

09 Oct 2008

From: Sean De Freitas / Peter Dane To: Rob Oliver

DRILLING MORNING REPORT # 22 BAZZARD-1

Well Data									
Country	Australia	MDBRT	3450.0m	Cur. Hole Size	12.250in	AFE Cost	AUD\$16,336,000		
Field	Bazzard	TVDBRT	3450.0m	Last Casing OD	13.375in	AFE No.	53007D01		
Drill Co.	Seadrill	Progress	0.0m	Shoe TVDBRT	841.0m	Daily Cost	AUD\$699,053		
Rig	West Triton	Days from spud	19.02	Shoe MDBRT	841.0m	Cum Cost	AUD\$15,472,499		
Wtr Dpth (MSL)	67.900m	Days on well	21.21	FIT/LOT:	/ 1.80sg				
RT-MSL	38.500m	Planned TD MD	3500.000m	Current Op @ 0600	Circulating	Circulating bottoms up at 1892m.			
RT-ML	106.400m	Planned TD TVDRT	3500.000m	Planned Op	Continue with abandonment program.				

Summary of Period 0000 to 2400 Hrs

Laid down BHA assembly. RIH with mule shoe on 5.5in drill pipe to 2130m. Set balanced cement plug from 2130m to 2030m. POOH (dry) slowly from 2030m to 1980m. Circulated bottoms up. POOH laying down excess 5.5in drill pipe. RIH to tag cement plug #1. No success. Circulated bottoms up - dumped 40 bbls mud. Build mud volume and hi vis pill.

HSE Summary

Events	Num. Events	Days Since	Descr.	Remarks
Abandon Drill		12 Days	Held at 10.40 hours.	Abandon ship drill prior to rig move. Good response by all crews.
BOP Test	1	13 Days	Pressure tested Bop's.	21 Days - 17 Oct 08
First Aid Case		14 Days	Third Party received knock on mouth.	
Incident		18 Days	Pinion gear on TDS fell to rig floor.	A pinion gear, weighing 14kg, off the rotating head on the TDS sheared its shaft and fell 3m to the rig floor. Nobody on rig floor at the time.
JSA	10	0 Days		
Muster Drill	1	1 Day	All personnel muster at alternative muster station.	
Pre-tour Meeting	6	0 Days	Safety Meeting.	Held Pretour and pre job safety meetings with crews.
PTW issued	4	0 Days		Permit to work issued for the day.
Safety Meeting		5 Days	Weekly safety meeting	Weekly safety meeting
STOP Card	16	0 Days		Stop cards submitted for the day.

Operations For Period 0000 Hrs to 2400 Hrs on 09 Oct 2008

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
P11	Р	G6	0000	0100	1.00	3450.0m	POOH laying down 8.25in drill collars from 79m to 32m
P11	Р	G6	0100	0400	3.00	3450.0m	Held JSA and recovered radio active source. Broke off bit and laid out Schlumberger BHA. IADC bit Grade 2-8-BT-2-E-1/16in-CT-TD
P21	Р	G8	0400	0800	4.00	3450.0m	RIH with mule shoe on 5.5in drill pipe from surface to 2129m.
P21	Р	G11	0800	0830	0.50	3450.0m	Spaced out and made up cement circulating head assembly. Rigged up cement hose line.
P21	Р	F3	0830	0900	0.50	3450.0m	Cement unit pumped 5 bbls of drill water ahead. Tested surface lines to 1000 psi - good test. Pumped another 6 bbls of drill water ahead.
P21	Ρ	F3	0900	0930	0.50	3450.0m	Cement Plug #1: 2130m to 2030m Cement unit mixed and pumped 53 bbls (255 sx) of 15.8 ppg cement slurry at 6 bpm with 31 bbls of mix water. (11 MT class G cement).
P21	Р	F3	0930	1000	0.50	3450.0m	Cement unit pumped 2 bbls drill water spacer behind and displaced with 130 bbls of 10.0 ppg mud at 6 bpm.
P21	Р	G8	1000	1030	0.50	3450.0m	Rigged down cement circulating head assembly and cement hose line. POOH (dry) slowly from 2129m to 1980m
P21	Р	F4	1030	1130	1.00	3450.0m	Circulated bottoms up at 1000 gpm, 900 psi, 20 rpm. (No cement to surface)
P21	Ρ	G1	1130	1230	1.00	3450.0m	Rigged up handling equipment in preparation for laying down excess 5.5in drill pipe. Re-set link tilt clamps for mousehole. Cleared excess equipment from catwalk and removed stopper from same.

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
P21	Р	G2	1230	1830	6.00	3450.0m	POOH and laid down excess 5.5in drill pipe from 1980m to 798m.
P21	Р	G8	1830	2230	4.00	3450.0m	RIH with 5.5in drill pipe to tag cement plug #1 @ 2030m. No sign of cement plug down to 2155m.
P21	TP (WB)	F4	2230	2300	0.50	3450.0m	Circulated bottoms up - dumped 40 bbls cement contaminated mud.
P21	TP (WB)	F4	2300	2400	1.00	3450.0m	Built mud volume and Hi Vis pill.

Operations For Period 0000 Hrs to 0600 Hrs on 10 Oct 2008

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
P21	TP (WB)	F4	0000	0030	0.50	3450.0m	Continued to build mud volume and Hi Vis pill.
P21	TP (WB)	F1	0030	0130	1.00	3450.0m	Washed down from 2155m to 2230m.
P21	TP (WB)	F4	0130	0230	1.00	3450.0m	Circulated bottoms up at 1000 gpm (1300 psi), pumped 50 bbls hi vis pill and displaced with 143 bbls of 10.0 ppg mud.
P21	TP (WB)	G8	0230	0300	0.50	3450.0m	POOH from 2230m to 2130m.
P21	TP (WB)	F2	0300	0330	0.50	3450.0m	Spaced out and made up cement circulating head assembly. Rigged up cement hose line. Cement unit pumped 5 bbls of drill water ahead. Tested surface lines to 1000 psi - good test. Followed by another 17 bbls of drill water ahead.
P21	TP (WB)	F2	0330	0430	1.00	3450.0m	Cement Plug #1A: 2130m to 1980m (150m). Cement unit mixed and pumped 79 bbls (382 sx) of 15.8 ppg cement slurry at 6 bpm with 47 bbls of mix water. (16 MT class G cement without Halad-413L). Cement unit pumped 4 bbls drill water spacer behind and displaced with 124 bbls of 10.0 ppg mud at 6 bpm.
P21	TP (WB)	G8	0430	0600	1.50	3450.0m	Rigged down cement cement circulating head assembly and cement hose line. POOH (dry) slowly from 2130m to 1892m

Operations For Period Hrs to Hrs on

Phase	Data to	2400hrs	, 09 Oct 2008

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
Mob/Demob(P1)	43	18 Sep 2008	20 Sep 2008	43.00	1.792	0.0m
Conductor Hole(P2)	18.5	20 Sep 2008	21 Sep 2008	61.50	2.563	154.0m
Conductor Casing(P3)	21	21 Sep 2008	22 Sep 2008	82.50	3.438	154.0m
Surface Hole(P4)	58.5	22 Sep 2008	24 Sep 2008	141.00	5.875	850.0m
Surface Casing(P5)	20	24 Sep 2008	25 Sep 2008	161.00	6.708	850.0m
BOPs/Risers(P6)	29	25 Sep 2008	26 Sep 2008	190.00	7.917	850.0m
Production Hole (1)(P11)	299	26 Sep 2008	09 Oct 2008	489.00	20.375	3450.0m
Suspend and Abandon(P21)	20	09 Oct 2008	09 Oct 2008	509.00	21.208	3450.0m

General Comments

00:00 TO 24:00 Hrs ON 09 Oct 2008

Operational Comments	Hours on Jar serial No. 1762 1371 WT: 87 hrs
Operational Comments Operational Comments	 Hours on Jar serial No. 1762 1371 WT: 87 hrs West Triton Rig Equipment Concerns 1) Top drive rotating head has operating problems, to be able to rotate the IBOP must be operated first. This is impacting operational efficiency. Pinion gear has sheared its shaft and broken off. 2) CTU control panel has leaking valves, pressure regulator valve inoperable. Parts on order. 3) Link tilt clamps slipping on bails - need to rectify this issue. 4) Number 4 main generator down. Exciter and generator sent ashore. 5) Emergency generator fuel tank requires modification to drain line (no communication with tank through drain line).
	6) Cyber chair pressure guages for the standpipe & choke manifolds require calibration.
	7) Remote controller for Iron Roughneck not operational _ new one on order.
	8) Battery charger on Port crane not operational.
	9) Need to investigate possible misalignment of dolly beams and dolly rollers on Top Drive System. Requires shimming. A derrick alignment survey has been completed. Shims have been ordered to rectify alignment

General Com	ments														
			problem a	nd these w	ill be fitted a	as soo	on as th	ney arri	ve.						
				que valve o ves should			old are o	of poor	quality and	d cannot	be relied o	n when pres	sure te	sting.	
WBM Data					Cost To	oday	AUD	\$ 244	4						
Mud Type:	Cl/Polymer	API FL	.: 6	6.6cc/30min	CI:		340	00mg/l	Solids(%	/ol):	7%	Viscosity		55sec/q	
Sample-From:	Pit #6	Filter-C	Cake:	1/32nd"	K+C*1000):		7%	Low-Grav	vity		PV YP		16cp 36lb/100ft	
Time:	13:30	HTHP-	·FL:		Hard/Ca:		20	00mg/l	Solids:			Gels 10s		13	
Weight:	9.90ppg	HTHP-	cake:		MBT:			7.5	H2O:		90%	Gels 10m Fann 003		20	
Temp:					PM:			0.05	Oil(%):			Fann 006		14	
					PF:			0.05	Sand:			Fann 100 Fann 200		34 44	
									pH:		8.5	Fann 300		52	
Comment		Contin	ued to weigh		and used (Luar G	um for	Hi Vie n	PHPA:		1ppb	Fann 600		68	
		Contin		it up system								0	00		
Bit # 5					Wear			01	D	L	В	G	02	R	
					D ¹		2	8	BT	G3	E	1	СТ	TD	
					Bitwear C		ents:								
Size ("):	1	12.25in	IADC#	517		zzles		1	led over la		-	Calculated over Bit Run			
Mfr:		Reed) 48.00klb	No.	Size		Progre				Progress		163.0m	
Туре:		ins	RPM(avg)		3	20/	32nd"					On Btm Hrs 26.6h			
Serial No.:	C	W7795	F.Rate	1000gpm	IAI			IADC	Drill Hrs	C	0.0h Cum	ADC Drill H	rs	26.6h	
Bit Model	R22	2APDH	SPP	3020psi	Total F			Revs	187		Total Revs		471000		
Depth In	32	287.0m	HSI	5.38HSI	ROP(a			avg)		N/A ROP(avg)		6.13 m/hr		
Depth Out	Depth Out 3450.0m TFA 0.920														
Bit Comment															
BHA # 5			1								1				
Weight(Wet)	58	3.00klb	Length		258.8m Torque(max)				7000ft	-lbs D.C. (1) Ann Velo	city	299fpm		
Wt Below Jar(We	et) 34	4.00klb	String		321.00	Oklb	Torque	e(Off.Bt	m)	5000ft	-lbs D.C. (2) Ann Velo	city	0fpm	
			Pick-Up		346.00	Oklb	Torque	e(On.Bt	m)	6000ft	-lbs H.W.[D.P. Ann Ve	ocity	205fpm	
			Slack-Off		300.00	Oklb					D.P. /	Ann Velocity		205fpm	
BHA Run Descrip	otion			bit sub c/w " DC, X/O,			ower pu	Ilse c/w	/ 12.12" sta	ab, Sonio	c Vision 825	i, ADN-8 c/w	/ 12" st	ab, 7 x 8.5"	
BHA Run Comme	ent														
	Equipme	ent		Leng	gth C	D	I	D	Seria	l #		Comm	ent		
Bit						.25in			CW7795						
Bit Sub ARC8						3.25in 3.31in	2		7221 1815						
Power Pulse						.37in			VR53						
SonicVISION 825	5					.31in			E-885						
ADN 8				8.2	21m 8	.12in			42736						
Drill Collar						.25in		.00in							
Jar Drill Collar						00in		.37in							
Drill Collar X/O						.00in .00in		.37in .80in							
HWDP				140.8		.50in		.66in							
Bulk Stocks															
		Name					Unit		In		Used	Adjust		Balance	
Drill Water					М	Т				274	10		0	267.0	
Rig Fuel					m					0	10		0	146.0	
POTABLE WATE Cement class G	:K				M M					13 0	29 11		0 0	224.0 52.0	
Convright IDS 2007' 20					IVI	1				U	11		U	02.0 Page	

'Copyright IDS 2007', 20071227, ADA_AU_drllg Printed on 10 Oct 2008

Bulk Stocks										
Unit	In	Used								
MT	0	0								
MT	0	0								
m3	0	0								
MT	0	0								
litres	0	603								
	MT MT m3 MT	MT 0 MT 0 m3 0 MT 0								

np Data - Last 2		Slow Pump Data														
Туре	Liner (in)	MW (ppg)	Eff (%)	SPM (SPM)	SPP (psi)	Flow (gpm)	Depth (m)	SPM1 (SPM)	SPP1FI (psi)	low1(gpr	n)SPM2 (SPM)	SPP2 (psi)	Flow2 (gpm)	SPM3 (SPM)	SPP3 (psi)	Flow3 (gpm)
National 14 P-220	6.50	9.51	97	94	3000	550	3271.0	30	390	176	40	420	234	50	500	293
National 14 P-220	6.50	9.51	97					30		176	40		234	50		293
National 14 P-220	6.50	9.51	97	94	3000	550	3271.0	30	390	176	40	410	234	50	500	293
	Type National 14 P-220 National 14 P-220	National 14 6.50 P-220 P-220 National 14 6.50 P-220 0 National 14 6.50 P-220 0	Type Liner (in) MW (ppg) National 14 6.50 9.51 P-220 6.50 9.51 National 14 6.50 9.51 P-220 9.51 9.51 National 14 6.50 9.51 P-220 9.51 9.51	Type Liner (in) MW (ppg) Eff (%) National 14 P-220 6.50 9.51 97 National 14 P-220 6.50 9.51 97 National 14 6.50 9.51 97 P-220 9 97 97	Type Liner (in) MW (ppg) Eff (%) SPM (SPM) National 14 P-220 6.50 9.51 97 94 National 14 P-220 6.50 9.51 97 94 National 14 P-220 6.50 9.51 97 94 National 14 6.50 9.51 97 94	Type Liner (in) MW (ppg) Eff (%) (SPM) SPM (psi) SPP (psi) National 14 P-220 6.50 9.51 97 94 3000 National 14 P-220 6.50 9.51 97 94 3000 National 14 6.50 9.51 97 94 3000 National 14 6.50 9.51 97 94 3000	Type Liner (in) MW (ppg) Eff (%) (SPM) SPP (psi) Flow (gpm) National 14 P-220 6.50 9.51 97 94 3000 550 National 14 P-220 6.50 9.51 97 94 3000 550 National 14 P-220 6.50 9.51 97 94 3000 550	Type Liner (in) MW (ppg) Eff (%) (SPM) SPM (psi) SPP (gpm) Flow (gpm) Depth (m) National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 National 14 6.50 9.51 97 94 3000 550 3271.0 National 14 6.50 9.51 97 94 3000 550 3271.0	Type Liner (in) MW (ppg) Eff (%) P SPM (SPM) SPP (psi) Flow (gpm) Depth (m) SPM1 (SPM) National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 National 14 6.50 9.51 97 94 3000 550 3271.0 30 National 14 6.50 9.51 97 94 3000 550 3271.0 30	Type Liner (in) MW (ppg) Eff (%) SPM (SPM) SPP (psi) Flow (gpm) Depth (m) SPM1 (SPM) SPP1FI (psi) National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390	Type Liner (in) MW (ppg) Eff (%) (SPM) SPM (SPM) SPP (psi) Flow (gpm) Depth (m) SPM1 (SPM) SPP1Flow1(gpm) (psi) National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 176 National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 176 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390 176 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390 176	Type Liner (in) MW (ppg) Eff (%) Eff (%) SPM (SPM) SPP (psi) Flow (gpm) Depth (m) SPM1 (SPM) SPP1Flow1(gpm) (psi) SPM2 (SPM) National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40	Type Liner (in) MW (ppg) Eff (%) Eff (%) SPM (SPM) SPP (psi) Flow (gpm) Depth (m) SPM1 (SPM) SPP1Flow1(gpm) (psi) SPM2 (SPM) SPP2 (psi) National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 420 National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 420 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 420 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 410	Type Liner (in) MW (ppg) Eff (%) Eff (%) SPM (SPM) SPP (psi) Flow (gpm) Depth (m) SPM1 (SPM) SPP1Flow1(gpm)SPM2 (psi) SPP2 (SPM) Flow2 (psi) National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 420 234 National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 420 234 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 420 234 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 410 234	Type Liner (in) MW (ppg) Eff (%) cm SPM (SPM) SPM (gpm) Flow (gpm) Depth (m) SPM1 (SPM) SPP1Flow1(gpm)SPM2 (psi) SPP2 (SPM) Flow2 (gpm) SPM3 (SPM) National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 420 234 50 National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 420 234 50 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 420 234 50 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 410 234 50 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40	Type Liner (in) MW (ppg) Eff (%) Eff (%) SPM (SPM) SPP (psi) Flow (gpm) Depth (m) SPM1 (SPM) SPP1Flow1(gpm) (psi) SPM2 (SPM) SPM3 (SPM) SPP3 (psi) National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 420 234 50 500 National 14 P-220 6.50 9.51 97 4 500 550 3271.0 30 390 176 40 420 234 50 500 National 14 P-220 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 234 50 500 National 14 6.50 9.51 97 94 3000 550 3271.0 30 390 176 40 410 234 50 500

Casing

OD	LOT / FIT	Csq Shoe (MD/TVD)	Cementing
02			
30 "	/	151.00m / 151.00m	
13.38	15.02ppg /	841.00m / 841.00m	Utilising MLS hanger for 13.375" casing.

Personnel On Board

Company	Pax		
ADA	5		
Seadrill	15		
Seadrill Services.	30		
Catering	9		
Halliburton - Sperry	2		
Baker Hughes Inteq	2		
Halliburton	2		
Tamboritha	2		
Schlumberger MWD/LWD	2		
Dril-Quip	1		
Weatherford	3		
Total	73		

Available	2652.5bl	bl Losses	12	2.3bbl	Equipment	Descrip	tion	Mesh Size	Comments
Active	462.0bl	bl Downho	le		Shaker 1	VSM-300		255	
Vixing		Surf+ Ec	quip 1	2.3bbl	Shaker 1 Shaker 2	VSM-300 VSM-300		255 255	
Hole	1633.8bl	bl Dumped	umped		Shaker 2	VSM-300		255	
Slug Reserve	556.7bl	bl Be-Gass	ser		Shaker 3	er 3 VSM-300		255	
	000.70				Shaker 3	VSM-300		255 255	
Kill		De-Silte Centrifu	ter fuge		Shaker 4	VSM-300			
			-		Shaker 4	VSM-300		255	
Marine									
Neather on	09 Oct 2008								
Visibility	Wind Speed	Wind Dir.	Pressure	Air Ter	np. Wave Height	Wave Dir.	Wave Period		
10.0nm	17kn	23.0deg	1022.0mbar	11C	° 2.2m	160.0deg	6s		
Rig Dir.	Ris. Tension	VDL	Swell Height	Swell [Dir. Swell Period	Weather (Comments		
133.5deg	310.00klb	2402.00klb	1.2m	160.0c	leg 7s		swell heights		
	· ·	Com	nents			are est	imates.		

Adjust

0

2

8

0

0

Balance

39.0

39.0

58.0

43.0

3,122.0

Vessel N	ame Arrived (Date/Time)	Departed (Date/Time)	Status				Bulks				
Pacific Battler			At rig	ltem	Unit	In	Used	Transfer to Rig	Adjust	Quantity	
				Rig Fuel	m3		5.1			418.1	
				Potable Water	m3		5	50		390	
				Drill Water	m3			274		206	
				CEMENT G	Mt					83	
				Barite	Mt					42	
				Bentonite	Mt					60	
				SOBM	m3					C	
				Brine	m3					C	
Pacific Valkyri	e		Eden	ltem	Unit	In	Used	Transfer to Rig	Adjust	Quantity	
				Rig Fuel	m3		21			419	
				Potable Water	Mt		5			315	
				Drill Water	m3					133	
				CEMENT G	Mt					(
				Barite	Mt					35	
				Bentonite	Mt					C	
				SOBM	m3					C	
				Base Oil	m3					C	
				Brine	m3					C	
Helicopter	Movement										
Flight #	Company	Arr/Dep. Time P		Pax In/Out		Comment					
BWJ	BRISTOW HELICOPTERS AUSTRALIA PTY LTD	0948 / 1015		13 / 9		600 Ltrs Fuel					