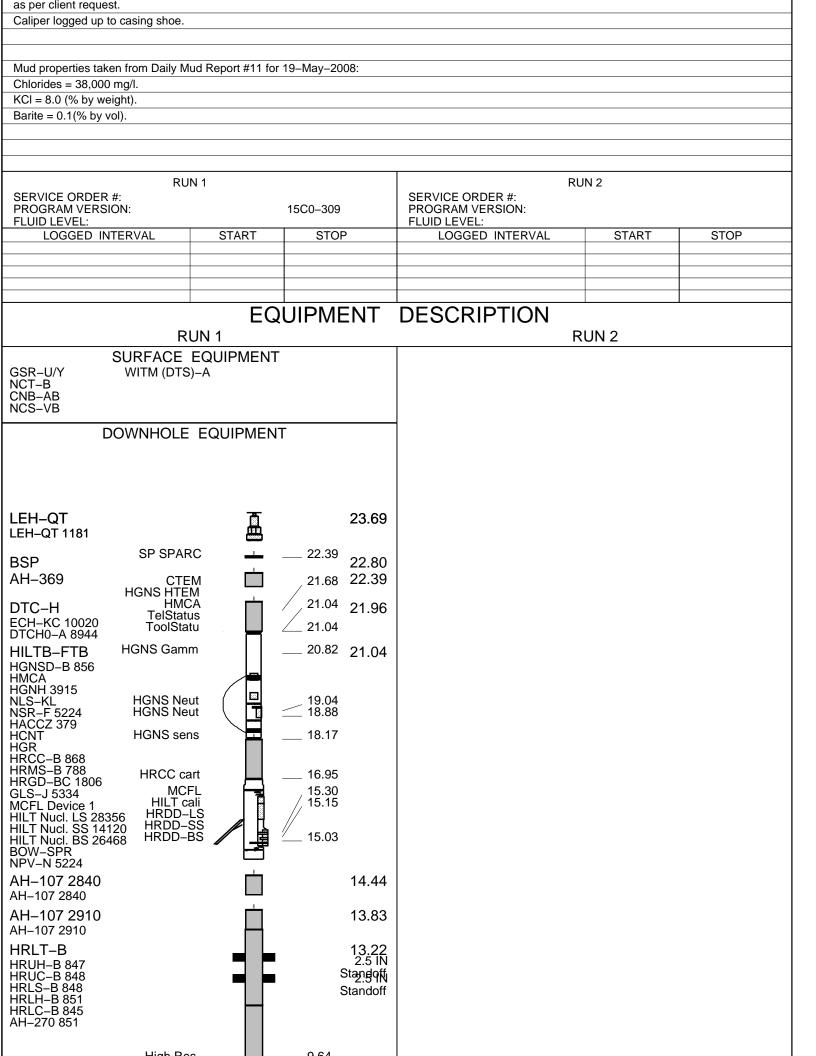
OTHER SERVICES1

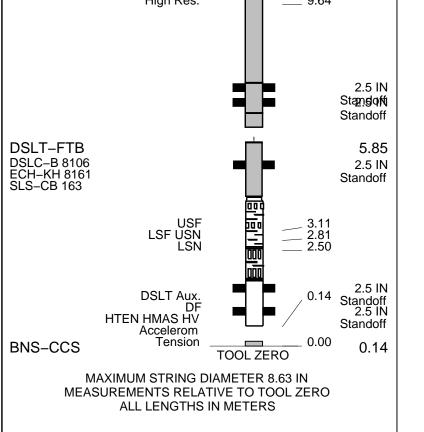
OS1: MDT-GR

OS2: OS3: OS4: OS5:

REMARKS: RUN NUMBER 1

Tool String run as per tool sketch with 7 x 2.5" standoffs and a bowspring.

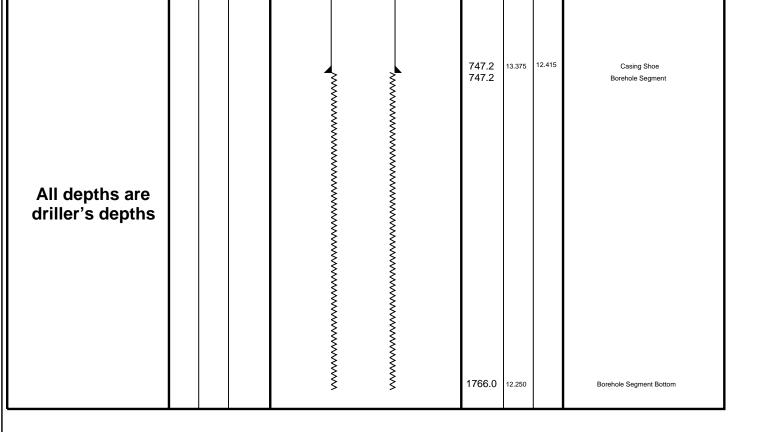

Maximum recorded temperature was 56 degC obtained from LEH-QT thermometers (3 max. reading thermometers run at client request).


Neutron porosity corrected for hole size and mud weight.

Density corrected for bit size.

Repeat pass carried in High resolution mode from 1570 m to 1670 m as per client request.

Did not reach TD due to fill on bottom. Tagged up at 1760 m. Main pass logged out from HUD to 1300m in standard resolution mode


Client: 3D Oil
Well: Wardie–1
Field: Exploration

State:

Exploration Rig Name: West Triton

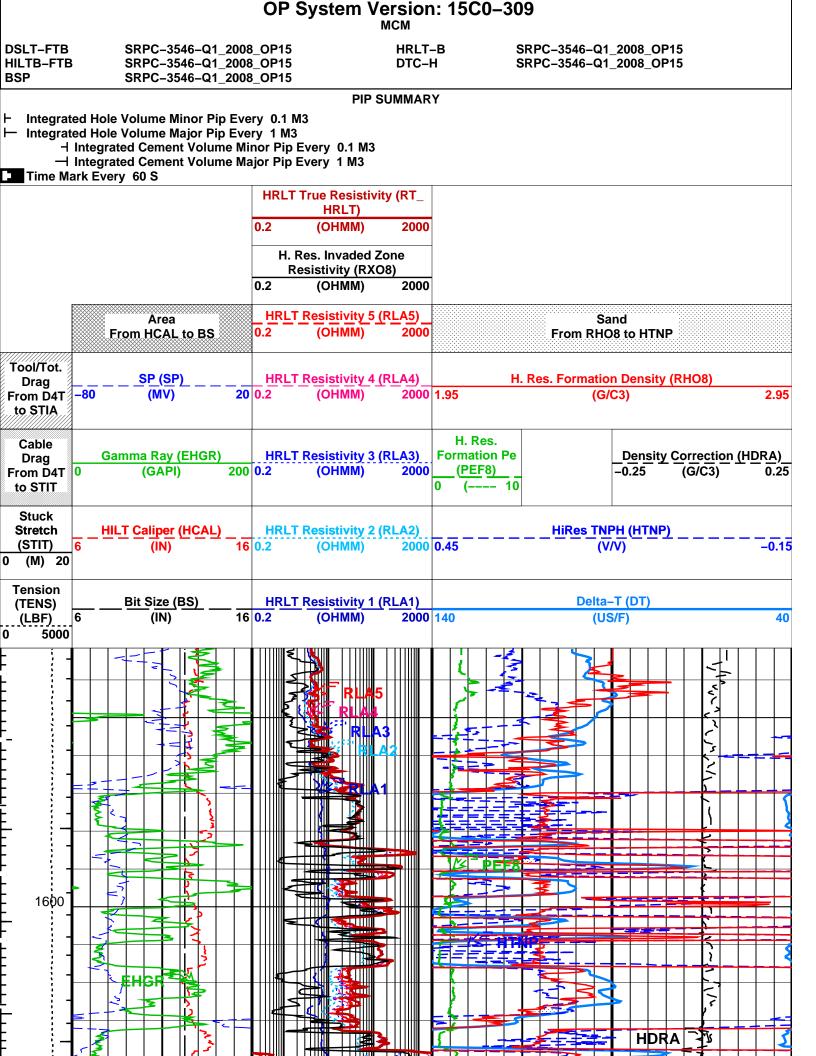
Victoria Reference Datum: Mean Sea Level

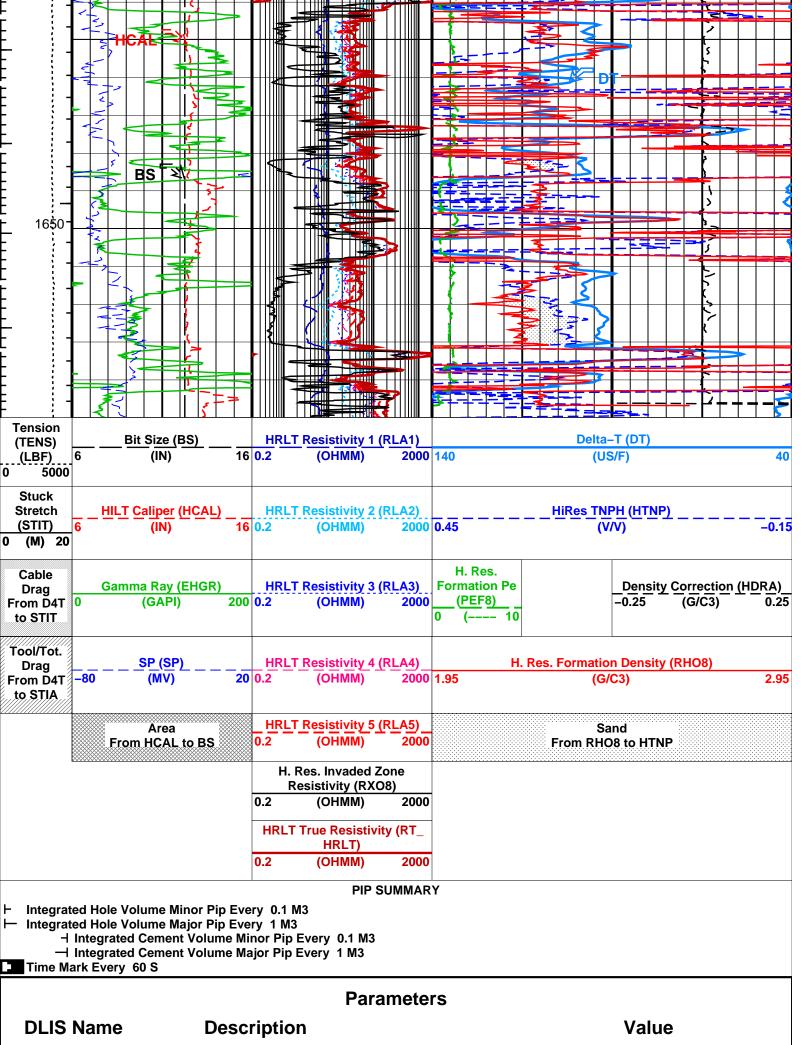
Country: Australia			Elevation:	38.0	m		
Production String	(in)	(m) ID MD	Well Schematic	(m) MD	(in)	ID	Casing String
Kelly Bushing Elevation Derrick Floor Elevation Mean Sea Level		38.0 38.0		39.5 133.0	30.000	28.00	Casing Shoe

Schlumberger

High Resolution Pass 1:500

MAXIS Field Log


Company: 3D Oil	Limited				Well: Wardie-1
	Input D	LIS Files			
DEFAULT	SONIC_HRLA_TLD_MCFL_014PUP FN:14	PRODUCER	08-Jun-2008 15:50	1675.0 M	1565.3 M
	Output	DLIS Files			
DEFAULT	SONIC_HRLA_TLD_MCFL_026PUP FN:31	PRODUCER	19-Jun-2008 23:01	1675.0 M	1565.8 M


Integrated Hole/Cement Volume Summary

Hole Volume = 8.98 M3

Cement Volume = 3.85 M3 (assuming 9.63 IN casing O.D.)

Computed from 1675.0 M to 1565.9 M using data channel(s) HCAL

DSLT-FTB: Digitizing Sonic Logging Tool

DOLI IID. DIGINEIN	Telemetry Mode	DSLC FTB	
	DSLT Firing Mode	SDDB	
AGC	Automatic Gain Control Status	ON	110
AMSG CBAF	Auxiliary Minimum Sliding Gate CBL Adjustment Factor	140 1	US
CBLG	CBL Gate Width	45	US
CDTS	C-Delta-T Shale	100	US/F
DDEL DETE	Digitizing Delay Delta–T Detection	0 E2	US
DFAD	Digital First Arrival Detection Switch	HOST	
DIVL	DSLT Depth Sampling Interval	20	
DRCS DSIN	DSLT DLIS Recording Size Digitizing Sample Interval	180 10	
DTCM	Delta-T Computation Mode	FULL	
DTF	Delta-T Fluid	189	US/F
DTFS DTM	DSLC Telemetry Frame Size Delta-T Matrix	396 56	US/F
DWCO	Digitizing Word Count	180	00/1
GAI	Manual Gain	40 DT	
ITTS Mahtr	Integrated Transit Time Source Manual High Threshold Reference	DT 120	
MGAI	Maximum Gain	60	
MIGA	Minimum Gain	. 1	
MNHTR MODE	Minimum High Threshold Reference Sonic Firing Mode	100 SDDB	
NMSG	Near Minimum Sliding Gate	140	US
NMXG	Near Maximum Sliding Gate	970	US
NUMP RATE	Number of Detection Passes	2 R15	
RDFA	Firing Rate Reset DFAD	OFF	
SDTH	Switch Down Threshold	20000	
SFAF	Sonic Formation Attenuation Factor	10 ON	DB/M
SGAD SGAI	Sliding Gate Status Selectable Acquisition Gain	ON AUTO	
SGCL	Sliding Gate Closing Delta-T	140	US/F
SGCW	Sliding Gate Closing Width	25	US
SGDT SGW	Sliding Gate Delta-T Sliding Gate Width	40 110	US/F US
SLEV	Signal Level for AGC	5000	
SPFS	Sonic Porosity Formula	RAYMER_HUNT	
SPSO SUTH	Sonic Porosity Source Switch Up Threshold	DT 1000	
VDLG	VDL Manual Gain	40	
WAGC	Waveform AGC Allow/Disallow	OFF	
WGAI WGDT	Waveform Manual Gain Waveform Gain Delta-T	20 240	US/F
WGIN	Waveform Gain Interval	2540	US
WMOD	Waveform Firing Mode	FULL	
BHS RKLI-B: High Resor	ution Laterolog Array – E Borehole Status	OPEN	
ВНТ	Bottom Hole Temperature (used in calculations)	56	DEGC
CALTEMP	HRLTB Calibration Status	SHALLOW_DONE 47.801	DECC
CALTEMP FREQ0	HRLTB Calibration Temperature HRLT Frequency Index for Mode 0	32	DEGC
FREQ1	HRLT Frequency Index for Mode 1	128	
FREQ2	HRLT Frequency Index for Mode 2	104 86	
FREQ3 FREQ4	HRLT Frequency Index for Mode 3 HRLT Frequency Index for Mode 4	56	
FREQ5	HRLT Frequency Index for Mode 5	44	
FREQ6 GCSE	HRLT Frequency Index for Mode 6 Generalized Caliper Selection	116 HCAL	
GDEV	Average Angular Deviation of Borehole from Normal	ncal 0	DEG
GGRD	Geothermal Gradient	0.018227	DC/M
GRSE GTSE	Generalized Mud Resistivity Selection Generalized Temperature Selection	CHART_GEN_9 LINEAR_ESTIMATE	
ISSBAR	Barite Mud Switch	NOBARITE	
KFAC_HRLT	HRLT K Factor Option	SONDE	
LOOPCOEF_S LOOPMOD0	HRLT Loop Coefficient for Shallow Modes HRLT Mode 0 Loop Mode	LOW AUTO	
LOOPMOD1	HRLT Mode 1 Loop Mode	AUTO	
LOOPMOD2	HRLT Mode 2 Loop Mode	AUTO	
LOOPMOD3 LOOPMOD4	HRLT Mode 3 Loop Mode HRLT Mode 4 Loop Mode	AUTO AUTO	
LOOPMOD5	HRLT Mode 5 Loop Mode	AUTO	
LOOPMOD6	HRLT Mode 6 Loop Mode	AUTO	
MATR PROCINV	Rock Matrix for Neutron Porosity Corrections Inversion Selection	LIMESTONE ON	
PROCMFL	Inversion Selection Inversion Micro-Resistivity Selection	NO_EXTERNAL_RXO	
PROCMSO	Mechanical Standoff Fin Size	2.5	IN
PROCRM PROCSPO	Processing Mud Resistivity Select Sonde Position	HRLT_Compute Eccentered	
SHT	Surface Hole Temperature	20	DEGC
HILTB-FTB: High res	solution Integrated Logging Tool-DTS	1414 TEE	
BHFL	Borehole Fluid Type	WATER	

BHFL_ILD	HIL I NUCIEAR WUO BASE	WATER	
BHS BHT	Borehole Status	OPEN	DEGC
BSCO	Bottom Hole Temperature (used in calculations) Borehole Salinity Correction Option	56 NO	DEGC
CCCO	Casing & Cement Thickness Correction Option	NO	
DHC	Density Hole Correction	BS	
DPPM Exsicl	Density Porosity Processing Mode External Shale Indicator Clean Value	HIRS 20	
EXSISH	External Shale Indicator Shale Value	150	
FD	Fluid Density_	1	G/C3
FEXP	Form Factor Exponent	2	
FNUM FPHI	Form Factor Numerator Form Factor Porosity Source	1 DPHZ	
FSAL	Formation Salinity	-50000	PPM
FSCO	Formation Salinity Correction Option	NO	
GCLF GCSE	Germany Coal-like Formation Option Generalized Caliper Selection	NO HCAL	
GDEV	Average Angular Deviation of Borehole from Normal	0	DEG
GGRD	Geothermal Gradient	0.018227	DC/M
GRSE GTSE	Generalized Mud Resistivity Selection	CHART_GEN_9	
HACPP	Generalized Temperature Selection Accelerometer PROM Presence	LINEAR_ESTIMATE PRESENT_FILE	
HART	Accelerometer Reference Temperature	20	DEGC
HDCOD	HILT Density Coal detection	2	G/C3
HDSAD HILT_GAS_DENSITY	HILT Density Salt detection HILT Gas Downhole Density	2.1 0	G/C3 G/C3
HILT GAS OPTION	HILT Gas Computation Option	OFF	G/C3
HNCOD	HILT Neutron Coal detection	45	PU
HNSAD	HILT Neutron Salt detection	5	PU
HPHIECUT HSCO	HILT effective Porosity Cutoff Hole Size Correction Option	5 YES	PU
HSIS	HILT Shale Indicator Selection	GR	
HSSO	HRDD Nuclear Source Strength Option	NORMAL	
HSWCUT	HILT Water Saturation from AITH cutoff	50	%
ISSBAR MATR	Barite Mud Switch Rock Matrix for Neutron Porosity Corrections	NOBARITE LIMESTONE	
MCCO	Mud Cake Correction Option	NO	
MCOR	Mud Correction	BARI	
MDEN MHC0	Matrix Density MCFL B0 Contrast Correction Coefficient	2.71 2.2e-005	G/C3 OHMS
MHC0 MHC1	MCFL B0 Contrast Correction Coefficient MCFL B1 Contrast Correction Coefficient	3.2e-005	OHMS
MHCC	MCFL High Contrast Correction Switch	NO	· · · · · ·
MPOF	MCFL Processing Operation Mode	ON	
MWCO NAAC	Mud Weight Correction Option HRDD APS Activation Correction	YE\$ OFF	
NMT	HILT Nuclear Mud Type	BARITE	
NPRM	HRDD Processing Mode	HiRes	
NSAR	HRDD Depth Sampling Rate	NO FILTED	IN
PEA_FILTER PEFC_FILTER	PEA Filter PEFC Filter	NO_FILTER NO_FILTER	
PHIMAX	HILT max porosity	35	PU
PTCO	Pressure/Temperature Correction Option	NO	
SDAT SEXP_HILT	Standoff Data Source HILT Saturation Exponent	SOCN 2	
SHT	Surface Hole Temperature	20	DEGC
SOCN	Standoff Distance	0.125	IN
SOCO	Standoff Correction Option	NO	
BSP: Bridle SP SPNV	SP Next Value	0	MV
HOLEV: Integrated H		·	
BHS	Borehole Status	OPEN	
BHT FCD	Bottom Hole Temperature (used in calculations)	56 9.625	DEGC IN
GCSE	Future Casing (Outer) Diameter Generalized Caliper Selection	HCAL	ш
GDEV	Average Angular Deviation of Borehole from Normal	0	DEG
GGRD	Geothermal Gradient	0.018227	DC/M
GRSE GTSE	Generalized Mud Resistivity Selection Generalized Temperature Selection	CHART_GEN_9 LINEAR_ESTIMATE	
HVCS	Integrated Hole Volume Caliper Selection	HCAL	
ISSBAR	Barite Mud Switch	NOBARITE	
MATR	Rock Matrix for Neutron Porosity Corrections	LIMESTONE	DEGC
SHT STI: Stuck Tool Indic	Surface Hole Temperature ator	20	DEGC
LBFR	Trigger for MAXIS First Reading Label	TDL	
STKT	STI Stuck Threshold	1.524	M
TDD TDL	Total Depth - Driller	1766.00 1760.00	M M
DIR: Directional Surv	Total Depth – Logger ev Computation	1700.00	IVI
SPED	East Departure of Starting Point	0	M
SPND	North Departure of Starting Point	0	M
SPVD TAZI	TVD of Starting Point Vertical Section Azimuth	0 0	M DEG
TIED	East Departure of Tie-in Point	0	M
TIMD	Along-hole depth of Tie-in Point	Ō	M
TIND	North Departure of Tie-in Point	0	M

TIVD	TVD of Tie-in Point	0	М
System and M	Miscellaneous		
ALTDPCHAN	Name of alternate depth channel	SpeedCorrectedDepth	
BS	Bit Size	12.250	IN
BSAL	Borehole Salinity	63000.00	PPM
CSIZ	Current Casing Śize	13.375	IN
CWEI	Casing Weight	68.00	LB/F
DFD	Drilling Fluid Density	1.12	G/C3
DO	Depth Offset for Playback	0.0	М
FLEV	Fluid Level	-50000.00	М
MST	Mud Sample Temperature	20.20	DEGC
PBVSADP	Use alternate depth channel for playback	NO	
PP	Playback Processing	RECOMPUTE	
RMFS	Resistivity of Mud Filtrate Sample	0.0994	OHMM
RW	Resistivity of Connate Water	1.0000	OHMM
TD	Total Depth	1760	М
TWS	Temperature of Connate Water Sample	37.78	DEGC
Format: HIRES SON RE	S DENS NEU GR SP D500 Vertical Scale: 1:500	Graphics File Created:	19-Jun-2008 23:01

OP System Version: 15C0-309

MCM

SRPC-3546-Q1_2008_OP15 HRLT-B SRPC-3546-Q1_2008_OP15 DSLT-FTB HILTB-FTB SRPC-3546-Q1_2008_OP15 DTC-H SRPC-3546-Q1_2008_OP15

SRPC-3546-Q1_2008_OP15 **BSP**

Input DLIS Files

SONIC_HRLA_TLD_MCFL_014PUP FN:14 **PRODUCER DEFAULT** 08-Jun-2008 15:50 1675.0 M 1565.3 M

Output DLIS Files

DEFAULT SONIC_HRLA_TLD_MCFL_026PUP FN:31 **PRODUCER** 19-Jun-2008 23:01

Schlumberger

Standard Resolution Pass 1:500

MAXIS Field Log

Well: Wardie-1 Company: 3D Oil Limited

Input DLIS Files

DEFAULT SONIC_HRLA_TLD_MCFL_014LUP FN:31 **PRODUCER** 06-Jun-2008 11:07 1761.0 M 689.2 M

Output DLIS Files

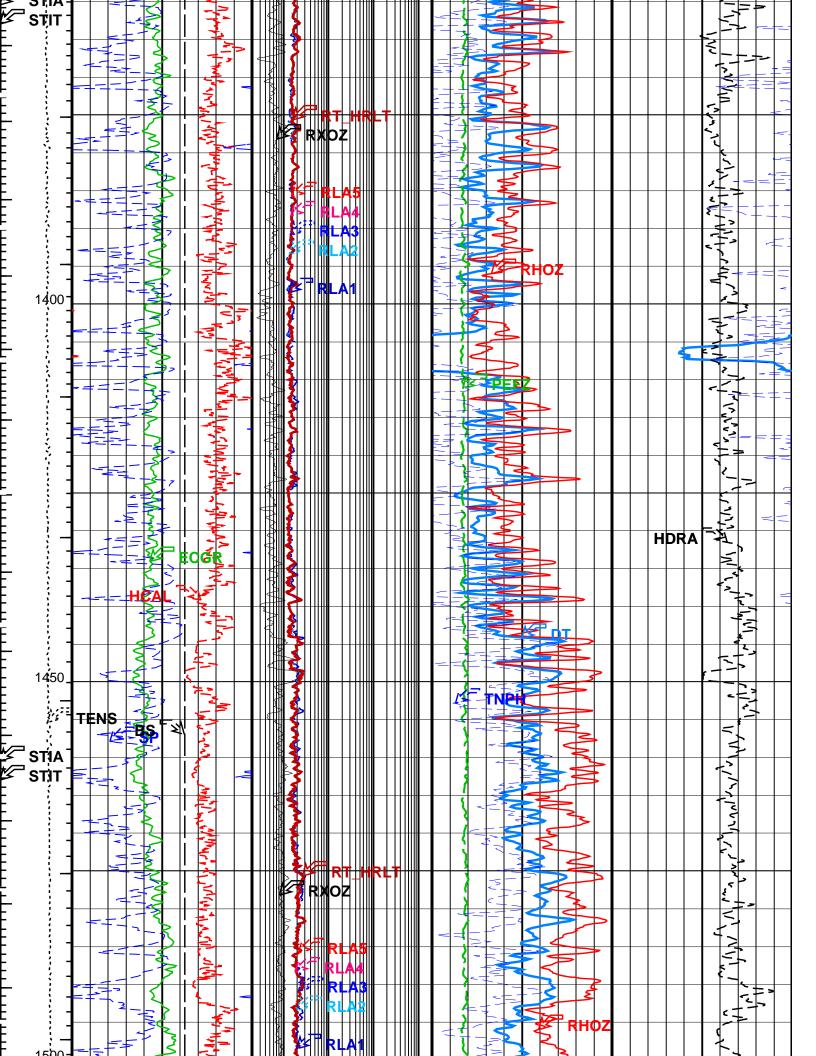
DEFAULT SONIC_HRLA_TLD_MCFL_017PUP FN:20 **PRODUCER** 08-Jun-2008 10:13 1761.0 M 1298.3 M **CUSTOMER** SONIC HRLA TLD MCFL 017PUC FN:21 **CUSTOMER** 08-Jun-2008 10:13 1761.0 M 1298.3 M

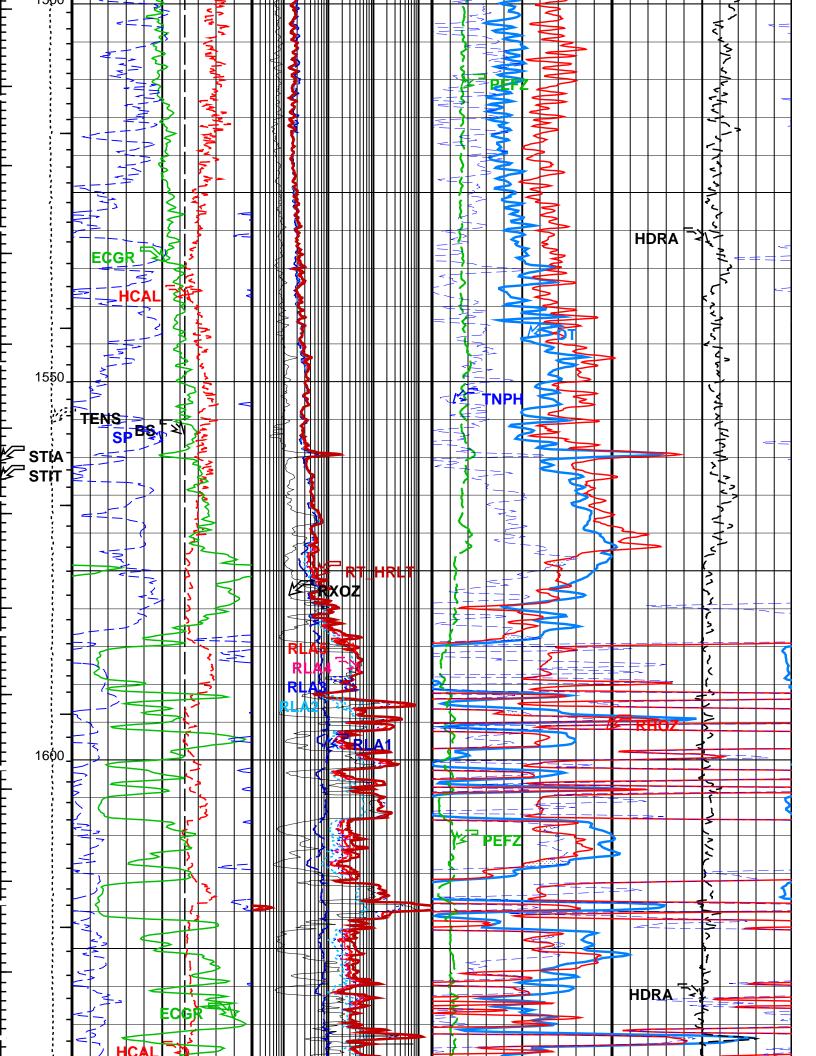
Integrated Hole/Cement Volume Summary

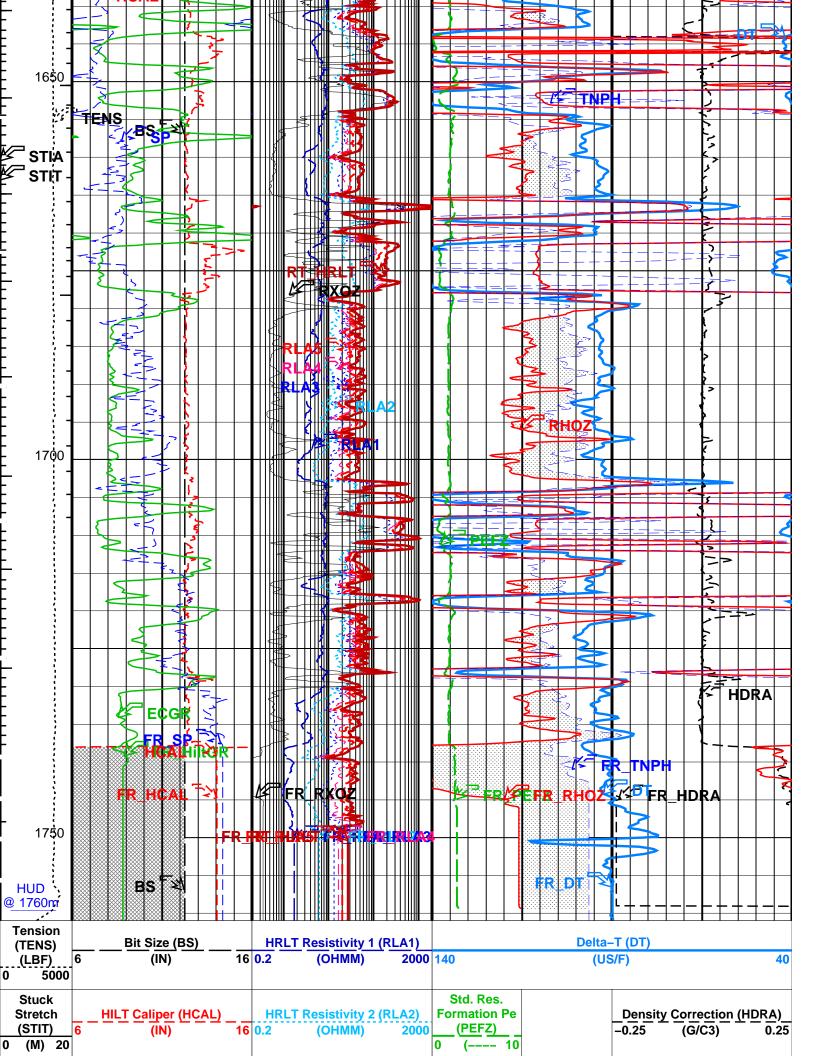
Hole Volume = 39.85 M3

Cement Volume = 18.18 M3 (assuming 9.63 IN casing O.D.)

Computed from 1759.9 M to 1298.4 M using data channel(s) HCAL


OP System Version: 15C0-309


MCM


DSLT-FTB SRPC-3546-Q1_2008_OP15 HRLT-B SRPC-3546-Q1_2008_OP15 HILTB-FTB SRPC-3546-Q1_2008_OP15 DTC-H SRPC-3546-Q1_2008_OP15 **BSP** SRPC-3546-Q1 2008 OP15

⊢ Integrated Hole Volume Minor Pip Every 0.1 M3 → Integrated Cement Volume Minor Pip Every 0.1 M3 ── Integrated Cement Volume Major Pip Every 1 M3 Time Mark Every 60 S **HRLT True Resistivity (RT_** HRLT) (OHMM) Std. Res. Invaded Zone Resistivity (RXOZ) 0.2 2000 (OHMM) Stuck Tool Indicator, HRLT Resistivity 5 (RLA5) Ărea Sand Adjusted (OHMM) From HCAL to BS From RHOZ to TNPH (STIA) 0 (M) 20 Tool/Tot. Env.Corr.Thermal Neutron Porosity (TNPH) HRLT Resistivity 4 (RLA4) Drag 20 0.2 2000 0.45 -0.15 (OHMM) From D4T (V/V) to STIA Cable Gamma Ray (ECGR) HRLT Resistivity 3 (RLA3) Std. Res. Formation Density (RHOZ) Drag 200 0.2 2000 1.95 From D4T 0 (GAPI) (OHMM) (G/C3) 2.95 to STIT Std. Res. Stuck **Density Correction (HDRA) HILT Caliper (HCAL) Formation Pe** Stretch **HRLT Resistivity 2 (RLA2)** (PEFZ) (STIT) 16 0.2 (OHMM) 2000 (G/C3) (M) 20 **Tension** Bit Size (BS) **HRLT Resistivity 1 (RLA1)** Delta-T (DT) (TENS) (IN) (OHMM) 2000 140 (US/F) (LBF) 5000 1300 HDRA ECGR 1350 TENS

PIP SUMMARY

Cable Drag	Gamma Ray (ECGR)		Resistivity 3	(RLA3)		Std. Res. Formation Density (RHOZ)	
From D4T to STIT	0 (GAPI) 200	0.2	(OHMM)	2000	1.95	(G/C3)	2.95
Tool/Tot. Drag	SP (SP)	HRLT	Resistivity 4	(RLA4)		Env.Corr.Thermal Neutron Porosity (TNPH)	
From D4T to STIA	-80 (MV) 20	0.2	(OHMM)	2000	0.45	(V/V)	-0.15
Stuck Tool Indicator, Adjusted	Area	HRLT	Resistivity 5	(RLA5)		Sand	
(STIA) 0 (M) 20	From HCAL to BS	0.2	(ОНММ)	2000		From RHOZ to TNPH	
			Res. Invaded				
		0.2	(OHMM)	2000			
		HRLT	True Resistiv HRLT)	rity (RT_			
		0.2	(OHMM)	2000			
		1	PIP	SUMMAR	Υ		
⊢ Integrat ⊣ 	ed Hole Volume Minor Pip Eve ed Hole Volume Major Pip Eve Integrated Cement Volume M Integrated Cement Volume M ark Every 60 S	ery 1 M3 inor Pip I	Every 0.1 M3				
I IIII I IVI	air Every 00 0						

Parameters

DLIS	Name	Description	Valu	е
	DSLT-FTB: Digitizing	ı Sonic Logging Tool		
		Telemetry Mode	DSLC_FTB	
		DSLT Firing Mode	SDDB	
DDEL		Digitizing Delay	0	US
DIVL		DSLT Depth Sampling Interval	20	
DRCS		DSLT DLIS Recording Size	180	
DSIN		Digitizing Sample Interval	10	
DTFS		DSLC Telemetry Frame Size	396	
DWCO		Digitizing Word Count	180	
GAI		Manual Gain	40	
MAHTR		Manual High Threshold Reference	120	
MGAI		Maximum Gain	60	
MNHTR		Minimum High Threshold Reference	100	
NMSG		Near Minimum Sliding Gate	140	US
NMXG		Near Maximum Sliding Gate	970	US
RATE		Firing Rate	R15	
SFAF		Sonic Formation Attenuation Factor	10	DB/M
SGCL		Sliding Gate Closing Delta-T	140	US/F
SGDT		Sliding Gate Delta-T	40	US/F
SGW		Sliding Gate Width	110	US
SLEV		Signal Level for AGC	5000	
WMOD		Waveform Firing Mode	FULL	
	HRLT-B: High Resolu	ution Laterolog Array – E		
BHS		Borehole Status	OPEN	
BHT		Bottom Hole Temperature (used in calculations)	56	DEGC
GCSE		Generalized Caliper Selection	HCAL	
GDEV		Average Angular Deviation of Borehole from Normal	0	DEG
GGRD		Geothermal Gradient	0.018227	DC/M
GRSE		Generalized Mud Resistivity Selection	CHART_GEN_9	
GTSE	IDI T	Generalized Temperature Selection	LINEAR_ESTIMATE	
KFAC_H	HKLI	HRLT K Factor Option	SONDE	
MATR	IV.	Rock Matrix for Neutron Porosity Corrections	LIMESTONE	
PROCIN PROCM		Inversion Selection	ON NO_EXTERNAL_RXO	
PROCM		Inversion Micro-Resistivity Selection Mechanical Standoff Fin Size	NO_EXTERNAL_RAD	IN
PROCR		Processing Mud Resistivity Select	HRLT_Compute	IIV
PROCS		Sonde Position	Eccentered	
SHT	. 0	Surface Hole Temperature	20	DEGC
	HILTB-FTB: High res	olution Integrated Logging Tool-DTS	20	
BHFL		Borehole Fluid Type	WATER	
BHFL T	TLD .	HILT Nuclear Mud Base	WATER	
BHS		Borehole Status	OPEN	

BHT	Bottom Hole Temperature (used in calculations)	56	DEGC
BSCO	Borehole Salinity Correction Option	NO	
CCCO	Casing & Cement Thickness Correction Option	NO	
DHC	Density Hole Correction	BS	DDM
FSAL	Formation Salinity	-50000	PPM
FSCO GCLF	Formation Salinity Correction Option	NO NO	
GCSE	Germany Coal–like Formation Option Generalized Caliper Selection	HCAL	
GDEV	Average Angular Deviation of Borehole from Normal	ncal 0	DEG
GGRD	Geothermal Gradient	0.018227	DC/M
GRSE	Generalized Mud Resistivity Selection	CHART_GEN_9	DC/W
GTSE	Generalized Temperature Selection	LINEAR_ESTIMATE	
HSCO	Hole Size Correction Option	YES	
MATR	Rock Matrix for Neutron Porosity Corrections	LIMESTONE	
MCCO	Mud Cake Correction Option	NO	
MCOR	Mud Correction	BARI	
MPOF	MCFL Processing Operation Mode	ON	
MWCO		YES	
NAAC	HRDD APS Activation Correction	OFF	
NMT	HILT Nuclear Mud Type	BARITE	
NPRM	HRDD Processing Mode	HiRes	
NSAR	HRDD Depth Sampling Rate	1	IN
PTCO	Pressure/Temperature Correction Option	NO	
SDAT	Standoff Data Source	SOCN	
SHT	Surface Hole Temperature	20	DEGC
SOCN	Standoff Distance	0.125	IN
soco	Standoff Correction Option	NO	
00111/	BSP: Bridle SP		
SPNV	SP Next Value	0	MV
DUC	HOLEV: Integrated Hole/Cement Volume	OPEN	
BHS	Borehole Status	OPEN	DECC
BHT	Bottom Hole Temperature (used in calculations)	56 0.635	DEGC
FCD GCSE	Future Casing (Outer) Diameter Generalized Caliper Selection	9.625 HCAL	IN
GDEV	Average Angular Deviation of Borehole from Normal	0	DEG
GGRD	Geothermal Gradient	0.018227	DC/M
GRSE	Generalized Mud Resistivity Selection	CHART_GEN_9	DOM
GTSE	Generalized Temperature Selection	LINEAR_ESTIMATE	
HVCS	Integrated Hole Volume Caliper Selection	HCAL	
MATR	Rock Matrix for Neutron Porosity Corrections	LIMESTONE	
SHT	Surface Hole Temperature	20	DEGC
	STI: Stuck Tool Indicator		
LBFR	Trigger for MAXIS First Reading Label	TDL	
STKT	STI Stuck Threshold	1.524	M
TDD	Total Depth – Driller	1766.00	M
TDL	Total Depth – Logger	1760.00	M
	System and Miscellaneous		
BS	Bit Size	12.250	IN
BSAL	Borehole Salinity	63000.00	PPM
CSIZ	Current Casing Size	13.375	IN _
CWEI	Casing Weight	68.00	LB/F
DFD	Drilling Fluid Density	1.12	G/C3
DO	Depth Offset for Playback	0.0	M
DORL	Depth Offset for Repeat Analysis	0.0	M
MST	Mud Sample Temperature	20.20	DEGC
PP DMES	Playback Processing	RECOMPUTE	OHMM
RMFS	Resistivity of Mud Filtrate Sample	0.0994 1760	OHMM M
TD	Total Depth	1760	IVI

OP System Version: 15C0-309

Graphics File Created: 08-Jun-2008 10:13

MCM

DSLT-FTB SRPC-3546-Q1_2008_OP15 HRLT-B SRPC-3546-Q1_2008_OP15 HILTB-FTB SRPC-3546-Q1_2008_OP15 DTC-H SRPC-3546-Q1_2008_OP15 BSP SRPC-3546-Q1_2008_OP15

Vertical Scale: 1:500

Input DLIS Files

DEFAULT SONIC_HRLA_TLD_MCFL_014LUP FN:31 PRODUCER 06-Jun-2008 11:07 1761.0 M 689.2 M

Output DLIS Files

DEFAULT SONIC_HRLA_TLD_MCFL_017PUP FN:20 PRODUCER 08-Jun-2008 10:13 CUSTOMER SONIC_HRLA_TLD_MCFL_017PUC FN:21 CUSTOMER 08-Jun-2008 10:13

Format: SON_RES_DENS_NEU_GR_SP_D500

A 11

1:500

MAXIS Field Log

Company: 3D Oil Limited Well: Wardie-1

Input DLIS Files

DEFAULT SONIC_HRLA_TLD_MCFL_014LUP FN:31 PRODUCER 21-May-2008 13:14 1761.0 M 689.2 M

Output DLIS Files

DEFAULT SONIC_HRLA_TLD_MCFL_034PUP FN:39 PRODUCER 21-Jun-2008 21:32 1761.0 M 742.3 M

Integrated Hole/Cement Volume Summary

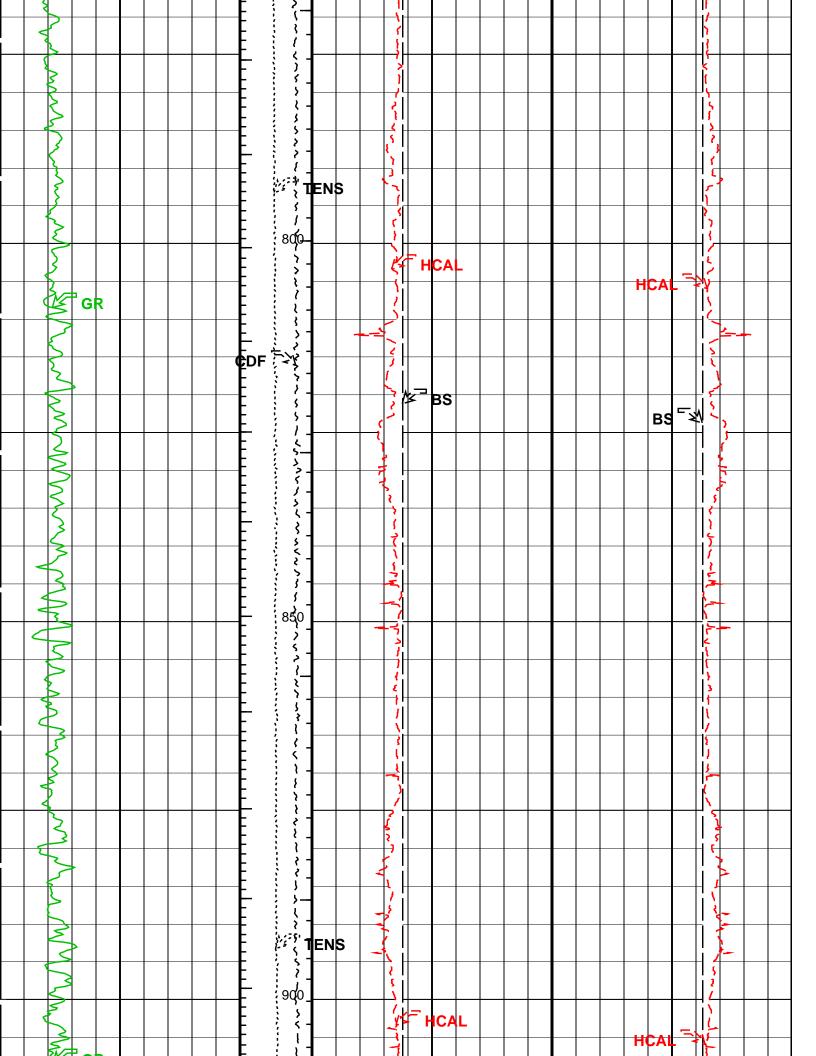
Hole Volume = 85.86 M3

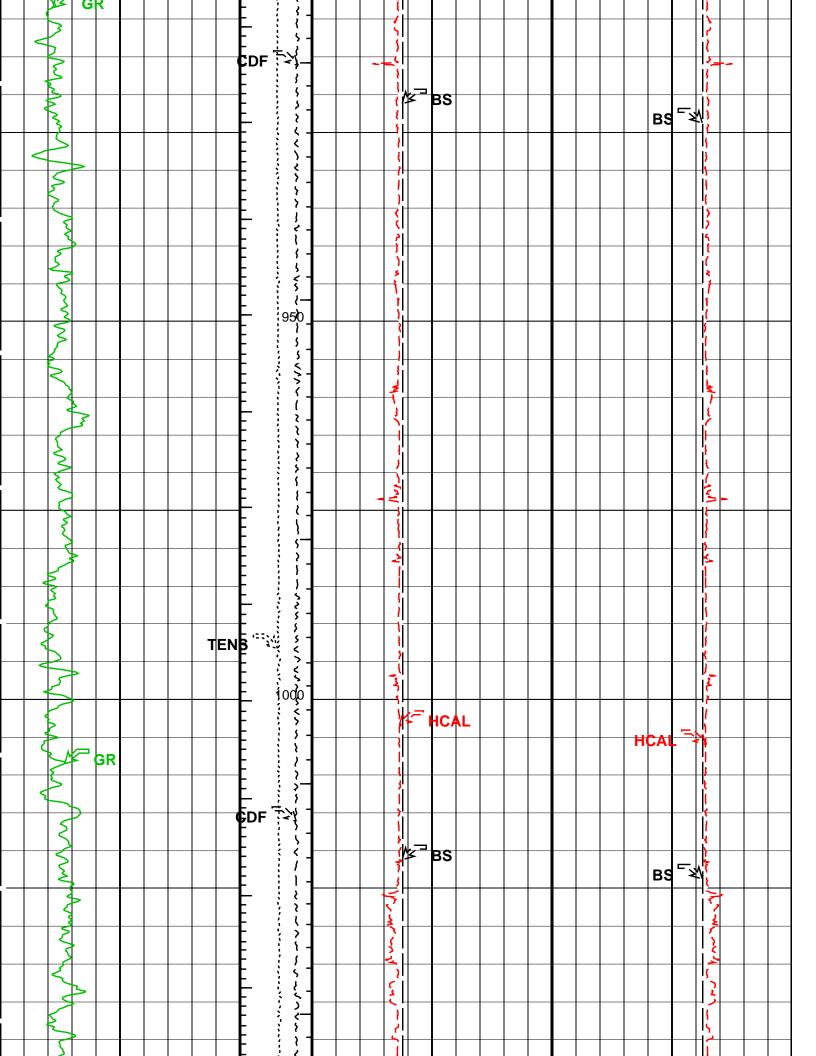
Cement Volume = 38.29 M3 (assuming 9.63 IN casing O.D.)

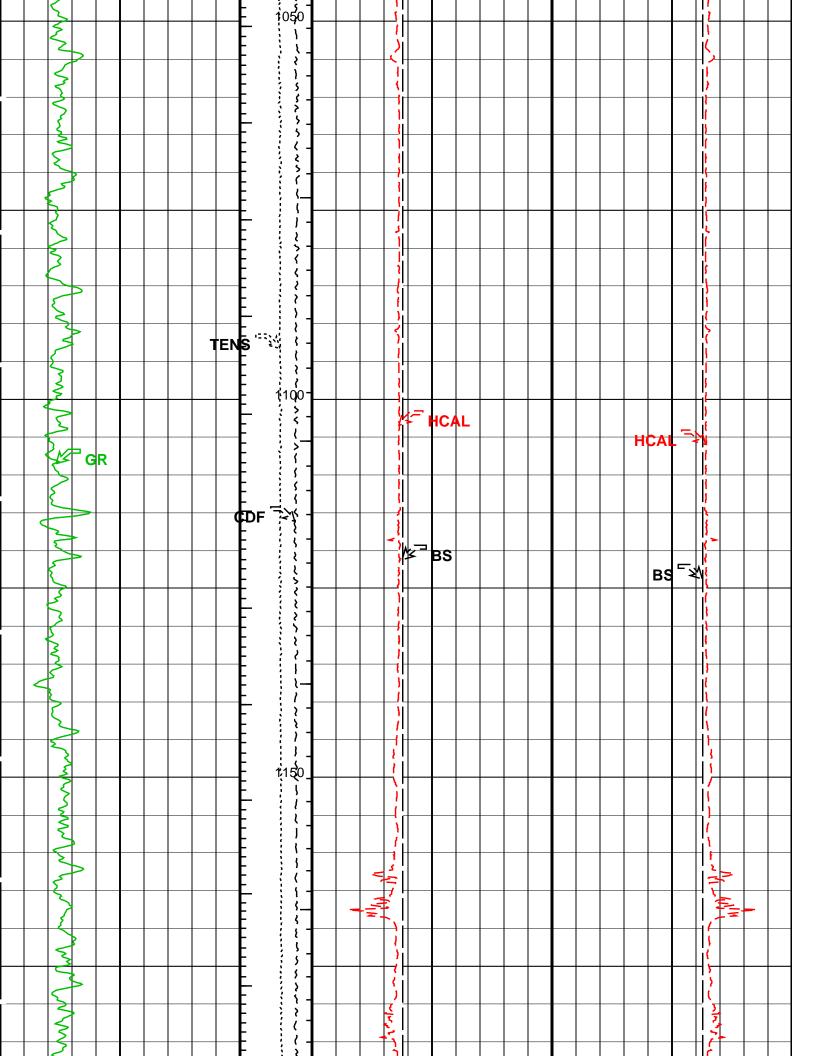
Computed from 1759.9 M to 746.6 M using data channel(s) HCAL

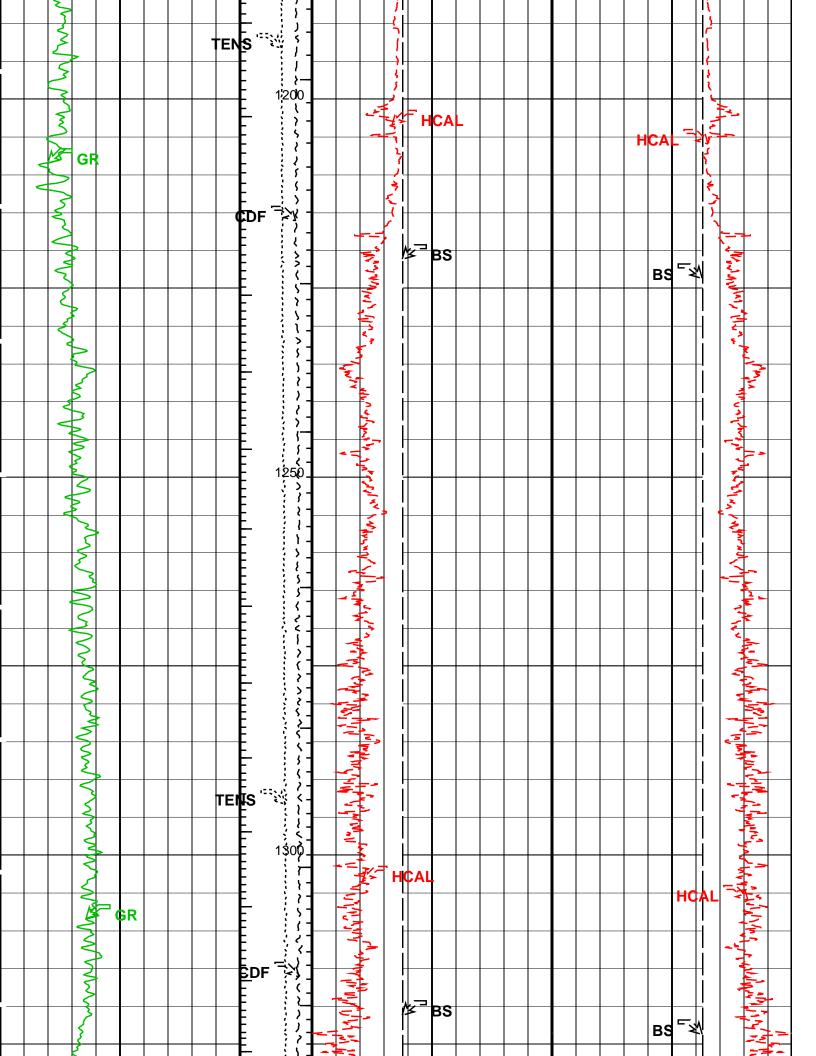
OP System Version: 15C0-309

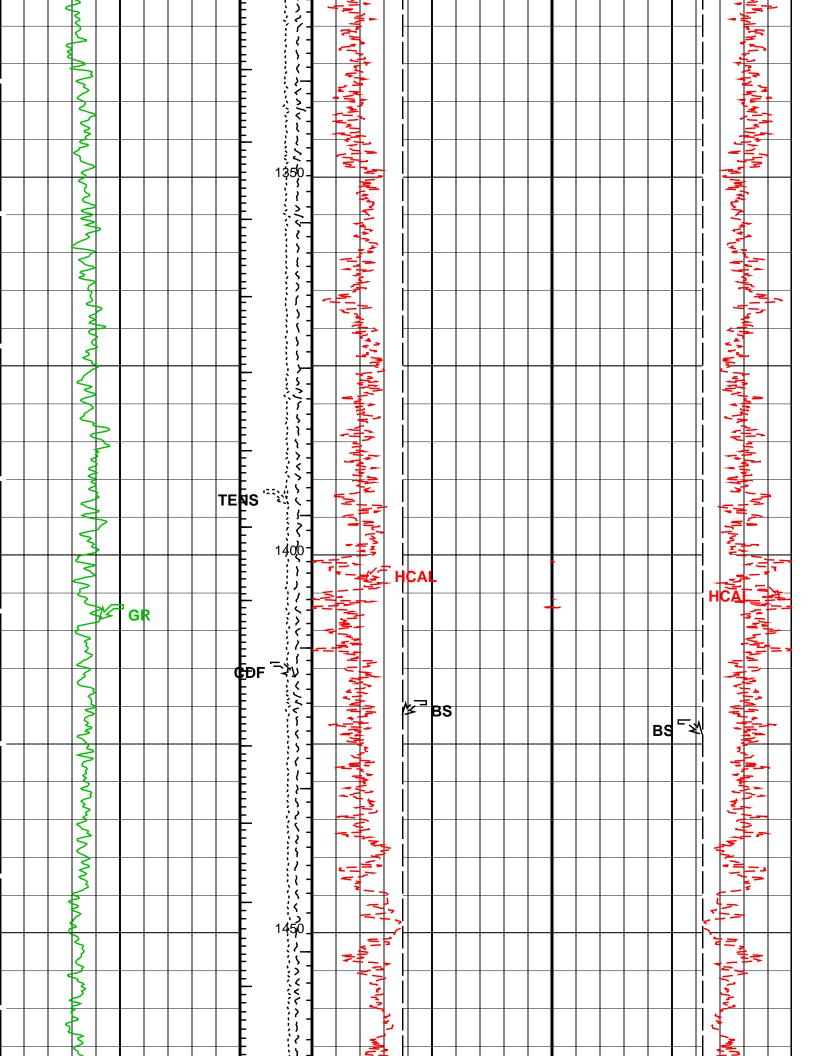
MCM

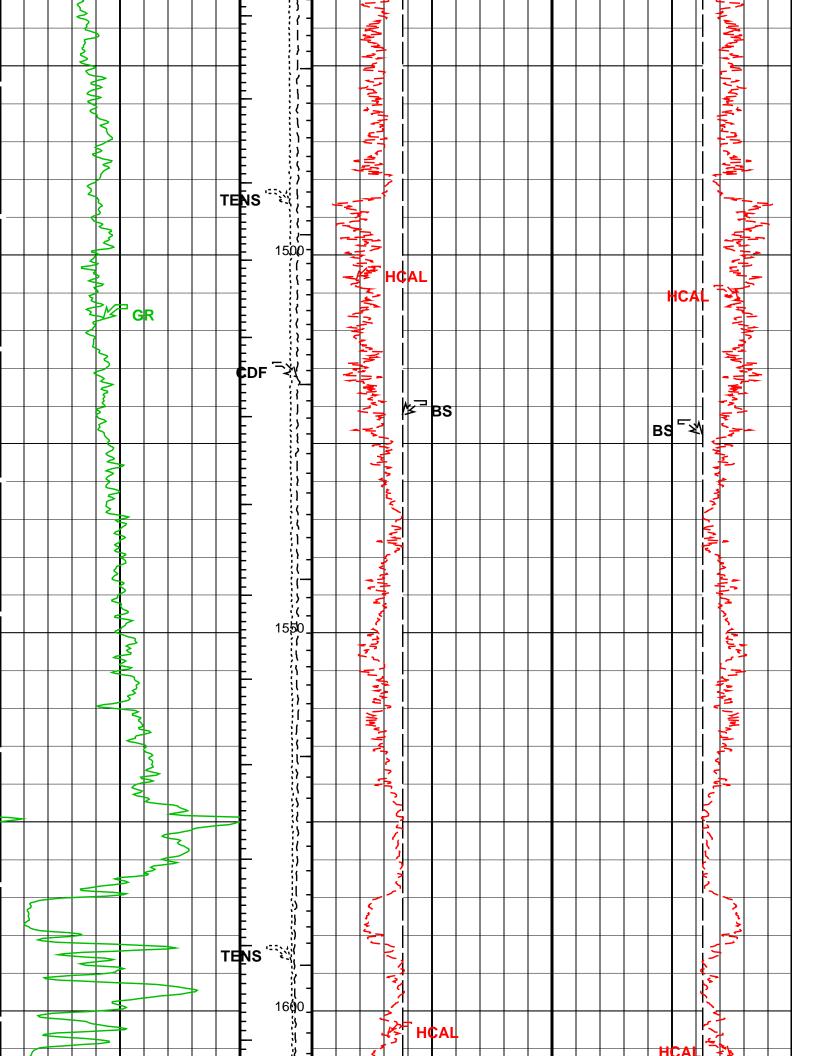

DSLT-FTB SRPC-3546-Q1_2008_OP15 HRLT-B SRPC-3546-Q1_2008_OP15 HILTB-FTB SRPC-3546-Q1_2008_OP15 DTC-H SRPC-3546-Q1_2008_OP15

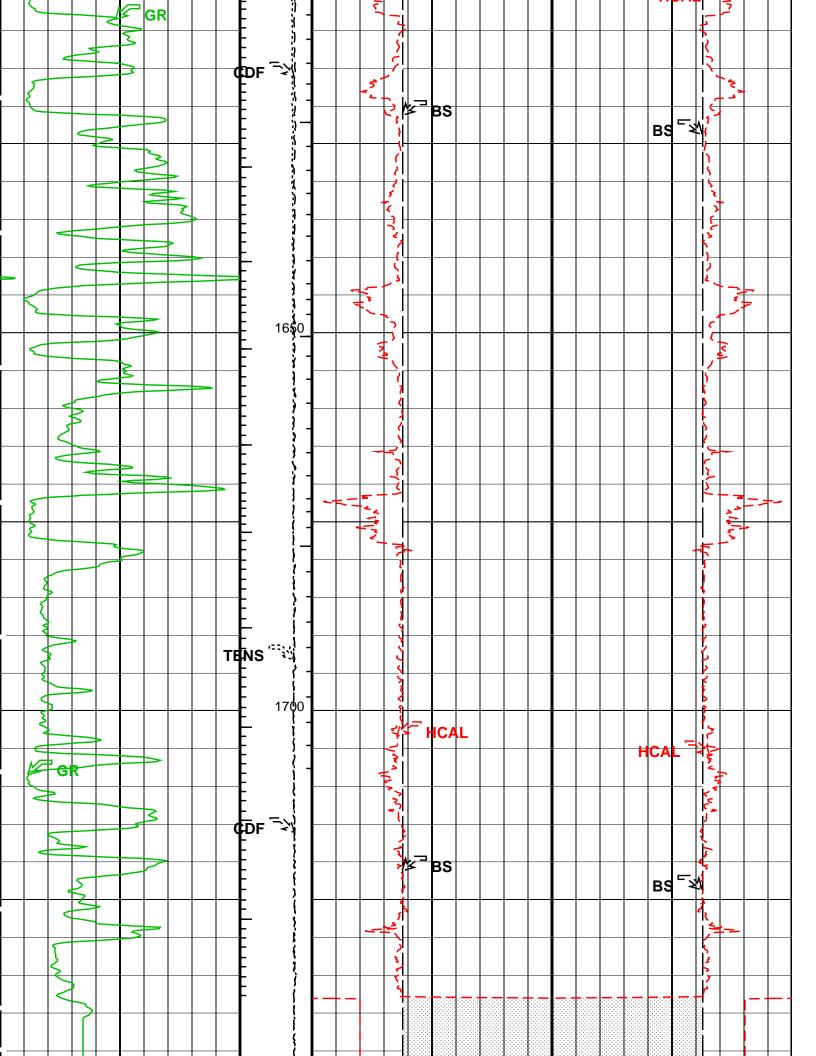

3SP SRPC-3546-Q1_2008_OP15

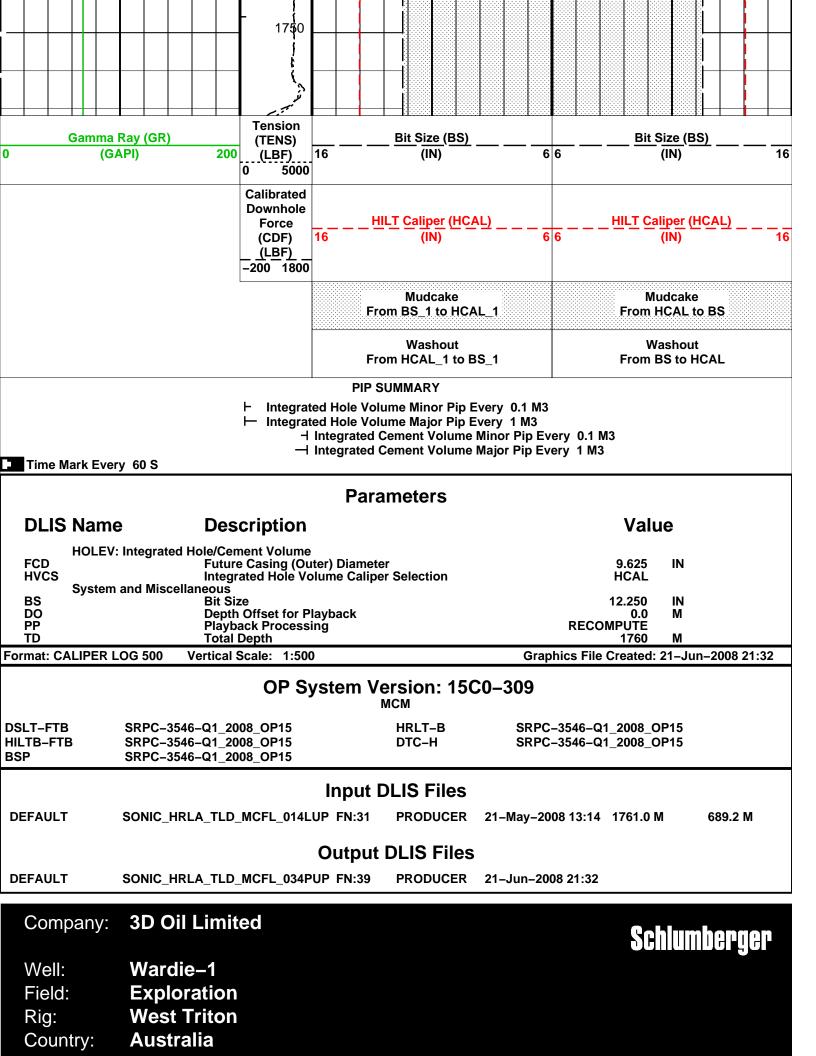

PIP SUMMARY


- **⊢** Integrated Hole Volume Minor Pip Every 0.1 M3
- - → Integrated Cement Volume Minor Pip Every 0.1 M3
 - → Integrated Cement Volume Major Pip Every 1 M3


Time Mark Every 60 S			• •
		Washout From HCAL_1 to BS_1	Washout From BS to HCAL
		Mudcake From BS_1 to HCAL_1	Mudcake From HCAL to BS
	Calibrated Downhole Force (CDF) (LBF) -200 1800	HILT Caliper (HCAL) 16 (IN)	HILT Caliper (HCAL) 6 6 (IN) 16
Gamma Ray (GR) (GAPI) 200	Tension (TENS) (LBF) 0 5000	Bit Size (BS)	Bit Size (BS)
	oe @ 746.5m	}	







BHC-HRLA-PEX-G Sonic-Resistivity-Density-Neutron-G Suite 1 Run 1 - Scale 1:500 (MD)